Chapter-14 Semiconductor Electronics: Materials, Devices, and Simple Circuits
14.1 INTRODUCTION
Devices in which a controlled flow of electrons can be obtained are the basic building blocks of all the electronic circuits. Before the discovery of transistor in 1948, such devices were mostly vacuum tubes (also called valves) like the vacuum diode which has two electrodes, viz., anode (often called plate) and cathode; triode which has three electrodes - cathode, plate and grid; tetrode and pentode (respectively with 4 and 5 electrodes). In a vacuum tube, the electrons are supplied by a heated cathode and the controlled flow of these electrons in vacuum is obtained by varying the voltage between its different electrodes. Vacuum is required in the inter-electrode space; otherwise the moving electrons may lose their energy on collision with the air molecules in their path. In these devices the electrons can flow only from the cathode to the anode (i.e., only in one direction). Therefore, such devices are generally referred to as valves. These vacuum tube devices are bulky, consume high power, operate generally at high voltages ( $100 \mathrm{~V}$) and have limited life and low reliability. The seed of the development of modern solid-state semiconductor electronics goes back to 1930’s when it was realised that some solidstate semiconductors and their junctions offer the possibility of controlling the number and the direction of flow of charge carriers through them. Simple excitations like light, heat or small applied voltage can change the number of mobile charges in a semiconductor. Note that the supply and flow of charge carriers in the semiconductor devices are within the solid itself, while in the earlier vacuum tubes/valves, the mobile electrons were obtained from a heated cathode and they were made to flow in an evacuated space or vacuum. No external heating or large evacuated space is required by the semiconductor devices. They are small in size, consume low power, operate at low voltages and have long life and high reliability. Even the Cathode Ray Tubes (CRT) used in television and computer monitors which work on the principle of vacuum tubes are being replaced by Liquid Crystal Display (LCD) monitors with supporting solid state electronics. Much before the full implications of the semiconductor devices was formally understood, a naturally occurring crystal of galena (Lead sulphide, PbS) with a metal point contact attached to it was used as detector of radio waves.
In the following sections, we will introduce the basic concepts of semiconductor physics and discuss some semiconductor devices like junction diodes (a 2-electrode device) and bipolar junction transistor (a 3 -electrode device). A few circuits illustrating their applications will also be described.
14.2 CLASSIFICATION OF METALS, CONDUCTORS AND SEMICONDUCTORS
On the basis of conductivity
On the basis of the relative values of electrical conductivity $(\sigma)$ or resistivity $(\rho=1 / \sigma)$, the solids are broadly classified as:
(i) Metals: They possess very low resistivity (or high conductivity).
$ \rho \sim 10^{-2}-10^{-8} \Omega \mathrm{m} $
$\sigma \sim 10^{2}-10^{8} \mathrm{~S} \mathrm{~m}^{-1}$
(ii) Semiconductors: They have resistivity or conductivity intermediate to metals and insulators.
$$ \begin{aligned} & \rho \sim 10^{-5}-10^{6} \Omega \mathrm{m} \\ & \sigma \sim 10^{5}-10^{-6} \mathrm{~S} \mathrm{~m}^{-1} \end{aligned} $$
(iii)Insulators: They have high resistivity (or low conductivity).
$$ \begin{aligned} & \rho \sim 10^{11}-10^{19} \Omega \mathrm{m} \\ & \sigma \sim 10^{-11}-10^{-19} \mathrm{~S} \mathrm{~m}^{-1} \end{aligned} $$
The values of $\rho$ and $\sigma$ given above are indicative of magnitude and could well go outside the ranges as well. Relative values of the resistivity are not the only criteria for distinguishing metals, insulators and semiconductors from each other. There are some other differences, which will become clear as we go along in this chapter.
Our interest in this chapter is in the study of semiconductors which could be:
(i) Elemental semiconductors: $\mathrm{Si}$ and $\mathrm{Ge}$
(ii) Compound semiconductors: Examples are:
-
Inorganic: CdS, GaAs, CdSe, InP, etc.
-
Organic: anthracene, doped pthalocyanines, etc.
-
Organic polymers: polypyrrole, polyaniline, polythiophene, etc.
Most of the currently available semiconductor devices are based on elemental semiconductors $\mathrm{Si}$ or $\mathrm{Ge}$ and compound inorganic semiconductors. However, after 1990, a few semiconductor devices using organic semiconductors and semiconducting polymers have been developed signalling the birth of a futuristic technology of polymerelectronics and molecular-electronics. In this chapter, we will restrict ourselves to the study of inorganic semiconductors, particularly elemental semiconductors Si and Ge. The general concepts introduced here for discussing the elemental semiconductors, by-and-large, apply to most of the compound semiconductors as well.
On the basis of energy bands
According to the Bohr atomic model, in an isolated atom the energy of any of its electrons is decided by the orbit in which it revolves. But when the atoms come together to form a solid they are close to each other. So the outer orbits of electrons from neighbouring atoms would come very close or could even overlap. This would make the nature of electron motion in a solid very different from that in an isolated atom.
Inside the crystal each electron has a unique position and no two electrons see exactly the same pattern of surrounding charges. Because of this, each electron will have a different energy level. These different energy levels with continuous energy variation form what are called energy bands. The energy band which includes the energy levels of the valence electrons is called the valence band. The energy band above the valence band is called the conduction band. With no external energy, all the valence electrons will reside in the valence band. If the lowest level in the conduction band happens to be lower than the highest level of the valence band, the electrons from the valence band can easily move into the conduction band. Normally the conduction band is empty. But when it overlaps on the valence band electrons can move freely into it. This is the case with metallic conductors.
If there is some gap between the conduction band and the valence band, electrons in the valence band all remain bound and no free electrons are available in the conduction band. This makes the material an insulator. But some of the electrons from the valence band may gain external energy to cross the gap between the conduction band and the valence band. Then these electrons will move into the conduction band. At the same time they will create vacant energy levels in the valence band where other valence electrons can move. Thus the process creates the possibility of conduction due to electrons in conduction band as well as due to vacancies in the valence band.
Let us consider what happens in the case of $\mathrm{Si}$ or Ge crystal containing $N$ atoms. For $\mathrm{Si}$, the outermost orbit is the third orbit $(n=3)$, while for $\mathrm{Ge}$ it is the fourth orbit $(n=4)$. The number of electrons in the outermost orbit is 4 ( $2 s$ and $2 p$ electrons). Hence, the total number of outer electrons in the crystal is $4 N$. The maximum possible number of electrons in the outer orbit is 8 ( $2 s+6 p$ electrons). So, for the $4 N$ valence electrons there are $8 N$ available energy states. These $8 N$ discrete energy levels can either form a continuous band or they may be grouped in different bands depending upon the distance between the atoms in the crystal (see box on Band Theory of Solids).
At the distance between the atoms in the crystal lattices of $\mathrm{Si}$ and Ge, the energy band of these $8 N$ states is split apart into two which are separated by an energy gap $E_{g}$ (Fig. 14.1). The lower band which is completely occupied by the $4 N$ valence electrons at temperature of absolute zero is the valence band. The other band consisting of $4 N$ energy states, called the conduction band, is completely empty at absolute zero.
FIGURE 14.1 The energy band positions in a semiconductor at $0 \mathrm{~K}$. The upper band, called the conduction band, consists of infinitely large number of closely spaced energy states. The lower band, called the valence band, consists of closely spaced completely filled energy states.
The lowest energy level in the conduction band is shown as $E_{C}$ and highest energy level in the valence band is shown as $E_{V}$. Above $E_{C}$ and below $E_{V}$ there are a large number of closely spaced energy levels, as shown in Fig. 14.1.
The gap between the top of the valence band and bottom of the conduction band is called the energy band gap (Energy gap $E_{q}$ ). It may be large, small, or zero, depending upon the material. These different situations, are depicted in Fig. 14.2 and discussed below:
Case I: This refers to a situation, as shown in Fig. 14.2(a). One can have a metal either when the conduction band is partially filled and the balanced band is partially empty or when the conduction and valance bands overlap. When there is overlap electrons from valence band can easily move into the conduction band. This situation makes a large number of electrons available for electrical conduction. When the valence band is partially empty, electrons from its lower level can move to higher level making conduction possible. Therefore, the resistance of such materials is low or the conductivity is high.
FIGURE 14.2 Difference between energy bands of (a) metals, (b) insulators and (c) semiconductors.
Case II: In this case, as shown in Fig. 14.2(b), a large band gap $E_{g}$ exists $\left(E_{g}>3 \mathrm{eV}\right)$. There are no electrons in the conduction band, and therefore no electrical conduction is possible. Note that the energy gap is so large that electrons cannot be excited from the valence band to the conduction band by thermal excitation. This is the case of insulators.
Case III: This situation is shown in Fig. 14.2(c). Here a finite but small band gap $\left(E_{g}<3 \mathrm{eV}\right)$ exists. Because of the small band gap, at room temperature some electrons from valence band can acquire enough energy to cross the energy gap and enter the conduction band. These electrons (though small in numbers) can move in the conduction band. Hence, the resistance of semiconductors is not as high as that of the insulators.
In this section we have made a broad classification of metals, conductors and semiconductors. In the section which follows you will learn the conduction process in semiconductors.
14.3 INTRINSIC SEMICONDUCTOR
We shall take the most common case of Ge and $\mathrm{Si}$ whose lattice structure is shown in Fig. 14.3. These structures are called the diamond-like structures. Each atom is surrounded by four nearest neighbours. We know that $\mathrm{Si}$ and $\mathrm{Ge}$ have four valence electrons. In its crystalline structure, every $\mathrm{Si}$ or Ge atom tends to share one of its four valence electrons with each of its four nearest neighbour atoms, and also to take share of one electron from each such neighbour. These shared electron pairs are referred to as forming a covalent bond or simply a valence bond. The two shared electrons can be assumed to shuttle back-and-forth between the associated atoms holding them together strongly. Figure 14.4 schematically shows the 2-dimensional representation of $\mathrm{Si}$ or $\mathrm{Ge}$ structure shown in Fig. 14.3 which overemphasises the covalent bond. It shows an idealised picture in which no bonds are broken (all bonds are intact). Such a situation arises at low temperatures. As the temperature increases,more thermal energy becomes available to these electrons and some of these electrons may break-away (becoming free electrons contributing to conduction). The thermal energy effectively ionises only a few atoms in the crystalline lattice and creates a vacancy in the bond as shown in Fig. 14.5(a). The neighbourhood, from which the free electron (with charge $-q$ ) has come out leaves a vacancy with an effective charge $(+q)$. This vacancy with the effective positive electronic charge is called a hole. The hole behaves as an apparent free particle with effective positive charge.
FIGURE 14.3 Three-dimensional diamond-like crystal structure for Carbon, Silicon or Germanium with respective lattice spacing $a$ equal to $3.56,5.43$ and $5.66 \mathring{A}$
In intrinsic semiconductors, the number of free electrons, $n_{e}$ is equal to the number of holes, $n_{h}$. That is
$$ \begin{equation*} n_{e}=n_{h}=n_{i} \tag{14.1} \end{equation*} $$
where $n_{i}$ is called intrinsic carrier concentration.
Semiconductors posses the unique property in which, apart from electrons, the holes also move. Suppose there is a hole at site 1 as shown
FIGURE 14.4 Schematic two-dimensional representation of $\mathrm{Si}$ or $\mathrm{Ge}$ structure showing covalent bonds at low temperature (all bonds intact). +4 symbol indicates inner cores of $\mathrm{Si}$ or Ge.
in Fig. 14.5(a). The movement of holes can be visualised as shown in Fig. 14.5(b). An electron from the covalent bond at site 2 may jump to the vacant site 1 (hole). Thus, after such a jump, the hole is at site 2 and the site 1 has now an electron. Therefore, apparently, the hole has moved from site 1 to site 2 . Note that the electron originally set free [Fig. 14.5(a)] is not involved in this process of hole motion. The free electron moves completely independently as conduction electron and gives rise to an electron current, $I_{e}$ under an applied electric field. Remember that the motion of hole is only a convenient way of describing the actual motion of bound electrons, whenever there is an empty bond anywhere in the crystal. Under the action of an electric field, these holes move towards negative potential giving the hole current, $I_{h}$. The total current, $I$ is thus the sum of the electron current $I_{e}$ and the hole current $I_{h}$ :
$$ \begin{equation*} I=I_{e}+I_{h} \tag{14.2} \end{equation*} $$
It may be noted that apart from the process of generation of conduction electrons and holes, a simultaneous process of recombination occurs in which the electrons recombine with the holes. At equilibrium, the rate of generation is equal to the rate of recombination of charge carriers. The recombination occurs due to an electron colliding with a hole.
>
FIGURE 14.5 (a) Schematic model of generation of hole at site 1 and conduction electron due to thermal energy at moderate temperatures. (b) Simplified representation of possible thermal motion of a hole. The electron from the lower left hand covalent bond (site 2) goes to the earlier hole site1, leaving a hole at its site indicating an apparent movement of the hole from site 1 to site 2 .
An intrinsic semiconductor will behave like an insulator at $T=0 \mathrm{~K}$ as shown in Fig. 14.6(a). It is the thermal energy at higher temperatures ( $T>0 \mathrm{~K}$ ), which excites some electrons from the valence band to the conduction band. These thermally excited electrons at $T>0 \mathrm{~K}$, partially occupy the conduction band. Therefore, the energy-band diagram of an intrinsic semiconductor will be as shown in Fig. 14.6(b). Here, some electrons are shown in the conduction band. These have come from the valence band leaving equal number of holes there.
FIGURE 14.6 (a) An intrinsic semiconductor at $T=0 \mathrm{~K}$ behaves like insulator. (b) At $T>0 \mathrm{~K}$, four thermally generated electron-hole pairs. The filled circles ($\cdot$) represent electrons and empty circles $(\bigcirc)$ represent holes.
Example 14.1 C, Si and Ge have same lattice structure. Why is C insulator while $\mathrm{Si}$ and $\mathrm{Ge}$ intrinsic semiconductors?
Solution The 4 bonding electrons of $\mathrm{C}, \mathrm{Si}$ or Ge lie, respectively, in the second, third and fourth orbit. Hence, energy required to take out an electron from these atoms (i.e., ionisation energy $E_{q}$ ) will be least for $\mathrm{Ge}$, followed by $\mathrm{Si}$ and highest for $\mathrm{C}$. Hence, number of free electrons for conduction in Ge and Si are significant but negligibly small for $\mathrm{C}$.
14.4 EXTRINSIC SEMICONDUCTOR
The conductivity of an intrinsic semiconductor depends on its temperature, but at room temperature its conductivity is very low. As such, no important electronic devices can be developed using these semiconductors. Hence there is a necessity of improving their conductivity. This can be done by making use of impurities.
When a small amount, say, a few parts per million (ppm), of a suitable impurity is added to the pure semiconductor, the conductivity of the semiconductor is increased manifold. Such materials are known as extrinsic semiconductors or impurity semiconductors. The deliberate addition of a desirable impurity is called doping and the impurity atoms are called dopants. Such a material is also called a doped semiconductor. The dopant has to be such that it does not distort the original pure semiconductor lattice. It occupies only a very few of the original semiconductor atom sites in the crystal. A necessary condition to attain this is that the sizes of the dopant and the semiconductor atoms should be nearly the same.
There are two types of dopants used in doping the tetravalent Si or Ge:
(i) Pentavalent (valency 5); like Arsenic (As), Antimony (Sb), Phosphorous (P), etc.
(ii) Trivalent (valency 3); like Indium (In), Boron (B), Aluminium (Al), etc.
FIGURE 14.7 (a) Pentavalent donor atom (As, Sb, $\mathrm{P}$, etc.) doped for tetravalent $\mathrm{Si}$ or Ge giving $\mathrm{n}-$ type semiconductor, and (b) Commonly used schematic representation of $n$-type material which shows only the fixed cores of the substituent donors with one additional effective positive charge and its associated extra electron.
We shall now discuss how the doping changes the number of charge carriers (and hence the conductivity) of semiconductors. Si or Ge belongs to the fourth group in the Periodic table and, therefore, we choose the dopant element from nearby fifth or third group, expecting and taking care that the size of the dopant atom is nearly the same as that of Si or Ge. Interestingly, the pentavalent and trivalent dopants in $\mathrm{Si}$ or Ge give two entirely different types of semiconductors as discussed below.
(i) n-type semiconductor
Suppose we dope $\mathrm{Si}$ or Ge with a pentavalent element as shown in Fig. 14.7. When an atom of +5 valency element occupies the position of an atom in the crystal lattice of Si, four of its electrons bond with the four silicon neighbours while the fifth remains very weakly bound to its parent atom. This is because the four electrons participating in bonding are seen as part of the effective core of the atom by the fifth electron. As a result the ionisation energy required to set this electron free is very small and even at room temperature it will be free to move in the lattice of the semiconductor. For example, the energy required is $\sim 0.01 \mathrm{eV}$ for germanium, and $0.05 \mathrm{eV}$ for silicon, to separate this electron from its atom. This is in contrast to the energy required to jump the forbidden band (about $0.72 \mathrm{eV}$ for germanium and about $1.1 \mathrm{eV}$ for silicon) at room temperature in the intrinsic semiconductor. Thus, the pentavalent dopant is donating one extra electron for conduction and hence is known as donor impurity. The number of electrons made available for conduction by dopant atoms depends strongly upon the doping level and is independent of any increase in ambient temperature. On the other hand, the number of free electrons (with an equal number of holes) generated by $\mathrm{Si}$ atoms, increases weakly with temperature.
In a doped semiconductor the total number of conduction electrons $n_{e}$ is due to the electrons contributed by donors and those generated intrinsically, while the total number of holes $n_{h}$ is only due to the holes from the intrinsic source. But the rate of recombination of holes would increase due to the increase in the number of electrons. As a result, the number of holes would get reduced further.
Thus, with proper level of doping the number of conduction electrons can be made much larger than the number of holes. Hence in an extrinsic semiconductor doped with pentavalent impurity, electrons become the majority carriers and holes the minority carriers. These semiconductors are, therefore, known as n-type semiconductors. For n-type semiconductors, we have,
$$ \begin{equation*} n_{e} > > n_{h} \tag{14.3} \end{equation*} $$
(ii) p-type semiconductor
FIGURE 14.8 (a) Trivalent acceptor atom (In, Al, B etc.) doped in tetravalent Si or Ge lattice giving p-type semiconductor. (b) Commonly used schematic representation of p-type material which shows only the fixed core of the substituent acceptor with one effective additional negative charge and its associated hole. This is obtained when $\mathrm{Si}$ or Ge is doped with a trivalent impurity like Al, B, In, etc. The dopant has one valence electron less than Si or Ge and, therefore, this atom can form covalent bonds with neighbouring three $\mathrm{Si}$ atoms but does not have any electron to offer to the fourth $\mathrm{Si}$ atom. So the bond between the fourth neighbour and the trivalent atom has a vacancy or hole as shown in Fig. 14.8. Since the neighbouring Si atom in the lattice wants an electron in place of a hole, an electron in the outer orbit of an atom in the neighbourhood may jump to fill this vacancy, leaving a vacancy or hole at its own site. Thus the hole is available for conduction. Note that the trivalent foreign atom becomes effectively negatively charged when it shares fourth electron with neighbouring $\mathrm{Si}$ atom. Therefore, the dopant atom of p-type material can be treated as core of one negative charge along with its associated hole as shown in Fig. 14.8(b). It is obvious that one acceptor atom gives one hole. These holes are in addition to the intrinsically generated holes while the source of conduction electrons is only intrinsic generation. Thus, for such a material, the holes are the majority carriers and electrons are minority carriers. Therefore, extrinsic semiconductors doped with trivalent impurity are called p-type semiconductors. For p-type semiconductors, the recombination process will reduce the number $\left(n_{i}\right)$ of intrinsically generated electrons to $n_{e}$. We have, for p-type semiconductors
$$ \begin{equation*} n_{h} > > n_{e} \tag{14.4} \end{equation*} $$
Note that the crystal maintains an overall charge neutrality as the charge of additional charge carriers is just equal and opposite to that of the ionised cores in the lattice.
FIGURE 14.8 (a) Trivalent acceptor atom (In, Al, B etc.) doped in tetravalent Si or Ge lattice giving p-type semiconductor. (b) Commonly used schematic representation of p-type material which shows only the fixed core of the substituent acceptor with one effective additional negative charge and its associated hole.
In extrinsic semiconductors, because of the abundance of majority current carriers, the minority carriers produced thermally have more chance of meeting majority carriers and thus getting destroyed. Hence, the dopant, by adding a large number of current carriers of one type, which become the majority carriers, indirectly helps to reduce the intrinsic concentration of minority carriers.
The semiconductor’s energy band structure is affected by doping. In the case of extrinsic semiconductors, additional energy states due to donor impurities $\left(E_{D}\right)$ and acceptor impurities $\left(E_{A}\right)$ also exist. In the energy band diagram of n-type $\mathrm{Si}$ semiconductor, the donor energy level $E_{D}$ is slightly below the bottom $E_{\mathrm{C}}$ of the conduction band and electrons from this level move into the conduction band with very small supply of energy. At room temperature, most of the donor atoms get ionised but very few $\left(\sim 10^{12}\right)$ atoms of Si get ionised. So the conduction band will have most electrons coming from the donor impurities, as shown in Fig. 14.9(a). Similarly, for p-type semiconductor, the acceptor energy level $E_{A}$ is slightly above the top $E_{V}$ of the valence band as shown in Fig. 14.9(b). With very small supply of energy an electron from the valence band can jump to the level $E_{A}$ and ionise the acceptor negatively. (Alternately, we can also say that with very small supply of energy the hole from level $E_{A}$ sinks down into the valence band. Electrons rise up and holes fall down when they gain external energy.) At room temperature, most of the acceptor atoms get ionised leaving holes in the valence band. Thus at room temperature the density of holes in the valence band is predominantly due to impurity in the extrinsic semiconductor. The electron and hole concentration in a semiconductor in thermal equilibrium is given by
$$ \begin{equation*} n_{e} n_{h}=n_{i}^{2} \tag{14.5} \end{equation*} $$
Though the above description is grossly approximate and hypothetical, it helps in understanding the difference between metals, insulators and semiconductors (extrinsic and intrinsic) in a simple manner. The difference in the resistivity of $\mathrm{C}, \mathrm{Si}$ and Ge depends upon the energy gap between their conduction and valence bands. For C (diamond), Si and Ge, the energy gaps are $5.4 \mathrm{eV}, 1.1 \mathrm{eV}$ and $0.7 \mathrm{eV}$, respectively. Sn also is a group IV element but it is a metal because the energy gap in its case is $0 \mathrm{eV}$.
FIGURE 14.9 Energy bands of (a) n-type semiconductor at $T>0 K$, (b) p-type semiconductor at $T>0 \mathrm{~K}$.
Example 14.2 Suppose a pure Si crystal has $5 \times 10^{28}$ atoms $\mathrm{m}^{-3}$. It is doped by $1 \mathrm{ppm}$ concentration of pentavalent As. Calculate the number of electrons and holes. Given that $n_{i}=1.5 \times 10^{16} \mathrm{~m}^{-3}$.
Solution Note that thermally generated electrons $\left(n_{i} \sim 10^{16} \mathrm{~m}^{-3}\right)$ are negligibly small as compared to those produced by doping. Therefore, $n_{e} \approx N_{D}$.
Since $n_{e} n_{h}=n_{i}^{2}$, The number of holes
$n_{h}=\left(2.25 \times 10^{32}\right) /\left(5 \times 10^{22}\right)$
$\sim 4.5 \times 10^{9} \mathrm{~m}^{-3}$
14.5 p-n JUNCTION
A p-n junction is the basic building block of many semiconductor devices like diodes, transistor, etc. A clear understanding of the junction behaviour is important to analyse the working of other semiconductor devices. We will now try to understand how a junction is formed and how the junction behaves under the influence of external applied voltage (also called bias).
14.5.1 p-n junction formation
Consider a thin p-type silicon (p-Si) semiconductor wafer. By adding precisely a small quantity of pentavelent impurity, part of the p-Si wafer can be converted into $\mathrm{n}$-Si. There are several processes by which a semiconductor can be formed. The wafer now contains p-region and $\mathrm{n}$-region and a metallurgical junction between $\mathrm{p}-$, and $\mathrm{n}$ - region.
Two important processes occur during the formation of a p-n junction: diffusion and drift. We know that in an n-type semiconductor, the concentration of electrons (number of electrons per unit volume) is more compared to the concentration of holes. Similarly, in a p-type semiconductor, the concentration of holes is more than the concentration of electrons. During the formation of $\mathrm{p}-\mathrm{n}$ junction, and due to the concentration gradient across $\mathrm{p}-$, and $\mathrm{n}$ - sides, holes diffuse from $\mathrm{p}$-side to $\mathrm{n}$-side $(\mathrm{p} \rightarrow \mathrm{n})$ and electrons diffuse from $\mathrm{n}$-side to $\mathrm{p}$-side $(\mathrm{n} \rightarrow \mathrm{p})$. This motion of charge carries gives rise to diffusion current across the junction.
When an electron diffuses from $\mathrm{n} \rightarrow \mathrm{p}$, it leaves behind an ionised donor on $\mathrm{n}$-side. This ionised donor (positive charge) is immobile as it is bonded to the surrounding atoms. As the electrons continue to diffuse from $\mathrm{n} \rightarrow \mathrm{p}$, a layer of positive charge (or positive space-charge region) on $\mathrm{n}$-side of the junction is developed.
Similarly, when a hole diffuses from $\mathrm{p} \rightarrow \mathrm{n}$ due to the concentration gradient, it leaves behind an ionised acceptor (negative charge) which is immobile. As the holes continue to diffuse, a layer of negative charge (or negative space-charge region) on the p-side of the junction is developed. This space-charge region on either side of the junction together is known as depletion region as the electrons and holes taking part in the initial movement across the junction depleted the region of its free charges (Fig. 14.10). The thickness of depletion region is of the order of one-tenth of a micrometre. Due to the positive space-charge region on $\mathrm{n}$-side of the junction and negative space charge region on p-side of the junction, an electric field directed from positive charge towards negative charge develops. Due to this field, an electron on p-side of the junction moves to $\mathrm{n}$-side and a hole on $\mathrm{n}$-side of the junction moves to $\mathrm{p}$ side. The motion of charge carriers due to the electric field Thus a drift current, which is opposite in direction to the diffusion current (Fig. 14.10) starts.
FIGURE 14.10 p-n junction formation process. is called drift.
FIGURE 14.11 (a) Diode under equilibrium $(V=0)$, (b) Barrier potential under no bias.
Initially, diffusion current is large and drift current is small. As the diffusion process continues, the space-charge regions on either side of the junction extend, thus increasing the electric field strength and hence drift current. This process continues until the diffusion current equals the drift current. Thus a p-n junction is formed. In a p-n junction under equilibrium there is no net current.
The loss of electrons from the n-region and the gain of electron by the p-region causes a difference of potential across the junction of the two regions. The polarity of this potential is such as to oppose further flow of carriers so that a condition of equilibrium exists. Figure 14.11 shows the p-n junction at equilibrium and the potential across the junction. The $\mathrm{n}$-material has lost electrons, and $\mathrm{p}$ material has acquired electrons. The $n$ material is thus positive relative to the $\mathrm{p}$ material. Since this potential tends to prevent the movement of electron from the $\mathrm{n}$ region into the $\mathrm{p}$ region, it is often called a barrier potential.
Example 14.3 Can we take one slab of p-type semiconductor and physically join it to another n-type semiconductor to get p-n junction?
Solution
No! Any slab, howsoever flat, will have roughness much larger than the inter-atomic crystal spacing (~2 to 3 Å) and hence continuous contact at the atomic level will not be possible. The junction will behave as a discontinuity for the flowing charge carriers.
14.6 SEMICONDUCTOR DIODE
A semiconductor diode [Fig. 14.12(a)] is basically a p-n junction with metallic contacts provided at the ends for the application of an external voltage. It is a two terminal device. A p-n junction diode is symbolically represented as shown in Fig. 14.12(b).
The direction of arrow indicates the conventional direction of current (when the diode is under forward bias). The equilibrium barrier potential can be altered by applying an external voltage $V$ across the diode. The The situation of p-n junction diode under equilibrium (without bias) is shown in Fig. 14.11(a) and (b).
FIGURE 14.12 (a) Semiconductor diode, (b) Symbol for p-n junction diode
14.6.1 p-n junction diode under forward bias
When an external voltage $V$ is applied across a semiconductor diode such that $\mathrm{p}$-side is connected to the positive terminal of the battery and n-side to the negative terminal [Fig. 14.13(a)], it is said to be forward biased.
The applied voltage mostly drops across the depletion region and the voltage drop across the $\mathrm{p}$-side and $\mathrm{n}$-side of the junction is negligible. (This is because the resistance of the depletion region - a region where there are no charges - is very high compared to the resistance of $n$-side and p-side.) The direction of the applied voltage $(V)$ is opposite to the built-in potential $V_{0}$. As a result, the depletion layer width decreases and the barrier height is reduced [Fig. 14.13(b)]. The effective barrier height under forward bias is $\left(V_{0}-V\right)$.
FIGURE 14.13 (a) p-n junction diode under forward bias, (b) Barrier potential (1) without battery, (2) Low battery voltage, and (3) High voltage battery.
If the applied voltage is small, the barrier potential will be reduced only slightly below the equilibrium value, and only a small number of carriers in the material-those that happen to be in the uppermost energy levels-will possess enough energy to cross the junction. So the current will be small. If we increase the applied voltage significantly, the barrier height will be reduced and more number of carriers will have the required energy. Thus the current increases.
Due to the applied voltage, electrons from n-side cross the depletion region and reach p-side (where they are minority carries). Similarly, holes from p-side cross the junction and reach the $\mathrm{n}$-side (where they are minority carries). This process under forward bias is known as minority carrier injection. At the junction boundary, on each side, the minority carrier concentration increases significantly compared to the locations far from the junction.
Due to this concentration gradient, the injected electrons on $\mathrm{p}$-side diffuse from the junction edge of $\mathrm{p}$-side to the other end of $\mathrm{p}$-side. Likewise, the injected holes on $\mathrm{n}$-side diffuse from the junction edge of $n$-side to the other end of $n$-side (Fig. 14.14). This motion of charged carriers on either side gives rise to current. The total diode forward current is sum of hole diffusion current and conventional current due to electron diffusion. The magnitude of this current is usually in $\mathrm{mA}$.
14.6.2 p-n junction diode under reverse bias
When an external voltage $(V)$ is applied across the diode such that $\mathrm{n}$-side is positive and $\mathrm{p}$-side is negative, it is said to be reverse biased [Fig.14.15 (a)]. The applied voltage mostly drops across the depletion region. The direction of applied voltage is same as the direction of barrier potential. As a result, the barrier height increases and the depletion region widens due to the change in the electric field. The effective barrier height under reverse bias is $\left(V_{0}+V\right).$ , [Fig. 14.15(b)]. This suppresses the flow of electrons from $\mathrm{n} \rightarrow \mathrm{p}$ and holes from $\mathrm{p} \rightarrow \mathrm{n}$. Thus, diffusion current, decreases enormously compared to the diode under forward bias.
FIGURE 14.14 Forward bias minority carrier injection.
The electric field direction of the junction is such that if electrons on $\mathrm{p}$-side or holes on $\mathrm{n}$-side in their random motion come close to the junction, they will be swept to its majority zone. This drift of carriers gives rise to current. The drift current is of the order of a few $\mu$ A. This is quite low because it is due to the motion of carriers from their minority side to their majority side across the junction. The drift current is also there under forward bias but it is negligible $(\mu \mathrm{A})$ when compared with current due to injected carriers which is usually in mA.
FIGURE 14.15 (a) Diode under reverse bias,(b) Barrier potential under reverse bias.
The diode reverse current is not very much dependent on the applied voltage. Even a small voltage is sufficient to sweep the minority carriers from one side of the junction to the other side of the junction. The current is not limited by the magnitude of the applied voltage but is limited due to the concentration of the minority carrier on either side of the junction. The current under reverse bias is essentially voltage independent upto a critical reverse bias voltage, known as breakdown voltage $\left(V_{b r}\right)$. When $V=V_{b r}$, the diode reverse current increases sharply. Even a slight increase in the bias voltage causes large change in the current. If the reverse current is not limited by an external circuit below the rated value (specified by the manufacturer) the $\mathrm{p}-\mathrm{n}$ junction will get destroyed. Once it exceeds the rated value, the diode gets destroyed due to overheating. This can happen even for the diode under forward bias, if the forward current exceeds the rated value.
The circuit arrangement for studying the V-I characteristics of a diode, (i.e., the variation of current as a function of applied voltage) are shown in Fig. 14.16(a) and (b). The battery is connected to the diode through a potentiometer (or reheostat) so that the applied voltage to the diode can be changed. For different values of voltages, the value of the current is noted. A graph between $V$ and $I$ is obtained as in Fig. 14.16(c). Note that in forward bias measurement, we use a milliammeter since the expected current is large (as explained in the earlier section) while a micrometer is used in reverse bias to measure the current. You can see in Fig. 14.16(c) that in forward
FIGURE 14.16 Experimental circuit arrangement for studying $V-I$ characteristics of a p-n junction diode (a) in forward bias, (b) in reverse bias. (c) Typical V-I characteristics of a silicon diode.
bias, the current first increases very slowly, almost negligibly, till the voltage across the diode crosses a certain value. After the characteristic voltage, the diode current increases significantly (exponentially), even for a very small increase in the diode bias voltage. This voltage is called the threshold voltage or cut-in voltage ($\sim 0.2 \mathrm{~V}$ for germanium diode and $\sim 0.7 \mathrm{~V}$ for silicon diode).
For the diode in reverse bias, the current is very small $(\sim \mu \mathrm{A})$ and almost remains constant with change in bias. It is called reverse saturation current. However, for special cases, at very high reverse bias (break down voltage), the current suddenly increases. This special action of the diode is discussed later in Section 14.8. The general purpose diode are not used beyond the reverse saturation current region.
The above discussion shows that the $\mathrm{p}-\mathrm{n}$ junction diode primerly allows the flow of current only in one direction (forward bias). The forward bias resistance is low as compared to the reverse bias resistance. This property is used for rectification of ac voltages as discussed in the next section. For diodes, we define a quantity called dynamic resistance as the ratio of small change in voltage $\Delta \mathrm{V}$ to a small change in current $\Delta \mathrm{I}$ :
$$ \begin{equation*} r_{d}=\frac{\Delta V}{\Delta I} \tag{14.6} \end{equation*} $$
Example 14.4 The $V$-I characteristic of a silicon diode is shown in the Fig. 14.17. Calculate the resistance of the diode at (a) $I_{D}=15 \mathrm{~mA}$ and (b) $V_{D}=-10 \mathrm{~V}$.
>
FIGURE 14.17
Solution Considering the diode characteristics as a straight line between $I=10 \mathrm{~mA}$ to $I=20 \mathrm{~mA}$ passing through the origin, we can calculate the resistance using Ohm’s law.
(a) From the curve, at $I=20 \mathrm{~mA}, V=0.8 \mathrm{~V} ; I=10 \mathrm{~mA}, V=0.7 \mathrm{~V}$
$$r_{f b}=\Delta V / \Delta I=0.1 \mathrm{~V} / 10 \mathrm{~mA}=10 \Omega$$
(b) From the curve at $\mathrm{V}=-10 \mathrm{~V}, I=-1 \mu \mathrm{A}$,
Therefore,
$r_{r b}=10 \mathrm{~V} / 1 \mu \mathrm{A}=1.0 \times 10^{7} \Omega$
14.7 APPLICATION OF JUNCTION DIODE AS A RECTIFIER
From the V-I characteristic of a junction diode we see that it allows current to pass only when it is forward biased. So if an alternating voltage is applied across a diode the current flows only in that part of the cycle when the diode is forward biased. This property is used to rectify alternating voltages and the circuit used for this purpose is called a rectifier.
FIGURE 14.18 (a) Half-wave rectifier circuit, (b) Input ac voltage and output voltage waveforms from the rectifier circuit.
If an alternating voltage is applied across a diode in series with a load, a pulsating voltage will appear across the load only during the half cycles of the ac input during which the diode is forward biased. Such rectifier circuit, as shown in Fig. 14.18, is called a half-wave rectifier. The secondary of a transformer supplies the desired ac voltage across terminals $A$ and $B$. When the voltage at $\mathrm{A}$ is positive, the diode is forward biased and it conducts. When $\mathrm{A}$ is negative, the diode is reverse-biased and it does not conduct. The reverse saturation current of a diode is negligible and can be considered equal to zero for practical purposes. (The reverse breakdown voltage of the diode must be sufficiently higher than the peak ac voltage at the secondary of the transformer to protect the diode from reverse breakdown.)
Therefore, in the positive half-cycle of ac there is a current through the load resistor $R_{L}$ and we get an output voltage, as shown in Fig. 14.18(b), whereas there is no current in the negative halfcycle. In the next positive half-cycle, again we get the output voltage. Thus, the output voltage, though still varying, is restricted to only one direction and is said to be rectified. Since the rectified output of this circuit is only for half of the input ac wave it is called as half-wave rectifier.
The circuit using two diodes, shown in Fig. 14.19(a), gives output rectified voltage corresponding to both the positive as well as negative half of the ac cycle. Hence, it is known as full-wave rectifier. Here the $\mathrm{p}$-side of the two diodes are connected to the ends of the secondary of the transformer. The $\mathrm{n}$-side of the diodes are connected together and the output is taken between this common point of diodes and the midpoint of the secondary of the transformer. So for a full-wave rectifier the secondary of the transformer is provided with a centre tapping and so it is called centre-tap transformer. As can be seen from Fig.14.19(c) the voltage rectified by each diode is only half the total secondary voltage. Each diode rectifies only for half the cycle, but the two do so for alternate cycles. Thus, the output between their common terminals and the centretap of the transformer becomes a full-wave rectifier output. (Note that there is another circuit of full wave rectifier which does not need a centretap transformer but needs four diodes.) Suppose the input voltage to A with respect to the centre tap at any instant is positive. It is clear that, at that instant, voltage at $B$ being out of phase will be negative as shown in Fig.14.19(b). So, diode $D_{1}$ gets forward biased and conducts (while $\mathrm{D_2}$ being reverse biased is not conducting). Hence, during this positive half cycle we get an output current (and a output voltage across the load resistor $R_{L}$ ) as shown in Fig.14.19(c). In the course of the ac cycle when the voltage at $A$ becomes negative with respect to centre tap, the voltage at $B$ would be positive. In this part of the cycle diode $\mathrm{D_1}$ would not conduct but diode $\mathrm{D_2}$ would, giving an output current and output voltage (across $R_{L}$ ) during the negative half cycle of the input ac. Thus, we get output voltage during both the positive as well as the negative half of the cycle. Obviously, this is a more efficient circuit for getting rectified voltage or current than the halfwave rectifier.
FIGURE 14.19 (a) A Full-wave rectifier circuit; (b) Input wave forms given to the diode $\mathrm{D_1}$ at A and to the diode $\mathrm{D_2}$ at B; (c) Output waveform across the load RL connected in the full-wave rectifier circuit.
The rectified voltage is in the form of pulses of the shape of half sinusoids. Though it is unidirectional it does not have a steady value. To get steady dc output from the pulsating voltage normally a capacitor is connected across the output terminals (parallel to the load $R_{L}$ ). One can also use an inductor in series with $R_{L}$ for the same purpose. Since these additional circuits appear to filter out the ac ripple and give a pure $d c$ voltage, so they are called filters.
Now we shall discuss the role of capacitor in filtering. When the voltage across the capacitor is rising, it gets charged. If there is no external load, it remains charged to the peak voltage of the rectified output. When there is a load, it gets discharged through the load and the voltage across it begins to fall. In the next half-cycle of rectified output it again gets charged to the peak value (Fig. 14.20). The rate of fall of the voltage across the capacitor depends inversely upon the product of capacitance $C$ and the effective resistance $R_{L}$ used in the circuit and is called the time constant. To make the time constant large value of $C$ should be large. So capacitor input filters use large capacitors. The output voltage obtained by using capacitor input filter is nearer to the peak voltage of the rectified voltage. This type of filter is most widely used in power supplies.
FIGURE 14.20 (a) A full-wave rectifier with capacitor filter, (b) Input and output voltage of rectifier in (a).
SUMMARY
1. Semiconductors are the basic materials used in the present solid state electronic devices like diode, transistor, ICs, etc.
2. Lattice structure and the atomic structure of constituent elements decide whether a particular material will be insulator, metal or semiconductor.
3. Metals have low resistivity $\left(10^{-2}\right.$ to $10^{-8} \Omega \mathrm{m})$ , insulators have very high resistivity ( $>10^{8} \Omega \mathrm{m}^{-1}$ ), while semiconductors have intermediate values of resistivity.
4. Semiconductors are elemental ( $\mathrm{Si}, \mathrm{Ge}$) as well as compound (GaAs, CdS, etc.).
5. Pure semiconductors are called ‘intrinsic semiconductors’. The presence of charge carriers (electrons and holes) is an ‘intrinsic’ property of the material and these are obtained as a result of thermal excitation. The number of electrons $\left(n_{e}\right)$ is equal to the number of holes $\left(n_{h}\right)$ in intrinsic conductors. Holes are essentially electron vacancies with an effective positive charge.
6. The number of charge carriers can be changed by ‘doping’ of a suitable impurity in pure semiconductors. Such semiconductors are known as extrinsic semiconductors. These are of two types (n-type and p-type).
7. In n-type semiconductors, $n_{e}»n_{h}$ while in p-type semiconductors $n_{h}»n_{e}$.
8. n-type semiconducting $\mathrm{Si}$ or Ge is obtained by doping with pentavalent atoms (donors) like As, Sb, P, etc., while p-type Si or Ge can be obtained by doping with trivalent atom (acceptors) like B, Al, In etc.
9. $n_{e} n_{h}=n_{i}^{2}$ in all cases. Further, the material possesses an overall charge neutrality.
10. There are two distinct band of energies (called valence band and conduction band) in which the electrons in a material lie. Valence band energies are low as compared to conduction band energies. All energy levels in the valence band are filled while energy levels in the conduction band may be fully empty or partially filled. The electrons in the conduction band are free to move in a solid and are responsible for the conductivity. The extent of conductivity depends upon the energy gap $\left(E_{g}\right)$ between the top of valence band $\left(E_{V}\right)$ and the bottom of the conduction band $E_{C}$. The electrons from valence band can be excited by heat, light or electrical energy to the conduction band and thus, produce a change in the current flowing in a semiconductor.
11. For insulators $E_{g}>3 \mathrm{eV}$, for semiconductors $E_{g}$ is $0.2 \mathrm{eV}$ to $3 \mathrm{eV}$, while for metals $E_{g} \approx 0$.
12. p-n junction is the ‘key’ to all semiconductor devices. When such a junction is made, a ‘depletion layer’ is formed consisting of immobile ion-cores devoid of their electrons or holes. This is responsible for a junction potential barrier.
13. By changing the external applied voltage, junction barriers can be changed. In forward bias ( $\mathrm{n}$-side is connected to negative terminal of the battery and p-side is connected to the positive), the barrier is decreased while the barrier increases in reverse bias. Hence, forward bias current is more $(\mathrm{mA})$ while it is very small $(\mu \mathrm{A})$ in a p-n junction diode.
14. Diodes can be used for rectifying an ac voltage (restricting the ac voltage to one direction). With the help of a capacitor or a suitable filter, a de voltage can be obtained.
POINTS TO PONDER
1. The energy bands ( $E _{C}$ or $E _{V}$ ) in the semiconductors are space delocalised which means that these are not located in any specific place inside the solid. The energies are the overall averages. When you see a picture in which $E _{C}$ or $E _{V}$ are drawn as straight lines, then they should be respectively taken simply as the bottom of conduction band energy levels and top of valence band energy levels.
2. In elemental semiconductors ( $\mathrm{Si}$ or $\mathrm{Ge}$ ), the n-type or p-type semiconductors are obtained by introducing ‘dopants’ as defects. In compound semiconductors, the change in relative stoichiometric ratio can also change the type of semiconductor. For example, in ideal GaAs the ratio of Ga:As is 1:1 but in Ga-rich or As-rich GaAs it could respectively be $\mathrm{Ga} _{1.1} \mathrm{As} _{0.9}$ or $\mathrm{Ga} _{0.9} \mathrm{As} _{1.1}$. In general, the presence of defects control the properties of semiconductors in many ways.
Exercises
14.1 In an n-type silicon, which of the following statement is true:
(a) Electrons are majority carriers and trivalent atoms are the dopants.
(b) Electrons are minority carriers and pentavalent atoms are the dopants.
(c) Holes are minority carriers and pentavalent atoms are the dopants.
(d) Holes are majority carriers and trivalent atoms are the dopants.
Show Answer
Answer
The correct statement is (c).
In an n-type silicon, the electrons are the majority carriers, while the holes are the minority carriers. An n-type semiconductor is obtained when pentavalent atoms, such as phosphorus, are doped in silicon atoms.
14.2 Which of the statements given in Exercise 14.1 is true for p-type semiconductos.
Show Answer
Answer
The correct statement is (d).
In a p-type semiconductor, the holes are the majority carriers, while the electrons are the minority carriers. A p-type semiconductor is obtained when trivalent atoms, such as aluminium, are doped in silicon atoms.
14.3 Carbon, silicon and germanium have four valence electrons each. These are characterised by valence and conduction bands separated by energy band gap respectively equal to $\left(E _{\mathrm{g}}\right) _{\mathrm{C}},\left(E _{\mathrm{g}}\right) _{\mathrm{Si}}$ तथा $\left(E _{\mathrm{g}}\right) _{\mathrm{Ge}}$ Which of the following statements is true?
(a) $\left(E _{g}\right) _{\mathrm{Si}}<\left(E _{g}\right) _{\mathrm{Ge}}<\left(E _{g}\right) _{\mathrm{C}}$
(b) $\left(E _{g}\right) _{\mathrm{C}}<\left(E _{g}\right) _{\mathrm{Ge}}>\left(E _{g}\right) _{\mathrm{Si}}$
(c) $\left(E _{g}\right) _{\mathrm{C}}>\left(E _{g}\right) _{\mathrm{Si}}>\left(E _{g}\right) _{\mathrm{Ge}}$
(d) $\left(E _{g}\right) _{\mathrm{C}}=\left(E _{g}\right) _{\mathrm{Si}}=\left(E _{g}\right) _{\mathrm{Ge}}$
Show Answer
# Content Missing14.4 In an unbiased p-n junction, holes diffuse from the p-region to n-region because
(a) free electrons in the n-region attract them.
(b) they move across the junction by the potential difference.
(c) hole concentration in p-region is more as compared to n-region.
(d) All the above.
Show Answer
# Content Missing14.5 When a forward bias is applied to a p-n junction, it
(a) raises the potential barrier.
(b) reduces the majority carrier current to zero.
(c) lowers the potential barrier.
(d) None of the above.
Show Answer
Answer
The correct statement is (c).
When a forward bias is applied to a p-n junction, it lowers the value of potential barrier. In the case of a forward bias, the potential barrier opposes the applied voltage. Hence, the potential barrier across the junction gets reduced.
14.6 In half-wave rectification, what is the output frequency if the input frequency is $50 \mathrm{~Hz}$. What is the output frequency of a full-wave rectifier for the same input frequency.
Show Answer
Answer
Input frequency $=50 \mathrm{~Hz}$
For a half-wave rectifier, the output frequency is equal to the input frequency.
$\therefore$ Output frequency $=50 \mathrm{~Hz}$
For a full-wave rectifier, the output frequency is twice the input frequency.
$\therefore$ Output frequency $=2 \times 50=100 \mathrm{~Hz}$
14.1 भूमिका
ऐसी युक्तियाँ जिनमें इलेक्ट्रॉनों का नियंत्रित प्रवाह प्राप्त किया जा सके, सभी इलेक्ट्रॉनिक परिपथों की मूलभूत रचना खंड होती हैं। सन् 1948 में ट्रांजिस्टर की खोज से पहले ऐसी युक्तियाँ अधिकांशतः निर्वात नलिकाएँ (या वाल्व) थीं, जैसे निर्वात डायोड जिसमें दो इलेक्ट्रोड; एनोड (प्लेट) तथा कैथोड होते हैं; ट्रायोड जिसमें तीन इलेक्ट्रोड-कैथोड, प्लेट तथा ग्रिड होते हैं; टेट्रोड तथा पेंटोड (क्रमशः 4 तथा 5 इलेक्ट्रोडों के साथ)। किसी निर्वात नलिका में इलेक्ट्रॉनों की आपूर्ति एक तप्त कैथोड द्वारा की जाती है तथा इसके विभिन्न इलेक्ट्रोडों के बीच वोल्टता को परिवर्तित करके निर्वात में इन इलेक्ट्रॉनों का नियंत्रित प्रवाह प्राप्त किया जाता है। अंतरा-इलेक्ट्रोडी स्थान (inter-electrode space) में इलेक्ट्रॉनों के प्रवाह के लिए निर्वात आवश्यक होता है, अन्यथा गतिमान इलेक्ट्रॉन अपने पथ में वायु के अणुओं से टकराकर अपनी ऊर्जा खो सकते हैं। इन युक्तियों में इलेक्ट्रॉन केवल कैथोड से एनोड की ओर प्रवाहित कर सकते हैं (अर्थात इलेक्ट्रॉन केवल एक ही दिशा में प्रवाहित हो सकते हैं)। यही कारण है कि ऐसी युक्तियों को साधारणतया वाल्व कहते हैं। निर्वात नलिकाओं से बनी युक्तियाँ आकार में बड़ी होती हैं, अधिक शक्ति का उपभोग करती हैं तथा प्रचालन में सामान्यतः उच्च वोल्टता ( 100 V) की आवश्यकता होती है। इसके साथ ही इनका जीवनकाल अपेक्षाकृत कम तथा विश्वसनीयता भी कम होती है। आधुनिक ठोस-अवस्था अर्धचालक इलेक्ट्रॉनिकी (Solid State semi-conductor electronics) का प्रादुर्भाव सन् 1930 में इस आभास से किया गया कि कुछ ठोस अवस्था अर्धचालक तथा उनकी संधियों में यह संभावना होती है कि उनमें आवेश वाहकों की संख्या तथा उनके प्रवाह की दिशा को नियंत्रित किया जा सकता है। प्रकाश, ऊष्मा तथा अल्प अनुप्रयुक्त वोल्टता जैसे उत्तेजक किसी अर्धचालक में गतिमान आवेशों की संख्या परिवर्तित कर सकते हैं। ध्यान देने योग्य बात यह है कि अर्धचालक युक्तियों में आवेश वाहकों की आपूर्ति तथा प्रवाह स्वयं ठोस के भीतर ही होता है, जबकि पहले प्रयोग होने वाली निर्वात नलिकाओंवाल्वों में गतिमान इलेक्ट्रॉनों को तप्त कैथोड से प्राप्त किया जाता था तथा निर्वातित स्थानों अथवा निर्वात में प्रवाहित कराया जाता था। अर्धचालक युक्तियों में बाहरी तापन अथवा अधिक निर्वातित स्थान की आवश्यकता नहीं होती है। यह आकार में छोटी होती हैं, कम शक्ति का उपभोग करती हैं, कम वोल्टता पर काम करती हैं, इनका जीवन लंबा होता है और इनकी विश्वसनीयता अच्छी होती है। आधुनिक युक्तियों में तो निर्वातित नलिकाओं के सिद्धांत पर कार्य करने वाली कैथोड किरण ट्यूबों (CRT) जिनका उपयोग टेलीविज़न सेटों तथा कंप्यूटर मॉनीटरों में किया जाता है, ठोसावस्था इलेक्ट्रॉनिकी (Solid State electrons) परिपथों के साथ संलग्न लिक्वड क्रिस्टल डिसप्ले (LCD, द्रव क्रिस्टल प्रदर्श) मॉनीटरों द्वारा प्रतिस्थापित की जा रही हैं। अर्धचालक युक्तियों को औपचारिक रूप से समझे जाने से भी बहुत पहले प्रकृति में पाए जाने वाले गैलेना (लैड सल्फाइड $\mathrm{PbS}$ ) के एक क्रिस्टल जिसके साथ धातु का एक संपर्क बिंदु संयोजित था, का उपयोग रेडियो तरंगों के संसूचक के रूप में किया जा चुका था।
निम्नलिखित अनुभागों में हम अर्धचालक भौतिकी की कुछ मूल अवधारणाओं से परिचय कराएँगे तथा संधि डायोड (Junction diode) (2-इलेक्ट्रोडों की युक्ति) तथा द्विध्रुवीय संधि (Bipolar junction) ट्रांजिस्टर ( 3 -इलेक्ट्रोडों की युक्ति) जैसी कुछ अर्धचालक युक्तियों की चर्चा करेंगे। इन युक्तियों के अनुप्रयोगों को दर्शाने वाले कुछ परिपथों का वर्णन भी करेंगे।
14.2 धातुओं, चालकों तथा अर्धचालकों का वर्गीकरण
चालकता के आधार पर
विद्युत चालकता $(\sigma)$ अथवा प्रतिरोधकता $(\rho=1 / \sigma)$ के सापेक्ष मान के आधार पर ठोस पदार्थों का निम्न प्रकार से वर्गीकरण किया जाता है :
(i) धातु : इनकी प्रतिरोधकता बहुत कम (अथवा चालकता बहुत अधिक) होती है।
$\rho \sim 10^{-2}-10^{-8} \Omega \mathrm{m}$
$\sigma \sim 10^{2}-10^{8} \mathrm{~S} \mathrm{~m}^{-1}$
(ii) अर्धचालक : इनकी प्रतिरोधकता या चालकता धातुओं तथा विद्युतरोधी पदार्थों के बीच की होती है।
$$ \begin{aligned} & \rho \sim 10^{-5}-10^{6} \Omega \mathrm{m} \\ & \sigma \sim 10^{5}-10^{-6} \mathrm{~S} \mathrm{~m}^{-1} \end{aligned} $$
(iii) विद्युतरोधी : इनकी प्रतिरोधकता बहुत अधिक (अथवा चालकता बहुत कम) होती है।
$$ \begin{aligned} & \rho \sim 10^{11}-10^{19} \Omega \mathrm{m} \\ & \sigma \sim 10^{-11}-10^{-19} \mathrm{~S} \mathrm{~m}^{-1} \end{aligned} $$
ऊपर दिए गए $\rho$ तथा $\sigma$ के मान केवल कोटि मान के सूचक हैं और दिए गए परिसर के बाहर भी जा सकते हैं। धातु, विद्युतरोधी पदार्थ तथा अर्धचालकों के बीच भेद करने के लिए प्रतिरोधकता का सापेक्ष मान ही मात्र एक मापदंड नहीं है। कुछ दूसरे अंतर भी हैं, जो जैसे-जैसे हम इस अध्याय में आगे बढ़ेंगे, स्पष्ट होते जाएँगे।
इस अध्याय में हमारी रुचि अर्धचालकों के अध्ययन में है जो कई प्रकार के हो सकते हैं।
(i) तात्विक अर्धचालक (Elemental semiconductors) - $\mathrm{Si}$ और $\mathrm{Ge}$
(ii) यौगिक अर्धचालक - उदाहरण हैं :
-
अकार्बनिक - CdS, GaAs, CdSe, InP, आदि।
-
कार्बनिक - एंश्रासीन, मादित (Doped) थैलोस्यानीस, आदि।
-
कार्बनिक बहुलक (Organic polymers)- पॉलीपाइरोल, पॉलीऐनिलीन, पॉलीथायोफ़ीन आदि।
आजकल उपलब्ध अधिकांश अर्धचालक युक्तियाँ तात्विक अर्धचालक $\mathrm{Si}$ या $\mathrm{Ge}$ और यौगिक अकार्बनिक अर्धचालकों पर ही आधारित हैं। परंतु सन् 1990 के बाद कार्बनिक अर्धचालक और अर्धचालकी बहुलकों का उपयोग करके कुछ अर्धचालकी युक्तियों का विकास हुआ जिससे भविष्य के लिए बहुलक इलेक्ट्रॉनिकी तथा आण्विक इलेक्ट्रॉनिकी की प्रौद्योगिकी के प्रादुर्भाव के संकेत मिलते हैं। इस अध्याय में हम केवल अकार्बनिक अर्धचालक, विशेषकर तात्विक अर्धचालकों $\mathrm{Si}$ तथा $\mathrm{Ge}$ के अध्ययन तक ही सीमित रहेंग। तात्विक अर्धचालकों की विवेचना के लिए यहाँ जिन सामान्य अवधारणाओं को प्रस्तावित किया गया है वे किसी-न-किसी रूप में अधिकांश यौगिक अर्धचालकों पर लागू होती हैं।
ऊर्जा बैंड के आधार पर
बोर परमाणु मॉडल के अनुसार किसी वियुक्त परमाणु में उसके किसी इलेक्ट्रॉन की ऊर्जा उस इलेक्ट्रॉन की परिभ्रमण कक्षा पर निर्भर करती है। परंतु जब परमाणु एक-दूसरे के निकट आकर कोई ठोस बना लेते हैं तो वे एक-दूसरे के अत्यधिक निकट हो जाते हैं। अतः निकटस्थ परमाणुओं के इलेक्ट्रॉनों की बाह्य कक्षाएँ अत्यधिक पास-पास आ जाती हैं और यहाँ तक कि एक-दूसरे को ढक लेती हैं। इसके परिणामस्वरूप किसी ठोस में इलेक्ट्रॉन की गति की प्रकृति किसी वियुक्त परमाणु के इलेक्ट्रॉन की गति से अत्यधिक भिन्न हो जाती है।
किसी क्रिस्टल के भीतर प्रत्येक इलेक्ट्रॉन की अपनी अद्वितीय स्थिति होती है तथा किन्हीं दो इलेक्ट्रॉनों के चारों ओर के आवेशों का पैटर्न यथार्थ रूप में एक जैसा नहीं होता। यही कारण है कि प्रत्येक इलेक्ट्रॉन के ऊर्जा स्तर भिन्न होते हैं। ये भिन्न ऊर्जा स्तर जिनमें ऊर्जा का संतत परिवर्तन होता रहता है ऊर्जा बैंडों का निर्माण करते हैं। वह ऊर्जा स्तर जिसमें संयोजकता इलेक्ट्रॉनों के ऊर्जा स्तर समाविष्ट हैं, संयोजकता बैंड (Valance band) कहलाता है। संयोजकता बैंड के ऊपर स्थित बैंड को चालन बैंड (Conduction band) कहते हैं। बिना किसी अतिरिक्त ऊर्जा के, सभी संयोजकता इलेक्ट्रॉन संयोजकता बैंड में रहते हैं। यदि चालन बैंड में निम्नतम स्तर चालन बैंड के उच्चतम स्तर से भी नीचे है तो संयोजकता बैंड के इलेक्ट्रॉन आसानी से चालन बैंड में गमन कर सकते हैं। सामान्यतः चालन बैंड रिक्त होता है। परंतु जब यह बैंड संयोजकता बैंड को अतिव्यापित (ढकता) करता है तो इलेक्ट्रॉन स्वतंत्रतापूर्वक इसके भीतर जा सकते हैं। ऐसा धात्विक चालकों में होता है।
यदि चालन बैंड तथा संयोजकता बैंड के बीच कोई रिक्ति (अंतराल) है, तो संयोजकता बैंड के सभी इलेक्ट्रॉन परिबद्ध होते हैं तथा चालन बैंड में कोई मुक्त इलेक्ट्रॉन उपलब्ध नहीं होता। यह पदार्थ को विद्युतरोधी बना देता है। परंतु संयोजकता बैंड के कुछ इलेक्ट्रॉन बाह्य ऊर्जा प्राप्त करके संयोजकता बैंड तथा चालन बैंड के बीच की रिक्ति को पार कर सकते हैं। तब ये इलेक्ट्रॉन चालन बैंड में पहुँच जाते हैं तथा संयोजकता बैंड में रिक्त ऊर्जा स्तर उत्पन्न कर देते हैं जिनमें अन्य इलेक्ट्रॉन जा सकते हैं। इस प्रकार यह प्रक्रिया चालन बैंड में इलेक्ट्रॉनों तथा संयोजकता बैंड में रिक्तिकाएँ होने के कारण चालन की संभावना उत्पन्न करती है।
आइए, अब हम यह विचार करें कि $\mathrm{N}$ परमाणुओं वाले $\mathrm{Si}$ अथवा $\mathrm{Ge}$ क्रिस्टल के प्रकरण में क्या होता है। $\mathrm{Si}$ में बाह्यतम कक्षा, तीसरी कक्षा $(n=3)$ होती है, जबकि $\mathrm{Ge}$ में बाह्यतम कक्षा चौथी कक्षा $(n=4)$ होती है। इनकी बाह्यतम कक्षा में 4 इलेक्ट्रॉन $(2 s$ और $2 p$ इलेक्ट्रॉन) होते हैं। अत: इस क्रिस्टल में बाह्य इलेक्ट्रॉनों की कुल संख्या $4 N$ हुई। किसी बाह्यतम कक्षा में अधिकतम इलेक्ट्रॉनों की संख्या $8(2 s+6 p$ इलेक्ट्रॉन) होती है। अतः $4 N$ संयोजकता इलेक्ट्रॉनों के लिए उपलब्ध ऊर्जा स्तर $8 N$ है। ये $8 N$ विविक्त ऊर्जा स्तर या तो कोई संतत बैंड बना सकते हैं अथवा इनका भिन्न बैंडों में समूहन हो सकता है, जो क्रिस्टल में परमाणुओं के बीच दूरियों पर निर्भर करता है।
$\mathrm{Si}$ तथा $\mathrm{Ge}$ के क्रिस्टल जालकों में परमाणुओं के बीच की दूरियों पर, इन $8 N$ स्तरों का ऊर्जा बैंड दो भागों में टूट जाता है, जिनके बीच ऊर्जा अंतराल $E _{\mathrm{g}}$ (चित्र 14.1) का पृथकन होता है।तापक्रम के परम शून्य पर $4 N$ संयोजकता इलेक्ट्रॉनों से पूर्णतः घिरा निम्न बैंड संयोजकता बैंड होता है। अन्य बैंड जिनमें $4 N$ ऊर्जा स्तर होते हैं उन्हें चालन बैंड कहते हैं, तथा यह परम शून्य पर पूर्णतः रिक्त होता है।
चित्र 14.1 $0 \mathrm{~K}$ पर किसी अर्धचालक में ऊर्जा बैंड की स्थितियाँ, ऊपरी बैंड जिसे चालन बैंड कहते हैं, में अनंततः विशाल संख्या में, अत्यधिक निकट ऊर्जा अवस्थाएँ होती हैं। निचला बैंड जिसे संयोजकता बैंड कहते हैं, में अत्यधिक निकट पूर्णतः भरी ऊर्जा अवस्थाएँ होती हैं।
चित्र 14.1 देखिए। इसमें चालन बैंड में निम्नतम ऊर्जा स्तर को $E _{C}$ के रूप में तथा संयोजकता बैंड में उच्चतम ऊर्जा स्तर को $E _{V}$ के रूप में दर्शाया गया है। $E _{C}$ के ऊपर तथा $E _{V}$ के नीचे इसमें एक-दूसरे के अत्यधिक निकट बहुत से ऊर्जा स्तर दर्शाए गए हैं।
संयोजकता बैंड के शीर्ष तथा चालन बैंड की तली के बीच के अंतराल को ऊर्जा बैंड अंतराल (अथवा ऊर्जा अंतराल, $E _{g}$ ) कहते हैं। यह अंतराल पदार्थ की प्रकृति पर निर्भर करता है। यह अधिक, कम अथवा शून्य हो सकता है। इन विभिन्न स्थितियों को चित्र 14.2 में दर्शाया गया है तथा नीचे इनकी विवेचना की गई है।
प्रकरण I : यह चित्र 14.2(a) में दर्शायी गई स्थिति के संदर्भ में है। यह एक धातु की स्थिति है जिसमें चालन बैंड आंशिक रूप से भरा है तथा संयोजकता बैंड आंशिक रूप से रिक्त है अथवा चालन बैंड तथा संयोजकता बैंड अतिव्याप्त हैं। जब अतिव्यापन होता है तो संयोजकता बैंड से इलेक्ट्रॉन सरलता से चालन बैंड में जा सकते हैं। यह स्थिति विद्युत चालन के लिए अत्यधिक संख्या में इलेक्ट्रॉन उपलब्ध करा देती है। जब संयोजकता बैंड आंशिक रूप से रिक्त होता है तो इलेक्ट्रॉन इसके निम्न स्तर से उच्च स्तर तक गति करके विद्युत चालन को संभव बना देते हैं। इसीलिए इस प्रकार के पदार्थों का प्रतिरोध कम अथवा चालकता उच्च होती है।
चित्र 14.2 (a) धातुओं, (b) विद्युतरोधी तथा (c) अर्धचालकों के ऊर्जा बैंडों के बीच अंतर।
प्रकरण II : इस प्रकरण में जैसा कि चित्र $14.2(\mathrm{~b})$ में दर्शाया गया है, इस स्थिति में बैंड अंतराल $E _{q}$ अधिक होता है $\left(E _{q}>3 \mathrm{eV}\right)$ । चालन बैंड में कोई इलेक्ट्रॉन नहीं होते। अतः कोई विद्युत चालन संभव नहीं होता। ध्यान देने योग्य बात यह है कि ऊर्जा अंतराल इतना अधिक होता है कि किसी भी तापीय उत्तेजन से इलेक्ट्रॉनों को संयोजकता बैंड से चालन बैंड की ओर उत्तेजित नहीं किया जा सकता। यह विद्युतरोधी पदार्थों का उदाहरण है।
प्रकरण III : यह स्थिति 14.2 (c) में दर्शायी गई है। इसमें एक परिमित परंतु लघु बैंड अंतराल $\left(E _{g}<3 \mathrm{eV}\right)$ होता है। लघु बैंड अंतराल होने के कारण, कमरे के ताप पर, कुछ इलेक्ट्रॉन संयोजकता बैंड में इतनी ऊर्जा अर्जित कर लेते हैं कि ऊर्जा अंतराल को पार करके चालन बैंड में पहुँच सकते हैं। ये इलेक्ट्रॉन (यद्यपि संख्या में कम होते हैं) चालन बैंड में गति कर सकते हैं। अतः अर्धचालकों का प्रतिरोध उतना अधिक नहीं होता जितना विद्युतरोधी पदार्थों का होता है।
इस अनुभाग में हमने धातुओं, चालकों तथा अर्धचालकों का व्यापक वर्गीकरण किया है। अगले अनुभाग में हम अर्धचालकों में चालन प्रक्रिया के विषय में सीखेंगे।
14.3 नैज अर्धचालक
हम $\mathrm{Ge}$ और $\mathrm{Si}$ का सबसे साधारण उदाहरण लेंगे जिनकी जालक (Lattice) रचना चित्र 14.3 में दिखाई गई है। इन रचनाओं को हीरे जैसी रचना कहते हैं। प्रत्येक परमाणु चार अन्य निकटतम परमाणुओं द्वारा घिरा होता है। हम जानते हैं कि $\mathrm{Si}$ और $\mathrm{Ge}$ में चार संयोजकता इलेक्ट्रॉन होते हैं। इसकी क्रिस्टलीय रचना में प्रत्येक $\mathrm{Si}$ या $\mathrm{Ge}$ परमाणु अपने चार संयोजकता इलेक्ट्रॉनों में से एक-एक इलेक्ट्रॉन को अपने चार निकटतम परमाणुओं के साथ सहभागिता कराने की प्रवृत्ति रखता है तथा ऐसे प्रत्येक निकटवर्ती परमाणु के एक इलेक्ट्रॉन का सहभाग भी करता है। यही सहभागी इलेक्ट्रॉन युगल सहसंयोजी बंध (Covalent bond) या संयोजकता आबंध (Valence bond) कहलाते हैं। ऐसा माना जा सकता है कि दोनों सहभाजित इलेक्ट्रॉन उन संबंधित परमाणुओं के बीच आगे-पीछे गति करते रहते हैं, जिससे वे दृढ़ता से बँधे होते हैं। चित्र 14.3 में दिखाई गई $\mathrm{Si}$ या $\mathrm{Ge}$ की संरचना का 2-विमीय निरूपण चित्र 14.4 में व्यवस्थात्मक रूप से दिखाया गया है, जो सहसंयोजी बंध पर अत्यधिक बल देता है। चित्र 14.4 एक आदर्श चित्रण है जिसमें बँध टूटे नहीं हैं (सभी बँध बने हुए हैं)। ऐसी स्थिति निम्न ताप पर ही बनती है। जैसे-जैसे ताप बढ़ता है, इन इलेक्ट्रॉनों को और ऊष्मीय ऊर्जा प्राप्त होने लगती है जिससे इनमें से कुछ इलेक्ट्रॉन टूट कर अलग हो सकते हैं (मुक्त इलेक्ट्रॉन बनकर चालन में योगदान करते हैं)। ऊष्मीय ऊर्जा क्रिस्टलीय जालक के कुछ परमाणुओं को प्रभावी रूप से आयनीकृत कर देती है तथा बँध में एक रिक्त स्थान बना देती है, जैसा चित्र 14.5 (a) में दिखाया गया है। मुक्त इलेक्ट्रॉन (आवेश $-q$ ) जहाँ से निकलकर आया है, वहाँ वह प्रभावी आवेश $(+q)$ का एक रिक्त स्थान छोड़ देता है। प्रभावी धनात्मक आवेश वाला यह रिक्त स्थान एक होल (hole) कहलाता है। होल प्रभावी धनात्मक आवेश वाले एक आभासी मुक्त कण की तरह व्यवहार करता है।
चित्र 14.3 कार्बन, सिलिकॉन या जरमेनियम के लिए तीन-विमीय हीरे जैसी क्रिस्टल संरचना जिसमें जालक अंतराल $a$ क्रमशः $3.56,5.43$ और $5.66 Å$ है।
नैज अर्धचालकों (Intrinsic semiconductor) में मुक्त इलेक्ट्रॉनों की संख्या $n _{e}$ होलों की संख्या, $n _{h}$ के बराबर होती है, अर्थात
$$ \begin{equation*} n _{e}=n _{h}=n _{i} \tag{14.1} \end{equation*} $$
यहाँ $n _{i}$ को नैज वाहक सांद्रता कहते हैं।
अर्धचालकों में यह अद्वितीय गुण होता है कि उनमें इलेक्ट्रॉनों के साथ-साथ होल भी गति करते हैं। मान लें कि स्थान 1 पर एक होल है
चित्र 14.4 $\mathrm{Si}$ या $\mathrm{Ge}$ की संरचना का दो-विमीय व्यवस्थात्मक निरूपण जिसमें निम्न ताप पर सहसंयोजी आबंध दिखाए गए हैं (सभी बंध बने हुए, कोई टूटा बंध नहीं)। +4 चिह्न $\mathrm{Si}$ या $\mathrm{Ge}$ की भीतरी क्रोड़ को इंगित करता है।
जैसा चित्र 14.5 (a) में दिखाया गया है। होलों की गति को चित्र 14.5 (b) में दिखाए ढंग से दृष्टित किया जा सकता है। नीचे वाले बाईं ओर के सहसंयोजी बंध स्थान 2 से एक इलेक्ट्रॉन रिक्त स्थान 1 (होल) में कूद कर जा सकता है। इस प्रकार, ऐसी एक कूद के बाद, होल स्थान 2 पर हो गया तथा स्थान 1 में एक इलेक्ट्रॉन आ गया। इसलिए आभासी रूप में तो होल स्थान 1 से स्थान 2 पर चला गया। ध्यान दीजिए कि जो इलेक्ट्रॉन प्रारंभ में मुक्त हुआ था [चित्र 14.5 (a) देखिए ], वह होल की गति की इस क्रिया में सम्मिलित नहीं है। मुक्त इलेक्ट्रॉन पूर्णतः स्वतंत्रतापूर्वक चालन इलेक्ट्रॉन के रूप में गति करता है और एक विद्युत क्षेत्र लगाने पर एक इलेक्ट्रॉन धारा $\left(I _{\mathrm{e}}\right)$ देता है। स्मरण रहे कि जब कभी क्रिस्टल में कहीं भी एक अपूरित बंध होगा तब बंधित इलेक्ट्रॉनों की वास्तविक गति होगी और इसका वर्णन करने के लिए होलों की गति केवल एक सहज उपाय है। किसी वास्तविक क्रिस्टल में विद्युत क्षेत्र की क्रिया के फलस्वरूप यह होल ॠणात्मक विभव की ओर गति करते हैं। इस प्रकार एक होल धारा $I _{\mathrm{h}}$ मिलती है। ऊष्मा से उत्पन्न चालन इलेक्ट्रॉनों के कारण इलेक्ट्रॉन धारा $I _{\mathrm{e}}$ तथा होल धारा $I _{\mathrm{h}}$ का योग संपूर्ण धारा $I$ होगी -
$$ \begin{equation*} I=I _{e}+I _{h} \tag{14.2} \end{equation*} $$
यहाँ ध्यान देने योग्य बात यह है कि चालन इलेक्ट्रॉनों तथा होलों के उत्पन्न होने के साथ-साथ पुनःसंयोजन का प्रक्रम होता है जिसमें इलेक्ट्रॉन होल के साथ पुनःसंयोजित होते हैं। साम्यावस्था में आवेश वाहकों के उत्पन्न होने की दर उनके पुनःसंयोजन की दर के बराबर होती है। इस पुनःसंयोजन का कारण इलेक्ट्रॉनों का होलों से संघट्ट करना है।
/>
चित्र 14.5 (a) मध्यम ताप पर ऊष्मीय ऊर्जा के कारण स्थान 1 पर होल तथा चालन इलेक्ट्रॉन के उत्पन्न होने का व्यवस्थापक प्रारूप। (b) किसी होल की संभावित ऊष्मीय गति का सरलीकृत निरूपण। नीचे वाले बाएँ हाथ के सहसंयोजी बंध (स्थान 2) से एक इलेक्ट्रॉन प्रारंभिक होल स्थान 1 पर चला जाता है और अपने स्थान पर एक होल छोड़ता है। इस प्रकार स्थान 1 से स्थान 2 तक होल का आभासी स्थानांतरण इंगित होता है।
चित्र 14.6(a) में दर्शाए अनुसार $T=0 \mathrm{~K}$ पर कोई नैज अर्धचालक किसी विद्युतरोधी की भाँति व्यवहार करता है। यह तापीय ऊर्जा ही है जिसके कारण उच्च तापों ( $T>0 \mathrm{~K}$ ) पर कुछ इलेक्ट्रॉन उत्तेजित होकर संयोजी बैंड से चालन बैंड में पहुँचते हैं। $\mathrm{T}>0 \mathrm{~K}$ पर तापीय उत्तेजित इलेक्ट्रॉन चालन बैंड में आंशिक रूप से स्थान ग्रहण कर लेते हैं। इसीलिए किसी नैज अर्धचालक का ऊर्जा बैंड आरेख चित्र 14.6(b) में दर्शाए अनुसार होता है। इसमें कुछ इलेक्ट्रॉन चालन बैंड में दर्शाए गए हैं। ये यहाँ पर संयोजी बैंड से आए हैं तथा समान संख्या में वहाँ होल छोड़ आए हैं।
चित्र 14.6 (a) $T=0 \mathrm{~K}$ पर कोई नैज अर्धचालक विद्युतरोधी की भाँति व्यवहार करता है। (b) $T>0 \mathrm{~K}$ पर चार तापीय उत्पन्न इलेक्ट्रॉन-होल युगल भरे वृत्त ($\cdot$) इलेक्ट्रॉनों को निरूपित करते हैं तथा रिक्त वृत $(\bigcirc)$ होलों को निरूपित करते हैं।
उदाहरण 14.1 C, Si तथा $\mathrm{Ge}$ की जालक (Lattice) संरचना समान होती है। फिर भी क्यों $\mathrm{C}$ विद्युतरोधी है जबकि $\mathrm{Si}$ व $\mathrm{Ge}$ नैज अर्धचालक (intrinsic semiconductor) हैं?
हल $\mathrm{C}, \mathrm{Si}$ तथा $\mathrm{Ge}$ के परमाणुओं के चार बंधित इलेक्ट्रॉन क्रमशः द्वितीय, तृतीय तथा चतुर्थ कक्षा में होते हैं। अतः इन परमाणुओं से एक इलेक्ट्रॉन को बाहर निकालने के लिए आवश्यक ऊर्जा (आयनिक ऊर्जा $E _{g}$ ) सबसे कम $\mathrm{Ge}$ के लिए, इससे अधिक $\mathrm{Si}$ के लिए और सबसे अधिक $\mathrm{C}$ के लिए होगी। इस प्रकार $\mathrm{Ge}$ व $\mathrm{Si}$ में विद्युत चालन के लिए स्वतंत्र इलेक्ट्रॉनों की संख्या सार्थक होती है जबकि $\mathrm{C}$ में यह नगण्य होती है।
14.4 अपद्रव्यी अर्धचालक
किसी नैज अर्धचालक की चालकता उसके ताप पर निर्भर करती है, परंतु कक्ष-ताप पर इसकी चालकता बहुत कम होती है। इसी रूप में, कोई भी महत्वपूर्ण इलेक्ट्रॉनिक युक्ति उन अर्धचालकों द्वारा विकसित नहीं की जा सकती है। अतः इनकी चालकता में सुधार करना आवश्यक होता है। यह उन अर्धचालकों में अशुद्धियों का उपयोग करके किया जाता है।
जब किसी शुद्ध अर्धचालक में कोई उपयुक्त अशुद्धि अत्यल्प मात्रा में जैसे कुछ भाग प्रति मिलियन $(\mathrm{ppm})$ में मिलाई जाती है तो उसकी चालकता में कई गुना वृद्धि हो जाती है। इस प्रकार के पदार्थों को अपद्रव्यी अर्धचालक (Extrinsic semiconductor) अथवा अशुद्धि अर्धचालक (Impurity semiconductor) कहते हैं। वांछित अशुद्धि को सावधानीपूर्वक मिश्रित करना मादन (Doping) या अपमिश्रण कहलाता है तथा अशुद्धि परमाणु अपमिश्रक (Dopants) कहलाते हैं। इस प्रकार के पदार्थ को मादित (Doped) अर्धचालक कहते हैं। अपमिश्रक ऐसा होना चाहिए जो मूल अर्धचालक पदार्थ के जालक को विकृत न करे। उसे केवल क्रिस्टल में बहुत कम मूल अर्धचालक परमाणु स्थितियों को ही घेरना चाहिए। इसे प्राप्त करने के लिए एक आवश्यक शर्त यह है कि अपमिश्रक के अणु तथा अर्धचालक पदार्थ के अणुओं का साइज़ लगभग समान हो।
चतुः संयोजक $\mathrm{Si}$ अथवा $\mathrm{Ge}$ के मादन के लिए दो प्रकार के अपमिश्रक उपयोग किए जाते हैं।
(i) पंच संयोजक (संयोजकता 5); जैसे आर्सेनिक (As), ऐंटीमनी (Sb), फ़ॉस्फोरस (P), आदि।
(ii) त्रि संयोजक (संयोजकता 3); जैसे इंडियम (In), बोरॉन (B), ऐलुमिनियम (Al), आदि।
चित्र 14.7 (a) चतुर्थ संयोजी $\mathrm{Si}$ या $\mathrm{Ge}$ में पंचसंयोजी दाता परमाणु (As, Sb, P, आदि) के अपमिश्रण से बना $\mathrm{n}$-अर्धचालक। (b) $\mathrm{n}$-प्रकार के पदार्थ का साधारणतया प्रयुक्त व्यवस्थात्मक निरूपण जिसमें प्रतिस्थापी दाता के स्थिर क्रोड़ को केवल एक अतिरिक्त प्रभावी धनात्मक आवेश और इससे संबद्ध इलेक्ट्रॉन के साथ दिखाया गया है।
अब हम यह विवेचना करेंगे कि अपमिश्रण द्वारा किस प्रकार अर्धचालकों में आवेश वाहकों की संख्या में परिवर्तन होता है जिसके कारण उस अर्धचालक की चालकता परिवर्तित हो जाती है। $\mathrm{Si}$ अथवा $\mathrm{Ge}$ आवर्त सारणी के चतुर्थ समूह (वर्ग) के सदस्य हैं इसीलिए हम अपमिश्रण के लिए निकट के तीसरे अथवा पाँचवें वर्ग के तत्व का चयन यह अपेक्षा करते हुए तथा सावधानी बरतते हुए करते हैं कि अपमिश्रण किए जाने वाले तत्व के परमाणु का साइज़ $\mathrm{Si}$ अथवा $\mathrm{Ge}$ के परमाणु के साइज़ के लगभग बराबर है। रोचक तथ्य यह है कि मादन के लिए उपयोग होने वाले त्रिसंयोजक तथा पंचसंयोजक तत्व अपमिश्रण के पश्चात एक-दूसरे से पूर्णतः भिन्न प्रकार के दो अर्धचालक पदार्थों का निर्माण करते हैं जिनका वर्णन नीचे दिया गया है।
(i) $n$-प्रकार का अर्धचालक
मान लीजिए कि हम $\mathrm{Si}$ या $\mathrm{Ge}$ (संयोजकता 4) को एक पंचसंयोजक (संयोजकता 5 ) तत्व से अपमिश्रित करें जैसा चित्र 14.7 में दिखाया गया है। जब +5 संयोजकता वाला तत्व $\mathrm{Si}$ के एक परमाणु को प्रतिस्थापित करके अपना स्थान ग्रहण करता है तो इसके इलेक्ट्रॉनों में से चार, निकटवर्ती चार सिलिकॉन परमाणुओं से बंध बनाते हैं, जबकि पाँचवाँ इलेक्ट्रॉन जनक परमाणु से दुर्बल बंध द्वारा जुड़ा रहता है। ऐसा इसलिए है कि पाँचवें इलेक्ट्रॉन के लिए बंध में भाग लेने वाले चारों इलेक्ट्रॉन परमाणु के प्रभावी क्रोड़ के भाग हैं। इसके परिणामस्वरूप इस इलेक्ट्रॉन को मुक्त करने के लिए आवश्यक आयनन ऊर्जा बहुत कम होती है और सामान्य कक्ष ताप पर यह अर्धचालक के जालक में मुक्त गति करने के लिए मुक्त होता है। उदाहरण के लिए, इस इलेक्ट्रॉन को परमाणु से मुक्त करने के लिए जर्मेनियम में $~ 0.01 \mathrm{eV}$ तथा सिलिकॉन में लगभग $0.05 \mathrm{eV}$ ऊर्जा चाहिए। इसके विपरीत किसी नैज अर्धचालक में कक्ष ताप पर किसी इलेक्ट्रॉन को वर्जित बैंड से स्थानांतरण के लिए (जर्मेनियम में लगभग $0.72 \mathrm{eV}$ तथा सिलिकॉन में लगभग $1.1 \mathrm{eV}$ ) ऊर्जा चाहिए। इस प्रकार पंचसंयोजक अपमिश्रक विद्युत चालन के लिए एक अतिरिक्त इलेक्ट्रॉन प्रदान करता है और इसीलिए इसे दाता अशुद्धि (donor impurity) कहते हैं। अपमिश्रक परमाणु द्वारा विद्युत चालन के लिए उपलब्ध कराए गए इलेक्ट्रॉन की संख्या प्रबल रूप से अपमिश्रण पर निर्भर करती है। यह आसपास के ताप पर निर्भर नहीं करती। इसके विपरीत $\mathrm{Si}$ परमाणु द्वारा उत्पन्न मुक्त इलेक्ट्रॉनों की संख्या (समान संख्या में होलों के साथ) में ताप के साथ बहुत कम वृद्धि होती है।
किसी अपमिश्रित अर्धचालक में चालक इलेक्ट्रॉनों की कुल संख्या $n _{e}$ दाताओं के योगदान तथा निजी कारणों (ऊष्मा द्वारा) से उत्पन्न इलेक्ट्रॉनों के कारण तथा होलों की कुल संख्या $n _{h}$ केवल निजी स्रोत द्वारा उत्पन्न होलों के कारण होती है। परंतु होलों के पुनःसंयोजन की दर में वृद्धि इलेक्ट्रॉनों की संख्या में वृद्धि के कारण हो जाती है। इसके परिणामस्वरूप होलों की संख्या में और कमी
इस प्रकार अपमिश्रण के उचित स्तर से चालक इलेक्ट्रॉनों की संख्या में होलों की संख्या की तुलना में वृद्धि की जा सकती है। अतः पंचसंयोजक अपमिश्रक के साथ अपमिश्रण होने पर किसी नैज अर्धचालक में इलेक्ट्रॉन बहुसंख्यक आवेश वाहक तथा होल अल्पांश आवेश वाहक बन जाते हैं। इसीलिए इस प्रकार के अर्धचालकों को $\mathrm{n}$ प्रकार के अर्धचालक कहते हैं। किसी $\mathrm{n}$-प्रकार के अर्धचालक के लिए
$$ \begin{equation*} n _{e} > > n _{h} \tag{14.3} \end{equation*} $$
(ii) $p$-प्रकार के अर्धचालक
$p$-प्रकार का अर्धचालक तब बनता है जब $\mathrm{Si}$ या $\mathrm{Ge}$ (चतुर्थसंयोजी) में ग्रुप-III की त्रिसंयोजी अशुद्धियाँ; जैसे- $\mathrm{Al}, \mathrm{B}, \mathrm{In}$ आदि अपमिश्रित की जाती हैं, जैसा चित्र 14.8 में दिखाया गया है। अपमिश्रक में $\mathrm{Si}$ या $\mathrm{Ge}$ की अपेक्षा एक बाहरी इलेक्ट्रॉन कम होता है और इसलिए यह परमाणु तीन ओर से $\mathrm{Si}$ परमाणुओं से बंध बना सकता है, लेकिन चौथी ओर बंध बनाने के लिए आवश्यक इलेक्ट्रॉन उपलब्ध न होने के कारण चौथा बंध बनाने में सफल नहीं हो पाता। अतः त्रिसंयोजक परमाणु तथा चौथे निकटस्थ परमाणु के बीच बंध में एक रिक्ति अथवा होल होता है जिसे चित्र 14.8 में दर्शाया गया है। क्योंकि जालक में पड़ोसी $\mathrm{Si}$ परमाणु होल के स्थान पर एक इलेक्ट्रॉन चाहता है, निकट के परमाणु के बाह्य कक्ष का कोई इलेक्ट्रॉन इस रिक्ति को भरने के लिए कूदान भर सकता है जिससे उसके अपने स्थान पर एक होल बन जाता है। यही होल चालन के लिए उपलब्ध रहता है। ध्यान देने योग्य बात यह है कि, त्रिसंयोजी विजातीय परमाणु पड़ोसी $\mathrm{Si}$ परमाणु के साथ इलेक्ट्रॉन की साझेदारी करके प्रभावतः ॠणात्मक आवेशित हो जाता है, तथा इसके सभी संयोजी बंध पूरे हो जाते हैं। इसलिए साधारण भाषा में प्राय: $p$-पदार्थ के अपमिश्रक परमाणु को अपने संबद्ध होल के साथ एक ॠणात्मक आवेश का क्रोड़ कहा जाता है, जैसा चित्र $14.8(\mathrm{~b})$ में दिखाया गया है। यह स्पष्ट है कि एक ग्राही परमाणु $\left(\mathrm{N} _{\mathrm{A}}\right)$ एक होल देता है। यह होल नैज जनित होलों के अतिरिक्त है जबकि चालन इलेक्ट्रॉनों का स्रोत केवल नैज जनन ही है। इस प्रकार, ऐसे पदार्थ के लिए, होल बहुसंख्यक वाहक तथा इलेक्ट्रॉन अल्पसंख्यक वाहक हैं। इसीलिए त्रिसंयोजक अशुद्धि से अपमिश्रित नैज अर्धचालक $\mathrm{p}$ - प्रकार के अर्धचालक कहलाते हैं। $\mathrm{p}$-प्रकार के अर्धचालकों में पुनःसंयोजन प्रक्रिया, नैज जनित इलेक्ट्रॉनों की संख्या $n _{i}$ घट कर $n _{e}$ हो जाती है। अतः $p$-प्रकार के अर्धचालकों के लिए
$$ \begin{equation*} n _{h} > > n _{e} \tag{14.4} \end{equation*} $$
ध्यान देने योग्य बात यह है कि क्रिस्टल एक समग्र ॠणात्मक उदासीनता बनाए रखता है क्योंकि अतिरिक्त आवेश वाहकों पर आवेश की मात्रा जालक में आयनीकृत क्रोड़ों
चित्र 14.8 (a) चतुर्थसंयोजी $\mathrm{Si}$ या $\mathrm{Ge}$ के जालक में त्रिसंयोजी ग्राही परमाणु (In, Al, B आदि) के अपमिश्रण से बना $\mathrm{p}$ - प्रकार का अर्धचालक। (b) $\mathrm{p}$ - प्रकार के पदार्थ का साधारणतया प्रयुक्त होने वाला व्यवस्थात्मक निरूपण जो एक प्रभावी अतिरिक्त ऋणात्मक आवेश के साथ प्रतिस्थापी ग्राही परमाणु की स्थिर क्रोड़ तथा उससे संबद्ध होल को दिखाता है। पर आवेश की मात्रा के ही समान एवं विपरीत होती है।
अपद्रव्यी अर्धचालकों में बहुसंख्यक धारा वाहकों की प्रचुरता के कारण तापन द्वारा उत्पन्न अल्पांश वाहकों के लिए बहुसंख्यक वाहकों से मिलने के अधिक अवसर होते हैं और इस प्रकार वे नष्ट हो जाते हैं। इसीलिए अपमिश्रक एक प्रकार के अधिक धारा वाहकों को मिलाने से, जो बहुसंख्यक वाहक बन जाते हैं, अप्रत्यक्ष रूप में अल्पांश वाहकों की नैज सांद्रता को घटाने में सहायता करते हैं।
अपमिश्रण द्वारा अर्धचालकों की ऊर्जा बैंड संरचना प्रभावित होती है। बाह्य अर्धचालकों के प्रकरण में दाता अशुद्धियों के कारण अतिरिक्त ऊर्जा अवस्था $\left(E _{D}\right)$ तथा ग्राही अशुद्धियों के कारण अतिरिक्त ऊर्जा अवस्था $\left(E _{A}\right)$ भी होती है। $\mathrm{n}$-प्रकार के $\mathrm{Si}$ अर्धचालकों के ऊर्जा बैंड आरेख में दाता ऊर्जा स्तर $E _{D}$ चालक बैंड की तली $E _{C}$ से कुछ नीचे होता है तथा इस स्तर से कुछ इलेक्ट्रॉन बहुत कम ऊर्जा की आपूर्ति होने पर चालन बैंड में प्रवेश कर जाते हैं। कक्ष ताप पर अधिकांश दाता परमाणु आयनीकृत हो जाते हैं, परंतु $\mathrm{Si}$ के अति अल्प $\left(\sim 10^{12}\right)$ परमाणु ही आयनीकृत होते हैं। अतः चित्र 14.9(a) में दर्शाए अनुसार चालन बैंड में अधिकांश इलेक्ट्रॉन दाता अशुद्धियों से ही आते हैं। इसी प्रकार $\mathrm{p}$-प्रकार के अर्धचालकों में ग्राही ऊर्जा स्तर $E _{A}$ संयोजी बैंड के शीर्ष से कुछ ऊपर होता है [चित्र 14.9(b) देखिए]। बहुत कम ऊर्जा आपूर्ति होने पर भी संयोजी बैंड से कोई इलेक्ट्रॉन $E _{A}$ के स्तर पर कूदान भर लेता है और उसे ग्राही को ऋणात्मक आयनित कर देता है। [विकल्प के रूप में हम इस प्रकार भी कह सकते हैं कि बहुत कम ऊर्जा की आपूर्ति से होल ऊर्जा स्तर $E _{A}$ से संयोजी बैंड में गमन कर सकता है। ऊर्जा प्राप्त करने पर इलेक्ट्रॉन ऊपर की ओर आते हैं जबकि होल नीचे की ओर आते हैं।] सामान्य कक्ष ताप पर अधिकांश ग्राही परमाणु आयनीकृत हो जाते हैं तथा संयोजी बैंड में होल बच जाते हैं। इस प्रकार कक्ष ताप पर संयोजी बैंड में होलों का घनत्व प्रमुख रूप में अपद्रव्यी अर्धचालकों में अशुद्धि के कारण होता है। तापीय साम्य में अर्धचालकों में इलेक्ट्रॉनों तथा होलों की सांद्रता इस प्रकार व्यक्त की जाती है
$$ \begin{equation*} n _{e} n _{h}=n _{i}^{2} \tag{14.5} \end{equation*} $$
यद्यपि उपरोक्त विवरण समग्र रूप से सन्निकट तथा परिकल्पित है परंतु यह सरल ढंग से धातुओं, विद्युतरोधियों तथा अर्धचालकों (नैज तथा अपद्रव्यी) में अंतर को समझने में सहायक है। $\mathrm{C}, \mathrm{Si}$ तथा $\mathrm{Ge}$ की प्रतिरोधकताओं में अंतर इनके चालन तथा संयोजी बैंडों के बीच ऊर्जा अंतराल पर निर्भर करता है। कार्बन (डायमंड), $\mathrm{Si}$ तथा $\mathrm{Ge}$ के लिए ऊर्जा अंतराल क्रमशः $5.4 \mathrm{eV}$, $1.1 \mathrm{eV}$ तथा $0.7 \mathrm{eV}$ है। Sn भी चौथे ग्रुप का तत्व है परंतु यह धातु है क्योंकि इसके प्रकरण में ऊर्जा अंतराल $0 \mathrm{eV}$ है।
चित्र 14.9 $ \mathrm{~T}>0 \mathrm{~K}$ पर (a) $\mathrm{n}$-प्रकार के अर्धचालक तथा (b) $\mathrm{p}$-प्रकार के अर्धचालक का ऊर्जा बैंड।
उदाहरण 14.2 मान लीजिए किसी शुद्ध $\mathrm{Si}$ क्रिस्टल में $5 \times 10^{28}$ परमाणु $\mathrm{m}^{-3}$ है। इसे पंचसंयोजी As से $1 \mathrm{ppm}$ सांद्रता पर अपमिश्रित किया जाता है। इलेक्ट्रॉनों तथा होलों की संख्या परिकलित कीजिए, दिया है कि $n _{\mathrm{i}}=1.5 \times 10^{16} \mathrm{~m}^{-3}$ ।
हल ध्यान दीजिए, यहाँ तापीय जनित की ऊष्मा से उत्पन्न इलेक्ट्रॉन $\left(n _{1} \sim 10^{16} \mathrm{~m}^{-3}\right)$ अपमिश्रण से उत्पन्न इलेक्ट्रॉनों की तुलना में नगण्य हैं। इसलिए, $n _{e} \approx N _{D}$
चूँकि $n _{e} n _{h}=n _{i}^{2}$, इसलिए होलों की संख्या
$n _{h}=\left(2.25 \times 10^{32}\right) /\left(5 \times 10^{22}\right)$
$\sim 4.5 \times 10^{9} \mathrm{~m}^{-3}$
14.5 p-n संधि
p-n संधि (p-n junction) बहुत सी अर्धचालक युक्तियों जैसे डायोड, ट्रांजिस्टर आदि की मूल इकाई है। अन्य अर्धचालक युक्तियों के विश्लेषण के लिए संधि के व्यवहार को समझना अत्यंत महत्वपूर्ण है। अब हम यह समझने का प्रयास करेंगे कि किसी संधि का निर्माण कैसे होता है तथा बाह्य अनुप्रयुक्त वोल्टताओं (जिन्हें बायस भी कहते हैं) के प्रभाव में कोई संधि किस प्रकार व्यवहार करती है।
14.5 .1 p-n संधि का निर्माण
$\mathrm{p}$-प्रकार के सिलिकॉन (p-Si) अर्धचालक की पतली पटलिका (वेफ़र) पर विचार कीजिए। परिशुद्ध रूप में पंचसंयोजक अशुद्धि की अल्प मात्रा मिलाकर किसी $\mathrm{p}-\mathrm{Si}$ पटलिका के कुछ भाग को $\mathrm{n}-\mathrm{Si}$ में परिवर्तित किया जा सकता है। किसी अर्धचालक का निर्माण करने की बहुत-सी प्रक्रियाएँ हैं। अब पटलिका में $\mathrm{p}$-क्षेत्र एवं $\mathrm{n}$-क्षेत्र तथा $\mathrm{p}$ - तथा $\mathrm{n}$ - क्षेत्रों के बीच एक धातुकर्मी संधि है।
किसी p-n संधि के निर्माण के समय दो महत्वपूर्ण प्रक्रियाएँ होती हैं - विसरण (Diffusion) तथा अपवाह (Drift)। हम यह जानते हैं कि किसी $\mathrm{n}$-प्रकार के अर्धचालक में इलेक्ट्रॉनों की सांद्रता ( प्रति एकांक आयतन में इलेक्ट्रॉनों की संख्या) होलों की सांद्रता की तुलना में अधिक होती है। इसी प्रकार $\mathrm{p}$-प्रकार के अर्धचालक में होलों की सांद्रता इलेक्ट्रॉनों की सांद्रता की तुलना में अधिक होती है। $\mathrm{p}-\mathrm{n}$ संधि के निर्माण के समय, तथा $\mathrm{p}$ - एवं $\mathrm{n}$ - फलकों के सिरों पर सांद्रता प्रवणता (Concentration gradient) के कारण होल $\mathrm{p}$-फलक से $\mathrm{n}$-फलक $(\mathrm{p} \rightarrow \mathrm{n})$ को विसरित होते हैं तथा इलेक्ट्रॉन $n$-फलक से $p$-फलक $(n \rightarrow p)$ की ओर विसरित होते हैं। आवेश वाहकों की इस गति के कारण संधि से एक विसरण धारा प्रवाहित होती है।
जब कोई इलेक्ट्रॉन $\mathrm{p}$ से $\mathrm{n}$ की ओर विसरित होता है तो वह अपने पीछे एक आयनित दाता $\mathrm{n}$-फलक पर छोड़ देता है। यह आयनित दाता (धन आवेश) चारों ओर के परमाणुओं द्वारा बँधा होने के कारण निश्चल होता है। जैसे-जैसे इलेक्ट्रॉन $n \rightarrow p$ की ओर विसरित होते जाते हैं, संधि के $n-$ फलक पर धनावेश की (या धनात्मक स्पेस-चार्ज़ क्षेत्र) एक परत विकसित हो जाती है।
इसी प्रकार, जब कोई होल सांद्रता प्रवणता के कारण $\mathrm{p} \rightarrow \mathrm{n}$ की ओर विसरित होता है तो वह अपने पीछे एक आयनित ग्राही (ऋणात्मक आवेश) छोड़ देता है जो निश्चल होता है। जैसे-जैसे होल विसरित होते हैं, ऋणात्मक आवेश (ऋणात्मक स्पेस-चार्ज़ क्षेत्र) की एक परत संधि के $\mathrm{p}$-फलक पर विकसित होती जाती है। संधि के दोनों फलकों पर विकसित इस स्पेस-चार्ज़ क्षेत्र को ह्रासी क्षेत्र (Depletion region) कहते हैं। यह इसलिए है क्योंकि इलेक्ट्रॉन तथा होल जो संधि के आर-पार आरंभिक गति में भाग लेते हैं वे इसके मुक्त आवेशों के क्षेत्र का ह्रास कर देते हैं (चित्र 14.10)। इस ह्रासी क्षेत्र की मोटाई माइक्रोमीटर के दसवें भाग की कोटि की होती है। संधि के $\mathrm{n}$-फलक पर धनात्मक स्पेस-चार्ज़ क्षेत्र तथा $\mathrm{p}$ फलक पर ऋणात्मक स्पेस-चार्ज क्षेत्र होने के कारण संधि पर धनात्मक आवेश से ऋणात्मक आवेश की ओर एक विद्युत क्षेत्र उत्पन्न हो जाता है। इस क्षेत्र के कारण संधि के $\mathrm{p}$-फलक का इलेक्ट्रॉन $\mathrm{n}$-फलक की ओर तथा संधि के $\mathrm{n}$-फलक का होल $\mathrm{p}$-फलक की ओर गति करता है। इस विद्युत क्षेत्र के कारण आवेश वाहकों की इस गति को अपवाह कहते हैं। इस प्रकार एक अपवाह धारा जो कि विसरण धारा के विपरीत होती है, प्रवाहित होना आरंभ कर देती है (चित्र 14.10)।
चित्र 14.10 $\mathrm{p}-\mathrm{n}$ संधि बनने की प्रक्रिया
चित्र 14.11 (a) डायोड साम्य में $(\mathrm{V}=0)$, (b) बिना किसी बायस के संधि का विभव।
आरंभ में, विसरण धारा उच्च होती है तथा अपवाह धारा निम्न होती है। जैसे-जैसे विसरण प्रक्रिया होती जाती है, संधि के दोनों फलकों पर अंतराकाशी आवेश क्षेत्र विस्तारित होते जाते हैं। इससे विद्युत क्षेत्र की तीव्रता में वृद्धि होती है जिसके फलस्वरूप अपवाह धारा में भी वृद्धि होती है। यह प्रक्रम उस समय तक चलता रहता है जब तक कि ये दोनों धाराएँ (विसरण धारा तथा अपवाह धारा) परिमाण में समान नहीं हो जातीं। इस प्रकार एक $p-n$ संधि बन जाती है। साम्यवास्था में $p-n$ संधि पर कोई नेट विद्युत धारा नहीं होती।
$\mathrm{n}$-क्षेत्र से इलेक्ट्रॉनों की हानि तथा $\mathrm{p}$-क्षेत्र में होलों की प्राप्ति के कारण दोनों क्षेत्रों की संधि के आर-पार एक विभवांतर उत्पन्न हो जाता है। इस विभव की ध्रुवता इस प्रकार होती है कि यह आवेश वाहकों के और प्रवाह का विरोध करता है जिसके फलस्वरूप साम्यावस्था की स्थिति उत्पन्न हो जाती है। चित्र 14.11 में संधि को साम्यावस्था में तथा इसके सिरों के बीच विभवांतर दर्शाया गया है। $\mathrm{n}$-पदार्थ ने इलेक्ट्रॉन खोए हैं तथा $\mathrm{p}$-पदार्थ ने इलेक्ट्रॉन अर्जित किए हैं। इस प्रकार $\mathrm{p}$-पदार्थ के सापेक्ष $\mathrm{n}$-पदार्थ धनात्मक है। चूँकि विभव $\mathrm{n}$-क्षेत्र से $\mathrm{p}$-क्षेत्र की ओर इलेक्ट्रॉनों की गति को रोकने का प्रयास करता है अतः इस विभव को प्राय: रोधिका विभव (Barrier potential) कहते हैं।
उदाहरण 14.3 क्या $\mathrm{p}$ - $\mathrm{n}$ संधि बनाने के लिए हम $\mathrm{p}$-प्रकार के अर्धचालक की एक पट्टी को $\mathrm{n}$-प्रकार के अर्धचालक से भौतिक रूप से संयोजित कर p-n संधि प्राप्त कर सकते हैं?
हल
नहीं! कोई भी पट्टी, चाहे कितनी ही समतल हो, अंतर-परमाण्वीय क्रिस्टल अंतराल ( 2 से $3 Å $ ) से कहीं ज़्यादा खुरदरी होगी और इसलिए परमाण्वीय स्तर पर अविच्छिन्न संपर्क (अथवा संतत संपर्क) संभव नहीं होगा। प्रवाहित होने वाले आवेश वाहकों के लिए संधि एक विच्छिन्नता की तरह व्यवहार करेगी।
14.6 अर्धचालक डायोड
अर्धचालक डायोड [चित्र 14.12(a)] मूल रूप में एक $\mathrm{p}-\mathrm{n}$ संधि होती है जिसके सिरों पर धात्विक संपर्क जुड़े होते हैं ताकि इस संधि पर कोई बाह्य वोल्टता अनुप्रयुक्त की जा सके। इस युक्ति के दो टर्मिनल होते हैं। अर्धचालक डायोड को प्रतीकात्मक रूप में चित्र 14.12(b) में निरूपित किया गया है।
तीरों की दिशा परिपाटी के अनुसार विद्युत धारा की दिशा साम्या रोधिका (Equilibrium barrier) को दर्शाती है। (जबकि डायोड अग्रदिशिक बायसित (Forward bias) है) विभव को डायोड के सिरों पर बाह्य वोल्टता $V$ अनुप्रयुक्त करके परिवर्तित किया जा सकता है। $\mathrm{p}-\mathrm{n}$ संधि डायोड की बिना किसी बायस के साम्यावस्था में स्थिति चित्र 14.11(a) तथा (b) में दर्शायी गई है।
चित्र 14.12 (a) अर्धचालक डायोड, (b) p-n संधि डायोड का प्रतीक।
14.6.1 अग्रदिशिक बायस में $\mathrm{p}-\mathrm{n}$ संधि डायोड
जब किसी अर्धचालक डायोड के दो सिरों के बीच कोई बाह्य वोल्टता $V$ इस प्रकार अनुप्रयुक्त की जाती है कि बैटरी का धन टर्मिनल $\mathrm{p}$-फलक से तथा ऋण टर्मिनल $\mathrm{n}$-फलक से संयोजित करते हैं [चित्र 14.13(a) तथा (b)] तो इसे अग्रदिशिक बायसित कहते हैं।
अनुप्रयुक्त अधिकांश वोल्टता पात अर्धचालक डायोड के ह्रासी क्षेत्र के सिरों पर होता है तथा संधि के $\mathrm{p}$-फलक तथा $\mathrm{n}$-फलक पर विभवपात नगण्य होता है (इसका कारण यह है कि ह्रासी क्षेत्र, वह क्षेत्र जहाँ कोई आवेश नहीं है, का प्रतिरोध $\mathrm{n}$-फलक अथवा $\mathrm{p}$-फलक के प्रतिरोधों की तुलना में अत्यधिक होता है)। अनुप्रयुक्त वोल्टता $(V)$ की दिशा अंतःनिर्मित (built-in) विभव $V _{0}$ के विपरीत होती है। इसके परिणामस्वरूप, ह्रसी स्तर की मोटाई घट जाती है तथा रोधिका ऊँचाई कम हो जाती है [चित्र 14.13(b)]। अग्रदिशिक बायस में प्रभावी रोधि का ऊँचाई $\left(V _{0}-V\right)$ होती है।
चित्र 14.13 (a) अग्रदिशिक बायस में p-n जंक्शन डायोड, (b) रोधक विभव (1) बिना बैटरी में, (2) निम्न बैटरी वोल्टता के लिए, तथा (3) उच्च बैटरी वोल्टता के लिए।
यदि अनुप्रयुक्त वोल्टता लघु है तो रोधिका विभव साम्य मान से केवल कुछ कम हो जाएगा, तथा केवल वे ही आवेश वाहक जो उच्चतम ऊर्जा स्तर पर थे, बहुत कम संख्या में संधि को पार करने के लिए आवश्यक ऊर्जा प्राप्त कर पाएँगे, अतः कम विद्युत धारा प्रवाहित होगी। यदि हम अनुप्रयुक्त वोल्टता में काफ़ी वृद्धि कर दें तो रोधिका ऊँचाई काफ़ी घट जाएगी तथा अधिक संख्या में वाहकों को संधि पार करने के लिए आवश्यक ऊर्जा प्राप्त हो जाएगी। इस प्रकार विद्युत धारा में वृद्धि हो जाएगी।
अनुप्रयुक्त वोल्टता के कारण, इलेक्ट्रॉन $\mathrm{n}$-फलक ह्रासी क्षेत्र को पार कर $\mathrm{p}$-फलक पर पहुँचते हैं (जहाँ वे अल्पांश वाहक हैं)। इसी प्रकार $\mathrm{p}$-फलक के होल संधि को पार करके $\mathrm{n}$-फलक पर पहुँचते हैं (जहाँ वे अल्पांश वाहक हैं)। अग्रदिशिक बायस में होने वाले इस प्रक्रम को अल्पांश वाहक अंतःक्षेपण (Minority carrier injection) कहते हैं। संधि की सीमा पर हर फलक पर, संधि से दूर अवस्थित अल्पांश वाहकों की सांद्रता की तुलना में, अल्पांश वाहक सांद्रता में महत्वपूर्ण वृद्धि हो जाती है।
इस सांद्रता प्रवणता के कारण $\mathrm{p}$-फलक की संधि के किनारे विसरित होकर $\mathrm{p}$-फलक के दूसरे किनारे पर पहुँच जाते हैं। इसी प्रकार $\mathrm{n}$-फलक की संधि के किनारे से विसरित होकर $\mathrm{n}$-फलक के दूसरे सिरे पर पहुँचते हैं (चित्र 14.14)। दोनों फलकों पर आवेश वाहकों की इस गति के कारण विद्युत धारा प्रवाहित होने लगती है। कुल अग्रदिशिक डायोड धारा का मान होल विसरण धारा तथा इलेक्ट्रॉन विसरण के कारण पारंपरिक धारा का योग होता है। इस धारा का परिमाण प्रायः मिलीऐम्पियर में होता है।
14.6.2 पश्चदिशिक बायस में $\mathrm{p}-\mathrm{n}$ संधि डायोड
जब किसी अर्धचालक डायोड के दो सिरों के बीच कोई बाह्य वोल्टता $(V)$ इस प्रकार अनुप्रयुक्त करते हैं कि बैटरी के धन टर्मिनल को $\mathrm{n}$-फलक से तथा ॠण टर्मिनल को $\mathrm{p}$-फलक से जोड़ते हैं [चित्र 14.15(a)], तो डायोड को पश्चदिशिक बायसित (Reverse bias) कहते हैं। अनुप्रयुक्त वोल्टता का अधिकांश विभवपात अर्धचालक के ह्रासी क्षेत्र के सिरों पर होता है। यहाँ अनुप्रयुक्त वोल्टता की दिशा रोधिका विभव की दिशा के समान होती है। इसके परिणामस्वरूप रोधिका की ऊँचाई बढ़ जाती है तथा ह्रासी क्षेत्र की चौड़ाई में विद्युत में परिवर्तन होने के कारण वृद्धि हो जाती है। पश्चदिशिक बायसन् में प्रभावी रोधिका ऊँचाई $\left(V _{0}+V\right)$ होती है [चित्र 14.15(b)]। यह $\mathrm{n} \rightarrow \mathrm{p}$ की ओर इलेक्ट्रॉनों के प्रवाह तथा $\mathrm{p} \rightarrow \mathrm{n}$ की ओर होलों के प्रवाह का दमन करती है। इस प्रकार, डायोड के अग्रदिशिक बायसन् की तुलना में इस स्थिति में विसरण धारा अत्यधि क कम हो जाती है।
चित्र 14.14 अग्रदिशिक बायस में अल्पांश वाहक अंतःक्षेपण (Minority current injection)।
संधि के विद्युत क्षेत्र की दिशा ऐसी होती है कि यदि $\mathrm{p}$-फलक पर इलेक्ट्रॉन अथवा $\mathrm{n}$-फलक पर होल अपनी यादृच्छिक गति करते समय संधि के निकट आ जाएँ, तो उन्हें उनके बहुसंख्यक क्षेत्र में भेज दिया जाएगा। आवेश वाहकों के इस अपवाह के कारण विद्युत धारा उत्पन्न होगी। यह अपवाह धारा कुछ $\mu \mathrm{A}$ कोटि की होती है। इसके अत्यल्प मान होने का कारण यह है कि आवेश वाहकों की गति उनके अल्पांश फलक से संधि के दूसरी ओर बहुसंख्यक फलक की ओर होती है। अग्रदिशिक बायसन् में अपवाह धारा (सामान्यतः $\mu \mathrm{A}$ में) भी होती है परंतु यह अंतःक्षिप्त वाहकों के कारण धारा ( $\mathrm{mA}$ में), की तुलना में नगण्य होती है।
चित्र 14.15 (a) पश्चदिशिक बायस में डायोड (b) पश्चदिशिक बायस में रोधिका विभव।
डायोड प्रतीप धारा (Reverse current) अनुप्रयुक्त वोल्टता पर अत्यधिक निर्भर नहीं होती। अल्पांश वाहकों को संधि के एक फलक से दूसरे फलक तक पहुँचाने के लिए लघु वोल्टता ही पर्याप्त होती है। धारा अनुप्रयुक्त वोल्टता के परिणाम द्वारा सीमित नहीं होती परंतु यह संधि के दोनों फलकों पर अल्पांश वाहकों की सांद्रता के कारण सीमित होती है। पश्चदिशिक बायस में किसी क्रांतिक पश्चदिशिक (Critical reverse) वोल्टता तक विद्युतधारा सारभूत रूप में वोल्टता पर निर्भर नहीं करती है। इस वोल्टता को भंजन वोल्टता (Breakdown voltage, $V _{b r}$ ) कहते हैं। जब $V=V _{b r}$ तब डायोड पश्चदिशिक धारा में तेज़ी से वृद्धि होती है। यहाँ तक कि बायस वोल्टता में अल्प वृद्धि करने पर भी धारा में अत्यधिक परिवर्तन हो जाता है। यदि पश्चदिशिक धारा को किसी बाह्य परिपथ द्वारा अनुमत मान (जिसे उत्पादक द्वारा निर्दिष्ट किया गया है) से नीचे सीमित न किया जाए तो $\mathrm{p}-\mathrm{n}$ संधि नष्ट हो जाएगी। यदि एक बार भी यह अनुमत मान से अधिक हो जाए तो अतितप्त होने के कारण डायोड नष्ट हो जाता है। ऐसा तब भी हो सकता है, जब डायोड अग्रदिशिक बायसित होता है तथा अग्रदिशिक धारा अनुमत मान से अधिक हो।
किसी डायोड के V-I अभिलाक्षणिक (अनुप्रयुक्त की गई वोल्टता के फलन के रूप में धारा का विचरण) का अध्ययन करने के लिए परिपथ आरेख चित्र 14.16 (a) तथा (b) में दिखाया गया है। डायोड से वोल्टता को एक पोटेंशियोमीटर (या धारा नियंत्रक) से होकर जोड़ा जाता है जिससे डायोड पर अनुप्रयुक्त की गई वोल्टता को परिवर्तित किया जा सकता है। वोल्टता के विभिन्न मानों के लिए धारा का मान नोट किया जाता है। $V$ और $I$ के बीच एक ग्राफ़, जैसा चित्र 14.16(c) में दिखाया गया है, प्राप्त होता है। ध्यान दीजिए, अग्रदिशिक बायस मापन के लिए हम मिलीमीटर का उपयोग करते हैं क्योंकि (जैसा पिछले अनुभाग में समझाया गया था) अपेक्षित धारा अधिक है जबकि विपरीत बायस में कम धारा को नापने के लिए एक माइक्रोऐमीटर का उपयोग किया जाता है।
चित्र 14.16 किसी p-n संधि डायोड का (a) अग्रदिशिक बायस, (b) पश्चदिशिक बायस में $V-I$ अभिलाक्षणिक के अध्ययन के प्रयोगिक परिपथ, (c) किसी सिलिकॉन डायोड के प्रतिरूपी $V-I$ अभिलाक्षणिक।
आप चित्र (14.16) में देख सकते हैं कि अग्रदिशिक बायस में आरंभ में धारा उस समय तक बहुत धीरे-धीरे, लगभग नगण्य, बढ़ती है जब तक कि डायोड पर वोल्टता एक निश्चित मान से अधिक न हो जाए। इस अभिलाक्षणिक वोल्टता के बाद डायोड बायस वोल्टता में बहुत थोड़ी-सी ही वृद्धि करने से डायोड धारा में सार्थक (चरघातांकी) वृद्धि हो जाती है। यह वोल्टता देहली वोल्टता (Threshold voltage) या कट-इन वोल्टता कहलाती है। इस वोल्टता का मान जरमेनियम डायोड के लिए $\sim 0.2$ वोल्ट तथा सिलिकॉन डायोड के लिए $\sim 0.7$ वोल्ट है।
पश्चदिशिक बायस में डायोड के लिए धारा बहुत कम $(\sim \mu \mathrm{A})$ होती है तथा बायस में परिवर्तन के साथ लगभग स्थिर बनी रहती है। इसे प्रतीप संतृप्त धारा (Reverse saturation current) कहते है। परंतु कुछ विशेष प्रकरणों में, बहुत अधिक पश्चदिशिक बायस (भंजन वोल्टता) पर धारा में अचानक वृद्धि हो जाती है। डायोड की इस विशेष क्रिया की विवेचना आगे अनुभाग 14.8 में की गई है। साधारण उद्देश्य वाले डायोड प्रतीप संतृप्त धारा क्षेत्र के आगे उपयोग नहीं किए जाते हैं।
ऊपर दी गई विवेचना यह दिखाती है कि $\mathrm{p}-\mathrm{n}$ डायोड मूल रूप से धारा के प्रवाह को केवल एक ही दिशा में (अग्रदिशिक बायस) प्रतिबंधित करता है। पश्चदिशिक बायस प्रतिरोध की तुलना में अग्रदिशिक बायस प्रतिरोध कम होता है। इस गुण का उपयोग प्रत्यावर्ती (ac) वोल्टता के दिष्टकरण के लिए किया गया है, जिसे अगले अनुभाग में समझाया गया है। डायोडों के लिए हम एक अन्य भौतिक राशि जिसे गतिक प्रतिरोध कहते हैं, को “वोल्टता में लघु परिवर्तन $\Delta V$ तथा विद्युत धारा में लघु परिवर्तन $\Delta I$ के अनुपात” के रूप में परिभाषित करते हैं:
$$ \begin{equation*} r _{d}=\frac{\Delta V}{\Delta I} \tag{14.6} \end{equation*} $$
उदाहरण 14.4 किसी सिलिकॉन डायोड का $V-I$ अभिलाक्षणिक चित्र 14.17 में दर्शाया गया है। डायोड का प्रतिरोध (a) $I _{D}=15 \mathrm{~mA}$ तथा (b) $V _{D}=-10 \mathrm{~V}$ पर परिकलित कीजिए।
चित्र 14.17
हल डायोड अभिलाक्षणिक को $I=10 \mathrm{~mA}$ से $I=20 \mathrm{~mA}$ के बीच सरल रेखा की भाँति मानते हुए जो मूल बिंदु से गुज़रती है, हम ओम के नियम का पालन करते हुए प्रतिरोध का परिकलन कर सकते हैं।
(a) वक्र से $I=20 \mathrm{~mA}, V=0.8 \mathrm{~V} ; I=10 \mathrm{~mA}, V=0.7 \mathrm{~V}$ पर
$$ r _{f b}=\Delta V / \Delta I=0.1 \mathrm{~V} / 10 \mathrm{~mA}=10 \Omega $$
(b) वक्र से $\mathrm{V}=-10 \mathrm{~V}, I=-1 \mu \mathrm{A}$ है
अतः
$r _{r b}=10 \mathrm{~V} / 1 \mu \mathrm{A}=1.0 \times 10^{7} \Omega$
14.7 संधि डायोड का दिष्टकारी के रूप में अनुप्रयोग
किसी संधि डायोड के $V-I$ अभिलाक्षणिक में हम यह देखते हैं कि वह केवल तभी विद्युत धारा प्रवाहित होने देता है जब वह अग्रदिशिक बायसित होता है। अतः यदि किसी डायोड के सिरों पर कोई प्रत्यावर्ती वोल्टता अनुप्रुक्त की जाए तो चक्र के केवल उसी भाग में परिपथ में धारा प्रवाहित होगी जब डायोड अग्रदिशिक बायसित है। डायोड के इस गुण का उपयोग प्रत्यावर्ती वोल्टता का दिष्टकरण करने में किया जाता है तथा इस कार्य के लिए जिस परिपथ का उपयोग करते हैं उसे दिष्टकारी कहते हैं।
चित्र 14.18 (a) अर्धतरंग दिष्टकारी परिपथ, (b) दिष्टकारी परिपथ से निवेशी $\mathrm{ac}$ और निर्गत वोल्टता के तरंग रूप।
यदि डायोड के सिरों पर कोई प्रत्यावर्ती (ac) वोल्टता श्रेणीक्रम में संयोजित लोड प्रतिरोध $R _{L}$ के साथ अनुप्रयुक्त की जाए तो लोड के सिरों पर केवल ac निवेश के उस अर्धचक्र में जिसमें डायोड अग्रदिशिक बायसित है, एक स्पंदमान वोल्टता दृष्टिगोचर होगी। इस प्रकार का विद्युत परिपथ चित्र 14.18 के विद्युत परिपथ में दर्शाया गया है जिसे अर्ध-तरंग दिष्टकारी परिपथ कहते हैं। ट्रांसफ़ार्मर की द्वितीयक कुंडली टर्मिनल $\mathrm{A}$ तथा $\mathrm{B}$ पर वांछित $\mathrm{ac}$ वोल्टता की आपूर्ति करती है। जब $\mathrm{A}$ पर वोल्टता धनात्मक होती है तो डायोड अग्रदिशिक बायसित होता है तथा यह विद्युत धारा का चालन करता है। जब $\mathrm{A}$ पर वोल्टता ॠणात्मक होती है तो डायोड पश्चदिशिक बायसित होता है और वह विद्युत चालन नहीं करता। पश्चदिशिक बायस में डायोड की संतृप्त प्रतीप धारा नगण्य होती है तथा इसे व्यावहारिक कार्यों के लिए शून्य माना जा सकता है। (डायोड की प्रतीप भंजन वोल्टता का मान ट्रांसफ़ार्मर की द्वितीयक कुंडली पर शिखर $\mathrm{ac}$ वोल्टता की तुलना में काफ़ी अधिक होना चाहिए ताकि डायोड प्रतीप भंजन से सुरक्षित रह सके।)
इसलिए $\mathrm{ac}$ वोल्टता के धनात्मक अर्धचक्र में लोड प्रतिरोध $R _{L}$ से विद्युत धारा प्रवाहित होगी और हमें चित्र 14.18(b) में दर्शाए अनुसार निर्गत वोल्टता प्राप्त होगी। परंतु ऋणात्मक अर्धचक्र में विद्युत धारा प्राप्त नहीं होगी। अगले धनात्मक अर्धचक्र में हमें फिर निर्गत वोल्टता प्राप्त होगी। इस प्रकार, निर्गत वोल्टता यद्यपि अभी भी परिवर्तनीय है परंतु यह केवल एक ही दिशा में प्रतिबंधित होने के कारण दिष्टकारी कहलाती है। चूँकि हमें $\mathrm{ac}$ तरंग के केवल एक ही अर्धचक्र में निर्गत वोल्टता प्राप्त हो रही है, अतः इस परिपथ को अर्ध-तरंग दिष्टकारी कहते हैं।
चित्र 14.19(a) में दर्शाए गए परिपथ में दो डायोडों का उपयोग करके एक ऐसी परिपथ व्यवस्था की गई है जिससे $\mathrm{ac}$ चक्र के धनात्मक एवं ऋणात्मक दोनों ही अर्धचक्रों में तदनुरूपी दिष्टकृत निर्गत वोल्टता प्राप्त होती है। इसीलिए इस परिपथ को पूर्ण तरंग दिष्टकारी कहते हैं। इसमें दोनों डायोडों के $\mathrm{n}$-फलकों को एक साथ संयोजित कर देते हैं तथा निर्गत को डायोडों के इस उभयनिष्ठ बिंदु तथा ट्रांसफ़ार्मर की द्वितीयक कुंडली के मध्य बिंदु के बीच प्राप्त किया जाता है। अतः किसी पूर्ण तरंग दिष्टकारी के लिए ट्रांसर्फामर की द्वितीयक कुंडली के मध्य में एक अंशनिष्कासी बिंदु (Tapping point) प्रदान किया जाता है और इसीलिए इस ट्रांसफ़ार्मर को मध्य निष्कासी ट्रांसफ़ार्मर (centre-tap transformer) कहते हैं। जैसा कि चित्र 14.19(c) से स्पष्ट है कि प्रत्येक डायोड द्वारा दिष्टकृत वोल्टता कुल द्वितीयक कुंडली से प्राप्त वोल्टता की केवल आधी ही है। प्रत्येक डायोड केवल आधे चक्र का दिष्टकरण करता है, परंतु दो डायोड प्रत्यावर्ती चक्रों का दिष्टकरण करते हैं। इस प्रकार डायोडों के उभयनिष्ठ बिंदु तथा मध्य निष्कासी ट्रांसफ़ार्मर के अंश निष्कासी बिंदु के बीच प्राप्त निर्गत वोल्टता पूर्ण तरंग दिष्टकारी वोल्टता होती है। (ध्यान दीजिए कि पूर्ण तरंग दिष्टकारी के लिए एक अन्य परिपथ भी होता है जिसके लिए मध्य निष्कासी ट्रांसफ़ार्मर की आवश्यकता नहीं होगी परंतु उसे चार डायोड चाहिए)। मान लीजिए किसी क्षण मध्य निष्कासी के $\mathrm{A}$ पर निवेश वोल्टता धनात्मक है। यह स्पष्ट है कि इस क्षण पर कला असंगत होने के कारण $\mathrm{B}$ पर वोल्टता ॠणात्मक होती है जैसा कि चित्र 14.19(b) में दर्शाया गया है। अत: डायोड $\mathrm{D} _{1}$ अग्रदिशिक बायस होकर विद्युत चालन करता है (जबकि $\mathrm{D} _{2}$ पश्चदिशिक बायस होने के कारण चालन नहीं करता)। अतः इस धनात्मक अर्धचक्र में हमें चित्र 14.19(c) में दर्शाए अनुसार एक निर्गत धारा (तथा लोड प्रतिरोध $R _{L}$ के सिरों पर निर्गत वोल्टता) प्राप्त होती है। इसी प्रकार किसी अन्य क्षण पर, जब $\mathrm{A}$ पर वोल्टता ऋणात्मक हो जाती है तब $\mathrm{B}$ पर वोल्टता धनात्मक होगी। इसलिए डायोड $\mathrm{D} _{1}$ चालन नहीं करता, लेकिन डायोड $\mathrm{D} _{2}$ चालन करता है। इस प्रकार निवेशी $\mathrm{ac}$ के ॠणात्मक अर्ध चक्र में भी निर्गत धारा (तथा $R _{\mathrm{L}}$ पर निर्गत वोल्टता) मिलती है। इस प्रकार, हमें धनात्मक तथा ऋणात्मक दोनों ही अर्ध चक्र में (अर्थात, दूसरे शब्दों में, पूर्ण तरंग के समय में) निर्गत वोल्टता मिलती है। स्पष्टतया, दिष्ट वोल्टता या धारा प्राप्त करने के लिए यह अर्ध तरंग दिष्टकारी से अधिक दक्ष परिपथ है।
चित्र 14.19 (a) पूर्ण तरंग दिष्टकारी परिपथ; (b) A पर डायोड $D _{1}$ के और $B$ पर डायोड $D _{2}$ के दिए गए निवेश के तरंग रूप; (c) पूर्ण तरंग दिष्टकारी परिपथ में जोड़े गए लोड $R _{L}$ पर निर्गत वोल्टता का तरंगरूप।
इस प्रकार प्राप्त दिष्टकृत वोल्टता अर्ध ज्यावक्रीय (Half sinusoid) आकृति की होती है। यद्यपि यह एकदिशिक होती है परंतु इसका मान स्थायी नहीं होता। स्पंदमान वोल्टता से $\mathrm{dc}$ निर्गत प्राप्त करने के लिए निर्गत टर्मिनलों के सिरों पर $\left(R _{\mathrm{L}}\right.$ के पार्श्व में) सामान्यतः कोई संधारित्र संयोजित कर देते हैं। इसी कार्य को करने के लिए लोड प्रतिरोध $R _{L}$ के श्रेणीक्रम में कोई प्रेरक भी संयोजित किया जा सकता है। चूँकि ये अतिरिक्त $a c$ उर्मिकाओं को बाहर फिल्टरन करके शुद्ध dc वोल्टता प्रदान करते प्रतीत होते हैं, अतः इन्हें फिल्टर कहते हैं।
अब हम फिल्टरन में संधारित्र की भूमिका की विवेचना करेंगे। जब संधारित्र के सिरों पर वोल्टता में वृद्धि हो रही होती है तो वह आवेशित हो जाता है। यदि परिपथ में कोई बाह्य लोड नहीं है तो यह दिष्टकृत निर्गत की शिखर वोल्टता तक आवेशित रहता है। यदि परिपथ में कोई लोड है तो यह लोड से होकर विसर्जित होने लगता है तथा इसके सिरों पर वोल्टता कम होने लगती है। दिष्टकृत निर्गत के अगले अर्ध चक्र में यह फिर अपनी शिखर वोल्टता तक आवेशित होता है (चित्र 14.20)। संधारित्र के सिरों पर वोल्टता में कमी होने की दर संधारित्र की धारिता $C$ तथा परिपथ में लगे प्रभावी प्रतिरोधक $R _{L}$ के प्रतिरोध गुणनफल जिसे कालांक कहते हैं, पर निर्भर करता है। कालांक का मान अधिक होने के लिए $C$ का मान अधिक होना चाहिए। अतः संधारित्र निवेश फिल्टरों का उपयोग करने पर प्राप्त निर्गत वोल्टता दिष्टकृत वोल्टता के शिखर मान के निकट होती है। विद्युत प्रदायों में व्यापक रूप में इसी प्रकार के फिल्टर उपयोग किए जाते हैं।
चित्र 14.20 (a) संधारित्र फिल्टर के साथ पूर्ण तंरग दिष्टकारी, (b) में दिष्टकारी की निवेश तथा निर्गत वोल्टता।
सारांश
1. अर्धचालक वर्तमान ठोस अवस्था अर्धचालक इलेक्ट्रॉनिक युक्तियों; जैसे- डायोड, ट्रांज़िस्टर, एकीकृत परिपथ इत्यादि में प्रयुक्त मूल पदार्थ हैं।
2. अवयव तत्वों की जालक संरचना एवं परमाणु संरचना सुनिश्चित करती है कि दिया गया विशेष पदार्थ विद्युतरोधी, धातु अथवा अर्धचालक होगा।
3. धातुओं की प्रतिरोधकता बहुत कम $\left(10^{-2}\right.$ से $\left.10^{-8} \Omega \mathrm{m}\right)$ है, विद्युतरोधी पदार्थों की प्रतिरोधकता बहुत अधिक $\left(>10^{8} \Omega \mathrm{m}^{-1}\right)$ है, जबकि अर्धचालकों की प्रतिरोधकता धातुओं और विद्युतरोधी पदार्थों के मध्य होती है।
4. अर्धचालक तात्विक ( $\mathrm{Si}, \mathrm{Ge})$ साथ ही साथ यौगिक ( $\mathrm{GaAs}, \mathrm{CdS}$ इत्यादि) हैं।
5. शुद्ध अर्धचालक ‘नैज अर्धचालक’ कहलाते हैं। आवेश वाहकों (इलेक्ट्रॉन और होल) की उपस्थिति पदार्थ का ‘नैज’ गुण है और ये ऊष्मीय उत्तेजन के परिणामस्वरूप प्राप्त होते हैं। नैज अर्धचालकों में इलेक्ट्रॉनों की संख्या $\left(n _{\mathrm{e}}\right)$ होलों की संख्या $n _{h}$ समान होती है। होल आवश्यक रूप से प्रभावी धनावेश युक्त इलेक्ट्रॉन रिक्तियाँ हैं।
6. शुद्ध अर्धचालकों में उपयुक्त अपद्रव्य के ‘अपमिश्रण’ से आवेश वाहकों की संख्या परिवर्तित की जा सकती है। ऐसे अर्धचालकों को अपद्रव्यी अर्धचालक कहते हैं। ये दो प्रकार ( $\mathrm{n}$ - प्रकार और $\mathrm{p}$ - प्रकार) के होते हैं।
7. $\mathrm{n}$ - प्रकार के अर्धचालक में $n _{\mathrm{e}} \gg n _{\mathrm{h}}$ जबकि $\mathrm{p}$ - प्रकार के अर्धचालक में $n _{\mathrm{h}} \gg n _{\mathrm{e}}$ होता है।
8. $\mathrm{n}$ - प्रकार के अर्धचालक में $\mathrm{Si}$ अथवा $\mathrm{Ge}$ को पंचसंयोजी परमाणु (दाता) जैसे $\mathrm{As}, \mathrm{Sb}, \mathrm{P}$ इत्यादि के साथ अपमिश्रण से प्राप्त किया जाता है, जबकि $\mathrm{p}$ - प्रकार का अर्धचालक $\mathrm{Si}$ अथवा $\mathrm{Ge}$ को त्रिसंयोजी परमाणु (ग्राही) जैसे $\mathrm{B}, \mathrm{Al}$, In इत्यादि के अपमिश्रण से प्राप्त किया जाता है।
9. सभी दशाओं में $n _{\mathrm{e}} n _{\mathrm{n}}=n _{i}^{2}$ । इसके अतिरिक्त पदार्थ पूर्णतया विद्युत उदासीन होता है।
10. पदार्थ के दो भिन्न ऊर्जा बैंड (संयोजकता बैंड और चालन बैंड) होते हैं, जिनमें इलेक्ट्रॉन रहते हैं। संयोजकता बैंड की ऊर्जा चालन बैंड की ऊर्जा की अपेक्षा कम है। संयोजकता बैंड में सभी ऊर्जा स्तर पूर्ण हैं जबकि चालन बैंड पूर्णतया रिक्त अथवा आंशिक रूप से पूरित हो सकते हैं। किसी ठोस के चालन बैंड में इलेक्ट्रॉन गति करने के लिए मुक्त होते हैं और चालकता के लिए उत्तरदायी होते हैं। चालकता की सीमा संयोजकता बैंड $\left(E _{v}\right)$ के शीर्ष और चालन बैंड $\left(E _{\mathrm{c}}\right)$ के तल के मध्य ऊर्जा-अंतराल $E _{\mathrm{g}}$ पर निर्भर करती है। संयोजकता बैंड से इलेक्ट्रॉन ऊष्मा, प्रकाश अथवा विद्युत ऊर्जा द्वारा चालन बैंड में उत्तेजित किए जा सकते हैं, जो अर्धचालक में प्रवाहित धारा में परिवर्तन उत्पन्न करते हैं।
11. विद्युत-रोधी हेतु $E _{\mathrm{g}}>3 \mathrm{eV}$, अर्धचालक हेतु $E _{\mathrm{g}}=0.2 \mathrm{eV}$ से $3 \mathrm{eV}$, जबकि धातुओं के लिए $E _{\mathrm{g}} \approx 0$ है।
12. $\mathrm{p}-\mathrm{n}$ संधि सभी अर्धचालक युक्तियों की मूल है। जब ऐसी संधि बनती है तो इलेक्ट्रॉन अथवा होल रहित अचल आयन क्रोड़ की एक ‘ह्रासी स्तर’ बन जाता है जो ‘संधि विभव रोधक’ हेतु उत्तरदायी है।
13. बाह्य अनुप्रयुक्त वोल्टता को परिवर्तित करके संधि विभव रोधक को परिवर्तित किया जा सकता है। अग्रदिशिक बायस ( $\mathrm{n}$ - फलक बैटरी के ॠणात्मक सिरे से और $\mathrm{p}$ - फलक बैटरी के धनात्मक सिरे से संबद्ध है) में रोधिका कम हो जाती है, जबकि पश्चदिशिक बायस में वृद्धि हो जाती है। अतः किसी $\mathrm{p}-\mathrm{n}$ संधि डायोड में अग्रदिशिक बायस धारा का मान अधिक ( $\mathrm{mA}$ में) होता है जबकि पश्चदिशिक बायस धारा का मान बहुत कम ( $\mu \mathrm{A}$ में) होता है।
14. डायोड को प्रत्यावर्ती (ac) वोल्टता के दिष्टकरण (प्रत्यावर्ती धारा को एक दिशा में प्रतिबंधित करने) हेतु प्रयोग में लाया जा सकता है। संधारित्र अथवा उपयुक्त फिल्टर के प्रयोग से दिष्ट धारा $\mathrm{dc}$ वोल्टता प्राप्त की जा सकती है।
विचारणीय विषय
1. अर्धचालकों में ऊर्जा बैंड ( $E _{\mathrm{C}}$ अथवा $E _{\mathrm{v}}$ ) दिक्विस्थानित हैं, जिसका तात्पर्य है कि ये ठोस में किसी विशिष्ट स्थान में स्थित नहीं हैं। ऊर्जाएँ समग्र माध्य हैं। जब आप एक चित्र देखते हैं जिसमें $E _{\mathrm{C}}$ अथवा $E _{\mathrm{V}}$ सरल रेखाएँ खींची गई हैं तब उन्हें क्रमशः चालन बैंड ऊर्जा स्तर के तल पर और संयोजकता बैंड ऊर्जा स्तर के शीर्ष पर लेना चाहिए।
2. तात्विक अर्धचालकों ( $\mathrm{Si}$ अथवा $\mathrm{Ge})$ में और $\mathrm{p}$ - अर्धचालकों में अपमिश्रकों को दोष के रूप में सन्निविष्ट करके प्राप्त करते हैं। यौगिक अर्धचालकों में सापेक्ष रससमीकरणमितीय अनुपात में परिवर्तन अर्धचालक के प्रकार में भी परिवर्तन कर सकता है। उदाहरणार्थ, आदर्श GaAs में $\mathrm{Ga}$ और As का अनुपात $1: 1$ है, परंतु GaAs में Ga-प्रचुर वाला अथवा As-प्रचुर वाला क्रमशः $\mathrm{Ga} _{1.1} \mathrm{As} _{0.9}$ अथवा $\mathrm{Ga} _{0.9} \mathrm{As} _{1.1}$ हो सकता है। सामान्यतः दोषों की उपस्थिति अर्धचालकों के गुणों को कई प्रकार से नियंत्रित करती है।
अभ्यास
14.1 किसी $\mathrm{n}$ - प्रकार के सिलिकॉन में निम्नलिखित में से कौन-सा प्रकथन सत्य है?
(a) इलेक्ट्रॉन बहुसंख्यक वाहक हैं और त्रिसंयोजी परमाणु अपमिश्रक हैं।
(b) इलेक्ट्रॉन अल्पसंख्यक वाहक हैं और पंचसंयोजी परमाणु अपमिश्रक हैं।
(c) होल (विवर) अल्पसंख्यक वाहक हैं और पंचसंयोजी परमाणु अपमिश्रक हैं।
(d) होल (विवर) बहुसंख्यक वाहक हैं और त्रिसंयोजी परमाणु अपमिश्रक हैं।
Show Answer
# Content Missing14.2 अभ्यास 14.1 में दिए गए कथनों में से कौन-सा $\mathrm{p}$-प्रकार के अर्धचालकों के लिए सत्य है?
Show Answer
# Content Missing14.3 कार्बन, सिलिकॉन और जर्मेनियम, प्रत्येक में चार संयोजक इलेक्ट्रॉन हैं। इनकी विशेषता ऊर्जा बैंड अंतराल द्वारा पृथक्कृत संयोजकता और चालन बैंड द्वारा दी गई हैं, जो क्रमशः $\left(E _{\mathrm{g}}\right) _{\mathrm{C}},\left(E _{\mathrm{g}}\right) _{\mathrm{Si}}$ तथा $\left(E _{\mathrm{g}}\right) _{\mathrm{Ge}}$ के बराबर हैं। निम्नलिखित में से कौन-सा प्रकथन सत्य है?
(a) $\left(E _{g}\right) _{\mathrm{Si}}<\left(E _{g}\right) _{\mathrm{Ge}}<\left(E _{g}\right) _{\mathrm{C}}$
(b) $\left(E _{g}\right) _{\mathrm{C}}<\left(E _{g}\right) _{\mathrm{Ge}}>\left(E _{g}\right) _{\mathrm{Si}}$
(c) $\left(E _{g}\right) _{\mathrm{C}}>\left(E _{g}\right) _{\mathrm{Si}}>\left(E _{g}\right) _{\mathrm{Ge}}$
(d) $\left(E _{g}\right) _{\mathrm{C}}=\left(E _{g}\right) _{\mathrm{Si}}=\left(E _{g}\right) _{\mathrm{Ge}}$
Show Answer
# Content Missing14.4 बिना बायस $\mathrm{p}-\mathrm{n}$ संधि से, होल $\mathrm{p}$ - क्षेत्र में $\mathrm{n}$ - क्षेत्र की ओर विसरित होते हैं, क्योंकि
(a) $n$ - क्षेत्र में मुक्त इलेक्ट्रॉन उन्हें आकर्षित करते हैं।
(b) ये विभवांतर के कारण संधि के पार गति करते हैं।
(c) $\mathrm{p}$ - क्षेत्र में होल-सांद्रता, $\mathrm{n}$ - क्षेत्र में इनकी सांद्रता से अधिक है।
(d) उपरोक्त सभी।
Show Answer
# Content Missing14.5 जब $\mathrm{p}-\mathrm{n}$ संधि पर अग्रदिशिक बायस अनुप्रयुक्त किया जाता है, तब यह
(a) विभव रोधक बढ़ाता है।
(b) बहुसंख्यक वाहक धारा को शून्य कर देता है।
(c) विभव रोधक को कम कर देता है।
(d) उपरोक्त में से कोई नहीं।
Show Answer
# Content Missing14.6 अर्ध-तरंगी दिष्टकरण में, यदि निवेश आवृत्ति $50 \mathrm{~Hz}$ है तो निर्गम आवृत्ति क्या है? समान निवेश आवृत्ति हेतु पूर्ण तरंग दिष्टकारी की निर्गम आवृत्ति क्या है?