Chapter-13 Nuclei
13.1 INTRODUCTION
In the previous chapter, we have learnt that in every atom, the positive charge and mass are densely concentrated at the centre of the atom forming its nucleus. The overall dimensions of a nucleus are much smaller than those of an atom. Experiments on scattering of $\alpha$-particles demonstrated that the radius of a nucleus was smaller than the radius of an atom by a factor of about $10^{4}$. This means the volume of a nucleus is about $10^{-12}$ times the volume of the atom. In other words, an atom is almost empty. If an atom is enlarged to the size of a classroom, the nucleus would be of the size of pinhead. Nevertheless, the nucleus contains most (more than 99.9%) of the mass of an atom.
Does the nucleus have a structure, just as the atom does? If so, what are the constituents of the nucleus? How are these held together? In this chapter, we shall look for answers to such questions. We shall discuss various properties of nuclei such as their size, mass and stability, and also associated nuclear phenomena such as radioactivity, fission and fusion.
13.2 ATOMIC MASSES AND COMPOSITION OF NUCLEUS
The mass of an atom is very small, compared to a kilogram; for example, the mass of a carbon atom, $ ^{12} \mathrm{C}$, is $1.992647 \times 10^{-26} \mathrm{~kg}$. Kilogram is not a very convenient unit to measure such small quantities. Therefore, a different mass unit is used for expressing atomic masses. This unit is the atomic mass unit $(\mathrm{u})$, defined as $1 / 12^{\mathrm{th}}$ of the mass of the carbon $( ^{12} \mathrm{C})$ atom. According to this definition
$$ \begin{align*} 1 \mathrm{u} & =\frac{\text { mass of one } ^{12} \mathrm{C} \text { atom }}{12} \\ & =\frac{1.992647 \times 10^{-26} \mathrm{~kg}}{12} \\ \end{align*} $$
$$ \begin{align*} & =1.660539 \times 10^{-27} \mathrm{~kg} \tag{13.1} \end{align*} $$
The atomic masses of various elements expressed in atomic mass unit $(\mathrm{u})$ are close to being integral multiples of the mass of a hydrogen atom. There are, however, many striking exceptions to this rule. For example, the atomic mass of chlorine atom is $35.46 \mathrm{u}$.
Accurate measurement of atomic masses is carried out with a mass spectrometer, The measurement of atomic masses reveals the existence of different types of atoms of the same element, which exhibit the same chemical properties, but differ in mass. Such atomic species of the same element differing in mass are called isotopes. (In Greek, isotope means the same place, i.e. they occur in the same place in the periodic table of elements.) It was found that practically every element consists of a mixture of several isotopes. The relative abundance of different isotopes differs from element to element. Chlorine,
for example, has two isotopes having masses $34.98 \mathrm{u}$ and $36.98 \mathrm{u}$, which are nearly integral multiples of the mass of a hydrogen atom. The relative abundances of these isotopes are 75.4 and 24.6 per cent, respectively. Thus, the average mass of a chlorine atom is obtained by the weighted average of the masses of the two isotopes, which works out to be
$$ \begin{aligned} & =\frac{75.4 \times 34.98+24.6 \times 36.98}{100} \end{aligned} $$
$$ \begin{aligned} & =35.47 \mathrm{u} \end{aligned} $$
which agrees with the atomic mass of chlorine.
Even the lightest element, hydrogen has three isotopes having masses $1.0078 \mathrm{u}, 2.0141 \mathrm{u}$, and $3.0160 \mathrm{u}$. The nucleus of the lightest atom of hydrogen, which has a relative abundance of $99.985 %$, is called the proton. The mass of a proton is
$$ \begin{equation*} m_{p}=1.00727 \mathrm{u}=1.67262 \times 10^{-27} \mathrm{~kg} \tag{13.2} \\ \end{equation*} $$
This is equal to the mass of the hydrogen atom $(=1.00783 \mathrm{u})$, minus the mass of a single electron $(m_{e}=0.00055 \mathrm{u})$. The other two isotopes of hydrogen are called deuterium and tritium. Tritium nuclei, being unstable, do not occur naturally and are produced artificially in laboratories.
The positive charge in the nucleus is that of the protons. A proton carries one unit of fundamental charge and is stable. It was earlier thought that the nucleus may contain electrons, but this was ruled out later using arguments based on quantum theory. All the electrons of an atom are outside the nucleus. We know that the number of these electrons outside the nucleus of the atom is $Z$, the atomic number. The total charge of the atomic electrons is thus $(-Z e)$, and since the atom is neutral, the charge of the nucleus is $(+Z e)$. The number of protons in the nucleus of the atom is, therefore, exactly $Z$, the atomic number.
DISCOVERY OF NEUTRON
Since the nuclei of deuterium and tritium are isotopes of hydrogen, they must contain only one proton each. But the masses of the nuclei of hydrogen, deuterium and tritium are in the ratio of 1:2:3. Therefore, the nuclei of deuterium and tritium must contain, in addition to a proton, some neutral matter. The amount of neutral matter present in the nuclei of these isotopes, expressed in units of mass of a proton, is approximately equal to one and two, respectively. This fact indicates that the nuclei of atoms contain, in addition to protons, neutral matter in multiples of a basic unit. This hypothesis was verified in 1932 by James Chadwick who observed emission of neutral radiation when beryllium nuclei were bombarded with alpha-particles ( $\alpha$-particles are helium nuclei, to be discussed in a later section). It was found that this neutral radiation could knock out protons from light nuclei such as those of helium, carbon and nitrogen. The only neutral radiation known at that time was photons (electromagnetic radiation). Application of the principles of conservation of energy and momentum showed that if the neutral radiation consisted of photons, the energy of photons would have to be much higher than is available from the bombardment of beryllium nuclei with $\alpha$-particles. The clue to this puzzle, which Chadwick satisfactorily solved, was to assume that the neutral radiation consists of a new type of neutral particles called neutrons. From conservation of energy and momentum, he was able to determine the mass of new particle ‘as very nearly the same as mass of proton’.
The mass of a neutron is now known to a high degree of accuracy. It is
$$ \begin{equation*} m_{\mathrm{n}}=1.00866 \mathrm{u}=1.6749 \times 10^{-27} \mathrm{~kg} \tag{13.3} \end{equation*} $$
Chadwick was awarded the 1935 Nobel Prize in Physics for his discovery of the neutron. A free neutron, unlike a free proton, is unstable. It decays into a proton, an electron and a antineutrino (another elementary particle), and has a mean life of about 1000s. It is, however, stable inside the nucleus.
The composition of a nucleus can now be described using the following terms and symbols:
$Z$ - atomic number $=$ number of protons [13.4 (a)]
$N$ - neutron number $=$ number of neutrons [13.4 (b)]
$A$ - mass number $=Z+N$
$$ \begin{equation*} \text { = total number of protons and neutrons } \tag{ 13.4(c) } \end{equation*} $$
One also uses the term nucleon for a proton or a neutron. Thus the number of nucleons in an atom is its mass number $\mathrm{A}$.
Nuclear species or nuclides are shown by the notation $ _{Z}^{A} \mathrm{X}$ $ _{Z}^{A} \mathrm{X}$ where $X$ is the chemical symbol of the species. For example, the nucleus of gold is denoted by $ _{79}^{197} \mathrm{Au}$. It contains 197 nucleons, of which 79 are protons and the rest 118 are neutrons.
The composition of isotopes of an element can now be readily explained. The nuclei of isotopes of a given element contain the same number of protons, but differ from each other in their number of neutrons. Deuterium, $ _{1}^{2} \mathrm{H}$, which is an isotope of hydrogen, contains one proton and one neutron. Its other isotope tritium, $ _{1}^{3} \mathrm{H}$, contains one proton and two neutrons. The element gold has 32 isotopes, ranging from $A=173$ to $A=204$. We have already mentioned that chemical properties of elements depend on their electronic structure. As the atoms of isotopes have identical electronic structure they have identical chemical behaviour and are placed in the same location in the periodic table.
All nuclides with same mass number $A$ are called isobars. For example, the nuclides $ _{1}^{3} \mathrm{H}$ and $ _{2}^{3} \mathrm{He}$ are isobars. Nuclides with same neutron number $N$ but different atomic number $Z$, for example $ _{80}^{198} \mathrm{Hg}$ and $ _{79}^{197} \mathrm{Au}$, are called isotones.
13.3 SIZE OF THE NUCLEUS
As we have seen in Chapter 12, Rutherford was the pioneer who postulated and established the existence of the atomic nucleus. At Rutherford’s suggestion, Geiger and Marsden performed their classic experiment: on the scattering of $\alpha$-particles from thin gold foils. Their experiments revealed that the distance of closest approach to a gold nucleus of an $\alpha$-particle of kinetic energy $5.5 \mathrm{MeV}$ is about $4.0 \times 10^{-14} \mathrm{~m}$. The scattering of $\alpha$-particle by the gold sheet could be understood by Rutherford by assuming that the coulomb repulsive force was solely responsible for scattering. Since the positive charge is confined to the nucleus, the actual size of the nucleus has to be less than $4.0 \times 10^{-14} \mathrm{~m}$.
If we use $\alpha$-particles of higher energies than $5.5 \mathrm{MeV}$, the distance of closest approach to the gold nucleus will be smaller and at some point the scattering will begin to be affected by the short range nuclear forces, and differ from Rutherford’s calculations. Rutherford’s calculations are based on pure coulomb repulsion between the positive charges of the $\alpha$ particle and the gold nucleus. From the distance at which deviations set in, nuclear sizes can be inferred.
By performing scattering experiments in which fast electrons, instead of $\alpha$-particles, are projectiles that bombard targets made up of various elements, the sizes of nuclei of various elements have been accurately measured.
It has been found that a nucleus of mass number $A$ has a radius
$$ \begin{equation*} R=R_{0} A^{1 / 3} \tag{13.5} \end{equation*} $$
where $R_{0}=1.2 \times 10^{-15} \mathrm{~m}(=1.2 \mathrm{fm} ; 1 \mathrm{fm}=10^{-15} \mathrm{~m})$. This means the volume of the nucleus, which is proportional to $R^{3}$ is proportional to $A$. Thus the density of nucleus is a constant, independent of $A$, for all nuclei. Different nuclei are like a drop of liquid of constant density. The density of nuclear matter is approximately $2.3 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3}$. This density is very large compared to ordinary matter, say water, which is $10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$. This is understandable, as we have already seen that most of the atom is empty. Ordinary matter consisting of atoms has a large amount of empty space.
Example 13.1 Given the mass of iron nucleus as 55.85u and $\mathrm{A}=56$, find the nuclear density?
Solution
$m_{\mathrm{Fe}}=55.85$
$\mathrm{u}=9.27 \times 10^{-26} \mathrm{~kg}$
Nuclear density
$$=\frac{\text { mass }}{\text { volume }}=\frac{9.27 \times 10^{-26}}{(4 \pi / 3)(1.2 \times 10^{-15})^{3}} \times \frac{1}{56}$$
$$ =2.29 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3} $$
The density of matter in neutron stars (an astrophysical object) is comparable to this density. This shows that matter in these objects has been compressed to such an extent that they resemble a big nucleus.
13.4 MASS-ENERGY AND NUCLEAR BINDING ENERGY
13.4.1 Mass - Energy
Einstein showed from his theory of special relativity that it is necessary to treat mass as another form of energy. Before the advent of this theory of special relativity it was presumed that mass and energy were conserved separately in a reaction. However, Einstein showed that mass is another form of energy and one can convert mass-energy into other forms of energy, say kinetic energy and vice-versa.
Einstein gave the famous mass-energy equivalence relation
$E=m c^{2}$ (13.6)
Here the energy equivalent of mass $m$ is related by the above equation and $c$ is the velocity of light in vacuum and is approximately equal to $3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$.
Example 13.2 Calculate the energy equivalent of $1 \mathrm{~g}$ of substance.
Solution
Energy,
$$ \begin{aligned} E & =10^{-3} \times(3 \times 10^{8})^{2} \mathrm{~J} \\ E & =10^{-3} \times 9 \times 10^{16}=9 \times 10^{13} \mathrm{~J} \end{aligned} $$
Thus, if one gram of matter is converted to energy, there is a release of enormous amount of energy.
Experimental verification of the Einstein’s mass-energy relation has been achieved in the study of nuclear reactions amongst nucleons, nuclei, electrons and other more recently discovered particles. In a reaction the conservation law of energy states that the initial energy and the final energy are equal provided the energy associated with mass is also included. This concept is important in understanding nuclear masses and the interaction of nuclei with one another. They form the subject matter of the next few sections.
13.4.2 Nuclear binding energy
In Section 13.2 we have seen that the nucleus is made up of neutrons and protons. Therefore it may be expected that the mass of the nucleus is equal to the total mass of its individual protons and neutrons. However,the nuclear mass $M$ is found to be always less than this. For example, let us consider $ _{8}^{16} \mathrm{O}$; a nucleus which has 8 neutrons and 8 protons. We have
Mass of 8 neutrons $=8 \times 1.00866 \mathrm{u}$
Mass of 8 protons $=8 \times 1.00727 \mathrm{u}$
Mass of 8 electrons $=8 \times 0.00055 \mathrm{u}$
Therefore the expected mass of $ _{8}^{16} \mathrm{O}$ nucleus
$=8 \times 2.01593 \mathrm{u}=16.12744 \mathrm{u}$.
The atomic mass of $ _{8}^{16} \mathrm{O}$
found from mass spectroscopy experiments is seen to be $15.99493 \mathrm{u}$. Substracting the mass of 8 electrons $(8 \times 0.00055 \mathrm{u})$ from this, we get the experimental mass of $ _{8}^{16} \mathrm{O}$ nucleus to be $15.99053 \mathrm{u}$.
Thus, we find that the mass of the $ _{8}^{16} \mathrm{O}$ nucleus is less than the total mass of its constituents by 0.13691 . The difference in mass of a nucleus and its constituents, $\Delta M$, is called the mass defect, and is given by
$$ \begin{equation*} \Delta M=\left[Z m_{p}+(A-Z) m_{n}\right]-M \tag{13.7} \end{equation*} $$
What is the meaning of the mass defect? It is here that Einstein’s equivalence of mass and energy plays a role. Since the mass of the oxygen nucleus is less that the sum of the masses of its constituents (8 protons and 8 neutrons, in the unbound state), the equivalent energy of the oxygen nucleus is less than that of the sum of the equivalent energies of its constituents. If one wants to break the oxygen nucleus into 8 protons and 8 neutrons, this extra energy $\Delta M c^{2}$, has to supplied. This energy required $E_{\mathrm{b}}$ is related to the mass defect by
$$ \begin{equation*} E_{b}=\Delta M c^{2} \tag{13.8} \end{equation*} $$
Example 13.3 Find the energy equivalent of one atomic mass unit, first in Joules and then in MeV. Using this, express the mass defect of $ _{8}^{16} \mathrm{O}$ in $\mathrm{MeV} / \mathrm{c}^{2}$.
Solution
$1 \mathrm{u}=1.6605 \times 10^{-27} \mathrm{~kg}$
To convert it into energy units, we multiply it by $c^{2}$ and find that energy equivalent
$=1.6605 \times 10^{-27} \times(2.9979 \times 10^{8})^{2} \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{2}$
$$ =1.4924 \times 10^{-10} \mathrm{~J} $$
$$ =\frac{1.4924 \times 10^{-10}}{1.602 \times 10^{-19}} \mathrm{eV} $$
$$ =0.9315 \times 10^{9} \mathrm{eV} $$
$$=931.5 \mathrm{MeV}$$
or,
$1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{c}^{2}$
For $ _{8}^{16} \mathrm{O}, \quad \Delta M=0.13691 \mathrm{u}=0.13691 \times 931.5 \mathrm{MeV} / \mathrm{c}^{2}$
$$ =127.5 \mathrm{MeV} / \mathrm{c}^{2} $$
The energy needed to separate $ _{8}^{16} \mathrm{O}$ into its constituents is thus
$127.5 \mathrm{MeV} / \mathrm{c}^{2}$.
in the process. The energy $E_{b}$ is called the binding energy of the nucleus. If we separate a nucleus into its nucleons, we would have to supply a total energy equal to $E_{b}$, to those particles. Although we cannot tear apart a nucleus in this way, the nuclear binding energy is still a convenient measure of how well a nucleus is held together. A more useful measure of the binding between the constituents of the nucleus is the binding energy per nucleon, $E_{b n}$, which is the ratio of the binding energy $E_{b}$ of a nucleus to the number of the nucleons, $A$, in that nucleus:
$$ \begin{equation*} E_{b n}=E_{b} / A \tag{13.9} \end{equation*} $$
We can think of binding energy per nucleon as the average energy per nucleon needed to separate a nucleus into its individual nucleons.
Figure 13.1 is a plot of the
FIGURE 13.1 The binding energy per nucleon as a function of mass number. binding energy per nucleon $E_{b n}$ versus the mass number $A$ for a large number of nuclei. We notice the following main features of the plot:
(i) the binding energy per nucleon, $E_{b n}$, is practically constant, i.e. practically independent of the atomic number for nuclei of middle mass number $(30<\mathrm{A}<170)$. The curve has a maximum of about $8.75 \mathrm{MeV}$ for $A=56$ and has a value of $7.6 \mathrm{MeV}$ for $A=238$.
(ii) $E_{b n}$ is lower for both light nuclei $(A<30)$ and heavy nuclei $(A>170)$.
We can draw some conclusions from these two observations:
(i) The force is attractive and sufficiently strong to produce a binding energy of a few MeV per nucleon.
(ii) The constancy of the binding energy in the range $30<\mathrm{A}<170$ is a consequence of the fact that the nuclear force is short-ranged. Consider a particular nucleon inside a sufficiently large nucleus. It will be under the influence of only some of its neighbours, which come within the range of the nuclear force. If any other nucleon is at a distance more than the range of the nuclear force from the particular nucleon it will have no influence on the binding energy of the nucleon under consideration. If a nucleon can have a maximum of $p$ neighbours within the range of nuclear force, its binding energy would be proportional to $p$. Let the binding energy of the nucleus be $p k$, where $k$ is a constant having the dimensions of energy. If we increase $A$ by adding nucleons they will not change the binding energy of a nucleon inside. Since most of the nucleons in a large nucleus reside inside it and not on the surface, the change in binding energy per nucleon would be small. The binding energy per nucleon is a constant and is approximately equal to $p k$. The property that a given nucleon influences only nucleons close to it is also referred to as saturation property of the nuclear force.
(iii) A very heavy nucleus, say $A=240$, has lower binding energy per nucleon compared to that of a nucleus with $A=120$. Thus if a nucleus $A=240$ breaks into two $A=120$ nuclei, nucleons get more tightly bound. This implies energy would be released in the process. It has very important implications for energy production through fission, to be discussed later in Section 13.7.1.
(iv) Consider two very light nuclei $(A \leq 10)$ joining to form a heavier nucleus. The binding energy per nucleon of the fused heavier nuclei is more than the binding energy per nucleon of the lighter nuclei. This means that the final system is more tightly bound than the initial system. Again energy would be released in such a process of fusion. This is the energy source of sun, to be discussed later in Section 13.7.2.
13.5 NUCLEAR FORCE
The force that determines the motion of atomic electrons is the familiar Coulomb force. In Section 13.4, we have seen that for average mass nuclei the binding energy per nucleon is approximately $8 \mathrm{MeV}$, which is much larger than the binding energy in atoms. Therefore, to bind a nucleus together there must be a strong attractive force of a totally different kind. It must be strong enough to overcome the repulsion between the (positively charged) protons and to bind both protons and neutrons into the tiny nuclear volume. We have already seen that the constancy of binding energy per nucleon can be understood in terms of its short-range. Many features of the nuclear binding force are summarised below. These are obtained from a variety of experiments carried out during 1930 to 1950.
(i) The nuclear force is much stronger than the Coulomb force acting between charges or the gravitational forces between masses. The nuclear binding force has to dominate over the Coulomb repulsive force between protons inside the nucleus. This happens only because the nuclear force is much stronger than the coulomb force. The gravitational force is much weaker than even Coulomb force.
(ii) The nuclear force between two nucleons falls rapidly to zero as their distance is more than a few femtometres. This leads to saturation of forces in a medium or a large-sized nucleus, which is the reason for the constancy of the binding energy per nucleon.A rough plot of the potential energy between two nucleons as a function of distance is shown in the Fig. 13.2. The potential energy is a minimum at a distance $r_{0}$ of about $0.8 \mathrm{fm}$. This means that the force is attractive for distances larger than $0.8 \mathrm{fm}$ and repulsive if they are separated by distances less than $0.8 \mathrm{fm}$.
FIGURE 13.2 Potential energy of a pair of nucleons as a function of their separation. For a separation greater than $r_{0}$, the force is attractive and for separations less than $r_{0}$, the force is strongly repulsive.
(iii) The nuclear force between neutron-neutron, proton-neutron and proton-proton is approximately the same. The nuclear force does not depend on the electric charge. Unlike Coulomb’s law or the Newton’s law of gravitation there is no simple mathematical form of the nuclear force.
Marie Skladowka Curie (18671934) was born in Poland. Got recognition as both a physicist and a chemist. The discovery of radioactivity by Henri Becquerel in 1896 inspired Marie and her husband Pierre Curie for their research and analyses, which led to the separation of the elements radium and polonium. She was the first scientist to receive two Nobel Prizes: the first for Physics in 1903 and the second for Chemistry in 1911.
13.6 RADIOACTIVITY
A. H. Becquerel discovered radioactivity in 1896 purely by accident. While studying the fluorescence and phosphorescence of compounds irradiated with visible light, Becquerel observed an interesting phenomenon. After illuminating some pieces of uranium-potassium sulphate with visible light, he wrapped them in black paper and separated the package from a photographic plate by a piece of silver. When, after several hours of exposure, the photographic plate was developed, it showed blackening due to something that must have been emitted by the compound and was able to penetrate both black paper and the silver.
Experiments performed subsequently showed that radioactivity was a nuclear phenomenon in which an unstable nucleus undergoes a decay. This is referred to as radioactive decay. Three types of radioactive decay occur in nature :
(i) $\alpha$-decay in which a helium nucleus $( _{2}^{4} \mathrm{He})$ is emitted;
(ii) $\beta$-decay in which electrons or positrons (particles with the same mass as electrons, but with a charge exactly opposite to that of electron) are emitted;
(iii) $\gamma$-decay in which high energy (hundreds of $\mathrm{keV}$ or more) photons are emitted.
Each of these decay will be considered in subsequent sub-sections.
13.7 NUCLEAR ENERGY
The curve of binding energy per nucleon $E_{b n}$, given in Fig. 13.1, has a long flat middle region between $A=30$ and $A=170$. In this region the binding energy per nucleon is nearly constant $(8.0 \mathrm{MeV})$. For the lighter nuclei region, $A<30$, and for the heavier nuclei region, $A>170$, the binding energy per nucleon is less than $8.0 \mathrm{MeV}$, as we have noted earlier. Now, the greater the binding energy, the less is the total mass of a bound system, such as a nucleus. Consequently, if nuclei with less total binding energy transform to nuclei with greater binding energy, there will be a net energy release. This is what happens when a heavy nucleus decays into two or more intermediate mass fragments (fission) or when light nuclei fuse into a havier nucleus (fusion.)
Exothermic chemical reactions underlie conventional energy sources such as coal or petroleum. Here the energies involved are in the range of electron volts. On the other hand, in a nuclear reaction, the energy release is of the order of $\mathrm{MeV}$. Thus for the same quantity of matter, nuclear sources produce a million times more energy than a chemical source. Fission of $1 \mathrm{~kg}$ of uranium, for example, generates $10^{14} \mathrm{~J}$ of energy; compare it with burning of $1 \mathrm{~kg}$ of coal that gives $10^{7} \mathrm{~J}$.
13.7.1 Fission
New possibilities emerge when we go beyond natural radioactive decays and study nuclear reactions by bombarding nuclei with other nuclear particles such as proton, neutron, $\alpha$-particle, etc.
A most important neutron-induced nuclear reaction is fission. An example of fission is when a uranium isotope $ _{92}^{235} \mathrm{U}$ bombarded with a neutron breaks into two intermediate mass nuclear fragments
$ _{0}^{1} \mathrm{n}+ _{92}^{235} \mathrm{U} \rightarrow _{92}^{236} \mathrm{U} \rightarrow _{56}^{144} \mathrm{Ba}+ _{36}^{89} \mathrm{Kr}+3 _{0}^{1} \mathrm{n}$
The same reaction can produce other pairs of intermediate mass fragments
$ _{0}^{1} \mathrm{n}+ _{92}^{235} \mathrm{U} \rightarrow _{92}^{236} \mathrm{U} \rightarrow _{51}^{133} \mathrm{Sb}+ _{41}^{99} \mathrm{Nb}+4 _{0}^{1} \mathrm{n}$
Or, as another example,
$ _{0}^{1} \mathrm{n}+ _{92}^{235} \mathrm{U} \rightarrow _{54}^{140} \mathrm{Xe}+ _{38}^{94} \mathrm{Sr}+2 _{0}^{1} \mathrm{n}$
The fragment products are radioactive nuclei; they emit $\beta$ particles in succession to achieve stable end products.
The energy released (the $Q$ value ) in the fission reaction of nuclei like uranium is of the order of $200 \mathrm{MeV}$ per fissioning nucleus. This is estimated as follows:
Let us take a nucleus with $A=240$ breaking into two fragments each of $A=120$. Then
$E_{b n}$ for $A=240$ nucleus is about $7.6 \mathrm{MeV}$,
$E_{b n}$ for the two $A=120$ fragment nuclei is about $8.5 \mathrm{MeV}$.
$\therefore$ Gain in binding energy for nucleon is about $0.9 \mathrm{MeV}$.
Hence the total gain in binding energy is $240 \times 0.9$ or $216 \mathrm{MeV}$.
The disintegration energy in fission events first appears as the kinetic energy of the fragments and neutrons. Eventually it is transferred to the surrounding matter appearing as heat. The source of energy in nuclear reactors, which produce electricity, is nuclear fission. The enormous energy released in an atom bomb comes from uncontrolled nuclear fission.
13.7.2 Nuclear fusion - energy generation in stars
When two light nuclei fuse to form a larger nucleus, energy is released, since the larger nucleus is more tightly bound, as seen from the binding energy curve in Fig. 13.1. Some examples of such energy liberating nuclear fusion reactions are :
$$ \begin{align*} & _{1}^{1} \mathrm{H}+ _{1}^{1} \mathrm{H} \rightarrow _{1}^{2} \mathrm{H}+e^{+}+v+0.42 \mathrm{MeV} \tag{a}\\ & _{1}^{2} \mathrm{H}+ _{1}^{2} \mathrm{H} \rightarrow _{2}^{3} \mathrm{He}+n+3.27 \mathrm{MeV} \tag{b}\\ & _{1}^{2} \mathrm{H}+ _{1}^{2} \mathrm{H} \rightarrow _{1}^{3} \mathrm{H}+ _{1}^{1} \mathrm{H}+4.03 \mathrm{MeV} \tag{c} \end{align*} $$
In the first reaction, two protons combine to form a deuteron and a positron with a release of $0.42 \mathrm{MeV}$ energy. In reaction [13.13 (b)], two deuterons combine to form the light isotope of helium. In reaction [13.13 (c)], two deuterons combine to form a triton and a proton. For fusion to take place, the two nuclei must come close enough so that attractive short-range nuclear force is able to affect them. However, since they are both positively charged particles, they experience coulomb repulsion. They, therefore, must have enough energy to overcome this coulomb barrier. The height of the barrier depends on the charges and radii of the two interacting nuclei. It can be shown, for example, that the barrier height for two protons is $\sim 400 \mathrm{keV}$, and is higher for nuclei with higher charges. We can estimate the temperature at which two protons in a proton gas would (averagely) have enough energy to overcome the coulomb barrier: $(3 / 2) k T=K \simeq 400 \mathrm{keV}$, which gives $\mathrm{T} \sim 3 \times 10^{9} \mathrm{~K}$.
When fusion is achieved by raising the temperature of the system so that particles have enough kinetic energy to overcome the coulomb repulsive behaviour, it is called thermonuclear fusion.
Thermonuclear fusion is the source of energy output in the interior of stars. The interior of the sun has a temperature of $1.5 \times 10^{7} \mathrm{~K}$, which is considerably less than the estimated temperature required for fusion of particles of average energy. Clearly, fusion in the sun involves protons whose energies are much above the average energy.
The fusion reaction in the sun is a multi-step process in which the hydrogen is burned into helium. Thus, the fuel in the sun is the hydrogen in its core. The proton-proton ( $\mathrm{p}, \mathrm{p}$) cycle by which this occurs is represented by the following sets of reactions:
$$ \begin{align*} & _{1}^{1} \mathrm{H}+ _{1}^{1} \mathrm{H} \rightarrow _{1}^{2} \mathrm{H}+e^{+}+v+0.42 \mathrm{MeV} \tag{i}\\ & e^{+}+e^{-} \rightarrow \gamma+\gamma+1.02 \mathrm{MeV} \tag{ii}\\ & _{1}^{2} \mathrm{H}+ _{1}^{1} \mathrm{H} \rightarrow _{2}^{3} \mathrm{He}^{+} \gamma+5.49 \mathrm{MeV} \tag{iii}\\ & _{2}^{3} \mathrm{He}+ _{2}^{3} \mathrm{He} \rightarrow _{2}^{4} \mathrm{He}+ _{1}^{1} \mathrm{H}+ _{1}^{1} \mathrm{H}+12.86 \mathrm{MeV} \quad \text { (iv) } \tag{13.14} \end{align*} $$
For the fourth reaction to occur, the first three reactions must occur twice, in which case two light helium nuclei unite to form ordinary helium nucleus. If we consider the combination 2(i) +2 (ii) +2 (iii) $+$ (iv), the net effect is
$$ \begin{equation*} 4{ } _{1}^{1} \mathrm{H}+2 e^{-} \rightarrow{ } _{2}^{4} \mathrm{He}+2 v+6 \gamma+26.7 \mathrm{MeV} \end{equation*} $$
or
$(4 _{1}^{1} \mathrm{H}+4 e^{-}) \rightarrow( _{2}^{4} \mathrm{He}+2 e^{-})+2 \nu+6 \gamma+26.7 \mathrm{MeV} \quad {(13.15)} $
Thus, four hydrogen atoms combine to form an $ _{2}^{4} \mathrm{He}$ atom with a release of $26.7 \mathrm{MeV}$ of energy.
Helium is not the only element that can be synthesized in the interior of a star. As the hydrogen in the core gets depleted and becomes helium, the core starts to cool. The star begins to collapse under its own gravity which increases the temperature of the core. If this temperature increases to about $10^{8} \mathrm{~K}$, fusion takes place again, this time of helium nuclei into carbon. This kind of process can generate through fusion higher and higher mass number elements. But elements more massive than those near the peak of the binding energy curve in Fig. 13.1 cannot be so produced.
The age of the sun is about $5 \times 10^{9} \mathrm{y}$ and it is estimated that there is enough hydrogen in the sun to keep it going for another 5 billion years. After that, the hydrogen burning will stop and the sun will begin to cool and will start to collapse under gravity, which will raise the core temperature. The outer envelope of the sun will expand, turning it into the so called red giant.
13.7.3 Controlled thermonuclear fusion
The natural thermonuclear fusion process in a star is replicated in a thermonuclear fusion device. In controlled fusion reactors, the aim is to generate steady power by heating the nuclear fuel to a temperature in the range of $10^{8} \mathrm{~K}$. At these temperatures, the fuel is a mixture of positive ions and electrons (plasma). The challenge is to confine this plasma, since no container can stand such a high temperature. Several countries around the world including India are developing techniques in this connection. If successful, fusion reactors will hopefully supply almost unlimited power to humanity.
Example 13.4 Answer the following questions:
(a) Are the equations of nuclear reactions (such as those given in Section 13.7) ‘balanced’ in the sense a chemical equation (e.g., $2 \mathrm{H} _{2}+\mathrm{O} _{2} \rightarrow 2 \mathrm{H} _{2} \mathrm{O}$ ) is? If not, in what sense are they balanced on both sides?
(b) If both the number of protons and the number of neutrons are conserved in each nuclear reaction, in what way is mass converted into energy (or vice-versa) in a nuclear reaction?
(c) A general impression exists that mass-energy interconversion takes place only in nuclear reaction and never in chemical reaction. This is strictly speaking, incorrect. Explain.
Solution
(a) A chemical equation is balanced in the sense that the number of atoms of each element is the same on both sides of the equation. A chemical reaction merely alters the original combinations of atoms. In a nuclear reaction, elements may be transmuted. Thus, the number of atoms of each element is not necessarily conserved in a nuclear reaction. However, the number of protons and the number of neutrons are both separately conserved in a nuclear reaction. [Actually, even this is not strictly true in the realm of very high energies - what is strictly conserved is the total charge and total ‘baryon number’. We need not pursue this matter here.] In nuclear reactions (e.g., Eq. 13.10), the number of protons and the number of neutrons are the same on the two sides of the equation.
(b) We know that the binding energy of a nucleus gives a negative contribution to the mass of the nucleus (mass defect). Now, since proton number and neutron number are conserved in a nuclear reaction, the total rest mass of neutrons and protons is the same on either side of a reaction. But the total binding energy of nuclei on the left side need not be the same as that on the right hand side. The difference in these binding energies appears as energy released or absorbed in a nuclear reaction. Since binding energy contributes to mass, we say that the difference in the total mass of nuclei on the two sides get converted into energy or vice-versa. It is in these sense that a nuclear reaction is an example of massenergy interconversion.
(c) From the point of view of mass-energy interconversion, a chemical reaction is similar to a nuclear reaction in principle. The energy released or absorbed in a chemical reaction can be traced to the difference in chemical (not nuclear) binding energies of atoms and molecules on the two sides of a reaction. Since, strictly speaking, chemical binding energy also gives a negative contribution (mass defect) to the total mass of an atom or molecule, we can equally well say that the difference in the total mass of atoms or molecules, on the two sides of the chemical reaction gets converted into energy or vice-versa. However, the mass defects involved in a chemical reaction are almost a million times smaller than those in a nuclear reaction. This is the reason for the general impression, (which is incorrect) that mass-energy interconversion does not take place in a chemical reaction.
SUMMARY
1. An atom has a nucleus. The nucleus is positively charged. The radius of the nucleus is smaller than the radius of an atom by a factor of $10^{4}$. More than $99.9 %$ mass of the atom is concentrated in the nucleus.
2. On the atomic scale, mass is measured in atomic mass units (u). By definition, 1 atomic mass unit $(1 \mathrm{u})$ is $1 / 12^{\text {th }}$ mass of one atom of $ ^{12} \mathrm{C}$; $1 \mathrm{u}=1.660563 \times 10^{-27} \mathrm{~kg}$.
3. A nucleus contains a neutral particle called neutron. Its mass is almost the same as that of proton
4. The atomic number $Z$ is the number of protons in the atomic nucleus of an element. The mass number $A$ is the total number of protons and neutrons in the atomic nucleus; $A=Z+N$; Here $N$ denotes the number of neutrons in the nucleus. A nuclear species or a nuclide is represented as $ _{Z}^{A} \mathrm{X}$, where $\mathrm{X}$ is the chemical symbol of the species.
Nuclides with the same atomic number $Z$, but different neutron number $N$ are called isotopes. Nuclides with the same $A$ are isobars and those with the same $N$ are isotones. Most elements are mixtures of two or more isotopes. The atomic mass of an element is a weighted average of the masses of its isotopes and calculated in accordance to the relative abundances of the isotopes.
5. A nucleus can be considered to be spherical in shape and assigned a radius. Electron scattering experiments allow determination of the nuclear radius; it is found that radii of nuclei fit the formula
$R=R_{0} A^{1 / 3}$,
where $R_{0}=$ a constant $=1.2 \mathrm{fm}$. This implies that the nuclear density is independent of $A$. It is of the order of $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$.
6. Neutrons and protons are bound in a nucleus by the short-range strong nuclear force. The nuclear force does not distinguish between neutron and proton.
7. The nuclear mass $M$ is always less than the total mass, $\Sigma m$, of its constituents. The difference in mass of a nucleus and its constituents is called the mass defect,
$\Delta M=(Z m_{p}+(A-Z) m_{n})-M$
Using Einstein’s mass energy relation, we express this mass difference in terms of energy as
$\Delta E_{b}=\Delta M c^{2}$
The energy $\Delta E_{b}$ represents the binding energy of the nucleus. In the mass number range $A=30$ to 170 , the binding energy per nucleon is nearly constant, about $8 \mathrm{MeV} /$ nucleon.
8. Energies associated with nuclear processes are about a million times larger than chemical process.
9. The $Q$-value of a nuclear process is
$Q=$ final kinetic energy - initial kinetic energy.
Due to conservation of mass-energy, this is also,
$Q=$ (sum of initial masses - sum of final masses) $c^{2}$
10. Radioactivity is the phenomenon in which nuclei of a given species transform by giving out $\alpha$ or $\beta$ or $\gamma$ rays; $\alpha$-rays are helium nuclei; $\beta$-rays are electrons. $\gamma$-rays are electromagnetic radiation of wavelengths shorter than $X$-rays.
11. Energy is released when less tightly bound nuclei are transmuted into more tightly bound nuclei. In fission, a heavy nucleus like $ _{92}^{235} \mathrm{U}$ breaks into two smaller fragments, e.g., $ _{92}^{235} \mathrm{U}+ _{0}^{1} \mathrm{n} \rightarrow _{51}^{133} \mathrm{Sb}+ _{41}^{99} \mathrm{Nb}+4 _{0}^{1} \mathrm{n}$
12. In fusion, lighter nuclei combine to form a larger nucleus. Fusion of hydrogen nuclei into helium nuclei is the source of energy of all stars including our sun.
Physical guantity | Symbol | Dimensions | Units | Remarks |
---|---|---|---|---|
Atomic mass unit | [M] | u | Unit of mass for expressing atomic or nuclear masses. One atomic mass unit equals $1 / 12^{\text {th }}$ of the mass of ${ }^{12} \mathrm{C}$ atom. | |
Disintegration or decay constant | $\lambda$ | $\left[\mathrm{T}^{-1}\right]$ | $\mathrm{s}^{-1}$ | |
Half-life | $T _{1 / 2}$ | $[\mathrm{~T}]$ | $\mathrm{s}$ | Time taken for the decay of one-half of the initial number of nuclei present in a radioactive sample. |
Activity of a radio- active sample | $R$ | $\left[\mathrm{~T}^{-1}\right]$ | Measure of the activity of a radioactive source. |
POINTS TO PONDER
1. The density of nuclear matter is independent of the size of the nucleus. The mass density of the atom does not follow this rule.
2. The radius of a nucleus determined by electron scattering is found to be slightly different from that determined by alpha-particle scattering. This is because electron scattering senses the charge distribution of the nucleus, whereas alpha and similar particles sense the nuclear matter.
3. After Einstein showed the equivalence of mass and energy, $E=m c^{2}$, we cannot any longer speak of separate laws of conservation of mass and conservation of energy, but we have to speak of a unified law of conservation of mass and energy. The most convincing evidence that this principle operates in nature comes from nuclear physics. It is central to our understanding of nuclear energy and harnessing it as a source of power. Using the principle, $Q$ of a nuclear process (decay or reaction) can be expressed also in terms of initial and final masses.
4. The nature of the binding energy (per nucleon) curve shows that exothermic nuclear reactions are possible, when two light nuclei fuse or when a heavy nucleus undergoes fission into nuclei with intermediate mass.
5. For fusion, the light nuclei must have sufficient initial energy to overcome the coulomb potential barrier. That is why fusion requires very high temperatures.
6. Although the binding energy (per nucleon) curve is smooth and slowly varying, it shows peaks at nuclides like $ ^{4} \mathrm{He}, ^{16} \mathrm{O}$ etc. This is considered as evidence of atom-like shell structure in nuclei.
7. Electrons and positron are a particle-antiparticle pair. They are identical in mass; their charges are equal in magnitude and opposite. (It is found that when an electron and a positron come together, they annihilate each other giving energy in the form of gamma-ray photons.)
8. Radioactivity is an indication of the instability of nuclei. Stability requires the ratio of neutron to proton to be around 1:1 for light nuclei. This ratio increases to about 3:2 for heavy nuclei. (More neutrons are required to overcome the effect of repulsion among the protons.) Nuclei which are away from the stability ratio, i.e., nuclei which have an excess of neutrons or protons are unstable. In fact, only about $10 %$ of knon isotopes (of all elements), are stable. Others have been either artificially produced in the laboratory by bombarding $\alpha, \mathrm{p}, \mathrm{d}, \mathrm{n}$ or other particles on targets of stable nuclear species or identified in astronomical observations of matter in the universe.
Exercises
You may find the following data useful in solving the exercises:
$$ \begin{aligned} &e=1.6 \times 10^{-19}\text{C} & & N= 6.023 \times 10 ^{23} \text{per mole}\\ &\frac{1}{(4 \pi \varepsilon _0)}=9 \times 10 ^9 \text{N} m ^2/C ^2 && k=1.381 \times 10 ^{-23} \text{J} k ^{-1} \\ &1 \text{MeV}=1.6 \times 10 ^{-13} \text{J} && 1 \text{u} = 931.5 \text{MeV}/c ^2 \\ &1 \text{ year} = 3.154 \times 10 ^7 \text{s} \\ & \text{m}_H=4.002603 \text{ u} && \text{m}_n=1.007825 \text{u} \\ & m( ^4_2\text{He})=4.002603 u && \text{m}_e=0.000548 \text{u} \end{aligned} $$
13.1 Obtain the binding energy (in $\mathrm{MeV}$ ) of a nitrogen nucleus $( _{7} ^{14} \mathrm{~N})$, given $m( _{7} ^{14} \mathrm{~N})=14.00307 \mathrm{u}$
Show Answer
Answer
Atomic mass of nitrogen $({ }_{7} \mathrm{~N} ^{14}), m=14.00307 \mathrm{u}$
A nucleus of nitrogen ${ }_{7} \mathrm{~N} ^{14}$ contains 7 protons and 7 neutrons.
Hence, the mass defect of this nucleus, $\Delta m=7 m_{H}+7 m_{n}-m$
Where,
Mass of a proton, $m_{H}=1.007825 \mathrm{u}$
Mass of a neutron, $m_{n}=1.008665 \mathrm{u}$
$\therefore \Delta m=7 \times 1.007825+7 \times 1.008665-14.00307$ $=7.054775+7.06055-14.00307$
$=0.11236 \mathrm{u}$
But $1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{c} ^{2}$
$\therefore \Delta m=0.11236 \times 931.5 \mathrm{MeV} / c ^{2}$
Hence, the binding energy of the nucleus is given as:
$E_{b}=\Delta m c ^{2}$
Where,
$c=$ Speed of light
$\therefore E_{b}=0.11236 \times 931.5(\frac{\mathrm{MeV}}{c ^{2}}) \times c ^{2}$
$=104.66334 \mathrm{MeV}$
Hence, the binding energy of a nitrogen nucleus is $104.66334 \mathrm{MeV}$.
13.2 Obtain the binding energy of the nuclei $ _{26} ^{56} \mathrm{Fe}$ and $ _{83} ^{209} \mathrm{Bi}$ in units of $\mathrm{MeV}$ from the following data:
$$ m( _{26} ^{56} \mathrm{Fe})=55.934939 \mathrm{u} \quad m( _{83} ^{209} \mathrm{Bi})=208.980388 \mathrm{u} $$
Show Answer
Answer
Atomic mass of ${ } _{26} ^{56} \mathrm{Fe}, m _{1}=55.934939 \mathrm{u}$
${ } _{26} ^{56} \mathrm{Fe}$ nucleus has 26 protons and $(56-26)=30$ neutrons
Hence, the mass defect of the nucleus, $\Delta m=26 \times m _{H}+30 \times m _{n}-m _{1}$
Where,
Mass of a proton, $m _{H}=1.007825 \mathrm{u}$
Mass of a neutron, $m _{n}=1.008665 \mathrm{u}$
$\therefore \Delta m=26 \times 1.007825+30 \times 1.008665-55.934939$
$=26.20345+30.25995-55.934939$
$=0.528461 \mathrm{u}$
But $1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{c} ^{2}$
$\therefore \Delta m=0.528461 \times 931.5 \mathrm{MeV} / c ^{2}$
The binding energy of this nucleus is given as:
$E _{b 1}=\Delta m c ^{2}$
Where,
$c=$ Speed of light
$\therefore E _{b 1}=0.528461 \times 931.5(\frac{\mathrm{MeV}}{c ^{2}}) \times c ^{2}$
$=492.26 \mathrm{MeV}$
Average binding energy per nucleon $=\frac{492.26}{56}=8.79 \mathrm{MeV}$
Atomic mass of ${ } ^{\frac{209}{83} \mathrm{Bi}}, m _{2}=208.980388 \mathrm{u}$
${ } _{83} ^{2099} \mathrm{Bi}$ nucleus has 83 protons and $(209-83) 126$ neutrons.
Hence, the mass defect of this nucleus is given as:
$\Delta m ^{\prime}=83 \times m _{H}+126 \times m _{n}-m _{2}$
Where,
Mass of a proton, $m _{H}=1.007825 \mathrm{u}$
Mass of a neutron, $m _{n}=1.008665 \mathrm{u}$
$\therefore \Delta m ^{\prime}=83 \times 1.007825+126 \times 1.008665-208.980388$
$=83.649475+127.091790-208.980388$ $=1.760877 \mathrm{u}$
But $1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{c} ^{2}$
$\therefore \Delta m ^{\prime}=1.760877 \times 931.5 \mathrm{MeV} / c ^{2}$
Hence, the binding energy of this nucleus is given as:
$E _{b 2}=\Delta m ^{\prime} c ^{2}$
$=1.760877 \times 931.5(\frac{\mathrm{MeV}}{c ^{2}}) \times c ^{2}$
$=1640.26 \mathrm{MeV}$
Average bindingenergy per nucleon $=\frac{1640.26}{209}=7.848 \mathrm{MeV}$
13.3 A given coin has a mass of $3.0 \mathrm{~g}$. Calculate the nuclear energy that would be required to separate all the neutrons and protons from each other. For simplicity assume that the coin is entirely made of $ _{29} ^{63} \mathrm{Cu}$ atoms (of mass $62.92960 \mathrm{u}$ ).
Show Answer
Answer
Mass of a copper coin, $m ^{\prime}=3 \mathrm{~g}$
Atomic mass of ${ } _{29} \mathrm{Cu} ^{63}$ atom, $m=62.92960 \mathrm{u}$
The total number of ${ } _{29} \mathrm{Cu} ^{63}$ atoms in the coin,$N=\frac{N _{\mathrm{A}} \times m ^{\prime}}{\text { Mass number }}$
Where,
$\mathrm{N} _{\mathrm{A}}=$ Avogadro’s number $=6.023 \times 10 ^{23}$ atoms $/ \mathrm{g}$
Mass number $=63 \mathrm{~g}$ $\therefore N=\frac{6.023 \times 10 ^{23} \times 3}{63}=2.868 \times 10 ^{22}$ atoms
${ } _{29} \mathrm{Cu} ^{63}$ nucleus has 29 protons and $(63-29) 34$ neutrons
$\therefore$ Mass defect of this nucleus, $\Delta m ^{\prime}=29 \times m _{H}+34 \times m _{n}-m$
Where,
Mass of a proton, $m _{H}=1.007825 \mathrm{u}$
Mass of a neutron, $m _{n}=1.008665 \mathrm{u}$
$\therefore \Delta m ^{\prime}=29 \times 1.007825+34 \times 1.008665-62.9296$
$=0.591935 \mathrm{u}$
Mass defect of all the atoms present in the coin, $\Delta m=0.591935 \times 2.868 \times 10 ^{22}$
$=1.69766958 \times 10 ^{22} \mathrm{u}$
But $1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{c} ^{2}$
$\therefore \Delta m=1.69766958 \times 10 ^{22} \times 931.5 \mathrm{MeV} / c ^{2}$
Hence, the binding energy of the nuclei of the coin is given as:
$E _{b}=\Delta m c ^{2}$
$=1.69766958 \times 10 ^{22} \times 931.5(\frac{\mathrm{MeV}}{c ^{2}}) \times c ^{2}$
$=1.581 \times 10 ^{25} \mathrm{MeV}$
But $1 \mathrm{MeV}=1.6 \times 10 ^{-13} \mathrm{~J}$
$E _{b}=1.581 \times 10 ^{25} \times 1.6 \times 10 ^{-13}$
$=2.5296 \times 10 ^{12} \mathrm{~J}$
This much energy is required to separate all the neutrons and protons from the given coin.
13.4 Obtain approximately the ratio of the nuclear radii of the gold isotope $ _{79} ^{197} \mathrm{Au}$ and the silver isotope $ _{47} ^{107} \mathrm{Ag}$.
Show Answer
Answer
Nuclear radius of the gold isotope ${ } _{79} \mathrm{Au} ^{197}=R _{\mathrm{Au}}$
Nuclear radius of the silver isotope ${ } _{47} \mathrm{Ag} ^{107}=R _{\mathrm{Ag}}$
Mass number of gold, $A _{\mathrm{Au}}=197$
Mass number of silver, $A _{\mathrm{Ag}}=107$
The ratio of the radii of the two nuclei is related with their mass numbers as:
$$ \begin{aligned} \frac{R _{\mathrm{Au}}}{R _{\mathrm{Ag}}} & =(\frac{R _{\mathrm{Au}}}{R _{\mathrm{Ag}}}) ^{\frac{1}{3}} \ & =(\frac{197}{107}) ^{\frac{1}{3}}=1.2256 \end{aligned} $$
Hence, the ratio of the nuclear radii of the gold and silver isotopes is about 1.23.
13.5 The $Q$ value of a nuclear reaction $A+b \rightarrow C+d$ is defined by
$Q=\left[m _{A}+m _{b}-m _{C}-m _{d}\right] c ^{2}$
where the masses refer to the respective nuclei. Determine from the given data the $Q$-value of the following reactions and state whether the reactions are exothermic or endothermic.
(i) $ _{1} ^{1} \mathrm{H}+ _{1} ^{3} \mathrm{H} \rightarrow _{1} ^{2} \mathrm{H}+ _{1} ^{2} \mathrm{H}$
(ii) $ _{6} ^{12} \mathrm{C}+ _{6} ^{12} \mathrm{C} \rightarrow _{10} ^{20} \mathrm{Ne}+ _{2} ^{4} \mathrm{He}$
Atomic masses are given to be
$m( _{1} ^{2} \mathrm{H})=2.014102 \mathrm{u}$
$m( _{1} ^{3} \mathrm{H})=3.016049 \mathrm{u}$
$m( _{6} ^{12} \mathrm{C})=12.000000 \mathrm{u}$
$m( _{10} ^{20} \mathrm{Ne})=19.992439 \mathrm{u}$
Show Answer
Answer
Alpha particle decay of ${ } ^{226} \mathrm{Ra}$ emits a helium nucleus. As a result, its mass number reduces to $(226-4) 222$ and its atomic number reduces to $(88-2) 86$. This is shown in the following nuclear reaction.
${ } _{88} ^{226} \mathrm{Ra} \longrightarrow{ } _{86} ^{222} \mathrm{Ra}+{ } _{2} ^{4} \mathrm{He}$
$Q$-value of
emitted $\alpha$-particle $=($ Sum of initial mass - Sum of final mass $) c ^{2}$
Where,
$c=$ Speed of light
It is given that:
$m({ } _{88} ^{226} \mathrm{Ra})=226.02540 \mathrm{u}$
$m({ } _{86} ^{222} \mathrm{Rn})=222.01750 \mathrm{u}$
$m({ } _{2} ^{4} \mathrm{He})=4.002603 \mathrm{u}$
$Q$-value $=[226.02540-(222.01750+4.002603)] \mathrm{u} c ^{2}$
$=0.005297 \mathrm{u} c ^{2}$
But $1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{c} ^{2}$
$\therefore Q=0.005297 \times 931.5 \approx 4.94 \mathrm{MeV}$
Kinetic energy of the $\alpha$-particle $=(\frac{\text { Mass number after decay }}{\text { Mass number before decay }}) \times Q$
$=\frac{222}{226} \times 4.94=4.85 \mathrm{MeV}$
Alpha particle decay of $({ } _{86} ^{220} \mathrm{Rn})$ is shown by the following nuclear reaction.
${ } _{86} ^{220} \mathrm{Rn} \longrightarrow{ } _{84} ^{216} \mathrm{Po}+{ } _{2} ^{4} \mathrm{He}$
It is given that:
Mass of $({ } _{86} ^{220} \mathrm{Rn})=220.01137 \mathrm{u}$
Mass of $({ } ^{24}{ } ^{216} \mathrm{Po})=216.00189 \mathrm{u}$
$\therefore Q$-value $=[220.01137-(216.00189+4.00260)] \times 931.5$
$\approx 641 \mathrm{MeV}$
Kinetic energy of the $\alpha$-particle $=(\frac{220-4}{220}) \times 6.41$
$=6.29 \mathrm{MeV}$
13.6 Suppose, we think of fission of a $ _{26} ^{56} \mathrm{Fe}$ nucleus into two equal fragments, $ _{13} ^{28} \mathrm{Al}$. Is the fission energetically possible? Argue by working out $Q$ of the process. Given $m( _{26} ^{56} \mathrm{Fe})=55.93494 \mathrm{u}$ and $m( _{13} ^{28} \mathrm{Al})=27.98191$ u.
Show Answer
Answer
The fission of ${ } _{26} ^{56} \mathrm{Fe}$ can be given as:
$$ { } _{13} ^{56} \mathrm{Fe} \longrightarrow 2{ } _{13} ^{28} \mathrm{Al} $$
It is given that:
Atomic mass of $m({ } _{26} ^{56} \mathrm{Fe})=55.93494 \mathrm{u}$
Atomic mass of $m({ } _{13} ^{28} \mathrm{Al})=27.98191 \mathrm{u}$
The $Q$-value of this nuclear reaction is given as:
$$ \begin{aligned} Q & =\left[m({ } _{26} ^{56} \mathrm{Fe})-2 m({ } _{13} ^{28} \mathrm{Al})\right] c ^{2} \ & =[55.93494-2 \times 27.98191] c ^{2} \ & =(-0.02888 c ^{2}) \mathrm{u} \end{aligned} $$
But $1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{c} ^{2}$
$\therefore Q=-0.02888 \times 931.5=-26.902 \mathrm{MeV}$
The $Q$-value of the fission is negative. Therefore, the fission is not possible energetically. For an energetically-possible fission reaction, the $Q$-value must be positive.
13.7 The fission properties of $ _{94} ^{239} \mathrm{Pu}$ are very similar to those of $ _{92} ^{235} \mathrm{U}$. The average energy released per fission is $180 \mathrm{MeV}$. How much energy, in $\mathrm{MeV}$, is released if all the atoms in $1 \mathrm{~kg}$ of pure $ _{94} ^{239} \mathrm{Pu}$ undergo fission?
Show Answer
Answer
Average energy released per fission of ${ } _{94} ^{239} \mathrm{Pu}, E _{a v}=180 \mathrm{MeV}$
Amount of pure ${ } _{94} \mathrm{Pu} ^{239}, m=1 \mathrm{~kg}=1000 \mathrm{~g}$
$\mathrm{N} _{\mathrm{A}}=$ Avogadro number $=6.023 \times 10 ^{23}$
Mass number of ${ } _{94} ^{239} \mathrm{Pu}=239 \mathrm{~g}$
1 mole of ${ } _{94} \mathrm{Pu} ^{239}$ contains $\mathrm{N} _{\mathrm{A}}$ atoms.
$\therefore m$ g of ${ } _{94} \mathrm{Pu} ^{239}$ contains $(\frac{\mathrm{N} _{\mathrm{A}}}{\text { Mass number }} \times m)$ atoms
$=\frac{6.023 \times 10 ^{23}}{239} \times 1000=2.52 \times 10 ^{24}$ atoms
$\therefore$ Total energy released during the fission of $1 \mathrm{~kg}$ of ${ } _{94} ^{239} \mathrm{Pu}$ is calculated as:
$$ \begin{aligned} E & =E _{\alpha v} \times 2.52 \times 10 ^{24} \ & =180 \times 2.52 \times 10 ^{24}=4.536 \times 10 ^{26} \mathrm{MeV} \end{aligned} $$
Hence, $4.536 \times 10 ^{26} \mathrm{MeV}$ is released if all the atoms in $1 \mathrm{~kg}$ of pure ${ } _{94} \mathrm{Pu} ^{239}$ undergo fission.
13.8 How long can an electric lamp of 100W be kept glowing by fusion of $2.0 \mathrm{~kg}$ of deuterium? Take the fusion reaction as
$$ _{1} ^{2} \mathrm{H}+ _{1} ^{2} \mathrm{H} \rightarrow _{2} ^{3} \mathrm{He}+\mathrm{n}+3.27 \mathrm{MeV} $$
Show Answer
Answer
The given fusion reaction is:
${ } _{1} ^{2} \mathrm{H}+{ } _{1} ^{2} \mathrm{H} \longrightarrow{ } _{2} ^{3} \mathrm{He}+\mathrm{n}+3.27 \mathrm{MeV}$
Amount of deuterium, $m=2 \mathrm{~kg}$
1 mole, i.e., $2 \mathrm{~g}$ of deuterium contains $6.023 \times 10 ^{23}$ atoms.
$\therefore 2.0 \mathrm{~kg}$ of deuterium contains $=\frac{6.023 \times 10 ^{23}}{2} \times 2000=6.023 \times 10 ^{26}$ atoms
It can be inferred from the given reaction that when two atoms of deuterium fuse, 3.27 $\mathrm{MeV}$ energy is released.
$\therefore$ Total energy per nucleus released in the fusion reaction:
$$ \begin{aligned} E & =\frac{3.27}{2} \times 6.023 \times 10 ^{26} \mathrm{MeV} \ & =\frac{3.27}{2} \times 6.023 \times 10 ^{26} \times 1.6 \times 10 ^{-19} \times 10 ^{6} \ & =1.576 \times 10 ^{14} \mathrm{~J} \end{aligned} $$
Power of the electric lamp, $P=100 \mathrm{~W}=100 \mathrm{~J} / \mathrm{s}$
Hence, the energy consumed by the lamp per second $=100 \mathrm{~J}$
The total time for which the electric lamp will glow is calculated as:
$$ \begin{aligned} & \frac{1.576 \times 10 ^{14}}{100} \mathrm{~s} \ & \frac{1.576 \times 10 ^{14}}{100 \times 60 \times 60 \times 24 \times 365} \approx 4.9 \times 10 ^{4} \text { years } \end{aligned} $$
13.9 Calculate the height of the potential barrier for a head on collision of two deuterons. (Hint: The height of the potential barrier is given by the Coulomb repulsion between the two deuterons when they just touch each other. Assume that they can be taken as hard spheres of radius $2.0 \mathrm{fm}$.)
Show Answer
Answer
When two deuterons collide head-on, the distance between their centres, $d$ is given as:
Radius of $1 ^{\text {st }}$ deuteron + Radius of $2 ^{\text {nd }}$ deuteron
Radius of a deuteron nucleus $=2 \mathrm{fm}=2 \times 10 ^{-15} \mathrm{~m}$
$\therefore d=2 \times 10 ^{-15}+2 \times 10 ^{-15}=4 \times 10 ^{-15} \mathrm{~m}$
Charge on a deuteron nucleus $=$ Charge on an electron $=e=1.6 \times 10 ^{-19} \mathrm{C}$
Potential energy of the two-deuteron system:
$$ V=\frac{e ^{2}}{4 \pi \epsilon _{0} d} $$
Where,
$$ \epsilon _{0}=\text { Permittivity of free space } $$
$$ \frac{1}{4 \pi \epsilon _{0}}=9 \times 10 ^{9} \mathrm{~N} \mathrm{~m} ^{2} \mathrm{C} ^{-2} $$
$\therefore V=\frac{9 \times 10 ^{9} \times(1.6 \times 10 ^{-19}) ^{2}}{4 \times 10 ^{-15}} \mathrm{~J}$
$$ =\frac{9 \times 10 ^{9} \times(1.6 \times 10 ^{-19}) ^{2}}{4 \times 10 ^{-15} \times(1.6 \times 10 ^{-19})} \mathrm{eV} $$
$$ =360 \mathrm{keV} $$
Hence, the height of the potential barrier of the two-deuteron system is
$360 \mathrm{keV}$.
13.10 From the relation $R=R _{0} A ^{1 / 3}$, where $R _{0}$ is a constant and $A$ is the mass number of a nucleus, show that the nuclear matter density is nearly constant (i.e. independent of $A$ ).
Show Answer
Answer
We have the expression for nuclear radius as:
$R=R _{0} A ^{1} \beta ^{3}$
Where,
$R _{0}=$ Constant.
$A=$ Mass number of the nucleus
Nuclear matter density, $\rho=\frac{\text { Mass of the nucleus }}{\text { Volume of the nucleus }}$
Let $m$ be the average mass of the nucleus.
Hence, mass of the nucleus $=m A$
$\therefore \rho=\frac{m A}{\frac{4}{3} \pi R ^{3}}=\frac{3 m A}{4 \pi(R _{0} A ^{\frac{1}{3}}) ^{3}}=\frac{3 m A}{4 \pi R _{0} ^{3} A}=\frac{3 m}{4 \pi R _{0} ^{3}}$
Hence, the nuclear matter density is independent of $A$. It is nearly constant.
13.1 भूमिका
पिछले अध्याय में हमने पढ़ा है कि प्रत्येक परमाणु का धनावेश घनीभूत होकर इसके केंद्र में संकेंद्रित हो जाता है और परमाणु का नाभिक बनाता है। नाभिक का कुल साइज़ परमाणु के साइज़ की तुलना में काफ़ी कम होता है। $\alpha$-कणों के प्रकीर्णन संबंधी प्रयोगों ने यह प्रदर्शित किया है कि नाभिक की त्रिज्या, परमाणु की त्रिज्या की तुलना में $10^{4}$ गुने से भी कम होनी चाहिए। इसका अर्थ है कि नाभिक का आयतन परमाणु के आयतन के $10^{-12}$ गुने के लगभग है। दूसरे शब्दों में कहें तो परमाणु में अधिकांशतः रिक्त स्थान ही है। यदि हम परमाणु का साइज़ बढ़ाकर कक्षा के कमरे के बराबर कर दें तो नाभिक इसमें एक पिन के शीर्ष के साइज़ का दिखाई देगा। तथापि, परमाणु का लगभग संपूर्ण द्रव्यमान ( $99.9 %$ से अधिक) नाभिक में ही समाहित होता है।
परमाणु की संरचना के समरूप क्या नाभिक की भी कोई संरचना है? यदि ऐसा है तो इसके अवयव क्या-क्या हैं? वे परस्पर किस प्रकार जुड़े हैं? इस अध्याय में हम इस प्रकार के प्रश्नों के उत्तर खोजने का प्रयास करेंगे। हम नाभिकों के विशिष्ट गुणों, जैसे-उनके साइज़, द्रव्यमान तथा स्थायित्व की चर्चा के साथ इनसे संबद्ध रेडियोऐक्टिवता, विखंडन एवं संलयन जैसी नाभिकीय परिघटनाओं की भी विवेचन करेंगे।
13.2 परमाणु द्रव्यमान एवं नाभिक की संरचना
परमाणु का द्रव्यमान किलोग्राम की तुलना में बहुत कम होता है। उदाहरण के लिए, कार्बन के परमाणु ${ }^{12} \mathrm{C}$ का द्रव्यमान $1.992647 \times 10^{-26} \mathrm{~kg}$ है। इतनी छोटी राशियों को मापने के लिए किलोग्राम बहुत सुविधाजनक मात्रक नहीं है। अतः परमाणु द्रव्यमानों को व्यक्त करने के लिए द्रव्यमान का एक अन्य मात्रक प्रस्तुत किया गया। इस मात्रक को परमाणु द्रव्यमान मात्रक $(\mathrm{u})$ कहते हैं। इसको ${ }^{12} \mathrm{C}$ परमाणु के द्रव्यमान के बारहवें $1 / 12^{\text {th }}$ भाग से व्यक्त करते हैं। अतः इस परिभाषा के अनुसार
$$ \begin{align*} 1 \mathrm{u} & =\frac{{ }^{12} \mathrm{C} \text { परमाणु का द्रव्यमान }}{12} \\ & =\frac{1.992647 \times 10^{-26} \mathrm{~kg}}{12} \\ \end{align*} $$
$$ \begin{align*} & =1.660539 \times 10^{-27} \mathrm{~kg} \tag{13.1} \end{align*} $$
परमाणु द्रव्यमान मात्रक $(\mathrm{u})$ में व्यक्त करने पर विभिन्न तत्वों के परमाणु द्रव्यमान, हाइड्रोजन परमाणु के द्रव्यमान के पूर्ण गुणज के निकट पाए जाते हैं। परंतु इस नियम के अनेक प्रभावशाली अपवाद भी हैं। उदाहरण के लिए, क्लोरीन का परमाणु द्रव्यमान $35.46 \mathrm{u}$ है।
परमाणु द्रव्यमानों का यथार्थ मापन, द्रव्यमान वर्णक्रममापी (स्पेक्ट्रोमीटर) द्वारा किया जाता है। परमाणु द्रव्यमानों के मापन से पता चलता है कि एक ही तत्व के विभिन्न प्रकार के ऐसे परमाणुओं का अस्तित्व है जिनके रासायनिक गुण तो समान होते हैं पर इनके द्रव्यमानों में अंतर होता है। एक ही तत्व की ऐसी परमाणु प्रजातियाँ जिनके द्रव्यमानों में अंतर होता है, समस्थानिक कहलाती हैं (यूनानी शब्द आइसोटॉप का अर्थ हिंदी में समस्थानिक है, यह नाम इन्हें इसलिए दिया गया है क्योंकि तत्वों की आवर्त सारणी में ये सभी एक ही स्थान पर पाए जाते हैं)। शोध से पता चला कि प्रत्येक तत्व व्यावहारिक रूप से कई समस्थानिकों का मिश्रण है। विभिन्न समस्थानिकों की सापेक्ष बहुलता तत्व बदलने के साथ बदलती है।
उदाहरण के लिए, क्लोरीन के दो समस्थानिक हैं जिनके द्रव्यमान क्रमशः $34.98 \mathrm{u}$ एवं $36.98 \mathrm{u}$ हैं, जो कि हाइड्रोजन परमाणु द्रव्यमान के पूर्ण गुणज के सन्निकट हैं। इन समस्थानिकों की सापेक्ष बहुलता क्रमशः 75.4 एवं $24.6 %$ है। इस प्रकार, प्राकृतिक क्लोरीन परमाणु का द्रव्यमान इन समस्थानिकों का भारित-औसत है। अतः, प्राकृतिक क्लोरीन परमाणु का द्रव्यमान,
$$ \begin{aligned} & =\frac{75.4 \times 34.98+24.6 \times 36.98}{100} \end{aligned} $$
$$ \begin{aligned} & =35.47 \mathrm{u} \end{aligned} $$
वही मान है जो क्लोरीन का परमाणु द्रव्यमान है।
यहाँ तक कि सबसे हलके तत्व हाइड्रोजन के भी तीन समस्थानिक हैं जिनके द्रव्यमान $1.0078 \mathrm{u}, 2.0141 \mathrm{u}$ एवं $3.0160 \mathrm{u}$ हैं। सबसे हलके हाइड्रोजन परमाणु जिसकी सापेक्ष बहुलता $99.985 %$ है, का नाभिक, प्रोटॉन कहलाता है। एक प्रोटॉन का द्रव्यमान है,
$$ \begin{equation*} m _{p}=1.00727 \mathrm{u}=1.67262 \times 10^{-27} \mathrm{~kg} \tag{13.2}\\ \end{equation*} $$
यह हाइड्रोजन परमाणु के द्रव्यमान $1.00783 \mathrm{u}$ में से, इसमें विद्यमान एक इलेक्ट्रॉन के द्रव्यमान $m _{e}=0.00055 \mathrm{u}$ को घटाने से प्राप्त द्रव्यमान के बराबर है। हाइड्रोजन के दूसरे दो समस्थानिक ड्यूटीरियम एवं ट्राइटियम कहलाते हैं। ट्राइटियम नाभिक अस्थायी होने के कारण प्रकृति में नहीं पाए जाते और कृत्रिम विधियों द्वारा प्रयोगशालाओं में निर्मित किए जाते हैं।
नाभिक में धन आवेश प्रोटॉनों का ही होता है। प्रोटॉन पर एकांक मूल आवेश होता है और यह स्थायी कण है। पहले यह विचार था कि नाभिक में इलेक्ट्रॉन होते हैं पर क्वांटम सिद्धांत पर आधारित तर्कों के कारण इस मान्यता को नकार दिया गया। किसी परमाणु के सभी इलेक्ट्रॉन उसके नाभिक के बाहर होते हैं। हम जानते हैं कि किसी परमाणु के नाभिक के बाहर इन इलेक्ट्रॉनों की संख्य उसके परमाणु क्रमांक $Z$, के बराबर होती है। अतः परमाणु में इलेक्ट्रॉनों का कुल आवेश $(-Z e)$ उसके नाभिक के कुल आवेश $(+Z e)$ के बराबर होता है, क्योंकि परमाणु विद्युतीय रूप से उदासीन होता है। इसलिए किसी परमाणु के नाभिक में प्रोटॉनों की संख्या, तथ्यतः इसका परमाणु क्रमांक, $Z$ होती है।
न्यूट्रॉन की खोज
क्योंकि ड्यूटीरियम एवं ट्राइटियम हाइड्रोजन के ही समस्थानिक हैं, इनमें से प्रत्येक के नाभिक में एक प्रोटॉन होना चाहिए। लेकिन हाइड्रोजन, ड्यूटीरियम एवं ट्राइटियम के नाभिकों के द्रव्यमानों में अनुपात $1: 2: 3$ है। इसलिए ड्यूटीरियम एवं ट्राइटियम के नाभिकों में प्रोटॉन के अतिरिक्त कुछ उदासीन द्रव्य भी होना चाहिए। इन समस्थानिकों के नाभिकों में विद्यमान उदासीन अनाविष्ट द्रव्य की मात्रा को प्रोटॉन-द्रव्यमान के मात्रकों में व्यक्त करें तो क्रमशः एक एवं दो मात्रकों के लगभग होता है। यह तथ्य इंगित करता है कि परमाणुओं के नाभिकों में प्रोटॉनों के अतिरिक्त विद्यमान रहने वाला यह उदासीन द्रव्य भी एक मूल मात्रक के गुणजों के रूप में ही होता है। इस परिकल्पना की पुष्टि, 1932 में, जेम्स चैडविक द्वारा की गई जिन्होंने देखा कि जब बेरिलियम नाभिकों पर ऐल्फ़ा कणों (ऐल्फ़ा कण, हीलियम नाभिक होते हैं जिनके विषय में हम अगले अनुभाग में चर्चा करेंगे) की बौछार की जाती है, तो इनसे कुछ उदासीन विकिरण उत्सर्जित होते हैं। यह भी पाया गया कि ये उदासीन विकिरण, हीलियम, कार्बन एवं नाइट्रोजन जैसे हलके नाभिकों से टकराकर उनसे प्रोटॉन बाहर निकालते हैं। उस समय तक ज्ञात एक मात्र उदासीन विकिरण फोटॉन (विद्युत चुंबकीय विकिरण) ही थे। ऊर्जा एवं संवेग संरक्षण के नियमों का प्रयोग करने पर पता चला कि यदि ये उदासीन विकिरण फोटॉनों के बने होते तो इनकी ऊर्जा उन विकिरणों की तुलना में बहुत अधिक होती जो बेरिलियम नाभिकों पर ऐल्फ़ा कणों की बौछार से प्राप्त होते हैं। इस समस्या के समाधान का सूत्र, जिसे चैडविक ने संतोषजनक ढंग से हल किया, इस कल्पना में समाहित था कि उदासीन विकिरणों में एक नए प्रकार के उदासीन कण होते हैं जिन्हें न्यूट्रॉन कहते हैं। ऊर्जा एवं संवेग संरक्षण नियमों का उपयोग कर, उन्होंने इस नए कण का द्रव्यमान ज्ञात करने में सफलता प्राप्त की, जिसे प्रोटॉन के द्रव्यमान के लगभग बराबर पाया गया।
अब हम न्यूट्रॉन का द्रव्यमान अत्यधिक यथार्थता से जानते हैं। यह है,
$$ \begin{equation*} m _{\mathrm{n}}=1.00866 \mathrm{u}=1.6749 \times 10^{-27} \mathrm{~kg} \tag{13.3} \end{equation*} $$
न्यूट्रॉन की खोज के लिए चैडविक को 1935 के नोबेल पुरस्कार से सम्मानित किया गया। एक मुक्त प्रोटॉन के विपरीत एक मुक्त न्यूट्रॉन अस्थायी होता है। यह एक प्रोट्रॉन, एक इलेक्ट्रॉन एवं एक प्रतिन्यूट्रिनो (अन्य मूल कण) के रूप में क्षयित हो जाता है। इसकी औसत आयु लगभग $1000 \mathrm{~s}$ होती है। तथापि, नाभिक के भीतर यह स्थायी होता है।
अब, नाभिक की संरचना निम्नलिखित पदों एवं संकेत चिह्नों का उपयोग करके समझायी जा सकती है।
$Z$ - परमाणु क्रमांक $=$ प्रोटॉनों की संख्या [13.4 (a)]
$N$ - न्यूट्रान संख्या $=$ न्यूट्रॉनों की संख्या [13.4 (b)]
$A$ - द्रव्यमान संख्या $=Z+N$
$$ \begin{equation*} \text { = न्यूट्रॉनों एवं प्रोटॉनों की कुल संख्या } \tag{ 13.4 (c) } \end{equation*} $$
प्रोटॉन एवं न्यूट्रॉन के लिए न्यूक्लियॉन शब्द का भी उपयोग किया जा सकता है। अत: किसी परमाणु में न्यूक्लियॉन संख्या उसकी द्रव्यमान संख्या $\mathrm{A}$ होती है।
किसी नाभिकीय प्रजाति या नाभिक को संकेत चिह्न ${ } _{Z}^{A} \mathrm{X}$ द्वारा प्रदर्शित किया जाता है। जहाँ $\mathrm{X}$ उस प्रजाति का रासायनिक चिह्न है। उदाहरण के लिए, स्वर्ण-नाभिक को संकेत ${ } _{79}^{197} \mathrm{Au}$ द्वारा व्यक्त करते हैं। इसमें 197 न्यूक्लियॉन होते हैं जिनमें 79 प्रोटॉन एवं 118 न्यूट्रॉन होते हैं।
अब किसी तत्व के समस्थानिकों की संरचना को सरलता से समझाया जा सकता है। किसी दिए गए तत्व के समस्थानिकों के नाभिकों में प्रोटॉनों की संख्या तो समान होती है, परंतु वे एक-दूसरे से न्यूट्रॉनों की संख्या की दृष्टि से भिन्न होते हैं। ड्यूटीरियम ${ } _{1}^{2} \mathrm{H}$ जो हाइड्रोजन का एक समस्थानिक है, इसमें एक प्रोटॉन एवं एक न्यूट्रॉन होता है। इसके दूसरे समस्थानिक ट्राइटियम ${ } _{1}^{3} \mathrm{H}$ में एक प्रोटॉन एवं दो न्यूट्रॉन होते हैं। तत्व स्वर्ण के 32 समस्थानिक होते हैं जिनकी द्रव्यमान संख्याओं का परास $A=173$ से $A=204$ तक होता है। यह हम पहले ही बता चुके हैं कि तत्वों के रासायनिक गुण उनके इलेक्ट्रॉनिक विन्यास पर निर्भर करते हैं। चूँकि, समस्थानिक परमाणुओं के इलेक्ट्रॉनिक विन्यास समान होते हैं उनका रासायनिक व्यवहार भी एक जैसा होता है और इसलिए उनको आवर्त सारणी में एक ही स्थान पर रखा जाता है।
ऐसे सभी नाभिक जिनकी द्रव्यमान संख्या $A$ समान होती है समभारिक कहलाते हैं। उदाहरणार्थ, नाभिक ${ } _{1}^{3} \mathrm{H}$ एवं ${ } _{2}^{3} \mathrm{He}$ समभारिक हैं। ऐसे नाभिक जिनकी न्यूट्रॉन संख्या $N$ समान हो लेकिन परमाणु क्रमांक $Z$ भिन्न हो समन्यूट्रॉनिक कहलाते हैं। उदाहरणार्थ, ${ } _{80}^{198} \mathrm{Hg}$ एवं ${ } _{79}^{197} \mathrm{Au}$ समन्यूट्रॉनिक हैं।
13.3 नाभिक का साइज़
जैसा हमने अध्याय 12 में देखा है, रदरफोर्ड वह अग्रणी वैज्ञानिक थे जिन्होंने परमाणु नाभिक के अस्तित्व की परिकल्पना एवं स्थापना की। रदरफोर्ड के सुझाव पर गीगर एवं मार्सडन ने स्वर्ण के वर्क पर ऐल्फ़ा कणों के प्रकीर्णन से संबंधित प्रसिद्ध प्रयोग किया। उनके प्रयोगों से यह स्पष्ट हुआ कि $5.5 \mathrm{MeV}$ गतिज ऊर्जा के ऐल्फ़ा कणों की स्वर्ण नाभिकों के निकटस्थ पहुँच की दूरी लगभग $4.0 \times 10^{-14} \mathrm{~m}$ है। स्वर्ण की परत से $\alpha$-कणों के प्रकीर्णन को रदरफोर्ड ने यह मानकर समझाया कि प्रकीर्णन के लिए केवल कूलॉम का प्रतिकर्षण बल ही उत्तरदायी है। चूँकि, धनात्मक आवेश नाभिक में निहित होता है, नाभिक का वास्तविक साइज़ $4.0 \times 10^{-14} \mathrm{~m}$ से कम होना चाहिए।
यदि हम $5.5 \mathrm{MeV}$ से अधिक ऊर्जा के $\alpha$-कण प्रयोग करें तो इनके स्वर्ण नाभिकों के निकटस्थ पहुँच की दूरी और कम हो जाएगी और तब प्रकीर्णन अल्प परास नाभिकीय बलों से प्रभावित होने लगेगा और रदरफोर्ड द्वारा किए गए परिकलनों से प्राप्त मान बदल जाएँगे। रदरफोर्ड के परिकलन ऐल्फ़ा कणों एवं स्वर्ण नाभिकों के धनावेश युक्त कणों के बीच लगने वाले शुद्ध कूलॉम प्रतिकर्षण बल पर आधारित हैं। उस दूरी के द्वारा जिस पर रदरफोर्ड के परिकलनों में आने वाले अंतर स्पष्ट होने लगते हैं, नाभिकीय साइज़ों के विषय में निष्कर्ष निकाला जा सकता है।
ऐसे प्रकीर्णन प्रयोग करके जिनमें $\alpha$-कणों के स्थान पर तीव्र गति इलेक्ट्रॉनों की विभिन्न तत्वों के ऊपर बौछार की गई हो, इन तत्वों के नाभिकीय साइज़ अत्यंत परिशुद्धता से ज्ञात किए गए।
यह पाया गया कि $A$ द्रव्यमान संख्या के नाभिक की त्रिज्या है :
$$ \begin{equation*} R=R_{0} A^{1 / 3} \tag{13.5} \end{equation*} $$
जहाँ $R _{0}=1.2 \times 10^{-15} \mathrm{~m}\left(=1.2 \mathrm{fm} ; 1 \mathrm{fm}=10^{-15} \mathrm{~m}\right)$ इसका अर्थ है कि नाभिक का आयतन (जो $R^{3}$ के अनुक्रमानुपाती है) द्रव्यमान संख्या $A$ के अनुक्रमानुपाती होता है। अतः नाभिक का घनत्व नियत होता है, अर्थात, सभी नाभिकों के लिए इसका मान $A$ पर निर्भर नहीं करता है। विभिन्न नाभिक इस नियत घनत्व के द्रव की बूँद की तरह होते हैं। नाभिकीय द्रव्य का घनत्व $2.3 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3}$ के सन्निकट होता है। सामान्य पदार्थों की तुलना में घनत्व का यह मान बहुत अधिक होता है, जैसे जल के लिए घनत्व केवल $10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ ही होता है। इस तथ्य को आसानी से समझा भी जा सकता है, क्योंकि यह हम पहले ही देख चुके हैं कि परमाणु अधिकांशतः भीतर से रिक्त होता है। सामान्य परमाणुओं से बने द्रव्य में बड़ी मात्रा में रिक्त स्थान होता है।
उदाहरण 13.1 लोहे के नाभिक का द्रव्यमान $55.85 \mathrm{u}$ एवं $\mathrm{A}=56$ है, इसका नाभिकीय घनत्व ज्ञात कीजिए।
हल
$m _{\mathrm{Fe}}=55.85$
$\mathrm{u}=9.27 \times 10^{-26} \mathrm{~kg}$
नाभिकीय घनत्व
$$=\frac{\text { द्रव्यमान }}{\text { आयतन }}=\frac{9.27 \times 10^{-26}}{(4 \pi / 3)\left(1.2 \times 10^{-15}\right)^{3}} \times \frac{1}{56}$$
$$ =2.29 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3} $$
न्यूट्रॉन तारे (एक खगोल भौतिकीय पिंड) में पदार्थ का घनत्व इस घनत्व के साथ तुलनीय है। यह दर्शाता है कि इन तारों में द्रव्य इस सीमा तक संपीडित हो गया है कि न्यूट्रॉन तारे स्वयं एक बड़े नाभिक की तरह व्यवहार करते हैं।
13.4 द्रव्यमान-ऊर्जा तथा नाभिकीय बंधन-ऊर्जा
13.4.1 द्रव्यमान-ऊर्जा
आइंस्टाइन ने अपने विशिष्ट आपेक्षिकता सिद्धांत के आधार पर यह दर्शाया कि द्रव्यमान ऊर्जा का ही एक दूसरा रूप है। विशिष्ट आपेक्षिकता सिद्धांत से पहले यह माना जाता था कि किसी अभिक्रिया में द्रव्यमान एवं ऊर्जा अलग-अलग संरक्षित होते हैं। परंतु आइंस्टाइन ने यह दर्शाया कि द्रव्यमान केवल ऊर्जा का दूसरा रूप है और हम द्रव्यमान-ऊर्जा को ऊर्जा के अन्य रूपों, जैसे-गतिज ऊर्जा में, परिवर्तित कर सकते हैं तथा विपरीत प्रक्रम अर्थात ऊर्जा को द्रव्यमान में रूपांतरित करना भी संभव है।
इसके लिए आइंस्टाइन ने जो प्रसिद्ध द्रव्यमान-ऊर्जा समतुल्यता संबंध दिया वह है :
$E=m c^{2}$ (13.6)
यहाँ $E$, द्रव्यमान $m$ के समतुल्य ऊर्जा है एवं $c$ निर्वात में प्रकाश का वेग है जिसका सन्निकट मान $3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ है।
उदाहरण 13.2 $1 \mathrm{~g}$ पदार्थ के समतुल्य ऊर्जा को परिकलित कीजिए।
हल
ऊर्जा,
$$ \begin{aligned} E & =10^{-3} \times(3 \times 10^{8})^{2} \mathrm{~J} \\ E & =10^{-3} \times 9 \times 10^{16}=9 \times 10^{13} \mathrm{~J} \end{aligned} $$
इस प्रकार, यदि एक ग्राम पदार्थ को भी ऊर्जा में रूपांतरित किया जाए तो इससे ऊर्जा की विशाल मात्रा मुक्त होती है।
आइंस्टाइन के द्रव्यमान-ऊर्जा संबंध की प्रायोगिक पुष्टि, न्यूक्लियॉनों, नाभिकों, इलेक्ट्रॉनों एवं अन्य हाल ही में खोजे गए कणों के बीच होने वाली नाभिकीय अभिक्रियाओं के अध्ययन में हो चुकी है। किसी अभिक्रिया में ऊर्जा संरक्षण नियम से अभिप्राय है कि यदि द्रव्यमान से संबद्ध ऊर्जा को भी परिकलनों में सम्मिलित करें तो प्रारंभिक ऊर्जा अंतिम ऊर्जा के बराबर होती है। यह संकल्पना, नाभिकों की पारस्परिक अन्योन्य क्रियाओं एवं नाभिकीय द्रव्यमानों को समझने के लिए महत्वपूर्ण है। यही अगले कुछ अनुभागों की विषय-वस्तु है।
13.4.2 नाभिकीय बंधन-ऊर्जा
अनुभाग 13.2 में हमने देखा कि नाभिक न्यूट्रॉन एवं प्रोटॉन का बना है। अतः यह अपेक्षित है कि नाभिक का द्रव्यमान, इसमें विद्यमान न्यूट्रॉनों एवं प्रोटॉनों के द्रव्यमानों के कुल योग $\Sigma m$ के बराबर होगा। लेकिन, नाभिकीय द्रव्यमान $M$, सदैव $\Sigma m$ से कम पाया जाता है। उदाहरण के लिए, आइए ${ } _{8}^{16} \mathrm{O}$ को लें। इसमें 8 प्रोटॉन एवं 8 न्यूट्रॉन हैं। अतः,
8 न्यूट्रॉनों का द्रव्यमान $=8 \times 1.00866 \mathrm{u}$
8 प्रोटॉनों का द्रव्यमान $=8 \times 1.00727 \mathrm{u}$
8 इलेक्ट्रॉनों का द्रव्यमान $=8 \times 0.00055 \mathrm{u}$
इसलिए ${ } _{8}^{16} \mathrm{O}$ के नाभिक का अपेक्षित द्रव्यमान
$=8 \times 2.01593 \mathrm{u}=16.12744 \mathrm{u}$
द्रव्यमान वर्णक्रममापी के प्रयोगों द्वारा प्राप्त ${ } _{8}^{16} \mathrm{O}$
का परमाणु द्रव्यमान $15.99493 \mathrm{u}$ है। इसमें से 8 इलेक्ट्रॉनों का द्रव्यमान $(8 \times 0.00055 \mathrm{u})$ घटाने पर ${ } _{8}^{16} \mathrm{O}$ के नाभिक का प्रायोगिक मान $15.99053 \mathrm{u}$ है।
अतः हम पाते हैं कि ऑक्सीजन ${ } _{8}^{16} \mathrm{O}$ नाभिक का द्रव्यमान, इसके घटकों के कुल द्रव्यमान से $0.13691 \mathrm{u}$ कम है। नाभिक के द्रव्यमान एवं इसके घटकों के द्रव्यमान के अंतर $\Delta M$, को द्रव्यमान क्षति कहते हैं, और इसका मान इस प्रकार व्यक्त किया जाता है :
$$ \begin{equation*} \Delta M=\left[Z m _{p}+(A-Z) m _{n}\right]-M \tag{13.7} \end{equation*} $$
द्रव्यमान-क्षति का अर्थ क्या है? यहीं पर आइंस्टाइन का द्रव्यमान-ऊर्जा समतुल्यता सिद्धांत अपनी भूमिका निभाता है। चूँकि, ऑक्सीजन नाभिक का द्रव्यमान इसके घटकों के द्रव्यमानों के योग (अबंधित अवस्था में 8 प्रोटॉन एवं 8 न्यूट्रॉन का) से कम होता है, ऑक्सीजन नाभिक की समतुल्य ऊर्जा इसके घटकों की समतुल्य ऊर्जाओं के योग से कम होती है। यदि आप ऑक्सीजन नाभिक को 8 प्रोटॉनों एवं 8 न्यूट्रॉनों में विखंडित करना चाहें तो आपको यह अतिरिक्त ऊर्जा, $\Delta M c^{2}$, इस नाभिक को प्रदान करनी होगी। इसके लिए आवश्यक यह ऊर्जा $E _{\mathrm{b}}$, द्रव्यमान क्षति से निम्नलिखित समीकरण द्वारा संबंधित होती है :
$$ \begin{equation*} E _{b}=\Delta M c^{2} \tag{13.8} \end{equation*} $$
उदाहरण 13.3 एक परमाणु द्रव्यमान मात्रक के समतुल्य ऊर्जा का मान पहले जूल और फिर $\mathrm{MeV}$ में ज्ञात कीजिए। इसका उपयोग करके ${ } _{8}^{16} \mathrm{O}$ की द्रव्यमान क्षति $\mathrm{MeV} / \mathrm{c}^{2}$ में व्यक्त कीजिए।
हल
$1 \mathrm{u}=1.6605 \times 10^{-27} \mathrm{~kg}$
इसको ऊर्जा के मात्रकों में परिवर्तित करने के लिए हम इसको $c^{2}$ से गुणा करते हैं एवं पाते हैं कि इसके समतुल्य ऊर्जा
$=1.6605 \times 10^{-27} \times\left(2.9979 \times 10^{8}\right)^{2} \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{2}$
$$ =1.4924 \times 10^{-10} \mathrm{~J} $$
$$ =\frac{1.4924 \times 10^{-10}}{1.602 \times 10^{-19}} \mathrm{eV} $$
$$ =0.9315 \times 10^{9} \mathrm{eV} $$
$$=931.5 \mathrm{MeV}$$
अथवा
$\mathrm{lu}=931.5 \mathrm{MeV} / \mathrm{c}^{2}$
$\begin{aligned}{ } _{8}^{16} \mathrm{O} \text { के लिए } \Delta M & =0.13691 \mathrm{u}=0.13691 \times 931.5 \mathrm{MeV} / \mathrm{c}^{2} \end{aligned}$
$$ =127.5 \mathrm{MeV} / \mathrm{c}^{2} $$
$\therefore{ } _{8}^{16} \mathrm{O}$ को इसके घटकों में विभाजित करने के लिए आवश्यक ऊर्जा
$127.5 \mathrm{MeV} / \mathrm{c}^{2}$ है।
यदि कुछ न्यूट्रॉनों एवं प्रोटॉनों को पास-पास लाकर, निश्चित आवेश एवं द्रव्यमान वाला एक नाभिक बनाया जाए तो इस प्रक्रिया में $\Delta E _{b}$ ऊर्जा मुक्त होगी। यह ऊर्जा $\Delta E _{b}$ नाभिक की बंधन-ऊर्जा कहलाती है। यदि हमें किसी नाभिक के नाभिक-कणों को अलग-अलग करना हो तो हमें इन कणों को कुल ऊर्जा $E _{b}$ प्रदान करनी होगी। यद्यपि नाभिक को हम इस प्रकार तोड़ नहीं सकते, फिर भी, नाभिक की बंधन-ऊर्जा यह तो बताती ही है कि किसी नाभिक में न्यूक्लियॉन परस्पर कितनी अच्छी तरह से जुड़े हैं। नाभिक के कणों की बंधन शक्ति का एक और अधिक उपयोगी माप बंधन-ऊर्जा प्रति न्यूक्लियॉन, $E _{b n}$ है; जो कि नाभिक की बंधन-ऊर्जा, $E _{b}$ एवं इसमें विद्यमान न्यूक्लिऑनों की संख्या $A$ का अनुपात है।
$$ \begin{equation*} \Delta E _{b n}=\Delta E _{b} / A \tag{13.9} \end{equation*} $$
हम प्रति न्यूक्लियॉन बंधन-ऊर्जा को ऐसा मान सकते हैं कि यह किसी नाभिक को इसके न्यूक्लिऑनों में पृथक्कृत करने के लिए आवश्यक औसत ऊर्जा है।
चित्र 13.1 में बहुत से नाभिकों के
चित्र 13.1 द्रव्यमान संख्या के फलन के रूप में प्रति न्यूक्लियॉन बंधन-ऊर्जा। लिए प्रति न्यूक्लियॉन बंधन ऊर्जा $E _{b n}$ एवं द्रव्यमान संख्या $A$ में ग्राफ दिखाया गया है। इस ग्राफ में हमें निम्नलिखित लक्षण पर विशेष दृष्टिगोचर होते हैं -
(i) मध्यवर्ती द्रव्यमान संख्याओं $(30<\mathrm{A}$ $<170$ ) के लिए, प्रति न्यूक्लियॉन बंधन-ऊर्जा, $E _{b n}$, का मान व्यावहारिक रूप में नियत रहता है, अर्थात परमाणु क्रमांक के साथ परिवर्तित नहीं होता है। वक्र $\mathrm{A}=56$ के लिए लगभग 8.75 $\mathrm{MeV}$ का अधिकतम मान एवं $A=$ 238 के लिए $7.6 \mathrm{MeV}$ दर्शाता है।
(ii) हलके नाभिकों $(A<30)$ एवं भारी नाभिकों $(A>170)$ दोनों के लिए ही $E _{\mathrm{bn}}$ का मान मध्यवर्ती परमाणु क्रमांक के नाभिकों की तुलना में अपेक्षाकृत कम होता है।
इस प्रकार निम्न निष्कर्षों पर पहुँच सकते हैं :
(i) यह बल आकर्षी है तथा प्रति न्यूक्लियॉन कुछ $\mathrm{MeV}$ बंधन उत्पन्न करने के लिए पर्याप्त प्रबल है।
(ii) $30<\mathrm{A}<170$ के परास में बंधन-ऊर्जा की अचरता इस तथ्य का परिणाम है कि नाभिकीय बल लघु परासी बल होते हैं। बड़े नाभिक के भीतर स्थित किसी न्यूक्लियॉन पर विचार कीजिए। यह अपने पास-पड़ोस के केवल उन न्यूक्लिऑनों से प्रभावित होगा जो इसके नाभिकीय बल के परिसर में आते हैं। यदि कोई अन्य न्यूक्लियॉन इस विशिष्ट न्यूक्लियॉन के नाभिकीय बल के परिसर से अधिक दूरी पर है, तो यह विचाराधीन नाभिक की बंधन-ऊर्जा को तनिक भी प्रभावित नहीं करेगा। यदि किसी नाभिक के नाभिकीय बल के परिसर में अधिकतम $p$ न्यूक्लियॉन हो सकते हों, तो इसकी बंधन-ऊर्जा $p$ के अनुक्रमानुपाती होगी। माना कि किसी नाभिक की बंधन-ऊर्जा $p k$ है, जहाँ $k$ एक नियतांक है जिसकी विमाएँ वही हैं जो ऊर्जा की होती हैं। अब यदि हम न्यूक्लियॉनों की संख्या बढ़ाकर $A$ का मान बढ़ाएँ, तो इससे नाभिक के भीतर न्यूक्लियॉनों की बंधन-ऊर्जा प्रभावित नहीं होगी। क्योंकि, किसी भी बड़े नाभिक में अधिकांश न्यूक्लियॉन इसके भीतर रहते हैं तथा पृष्ठ की अपेक्षा, नाभिक की बंधन-ऊर्जा पर $A$ की वृद्धि का मान $p k$ के बराबर होता है। नाभिकों का वह गुण जिसके कारण कोई नाभिक केवल अपने निकट के नाभिकों को ही प्रभावित करता है, नाभिकीय बलों का संतृप्ति गुण कहलाता है।
(iii) एक अत्यधिक भारी नाभिक, जैसे $A=240$, की प्रति न्यूक्लियॉन बंधन-ऊर्जा, $A=120$ के नाभिक की तुलना में कम होती है। अतः, यदि $A=240$ का कोई नाभिक, $A=120$ के दो नाभिकों में टूटता है तो, इनमें न्यूक्लियॉन अधिक दृढ़ता से परिबद्ध होंगे। यह इंगित करता है कि इस प्रक्रिया में ऊर्जा विमुक्त होगी। यह विखंडन द्वारा ऊर्जा विमुक्त होने की महत्वपूर्ण संभावना को अभिव्यक्त करता है जिसके विषय में हम अनुभाग 13.7.1 में चर्चा करेंगे।
(iv) कल्पना कीजिए कि दो हलके नाभिक $(A \leq 10)$ संलयित होकर एक भारी नाभिक बनाते हैं। संलयन द्वारा बने इस भारी नाभिक की प्रति न्यूक्लियन बंधन-ऊर्जा, हलके नाभिकों की प्रति न्यूक्लियॉन बंधन ऊर्जा से अधिक होती है। इसका अर्थ यह हुआ कि अंतिम निकाय में कण प्रारंभिक निकाय की तुलना में अधिक दृढ़ता से बंधित हैं। यहाँ संलयन की इस प्रक्रिया में भी ऊर्जा विमुक्त होगी। यही सूर्य की ऊर्जा का स्रोत है जिसके विषय में हम अनुभाग 13.7.2 में चर्चा करेंगे।
13.5 नाभिकीय बल
वह बल जो परमाणु में इलेक्ट्रॉनों की गति नियंत्रित करता है हमारा सुपरिचित कूलॉम बल है। अनुभाग 13.4 में हमने देखा कि औसत द्रव्यमान के नाभिक के लिए प्रति न्यूक्लियॉन बंधन-ऊर्जा लगभग $8 \mathrm{MeV}$ है जो परमाणु की बंधन-ऊर्जा की तुलना में बहुत अधिक है। अतः नाभिक में कणों को परस्पर बाँधे रखने के लिए एक भिन्न प्रकार के शक्तिशाली आकर्षण बल की आवश्यकता है। यह बल इतना अधिक शक्तिशाली होना चाहिए कि (धनावेशित) प्रोटॉनों के बीच लगे प्रतिकर्षण बलों से अधिक प्रभावी होकर प्रोटॉनों एवं न्यूट्रॉनों दोनों को नाभिक के सूक्ष्म आयतन में बाँधे रख सके। हम यह पहले ही देख चुके हैं कि प्रति न्यूक्लियॉन बंधन ऊर्जा की अचरता को इन बलों की लघु परासी प्रकृति से समझा जा सकता है। नाभिकीय बंध न बलों के कुछ अभिलक्षणों को संक्षेप में नीचे दिया गया है। यह ज्ञान 1930 से 1950 के बीच किए गए विभिन्न प्रयोगों द्वारा प्राप्त हुआ है।
(i) नाभिकीय बल, आवेशों के बीच लगने वाले कूलॉम बल एवं द्रव्यमानों के बीच लगने वाले गुरुत्वाकर्षण बल की तुलना में अत्यधिक शक्तिशाली होता है। नाभिकीय बंधन बल को, नाभिक के भीतर प्रोटॉनों के बीच लगने वाले कूलॉम प्रतिकर्षण बल पर आधिपत्य करना होता है। यह इसीलिए संभव हो पाता है, क्योंकि नाभिकीय बल कूलॉम बलों की तुलना में अत्यधिक प्रबल होते हैं। गुरुत्वाकर्षण बल तो कूलॉम बल की तुलना में भी अत्यंत दुर्बल होता है।
(ii) न्यूक्लिऑनों के बीच दूरी बढ़ाकर कुछ फेम्टोमीटर से अधिक करने पर उनके बीच लगने वाला नाभिकीय बल तेज़ी से घटकर शून्य हो जाता है। इस कारण, औसत अथवा बड़े साइज़ के नाभिकों में ‘बलों की संतृप्तता’ की स्थिति आ जाती है जिसके परिणामस्वरूप प्रति न्यूक्लियॉन बंधन-ऊर्जा नियत हो जाती है। दो नाभिकों की स्थितिज ऊर्जा और उनके बीच की दूरी में संबंध दर्शाने वाला एक अपरिष्कृत आरेख चित्र 13.2 में दर्शाया गया है। लगभग $0.8 \mathrm{fm}$ की दूरी $r _{0}$ पर स्थितिज ऊर्जा का मान न्यूनतम होता है। इसका अर्थ यह हुआ कि यदि नाभिकों के बीच
चित्र 13.2 एक नाभिकीय युग्म की स्थितिज ऊर्जा उनके बीच की दूरी के फलन के रूप में। $r _{0}$ से अधिक दूरी होने पर बल आकर्षण बल होता है एवं $r _{0}$ से कम दूरी पर तीव्र प्रतिकर्षण बल। आकर्षण बल सर्वाधिक प्रबल तब होता है जब नाभिकों के बीच की दूरी $r _{0}$ होती है। दूरी $0.8 \mathrm{fm}$ से अधिक होती है तो ये बल आकर्षण बल होते हैं और $0.8 \mathrm{fm}$ से कम दूरियों के लिए ये प्रतिकर्षण बल होते हैं।
(iii) न्यूट्रॉन-न्यूट्रॉन, न्यूट्रॉन-प्रोटॉन एवं प्रोटॉन-प्रोटॉन के बीच लगने वाले नाभिकीय बल लगभग समान परिमाण के होते हैं। नाभिकीय बल विद्युत आवेशों पर निर्भर नहीं करते। कूलॉम के नियम अथवा न्यूटन के गुरुत्वीय नियम की भाँति नाभिकीय बलों का कोई सरल गणितीय रूप नहीं है।
मैरी स्क्लाडोवका क्यूरी (18671934) पोलैंड में जन्मी। भौतिकविज्ञानी एवं रसायनज्ञ दोनों रूपों में पहचान मिली। 1896 में हेनरी बैकेरल द्वारा रेडियोऐक्टिवता की खोज ने मैरी और उनके पति पियरे क्यूरी को उनके अनुसंधानों एवं विश्लेषणों के लिए प्रेरित किया, जिसके फलस्वरूप तत्वों- रेडियम एवं पोलोनियम- का पृथक्करण संभव हुआ। वह प्रथम वैज्ञानिक थीं जिन्हें दो नोबेल पुरस्कार प्राप्त हुए : पहला 1903 में भौतिकी के लिए और दूसरा 1911 में रसायनविज्ञान के लिए।
13.6 रेडियोऐक्टिवता
रेडियोऐक्टिवता की खोज ए.एच. बैकेरल ने सन् 1896 में संयोगवश की। यौगिकों को दृश्य प्रकाश से विकीर्णित करके उनकी प्रतिदीप्ति एवं स्फुरदीप्ति का अध्ययन करते हुए बैकेरल ने एक रोचक परिघटना देखी। यूरेनियम-पोटैशियम सल्फेट के कुछ टुकड़ों पर दृश्य प्रकाश डालने के बाद उसने उनको काले कागज़ में लपेट दिया। इस पैकेट और फ़ोटोग्राफ़िक प्लेट के बीच एक चाँदी का टुकड़ा रखा। इसी प्रकार कई घंटे तक रखने के बाद जब फ़ोटोग्राफ़िक प्लेट को डेवेलप किया गया तो यह पाया गया कि यह प्लेट काली पड़ चुकी थी। यह किसी ऐसी चीज़ के कारण हुआ होगा जो यौगिक से उत्सर्जित हुई होगी तथा काले कागज़ और चाँदी दोनों को भेद कर फ़ोटोग्राफ़िक प्लेट तक पहुँच गई होगी।
बाद में किए गए प्रयोगों ने दर्शाया कि रेडियोऐक्टिवता एक नाभिकीय परिघटना है जिसमें अस्थायी नाभिक क्षयित होता है। इसे रेडिोऐक्टिव क्षय कहते हैं। प्रकृति में तीन प्रकार के रेडियोक्टिव क्षय होते हैं :
(i) $\alpha$-क्षय, जिसमें हीलियम नाभिक $\left({ } _{2}^{4} \mathrm{He}\right)$ उत्सर्जित होते हैं,
(ii) $\beta$-क्षय, जिसमें इलेक्ट्रॉन अथवा पॉजीट्रॉन (ऐसे कण जिसका द्रव्यमान तो इलेक्ट्रॉन के बराबर ही होता है पर आवेश ठीक इलेक्ट्रॉन के विपरीत होता है) उत्सर्जित होते हैं।
(iii) $\gamma$-क्षय, जिसमें उच्च ऊर्जा ( $100 \mathrm{keV}$ अथवा अधिक) फोटॉन उत्सर्जित होते हैं।
इनमें प्रत्येक प्रकार के क्षय पर आगामी उपअनुभागों में विचार किया जाएगा।
13.7 नाभिकीय ऊर्जा
चित्र 13.1 में दर्शाये गए प्रति न्यूक्लिऑन बंधन-ऊर्जा $E _{\mathrm{bn}}$ वक्र में $A=30$ एवं $A=170$ के बीच एक लंबा सपाट भाग है। इस भाग में प्रति न्यूक्लिऑन बंधन-ऊर्जा लगभग अचर $(8.0 \mathrm{MeV})$ है। हलके नाभिकों, $A>30$, वाले भाग एवं भारी नाभिकों, $A>170$, वाले भाग में, जैसा हम पहले ही देख चुके हैं, प्रति न्यूक्लिऑन बंधन-ऊर्जा $8.0 \mathrm{MeV}$ से कम है। यदि बंधन-ऊर्जा अधिक हो तो उस बंधित निकाय जैसे नाभिक का कुल द्रव्यमान कम होगा। परिणामस्वरूप यदि कोई कम कुल बंधन-ऊर्जा वाला नाभिक किसी अधिक बंधन-ऊर्जा वाले नाभिक में रूपांतरित हो तो कुल ऊर्जा विमुक्त होगी। किसी भारी नाभिक के दो या दो से अधिक माध्यमिक द्रव्यमान खंडों (विखंडन) अथवा हलके नाभिकों का किसी भारी नाभिक में संयोजन (संलयन) की प्रक्रिया में ऐसा ही होता है।
कोयले एवं पेट्रोलियम जैसे पारंपरिक ऊर्जा स्रोतों में ऊष्माक्षेपी रासायनिक अभिक्रियाएँ होती हैं। यहाँ विमुक्त होने वाली ऊर्जा इलेक्ट्रॉन वोल्ट की कोटि की होती है। जबकि किसी नाभिकीय प्रक्रिया में, $\mathrm{MeV}$ कोटि की ऊर्जा विमुक्त होती है। अतः द्रव्य की समान मात्रा के लिए, रासायनिक स्रोतों की अपेक्षा नाभिकीय स्रोत लाखों गुना ऊर्जा विमुक्त करते हैं। उदाहरण के लिए, $1 \mathrm{~kg}$ यूरेनियम के विखंडन से लगभग $10^{14} \mathrm{~J}$ ऊर्जा प्राप्त होती है, जबकि $1 \mathrm{~kg}$ कोयले के दहन से $10^{7} \mathrm{~J}$ ऊर्जा प्राप्त होती है।
13.7.1 विखंडन
प्राकृतिक रेडियोऐक्टिव क्षयों के अलावा नाभिकों पर अन्य नाभिकीय कणों जैसे प्रोटॉन, न्यूट्रॉन, ऐल्फा कण आदि के प्रकार से होने वाली नाभिकीय प्रक्रियाओं पर ध्यान देने से नई संभावनाएँ बनती हैं।
विखंडन एक महत्वपूर्ण न्यूट्रॉन-प्रेरक नाभिकीय प्रक्रिया है। विखंडन के उदाहरणतः जब किसी यूरेनियम समस्थानिक ${ } _{92}^{235} \mathrm{U}$ पर न्यूट्रॉन से प्रहार कराया जाता है तो वह दो माध्यमिक द्रव्यमान वाले नाभिकीय खंडों में विखंडित हो जाता है :
${ } _{0}^{1} \mathrm{n}+{ } _{92}^{235} \mathrm{U} \rightarrow{ } _{92}^{236} \mathrm{U} \rightarrow{ } _{56}^{144} \mathrm{Ba}+{ } _{36}^{89} \mathrm{Kr}+3{ } _{0}^{1} \mathrm{n}$
इसी क्रिया में माध्यमिक द्रव्यमान वाले नाभिकों के भिन्न युग्म भी उत्पन्न हो सकते हैं :
${ } _{0}^{1} \mathrm{n}+{ } _{92}^{235} \mathrm{U} \rightarrow{ } _{92}^{236} \mathrm{U} \rightarrow{ } _{51}^{133} \mathrm{Sb}+{ } _{41}^{99} \mathrm{Nb}+4{ } _{0}^{1} \mathrm{n}$
एक अन्य उदाहरण है :
${ } _{0}^{1} \mathrm{n}+{ } _{92}^{235} \mathrm{U} \rightarrow{ } _{54}^{140} \mathrm{Xe}+{ } _{38}^{94} \mathrm{Sr}+2{ } _{0}^{1} \mathrm{n}$
ये विखंडित उत्पाद रेडियोऐक्टिव नाभिक होते हैं और इनमें तब तक $\beta$-क्षय का क्रम चलता रहता है जब तक कि अंत में स्थायी खंड प्राप्त न हो जाएँ।
यूरेनियम जैसे नाभिक की विखंडन अभिक्रिया में निर्मुक्त ऊर्जा ( $Q$ - मान) प्रति विखंडित नाभिक $200 \mathrm{MeV}$ की कोटि की होती है। इसका आकलन हम निम्नवत करते हैं :
माना कि एक नाभिक का $A=240$ है और यह $A=120$ के दो खंडों में विखंडित होता है। तब
$A=240$ नाभिक के लिए $E _{b n}$ लगभग $7.6 \mathrm{MeV}$ है (चित्र 13.1 देखें)।
$A=120$ वाले विखंडित नाभिक के लिए $E _{b n}$ लगभग $8.5 \mathrm{MeV}$ है।
$\therefore$ प्रति न्यूक्लियॉन बंधन-ऊर्जा की लब्धि लगभग $0.9 \mathrm{MeV}$ है।
अतः बंधन-ऊर्जा में कुल लब्धि $240 \times 0.9$ अथवा $216 \mathrm{MeV}$ है।
विखंडन की घटनाओं की विघटन ऊर्जा पहले क्षय-उत्पादों तथा न्यूट्रॉनों की गतिज ऊर्जा के रूप में संलग्नित होती है। अंत में यह आसपास के द्रव्य को हस्तांतरित होकर ऊष्मा के रूप में परिणित हो जाती है। नाभिकीय रिएक्टरों में नाभिकीय विखंडन ऊर्जा से विद्युत उत्पादन होता है। परमाणु बम में विमुक्त होने वाली बृहत ऊर्जा अनियंत्रित नाभिकीय विखंडन से ही उत्पन्न होती है।
13.7.2 नाभिकीय संलयन-तारों में ऊर्जा जनन
चित्र 13.1 में दर्शाया गया बंधन-ऊर्जा वक्र यह भी दर्शाता है कि यदि दो हलके नाभिक मिलकर एक अपेक्षाकृत बड़ा नाभिक बनाएँ तो ऊर्जा निर्मुक्त होती है। इस प्रक्रिया को नाभिकीय संलयन कहते हैं। इस तरह की ऊर्जा विमोचक अभिक्रियाओं के कुछ उदाहरण आगे दिए गए हैं :
$$ \begin{align*} & { } _{1}^{1} \mathrm{H}+{ } _{1}^{1} \mathrm{H} \rightarrow{ } _{1}^{2} \mathrm{H}+e^{+}+v+0.42 \mathrm{MeV} \tag{a} \\ & { } _{1}^{2} \mathrm{H}+{ } _{1}^{2} \mathrm{H} \rightarrow{ } _{2}^{3} \mathrm{He}+n+3.27 \mathrm{MeV} \tag{b} \\ & { } _{1}^{2} \mathrm{H}+{ } _{1}^{2} \mathrm{H} \rightarrow{ } _{1}^{3} \mathrm{H}+{ } _{1}^{1} \mathrm{H}+4.03 \mathrm{MeV} \tag{c} \end{align*} $$
अभिक्रिया 13.13 (a) में दो प्रोटॉन मिलकर एक ड्यूट्रॉन एवं एक पॉज़िट्रॉन बनाते हैं और इस प्रक्रिया में $0.42 \mathrm{MeV}$ ऊर्जा निकलती है। अभिक्रिया [13.13 (b)] में दो ड्यूट्रॉन मिलकर हीलियम का हलका समस्थानिक बनाते हैं। अभिक्रिया [13.13 (c)] में दो ड्यूट्रॉन मिलकर एक ट्रीटियम एवं एक प्रोटॉन बनाते हैं। संलयन के लिए दो नाभिकों का इतने अधिक पास आना आवश्यक है जिससे कि उनके बीच आकर्षित लघु-परासीय नाभिकीय बल कार्य कर सके। हालाँकि दोनों नाभिक धनात्मक आवेशित हैं, अतः उनके बीच कूलॉम प्रतिकर्षण होगा। अतः इनमें कूलॉम अवरोध पार करने के लिए समुचित ऊर्जा होनी आवश्यक है। इस कूलॉम अवरोध की ऊँचाई आवेशों एवं अन्योन्यक्रिया गत नाभिकों की त्रिज्याओं पर निर्भर करती है। उदाहरण के लिए, यह आसानी से दर्शाया जा सकता है कि दो प्रोटॉनों के लिए यह अवरोधतुंगता (barrier height) लगभग 400 $\mathrm{keV}$ है। अधिक आवेशधारी नाभिकों के लिए अवरोधतुंगता और भी अधिक होगी। किसी प्रोटॉन गैस में प्रोटॉनों द्वारा कूलॉम अवरोध को पार करने के लिए पर्याप्त ऊर्जा $3 \times 10^{9} \mathrm{~K}$ ताप पर प्राप्त हो सकती है। इस ताप का परिकलन, सूत्र (3/2) $k T=K$ में $K$ का मान $400 \mathrm{keV}$ रखने पर किया जा सकता है।
ऊर्जा की उपयोगी मात्रा उत्पन्न करने के लिए नाभिकीय संलयन स्थूल-द्रव्य में होना चाहिए। आवश्यकता बस इस बात की है कि द्रव्य का ताप तब तक बढ़ाया जाए जब तक कि इसके कण मात्र अपनी तापीय गति के कारण, कूलॉम अवरोध को पार न कर जाएँ। इस प्रक्रिया को ताप नाभिकीय संलयन कहते हैं।
तारों के अंतः पटल में निर्गत ऊर्जा का स्रोत ताप नाभिकीय संलयन है। सूर्य के क्रोड का ताप लगभग $1.5 \times 10^{7} \mathrm{~K}$ है, जो कि औसत ऊर्जा के कणों के संलयन के लिए आवश्यक अनुमानित ताप से काफी कम है। स्पष्टतः सूर्य में होने वाली संलयन प्रक्रियाओं में औसत ऊर्जाओं से बहुत अधिक ऊर्जा वाले प्रोटॉन भाग लेते हैं। अतः ताप नाभिकीय संलयन बहुत उच्च ताप एवं दाब पर ही हो सकता है और ताप एवं दाब की ऐसी स्थितियाँ केवल तारों के अंतरंग में ही उपलब्ध हैं।
तारों में ऊर्जा जनन ताप-नाभिकीय संलयन के माध्यम से ही होता है। सूर्य में होने वाली संलयन अभिक्रिया एक बहुचरण प्रक्रिया है जिसमें हाइड्रोजन हीलियम में बदलती है। अतः सूर्य के क्रोड में हाइड्रोजन ईंधन है। प्रोटॉन-प्रोटॉन $(p-p)$ चक्र जिसके द्वारा यह घटित होता है, निम्नलिखित अभिक्रियाओं के समुच्चय द्वारा व्यक्त किया जा सकता है।
$$ \begin{align*} & _{1}^{1} \mathrm{H}+ _{1}^{1} \mathrm{H} \rightarrow _{1}^{2} \mathrm{H}+e^{+}+v+0.42 \mathrm{MeV} \tag{i}\\ & e^{+}+e^{-} \rightarrow \gamma+\gamma+1.02 \mathrm{MeV} \tag{ii}\\ & _{1}^{2} \mathrm{H}+ _{1}^{1} \mathrm{H} \rightarrow _{2}^{3} \mathrm{He}^{+} \gamma+5.49 \mathrm{MeV} \tag{iii}\\ & _{2}^{3} \mathrm{He}+ _{2}^{3} \mathrm{He} \rightarrow _{2}^{4} \mathrm{He}+ _{1}^{1} \mathrm{H}+ _{1}^{1} \mathrm{H}+12.86 \mathrm{MeV} \quad \text { (iv) } \tag{13.14} \end{align*} $$
चौथी अभिक्रिया होने के लिए यह आवश्यक है कि पहली तीन अभिक्रियाएँ दो-दो बार हों और इस प्रकार दो हलके हीलियम नाभिक मिलकर सामान्य हीलियम का एक नाभिक बनाएँ। अगर हम 2 (i) + 2(ii) + 2(iii) +(iv) पर विचार करें तो कुल प्रभाव होगा,
$$ \begin{equation*} 4{ } _{1}^{1} \mathrm{H}+2 e^{-} \rightarrow{ } _{2}^{4} \mathrm{He}+2 v+6 \gamma+26.7 \mathrm{MeV} \end{equation*} $$
या
$\left(4{ } _{1}^{1} \mathrm{H}+4 e^{-}\right) \rightarrow\left({ } _{2}^{4} \mathrm{He}+2 e^{-}\right)+2 v+6 \gamma+26.7 \mathrm{MeV} \quad {(13.15)} $
अतः चार हाइड्रोजन परमाणु मिलकर एक ${ } _{2}^{4} \mathrm{He}$ परमाणु बनाते हैं और इस प्रक्रिया में 26.7 MeV ऊर्जा निर्मुक्त होती है।
किसी तारे के अंतः पटल में केवल हीलियम का ही निर्माण नहीं होता। जैसे-जैसे क्रोड में हाइड्रोजन (हीलियम में बदल कर) कम होती है, क्रोड ठंडा होने लगता है। इससे तारा अपने गुरुत्व के कारण संकुचित होता है जिससे क्रोड का ताप बढ़ जाता है। यदि क्रोड का ताप $10^{8} \mathrm{~K}$ तक बढ़ जाये तो संलयन की क्रिया पुनः होने लगेगी, पर इस बार हीलियम कार्बन में परिवर्तित होगी। इस प्रकार की प्रक्रिया में संलयन द्वारा बड़े द्रव्यमान संख्या वाले तत्वों का जनन हो सकता है। परन्तु बंधन-ऊर्जा वक्र (चित्र 13.1) के शीर्ष पर स्थित भारी तत्वों का निर्माण इस प्रक्रिया से नहीं हो सकता।
सूर्य की आयु लगभग $5 \times 10^{9}$ वर्ष है तथा यह अनुमान लगाया जाता है कि सूर्य को और 5 अरब वर्षों तक बनाये रखने के लिए आवश्यक हाइड्रोजन उपलब्ध है। इसके पश्चात्, हाइड्रोजन का जलना रुक जाएगा तथा सूर्य ठंडा होने लगेगा। इससे सूर्य अपने गुरुत्व के कारण संकुचित होने लगेगा जिससे सूर्य की क्रोड का ताप बढ़ेगा। इससे सूर्य का बाहरी आवरण फैलने लगेगा जिससे सूर्य एक लाल दानव (red giant) में परिवर्तित हो जाएगा।
13.7.3 नियंत्रित ताप नाभिकीय संलयन
किसी तारे में होने वाली ताप-नाभिकीय प्रक्रिया का रूपांतरण एक ताप-नाभिकीय युक्ति से किया जाता है। किसी नियंत्रित संलयन रिएक्टर का उद्देश्य नाभिकीय ईंधन को $10^{8} \mathrm{~K}$ ताप के परास में गरम कर स्थायी शक्ति जनन करना होता है। इस ताप पर ईंधन धनात्मक आयनों तथा इलेक्ट्रॉनों (प्लाज्मा) का मिश्रण होता है। चूंकि इस ताप को बनाये रखने के लिए कोई वस्तु उपलब्ध नहीं है, अतः इस ताप को बनाये रखना एक चुनौती है। भारत सहित विश्व के कई देश इस संबंध में युक्तियों के विकास में प्रयासरत हैं। इन प्रयासों के सफल होने पर, संभावना है कि संलयन रिएक्टर समाज को लगभग अनियमित शक्ति प्रदान कर सकेंगे।
उदाहरण 13.4 निम्नलिखित प्रश्नों के उत्तर दीजिए :
(a) क्या नाभिकीय अभिक्रियाओं के समीकरण (जैसा कि भाग 13.7 में दिए हैं) रासायनिक समीकरण (उदाहरण के लिए $2 \mathrm{H} _{2}+\mathrm{O} _{2} \rightarrow 2 \mathrm{H} _{2} \mathrm{O}$ ) के रूप में संतुलित हैं? यदि नहीं तो किस रूप में दोनों ओर समीकरण संतुलित होंगे।
(b) यदि प्रोटॉनों और न्यूट्रॉनों की संख्या, प्रत्येक नाभिकीय अभिक्रिया में संरक्षित रहती है, किसी नाभिकीय अभिक्रिया में किस प्रकार द्रव्यमान, ऊर्जा में (या इसका उलटा) बदलता है?
(c) सामान्य विचार है कि केवल नाभिकीय क्रिया में ही द्रव्यमान-ऊर्जा एक दूसरे में बदले जा सकते हैं जबकि रासायनिक क्रिया में यह कभी नहीं होता है। यह कहना असत्य है। समझाइए।
हल
(a) किसी रासायनिक अभिक्रिया के संतुलित होने की स्थिति में कि अभिक्रिया के समीकरण के दोनों ओर सभी तत्वों के परमाणुओं की संख्या समान होती है। किसी रासायनिक अभिक्रिया में परमाणुओं के मूल संयोजन में परिवर्तन मात्र होता है। परंतु किसी नाभिकीय अभिक्रिया में तत्वांतरण भी हो सकता है। अतः नाभिकीय अभिक्रिया में प्रत्येक तत्व के परमाणुओं की संख्या का संरक्षित होना आवश्यक नहीं है। हालाँकि, नाभिकीय अभिक्रिया में प्रोटॉनों तथा न्यूट्रॉनों दोनों की संख्याएँ पृथक रूप से संरक्षित रहती हैं। [वास्तव में, अत्यधिक ऊर्जा के परिमंडल में यह कथन भी सुनिश्चित सत्य नहीं है। वस्तुतः कुल आवेश तथा कुल ‘बेरियॉन संख्या’ संरक्षित रहते हैं। हम इस विषय पर यहाँ आगे और विचार नहीं करेंगे।] नाभिकीय अभिक्रियाओं [जैसे कि समीकरण (13.10)] में समीकरण के दोनों ओर प्रोटॉनों की संख्याएँ तथा न्यूट्रॉनों की संख्याएँ पृथक-पृथक रूप में समान हैं।
(b) हम जानते हैं कि नाभिक की बंधन-ऊर्जा का नाभिक के द्रव्यमान में ऋणात्मक योगदान (द्रव्यमान क्षति) होता है। चूँकि किसी नाभिकीय अभिक्रिया में प्रोटॉनों तथा न्यूट्रॉनों दोनों की संख्याएँ संरक्षित रहती हैं, अतः अभिक्रिया के दोनों ओर न्यूट्रॉनों तथा प्रोटॉनों का कुल विराम द्रव्यमान (rest mass) समान होता है। परंतु किसी नाभिकीय अभिक्रिया में बायीं ओर के नाभिकों की कुल बंधन-ऊर्जा अभिक्रिया के दायीं ओर के नाभिकों की कुल बंधन-ऊर्जा के समान होना आवश्यक नहीं है। इन बंधन-ऊर्जाओं का अंतर नाभिकीय अभिक्रिया में अवशोषित होने वाली अथवा निकलने वाली ऊर्जा के रूप में प्रकट होता है। चूँकि बंधन-ऊर्जा द्रव्यमान में योगदान देती है, अतः हम कहते हैं कि किसी नाभिकीय अभिक्रिया में दोनों ओर के कुल द्रव्यमानों का अंतर ऊर्जा के रूप में परिवर्तित हो जाता है (या इसके विपरीत ऊर्जा कुल द्रव्यमान के अंतर के रूप में परिवर्तित हो जाती है।)। इस रूप में नाभिकीय अभिक्रिया द्रव्यमान-ऊर्जा के अंतःरूपांतरण का एक उदाहरण है।
(c) द्रव्यमान-ऊर्जा के अंतःरूपांतरण की दृष्टि से, सिद्धांततः एक रासायनिक अभिक्रिया नाभिकीय अभिक्रिया के समरूप है। किसी रासायनिक अभिक्रिया में अवशोषित अथवा निकलने वाली ऊर्जा अभिक्रिया के दोनों ओर के परमाणुओं तथा अणुओं की रासायनिक (नाभिकीय नहीं) बंधन ऊर्जाओं के अंतर को स्पष्ट करती है। चूँकि रासायनिक बंधन-ऊर्जा भी किसी परमाणु अथवा अणु के कुल द्रव्यमान में ऋणात्मक योगदान (द्रव्यमान-क्षति) को दर्शाती है, इसलिए हम निष्कर्ष निकाल सकते हैं कि किसी रासायनिक अभिक्रिया में दोनों ओर के परमाणुओं तथा अणुओं के कुल द्रव्यमानों का अंतर ऊर्जा के रूप में परिवर्तित हो जाता है या ऊर्जा कुल द्रव्यमानों के अंतर के रूप में परिवर्तित होकर समाविष्ट हो जाती है। हालाँकि, किसी रासायनिक अभिक्रिया में संलग्न द्रव्यमान क्षतियों का परिमाण नाभिकीय क्रिया में संलग्न द्रव्यमान क्षतियों की तुलना में कई लाख गुना कम होता है। सामान्य रूप में यही धारणा है कि ऐसा प्रतीत होता है (जो सत्य नहीं है) कि किसी रासायनिक अभिक्रिया में कोई द्रव्यमान-ऊर्जा का अंतःरूपांतरण नहीं होता।
सारांश
1. प्रत्येक परमाणु में एक नाभिक होता है। नाभिक धनावेशित होता है। नाभिक की त्रिज्या परमाणु की त्रिज्या से $10^{4}$ गुना छोटी होती है। परमाणु का $99.9 %$ से अधिक द्रव्यमान नाभिक में समाहित होता है।
2. परमाणुओं के स्तर पर द्रव्यमान, परमाणु द्रव्यमान इकाइयों $(\mathrm{u})$ में मापे जाते हैं। परिभाषा के अनुसार 1 परमाणु द्रव्यमान इकाई $(1 \mathrm{u}),{ }^{12} \mathrm{C}$ के एक परमाणु के द्रव्यमान के $1 / 12$ वें भाग के बराबर होती है। $\mathrm{lu}=1.660563 \times 10^{-27} \mathrm{~kg}$
3. नाभिक में एक निरावेशित कण होता है जिसे न्यूट्रॉन कहते हैं। इसका द्रव्यमान लगभग उतना ही होता है जितना प्रोटॉन का।
4. किसी तत्व की परमाणु संख्या $Z$ उस तत्व के परमाण्विक नाभिक में प्रोटॉनों की संख्या होती है। द्रव्यमान संख्या $A$, परमाण्विक नाभिक में प्रोटॉनों एवं न्यूट्रॉनों की कुल संख्या के बराबर होती है; $A=Z+N$; यहाँ $N$ नाभिक में विद्यमान न्यूट्रॉनों की संख्या निर्दिष्ट करता है। एक नाभिकीय प्रजाति अथवा एक न्यूक्लाइड (nuclide) को ${ } _{Z}^{A} X$ द्वारा व्यक्त करते हैं, जहाँ $X$ उस रासायनिक प्रजाति का संकेत है।
समान परमाणु संख्या $Z$, परंतु विभिन्न न्यूट्रॉन संख्या $N$ के न्यूक्लाइड समस्थानिक कहलाते हैं। वे न्यूक्लाइड जिनके लिए द्रव्यमान संख्या $A$ का मान समान हो सममारिक तथा वे जिनके लिए न्यूट्रॉन संख्या $N$ का मान समान हो समन्युट्रॉनिक कहलाते हैं। अधिकांश तत्व दो या अधिक समस्थानिकों के मिश्रण होते हैं। तत्व का परमाणु द्रव्यमान उसके समस्थानिकों के द्रव्यमानों का भारित माध्य होता है। जहाँ भार से तात्पर्य समस्थानिकों की सापेक्ष बहुलता से है।
5. नाभिक को गोलाकार मानकर उसकी एक त्रिज्या निर्धारित की जा सकती है। इलेक्ट्रॉन प्रकीर्णन प्रयोगों के आधार पर नाभिक की त्रिज्या ज्ञात की जा सकती है। यह पाया गया है कि नाभिकों की त्रिज्या निम्नलिखित सूत्र से व्यक्त होती है।
$R=R _{0} A^{1 / 3}$,
जहाँ $R _{0}=$ एक नियतांक $=1.2 \mathrm{fm}$. यह दर्शाता है कि नाभिक का घनत्व $A$ पर निर्भर नहीं करता और यह $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$ की कोटि का होता है।
6. नाभिक के अंदर न्यूट्रॉन एवं प्रोटॉन अल्प परासी प्रबल नाभिकीय बल द्वारा बँधे होते हैं। नाभिकीय बल न्यूट्रॉन एवं प्रोटॉन में विभेद नहीं करता।
7. नाभिकीय द्रव्यमान $M$ हमेशा अपने अवयवों के कुल द्रव्यमान $\Sigma m$ से कम होता है। नाभिक और इसके अवयवों के द्रव्यमानों का अंतर द्रव्यमान क्षति कहलाता है।
$\Delta M=\left(Z m _{p}+(A-Z) m _{n}\right)-M$
आइंसटाइन का द्रव्यमान-ऊर्जा सिद्धांत $E=m c^{2}$ इस द्रव्यमान अंतर को ऊर्जा के रूप में इस प्रकार व्यक्त करता है :
$\Delta E _{b}=\Delta M c^{2}$
ऊर्जा $\Delta E _{b}$ नाभिक की बंधन-ऊर्जा कहलाती है। $A=30$ से लेकर $A=170$ द्रव्यमान संख्या के परास में प्रति न्यूक्लियॉन बंधन-ऊर्जा का मान लगभग नियत है। यह लगभग 8 $\mathrm{MeV}$ प्रति न्यूक्लियॉन है।
8. नाभिकीय प्रक्रियाओं से जुड़ी ऊर्जा रासायनिक प्रक्रियाओं की तुलना में लगभग दस लाख गुना अधिक होती है।
9. किसी नाभिकीय प्रक्रिया का $Q$-मान है :
$Q=$ अंतिम गतिज ऊर्जा - प्रारंभिक गतिज ऊर्जा
द्रव्यमान-ऊर्जा संरक्षण के कारण, कह सकते हैं कि
$Q=$ (प्रारंभिक द्रव्यमानों का योग - अंतिम द्रव्यमानों का योग) $c^{2}$
10. रेडियोऐक्टिवता वह परिघटना है जिसमें दी गई प्रजाति के नाभिक, $\alpha$ या $\beta$ या $\gamma$ किरणें उत्सर्जित करके रूपांतरित हो जाती हैं, जहाँ $\alpha$-किरणें हीलियम के नाभिक हैं; $\beta$-किरणें इलैक्ट्रॉन हैं तथा $\gamma$-किरणें $X$-किरणों, से भी छोटी तरंगदैर्घ्य के विद्युत चुंबकीय विकिरण हैं।
11. जब कम दृढ़ता से बंधित नाभिक अधिक दृढ़ता से बंधित नाभिक में परिवर्तित होता है तो ऊर्जा विमुक्त होती है। विखंडन में एक भारी नाभिक दो छोटे खंडों में विभाजित हो जाता है उदाहरणार्थ, ${ } _{92}^{235} \mathrm{U}+{ } _{0}^{1} \mathrm{n} \rightarrow{ } _{51}^{133} \mathrm{Sb}+{ } _{41}^{99} \mathrm{Nb}+4{ } _{0}^{1} \mathrm{n}$
12. संलयन में हलके नाभिक मिलकर एक बड़ा नाभिक बनाते हैं। सूर्य सहित सभी तारों में हाइड्रोजन नाभिकों का हीलियम नाभिकों में संलयन ऊर्जा का स्रोत है।
भौतिक राशि | प्रतीक | विमाएँ | मात्रक | टिप्पणी |
---|---|---|---|---|
परमाणु द्रव्यमान इकाई | [M] | u | परमाणु या नाभिकीय द्रव्यमानों को व्यक्त करने के लिए द्रव्यमान मात्रक। एक परमाणु द्रव्यमान इकाई, ${ }^{12} \mathrm{C}$ परमाणु के द्रव्यमान के के $1 / 12$ वें भाग के बराबर है। | |
विघटन या क्षय नियतांक | $\lambda$ | $\left[\mathrm{T}^{-1}\right]$ | $\mathrm{s}^{-1}$ | |
अर्धायु | $T _{1 / 2}$ | $[\mathrm{~T}]$ | $\mathrm{s}$ | वह समय जिसमें रेडियोऐक्टिव नमूने के नाभिकों की संख्या प्रारंभिक संख्या की आधी रह जाती है। |
रेडियोऐक्टिव नमूने की ऐक्टिवता | $R$ | $\left[\mathrm{~T}^{-1}\right]$ | एक रेडियोऐक्टिव स्रोत की ऐक्टिवता की माप। |
विचारणीय विषय
1. नाभिकीय द्रव्य का घनत्व नाभिक के साइज़ पर निर्भर नहीं करता है। परमाणु द्रव्यमान घनत्व इस नियम का पालन नहीं करता।
2. इलेक्ट्रॉन प्रकीर्णन द्वारा ज्ञात की गई नाभिक की त्रिज्या का मान ऐल्फ़ा कण प्रकीर्णन के आधार पर ज्ञात की गई त्रिज्या से कुछ भिन्न पाया गया है। ऐसा इसलिए है, क्योंकि, इलेक्ट्रॉन प्रकीर्णन नाभिक के आवेश वितरण से प्रभावित होता है जबकि ऐल्फ़ा कण और उस जैसे अन्य कण नाभिकीय द्रव्य से प्रभावित होते हैं।
3. आइंस्टाइन द्वारा द्रव्यमान एवं ऊर्जा की समतुल्यता $E=m c^{2}$ प्रदर्शित किए जाने के बाद अब हम द्रव्यमान संरक्षण एवं ऊर्जा संरक्षण के पृथक नियमों की बात नहीं करते, वरन द्रव्यमान-ऊर्जा संरक्षण के एक एकीकृत नियम की बात करते हैं। प्रकृति में यह नियम वस्तुत: प्रभावी है तथा इसका विश्वसनीय प्रमाण नाभिकीय भौतिकी में पाया जाता है। द्रव्यमान एवं ऊर्जा की समतुल्यता के नियम, नाभिकीय ऊर्जा एवं उसके शक्ति स्रोत के रूप में उपयोग का आधार है। इस नियम का उपयोग करके, किसी नाभिकीय प्रक्रिया (क्षय अथवा अभिक्रिया) के $Q$-मान को प्रारंभिक एवं अंतिम द्रव्यमानों के पदों में व्यक्त किया जा सकता है।
4. (प्रति न्यूक्लियॉन) बंधन-ऊर्जा वक्र की प्रकृति यह दर्शाती है कि ऊष्माक्षेपी नाभिकीय अभिक्रियाएँ संभव हैं जो दो हलके नाभिकों के संलयन से या एक भारी नाभिक के माध्यमिक द्रव्यमान वाले दो नाभिकों के विखंडन में देखी जा सकती हैं।
5. संलयन के लिए हलके नाभिकों में पर्याप्त प्रारंभिक ऊर्जा होनी चाहिए ताकि वे कूलॉम विभव अवरोध को पार कर सकें। यही कारण है कि संलयन के लिए अत्युच्च ताप की आवश्यकता होती है।
6. यद्यपि (प्रति न्यूक्लियॉन) बंधन-ऊर्जा वक्र संतत है और इसमें धीरे-धीरे ही परिवर्तन आता है परंतु इसमें ${ }^{4} \mathrm{He},{ }^{16} \mathrm{O}$ आदि न्यूक्लाइडों के लिए शिखर होते हैं। यह परमाणु की तरह ही नाभिक में भी शैल संरचना की विद्यमानता का प्रमाण माना जाता है।
7. ध्यान दें कि इलेक्ट्रॉन-पॉजिट्रॉन एक कण-प्रतिकण युग्म है। इनके द्रव्यमान एकसमान हैं। इनके आवेशों के परिमाण समान परंतु विपरीत प्रकृति के होते हैं। (यह पाया गया है कि जब एक इलेक्ट्रॉन एवं एक पॉजिट्रॉन एक साथ आते हैं तो एक-दूसरे का विलोपन (annihilation) कर देते हैं और $\gamma$-किरण फोटॉनों के रूप में ऊर्जा प्रदान करते हैं।)
8. रेडियोऐक्टिवता नाभिक के अस्थायित्व का संसूचन है। हलके नाभिकों में स्थायित्व के लिए न्यूट्रॉनो एवं प्रोट्रॉनों की संख्या का अनुपात लगभग $1: 1$ होना चाहिए। भारी नाभिकों के स्थायित्व के लिए यह अनुपात $3: 2$ होना चाहिए। (प्रोटॉनों के मध्य लगने वाले प्रतिकर्षण के प्रभाव के निरसन के लिए अधिक न्यूट्रॉनों की आवश्यकता होगी।) इन स्थायित्व अनुपातों को न रखने वाले नाभिक अस्थायी होते हैं। इन नाभिकों में न्यूट्रॉनों अथवा प्रोटॉनों की अधिकता होती है। वास्तव में, (सभी तत्वों के) ज्ञात समस्थानिकों के मात्र लगभग $10 %$ ही स्थायी हैं। अन्य नाभिक कृत्रिम रूप से प्रयोगशाला में बनाये जाते हैं (ये स्थायी नाभिकीय प्रजातियों पर $\alpha, \mathrm{p}, \mathrm{d}, \mathrm{n}$ अथवा अन्य कणों के प्रघात द्वारा बनाये जाते हैं।)। अस्थायी समस्थानिक विश्व में पदार्थों के खगोलीय प्रेक्षणों में भी अवलोकित किए जाते हैं।
अभ्यास
अभ्यास के प्रश्न हल करने में निम्नलिखित आँकड़े आपके लिए उपयोगी सिद्ध होंगे :
$$ \begin{aligned} &e=1.6 \times 10^{-19}\text{C} & & N= 6.023 \times 10 ^{23} \text{प्रति मोल}\\ &\frac{1}{(4 \pi \varepsilon _0)}=9 \times 10 ^9 \text{N} m ^2/C ^2 && k=1.381 \times 10 ^{-23} \text{J} k ^{-1} \\ &1 \text{MeV}=1.6 \times 10 ^{-13} \text{J} && 1 \text{u} = 931.5 \text{MeV}/c ^2 \\ &1 \text{ year} = 3.154 \times 10 ^7 \text{s} \\ & \text{m}_H=4.002603 \text{ u} && \text{m}_n=1.007825 \text{u} \\ & m( ^4_2\text{He})=4.002603 u && \text{m}_e=0.000548 \text{u} \end{aligned} $$
13.1 नाइट्रोजन नाभिक $\left({ } _{7}^{14} \mathrm{~N}\right)$ की बंधन-ऊर्जा $\mathrm{MeV}$ में ज्ञात कीजिए $m _{\mathrm{N}}=14.00307 \mathrm{u}$
Show Answer
# Content Missing13.2 निम्नलिखित आँकड़ों के आधार पर ${ } _{26}^{56} \mathrm{Fe}$ एवं ${ } _{83}^{209} \mathrm{Bi}$ नाभिकों की बंधन-ऊर्जा $\mathrm{MeV}$ में ज्ञात कीजिए।
$$ m( _{26} ^{56} \mathrm{Fe})=55.934939 \mathrm{u} \quad m( _{83} ^{209} \mathrm{Bi})=208.980388 \mathrm{u} $$
Show Answer
# Content Missing13.3 एक दिए गए सिक्के का द्रव्यमान $3.0 \mathrm{~g}$ है। उस ऊर्जा की गणना कीजिए जो इस सिक्के के सभी न्यूट्रॉनों एवं प्रोटॉनों को एक-दूसरे से अलग करने के लिए आवश्यक हो। सरलता के लिए मान लीजिए कि सिक्का पूर्णतः ${ } _{29}^{63} \mathrm{Cu}$ परमाणुओं का बना है $\left({ } _{29}^{63} \mathrm{Cu}\right.$ का द्रव्यमान $=$ $62.92960 \mathrm{u})$ ।
Show Answer
# Content Missing13.4 स्वर्ण के समस्थानिक ${ } _{79}^{197} \mathrm{Au}$ एवं रजत के समस्थानिक ${ } _{47}^{107} \mathrm{Ag}$ की नाभिकीय त्रिज्या के अनुपात का सन्निकट मान ज्ञात कीजिए।
Show Answer
# Content Missing13.5 किसी नाभिकीय अभिक्रिया $A+b \rightarrow C+d$ का $Q$-मान निम्नलिखित समीकरण द्वारा परिभाषित होता है,
$Q=\left[m _{A}+m _{b}-m _{C}-m _{d}\right] c^{2}$
जहाँ दिए गए द्रव्यमान, नाभिकीय विराम द्रव्यमान (rest mass) हैं। दिए गए आँकड़ों के आधार पर बताइए कि निम्नलिखित अभिक्रियाएँ ऊष्माक्षेपी हैं या ऊष्माशोषी।
(i) ${ } _{1}^{1} \mathrm{H}+{ } _{1}^{3} \mathrm{H} \rightarrow{ } _{1}^{2} \mathrm{H}+{ } _{1}^{2} \mathrm{H}$
(ii) ${ } _{6}^{12} \mathrm{C}+{ } _{6}^{12} \mathrm{C} \rightarrow{ } _{10}^{20} \mathrm{Ne}+{ } _{2}^{4} \mathrm{He}$
दिए गए परमाणु द्रव्यमान इस प्रकार हैं :
$m\left({ } _{1}^{2} \mathrm{H}\right)=2.014102 \mathrm{u}$
$m\left({ } _{1}^{3} \mathrm{H}\right)=3.016049 \mathrm{u}$
$m\left({ } _{6}^{12} \mathrm{C}\right)=12.000000 \mathrm{u}$
$m\left({ } _{10}^{20} \mathrm{Ne}\right)=19.992439 \mathrm{u}$
Show Answer
# Content Missing13.6 माना कि हम ${ } _{26}^{56} \mathrm{Fe}$ नाभिक के दो समान अवयवों ${ } _{13}^{28} \mathrm{Al}$ में विखंडन पर विचार करें। क्या ऊर्जा की दृष्टि से यह विखंडन संभव है? इस प्रक्रम का $Q$-मान ज्ञात करके अपना तर्क प्रस्तुत करें। दिया है : $m\left({ } _{26}^{56} \mathrm{Fe}\right)=55.93494 \mathrm{u}$ एवं $m\left({ } _{13}^{28} \mathrm{Al}\right)=27.98191 \mathrm{u}$
Show Answer
# Content Missing13.7 ${ } _{94}^{239} \mathrm{Pu}$ के विखंडन गुण बहुत कुछ ${ } _{92}^{235} \mathrm{U}$ से मिलते-जुलते हैं। प्रति विखंडन विमुक्त औसत ऊर्जा $180 \mathrm{MeV}$ है। यदि $1 \mathrm{~kg}$ शुद्ध ${ } _{94}^{239} \mathrm{Pu}$ के सभी परमाणु विखंडित हों तो कितनी $\mathrm{MeV}$ ऊर्जा विमुक्त होगी?
Show Answer
# Content Missing13.8 $2 .0 \mathrm{~kg}$ ड्यूटीरियम के संलयन से एक 100 वाट का विद्युत लैंप कितनी देर प्रकाशित रखा जा सकता है? संलयन अभिक्रिया निम्नवत ली जा सकती है
$${ } _{1}^{2} \mathrm{H}+{ } _{1}^{2} \mathrm{H} \rightarrow{ } _{2}^{3} \mathrm{He}+\mathrm{n}+3.27 \mathrm{MeV}$$
Show Answer
# Content Missing13.9 दो ड्यूट्रॉनों के आमने-सामने की टक्कर के लिए कूलॉम अवरोध की ऊँचाई ज्ञात कीजिए। (संकेत-कूलॉम अवरोध की ऊँचाई का मान इन ड्यूट्रॉन के बीच लगने वाले उस कूलॉम प्रतिकर्षण बल के बराबर होता है जो एक-दूसरे को संपर्क में रखे जाने पर उनके बीच आरोपित होता है। यह मान सकते हैं कि ड्यूट्रॉन $2.0 \mathrm{fm}$ प्रभावी त्रिज्या वाले दृढ़ गोले हैं।)
Show Answer
# Content Missing13.10 समीकरण $R=R _{0} A^{1 / 3}$ के आधार पर, दर्शाइए कि नाभिकीय द्रव्य का घनत्व लगभग अचर है (अर्थात $A$ पर निर्भर नहीं करता है)। यहाँ $R _{0}$ एक नियतांक है एवं $A$ नाभिक की द्रव्यमान संख्या है।