Chapter-12 Atoms

12.1 INTRODUCTION

By the nineteenth century, enough evidence had accumulated in favour of atomic hypothesis of matter. In 1897, the experiments on electric discharge through gases carried out by the English physicist J. J. Thomson (1856 1940) revealed that atoms of different elements contain negatively charged constituents (electrons) that are identical for all atoms. However, atoms on a whole are electrically neutral. Therefore, an atom must also contain some positive charge to neutralise the negative charge of the electrons. But what is the arrangement of the positive charge and the electrons inside the atom? In other words, what is the structure of an atom?

The first model of atom was proposed by J. J. Thomson in 1898. According to this model, the positive charge of the atom is uniformly distributed throughout the volume of the atom and the negatively charged electrons are embedded in it like seeds in a watermelon. This model was picturesquely called plum pudding model of the atom. However subsequent studies on atoms, as described in this chapter, showed that the distribution of the electrons and positive charges are very different from that proposed in this model.

We know that condensed matter (solids and liquids) and dense gases at all temperatures emit electromagnetic radiation in which a continuous distribution of several wavelengths is present, though with different intensities. This radiation is considered to be due to oscillations of atoms and molecules, governed by the interaction of each atom or molecule with its neighbours. In contrast, light emitted from rarefied gases heated in a flame, or excited electrically in a glow tube such as the familiar neon sign or mercury vapour light has only certain discrete wavelengths. The spectrum appears as a series of bright lines. In such gases, the average spacing between atoms is large. Hence, the radiation emitted can be considered due to individual atoms rather than because of interactions between atoms or molecules.

In the early nineteenth century it was also established that each element is associated with a characteristic spectrum of radiation, for example, hydrogen always gives a set of lines with fixed relative position between the lines. This fact suggested an intimate relationship between the internal structure of an atom and the spectrum of radiation emitted by it. In 1885, Johann Jakob Balmer (1825 - 1898) obtained a simple empirical formula which gave the wavelengths of a group of lines emitted by atomic hydrogen. Since hydrogen is simplest of the elements known, we shall consider its spectrum in detail in this chapter.

Ernst Rutherford (1871-1937), a former research student of J. J. Thomson, was engaged in experiments on $\alpha$-particles emitted by some radioactive elements. In 1906, he proposed a classic experiment of scattering of these $\alpha$-particles by atoms to investigate the atomic structure. This experiment was later performed around 1911 by Hans Geiger (1882-1945) and Ernst Marsden (1889-1970, who was 20 year-old student and had not yet earned his bachelor’s degree). The details are discussed in Section 12.2. The explanation of the results led to the birth of Rutherford’s planetary model of atom (also called the nuclear model of the atom). According to this the entire positive charge and most of the mass of the atom is concentrated in a small volume called the nucleus with electrons revolving around the nucleus just as planets revolve around the sun.

Ernst Rutherford (1871 – 1937)

Ernst Rutherford (1871 – 1937) New Zealand born, British physicist who did pioneering work on radioactive radiation. He discovered alpha-rays and beta-rays. Along with Federick Soddy, he created the modern theory of radioactivity. He studied the ‘emanation’ of thorium and discovered a new noble gas, an isotope of radon, now known as thoron. By scattering alpha-rays from the metal foils, he discovered the atomic nucleus and proposed the plenatery model of the atom. He also estimated the approximate size of the nucleus.

Rutherford’s nuclear model was a major step towards how we see the atom today. However, it could not explain why atoms emit light of only discrete wavelengths. How could an atom as simple as hydrogen, consisting of a single electron and a single proton, emit a complex spectrum of specific wavelengths? In the classical picture of an atom, the electron revolves round the nucleus much like the way a planet revolves round the sun. However, we shall see that there are some serious difficulties in accepting such a model.

12.2 ALPHA-PARTICLE SCATTERING AND RUTHERFORD’S NUCLEAR MODEL OF ATOM

At the suggestion of Ernst Rutherford, in 1911, H. Geiger and E. Marsden performed some experiments. In one of their experiments, as shown in

FIGURE 12.1 Geiger-Marsden scattering experiment. The entire apparatus is placed in a vacuum chamber (not shown in this figure).

Fig. 12.1, they directed a beam of $5.5 \mathrm{MeV} \alpha$-particles emitted from a ${83}^{214} \mathrm{Bi}$ radioactive source at a thin metal foil made of gold. Figure 12.2 shows a schematic diagram of this experiment. Alpha-particles emitted by a ${83}^{214} \mathrm{Bi}$ radioactive source were collimated into a narrow beam by their passage through lead bricks. The beam was allowed to fall on a thin foil of gold of thickness $2.1 \times 10^{-7} \mathrm{~m}$. The scattered alpha-particles were observed through a rotatable detector consisting of zinc sulphide screen and a microscope. The scattered alpha-particles on striking the screen produced brief light flashes or scintillations. These flashes may be viewed through a microscope and the distribution of the number of scattered particles may be studied as a function of angle of scattering.

FIGURE 12.2 Schematic arrangement of the Geiger-Marsden experiment.

A typical graph of the total number of $\alpha$-particles scattered at different angles, in a given interval of time, is shown in Fig. 12.3. The dots in this figure represent the data points and the solid curve is the theoretical prediction based on the assumption that the target atom has a small, dense, positively charged nucleus. Many of the $\alpha$-particles pass through the foil. It means that they do not suffer any collisions. Only about $0.14 %$ of the incident $\alpha$-particles scatter by more than $1^{\circ}$; and about 1 in 8000 deflect by more than $90^{\circ}$. Rutherford argued that, to deflect the $\alpha$-particle backwards, it must experience a large repulsive force. This force could be provided if the greater part of the mass of the atom and its positive charge were concentrated tightly at its centre. Then the incoming $\alpha$-particle could get very close to the positive charge without penetrating it, and such a close encounter would result in a large deflection. This agreement supported the hypothesis of the nuclear atom. This is why Rutherford is credited with the discovery of the nucleus.

In Rutherford’s nuclear model of the atom, the entire positive charge and most of the mass of the atom are concentrated in the nucleus with the electrons some distance away. The electrons would be moving in orbits about the nucleus just as the planets do around the sun. Rutherford’s experiments suggested the size of the nucleus to be about $10^{-15} \mathrm{~m}$ to $10^{-14} \mathrm{~m}$. From kinetic theory, the size of an atom was known to be $10^{-10} \mathrm{~m}$,

FIGURE 12.3 Experimental data points (shown by dots) on scattering of $\alpha$-particles by a thin foil at different angles obtained by Geiger and Marsden using the setup shown in Figs. 12.1 and 12.2. Rutherford’s nuclear model predicts the solid curve which is seen to be in good agreement with experiment.

about 10,000 to 100,000 times larger than the size of the nucleus (see Chapter 10, Section 10.6 in Class XI Physics textbook). Thus, the electrons would seem to be at a distance from the nucleus of about 10,000 to 100,000 times the size of the nucleus itself. Thus, most of an atom is empty space. With the atom being largely empty space, it is easy to see why most $\alpha$-particles go right through a thin metal foil. However, when $\alpha$-particle happens to come near a nucleus, the intense electric field there scatters it through a large angle. The atomic electrons, being so light, do not appreciably affect the $\alpha$-particles.

The scattering data shown in Fig. 12.3 can be analysed by employing Rutherford’s nuclear model of the atom. As the gold foil is very thin, it can be assumed that $\alpha$-particles will suffer not more than one scattering during their passage through it. Therefore, computation of the trajectory of an alpha-particle scattered by a single nucleus is enough. Alphaparticles are nuclei of helium atoms and, therefore, carry two units, $2 e$, of positive charge and have the mass of the helium atom. The charge of the gold nucleus is $Z e$, where $Z$ is the atomic number of the atom; for gold $Z=79$. Since the nucleus of gold is about 50 times heavier than an $\alpha$-particle, it is reasonable to assume that it remains stationary throughout the scattering process. Under these assumptions, the trajectory of an alpha-particle can be computed employing Newton’s second law of motion and the Coulomb’s law for electrostatic force of repulsion between the alpha-particle and the positively charged nucleus. The magnitude of this force is:

$$ \begin{equation*} F=\frac{1}{4 \pi \varepsilon_{0}} \frac{(2 e)(Z e)}{r^{2}} \tag{12.1} \end{equation*} $$

where $r$ is the distance between the $\alpha$-particle and the nucleus. The force is directed along the line joining the $\alpha$-particle and the nucleus. The magnitude and direction of the force on an $\alpha$-particle continuously changes as it approaches the nucleus and recedes away from it.

12.2.1 Alpha-particle trajectory

The trajectory traced by an $\alpha$-particle depends on the impact parameter, $b$ of collision. The impact parameter is the perpendicular distance of the initial velocity vector of the $\alpha$-particle from the centre of the nucleus (Fig. 12.4). A given beam of $\alpha$-particles has a

FIGURE 12.4 Trajectory of $\alpha$-particles in the coulomb field of a target nucleus. The impact parameter, $b$ and scattering angle $\theta$ are also depicted.

distribution of impact parameters $b$, so that the beam is scattered in various directions with different probabilities (Fig. 12.4). (In a beam, all particles have nearly same kinetic energy.) It is seen that an $\alpha$-particle close to the nucleus (small impact parameter) suffers large scattering. In case of head-on collision, the impact parameter is minimum and the $\alpha$-particle rebounds back $(\theta \cong \pi)$. For a large impact parameter, the $\alpha$-particle goes nearly undeviated and has a small deflection $(\theta \cong 0)$.

The fact that only a small fraction of the number of incident particles rebound back indicates that the number of $\alpha$-particles undergoing head on collision is small. This, in turn, implies that the mass and positive charge of the atom is concentrated in a small volume. Rutherford scattering therefore, is a powerful way to determine an upper limit to the size of the nucleus.

Example 12.1 In the Rutherford’s nuclear model of the atom, the nucleus (radius about $10^{-15} \mathrm{~m}$ ) is analogous to the sun about which the electron move in orbit (radius $\approx 10^{-10} \mathrm{~m}$ ) like the earth orbits around the sun. If the dimensions of the solar system had the same proportions as those of the atom, would the earth be closer to or farther away from the sun than actually it is? The radius of earth’s orbit is about $1.5 \times 10^{11} \mathrm{~m}$. The radius of sun is taken as $7 \times 10^{8} \mathrm{~m}$.

Solution The ratio of the radius of electron’s orbit to the radius of nucleus is $\left(10^{-10} \mathrm{~m}\right) /\left(10^{-15} \mathrm{~m}\right)=10^{5}$, that is, the radius of the electron’s orbit is $10^{5}$ times larger than the radius of nucleus. If the radius of the earth’s orbit around the sun were $10^{5}$ times larger than the radius of the sun, the radius of the earth’s orbit would be $10^{5} \times 7 \times 10^{8} \mathrm{~m}=$ $7 \times 10^{13} \mathrm{~m}$. This is more than 100 times greater than the actual orbital radius of earth. Thus, the earth would be much farther away from the sun. It implies that an atom contains a much greater fraction of empty space than our solar system does.

Example 12.2 In a Geiger-Marsden experiment, what is the distance of closest approach to the nucleus of a $7.7 \mathrm{MeV} \alpha$-particle before it comes momentarily to rest and reverses its direction?

Solution The key idea here is that throughout the scattering process, the total mechanical energy of the system consisting of an $\alpha$-particle and a gold nucleus is conserved. The system’s initial mechanical energy is $E_{i}$, before the particle and nucleus interact, and it is equal to its mechanical energy $E_{f}$ when the $\alpha$-particle momentarily stops. The initial energy $E_{i}$ is just the kinetic energy $K$ of the incoming $\alpha$ - particle. The final energy $E_{f}$ is just the electric potential energy $U$ of the system. The potential energy $U$ can be calculated from Eq. (12.1).

Let $d$ be the centre-to-centre distance between the $\alpha$-particle and the gold nucleus when the $\alpha$-particle is at its stopping point. Then we can write the conservation of energy $E_{i}=E_{f}$ as

$$ K=\frac{1}{4 \pi \varepsilon_{0}} \frac{(2 e)(Z e)}{d}=\frac{2 Z e^{2}}{4 \pi \varepsilon_{0} d} $$

Thus the distance of closest approach $d$ is given by

$$ d=\frac{2 Z e^{2}}{4 \pi \varepsilon_{0} K} $$

The maximum kinetic energy found in $\alpha$-particles of natural origin is

$$7.7 \mathrm{MeV}$ \text { or } $1.2 \times 10^{-12} \mathrm{~J}$. \text {Since} $1 / 4 \pi \varepsilon_{0}=9.0 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}^{2}$$.

Therefore with $e=1.6 \times 10^{-19} \mathrm{C}$, we have,

$$ \begin{aligned} d & =\frac{(2)\left(9.0 \times 10^{9} \mathrm{Nm}^{2} / C^{2}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2} \mathrm{Z}}{1.2 \times 10^{-12} \mathrm{~J}} \\ & =3.84 \times 10^{-16} \mathrm{Zm} \end{aligned} $$

The atomic number of foil material gold is $Z=79$, so that

$d(\mathrm{Au})=3.0 \times 10^{-14} \mathrm{~m}=30 \mathrm{fm} .(1 \mathrm{fm}$ (i.e. fermi )$=10^{-15} \mathrm{~m}$. $)$

The radius of gold nucleus is, therefore, less than $3.0 \times 10^{-14} \mathrm{~m}$. This is not in very good agreement with the observed result as the actual radius of gold nucleus is $6 \mathrm{fm}$. The cause of discrepancy is that the distance of closest approach is considerably larger than the sum of the radii of the gold nucleus and the $\alpha$-particle. Thus, the $\alpha$-particle reverses its motion without ever actually touching the gold nucleus.

12.2.2 Electron orbits

The Rutherford nuclear model of the atom which involves classical concepts, pictures the atom as an electrically neutral sphere consisting of a very small, massive and positively charged nucleus at the centre surrounded by the revolving electrons in their respective dynamically stable orbits. The electrostatic force of attraction, $F_{e}$ between the revolving electrons and the nucleus provides the requisite centripetal force $\left(F_{c}\right)$ to keep them in their orbits. Thus, for a dynamically stable orbit in a hydrogen atom

$$ \begin{gather*} F_{e}=F_{c} \\ \frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{r^{2}}=\frac{m v^{2}}{r} \tag{12.2} \end{gather*} $$

Thus the relation between the orbit radius and the electron velocity is

$$ \begin{equation*} r=\frac{e^{2}}{4 \pi \varepsilon_{0} m v^{2}} \tag{12.3} \end{equation*} $$

The kinetic energy $(K)$ and electrostatic potential energy $(U)$ of the electron in hydrogen atom are

$$ K=\frac{1}{2} m v^{2}=\frac{e^{2}}{8 \pi \varepsilon_{0} r} \text { and } U=-\frac{e^{2}}{4 \pi \varepsilon_{0} r} $$

(The negative sign in $U$ signifies that the electrostatic force is in the $-r$ direction.) Thus the total energy $E$ of the electron in a hydrogen atom is

$$ \begin{align*} E=K+U & =\frac{e^{2}}{8 \pi \varepsilon_{0} r}-\frac{e^{2}}{4 \pi \varepsilon_{0} r} \\ & =-\frac{e^{2}}{8 \pi \varepsilon_{0} r} \tag{12.4} \end{align*} $$

The total energy of the electron is negative. This implies the fact that the electron is bound to the nucleus. If $E$ were positive, an electron will not follow a closed orbit around the nucleus.

Example 12.3 It is found experimentally that $13.6 \mathrm{eV}$ energy is required to separate a hydrogen atom into a proton and an electron. Compute the orbital radius and the velocity of the electron in a hydrogen atom.

Solution Total energy of the electron in hydrogen atom is $-13.6 \mathrm{eV}=$ $-13.6 \times 1.6 \times 10^{-19} \mathrm{~J}=-2.2 \times 10^{-18} \mathrm{~J}$. Thus from Eq. (12.4), we have

$$ E=-\frac{e^{2}}{8 \pi \varepsilon_{0} r}=-2.2 \times 10^{-18} \mathrm{~J} $$

This gives the orbital radius

$$ \begin{aligned} r & =-\frac{e^{2}}{8 \pi \varepsilon_{0} E}=-\frac{\left(9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2}}{(2)\left(-2.2 \times 10^{-18} \mathrm{~J}\right)} \\ & =5.3 \times 10^{-11} \mathrm{~m} . \end{aligned} $$

The velocity of the revolving electron can be computed from Eq. (12.3) with $m=9.1 \times 10^{-31} \mathrm{~kg}$,

$$ v=\frac{e}{\sqrt{4 \pi \varepsilon_{0} m r}}=2.2 \times 10^{6} \mathrm{~m} / \mathrm{s} $$

12.3 ATOMIC SPECTRA

As mentioned in Section 12.1, each element has a characteristic spectrum of radiation, which it emits. When an atomic gas or vapour is excited at low pressure, usually by passing an electric current through it, the emitted radiation has a spectrum which contains certain specific wavelengths only. A spectrum of this kind is termed as emission line spectrum and it

FIGURE 12.5 Emission lines in the spectrum of hydrogen.

consists of bright lines on a dark background. The spectrum emitted by atomic hydrogen is shown in Fig. 12.5. Study of emission line spectra of a material can therefore serve as a type of “fingerprint” for identification of the gas. When white light passes through a gas and we analyse the transmitted light using a spectrometer we find some dark lines in the spectrum. These dark lines correspond precisely to those wavelengths which were found in the emission line spectrum of the gas. This is called the absorption spectrum of the material of the gas.

12.4 BOHR MODEL OF THE HYDROGEN

The model of the atom proposed by Rutherford assumes that the atom, consisting of a central nucleus and revolving electron is stable much like sun-planet system which the model imitates. However, there are some fundamental differences between the two situations. While the planetary system is held by gravitational force, the nucleus-electron system being charged objects, interact by Coulomb’s Law of force. We know that an object which moves in a circle is being constantly accelerated - the acceleration being centripetal in nature. According to classical electromagnetic theory, an accelerating charged particle emits radiation in the form of electromagnetic waves. The energy of an accelerating electron should therefore, continuously decrease. The electron would spiral inward and eventually fall into the nucleus (Fig. 12.6).

>

Niels Henrik David Bohr (1885 – 1962)

Danish physicist who explained the spectrum of hydrogen atom based on quantum ideas. He gave a theory of nuclear fission based on the liquid-drop model of nucleus. Bohr contributed to the clarification of conceptual problems in quantum mechanics, in particular by proposing the complementary principle.

Thus, such an atom can not be stable. Further, according to the classical electromagnetic theory, the frequency of the electromagnetic waves emitted by the revolving electrons is equal to the frequency of revolution. As the electrons spiral inwards, their angular velocities and hence their frequencies would change continuously, and so will the frequency of the light emitted. Thus, they would emit a continuous spectrum, in contradiction to the line spectrum actually observed. Clearly Rutherford model tells only a part of the story implying that the classical ideas are not sufficient to explain the atomic structure.

FIGURE 12.6 An accelerated atomic electron must spiral into the nucleus as it loses energy.

Example 12.4 According to the classical electromagnetic theory, calculate the initial frequency of the light emitted by the electron revolving around a proton in hydrogen atom.

Solution From Example 12.3 we know that velocity of electron moving around a proton in hydrogen atom in an orbit of radius $5.3 \times 10^{-11} \mathrm{~m}$ is $2.2 \times 10^{-6} \mathrm{~m} / \mathrm{s}$. Thus, the frequency of the electron moving around the proton is

$$ \begin{array}{r} v=\frac{v}{2 \pi r}=\frac{2.2 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}}{2 \pi\left(5.3 \times 10^{-11} \mathrm{~m}\right)} \\ \approx 6.6 \times 10^{15} \mathrm{~Hz} \end{array} $$

According to the classical electromagnetic theory we know that the frequency of the electromagnetic waves emitted by the revolving electrons is equal to the frequency of its revolution around the nucleus. Thus the initial frequency of the light emitted is $6.6 \times 10^{15} \mathrm{~Hz}$.

It was Niels Bohr (1885 - 1962) who made certain modifications in this model by adding the ideas of the newly developing quantum hypothesis. Niels Bohr studied in Rutherford’s laboratory for several months in 1912 and he was convinced about the validity of Rutherford nuclear model. Faced with the dilemma as discussed above, Bohr, in 1913, concluded that in spite of the success of electromagnetic theory in explaining large-scale phenomena, it could not be applied to the processes at the atomic scale. It became clear that a fairly radical departure from the established principles of classical mechanics and electromagnetism would be needed to understand the structure of atoms and the relation of atomic structure to atomic spectra. Bohr combined classical and early quantum concepts and gave his theory in the form of three postulates. These are :

(i) Bohr’s first postulate was that an electron in an atom could revolve in certain stable orbits without the emission of radiant energy, contrary to the predictions of electromagnetic theory. According to this postulate, each atom has certain definite stable states in which it can exist, and each possible state has definite total energy. These are called the stationary states of the atom.

(ii) Bohr’s second postulate defines these stable orbits. This postulate states that the electron revolves around the nucleus only in those orbits for which the angular momentum is some integral multiple of $h / 2 \pi$ where $h$ is the Planck’s constant $\left(=6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right).$ Thus the angular momentum $(L)$ of the orbiting electron is quantised. That is

$$ \begin{align*} & L=n h / 2 \pi \tag{12.5} \end{align*} $$

(iii) Bohr’s third postulate incorporated into atomic theory the early quantum concepts that had been developed by Planck and Einstein. It states that an electron might make a transition from one of its specified non-radiating orbits to another of lower energy. When it does so, a photon is emitted having energy equal to the energy difference between the initial and final states. The frequency of the emitted photon is then given by

$$ \begin{align*} & h v=E_{i}-E_{f} \tag{12.6} \end{align*} $$

where $E_{i}$ and $E_{f}$ are the energies of the initial and final states and $E_{i}>E_{f}$.

For a hydrogen atom, Eq. (12.4) gives the expression to determine the energies of different energy states. But then this equation requires the radius $r$ of the electron orbit. To calculate $r$, Bohr’s second postulate about the angular momentum of the electron-the quantisation condition - is used.

The radius of nth possible orbit thus found is

$$ \begin{equation*} r_{n}=\frac{n^{2}}{m} \quad \frac{h}{2 \pi}^{2} \frac{4 \pi \varepsilon_{0}}{e^{2}} \tag{12.7} \end{equation*} $$

The total energy of the electron in the stationary states of the hydrogen atom can be obtained by substituting the value of orbital radius in Eq. (12.4) as

$$ E_{n}=-\frac{e^{2}}{8 \pi \varepsilon_{0}} \quad \frac{m}{n^{2}} \quad \frac{2 \pi^{2}}{h} \quad \frac{e^{2}}{4 \pi \varepsilon_{0}} $$

or

$$ \begin{equation*} E_{n}=-\frac{m e^{4}}{8 n^{2} \varepsilon_{0}^{2} h^{2}} \tag{12.8} \end{equation*} $$

Substituting values, Eq. (12.8) yields

$$ \begin{equation*} E_{n}=-\frac{2.18 \times 10^{-18}}{n^{2}} \mathrm{~J} \tag{12.9} \end{equation*} $$

Atomic energies are often expressed in electron volts $(\mathrm{eV})$ rather than joules. Since $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$, Eq. (12.9) can be rewritten as

$$ \begin{equation*} E_{n}=-\frac{13.6}{n^{2}} \mathrm{eV} \tag{12.10} \end{equation*} $$

The negative sign of the total energy of an electron moving in an orbit means that the electron is bound with the nucleus. Energy will thus be required to remove the electron from the hydrogen atom to a distance infinitely far away from its nucleus (or proton in hydrogen atom).

12.4.1 Energy levels

The energy of an atom is the least (largest negative value) when its electron is revolving in an orbit closest to the nucleus i.e., the one for which $n=1$. For $n=2,3, \ldots$ the absolute value of the energy $E$ is smaller, hence the energy is progressively larger in the outer orbits. The lowest state of the atom, called the ground state, is that of the lowest energy, with the electron revolving in the orbit of smallest radius, the Bohr radius, $a_{0}$. The energy of this state $(n=1)$, $E_{1}$ is $-13.6 \mathrm{eV}$. Therefore, the minimum energy required to free the electron from the ground state of the hydrogen atom is $13.6 \mathrm{eV}$. It is called the ionisation energy of the hydrogen atom. This prediction of the Bohr’s model is in excellent agreement with the experimental value of ionisation energy.

At room temperature, most of the hydrogen atoms are in ground state. When a hydrogen atom receives energy by processes such as electron collisions, the atom may acquire sufficient energy to raise the electron to higher energy states. The atom is then said to be in an excited state. From Eq. (12.10), for $n=2$; the energy $E_{2}$ is $-3.40 \mathrm{eV}$. It means that the energy required to excite an electron in hydrogen atom to its first excited state, is an energy equal to $E_{2}-E_{1}=-3.40 \mathrm{eV}-(-13.6) \mathrm{eV}=10.2 \mathrm{eV}$. Similarly, $E_{3}=-1.51 \mathrm{eV}$ and $E_{3}-E_{1}=12.09 \mathrm{eV}$, or to excite the hydrogen atom from its ground state $(n=1)$ to second excited state $(n=3), 12.09 \mathrm{eV}$ energy is required, and so on. From these excited states the electron can then fall back to a state of lower energy, emitting a photon in the process. Thus, as the excitation of hydrogen atom increases (that is as $n$ increases) the value of minimum energy required to free the electron from the excited atom decreases.

FIGURE 12.7 The energy level diagram for the hydrogen atom. The electron in a hydrogen atom at room temperature spends most of its time in the ground state. To ionise a hydrogen atom an electron from the ground state, 13.6 eV of energy must be supplied. (The horizontal lines specify the presence of allowed energy states.)

The energy level diagram* for the stationary states of a hydrogen atom, computed from Eq. (12.10), is given in Fig. 12.7. The principal quantum number $n$ labels the stationary states in the ascending order of energy. In this diagram, the highest energy state corresponds to $n=\infty$ in Eq, (12.10) and has an energy of $0 \mathrm{eV}$. This is the energy of the atom when the electron is completely removed $(r=\infty)$ from the nucleus and is at rest. Observe how the energies of the excited states come closer and closer together as $n$ increases.

12.5 The Line Spectra of the Hydrogen Atom

According to the third postulate of Bohr’s model, when an atom makes a transition from the higher energy state with quantum number $n_{i}$ to the lower energy state with quantum number $n_{f}\left(n_{f}<n_{i}\right)$, the difference of energy is carried away by a photon of frequency $v_{i f}$ such that[^0]

$$ \begin{equation*} h v _{i f}=E _{n _{f}}-E _{n _{i}} \tag{12.11} \end{equation*} $$

  • An electron can have any total energy above E = 0 eV. In such situations the electron is free. Thus there is a continuum of energy states above E = 0 eV, as shown in Fig. 12.7.

Since both $n_{f}$ and $n_{i}$ are integers, this immediately shows that in transitions between different atomic levels, light is radiated in various discrete frequencies.

The various lines in the atomic spectra are produced when electrons jump from higher energy state to a lower energy state and photons are emitted. These spectral lines are called emission lines. But when an atom absorbs a photon that has precisely the same energy needed by the electron in a lower energy state to make transitions to a higher energy state, the process is called absorption. Thus if photons with a continuous range of frequencies pass through a rarefied gas and then are analysed with a spectrometer, a series of dark spectral absorption lines appear in the continuous spectrum. The dark lines indicate the frequencies that have been absorbed by the atoms of the gas.

The explanation of the hydrogen atom spectrum provided by Bohr’s model was a brilliant achievement, which greatly stimulated progress towards the modern quantum theory. In 1922, Bohr was awarded Nobel Prize in Physics.

12.6 DE BROGLIE’S EXPLANATION OF BOHR’S SECOND POSTULATE OF QUANTISATION

Of all the postulates, Bohr made in his model of the atom, perhaps the most puzzling is his second postulate. It states that the angular momentum of the electron orbiting around the nucleus is quantised (that is, $L_{n}=n h / 2 \pi ; n=1,2,3 \ldots$ ). Why should the angular momentum have only those values that are integral multiples of $h / 2 \pi$ ? The French physicist Louis de Broglie explained this puzzle in 1923, ten years after Bohr proposed his model.

We studied, in Chapter 11, about the de Broglie’s hypothesis that material particles, such as electrons, also have a wave nature. C. J. Davisson and L. H. Germer later experimentally verified the wave nature of electrons in 1927. Louis de Broglie argued that the electron in its circular orbit, as proposed by Bohr, must be seen as a particle wave. In analogy to waves travelling on a string, particle waves too can lead to standing waves under resonant conditions. From Chapter 14 of Class XI Physics textbook, we know that when a string is plucked, a vast number of wavelengths are excited. However only those wavelengths survive which have nodes at the ends and form the standing wave in the string. It means

FIGURE 12.8 A standing wave is shown on a circular orbit where four de Broglie wavelengths fit into the circumference of the orbit. that in a string, standing waves are formed when the total distance travelled by a wave down the string and back is one wavelength, two wavelengths, or any integral number of wavelengths. Waves with other wavelengths interfere with themselves upon reflection and their amplitudes quickly drop to zero. For an electron moving in $n^{\text {th }}$ circular orbit of radius $r_{n}$, the total distance is the circumference of the orbit, $2 \pi r_{n}$. Thus

$$ \begin{equation*} 2 \pi r _{n}=n \lambda, \quad n=1,2,3 \ldots \tag{12.12} \end{equation*} $$

Figure 12.8 illustrates a standing particle wave on a circular orbit for $n=4$, i.e., $2 \pi r_{n}=4 \lambda$, where $\lambda$ is the de Broglie wavelength of the electron moving in $n^{\text {th }}$ orbit. From Chapter 11 , we have $\lambda=h / p$, where $p$ is the magnitude of the electron’s momentum. If the speed of the electron is much less than the speed of light, the momentum is $m v_{n}$. Thus, $\lambda=h$ / $m v_{n}$. From Eq. (12.12), we have

$2 \pi r_{n}=n h / m v_{n} \quad$ or $\quad m v_{n} r_{n}=n h / 2 \pi$

This is the quantum condition proposed by Bohr for the angular momentum of the electron [Eq. (12.15)]. In Section 12.5, we saw that this equation is the basis of explaining the discrete orbits and energy levels in hydrogen atom. Thus de Broglie hypothesis provided an explanation for Bohr’s second postulate for the quantisation of angular momentum of the orbiting electron. The quantised electron orbits and energy states are due to the wave nature of the electron and only resonant standing waves can persist.

Bohr’s model, involving classical trajectory picture (planet-like electron orbiting the nucleus), correctly predicts the gross features of the hydrogenic atoms*, in particular, the frequencies of the radiation emitted or selectively absorbed. This model however has many limitations. Some are:

(i) The Bohr model is applicable to hydrogenic atoms. It cannot be extended even to mere two electron atoms such as helium. The analysis of atoms with more than one electron was attempted on the lines of Bohr’s model for hydrogenic atoms but did not meet with any success. Difficulty lies in the fact that each electron interacts not only with the positively charged nucleus but also with all other electrons.

The formulation of Bohr model involves electrical force between positively charged nucleus and electron. It does not include the electrical forces between electrons which necessarily appear in multi-electron atoms.

(ii) While the Bohr’s model correctly predicts the frequencies of the light emitted by hydrogenic atoms, the model is unable to explain the relative intensities of the frequencies in the spectrum. In emission spectrum of hydrogen, some of the visible frequencies have weak intensity, others strong. Why? Experimental observations depict that some transitions are more favoured than others. Bohr’s model is unable to account for the intensity variations.

Bohr’s model presents an elegant picture of an atom and cannot be generalised to complex atoms. For complex atoms we have to use a new and radical theory based on Guantum Mechanics, which provides a more complete picture of the atomic structure.[^1]

  • Hydrogenic atoms are the atoms consisting of a nucleus with positive charge +Ze and a single electron, where Z is the proton number. Examples are hydrogen atom, singly ionised helium, doubly ionised lithium, and so forth. In these atoms more complex electron-electron interactions are nonexistent.

SUMMARY

1. Atom, as a whole, is electrically neutral and therefore contains equal amount of positive and negative charges.

2. In Thomson’s model, an atom is a spherical cloud of positive charges with electrons embedded in it.

3. In Rutherford’s model, most of the mass of the atom and all its positive charge are concentrated in a tiny nucleus (typically one by ten thousand the size of an atom), and the electrons revolve around it.

4. Rutherford nuclear model has two main difficulties in explaining the structure of atom: (a) It predicts that atoms are unstable because the accelerated electrons revolving around the nucleus must spiral into the nucleus. This contradicts the stability of matter. (b) It cannot explain the characteristic line spectra of atoms of different elements.

5. Atoms of most of the elements are stable and emit characteristic spectrum. The spectrum consists of a set of isolated parallel lines termed as line spectrum. It provides useful information about the atomic structure.

6. To explain the line spectra emitted by atoms, as well as the stability of atoms, Niel’s Bohr proposed a model for hydrogenic (single elctron) atoms. He introduced three postulates and laid the foundations of quantum mechanics:

(a) In a hydrogen atom, an electron revolves in certain stable orbits (called stationary orbits) without the emission of radiant energy.

(b) The stationary orbits are those for which the angular momentum is some integral multiple of $h / 2 \pi$. (Bohr’s quantisation condition.) That is $L=n h / 2 \pi$, where $n$ is an integer called the principal quantum number.

(c) The third postulate states that an electron might make a transition from one of its specified non-radiating orbits to another of lower energy. When it does so, a photon is emitted having energy equal to the energy difference between the initial and final states. The frequency $(v)$ of the emitted photon is then given by

$h v=E_{i}-E_{f}$

An atom absorbs radiation of the same frequency the atom emits, in which case the electron is transferred to an orbit with a higher value of $n$.

$$E_{i}+h v=E_{f}$$

7. As a result of the quantisation condition of angular momentum, the electron orbits the nucleus at only specific radii. For a hydrogen atom it is given by

$$ r_{n}=\frac{n^{2}}{m} \quad \frac{h}{2 \pi} \quad \frac{4 \pi \varepsilon_{0}}{e^{2}} $$

The total energy is also quantised:

$$ \begin{aligned} E_{n} & =-\frac{m e^{4}}{8 n^{2} \varepsilon_{0}^{2} h^{2}} \\ & =-13.6 \mathrm{eV} / n^{2} \end{aligned} $$

The $n=1$ state is called ground state. In hydrogen atom the ground state energy is $-13.6 \mathrm{eV}$. Higher values of $n$ correspond to excited states $(n>1)$. Atoms are excited to these higher states by collisions with other atoms or electrons or by absorption of a photon of right frequency.

8. de Broglie’s hypothesis that electrons have a wavelength $\lambda=h / m v$ gave an explanation for Bohr’s quantised orbits by bringing in the waveparticle duality. The orbits correspond to circular standing waves in which the circumference of the orbit equals a whole number of wavelengths.

9. Bohr’s model is applicable only to hydrogenic (single electron) atoms. It cannot be extended to even two electron atoms such as helium. This model is also unable to explain for the relative intensities of the frequencies emitted even by hydrogenic atoms.

POINTS TO PONDER

1. Both the Thomson’s as well as the Rutherford’s models constitute an unstable system. Thomson’s model is unstable electrostatically, while Rutherford’s model is unstable because of electromagnetic radiation of orbiting electrons.

2. What made Bohr quantise angular momentum (second postulate) and not some other quantity? Note, $h$ has dimensions of angular momentum, and for circular orbits, angular momentum is a very relevant quantity. The second postulate is then so natural!

3. The orbital picture in Bohr’s model of the hydrogen atom was inconsistent with the uncertainty principle. It was replaced by modern quantum mechanics in which Bohr’s orbits are regions where the electron may be found with large probability.

4. Unlike the situation in the solar system, where planet-planet gravitational forces are very small as compared to the gravitational force of the sun on each planet (because the mass of the sun is so much greater than the mass of any of the planets), the electron-electron electric force interaction is comparable in magnitude to the electronnucleus electrical force, because the charges and distances are of the same order of magnitude. This is the reason why the Bohr’s model with its planet-like electron is not applicable to many electron atoms.

5. Bohr laid the foundation of the quantum theory by postulating specific orbits in which electrons do not radiate. Bohr’s model include only one quantum number $n$. The new theory called quantum mechanics supportes Bohr’s postulate. However in quantum mechanics (more generally accepted), a given energy level may not correspond to just one quantum state. For example, a state is characterised by four quantum numbers ( $n, l, m$, and $s$ ), but for a pure Coulomb potential (as in hydrogen atom) the energy depends only on $n$.

6. In Bohr model, contrary to ordinary classical expectation, the frequency of revolution of an electron in its orbit is not connected to the frequency of spectral line. The later is the difference between two orbital energies divided by $h$. For transitions between large quantum numbers ( $n$ to $n$ - $1, n$ very large), however, the two coincide as expected.

7. Bohr’s semiclassical model based on some aspects of classical physics and some aspects of modern physics also does not provide a true picture of the simplest hydrogenic atoms. The true picture is quantum mechanical affair which differs from Bohr model in a number of fundamental ways. But then if the Bohr model is not strictly correct, why do we bother about it? The reasons which make Bohr’s model still useful are: (i) The model is based on just three postulates but accounts for almost all the general features of the hydrogen spectrum.

(ii) The model incorporates many of the concepts we have learnt in classical physics.

(iii) The model demonstrates how a theoretical physicist occasionally must quite literally ignore certain problems of approach in hopes of being able to make some predictions. If the predictions of the theory or model agree with experiment, a theoretician then must somehow hope to explain away or rationalise the problems that were ignored along the way.

Exercises

12.1 Choose the correct alternative from the clues given at the end of the each statement:

(a) The size of the atom in Thomson’s model is……… the atomic size in Rutherford’s model.

(much greater than/no different from/much less than.)

(b) In the ground state of ………. electrons are in stable equilibrium, while in ……… electrons always experience a net force.

(Thomson’s model/ Rutherford’s model.)

(c) A classical atom based on ………. is doomed to collapse.

(Thomson’s model/ Rutherford’s model.)

(d) An atom has a nearly continuous mass distribution in a but has a highly non-uniform mass distribution in………

(Thomson’s model/ Rutherford’s model.)

(e) The positively charged part of the atom possesses most of the mass in………

(Rutherford’s model/both the models.)

Show Answer

Answer

(a) The sizes of the atoms taken in Thomson’s model and Rutherford’s model have the same order of magnitude.

(b) In the ground state of Thomson’s model, the electrons are in stable equilibrium. However, in Rutherford’s model, the electrons always experience a net force.

(c) A classical atom based on Rutherford’s model is doomed to collapse.

(d) An atom has a nearly continuous mass distribution in Thomson’s model, but has a highly non-uniform mass distribution in Rutherford’s model.

(e) The positively charged part of the atom possesses most of the mass in both the models.

12.2 Suppose you are given a chance to repeat the alpha-particle scattering experiment using a thin sheet of solid hydrogen in place of the gold foil. (Hydrogen is a solid at temperatures below $14 \mathrm{~K}$.) What results do you expect?

Show Answer

Answer

In the alpha-particle scattering experiment, if a thin sheet of solid hydrogen is used in place of a gold foil, then the scattering angle would not be large enough. This is because the mass of hydrogen $\left(1.67 \times 10^{-27} \mathrm{~kg}\right)$ is less than the mass of incident $\alpha$-particles ( 6.64 $\left.\times 10^{-27} \mathrm{~kg}\right)$. Thus, the mass of the scattering particle is more than the target nucleus (hydrogen). As a result, the $\alpha$-particles would not bounce back if solid hydrogen is used in the $\alpha$-particle scattering experiment.

12.3 A difference of $2.3 \mathrm{eV}$ separates two energy levels in an atom. What is the frequency of radiation emitted when the atom make a transition from the upper level to the lower level?

Show Answer

Answer

Separation of two energy levels in an atom,

$E=2.3 \mathrm{eV}$

$=2.3 \times 1.6 \times 10^{-19}$

$=3.68 \times 10^{-19} \mathrm{~J}$

Let $v$ be the frequency of radiation emitted when the atom transits from the upper level to the lower level.

We have the relation for energy as:

$$ E=h v $$

Where,

$$ \begin{aligned} & h= \\ & \begin{aligned} \therefore v & =\frac{E}{h} \\ & =\frac{3.68 \times 10^{-19}}{6.62 \times 10^{-32}}=5.55 \times 10^{14} \mathrm{~Hz} \end{aligned} \end{aligned} $$

Hence, the frequency of the radiation is $5.6 \times 10^{14} \mathrm{~Hz}$.

12.4 The ground state energy of hydrogen atom is $-13.6 \mathrm{eV}$. What are the kinetic and potential energies of the electron in this state?

Show Answer

Answer

Ground state energy of hydrogen atom, $E=-13.6 \mathrm{eV}$

This is the total energy of a hydrogen atom. Kinetic energy is equal to the negative of the total energy.

Kinetic energy $=-E=-(-13.6)=13.6 \mathrm{eV}$

Potential energy is equal to the negative of two times of kinetic energy.

Potential energy $=-2 \times(13.6)=-27.2 \mathrm{eV}$

12.5 A hydrogen atom initially in the ground level absorbs a photon, which excites it to the $n=4$ level. Determine the wavelength and frequency of photon.

Show Answer

Answer

For ground level, $n_{1}=1$

Let $E_{1}$ be the energy of this level. It is known that $E_{1}$ is related with $n_{1}$ as:

$$ \begin{aligned} E_{1} & =\frac{-13.6}{n_{1}^{2}} \mathrm{eV} \\ & =\frac{-13.6}{1^{2}}=-13.6 \mathrm{eV} \end{aligned} $$

The atom is excited to a higher level, $n_{2}=4$.

Let $E_{2}$ be the energy of this level.

$$ \begin{aligned} \therefore E_{2} & =\frac{-13.6}{n_{2}^{2}} \mathrm{eV} \\ & =\frac{-13.6}{4^{2}}=-\frac{13.6}{16} \mathrm{eV} \end{aligned} $$

The amount of energy absorbed by the photon is given as:

$$ \begin{aligned} E & =E_{2}-E_{1} \\ & =\frac{-13.6}{16}-\left(-\frac{13.6}{1}\right) \\ & =\frac{13.6 \times 15}{16} \mathrm{eV} \\ & =\frac{13.6 \times 15}{16} \times 1.6 \times 10^{-19}=2.04 \times 10^{-18} \mathrm{~J} \end{aligned} $$

For a photon of wavelength $\lambda$, the expression of energy is written as:

$$ E=\frac{h c}{\lambda} $$

Where,

$$ \begin{aligned} & h=\text { Planck’s constant }=6.6 \times 10^{-34} \mathrm{Js} \\ & c=\text { Speed of light }=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\ & \therefore \lambda=\frac{h c}{E} \\ & =\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{2.04 \times 10^{-18}} \\ & =9.7 \times 10^{-8} \mathrm{~m}=97 \mathrm{~nm} \end{aligned} $$

And, frequency of a photon is given by the relation,

$$ \begin{aligned} v & =\frac{c}{\lambda} \\ & =\frac{3 \times 10^{8}}{9.7 \times 10^{-8}} \approx 3.1 \times 10^{15} \mathrm{~Hz} \end{aligned} $$

Hence, the wavelength of the photon is $97 \mathrm{~nm}$ while the frequency is $3.1 \times 10^{15} \mathrm{~Hz}$.

12.6 (a) Using the Bohr’s model calculate the speed of the electron in a hydrogen atom in the $n=1,2$, and 3 levels. (b) Calculate the orbital period in each of these levels.

Show Answer

Answer

Let $v_{1}$ be the orbital speed of the electron in a hydrogen atom in the ground state level, $n_{1}$ $=1$. For charge ( $e$ ) of an electron, $v_{1}$ is given by the relation,

$$ v_{1}=\frac{e^{2}}{n_{1} 4 \pi \epsilon_{0}(h / 2 \pi)}=\frac{e^{2}}{2 \epsilon_{0} h} $$

Where,

$$ \begin{aligned} & e=1.6 \times 10^{-19} \mathrm{C} \\ & \epsilon_{0}=\text { Permittivity of free space }=8.85 \times 10^{-12} \mathrm{~N}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-2} \\ & h=\text { Planck’s constant }=6.62 \times 10^{-34} \mathrm{Js} \\ & \begin{aligned} \therefore v_{1} & =\frac{\left(1.6 \times 10^{-19}\right)^{2}}{2 \times 8.85 \times 10^{-12} \times 6.62 \times 10^{-34}} \\ & =0.0218 \times 10^{8}=2.18 \times 10^{6} \mathrm{~m} / \mathrm{s} \end{aligned} \end{aligned} $$

For level $n_{2}=2$, we can write the relation for the corresponding orbital speed as:

$$ \begin{aligned} v_{2} & =\frac{e^{2}}{n_{2} 2 \epsilon_{0} h} \\ & =\frac{\left(1.6 \times 10^{-19}\right)^{2}}{2 \times 2 \times 8.85 \times 10^{-12} \times 6.62 \times 10^{-34}} \\ & =1.09 \times 10^{6} \mathrm{~m} / \mathrm{s} \end{aligned} $$

And, for $n_{3}=3$, we can write the relation for the corresponding orbital speed as:

$$ \begin{aligned} v_{3} & =\frac{e^{2}}{n_{3} 2 \epsilon_{0} h} \\ & =\frac{\left(1.6 \times 10^{-19}\right)^{2}}{3 \times 2 \times 8.85 \times 10^{-12} \times 6.62 \times 10^{-34}} \\ & =7.27 \times 10^{5} \mathrm{~m} / \mathrm{s} \end{aligned} $$

Hence, the speed of the electron in a hydrogen atom in $n=1, \mathrm{n}=2$, and $\mathrm{n}=3$ is $2.18 \times 10^{6}$ $\mathrm{m} / \mathrm{s}, 1.09 \times 10^{6} \mathrm{~m} / \mathrm{s}, 7.27 \times 10^{5} \mathrm{~m} / \mathrm{s}$ respectively.

Let $T_{1}$ be the orbital period of the electron when it is in level $n_{1}=1$.

Orbital period is related to orbital speed as:

$T_{1}=\frac{2 \pi r_{1}}{v_{1}}$

Where,

$r_{1}=$ Radius of the orbit

$=\frac{n_{1}^{2} h^{2} \epsilon_{0}}{\pi m e^{2}}$

$h=$ Planck’s constant $=6.62 \times 10^{-34} \mathrm{Js}$

$e=$ Charge on an electron $=1.6 \times 10^{-19} \mathrm{C}$

$\epsilon_{0}=$ Permittivity of free space $=8.85 \times 10^{-12} \mathrm{~N}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-2}$

$m=$ Mass of an electron $=9.1 \times 10^{-31} \mathrm{~kg}$

$$ \begin{aligned} \therefore T_{1} & =\frac{2 \pi r_{1}}{v_{1}} \\ & =\frac{2 \pi \times(1)^{2} \times\left(6.62 \times 10^{-34}\right)^{2} \times 8.85 \times 10^{-12}}{2.18 \times 10^{6} \times \pi \times 9.1 \times 10^{-31} \times\left(1.6 \times 10^{-19}\right)^{2}} \\ & =15.27 \times 10^{-17}=1.527 \times 10^{-16} \mathrm{~s} \end{aligned} $$

For level $n_{2}=2$, we can write the period as:

$T_{2}=\frac{2 \pi r_{2}}{v_{2}}$

Where,

$r_{2}=$ Radius of the electron in $n_{2}=2$

$$ \begin{aligned} & =\frac{\left(n_{2}\right)^{2} h^{2} \epsilon_{0}}{\pi m e^{2}} \\ & \therefore T_{2}=\frac{2 \pi r_{2}}{v_{2}} \\ & \quad=\frac{2 \pi \times(2)^{2} \times\left(6.62 \times 10^{-34}\right)^{2} \times 8.85 \times 10^{-12}}{1.09 \times 10^{6} \times \pi \times 9.1 \times 10^{-31} \times\left(1.6 \times 10^{-19}\right)^{2}} \\ & \quad=1.22 \times 10^{-15} \mathrm{~s} \end{aligned} $$

And, for level $n_{3}=3$, we can write the period as:

$$ T_{3}=\frac{2 \pi r_{3}}{v_{3}} $$

Where,

$r_{3}=$ Radius of the electron in $n_{3}=3$

$$ =\frac{\left(n_{3}\right)^{2} h^{2} \epsilon_{0}}{\pi m e^{2}} $$

$$ \begin{aligned} \therefore T_{3} & =\frac{2 \pi r_{3}}{v_{3}} \\ & =\frac{2 \pi \times(3)^{2} \times\left(6.62 \times 10^{-34}\right)^{2} \times 8.85 \times 10^{-12}}{7.27 \times 10^{5} \times \pi \times 9.1 \times 10^{-31} \times\left(1.6 \times 10^{-19}\right)^{2}} \\ & =4.12 \times 10^{-15} \mathrm{~s} \end{aligned} $$

Hence, the orbital period in each of these levels is $1.52 \times 10^{-16} \mathrm{~s}, 1.22 \times 10^{-15} \mathrm{~s}$, and 4.12 $\times 10^{-15}$ s respectively.

12.7 The radius of the innermost electron orbit of a hydrogen atom is $5.3 \times 10^{-11} \mathrm{~m}$. What are the radii of the $n=2$ and $n=3$ orbits?

Show Answer

Answer

The radius of the innermost orbit of a hydrogen atom, $r_{1}=5.3 \times 10^{-11} \mathrm{~m}$.

Let $r_{2}$ be the radius of the orbit at $n=2$. It is related to the radius of the innermost orbit as:

$$ \begin{aligned} r_{2} & =(n)^{2} r_{1} \\ & =4 \times 5.3 \times 10^{-11}=2.12 \times 10^{-10} \mathrm{~m} \end{aligned} $$

For $n=3$, we can write the corresponding electron radius as:

$$ \begin{aligned} r_{3} & =(n)^{2} r_{1} \\ & =9 \times 5.3 \times 10^{-11}=4.77 \times 10^{-10} \mathrm{~m} \end{aligned} $$

Hence, the radii of an electron for $n=2$ and $n=3$ orbits are $2.12 \times 10^{-10} \mathrm{~m}$ and $4.77 \times$ $10^{-10} \mathrm{~m}$ respectively.

12.8 A $12.5 \mathrm{eV}$ electron beam is used to bombard gaseous hydrogen at room temperature. What series of wavelengths will be emitted?

Show Answer

Answer

It is given that the energy of the electron beam used to bombard gaseous hydrogen at room temperature is $12.5 \mathrm{eV}$. Also, the energy of the gaseous hydrogen in its ground state at room temperature is $-13.6 \mathrm{eV}$.

When gaseous hydrogen is bombarded with an electron beam, the energy of the gaseous hydrogen becomes $-13.6+12.5 \mathrm{eV}$ i.e., $-1.1 \mathrm{eV}$.

Orbital energy is related to orbit level ( $n$ ) as:

$E=\frac{-13.6}{(n)^{2}} \mathrm{eV}$

For $n=3, \quad E=\frac{-13.6}{9}=-1.5 \mathrm{eV}$

This energy is approximately equal to the energy of gaseous hydrogen. It can be concluded that the electron has jumped from $n=1$ to $n=3$ level.

During its de-excitation, the electrons can jump from $n=3$ to $n=1$ directly, which forms a line of the Lyman series of the hydrogen spectrum.

We have the relation for wave number for Lyman series as:

$\frac{1}{\lambda}=R_{y}\left(\frac{1}{1^{2}}-\frac{1}{n^{2}}\right)$

Where,

$R_{\mathrm{y}}=$ Rydberg constant $=1.097 \times 10^{7} \mathrm{~m}^{-1}$

$\lambda=$ Wavelength of radiation emitted by the transition of the electron

For $n=3$, we can obtain $\lambda$ as:

$$ \begin{aligned} \frac{1}{\lambda} & =1.097 \times 10^{7}\left(\frac{1}{1^{2}}-\frac{1}{3^{2}}\right) \\ & =1.097 \times 10^{7}\left(1-\frac{1}{9}\right)=1.097 \times 10^{7} \times \frac{8}{9} \\ \lambda & =\frac{9}{8 \times 1.097 \times 10^{7}}=102.55 \mathrm{~nm} \end{aligned} $$

If the electron jumps from $n=2$ to $n=1$, then the wavelength of the radiation is given as:

$$ \begin{aligned} \frac{1}{\lambda} & =1.097 \times 10^{7}\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right) \\ & =1.097 \times 10^{7}\left(1-\frac{1}{4}\right)=1.097 \times 10^{7} \times \frac{3}{4} \\ \lambda & =\frac{4}{1.097 \times 10^{7} \times 3}=121.54 \mathrm{~nm} \end{aligned} $$

If the transition takes place from $n=3$ to $n=2$, then the wavelength of the radiation is given as:

$$ \begin{aligned} \frac{1}{\lambda} & =1.097 \times 10^{7}\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right) \\ & =1.097 \times 10^{7}\left(\frac{1}{4}-\frac{1}{9}\right)=1.097 \times 10^{7} \times \frac{5}{36} \\ \lambda & =\frac{36}{5 \times 1.097 \times 10^{7}}=656.33 \mathrm{~nm} \end{aligned} $$

This radiation corresponds to the Balmer series of the hydrogen spectrum.

Hence, in Lyman series, two wavelengths i.e., $102.5 \mathrm{~nm}$ and $121.5 \mathrm{~nm}$ are emitted. And in the Balmer series, one wavelength i.e., $656.33 \mathrm{~nm}$ is emitted.

12.9 In accordance with the Bohr’s model, find the quantum number that characterises the earth’s revolution around the sun in an orbit of radius $1.5 \times 10^{11} \mathrm{~m}$ with orbital speed $3 \times 10^{4} \mathrm{~m} / \mathrm{s}$. (Mass of earth $=6.0 \times 10^{24} \mathrm{~kg}$.)

Show Answer

Answer

Radius of the orbit of the Earth around the Sun, $r=1.5 \times 10^{11} \mathrm{~m}$

Orbital speed of the Earth, $v=3 \times 10^{4} \mathrm{~m} / \mathrm{s}$

Mass of the Earth, $m=6.0 \times 10^{24} \mathrm{~kg}$

According to Bohr’s model, angular momentum is quantized and given as:

$$ m v r=\frac{n h}{2 \pi} $$

Where,

$h=$ Planck’s constant $=6.62 \times 10^{-34} \mathrm{Js}$

$n=$ Quantum number

$$ \begin{aligned} \therefore n & =\frac{m v r 2 \pi}{h} \\ & =\frac{2 \pi \times 6 \times 10^{24} \times 3 \times 10^{4} \times 1.5 \times 10^{11}}{6.62 \times 10^{-34}} \\ & =25.61 \times 10^{73}=2.6 \times 10^{74} \end{aligned} $$

Hence, the quanta number that characterizes the Earth’ revolution is $2.6 \times 10^{74}$.

12.1 भूमिका

उन्नीसवीं शताब्दी तक पदार्थ की परमाण्वीय परिकल्पना के समर्थन में काफ़ी साक्ष्य एकत्रित हो गए थे। सन् 1897 में ब्रिटिश भौतिकविज्ञानी जोसेफ जे. टॉमसन $(1856-1940)$ ने गैसों के विद्युत विसर्जन प्रयोगों द्वारा ज्ञात किया कि विभिन्न तत्वों के परमाणुओं में उपस्थित ऋणात्मक आवेशित संघटक (इलेक्ट्रॉन) सभी परमाणुओं के लिए पूर्णतया समान हैं। तथापि, परमाणु स्वयं में वैद्युत रूप से उदासीन होते हैं। इसलिए, इलेक्ट्रॉन के ऋण आवेश को निष्प्रभावित करने के लिए परमाणु में धनात्मक आवेश भी अवश्य होना चाहिए। लेकिन परमाणु में धनात्मक आवेश तथा इलेक्ट्रॉन की व्यवस्था क्या है? दूसरे शब्दों में, परमाणु की संरचना क्या है?

सन् 1898 में जे. जे. टॉमसन ने परमाणु का पहला मॉडल प्रस्तावित किया। इस मॉडल के अनुसार, परमाणु का धन आवेश परमाणु में पूर्णतया एकसमान रूप से वितरित है तथा ऋण आवेशित इलेक्ट्रॉन इसमें ठीक उसी प्रकार अंतःस्थापित हैं जैसे किसी तरबूज में बीज। इस मॉडल को चित्रमय रूप में प्लम पुडिंग मॉडल कहा गया। तथापि परमाणु के विषय में बाद के अध्ययनों ने जैसा कि इस अध्याय में वर्णित है, यह दर्शाया कि परमाणु में इलेक्ट्रॉनों तथा धन आवेशों का वितरण इस प्रस्तावित मॉडल से बहुत भिन्न है।

हम जानते हैं कि संघनित पदार्थ (ठोस तथा द्रव) तथा सघन गैसें सभी तापों पर वैद्युतचुंबकीय विकिरण उत्सर्जित करते हैं जिसमें अनेक तरंगदैर्घ्यों का संतत वितरण विद्यमान होता है यद्यपि उनकी तीव्रताएँ भिन्न होती हैं। यह समझा गया कि यह विकिरण परमाणुओं तथा अणुओं के दोलनों के कारण होता है, जो प्रत्येक परमाणु अथवा अणु का अपने समीप के परमाणुओं या अणुओं के साथ होने वाली अन्योन्य क्रिया से नियंत्रित होता है। इसके विपरीत ज्वाला में गर्म की गई विरलित गैसों द्वारा उत्सर्जित प्रकाश अथवा किसी तापदीप्त नलिका में विद्युत उत्तेजित गैस, जैसे निऑन साइन अथवा पारद-वाष्प प्रकाश में केवल निश्चित विविक्त तरंगदैर्घ्य होती हैं। इनके स्पेक्ट्रम में चमकीली रेखाओं की एक श्रंखला दिखाई देती है। ऐसी गैसों में परमाणुओं के मध्य अंतराल अधिक होता है। अतः, उत्सर्जित विकिरण, परमाणुओं अथवा अणुओं के बीच अन्योन्य क्रियाओं के परिणामस्वरूप नहीं, बल्कि व्यष्टिगत परमाणुओं के कारण माना जा सकता है।

उन्नीसवीं शताब्दी के प्रारंभ में ही यह स्थापित हो गया था कि प्रत्येक तत्व से उत्सर्जित विकिरण का एक अभिलाक्षणिक स्पेक्ट्रम होता है। उदाहरण के लिए, हाइड्रोजन स्पेक्ट्रम सदैव रेखाओं का एक समुच्चय होता है जिसमें रेखाओं के बीच की आपेक्षिक स्थितियाँ निश्चित होती हैं। इस तथ्य ने किसी परमाणु की आंतरिक संरचना और इससे उत्सर्जित विकिरण के स्पेक्ट्रम के बीच घनिष्ठ संबंध की ओर संकेत किया। सन् 1885 में जान जेकब बामर (1825 - 1898) ने परमाण्वीय हाइड्रोजन से उत्सर्जित रेखाओं के समूह की आवृत्तियों के लिए एक सरल आनुभविक सूत्र प्राप्त किया। चूँकि हाइड्रोजन एक सरलतम ज्ञात तत्व है, हम इसके स्पेक्ट्रम का इस अध्याय में विस्तार से अध्ययन करेंगे।

जे. जे. टॉमसन के एक भूतपूर्व शोध छात्र अर्नेस्ट रदरफोर्ड (1871-1937), कुछ रेडियोएक्टिव तत्वों से उत्सर्जित ऐल्फ़ा-कणों ( $\alpha$-कणों) पर एक प्रयोग करने में व्यस्त थे। परमाणु की संरचना का अन्वेषण करने के लिए उन्होंने सन् 1906 में परमाणुओं द्वारा ऐल्फ़ा-कणों के प्रकीर्णन से संबंधित एक क्लासिकी प्रयोग प्रस्तावित किया। यह प्रयोग कुछ समय पश्चात सन् 1911 में हैंस गाइगर (1882 - 1945) तथा अर्नेस्ट मार्सडन (1889 - 1970, जो 20 वर्षीय छात्र थे तथा जिन्होंने अभी स्नातक की उपाधि भी ग्रहण नहीं की थी) ने किया। अनुच्छेद 12.2 में इसकी विस्तार से व्याख्या की गई है। इसके परिणामों की व्याख्या ने परमाणु के रदरफोर्ड के ग्रहीय मॉडल को जन्म दिया (जिसे परमाणु का नाभिकीय मॉडल भी कहा जाता है)। इसके अनुसार, किसी परमाणु का कुल धनावेश तथा अधिकांश द्रव्यमान एक सूक्ष्म आयतन में संकेंद्रित होता है जिसे नाभिक कहते हैं और इसके चारों ओर इलेक्ट्रॉन उसी प्रकार परिक्रमा करते हैं जैसे सूर्य के चारों ओर ग्रह परिक्रमा करते हैं।

अर्नेस्ट रदरफोर्ड (1871-1937)

न्यूजीलैंड में जन्मे, अंग्रेज़ भौतिकविज्ञानी जिन्होंने रेडियोएक्टिव विकिरणों पर अग्रणी कार्य किया। उन्होंने ऐल्फ़ा-, एवं बीटा-किरणों की खोज की। फ्रेड्रिक सॉडी के साथ कार्य कर उन्होंने रेडियोएक्टिवता का आधुनिक सिद्धांत प्रस्तुत किया। उन्होंने थोरियम से निकलने वाले विकिरणों का अध्ययन किया जिसके परिणामस्वरूप निष्क्रिय गैस थोरोन की खोज हुई जो रेडॉन का समस्थानिक है। पतले धातु के वर्कों पर ऐल्फ़ा-किरणों के प्रकीर्णन से उन्होंने परमाण्विक नाभिक की खोज की और परमाणु का ग्रहीय मॉडल प्रस्तुत किया। उन्होंने नाभिक के सन्निकट साइज़ का अनुमान भी लगाया।

परमाणु के जिस वर्तमान रूप को हम जानते हैं, रदरफोर्ड का नाभिकीय मॉडल उस दिशा में एक बड़ा कदम था। तथापि इसके द्वारा यह व्याख्या नहीं का जा सकी कि परमाणु केवल विविक्त (discrete) तरंगदैर्घ्य का प्रकाश ही क्यों उत्सर्जित करता है। हाइड्रोजन जैसा एक सरल परमाणु जिसमें एक इलेक्ट्रॉन तथा एक प्रोटॉन होता है, विशेष तरंगदैर्घ्य का एक जटिल स्पेक्ट्रम कैसे उत्सर्जित करता है? परमाणु के क्लासिकी चित्रण में, इलेक्ट्रॉन नाभिक के चारों ओर ठीक ऐसे ही परिक्रमा करता है जैसे कि सूर्य के चारों ओर ग्रह परिक्रमा करते हैं। तथापि, हम देखेंगे कि इस मॉडल को स्वीकार करने में कुछ गंभीर कठिनाइयाँ हैं।

12.2 ऐल्फ़ा कण प्रकीर्णन तथा परमाणु का रदरफोर्ड नाभिकीय मॉडल

सन् 1911 में रदरफोर्ड के सुझाव पर एच. गाइगर तथा ई. मार्सडन ने कुछ प्रयोग किए। उनके द्वारा किए गए

चित्र 12.1 गाइगर-मार्सडन प्रकीर्णन प्रयोग। संपूर्ण उपकरण एक निर्वात कक्ष में रखा गया है। (इस चित्र में यह कक्ष नहीं दर्शाया गया है।)

एक प्रयोग में रेडियोऐक्टिव स्रोत ${ } _{83}^{214} \mathrm{Bi}$ से उत्सर्जित $5.5 \mathrm{MeV}$ ऊर्जा वाले $\alpha$-कणों के एक पुंज को पतले स्वर्ण पन्नी पर दिष्ट कराया गया, जैसा कि चित्र 12.1 में दर्शाया गया है। चित्र 12.2 में इस प्रयोग के व्यवस्थित चित्र को दर्शाया गया है। रेडियोऐक्टिव स्रोत ${ } _{83}^{214} \mathrm{Bi}$ से उत्सर्जित $\alpha$-कणों के एक पतले किरण-पुंज को लेड की ईंटों के मध्य से गुज़ार कर संरेखित किया गया। इस किरण-पुंज का $2.1 \times 10^{-7} \mathrm{~m}$ मोटी स्वर्ण पन्नी पर आघात कराया गया। प्रकीर्णित $\alpha$-कणों का विक्षेप मापने के लिए एक घूर्णी संसूचक का प्रयोग किया गया जिसमें एक जिंक सल्फाइड का परदा एवं एक सूक्ष्मदर्शी था। प्रकीर्णित ऐल्फा-कण परदे से टकराकर चमकीले फ्लैश अथवा प्रस्फुर उत्पन्न करते हैं। ये फ्लैश सूक्ष्मदर्शी द्वारा देखे जा सकते हैं तथा प्रकीर्णित कणों की संख्या के वितरण का प्रकीर्णन कोण के फलन के रूप में अध्ययन किया जा सकता है।

चित्र 12.2 गाइगर-मार्सडन प्रयोग का व्यवस्थात्मक निरूपण।

चित्र 12.3 में किसी दिए समयांतराल में विभिन्न कोणों पर प्रकीर्णित कुल ऐल्फ़ा-कणों की संख्या का प्रारूपिक आलेख दर्शाया गया है। इस चित्र में दिखाए गए बिंदु प्रयोग में प्राप्त आँकड़ों को निरूपित करते हैं और संतत वक्र सैद्धांतिक पूर्वानुमान है जो इस कल्पना पर आधारित है कि परमाणु में एक सूक्ष्म सघन तथा धनावेशित नाभिक है। बहुत से ऐल्फा-कण स्वर्ण पन्नी को पार कर जाते हैं। इसका अर्थ है उनमें संघट्टन नहीं होता। आपतित ऐल्फ़ा-कणों में से केवल $0.14 %$ (लगभग) का $1^{\circ}$ के कोण से अधिक प्रकीर्णन होता है तथा 8000 ऐल्फ़ा-कणों में से लगभग 1 कण $90^{\circ}$ से अधिक विक्षेपित होता है। रदरफोर्ड ने तर्क किया कि ऐल्फ़ा-कणों को विपरीत दिशा में विक्षेपित करने के लिए, इन पर बहुत अधिक प्रतिकर्षण बल लगना चाहिए। इतना अधिक बल तभी प्राप्त हो सकता है यदि परमाणु का अधिकांश द्रव्यमान तथा इसका धन-आवेश इसके केंद्र पर दृढ़ता पूर्वक संकेंद्रित हो। तब अंदर आता हुआ ऐल्फ़ा-कण धन आवेश को भेदे बिना इसके अत्यंत समीप आ सकता है तथा इस प्रकार के समागम के परिणामस्वरूप अधिक विक्षेप होगा। इससे नाभिकीय परमाणु की परिकल्पना की पुष्टि होती है। यही कारण है कि रदरफोर्ड को नाभिक की खोज का श्रेय दिया जाता है।

रदरफोर्ड के परमाणु के नाभिकीय मॉडल में, परमाणु का कुल धनावेश तथा इसका अधिकांश द्रव्यमान परमाणु के बहुत छोटे से आयतन में संकेंद्रित होता है जिसे नाभिक कहते हैं तथा इलेक्ट्रॉन इससे कुछ दूर होते हैं। इलेक्ट्रॉन, नाभिक के चारों ओर कक्षा में चक्कर लगाते हैं, ठीक ऐसे ही जैसे सूर्य के चारों ओर ग्रह चक्कर लगाते हैं। रदरफोर्ड के प्रयोगों ने सुझाया कि नाभिक का साइज़ लगभग $10^{-15} \mathrm{~m}$ से $10^{-14} \mathrm{~m}$ हो सकता है। गतिज सिद्धांत के अनुसार

चित्र 12.3 चित्र 12.1 तथा 12.2 में गाइगर-मार्सडन द्वारा प्रयुक्त प्रयोग व्यवस्था में पतली पन्नी पर ऐल्फा-कणों के प्रहार में विभिन्न कोणों पर प्राप्त प्रायोगिक प्रकीर्णन आँकड़े (बिन्दुओं के रूप में)। रदरफोर्ड के नाभिकीय मॉडल पर आधारित ठोस वक्र प्रायोगिक परीक्षणों के साथ मेल रखते हुए प्रतीत होते हैं।

परमाणु का साइज़ $10^{-10} \mathrm{~m}$ माना जाता है, जो कि नाभिक के साइज़ की अपेक्षा लगभग 10,000 से 100,000 गुना बड़ा है (कक्षा 11 की भौतिकी पाठ्यपुस्तक का अध्याय 10 , अनुच्छेद 10.6 देखें)। इस प्रकार, नाभिक से इलेक्ट्रॉन नाभिक के साइज़ की अपेक्षा लगभग 10,000 से 100,000 गुना दूर दिखाई देगा। इस प्रकार, परमाणु के भीतर का अधिकांश भाग खाली है। परमाणु के भीतर का अधिकतर भाग खाली होने के कारण यह समझना आसान है कि अधिकतर ऐल्फ़ा-कण पतली धातु की पन्नी से बिना विक्षेपित हुए बाहर क्यों निकल जाते हैं। तथापि, जब कोई ऐल्फ़ा-कण नाभिक के समीप आता है तो वहाँ पर विद्यमान प्रबल विद्युत बल इसे बड़े कोण से प्रकीर्णित कर देता है। परमाणु के इलेक्ट्रॉन अत्यंत हलके होने के कारण ऐल्फ़ा-कणों पर पर्याप्त प्रभाव नहीं डाल पाते।

चित्र 12.3 में प्रदर्शित प्रकीर्णन आँकड़ों का विश्लेषण रदरफोर्ड के परमाणु के नाभिकीय मॉडल द्वारा किया जा सकता है। स्वर्ण पन्नी के बहुत पतली होने के कारण यह कल्पना की जा सकती है कि इस पन्नी को पार करते समय $\alpha$-कण एक से अधिक बार प्रकीर्णित नहीं होंगे। अत: किसी एक नाभिक से प्रकीर्णित ऐल्फ़ा-कण के प्रक्षेप पथ का अभिकलन काफ़ी है। ऐल्फ़ा-कण हीलियम परमाणु के नाभिक हैं इसलिए इन पर दो इकाई, $2 \mathrm{e}$, धनावेश है और द्रव्यमान हीलियम परमाणु के द्रव्यमान के बराबर है। स्वर्ण के नाभिक का आवेश $Z e$ है, यहाँ $Z$ परमाणु का परमाणु क्रमांक है, जो स्वर्ण के लिए 79 है। चूँकि स्वर्ण-नाभिक $\alpha$-कण के नाभिक से 50 गुना भारी है, अतः यह कल्पना करना तर्कसंगत है कि प्रकीर्णन प्रक्रम के समय स्वर्ण-नाभिक स्थिर रहता है। इन अभिधारणाओं के आधार पर ऐल्फ़ा-कण और धनावेशित नाभिक के मध्य स्थिर वैद्युत प्रतिकर्षण बल के कूलॉम-नियम तथा न्यूटन के गति के द्वितीय नियम द्वारा ऐल्फ़ा-कण के प्रक्षेप पथ का अभिकलन किया जा सकता है। इस बल का परिमाण इस प्रकार व्यक्त किया जाता है :

$$ \begin{equation*} F=\frac{1}{4 \pi \varepsilon _{0}} \frac{(2 e)(Z e)}{r^{2}} \tag{12.1} \end{equation*} $$

जहाँ $r$ ऐल्फ़ा-कण की नाभिक से दूरी है। आरोपित बल, ऐल्फ़ा-कण और नाभिक को मिलाने वाली रेखा के अनुदिश है। ऐल्फ़ा-कण पर आरोपित बल का परिमाण एवं दिशा, ऐल्फ़ा-कण के नाभिक की ओर अभिगमन करने वाले तथा उससे दूर जाने के साथ लगातार परिवर्तित होती रहती है।

12.2.1 ऐल्फ़ा-कण प्रक्षेप-पथ

ऐल्फ़ा-कण द्वारा अनुरेखित प्रक्षेप पथ, संघट्ट के संघट्ट प्राचल, $b$ पर निर्भर करता है। संघट्ट प्राचल ऐल्फ़ा-कण के प्रारंभिक वेग सदिश की नाभिक के केंद्र से अभिलंबीय दूरी है (चित्र 12.4)। दिए गए ऐल्फ़ा-कणों के पुंज के संघट्ट प्राचल $b$ का वितरण इस प्रकार है कि पुंज विभिन्न दिशाओं

चित्र 12.4 किसी भारी नाभिक के कूलॉम क्षेत्र में ऐल्फ़ा-कण का प्रक्षेप पथ। संघट्ट प्राचल $b$ और प्रकीर्णन कोण $\theta$ अंतर चित्र में दर्शाए गए हैं।

में भिन्न-भिन्न प्रायिकताओं से प्रकीर्णित होता है (चित्र 12.4)। (किसी पुंज में सभी कणों की लगभग समान गतिज ऊर्जा होती है।) यह देखा गया है कि नाभिक के समीप कोई ऐल्फ़ा-कण (कम संघट्ट प्राचल) अधिक प्रकीर्णित होता है। प्रत्यक्ष संघट्ट की स्थिति में संघट्ट प्राचल न्यूनतम है तथा ऐल्फ़ा-कण पीछे की ओर प्रतिक्षिप्त होता है $(\theta \cong \pi)$ । संघट्ट प्राचल के अधिक मान के लिए, ऐल्फ़ा-कण लगभग अविचलित रहता है तथा विक्षेप बहुत कम होता है $(\theta \cong 0)$ ।

यह तथ्य कि आपतित कणों में से केवल एक छोटा भाग ही टकराकर वापस लौटता है, यह सूचित करता है कि प्रत्यक्ष संघट्ट की स्थिति में आने वाले ऐल्फ़ा-कणों की संख्या बहुत कम है। इससे ज्ञात होता है कि नाभिक का द्रव्यमान तथा धनात्मक आवेश बहुत छोटे आयतन में संकेंद्रित है। इस प्रकार रदरफोर्ड प्रकीर्णन नाभिक के साइज़ की उच्चसीमा ज्ञात करने का एक शक्तिशाली साधन है।

उदाहरण 12.1 परमाणु के रदरफोर्ड के नाभिकीय मॉडल में, नाभिक (त्रिज्या लगभग $10^{-15} \mathrm{~m}$ ) सूर्य के सदृश है, जिसके परितः इलेक्ट्रॉन अपने कक्ष (त्रिज्या $\approx 10^{-10} \mathrm{~m}$ ) में ऐसे परिक्रमा करता है जैसे पृथ्वी सूर्य के चारों ओर परिक्रमा करती है। यदि सौर परिवार की विमाएँ उसी अनुपात में होतीं जो किसी परमाणु में होती हैं, तो क्या पृथ्वी अपनी वास्तविक स्थिति की अपेक्षा सूर्य के पास होगी या दूर होगी? पृथ्वी के कक्ष की त्रिज्या लगभग $1.5 \times 10^{11} \mathrm{~m}$ है। सूर्य की त्रिज्या $7 \times 10^{8} \mathrm{~m}$ मानी गई है।

हल इलेक्ट्रॉन के कक्ष की त्रिज्या तथा नाभिक की त्रिज्या का अनुपात है $\left(10^{-10} \mathrm{~m}\right) /\left(10^{-15}\right.$ $\mathrm{m})=10^{5}$, अर्थात इलेक्ट्रॉन के कक्ष की त्रिज्या, नाभिक की त्रिज्या से $10^{5}$ गुना अधिक है। यदि सूर्य के चारों ओर पृथ्वी के कक्ष की त्रिज्या सूर्य की त्रिज्या से $10^{5}$ गुना अधिक हो, तो पृथ्वी के कक्ष की त्रिज्या होगी $10^{5} \times 7 \times 10^{8} \mathrm{~m}=7 \times 10^{13} \mathrm{~m}$ । यह पृथ्वी की वास्तविक कक्षीय त्रिज्या से 100 गुना अधिक है। अतः इस स्थिति में पृथ्वी सूर्य से बहुत अधिक दूर होगी। इससे यह भी ज्ञात होता है कि परमाणु में हमारे सौर परिवार की अपेक्षा बहुत अधिक भाग खाली स्थान है।

उदाहरण 12.2 गाइगर-मार्सडन प्रयोग में $7.7 \mathrm{MeV}$ के किसी ऐल्फ़ा कण की स्वर्ण-नाभिक से क्षण भर के लिए विरामावस्था में आने से पहले तथा दिशा प्रतिलोमन से पूर्व समीपतम दूरी क्या है?

हल यहाँ मुख्य धारणा यह है कि प्रकीर्णन प्रक्रम की समस्त अवधि में किसी तंत्र जैसे ऐल्फ़ा-कण और स्वर्ण-नाभिक की कुल यांत्रिक ऊर्जा संरक्षित रहती है। ऐल्फ़ा-कण और नाभिक की अन्योन्यक्रिया से पूर्व तंत्र की प्रारंभिक यांत्रिक ऊर्जा $E _{i}$ कण के क्षणिक रूप से विरामावस्था में आने पर उसकी यांत्रिक ऊर्जा $E _{f}$ के बराबर है। प्रारंभिक ऊर्जा $E _{i}$ आगामी ऐल्फ़ा-कण की गतिज ऊर्जा $K$ के ठीक बराबर है। अंतिम ऊर्जा $E _{f}$ तंत्र की विद्युत स्थितिज ऊर्जा $U$ ही है। स्थितिज ऊर्जा $U$ का समीकरण (12.1) से परिकलन किया जा सकता है।

मान लीजिए कि ऐल्फ़ा-कण के केंद्र और स्वर्ण-नाभिक के केंद्र के बीच दूरी $d$ है। जब $\alpha$-कण अपने विरामन बिंदु पर स्थित है, तब ऊर्जा संरक्षण के नियमानुसार, $E _{i}=E _{f}$ को इस प्रकार व्यक्त किया जा सकता है :

$$ K=\frac{1}{4 \pi \varepsilon_{0}} \frac{(2 e)(Z e)}{d}=\frac{2 Z e^{2}}{4 \pi \varepsilon_{0} d} $$

अतः समीपतम दूरी $d$ होगी

$$d=\frac{2 Z e^{2}}{4 \pi \varepsilon _{0} K}$$

प्राकृतिक स्रोतों के ऐल्फ़ा-कणों में पाई जाने वाली अधिकतम गतिज ऊर्जा

$$7.7 \mathrm{MeV}$ \text { अथवा } $1.2 \times 10^{-12} \mathrm{~J} \text { है। क्योंकि} 1 / 4 \pi \varepsilon _{0}=9.0 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}^{2}$$

इसलिए $e=1.6 \times 10^{-19} \mathrm{C}$, के साथ, हमें प्राप्त होगा

$$ \begin{aligned} d & =\frac{(2)\left(9.0 \times 10^{9} \mathrm{Nm}^{2} / C^{2}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2} Z}{1.2 \times 10^{-12} \mathrm{~J}} \\ & =3.84 \times 10^{-16} Z \mathrm{~m} \end{aligned} $$

पन्नी के पदार्थ स्वर्ण का परमाणु क्रमांक $Z=79$, इसलिए

$d(\mathrm{Au})=3.0 \times 10^{-14} \mathrm{~m}=30 \mathrm{fm}(1 \mathrm{fm}$ (अर्थात् फर्मी $\left.)=10^{-15} \mathrm{~m}\right)$

अतः स्वर्ण नाभिक की त्रिज्या $3.0 \times 10^{-14} \mathrm{~m}$ से कम है। यह प्रेक्षित परिणाम से बहुत अधिक मेल नहीं खाती है क्योंकि स्वर्ण नाभिक की वास्तविक त्रिज्या $6 \mathrm{fm}$ है। इस विसंगति का कारण यह है कि समीपतम पहुँचने की दूरी ऐल्फ़ा-कण तथा स्वर्ण-नाभिक की त्रिज्याओं के योग से काफ़ी अधिक है। इस प्रकार ऐल्फ़ा-कण स्वर्ण-नाभिक को वास्तव में छुए बिना ही अपनी गति की दिशा विपरीत कर लेता है।

12.2.2 इलेक्ट्रॉन-कक्षाएँ

परमाणु का रदरफोर्ड नाभिकीय मॉडल जिसमें क्लासिकी धारणाएँ सम्मिलित हैं, परमाणु को एक विद्युतीय उदासीन गोले के रूप में चित्रित करता है, जिसके केंद्र पर बहुत छोटा, भारी तथा धन आवेशित नाभिक है, जो अपनी-अपनी गतिशील स्थिर कक्षाओं में घूमते इलेक्ट्रॉनों से घिरा हुआ है। परिक्रमा करते हुए इलेक्ट्रॉनों तथा नाभिक के बीच स्थिरवैद्युत आकर्षण बल $F _{e}$ इलेक्ट्रॉन को अपने कक्ष में बनाए रखने के लिए आवश्यक अभिकेंद्री बल $\left(F _{c}\right)$ प्रदान करता है। अतः, हाइड्रोजन परमाणु में गतिशील स्थिर कक्षा के लिए

$$ \begin{align*} & F _{e}=F _{c} \\ & \frac{1}{4 \pi \varepsilon _{0}} \frac{e^{2}}{r^{2}}=\frac{m v^{2}}{r} \tag{12.2} \end{align*} $$

अतः कक्षा-त्रिज्या तथा इलेक्ट्रॉन-वेग में संबंध होगा

$$ \begin{equation*} r=\frac{e^{2}}{4 \pi \varepsilon _{0} m v^{2}} \tag{12.3} \end{equation*} $$

हाइड्रोजन के परमाणु में इलेक्ट्रॉन की गतिज ऊर्जा $(K)$ तथा स्थिरवैद्युत स्थितिज ऊर्जा $(U)$ होंगी

$$ K=\frac{1}{2} m v^{2}=\frac{e^{2}}{8 \pi \varepsilon _{0} r} \text { तथा } U=-\frac{e^{2}}{4 \pi \varepsilon _{0} r} $$

( $U$ में ऋणात्मक चिह्न सूचित करता है कि स्थिरवैद्युत बल $-r$ दिशा में है) अतः हाइड्रोजन परमाणु में इलेक्ट्रॉन की कुल ऊर्जा $E$,

$$ \begin{align*} E=K+U & =\frac{e^{2}}{8 \pi \varepsilon _{0} r}-\frac{e^{2}}{4 \pi \varepsilon _{0} r} \\ & =-\frac{e^{2}}{8 \pi \varepsilon _{0} r} \tag{12.4} \end{align*} $$

इलेक्ट्रॉन की कुल ऊर्जा ऋणात्मक है। यह तथ्य दर्शाता है कि इलेक्ट्रॉन नाभिक से परिबद्ध है। यदि $E$ धनात्मक होता तो इलेक्ट्रॉन नाभिक के चारों ओर बंद कक्ष में नहीं घूमता।

उदाहरण 12.3 प्रयोग द्वारा यह पाया गया कि हाइड्रोजन परमाणु को एक प्रोटॉन तथा एक इलेक्ट्रॉन में पृथक करने के लिए $13.6 \mathrm{eV}$ ऊर्जा की आवश्यकता है। हाइड्रोजन परमाणु में कक्षीय-त्रिज्या तथा इलेक्ट्रॉन का वेग परिकलित कीजिए।

हल हाइड्रोजन परमाणु में इलेक्ट्रॉन की कुल ऊर्जा है $-13.6 \mathrm{eV}=-13.6 \times 1.6 \times 10^{-19} \mathrm{~J}$ $=-2.2 \times 10^{-18} \mathrm{~J}$ अतः समीकरण (12.4) से हमें प्राप्त होगा

$$ E=-\frac{e^{2}}{8 \pi \varepsilon _{0} r}=-2.2 \times 10^{-18} \mathrm{~J} $$

इससे कक्षीय-त्रिज्या प्राप्त होगी :

$$ \begin{aligned} r & =-\frac{e^{2}}{8 \pi \varepsilon _{0} E}=-\frac{\left(9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2}}{(2)\left(-2.2 \times 10^{-18} \mathrm{~J}\right)} \\ & =5.3 \times 10^{-11} \mathrm{~m} \end{aligned} $$

परिक्रमण करते इलेक्ट्रॉन का वेग, समीकरण (12.3) से $m=9.1 \times 10^{-31} \mathrm{~kg}$ लेकर परिकलित कर सकते हैं

$$ v=\frac{e}{\sqrt{4 \pi \varepsilon _{0} m r}}=2.2 \times 10^{6} \mathrm{~m} / \mathrm{s} $$

12.3 परमाणवीय स्पेक्ट्म

अनुच्छेद 12.1 में उल्लेख किए अनुसार, प्रत्येक तत्व अभिलाक्षणिक स्पेक्ट्रम-विकिण उत्सर्जित करता है। जब कोई परमाण्वीय गैस अथवा वाष्प निम्न दाब पर, प्रायः इससे विद्युत धारा प्रवाहित करके, उत्सर्जित की जाती है तो उत्सर्जित विकिरण से स्पेक्ट्रम प्राप्त होता है जिसमें कुछ विशिष्ट तरंगदैर्घ्य ही होती हैं। इस प्रकार के स्पेक्ट्रम को उत्सर्जन रैखिक स्पेक्ट्रम कहते हैं तथा इसमें काली

चित्र 12.5 हाइड्रोजन के स्पेक्ट्रम में उत्सर्जन रेखाएँ।

पृष्ठभूमि पर दीप्त रेखाएँ होती हैं। चित्र 12.5 में परमाण्वीय हाइड्रोजन द्वारा उत्सर्जित स्पेक्ट्रम दर्शाया गया है। अतः किसी पदार्थ के उत्सर्जन रैखिक स्पेक्ट्रम का अध्ययन, गैस की पहचान करने के लिए फिंगरप्रिंट तरंगदैर्घ्य $\lambda$ के रूप में कार्य कर सकता है। जब श्वेत प्रकाश किसी गैस से होकर गुज़रता है तथा हम स्पेक्ट्रोमीटर द्वारा पारगत प्रकाश का विश्लेषण करते हैं तो स्पेक्ट्रम में कुछ अदीप्त रेखाएँ दिखाई देती हैं। ये अदीप्त रेखाएँ परिशुद्धतः रूप से उन तरंगदैर्घ्यों के तदनुरूपी होती हैं जो उस गैस के उत्सर्जन रैखिक स्पेक्ट्रम में पाई जाती हैं। यह उस गैस के पदार्थ का अवशोषण स्पेक्ट्रम कहलाता है।

12.4 हाइड्रोजन परमाणु का बोर मॉडल

परमाणु के रदरफोर्ड द्वारा प्रस्तावित मॉडल में यह मान लिया गया है कि परमाणु के केंद्र में नाभिक होता है तथा परिक्रमा करते इलेक्ट्रॉन स्थिर हैं ठीक वैसे ही जैसा सौर परिवार में होता है जिसका अनुकरण करके इस मॉडल को विकसित किया गया। तथापि, दोनों स्थितियों में कुछ मूलभूत अंतर है। ग्रहीय तंत्र गुरुत्वीय बल के कारण बँधा है, जबकि नाभिक-इलेक्ट्रॉन तंत्र में आवेशित कण होने के कारण, बल के कूलॉम-नियम द्वारा अन्योन्य क्रिया होती है। हम जानते हैं कि वृत्ताकार पथ में घूमती कोई वस्तु लगातार त्वरण में होती है, और इस त्वरण की प्रकृति अभिकेंद्री है। क्लासिकी वैद्युतचुंबकीय सिद्धांत के अनुसार कोई त्वरित आवेशित कण वैद्युतचुंबकीय तरंगों के रूप में विकिरण उत्सर्जित करता है। अतः त्वरित इलेक्ट्रॉन की ऊर्जा निरंतर घटनी चाहिए। इलेक्ट्रॉन अंदर की ओर सर्पिल पथ पर चलेगा तथा अंततः नाभिक में गिर जाएगा (चित्र 12.6)।

नील्स हेनरिक डेविड बोर (1885 - 1962)

डेनमार्क के भौतिकविज्ञानी जिन्होंने क्वांटम विचारों के आधार पर हाइड्रोजन परमाणु के स्पेक्ट्रम की व्याख्या की। नाभिक के द्रव-बूँद मॉडल के आधार पर उन्होंने नाभिकीय विखंडन का एक सिद्धांत प्रस्तुत किया। बोर ने क्वांटम-यांत्रिकी की संकल्पनात्मक समस्याओं को विशेषकर संपूरकता के सिद्धांत की प्रस्तुति द्वारा स्पष्ट करने में योगदान किया।

अतः ऐसा परमाणु स्थायी नहीं हो सकता। इसके अतिरिक्त, क्लासिकी वैद्युतचुंबकीय सिद्धांत के अनुसार परिक्रमी इलेक्ट्रॉनों द्वारा उत्सर्जित वैद्युतचुंबकीय तरंगों की आवृत्ति परिक्रमण-आवृत्ति के बराबर होती है। जब इलेक्ट्रॉन सर्पिल पथ पर अंदर नाभिक की ओर आते हैं तो उनके कोणीय वेग और इस प्रकार उनकी आवृत्तियाँ निरंतर परिवर्तित होंगी। फलस्वरूप उत्सर्जित प्रकाश की आवृत्ति भी निरंतर परिवर्तित होनी चाहिए। अतः इन्हें एक संतत स्पेक्ट्रम उत्सर्जित करना चाहिए जो वास्तव में प्रेक्षित रैखिक स्पेक्ट्रम के विपरीत है। स्पष्टतया रदरफोर्ड का मॉडल केवल तस्वीर का एक पहलू दिखलाता है जिसका अर्थ है कि क्लासिकी विचार परमाणु संरचना की व्याख्या करने के लिए पर्याप्त नहीं है।

चित्र 12.6 परमाणु का कोई त्वरित इलेक्ट्रॉन ऊर्जा ह्रास करके सर्पिल पथ पर नाभिक की ओर अंदर आ जाएगा।

उदाहरण 12.4 क्लासिकी वैद्युतचुंबकीय सिद्धांत के अनुसार, हाइड्रोजन परमाणु में प्रोटॉन के चारों ओर परिक्रामी इलेक्ट्रॉन द्वारा उत्सर्जित प्रकाश की प्रारंभिक आवृत्ति परिकलित कीजिए।

हल उदाहरण 12.3 से हम जानते हैं कि हाइड्रोजन परमाणु में प्रोटॉन के चारों ओर $5.3 \times 10^{-11} \mathrm{~m}$ की त्रिज्या की कक्षा में परिक्रामी इलेक्ट्रॉन का वेग $2.2 \times 10^{-6} \mathrm{~m} / \mathrm{s}$ है। अतः, प्रोटॉन के चारों ओर परिक्रामी इलेक्ट्रॉन की आवृत्ति है :

$$ \begin{array}{r} v=\frac{v}{2 \pi r}=\frac{2.2 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}}{2 \pi\left(5.3 \times 10^{-11} \mathrm{~m}\right)} \\ \approx 6.6 \times 10^{15} \mathrm{~Hz} \end{array} $$

क्लासिकी वैद्युतचुंबकीय सिद्धांत के अनुसार हम जानते हैं कि परिक्रामी इलेक्ट्रॉनों द्वारा उत्सर्जित वैद्युतचुंबकीय तरंगों की आवृत्ति, इसकी नाभिक के चारों ओर परिक्रमण आवृत्ति के बराबर है। अतः उत्सर्जित प्रकाश की प्रारंभिक आवृत्ति $6.6 \times 10^{15} \mathrm{~Hz}$ होगी।

नील्स बोर (1885 - 1962) ने रदरफोर्ड के मॉडल में नयी विकासशील क्वांटम परिकल्पना के विचारों को जोड़कर कुछ रूपांतर किया। नील्स बोर ने 1912 में कई महीनों तक रदरफोर्ड की प्रयोगशाला में अध्ययन किया था तथा वह रदरफोर्ड के नाभिकीय मॉडल की वैधता के बारे में पूरी तरह आश्वस्त थे। उपरोक्त दुविधा में उलझे बोर ने 1913 में निष्कर्ष निकाला कि यद्यपि वैद्युतचुंबकीय सिद्धांत, वृहत स्तरीय परिघटनाओं को व्याख्या करने में सक्षम है तथापि इस सिद्धांत को परमाणु स्तर के प्रक्रमों में प्रयुक्त नहीं किया जा सकता। यह स्पष्ट हो गया कि परमाणु-संरचना और इसका परमाण्वीय स्पेक्ट्रम से संबंध समझने के लिए क्लासिकी यांत्रिकी और वैद्युतचुंबकत्व के स्थापित सिद्धांतों से आमूल विचलन की आवश्यकता होगी। बोर ने क्लासिकी एवं प्रारंभिक क्वांटम संकल्पनाओं को संयुक्त करके तीन अभिगृहीतों के रूप में अपना सिद्धांत प्रस्तुत किया। ये अभिगृहीत हैं :

(i) बोर का पहला अभिगृहीत था कि किसी परमाणु में कोई इलेक्ट्रॉन निश्चित स्थायी कक्षाओं में विकिरण ऊर्जा उत्सर्जित किए बिना परिक्रमण कर सकता है। यह वैद्युतचुंबकीय सिद्धांत के अनुमानों के विपरीत है। इस अभिगृहीत के अनुसार प्रत्येक परमाणु की कुछ निश्चित स्थायी अवस्थाएँ हैं जिसमें यह रह सकता है और प्रत्येक संभव अवस्था में निहित कुल ऊर्जा निश्चित होती है। इन संभावित अवस्थाओं को परमाणु की स्थिर अवस्थाएँ कहते हैं।

(ii) बोर का दूसरा अभिगृहीत इन स्थायी कक्षाओं को परिभाषित करता है। इस अभिगृहीत के अनुसार इलेक्ट्रॉन नाभिक के चारों ओर केवल उन कक्षाओं में ही परिक्रमण करता है जिनके लिए कोणीय संवेग का मान $h / 2 \pi$ का पूर्णांक गुणज होता है। जहाँ $h$ प्लांक नियतांक $\left(=6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)$ । अतः परिक्रमा करते हुए इलेक्ट्रॉन का कोणीय संवेग $(L)$ क्वांटित है। अर्थात

$$ \begin{align*} & L=n h / 2 \pi \tag{12.5} \end{align*} $$

(iii) बोर के तीसरे अभिगृहीत में परमाणु सिद्धांत में प्लांक तथा आइंसटाइन द्वारा विकसित प्रारंभिक क्वांटम परिकल्पनाओं को समाविष्ट किया गया। इसके अनुसार कोई इलेक्ट्रॉन अपने विशेष रूप से उल्लिखित अविकिरणी कक्षा से दूसरी निम्न ऊर्जा वाली कक्षा में संक्रमण कर सकता है। जब यह ऐसा करता है तो एक फोटॉन उत्सर्जित होता है जिसकी ऊर्जा प्रारंभिक एवं अंतिम अवस्थाओं की ऊर्जा के अंतर के बराबर होती है। उत्सर्जित फोटॉन की आवृत्ति निम्न व्यंजक द्वारा दी जाती है :

$$ \begin{align*} & h v=E_{i}-E_{f} \tag{12.6} \end{align*} $$

जहाँ $E _{i}$ एवं $E _{f}$ प्रारंभिक और अंतिम अवस्थाओं की ऊर्जाएँ हैं, $E _{i}>E _{f}$ ।

समीकरण (12.4) में हाइड्रोजन परमाणु के लिए विभिन्न ऊर्जा स्थितियों की ऊर्जाएँ ज्ञात करने का व्यंजक दिया गया है। लेकिन इस समीकरण में इलेक्ट्रॉन कक्ष की त्रिज्या $r$ की आवश्यकता है। $r$ का मान परिकलित करने के लिए, इलेक्ट्रॉन के कोणीय संवेग से संबंधित बोर के दूसरे अभिगृहीत-क्वांटमीकरण प्रतिबंध का प्रयोग करते हैं।

इस प्रकार किसी संभावित $\mathrm{n}^{\text {th }}$ कक्षा की त्रिज्या प्राप्त होती है

$$ \begin{equation*} r _{n}=\left(\frac{n^{2}}{m}\right)\left(\frac{h}{2 \pi}\right)^{2} \frac{4 \pi \varepsilon _{0}}{e^{2}} \tag{12.7} \end{equation*} $$

किसी हाइड्रोजन परमाणु की स्थायी अवस्था में इलेक्ट्रॉन की कुल ऊर्जा, समीकरण (12.4) में कक्षीय त्रिज्या का मान प्रतिस्थापित करने पर प्राप्त की जा सकती है। यथा

$$ E _{n}=-\left(\frac{e^{2}}{8 \pi \varepsilon _{0}}\right)\left(\frac{m}{n^{2}}\right)\left(\frac{2 \pi}{h}\right)^{2}\left(\frac{e^{2}}{4 \pi \varepsilon _{0}}\right) $$

अथवा

$$ \begin{equation*} E_{n}=-\frac{m e^{4}}{8 n^{2} \varepsilon_{0}^{2} h^{2}} \tag{12.8} \end{equation*} $$

समीकरण (12.8) में नियतांकों के मान रखने पर हमें प्राप्त होगा

$$ \begin{equation*} E _{n}=-\frac{2.18 \times 10^{-18}}{n^{2}} \mathrm{~J} \tag{12.9} \end{equation*} $$

परमाण्वीय ऊर्जाएँ प्राय: जूल के स्थान पर इलेक्ट्रॉन वोल्ट $(\mathrm{eV})$ में व्यक्त की जाती हैं। क्योंकि $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$ । समीकरण (12.9) को पुनः इस प्रकार लिखा जा सकता है

$$ \begin{equation*} E _{n}=-\frac{13.6}{n^{2}} \mathrm{eV} \tag{12.10} \end{equation*} $$

किसी कक्ष में गतिमान इलेक्ट्रॉन की कुल ऊर्जा के व्यंजक में ऋणात्मक चिह्न इस बात का द्योतक है कि इलेक्ट्रॉन, परमाणु के नाभिक से आबद्ध है। अतः, हाइड्रोजन परमाणु से इलेक्ट्रॉन को नाभिक से (या हाइड्रोजन परमाणु में प्रोटॉन से) अनंत दूरी तक विलग करने के लिए ऊर्जा की आवश्यकता होगी।

12.4.1 ऊर्जा स्तर

परमाणु की ऊर्जा उस समय न्यूनतम (अधिकतम ऋणात्मक मान) होती है जब उसका इलेक्ट्रॉन नाभिक की निकटतम कक्षा (अर्थात् $n=1$ ) में परिक्रमण करता है। $n=2,3 \ldots$ के लिए, ऊर्जा $E$ के निरपेक्ष मान कम होते जाते हैं, अतः बाह्य कक्षा की ओर जाने पर कक्षाओं में ऊर्जा अधिक होती जाती है। परमाणु की न्यूनतम अवस्था में जिसे निम्नतम अवस्था कहते हैं इलेक्ट्रॉन की ऊर्जा न्यूनतम होती है, तथा इलेक्ट्रॉन, न्यूनतम त्रिज्या (बोर त्रिज्या $a _{o}$ ) की कक्षा में परिक्रमण करता है। इस अवस्था की ऊर्जा $(n=1), E _{1}-13.6 \mathrm{eV}$ है। अतः हाइड्रोजन परमाणु की निम्नतम अवस्था से इलेक्ट्रॉन को मुक्त कराने के लिए आवश्यक न्यूनतम ऊर्जा $13.6 \mathrm{eV}$ है। इसे हाइड्रोजन परमाणु की आयनन ऊर्जा भी कहते हैं। बोर के मॉडल के आधार पर प्राप्त मान आयनन ऊर्जा के प्रायोगिक मानों से उत्तम अनुरूपता रखता है।

कमरे के ताप पर, अधिकांश हाइड्रोजन परमाणु अपनी निम्नतम अवस्था में रहते हैं। जब कोई परमाणु इलेक्ट्रॉन संघट्ट जैसे प्रक्रमों द्वारा ऊर्जा प्राप्त करता है, तब वह अस्थायी रूप से इतनी ऊर्जा अर्जित कर सकता है जो इलेक्ट्रॉन को उच्च कक्षाओं तक पहुँचाने के लिए पर्याप्त होती है। तब वह परमाणु उत्तेजित अवस्था में कहलाता है। समीकरण (12.10) से $n=2$ के लिए; ऊर्जा $E _{2},-3.40 \mathrm{eV}$ है। इसका अर्थ यह हुआ कि हाइड्रोजन परमाणु में किसी इलेक्ट्रॉन को इसकी पहली उत्तेजित अवस्था में उत्तेजित करने के लिए आवश्यक ऊर्जा $E _{2}-E _{1}$ $=-3.40 \mathrm{eV}-(-13.6) \mathrm{eV}=10.2 \mathrm{eV}$ होगी। इसी प्रकार, $E _{3}=-1.53$ $\mathrm{eV}$ तथा $E _{3}-E _{1}=12.09 \mathrm{eV}$ । अर्थात्, हाइड्रोजन परमाणु को इसकी निम्नतम अवस्था से $(n=1)$ दूसरी उत्तेजित अवस्था $(n=3)$, तक उत्तेजित करने के लिए $12.09 \mathrm{eV}$ ऊर्जा की आवश्यकता होती है। यह क्रम इसी प्रकार आगे चलता रहता है। इन उत्तेजित अवस्थाओं से इलेक्ट्रॉन फिर अपनी निम्न ऊर्जा अवस्था में वापस गिर सकता है। इस प्रक्रिया में वह एक फोटॉन उत्सर्जित करता है। इस प्रकार, हाइड्रोजन परमाणु की उत्तेजित अवस्था बढ़ाने पर (अर्थात $n$ के बढ़ने पर) उत्तेजित परमाणु से इलेक्ट्रॉन को स्वतंत्र करने के लिए आवश्यक न्यूनतम ऊर्जा घटती है।

चित्र 12.7 हाइड्रोजन परमाणु के लिए ऊर्जा-स्तर आरेख। कमरे के ताप पर हाइड्रोजन परमाणु में इलेक्ट्रॉन अपना अधिकांश समय निम्नतम अवस्था में व्यतीत करता है। हाइड्रोजन परमाणु को आयनित करने के लिए किसी इलेक्ट्रॉन को निम्नतम अवस्था से $13.6 \mathrm{eV}$ ऊर्जा अवश्य उपलब्ध करानी चाहिए। (क्षैतिज रेखाएँ अनुमत ऊर्जा अवस्थाओं की उपस्थिति को दर्शाती हैं।)

समीकरण (12.10) से अभिकलित हाइड्रोजन परमाणु की स्थायी अवस्थाओं का ऊर्जा स्तर आरेख* चित्र (12.7) में दर्शाया गया है। मुख्य क्वांटम संख्या $n$ स्थायी अवस्थाओं को ऊर्जा के आरोही क्रम में अंकित करता है। इस चित्र में उच्चतम ऊर्जा अवस्था समीकरण (12.10) में $n=\infty$ के संगत है तथा इसकी ऊर्जा $0 \mathrm{eV}$ है। यह परमाणु की वह ऊर्जा है जब नाभिक से इलेक्ट्रॉन पूरी तरह दूर कर दिया गया है $(r=\infty)$ और वह विराम में है। ध्यान दीजिए कि उत्तेजित अवस्थाओं की ऊर्जाएँ $n$ के बढ़ने पर किस प्रकार पास-पास आ जाती हैं।

12.5 हाइड्रोजन परमाणु का लाइन स्पेक्ट्रम

बोर के मॉडल के तृतीय अभिग्रहीत के अनुसार, जब कोई परमाणु उच्च ऊर्जा स्थिति जिसकी क्वांटम संख्या $n _{i}$ है, से निम्न ऊर्जा स्थिति जिसकी क्वांटम संख्या $n _{f}$ है $\left(n _{f}<n _{i}\right)$ में संक्रमण करता है, तब ऊर्जा के इस अंतर को आवृत्ति $v _{i f}$ का एक फोटॉन वहन करता है, ताकि

$$ \begin{equation*} h v _{i f}=E _{n _{f}}-E _{n _{i}} \tag{12.11} \end{equation*} $$

  • किसी इलेक्ट्रॉन की $E=0 \mathrm{eV}$ से अधिक कुछ भी कुल ऊर्जा हो सकती है। ऐसी दशाओं में इलेक्ट्रॉन स्वतंत्र होता है। इस प्रकार $E=0 \mathrm{eV}$ से ऊपर चित्र 12.7 में दर्शाए अनुसार ऊर्जा अवस्थाओं का एक सांतत्य है।

चूँकि $n _{f}$ और $n _{i}$ दोनों पूर्णांक हैं अतः इससे तुरंत परिणाम प्राप्त होता है कि परमाण्वीय स्तरों के मध्य संक्रमणों में, विभिन्न विविक्त आवृत्तियों के प्रकाश उत्सर्जित होते हैं।

जब इलेक्ट्रॉन उच्च ऊर्जा स्थिति से निम्न ऊर्जा स्थिति में आते हैं तो फोटॉन उत्सर्जित होते हैं तथा परमाण्वीय स्पेक्ट्रम की अनेक रेखाएँ उत्पन्न होती हैं। इन स्पेक्ट्रमी रेखाओं को उत्सर्जन रेखाएँ कहते हैं। लेकिन जब कोई परमाणु फोटॉन को अवशोषित करता है जिसकी ठीक वही ऊर्जा है जो किसी इलेक्ट्रॉन को निम्न ऊर्जा स्थिति से उच्च ऊर्जा स्थिति में संक्रमण के लिए आवश्यक होती है, तो इस प्रक्रम को अवशोषण कहते हैं। अतः यदि सतत परिसर की आवृत्तियों के फोटॉन किसी विरलित गैस से गुज़रने के पश्चात किसी स्पेक्ट्रोमीटर से विश्लेषित किए जाते हैं तो संतत स्पेक्ट्रम में अदीप्त स्पेक्ट्रमी अवशोषित रेखाओं की श्रेणी दिखाई देती है। अदीप्त रेखाएँ उन आवृत्तियों को निर्दिष्ट करती हैं जो गैस के परमाणुओं द्वारा अवशोषित की गई हैं।

हाइड्रोजन परमाणु के स्पेक्ट्रम का बोर मॉडल द्वारा दिया गया स्पष्टीकरण एक प्रतिभाशाली महान उपलब्धि था जिसने आधुनिक क्वांटम सिद्धांत की प्रगति को अत्यधिक प्रोत्साहित किया। सन् 1922 में बोर को भौतिकी में नोबेल पुरस्कार से सम्मानित किया गया।

12.6 बोर के क्वांटमीकरण के द्वितीय अभिगृहीत का दे ब्रॉग्ली द्वारा स्पष्टीकरण

बोर द्वारा प्रस्तुत परमाणु के मॉडल के सभी अभिगृहीतों में संभवतः दूसरा अभिगृहीत सबसे अधिक उलझन पैदा करने वाला था। इसके कथन के अनुसार नाभिक के चारों ओर परिक्रमा करते इलेक्ट्रॉन का कोणीय संवेग क्वांटित है (अर्थात $L _{n}=n h / 2 \pi ; n=1,2,3$ …)। कोणीय संवेग के केवल वही मान क्यों होते हैं जो $h / 2 \pi$ के पूर्णांक गुणज हैं? बोर द्वारा अपना मॉडल प्रस्तुत करने के दस वर्ष पश्चात सन् 1923 में एक फ्रांसीसी भौतिक वैज्ञानिक लुइस दे ब्रॉग्ली ने इस समस्या का हल ढूँढ़ा।

हमने अध्याय 11 में दे ब्रॉग्ली की परिकल्पना का अध्ययन किया था जिसके अनुसार, द्रव्य कण जैसे इलेक्ट्रॉन भी तरंग जैसे लक्षण प्रदर्शित करते हैं। सी.जे. डेविसन तथा एल.एच. जर्मर द्वारा 1927 में प्रायोगिक तौर पर इलेक्ट्रॉनों की तरंग प्रकृति का सत्यापन किया गया। लुइस दे ब्रॉग्ली ने तर्क किया कि इलेक्ट्रॉन को बोर द्वारा प्रस्तावित इसकी वृत्ताकार कक्षा में, एक कण-तरंग के रूप में देखा जाना चाहिए। डोरी में गमन करती तरंगों के सदृश, कण तरंगें भी अनुनादी अवस्थाओं में अप्रगामी तरंगें उत्पन्न कर सकती हैं। कक्षा 11 के लिए भौतिकी की पाठ्यपुस्तक के अध्याय 14 से हम जानते हैं कि किसी तनित डोरी को विभिन्न स्थानों पर कर्षण करके, उसमें विभिन्न तरंगदैर्घ्यों को उत्पन्न किया जा सकता है। तथापि, केवल वही तरंगदैर्घ्य विद्यमान रह पाती हैं जिनके सिरों पर निष्पंद होते हैं तथा जो डोरी में अप्रगामी तरंग बनाती हैं। इसका अर्थ है कि किसी डोरी में, अप्रगामी तरंगें तभी बनेंगी जब तरंग द्वारा डोरी में एक ओर जाने में तथा वापस आने में तय की गई कुल दूरी, एक तरंगदैर्घ्य,

चित्र 12.8 वृत्ताकार कक्षा में एक अप्रगामी तरंग दर्शाई गई है जहाँ पर कक्षा की रिधि में चार दे ब्राग्ली तरंगैदैर्य आती हैं। दो तरंगदैर्घ्य, अथवा कोई भी पूर्णांक ख्या की तरंगदैर्घ्य के बराबर हो। अन्य तरंगदैर्घ्यों की तरंगों में परावर्तन केपश्चात आपस में व्यतिकरण होता है तथा उनके आयाम शीघ्रता से शून्य हो जाते हैं। $r _{n} त्रिज्या की $n^{\text {th }}$ की कक्षा में परिक्रमा करते किसी इलेक्ट्रॉन द्वारा क्षा की परिधि में तय की गई कुल दूरी $2 \pi r _{n}$ होगी। अतः

$$ \begin{equation*} 2 \pi r _{n}=n \lambda, \quad n=1,2,3 \ldots \tag{12.12} \end{equation*} $$

चित्र 12.8 में किसी वृत्ताकार कक्षा पर जिसके लिए $n=4$ है, एक अप्रगामी कण तरंग दर्शायी गई है। इस प्रकार, $2 \pi r _{n}=4 \lambda$, जहाँ $\lambda n^{\text {th }}$ कक्षा में परिक्रमा करते हुए इलेक्ट्रॉन की दे ब्रॉग्ली तरंगदैर्घ्य है। अध्याय 11 से, हम जानते हैं $\lambda=h / p$, जहाँ $p$ इलेक्ट्रॉन के संवेग का परिमाण है। यदि इलेक्ट्रॉन की चाल प्रकाश की चाल से बहुत कम है, तो संवेग $m v _{n}$ होगा। इस प्रकार $\lambda=h / m v _{n}$ होगा। समीकरण (12.12) से हमें प्राप्त होगा :

$$ 2 \pi r _{n}=n h / m v _{n} \quad \text { अथवा } \quad m v _{n} r _{n}=n h / 2 \pi $$

यह बोर द्वारा प्रस्तावित इलेक्ट्रॉन के कोणीय संवेग का क्वांटम प्रतिबंध है [समीकरण (12.5)]। अनुच्छेद 12.5 में हमने देखा है कि यह समीकरण हाइड्रोजन परमाणु में ऊर्जा स्तरों तथा विविक्त कक्षाओं की व्याख्या करने का आधार है। इस प्रकार दे ब्रॉग्ली की परिकल्पना, परिक्रामी इलेक्ट्रॉन के कोणीय संवेग के क्वांटमीकरण की बोर द्वारा प्रस्तावित द्वितीय अभिगृहीत के लिए व्याख्या प्रस्तुत करती है। इलेक्ट्रॉन की क्वांटित कक्षाएँ तथा ऊर्जा स्थितियाँ, इलेक्ट्रॉन की तरंग प्रकृति के कारण हैं और केवल अनुनादी अप्रगामी तरंगें ही अवस्थित रह सकती हैं।

बोर-मॉडल जिसमें चिर प्रतिष्ठित प्रक्षेप पथ चित्रण (नाभिक के चारों ओर ग्रह-सदृश कक्षाएँ) सम्मिलित हैं, हाइड्रोजनसम परमाणुओं (एकल इलेक्ट्रॉन) के मुख्य लक्षणों, मुख्य रूप से उत्सर्जित अथवा वरणात्मक अवशोषित विकिरणों की आवृत्तियों की उचित भविष्यवाणी करता है। तथापि इस मॉडल की कुछ सीमाएँ हैं। इनमें से कुछ हैं :

(i) बोर-मॉडल हाइड्रोजनसम परमाणुओं के लिए ही उपयुक्त है। द्वि-इलेक्ट्रॉन परमाणु जैसे हीलियम के लिए भी इसे विस्तारित नहीं किया जा सकता। हाइड्रोजनसम* परमाणुओं के लिए बोर मॉडल को एक से अधिक इलेक्ट्रॉन वाले परमाणुओं के विश्लेषण के लिए प्रयोग करने के प्रयत्न किए गए, परंतु कोई सफलता प्राप्त नहीं हुई। कठिनाई यह है कि प्रत्येक इलेक्ट्रॉन केवल धनावेशित नाभिक से ही नहीं परंतु दूसरे सभी इलेक्ट्रॉनों से भी अन्योन्य क्रिया करता है।

बोर मॉडल के संरूपण में इलेक्ट्रॉन तथा धनावेशित नाभिक के बीच विद्युत बल सम्मिलित है। इनमें इलेक्ट्रॉनों के मध्य विद्युत बल शामिल नहीं है जो कि बहु-इलेक्ट्रॉन परमाणुओं में आवश्यक रूप से प्रकट होता है।

(ii) यद्यपि बोर-मॉडल हाइड्रोजनसम परमाणुओं द्वारा उत्सर्जित प्रकाश की आवृत्तियों की सही भविष्यवाणी करता है, फिर भी यह स्पेक्ट्रम में आवृत्तियों की आपेक्षिक तीव्रताओं की व्याख्या नहीं कर पाता। हाइड्रोजन के उत्सर्जन स्पेक्ट्रम में कुछ दृश्य आवृत्तियों की तीव्रता क्षीण होती है, जबकि दूसरी आवृत्तियों की तीव्रता प्रबल होती है। ऐसा क्यों होता है? प्रायोगिक प्रेक्षण दर्शाते हैं कि कुछ संक्रमण दूसरों की अपेक्षा अधिक स्वीकार्य हैं। बोर-मॉडल विभिन्न संक्रमणों की विविध तीव्रताओं की व्याख्या करने में असमर्थ है।

बोर-मॉडल परमाणु का परिष्कृत चित्र प्रस्तुत करता है तथा इसका जटिल परमाणुओं के लिए व्यापकीकरण नहीं किया जा सकता। जटिल परमाणुओं के लिए हमें क्वांटम यांत्रिकी पर आधारित एक नए मूलभूत सिद्धांत का उपयोग करना होगा जो परमाणु संरचना का अधिक पूर्ण चित्र प्रस्तुत करता है।

  • हाइड्रोजनसम परमाणु वे परमाणु हैं जिनमें धन आवेश $+Z e$ युक्त नाभिक और एकल इलेक्ट्रॉन होता है जहाँ $Z$ प्रोटॉन संख्या है। हाड्रडोजन परमाणु, एकधा आयनित हीलियम, द्वितः आयनित लीथियम इत्यादि हाइड्रोजनसम परमाणुओं के उदाहरण हैं। इन परमाणुओं में अधिक जटिल इलेक्ट्रॉन-इलेक्ट्रॉन अन्योन्य क्रियाएँ नहीं पाई जातीं।

सारांश

1. परमाणु कुल मिलाकर वैद्युत उदासीन होता है और इसलिए परमाणु में धनावेश और ऋणावेश की मात्राएँ समान होती हैं।

2. टॉमसन-मॉडल में परमाणु धनावेशों का गोलीय मेघ है जिसमें इलेक्ट्रॉन अंतःस्थापित होते हैं।

3. रदरफोर्ड-मॉडल में परमाणु का सर्वाधिक द्रव्यमान और इसका कुल धनावेश एक सूक्ष्म नाभिक में संकेंद्रित होता है (प्ररूपतः परमाणु के साइज़ का दस हज़ारवाँ भाग) तथा इलेक्ट्रॉन इसके चारों ओर परिक्रमा करते हैं।

4. परमाणु की संरचना की व्याख्या करने में रदरफोर्ड के नाभिकीय मॉडल में दो मुख्य कठिनाइयाँ हैं : (a) इसके अनुसार परमाणु अस्थिर हैं क्योंकि नाभिक के चारों ओर घूमते हुए त्वरित इलेक्ट्रॉनों को सर्पिल पथ पर नाभिक की ओर अंदर आ जाना चाहिए। यह पदार्थ के स्थायित्व का खंडन करता है। (b) यह विभिन्न तत्वों के परमाणुओं के अभिलाक्षणिक लाइन स्पेक्ट्रम की व्याख्या नहीं कर सकता।

5. अधिकांश तत्वों के परमाणु स्थायी होते हैं और अभिलाक्षणिक स्पेक्ट्रम उत्सर्जित करते हैं। स्पेक्ट्रम में विलग समांतर रेखाओं का समुच्चय होता है जिसे रेखिल स्पेक्ट्रम कहते हैं। यह परमाणु-संरचना के विषय में उपयोगी सूचनाएँ देता है।

6. परमाणुओं द्वारा उत्सर्जित रेखिल स्पेक्ट्रम तथा परमाणुओं के स्थायित्व की व्याख्या करने के लिए नील्स बोर ने हाइड्रोजनसम परमाणुओं (एकल इलेक्ट्रॉन) के लिए एक मॉडल प्रस्तावित किया। उन्होंने तीन अभिगृहीत प्रस्तुत किए तथा क्वांटम यांत्रिकी की नींव रखी:

(a) किसी हाइड्रोजन परमाणु में कोई इलेक्ट्रॉन बिना विकिरण ऊर्जा के उत्सर्जन के निश्चित कक्षाओं (जिन्हें स्थायी कक्षा कहते हैं) में परिक्रमण करते हैं।

(b) स्थायी कक्षा वे हैं जिनके लिए कोणीय संवेग $h / 2 \pi$ का कोई पूर्णांक गुणज होता है ( बोर का क्वांटमीकृत प्रतिबंध)। अर्थात $L=n h / 2 \pi$, जहाँ $n$ एक पूर्णांक है जिसे मुख्य क्वांटम संख्या कहते हैं।

(c) तीसरे अभिगृहीत के अनुसार कोई इलेक्ट्रॉन अपनी एक विनिर्दिष्ट अविकरणी कक्षा से अन्य निम्नतर ऊर्जा की कक्षा में संक्रमण कर सकता है। ऐसा करने में एक फोटॉन उत्सर्जित होता है जिसकी ऊर्जा प्रारंभिक और अंतिम अवस्थाओं की ऊर्जाओं के अंतर के बराबर होती है। उत्सर्जित फोटॉन की आवृत्ति $(v)$ निम्न संबंध द्वारा दी गई है :

$h \nu=E _{i}-E _{f}$

कोई परमाणु उसी आवृत्ति के विकिरण को अवशोषित करता है जिसे वह परमाणु उत्सर्जित करता है, इस स्थिति में इलेक्ट्रॉन $n$ से उच्च मान की कक्षा में अंतरित होता है।

$$ E _{i}+h v=E _{f} $$

7. कोणीय संवेग के क्वांटमीकरण प्रतिबंध के परिणामस्वरूप, इलेक्ट्रॉन नाभिक की परिक्रमा केवल विशिष्ट त्रिज्याओं की कक्षाओं में ही करता है। हाइड्रोजन परमाणु के लिए इसका मान है

$$ r _{n}=\left(\frac{n^{2}}{m}\right)\left(\frac{h}{2 \pi}\right)^{2} \frac{4 \pi \varepsilon _{0}}{e^{2}} $$

कुल ऊर्जा भी क्वांटित है :

$$ \begin{aligned} E _{n} & =\frac{m e^{4}}{8 n^{2} \varepsilon _{0}^{2} h^{2}} \\ & =-13.6 \mathrm{eV} / n^{2} \end{aligned} $$

तब, $n=1$ अवस्था, निम्नतम अवस्था कहलाती है। हाइड्रोजन परमाणु में निम्नतम अवस्था ऊर्जा का मान $-13.6 \mathrm{eV}$ है। $n$ के बड़े मान $(n>1)$ उत्तेजित अवस्थाओं के संगत हैं। परमाणु इन उत्तेजित अवस्थाओं में, दूसरे परमाणुओं या इलेक्ट्रॉनों से संघट्ट द्वारा अथवा उचित आवृत्ति के फोटॉन को अवशोषित करके, पहुँचते हैं।

8. दे ब्रॉग्ली की परिकल्पना, कि इलेक्ट्रॉन की तरंगदैर्घ्य $\lambda=h / m v$ होती है, ने तरंग-कण के द्वैती संबंध का उपयोग करके बोर की क्वांटित कक्षाओं की व्याख्या की। कक्षाएँ वृत्ताकार अप्रगामी तरंगों के संगत हैं जिनकी कक्षा की परिधि तरंगदैर्घ्यों के पूर्ण गुणजों के बराबर है।

9. बोर मॉडल हाइड्रोजनसम परमाणुओं (एकल इलेक्ट्रॉन) के लिए ही उपयुक्त है। इसे द्वि-इलेक्ट्रॉन परमाणु जैसे हीलियम के लिए भी विस्तारित नहीं किया जा सकता। यह मॉडल हाइड्रोजनसम परमाणुओं की आवृत्तियों की आपेक्षिक तीव्रताओं की भी व्याख्या नहीं कर पाता।

विचारणीय विषय

1. टामसन मॉडल और रदरफोर्ड मॉडल दोनों ही अस्थायी तंत्र बनाते हैं। टॉमसन मॉडल स्थिर वैद्युत रूप से अस्थायी है, जबकि रदरफोर्ड मॉडल कक्षीय इलेक्ट्रॉनों के वैद्युतचुंबकीय विकरण के कारण अस्थायी होता है।

2. बोर ने कोणीय संवेग (द्वितीय अभिगृहीत) का ही क्वांटमीकरण क्यों किया, किसी और राशि का क्यों नहीं? ध्यान दें कि $h$ तथा कोणीय संवेग की विमा एक ही होती है, और वृत्ताकार कक्षाओं के लिए कोणीय संवेग एक बहुत प्रासंगिक राशि है। अतः द्वितीय अभिगृहीत स्वाभाविक ही है।

3. हाइड्रोजन परमाणु में बोर मॉडल में कक्षीय चित्रण, अनिश्चितता सिद्धांत के साथ असंगत था। यह आधुनिक क्वांटम यांत्रिकी द्वारा प्रतिस्थापित कर दिया गया था जिसमें बोर की कक्षाएँ वे क्षेत्र हैं जहाँ इलेक्ट्रॉन के पाए जाने की प्रायिकता बहुत अधिक हो सकती है।

4. सौर परिवार की स्थिति से भिन्न, जहाँ ग्रह-ग्रह के बीच गुरुत्वाकर्षण बल, सूर्य और प्रत्येक ग्रह के बीच गुरुत्वाकर्षण बल (क्योंकि सूर्य का द्रव्यमान किसी भी ग्रह के द्रव्यमान से बहुत अधिक है) की अपेक्षा बहुत कम है, इलेक्ट्रॉन-इलेक्ट्रॉन की अन्योन्य क्रिया के कारण वैद्युत बल का परिमाण इलेक्ट्रॉन-नाभिक वैद्युत बल के तुल्य है, क्योंकि आवेश तथा दूरियाँ परिमाण में समान कोटि की हैं। यही कारण है कि ग्रह सदृश इलेक्ट्रॉन की मान्यता वाला बोर मॉडल बहु-इलेक्ट्रॉन परमाणुओं के लिए उपयुक्त नहीं है।

5. कुछ विशिष्ट कक्षों की परिकल्पना करके जिनमें इलेक्ट्रॉन विकिरित नहीं करते, बोर ने क्वांटम सिद्धांत की नींव रखी। बोर के मॉडल में केवल एक क्वांटम संख्या $n$ सम्मिलित है। नया सिद्धांत जिसे क्वांटम यांत्रिकी कहते हैं, बोर के अभिगृहीत की पुष्टि करता है। तथापि क्वांटम यांत्रिकी (अधिक व्यापक रूप से मान्य) में, कोई विशेष ऊर्जा स्तर सदैव एक ही क्वांटम अवस्था के संगत नहीं होता। उदाहरण के लिए, कोई अवस्था चार क्वांटम संख्याओं $(n, l, m$, तथा $s$ ) से अभिलक्षणित है, लेकिन शुद्ध कूलॉम विभव के लिए (हाइड्रोजन परमाणु की भांति) ऊर्जा केवल $n$ पर निर्भर करती है।

6. साधारण क्लासिकी अपेक्षाओं के प्रतिकूल, बोर मॉडल में किसी इलेक्ट्रॉन के अपनी कक्षा में परिक्रमण की आवृत्ति का स्पेक्ट्रमी रेखा की आवृत्ति से कोई संबंध नहीं है। स्पेक्ट्रमी रेखा की आवृत्ति $h$ द्वारा विभाजित दो कक्षीय ऊर्जाओं का अंतर होता है। बड़ी क्वांटम संख्याओं ( $n$ से $n-1$ तक, $n$ बहुत बड़ा लेने पर) के मध्य संक्रमणों में दोनों के मान समान हो जाते हैं जैसा कि अपेक्षित है।

7. बोर का सेमीक्लासिकी मॉडल जो कुछ तो क्लासिकी भौतिकी के पहलुओं पर तथा कुछ आधुनिक भौतिकी के पहलुओं पर आधारित है, सरलतम हाइड्रोजनसम परमाणुओं का भी सही चित्रण नहीं करता। सही चित्र वास्तव में क्वांटम यांत्रिकी से प्राप्त होता है जो बोर मॉडल से अनेक मूलभूत रूपों में भिन्न है। फिर यदि बोर मॉडल पूर्ण रूप से ठीक नहीं है तो हम इसके बारे में चिंतित क्यों होते हैं? तथापि बोर मॉडल को उपयोगी बनाने वाले कुछ कारण हैं : (i) यह मॉडल केवल तीन अभिगृहीतों पर आधारित है लेकिन फिर भी हाइड्रोजन स्पेक्ट्रम की लगभग सभी विशेषताओं की व्याख्या करता है।

(ii) हमने क्लासिकी भौतिकी की जिन संकल्पनाओं को सीखा है उनका इस मॉडल में समावेश है।

(iii) मॉडल दर्शाता है कि कुछ भविष्यवाणियों की आशा में, किस प्रकार किसी सैद्धांतिक भौतिकविज्ञानी को, कभी-कभी कुछ सदृश समस्याओं की अक्षरशः उपेक्षा कर देनी चाहिए। यदि सिद्धांत या मॉडल की भविष्यवाणी प्रयोग से मेल खाती है तो वैज्ञानिक को उपेक्षित की गई समस्याओं की व्याख्या करने का प्रयत्न करना चाहिए।

अभ्यास

12.1 प्रत्येक कथन के अंत में दिए गए संकेतों में से सही विकल्प का चयन कीजिए :

(a) टॉमसन मॉडल में परमाणु का साइज़, रदरफोर्ड मॉडल में परमाणवीय साइज़ से……….. होता है।

(अपेक्षाकृत काफ़ी अधिक, भिन्न नहीं, अपेक्षाकृत काफ़ी कम)

(b)………. में निम्नतम अवस्था में इलेक्ट्रॉन स्थायी साम्य में होते हैं जबकि……में इलेक्ट्रॉन, सदैव नेट बल अनुभव करते हैं।

(अपेक्षाकृत काफ़ी अधिक, भिन्न नहीं, अपेक्षाकृत काफ़ी कम)

(c)………. पर आधारित किसी क्लासिकी परमाणु का नष्ट होना निश्चित है।

(टॉमसन मॉडल, रदरफोर्ड मॉडल)

(d) किसी परमाणु के द्रव्यमान का ……… में लगभग संतत वितरण होता है लेकिन में अत्यंत असमान द्रव्यमान वितरण होता है।

(टॉमसन मॉडल, रदरफोर्ड मॉडल)

(e)………. में परमाणु के धनावेशित भाग का द्रव्यमान सर्वाधिक होता है।

(रदरफोर्ड मॉडल, दोनों मॉडलों)

Show Answer # Content Missing

12.2 मान लीजिए कि स्वर्ण पन्नी के स्थान पर ठोस हाइड्रोजन की पतली शीट का उपयोग करके आपको ऐल्फ़ा-कण प्रकीर्णन प्रयोग दोहराने का अवसर प्राप्त होता है। (हाइड्रोजन $14 \mathrm{~K}$ से नीचे ताप पर ठोस हो जाती है।) आप किस परिणाम की अपेक्षा करते हैं?

Show Answer # Content Missing

12.3 $2 .3 \mathrm{eV}$ ऊर्जा अंतर किसी परमाणु में दो ऊर्जा स्तरों को पृथक कर देता है। उत्सर्जित विकरण की आवृत्ति क्या होगी यदि परमाणु में इलेक्ट्रॉन उच्च स्तर से निम्न स्तर में संक्रमण करता है?

Show Answer # Content Missing

12.4 हाइड्रोजन परमाणु की निम्नतम अवस्था में ऊर्जा $-13.6 \mathrm{eV}$ है। इस अवस्था में इलेक्ट्रॉन की गतिज और स्थितिज ऊर्जाएँ क्या होंगी?

Show Answer # Content Missing

12.5 निम्नतम अवस्था में विद्यमान एक हाइड्रोजन परमाणु एक फोटॉन को अवशोषित करता है जो इसे $n=4$ स्तर तक उत्तेजित कर देता है। फोटॉन की तरंगदैर्घ्य तथा आवृत्ति ज्ञात कीजिए।

Show Answer # Content Missing

12.6 (a) बोर मॉडल का उपयोग करके किसी हाइड्रोजन परमाणु में $n=1,2$, तथा 3 स्तरों पर इलेक्ट्रॉन की चाल परिकलित कीजिए। (b) इनमें से प्रत्येक स्तर के लिए कक्षीय अवधि परिकलित कीजिए।

Show Answer # Content Missing

12.7 हाइड्रोजन परमाणु में अंतरतम इलेक्ट्रॉन-कक्षा की त्रिज्या $5.3 \times 10^{-11} \mathrm{~m}$ है। कक्षा $n=2$ और $n=3$ की त्रिज्याएँ क्या हैं?

Show Answer # Content Missing

12.8 कमरे के ताप पर गैसीय हाइड्रोजन पर किसी $12.5 \mathrm{eV}$ की इलेक्ट्रॉन पुंज की बमबारी की गई। किन तरंगदैर्घ्यों की श्रेणी उत्सर्जित होगी?

Show Answer # Content Missing

12.9 बोर मॉडल के अनुसार सूर्य के चारों ओर $1.5 \times 10^{11} \mathrm{~m}$ त्रिज्या की कक्षा में, $3 \times 10^{4} \mathrm{~m} / \mathrm{s}$ के कक्षीय वेग से परिक्रमा करती पृथ्वी की अभिलाक्षणिक क्वांटम संख्या ज्ञात कीजिए ( पृथ्वी का द्रव्यमान $=6.0 \times 10^{24} \mathrm{~kg}$ )।

Show Answer # Content Missing


Table of Contents