Chapter-10 Wave Optics

10.1 INTRODUCTION

In 1637 Descartes gave the corpuscular model of light and derived Snell’s law. It explained the laws of reflection and refraction of light at an interface. The corpuscular model predicted that if the ray of light (on refraction) bends towards the normal then the speed of light would be greater in the second medium. This corpuscular model of light was further developed by Isaac Newton in his famous book entitled OPTICKS and because of the tremendous popularity of this book, the corpuscular model is very often attributed to Newton.

In 1678, the Dutch physicist Christiaan Huygens put forward the wave theory of light - it is this wave model of light that we will discuss in this chapter. As we will see, the wave model could satisfactorily explain the phenomena of reflection and refraction; however, it predicted that on refraction if the wave bends towards the normal then the speed of light would be less in the second medium. This is in contradiction to the prediction made by using the corpuscular model of light. It was much later confirmed by experiments where it was shown that the speed of light in water is less than the speed in air confirming the prediction of the wave model; Foucault carried out this experiment in 1850.

The wave theory was not readily accepted primarily because of Newton’s authority and also because light could travel through vacuum and it was felt that a wave would always require a medium to propagate from one point to the other. However, when Thomas Young performed his famous interference experiment in 1801, it was firmly established that light is indeed a wave phenomenon. The wavelength of visible light was measured and found to be extremely small; for example, the wavelength of yellow light is about $0.6 \mu \mathrm{m}$. Because of the smallness of the wavelength of visible light (in comparison to the dimensions of typical mirrors and lenses), light can be assumed to approximately travel in straight lines. This is the field of geometrical optics, which we had discussed in the previous chapter. Indeed, the branch of optics in which one completely neglects the finiteness of the wavelength is called geometrical optics and a ray is defined as the path of energy propagation in the limit of wavelength tending to zero.

After the interference experiment of Young in 1801, for the next 40 years or so, many experiments were carried out involving the interference and diffraction of lightwaves; these experiments could only be satisfactorily explained by assuming a wave model of light. Thus, around the middle of the nineteenth century, the wave theory seemed to be very well established. The only major difficulty was that since it was thought that a wave required a medium for its propagation, how could light waves propagate through vacuum. This was explained when Maxwell put forward his famous electromagnetic theory of light. Maxwell had developed a set of equations describing the laws of electricity and magnetism and using these equations he derived what is known as the wave equation from which he predicted the existence of electromagnetic waves*. From the wave equation, Maxwell could calculate the speed of electromagnetic waves in free space and he found that the theoretical value was very close to the measured value of speed of light. From this, he propounded that light must be an electromagnetic wave. Thus, according to Maxwell, light waves are associated with changing electric and magnetic fields; changing electric field produces a time and space varying magnetic field and a changing magnetic field produces a time and space varying electric field. The changing electric and magnetic fields result in the propagation of electromagnetic waves (or light waves) even in vacuum.

In this chapter we will first discuss the original formulation of the Huygens principle and derive the laws of reflection and refraction. In Sections 10.4 and 10.5, we will discuss the phenomenon of interference which is based on the principle of superposition. In Section 10.6 we will discuss the phenomenon of diffraction which is based on HuygensFresnel principle. Finally in Section 10.7 we will discuss the phenomenon of polarisation which is based on the fact that the light waves are transverse electromagnetic waves.

  • Maxwell had predicted the existence of electromagnetic waves around 1855; it was much later (around 1890) that Heinrich Hertz produced radiowaves in the laboratory. J.C. Bose and G. Marconi made practical applications of the Hertzian waves

10.2 HUYGENS PRINCIPLE

We would first define a wavefront: when we drop a small stone on a calm pool of water, waves spread out from the point of impact. Every point on the surface starts oscillating with time. At any instant, a photograph of the surface would show circular rings on which the disturbance is maximum. Clearly, all points on such a circle are oscillating in phase because they are at the same distance from the source. Such a locus of points, which oscillate in phase is called a wavefront; thus a wavefront is defined as a surface of constant phase. The speed with which the wavefront moves outwards from the source is called the speed of the wave. The energy of the wave travels in a direction perpendicular to the wavefront.

FIGURE 10.1 (a) A diverging spherical wave emanating from a point source. The wavefronts are spherical.

FIGURE 10.1 (b) At a large distance from the source, a small portion of the spherical wave can be approximated by a plane wave.

If we have a point source emitting waves uniformly in all directions, then the locus of points which have the same amplitude and vibrate in the same phase are spheres and we have what is known as a spherical wave as shown in Fig. 10.1(a). At a large distance from the source, a small portion of the sphere can be considered as a plane and we have what is known as a plane wave [Fig. 10.1(b)].

Now, if we know the shape of the wavefront at $t=0$, then Huygens principle allows us to determine the shape of the wavefront at a later time $\tau$. Thus, Huygens principle is essentially a geometrical construction, which given the shape of the wafefront at any time allows us to determine the shape of the wavefront at a later time. Let us consider a diverging wave and let $\mathrm{F_1} \mathrm{~F_2}$ represent a portion of the spherical wavefront at $t=0$ (Fig. 10.2). Now, according to Huygens principle, each point of the wavefront is the source of a secondary disturbance and the wavelets emanating from these points spread out in all directions with the speed of the wave. These wavelets emanating from the wavefront are usually referred to as secondary wavelets and if we draw a common tangent to all these spheres, we obtain the new position of the wavefront at a later time.

FIGURE 10.2 $\mathrm{F_1} \mathrm{~F_2}$ represents the spherical wavefront (with $\mathrm{O}$ as centre) at $t=0$. The envelope of the secondary wavelets emanating from $F_{1} F_{2}$ produces the forward moving wavefront $G_{1} G_{2}$. The backwave $\mathrm{D_1} \mathrm{D_2}$ does not exist.

Thus, if we wish to determine the shape of the wavefront at $t=\tau$, we draw spheres of radius $v \tau$ from each point on the spherical wavefront where $v$ represents the speed of the waves in the medium. If we now draw a common tangent to all these spheres, we obtain the new position of the wavefront at $t=\tau$. The new wavefront shown as $\mathrm{G_1} \mathrm{G_2}$ in Fig. 10.2 is again spherical with point $\mathrm{O}$ as the centre.

FIGURE 10.3 Huygens geometrical construction for a plane wave propagating to the right. $\mathrm{F_1} \mathrm{~F_2}$ is the plane wavefront at $t=0$ and $\mathrm{G_1} \mathrm{G_2}$ is the wavefront at a later time $\tau$. The lines $\mathrm{A_1} \mathrm{~A_2}$, $\mathrm{B_1} \mathrm{~B_2} \ldots$ etc., are normal to both $\mathrm{F_1} \mathrm{~F_2}$ and $\mathrm{G_1} \mathrm{G_2}$ and represent rays.

The above model has one shortcoming: we also have a backwave which is shown as $\mathrm{D_1} \mathrm{D_2}$ in Fig. 10.2. Huygens argued that the amplitude of the secondary wavelets is maximum in the forward direction and zero in the backward direction; by making this adhoc assumption, Huygens could explain the absence of the backwave. However, this adhoc assumption is not satisfactory and the absence of the backwave is really justified from more rigorous wave theory.

In a similar manner, we can use Huygens principle to determine the shape of the wavefront for a plane wave propagating through a medium (Fig. 10.3).

10.3 REFRACTION AND REFLECTION OF PLANE WAVES USING HUYGENS PRINCIPLE

10.3.1 Refraction of a plane wave

We will now use Huygens principle to derive the laws of refraction. Let $\mathrm{PP}^{\prime}$ represent the surface separating medium 1 and medium 2 , as shown in Fig. 10.4 Let $v_{1}$ and $v_{2}$ represent the speed of light in medium 1 and medium 2 , respectively. We assume a plane wavefront $\mathrm{AB}$ propagating in the direction $\mathrm{A}^{\prime} \mathrm{A}$ incident on the interface at an angle $i$ as shown in the figure. Let $\tau$ be the time taken by the wavefront to travel the distance BC. Thus,

$B C=v _{1} \tau$

FIGURE 10.4 A plane wave $\mathrm{AB}$ is incident at an angle $i$ on the surface $\mathrm{PP}^{\prime}$ separating medium 1 and medium 2 . The plane wave undergoes refraction and $\mathrm{CE}$ represents the refracted wavefront. The figure corresponds to $v_{2}<v_{1}$ so that the refracted waves bends towards the normal.

Christiaan Huygens (1629 – 1695) Dutch physicist, astronomer, mathematician and the founder of the wave theory of light. His book, Treatise on light, makes fascinating reading even today. He brilliantly explained the double refraction shown by the mineral calcite in this work in addition to reflection and refraction. He was the first to analyse circular and simple harmonic motion and designed and built improved clocks and telescopes. He discovered the true geometry of Saturn’s rings.

In order to determine the shape of the refracted wavefront, we draw a sphere of radius $v_{2} \tau$ from the point $A$ in the second medium (the speed of the wave in the second medium is $v_{2}$ ). Let $\mathrm{CE}$ represent a tangent plane drawn from the point $\mathrm{C}$ on to the sphere. Then, $\mathrm{AE}=v_{2} \tau$ and $\mathrm{CE}$ would represent the refracted wavefront. If we now consider the triangles $\mathrm{ABC}$ and $\mathrm{AEC}$, we readily obtain

$$ \begin{equation*} \sin i=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{v_{1} \tau}{\mathrm{AC}} \tag{10.1} \end{equation*} $$

and

$$ \begin{equation*} \sin r=\frac{\mathrm{AE}}{\mathrm{AC}}=\frac{v_{2} \tau}{\mathrm{AC}} \tag{10.2} \end{equation*} $$

where $i$ and $r$ are the angles of incidence and refraction, respectively. Thus we obtain

$$ \begin{equation*} \frac{\sin i}{\sin r}=\frac{v_{1}}{v_{2}} \tag{10.3} \end{equation*} $$

From the above equation, we get the important result that if $r<i$ (i.e., if the ray bends toward the normal), the speed of the light wave in the second medium $\left(v_{2}\right)$ will be less then the speed of the light wave in the first medium $\left(v_{1}\right)$. This prediction is opposite to the prediction from the corpuscular model of light and as later experiments showed, the prediction of the wave theory is correct. Now, if $c$ represents the speed of light in vacuum, then,

$$ \begin{equation*} n_{1}=\frac{c}{v_{1}} \tag{10.4} \end{equation*} $$

and

$$ \begin{equation*} n_{2}=\frac{c}{v_{2}} \tag{10.5} \end{equation*} $$

are known as the refractive indices of medium 1 and respectively. In terms of the refractive indices, Eq. (10.3) can be written as

$$ \begin{equation*} n_{1} \sin i=n_{2} \sin r \tag{10.6} \end{equation*} $$

This is the Snell’s law of refraction. Further, if $\lambda_{1}$ and $\lambda_{2}$ denote the wavelengths of light in medium 1 and medium 2 , respectively and if the distance $\mathrm{BC}$ is equal to $\lambda_{1}$ then the distance $\mathrm{AE}$ will be equal to $\lambda_{2}$ (because if the crest from $\mathrm{B}$ has reached $\mathrm{C}$ in time $\tau$, then the crest from $\mathrm{A}$ should have also reached $E$ in time $\tau$ ); thus,

$$ \frac{\lambda_{1}}{\lambda_{2}}=\frac{\mathrm{BC}}{\mathrm{AE}}=\frac{v_{1}}{v_{2}} $$

or

$$ \begin{equation*} \frac{v_{1}}{\lambda_{1}}=\frac{v_{2}}{\lambda_{2}} \tag{10.7} \end{equation*} $$

The above equation implies that when a wave gets refracted into a denser medium $\left(v_{1}>v_{2}\right)$ the wavelength and the speed of propagation decrease but the frequency $v(=v / \lambda)$ remains the same.

10.3.2 Refraction at a rarer medium

We now consider refraction of a plane wave at a rarer medium, i.e., $v_{2}>v_{1}$. Proceeding in an exactly similar manner we can construct a refracted wavefront as shown in Fig. 10.5. The angle of refraction will now be greater than angle of incidence; however, we will still have $n_{1} \sin i=n_{2} \sin r$. We define an angle $i_{c}$ by the following equation

$$ \begin{equation*} \sin i_{c}=\frac{n_{2}}{n_{1}} \tag{10.8} \end{equation*} $$

Thus, if $i=i_{c}$ then $\sin r=1$ and $r=90^{\circ}$. Obviously, for $i>i_{c}$, there can not be any refracted wave. The angle $i_{c}$ is known as the critical angle and for all angles of incidence greater than the critical angle, we will not have any refracted wave and the wave will undergo what is known as total internal reflection. The phenomenon of total internal reflection and its applications was discussed in Section 9.4.

FIGURE 10.5 Refraction of a plane wave incident on a rarer medium for which $v_{2}>v_{1}$. The plane wave bends away from the normal.

10.3.3 Reflection of a plane wave by a plane surface

We next consider a plane wave $\mathrm{AB}$ incident at an angle $i$ on a reflecting surface MN. If $v$ represents the speed of the wave in the medium and if $\tau$ represents the time taken by the wavefront to advance from the point $B$ to $C$ then the distance

$$ \mathrm{BC}=v \tau $$

In order to construct the reflected wavefront we draw a sphere of radius $v \tau$ from the point $\mathrm{A}$ as shown in Fig. 10.6. Let $\mathrm{CE}$ represent the tangent plane drawn from the point $\mathrm{C}$ to this sphere. Obviously

$$ \mathrm{AE}=\mathrm{BC}=v \tau $$

FIGURE 10.6 Reflection of a plane wave $A B$ by the reflecting surface MN. $\mathrm{AB}$ and $\mathrm{CE}$ represent incident and reflected wavefronts.

If we now consider the triangles $\mathrm{EAC}$ and $\mathrm{BAC}$ we will find that they are congruent and therefore, the angles $i$ and $r$ (as shown in Fig. 10.6) would be equal. This is the law of reflection.

Once we have the laws of reflection and refraction, the behaviour of prisms, lenses, and mirrors can be understood. These phenomena were discussed in detail in Chapter 9 on the basis of rectilinear propagation of light. Here we just describe the behaviour of the wavefronts as they undergo reflection or refraction. In Fig. 10.7(a) we consider a plane wave passing through a thin prism. Clearly, since the speed of light waves is less in glass, the lower portion of the incoming wavefront (which travels through the greatest thickness of glass) will get delayed resulting in a tilt in the emerging wavefront as shown in the figure. In Fig. 10.7(b) we consider a plane wave incident on a thin convex lens; the central part of the incident plane wave traverses the thickest portion of the lens and is delayed the most. The emerging wavefront has a depression at the centre and therefore the wavefront becomes spherical and converges to the point F which is known as the focus. In Fig. 10.7(c) a plane wave is incident on a concave mirror and on reflection we have a spherical wave converging to the focal point $\mathrm{F}$. In a similar manner, we can understand refraction and reflection by concave lenses and convex mirrors.

From the above discussion it follows that the total time taken from a point on the object to the corresponding point on the image is the same measured along any ray. For example, when a convex lens focusses light to form a real image, although the ray going through the centre traverses a shorter path, but because of the slower speed in glass, the time taken is the same as for rays travelling near the edge of the lens.

FIGURE 10.7 Refraction of a plane wave by (a) a thin prism, (b) a convex lens. (c) Reflection of a plane wave by a concave mirror.

Example 10.1 (a) When monochromatic light is incident on a surface separating two media, the reflected and refracted light both have the same frequency as the incident frequency. Explain why?

(b) When light travels from a rarer to a denser medium, the speed decreases. Does the reduction in speed imply a reduction in the energy carried by the light wave?

(c) In the wave picture of light, intensity of light is determined by the square of the amplitude of the wave. What determines the intensity of light in the photon picture of light.

Solution (a) Reflection and refraction arise through interaction of incident light with the atomic constituents of matter. Atoms may be viewed as oscillators, which take up the frequency of the external agency (light) causing forced oscillations. The frequency of light emitted by a charged oscillator equals its frequency of oscillation. Thus, the frequency of scattered light equals the frequency of incident light.

(b) No. Energy carried by a wave depends on the amplitude of the wave, not on the speed of wave propagation.

(c) For a given frequency, intensity of light in the photon picture is determined by the number of photons crossing an unit area per unit time.

10.4 COHERENT AND INCOHERENT ADDITION OF WAVES

FIGURE 10.8 (a) Two needles oscillating in phase in water represent two coherent sources. (b) The pattern of displacement of water molecules at an instant on the surface of water showing nodal $\mathrm{N}$ (no displacement) and antinodal A (maximum displacement) lines.

In this section we will discuss the interference pattern produced by the superposition of two waves. You may recall that we had discussed the superposition principle in Chapter 14 of your Class XI textbook. Indeed the entire field of interference is based on the superposition principle according to which at a particular point in the medium, the resultant displacement produced by a number of waves is the vector sum of the displacements produced by each of the waves.

FIGURE 10.9 (a) Constructive interference at a point $Q$ for which the path difference is $2 \lambda$. (b) Destructive interference at a point $\mathrm{R}$ for which the path difference is $2.5 \lambda$.

Consider two needles $\mathrm{S_1}$ and $\mathrm{S_2}$ moving periodically up and down in an identical fashion in a trough of water [Fig. 10.8(a)]. They produce two water waves, and at a particular point, the phase difference between the displacements produced by each of the waves does not change with time; when this happens the two sources are said to be coherent. Figure 10.8(b) shows the position of crests (solid circles) and troughs (dashed circles) at a given instant of time. Consider a point $P$ for which

$$ \mathrm{S_1} \mathrm{P}=\mathrm{S_2} \mathrm{P} $$

Since the distances $\mathrm{S_1} \mathrm{P}$ and $\mathrm{S_2} \mathrm{P}$ are equal, waves from $\mathrm{S_1}$ and $\mathrm{S_2}$ will take the same time to travel to the point $\mathrm{P}$ and waves that emanate from $S_{1}$ and $S_{2}$ in phase will also arrive, at the point $P$, in phase.

Thus, if the displacement produced by the source $S_{1}$ at the point $P$ is given by

$$ y_{1}=a \cos \omega t $$

then, the displacement produced by the source $S_{2}$ (at the point P) will also be given by

$$ y_{2}=a \cos \omega t $$

Thus, the resultant of displacement at $\mathrm{P}$ would be given by

$$ y=y_{1}+y_{2}=2 a \cos \omega t $$

Since the intensity is proportional to the square of the amplitude, the resultant intensity will be given by

$$ I=4 I_{0} $$

where $I_{0}$ represents the intensity produced by each one of the individual sources; $I_{0}$ is proportional to $a^{2}$. In fact at any point on the perpendicular bisector of $\mathrm{S_1} \mathrm{~S_2}$, the intensity will be $4 I_{0}$. The two sources are said to interfere constructively and we have what is referred to as constructive interference. We next consider a point $Q$ [Fig. 10.9(a)] for which

$$ \mathrm{S_2} \mathrm{Q}-\mathrm{S_1} \mathrm{Q}=2 \lambda $$

The waves emanating from $S_{1}$ will arrive exactly two cycles earlier than the waves from $\mathrm{S_2}$ and will again be in phase [Fig. 10.9(a)]. Thus, if the displacement produced by $S_{1}$ is given by

$$ y_{1}=a \cos \omega t $$

then the displacement produced by $\mathrm{S_2}$ will be given by

$$ y_{2}=a \cos (\omega t-4 \pi)=a \cos \omega t $$

where we have used the fact that a path difference of $2 \lambda$ corresponds to a phase difference of $4 \pi$. The two displacements are once again in phase and the intensity will again be $4 I_{0}$ giving rise to constructive interference. In the above analysis we have assumed that the distances $\mathrm{S_1} \mathrm{Q}$ and $\mathrm{S_2} \mathrm{Q}$ are much greater than $d$ (which represents the distance between $\mathrm{S_1}$ and $\mathrm{S_2}$ ) so that although $\mathrm{S_1} \mathrm{Q}$ and $\mathrm{S_2} \mathrm{Q}$ are not equal, the amplitudes of the displacement produced by each wave are very nearly the same.

We next consider a point R [Fig. 10.9(b)] for which

$$ \mathrm{S_2} \mathrm{R}-\mathrm{S_1} \mathrm{R}=-2.5 \lambda $$

FIGURE 10.10 Locus of points for which $\mathrm{S_1} \mathrm{P}-\mathrm{S_2} \mathrm{P}$ is equal to zero, $\pm \lambda, \pm 2 \lambda, \pm 3 \lambda$.

The waves emanating from $S_{1}$ will arrive exactly two and a half cycles later than the waves from $\mathrm{S_2}$ [Fig. 10.10(b)]. Thus if the displacement produced by $\mathrm{S_1}$ is given by

$$ y_{1}=a \cos \omega t $$

then the displacement produced by $\mathrm{S_2}$ will be given by

$$ y_{2}=a \cos (\omega t+5 \pi)=-a \cos \omega t $$

where we have used the fact that a path difference of $2.5 \lambda$ corresponds to a phase difference of $5 \pi$. The two displacements are now out of phase and the two displacements will cancel out to give zero intensity. This is referred to as destructive interference.

To summarise: If we have two coherent sources $\mathrm{S_1}$ and $\mathrm{S_2}$ vibrating in phase, then for an arbitrary point $P$ whenever the path difference,

$$ \begin{equation*} \mathrm{S_1} \mathrm{P} \sim \mathrm{S_2} \mathrm{P}=n \lambda \quad(n=0,1,2,3, \ldots) \tag{10.9} \end{equation*} $$

we will have constructive interference and the resultant intensity will be $4 I_{0}$; the sign $\sim$ between $\mathrm{S_1} \mathrm{P}$ and $\mathrm{S_2} \mathrm{P}$ represents the difference between $\mathrm{S_1} \mathrm{P}$ and $\mathrm{S_2} \mathrm{P}$. On the other hand, if the point $\mathrm{P}$ is such that the path difference,

$$ \begin{equation*} \mathrm{S_1} \mathrm{P} \sim \mathrm{S_2} \mathrm{P}=\left(n+\frac{1}{2}\right) \lambda \quad(n=0,1,2,3, \ldots) \tag{10.10} \end{equation*} $$

we will have destructive interference and the resultant intensity will be zero. Now, for any other arbitrary point G (Fig. 10.10) let the phase difference between the two displacements be $\phi$. Thus, if the displacement produced by $\mathrm{S_1}$ is given by

$$ y_{1}=a \cos \omega t $$

then, the displacement produced by $\mathrm{S_2}$ would be

$$ y_{2}=a \cos (\omega t+\phi) $$

and the resultant displacement will be given by

$$ \begin{aligned} y & =y _{1}+y _{2} \\ & =a[\cos \omega t+\cos (\omega t+\phi)] \\ & =2 a \cos (\phi / 2) \cos (\omega t+\phi / 2)\left[\because \cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)\right] \end{aligned} $$

The amplitude of the resultant displacement is $2 a \cos (\phi / 2)$ and therefore the intensity at that point will be

$$ \begin{equation*} I=4 I_{0} \cos ^{2}(\phi / 2) \tag{10.11} \end{equation*} $$

If $\phi=0, \pm 2 \pi, \pm 4 \pi, \ldots$ which corresponds to the condition given by Eq. (10.9) we will have constructive interference leading to maximum intensity. On the other hand, if $\phi= \pm \pi, \pm 3 \pi, \pm 5 \pi \ldots$ [which corresponds to the condition given by Eq. (10.10)] we will have destructive interference leading to zero intensity.

Now if the two sources are coherent (i.e., if the two needles are going up and down regularly) then the phase difference $\phi$ at any point will not change with time and we will have a stable interference pattern; i.e., the positions of maxima and minima will not change with time. However, if the two needles do not maintain a constant phase difference, then the interference pattern will also change with time and, if the phase difference changes very rapidly with time, the positions of maxima and minima will also vary rapidly with time and we will see a “time-averaged” intensity distribution. When this happens, we will observe an average intensity that will be given by

$$ \begin{equation*} I=2 I_{0} \tag{10.12} \end{equation*} $$

When the phase difference between the two vibrating sources changes rapidly with time, we say that the two sources are incoherent and when this happens the intensities just add up. This is indeed what happens when two separate light sources illuminate a wall.

10.5 INTERFERENCE OF LIGHT WAVES AND YOUNG’S EXPERIMENT

We will now discuss interference using light waves. If we use two sodium lamps illuminating two pinholes (Fig. 10.11) we will not observe any interference fringes. This is because of the fact that the light wave emitted from an ordinary source (like a sodium lamp) undergoes abrupt phase changes in times of the order of $10^{-10}$ seconds. Thus the light waves coming out from two phase relationship and would be incoherent, when this happens, as discussed in the previous section, the intensities on the screen will add up.

FIGURE 10.11 If two sodium lamps illuminate two pinholes $\mathrm{S_1}$ and $\mathrm{S_2}$, the intensities will add up and no interference fringes will be observed on the screen.

The British physicist Thomas Young used an ingenious technique to “lock” the phases of the waves emanating from $\mathrm{S_1}$ and $\mathrm{S_2}$. He made two pinholes $\mathrm{S_1}$ and $S_{2}$ (very close to each other) on an opaque screen [Fig. 10.12(a)]. These were illuminated by another pinholes that was in turn, lit by a bright source. Light waves spread out from $S$ and fall on both $S_{1}$ and $S_{2}$. $S_{1}$ and $S_{2}$ then behave like two coherent sources because light waves coming out from $\mathrm{S_1}$ and $\mathrm{S_2}$ are derived from the same original source and any abrupt phase change in $\mathrm{S}$ will manifest in exactly similar phase changes in the light coming out from $\mathrm{S_1}$ and $\mathrm{S_2}$. Thus, the two sources $\mathrm{S_1}$ and $\mathrm{S_2}$ will be locked in phase; i.e., they will be coherent like the two vibrating needle in our water wave example [Fig. 10.8(a)].

The spherical waves emanating from $\mathrm{S_1}$ and $\mathrm{S_2}$ will produce interference fringes on the screen $\mathrm{GG}^{\prime}$, as shown in Fig. 10.12(b). The positions of maximum and minimum intensities can be calculated by using the analysis given in Section 10.4.

FIGURE 10.12 Young’s arrangement to produce interference pattern.

We will have constructive interference resulting in a bright region when $\frac{x d}{D}=n \lambda$. That is,

$$ \begin{equation*} x=x_{n}=\frac{n \lambda D}{d} ; \mathrm{n}=0, \pm 1, \pm 2, \ldots \tag{10.13} \end{equation*} $$

On the other hand, we will have destructive interference resulting in a dark region when

$$\frac{x d}{D}=\left(n+\frac{1}{2}\right) \lambda$$

that is,

$$ \begin{equation*} x=x_{\mathrm{n}}=\left(n+\frac{1}{2}\right) \frac{\lambda D}{d} ; n=0, \pm 1, \pm 2 \tag{10.14} \end{equation*} $$

Thus dark and bright bands appear on the screen, as shown in Fig. 10.13. Such bands are called fringes. Equations (10.13) and (10.14) show that dark and bright fringes are equally spaced.

Thomas Young (1773 – 1829) English physicist, physician and Egyptologist. Young worked on a wide variety of scientific problems, ranging from the structure of the eye and the mechanism of vision to the decipherment of the Rosetta stone. He revived the wave theory of light and recognised that interference phenomena provide proof of the wave properties of light.

$$ d=0.025 \mathrm{~mm}(\beta \approx 1 \mathrm{~mm}) $$

FIGURE 10.13 Computer generated fringe pattern produced by two point source $S_{1}$ and $S_{2}$ on the screen GG’ $^{\prime}$ (Fig. 10.12); correspond to $d=0.025$ $\mathrm{mm}, D=5 \mathrm{~cm}$ and $\lambda=5 \times 10^{-5} \mathrm{~cm}$. (Adopted from OPTICS by A. Ghatak,Tata McGraw Hill Publishing Co. Ltd., New Delhi, 2000.)

10.6 DIFFRACTION

If we look clearly at the shadow cast by an opaque object, close to the region of geometrical shadow, there are alternate dark and bright regions just like in interference. This happens due to the phenomenon of diffraction. Diffraction is a general characteristic exhibited by all types of waves, be it sound waves, light waves, water waves or matter waves. Since the wavelength of light is much smaller than the dimensions of most obstacles; we do not encounter diffraction effects of light in everyday observations. However, the finite resolution of our eye or of optical instruments such as telescopes or microscopes is limited due to the phenomenon of diffraction. Indeed the colours that you see when aCDis viewed is due to diffraction effects. We will now discuss the phenomenon of diffraction.

10.6.1 The single slit

In the discussion of Young’s experiment, we stated that a single narrow slit acts as a new source from which light spreads out. Even before Young, early experimenters - including Newton - had noticed that light spreads out from narrow holes and slits. It seems to turn around corners and enter regions where we would expect a shadow. These effects, known as diffraction, can only be properly understood using wave ideas. After all, you are hardly surprised to hear sound waves from someone talking around a corner!

When the double slit in Young’s experiment is replaced by a single narrow slit (illuminated by a monochromatic source), a broad pattern with a central bright region is seen. On both sides, there are alternate dark and bright regions, the intensity becoming weaker away from the centre (Fig. 10.15). To understand this, go to Fig. 10.14, which shows a parallel beam of light falling normally on a single slit LN of width $a$. The diffracted light goes on to meet a screen. The midpoint of the slit is $\mathrm{M}$.

A straight line through M perpendicular

FIGURE 10.14 The geometry of path differences for diffraction by a single slit. to the slit plane meets the screen at $\mathrm{C}$. We want the intensity at any point $\mathrm{P}$ on the screen. As before, straight lines joining $P$ to the different points $L, M, N$, etc., can be treated as parallel, making an angle $\theta$ with the normal MC.

The basic idea is to divide the slit into much smaller parts, and add their contributions at $\mathrm{P}$ with the proper phase differences. We are treating different parts of the wavefront at the slit as secondary sources. Because the incoming wavefront is parallel to the plane of the slit, these sources are in phase.

It is observed that the intensity has a central maximum at $\theta=0$ and other secondary maxima at $\theta \approx$ $(n+1 / 2) \lambda / a$, which go on becoming weaker and weaker with increasing $n$. The minima (zero intensity) are at $\theta \approx$ $n \lambda / a, n= \pm 1, \pm 2, \pm 3, \ldots$ The photograph and intensity pattern corresponding to it is shown in Fig. 10.15.

There has been prolonged discussion about difference between intereference and diffraction among scientists since the discovery of these phenomena. In this context, it is interesting to note what Richard Feynman* has said in his famous Feynman Lectures on Physics:

FIGURE 10.15 Intensity distribution and photograph of fringes due to diffraction at single slit.

No one has ever been able to define the difference between interference and diffraction satisfactorily. It is just a question of usage, and there is no specific, important physical difference between them. The best we can do is, roughly speaking, is to say that when there are only a few sources, say two interfering sources, then the result is usually called interference, but if there is a large number of them, it seems that the word diffraction is more often used.

  • Richand Feynman was one of the recipients of the 1965 Nobel Prize in Physics for his fundamental work in quantum electrodynamics.

In the double-slit experiment, we must note that the pattern on the screen is actually a superposition of single-slit diffraction from each slit or hole, and the double-slit interference pattern.

10.6.2 Seeing the single slit diffraction pattern

It is surprisingly easy to see the single-slit diffraction pattern for oneself. The equipment needed can be found in most homes - two razor blades and one clear glass electric bulb preferably with a straight filament. One has to hold the two blades so that the edges are parallel and have a narrow slit in between. This is easily done with the thumb and forefingers (Fig. 10.16).

FIGURE 10.16 Holding two blades to form a single slit. A bulb filament viewed through this shows clear diffraction bands.

Keep the slit parallel to the filament, right in front of the eye. Use spectacles if you normally do. With slight adjustment of the width of the slit and the parallelism of the edges, the pattern should be seen with its bright and dark bands. Since the position of all the bands (except the central one) depends on wavelength, they will show some colours. Using a filter for red or blue will make the fringes clearer. With both filters available, the wider fringes for red compared to blue can be seen.

In this experiment, the filament plays the role of the first slit $S$ in Fig. 10.15. The lens of the eye focuses the pattern on the screen (the retina of the eye).

With some effort, one can cut a double slit in an aluminium foil with a blade. The bulb filament can be viewed as before to repeat Young’s experiment. In daytime, there is another suitable bright source subtending a small angle at the eye. This is the reflection of the Sun in any shiny convex surface (e.g., a cycle bell). Do not try direct sunlight - it can damage the eye and will not give fringes anyway as the Sun subtends an angle of $(1 / 2)^{\circ}$.

In interference and diffraction, light energy is redistributed. If it reduces in one region, producing a dark fringe, it increases in another region, producing a bright fringe. There is no gain or loss of energy, which is consistent with the principle of conservation of energy.[^0]

10.7 POLARISATION

Consider holding a long string that is held horizontally, the other end of which is assumed to be fixed. If we move the end of the string up and down in a periodic manner, we will generate a wave propagating in the $+x$ direction (Fig. 10.17). Such a wave could be described by the following equation

FIGURE 10.17 (a) The curves represent the displacement of a string at $t=0$ and at $t=\Delta t$, respectively when a sinusoidal wave is propagating in the $+x$-direction. (b) The curve represents the time variation of the displacement at $x=0$ when a sinusoidal wave is propagating in the $+x$-direction. At $x=\Delta x$, the time variation of the displacement will be slightly displaced to the right.

$$ \begin{equation*} y(x, t)=a \sin (k x-\omega t) \tag{10.15} \end{equation*} $$

where $a$ and $\omega(=2 \pi v)$ represent the amplitude and the angular frequency of the wave, respectively; further,

$$ \begin{equation*} \lambda=\frac{2 \pi}{k} \tag{10.16} \end{equation*} $$

represents the wavelength associated with the wave. We had discussed propagation of such waves in Chapter 14 of Class XI textbook. Since the displacement (which is along the $y$ direction) is at right angles to the direction of propagation of the wave, we have what is known as a transverse wave. Also, since the displacement is in the $y$ direction, it is often referred to as a $y$-polarised wave. Since each point on the string moves on a straight line, the wave is also referred to as a linearly polarised wave. Further, the string always remains confined to the $x-y$ plane and therefore it is also referred to as a plane polarised wave.

In a similar manner we can consider the vibration of the string in the $x$ - $z$ plane generating a $z$-polarised wave whose displacement will be given by

$$ \begin{equation*} z(x, t)=a \sin (k x-\omega t) \tag{10.17} \end{equation*} $$

It should be mentioned that the linearly polarised waves [described by Eqs. (10.15) and (10.17)] are all transverse waves; i.e., the displacement of each point of the string is always at right angles to the direction of propagation of the wave. Finally, if the plane of vibration of the string is changed randomly in very short intervals of time, then we have what is known as an unpolarised wave. Thus, for an unpolarised wave the displacement will be randomly changing with time though it will always be perpendicular to the direction of propagation.

Light waves are transverse in nature; i.e., the electric field associated with a propagating light wave is always at right angles to the direction of propagation of the wave. This can be easily demonstrated using a simple polaroid. You must have seen thin plastic like sheets, which are called polaroids. A polaroid consists of long chain molecules aligned in a particular direction. The electric vectors (associated with the propagating light wave) along the direction of the aligned molecules get absorbed. Thus, if an unpolarised light wave is incident on such a polaroid then the light wave will get linearly polarised with the electric vector oscillating along a direction perpendicular to the aligned molecules; this direction is known as the pass-axis of the polaroid.

Thus, if the light from an ordinary source (like a sodium lamp) passes through a polaroid sheet $P_{1}$, it is observed that its intensity is reduced by half. Rotating $P_{1}$ has no effect on the transmitted beam and transmitted intensity remains constant. Now, let an identical piece of polaroid $P_{2}$ be placed before $P_{1}$. As expected, the light from the lamp is reduced in intensity on passing through $P_{2}$ alone. But now rotating $P_{1}$ has a dramatic effect on the light coming from $P_{2}$. In one position, the intensity transmitted by $P_{2}$ followed by $P_{1}$ is nearly zero. When turned by $90^{\circ}$ from this position, $P_{1}$ transmits nearly the full intensity emerging from $P_{2}$ (Fig. 10.18).

The experiment at figure 10.18 can be easily understood by assuming that light passing through the polaroid $P_{2}$ gets polarised along the passaxis of $P_{2}$. If the pass-axis of $P_{2}$ makes an angle $\theta$ with the pass-axis of $P_{1}$, then when the polarised beam passes through the polaroid $P_{2}$, the component $E \cos \theta$ (along the pass-axis of $P_{2}$ ) will pass through $P_{2}$. Thus, as we rotate the polaroid $P_{1}$ (or $P_{2}$ ), the intensity will vary as:

$$ \begin{equation*} I=I_{0} \cos ^{2} \theta \tag{10.18} \end{equation*} $$

where $I_{0}$ is the intensity of the polarized light after passing through $P_{1}$. This is known as Malus’ law. The above discussion shows that the intensity coming out of a single polaroid is half of the incident intensity. By putting a second polaroid, the intensity can be further controlled from $50 %$ to zero of the incident intensity by adjusting the angle between the pass-axes of two polaroids.

FIGURE 10.18 (a) Passage of light through two polaroids $P_{2}$ and $P_{1}$. The transmitted fraction falls from 1 to 0 as the angle between them varies from $0^{\circ}$ to $90^{\circ}$. Notice that the light seen through a single polaroid $P_{1}$ does not vary with angle. (b) Behaviour of the electric vector when light passes through two polaroids. The transmitted polarisation is the component parallel to the polaroid axis. The double arrows show the oscillations of the electric vector.

Polaroids can be used to control the intensity, in sunglasses, windowpanes, etc. Polaroids are also used in photographic cameras and 3D movie cameras.

Example 10.2 Discuss the intensity of transmitted light when a polaroid sheet is rotated between two crossed polaroids?

Solution Let $I_{0}$ be the intensity of polarised light after passing through the first polariser $P_{1}$. Then the intensity of light after passing through second polariser $P_{2}$ will be

$I=I_{0} \cos ^{2} \theta$

where $\theta$ is the angle between pass axes of $P_{1}$ and $P_{2}$. Since $P_{1}$ and $P_{3}$ are crossed the angle between the pass axes of $P_{2}$ and $P_{3}$ will be $(\pi / 2-\theta)$. Hence the intensity of light emerging from $P_{3}$ will be

$$ \begin{aligned} I & =I_{0} \cos ^{2} \theta \cos ^{2} \frac{\pi}{2}-\theta \\ & =I_{0} \cos ^{2} \theta \sin ^{2} \theta=\left(I_{0} / 4\right) \sin ^{2} 2 \theta \end{aligned} $$

Therefore, the transmitted intensity will be maximum when $\theta=\pi / 4$.

SUMMARY

1. Huygens’ principle tells us that each point on a wavefront is a source of secondary waves, which add up to give the wavefront at a later time.

2. Huygens’ construction tells us that the new wavefront is the forward envelope of the secondary waves. When the speed of light is independent of direction, the secondary waves are spherical. The rays are then perpendicular to both the wavefronts and the time of travel is the same measured along any ray. This principle leads to the well known laws of reflection and refraction.

3. The principle of superposition of waves applies whenever two or more sources of light illuminate the same point. When we consider the intensity of light due to these sources at the given point, there is an interference term in addition to the sum of the individual intensities. But this term is important only if it has a non-zero average, which occurs only if the sources have the same frequency and a stable phase difference.

4. Young’s double slit of separation d gives equally spaced interference fringes.

5. A single slit of width $a$ gives a diffraction pattern with a central maximum. The intensity falls to zero at angles of $\pm \frac{\lambda}{a}, \pm \frac{2 \lambda}{a}$, etc., with successively weaker secondary maxima in between.

6. Natural light, e.g., from the sun is unpolarised. This means the electric vector takes all possible directions in the transverse plane, rapidly and randomly, during a measurement. A polaroid transmits only one component (parallel to a special axis). The resulting light is called linearly polarised or plane polarised. When this kind of light is viewed through a second polaroid whose axis turns through $2 \pi$, two maxima and minima of intensity are seen.

POINTS TO PONDER

1. Waves from a point source spread out in all directions, while light was seen to travel along narrow rays. It required the insight and experiment of Huygens, Young and Fresnel to understand how a wave theory could explain all aspects of the behaviour of light.

2. The crucial new feature of waves is interference of amplitudes from different sources which can be both constructive and destructive, as shown in Young’s experiment.

3. Diffraction phenomena define the limits of ray optics. The limit of the ability of microscopes and telescopes to distinguish very close objects is set by the wavelength of light.

4. Most interference and diffraction effects exist even for longitudinal waves like sound in air. But polarisation phenomena are special to transverse waves like light waves.

Exercises

10.1 Monochromatic light of wavelength $589 \mathrm{~nm}$ is incident from air on a water surface. What are the wavelength, frequency and speed of

(a) reflected, and (b) refracted light? Refractive index of water is 1.33 .

Show Answer

Answer

Let $I_{1}$ and $I_{2}$ be the intensity of the two light waves. Their resultant intensities can be obtained as:

$I^{\prime}=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \phi$

Where,

$\phi=$ Phase difference between the two waves

For monochromatic light waves,

$$ \begin{aligned} & I_{1}=I_{2} \\ & \begin{aligned} \therefore I^{\prime} & =I_{1}+I_{1}+2 \sqrt{I_{1} I_{1}} \cos \phi \\ & =2 I_{1}+2 I_{1} \cos \phi \end{aligned} \end{aligned} $$

Phase difference $=\frac{2 \pi}{\lambda} \times$ Path difference

Since path difference $=\lambda$,

Phase difference, $\phi=2 \pi$

$\therefore I^{\prime}=2 I_{1}+2 I_{1}=4 I_{1}$

Given,

$I^{\prime}=K$

$\therefore I_{1}=\frac{K}{4}$

When path difference $=\frac{\lambda}{3}$,

Phase difference, $\phi=\frac{2 \pi}{3}$

Hence, resultant intensity, $I_{R}^{\prime}=I_{1}+I_{1}+2 \sqrt{I_{1} I_{1}} \cos \frac{2 \pi}{3}$

$=2 I_{1}+2 I_{1}\left(-\frac{1}{2}\right)=I_{1}$

Using equation (1), we can write:

$I_{R}=I_{1}=\frac{K}{4}$

Hence, the intensity of light at a point where the path difference is $\frac{\lambda}{3}$ is $\frac{K}{4}$ units.

10.2 What is the shape of the wavefront in each of the following cases:

(a) Light diverging from a point source.

(b) Light emerging out of a convex lens when a point source is placed at its focus.

(c) The portion of the wavefront of light from a distant star intercepted by the Earth.

Show Answer

Answer

The shape of the wavefront in case of a light diverging from a point source is spherical. The wavefront emanating from a point source is shown in the given figure.

The shape of the wavefront in case of a light emerging out of a convex lens when a point source is placed at its focus is a parallel grid. This is shown in the given figure.

The portion of the wavefront of light from a distant star intercepted by the Earth is a plane.

10.3 (a) The refractive index of glass is 1.5 . What is the speed of light in glass? (Speed of light in vacuum is $3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$)

(b) Is the speed of light in glass independent of the colour of light? If not, which of the two colours red and violet travels slower in a glass prism?

Show Answer

Answer Refractive index of glass, $\mu=1.5$

Speed of light, $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Speed of light in glass is given by the relation,

$$ \begin{aligned} v & =\frac{c}{\mu} \\ & =\frac{3 \times 10^{8}}{1.5}=2 \times 10^{8} \mathrm{~m} / \mathrm{s} \end{aligned} $$

Hence, the speed of light in glass is $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

The speed of light in glass is not independent of the colour of light.

The refractive index of a violet component of white light is greater than the refractive index of a red component. Hence, the speed of violet light is less than the speed of red light in glass. Hence, violet light travels slower than red light in a glass prism.

10.4 In a Young’s double-slit experiment, the slits are separated by $0.28 \mathrm{~mm}$ and the screen is placed $1.4 \mathrm{~m}$ away. The distance between the central bright fringe and the fourth bright fringe is measured to be $1.2 \mathrm{~cm}$. Determine the wavelength of light used in the experiment.

Show Answer

Answer

Distance between the slits, $d=0.28 \mathrm{~mm}=0.28 \times 10^{-3} \mathrm{~m}$

Distance between the slits and the screen, $D=1.4 \mathrm{~m}$

Distance between the central fringe and the fourth $(n=4)$ fringe,

$u=1.2 \mathrm{~cm}=1.2 \times 10^{-2} \mathrm{~m}$

In case of a constructive interference, we have the relation for the distance between the two fringes as:

$u=n \lambda \frac{D}{d}$

Where,

$n=$ Order of fringes $=4$ $\lambda=$ Wavelength of light used

$$ \therefore=\frac{u d}{n D} $$

$=\frac{1.2 \times 10^{-2} \times 0.28 \times 10^{-3}}{4 \times 1.4}$

$=6 \times 10^{-7}$

$=600 \mathrm{~nm}$

Hence, the wavelength of the light is $600 \mathrm{~nm}$.

10.5 In Young’s double-slit experiment using monochromatic light of wavelength $\lambda$, the intensity of light at a point on the screen where path difference is $\lambda$, is $K$ units. What is the intensity of light at a point where path difference is $\lambda / 3$ ?

Show Answer

Answer

Let $I_{1}$ and $I_{2}$ be the intensity of the two light waves. Their resultant intensities can be obtained as:

$I^{\prime}=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \phi$

Where,

$\phi=$ Phase difference between the two waves

For monochromatic light waves,

$$ \begin{aligned} & I_{1}=I_{2} \\ & \begin{aligned} \therefore I^{\prime} & =I_{1}+I_{1}+2 \sqrt{I_{1} I_{1}} \cos \phi \\ & =2 I_{1}+2 I_{1} \cos \phi \end{aligned} \end{aligned} $$

Phase difference $=\frac{2 \pi}{\lambda} \times$ Path difference

Since path difference $=\lambda$,

Phase difference, $\phi=2 \pi$

$\therefore I^{\prime}=2 I_{1}+2 I_{1}=4 I_{1}$

Given,

$I^{\prime}=K$

$\therefore I_{1}=\frac{K}{4}$

When path difference $=\frac{\lambda}{3}$,

Phase difference, $\phi=\frac{2 \pi}{3}$

Hence, resultant intensity, $I_{R}^{\prime}=I_{1}+I_{1}+2 \sqrt{I_{1} I_{1}} \cos \frac{2 \pi}{3}$

$=2 I_{1}+2 I_{1}\left(-\frac{1}{2}\right)=I_{1}$

Using equation (1), we can write:

$I_{R}=I_{1}=\frac{K}{4}$

Hence, the intensity of light at a point where the path difference is $\frac{\lambda}{3}$ is $\frac{K}{4}$ units.

10.6 A beam of light consisting of two wavelengths, $650 \mathrm{~nm}$ and $520 \mathrm{~nm}$, is used to obtain interference fringes in a Young’s double-slit experiment.

(a) Find the distance of the third bright fringe on the screen from the central maximum for wavelength $650 \mathrm{~nm}$.

(b) What is the least distance from the central maximum where the bright fringes due to both the wavelengths coincide?

Show Answer

Answer

Wavelength of the light beam, $\lambda_{1}=650 \mathrm{~nm}$

Wavelength of another light beam, $\lambda_{2}=520 \mathrm{~nm}$

Distance of the slits from the screen $=D$

Distance between the two slits $=d$

Distance of the $n^{\text {th }}$ bright fringe on the screen from the central maximum is given by the relation,

$x=n \lambda_{1}\left(\frac{D}{d}\right)$

For third bright fringe, $n=3$

$\therefore x=3 \times 650 \frac{D}{d}=1950\left(\frac{D}{d}\right) \mathrm{nm}$

Let the $n^{\text {th }}$ bright fringe due to wavelength $\lambda_{2}$ and $(n-1)^{\text {th }}$ bright fringe due to wavelength $\lambda_{1}$ coincide on the screen. We can equate the conditions for bright fringes as:

$$ \begin{aligned} & n \lambda_{2}=(n-1) \lambda_{1} \\ & 520 n=650 n-650 \\ & 650=130 n \\ & \therefore n=5 \end{aligned} $$

Hence, the least distance from the central maximum can be obtained by the relation:

$$ \begin{aligned} x & =n \lambda_{2} \frac{D}{d} \\ & =5 \times 520 \frac{D}{d}=2600 \frac{D}{d} \mathrm{~nm} \end{aligned} $$

Note: The value of $d$ and $D$ are not given in the question.

10.1 भूमिका

सन् 1637 में दकार्ते ने प्रकाश के कणिका मॉडल को प्रस्तुत किया तथा स्नेल के नियम को व्युत्पन्न किया। इस मॉडल से किसी अंतरापृष्ठ पर प्रकाश के परावर्तन तथा अपवर्तन के नियमों की व्याख्या की गई है। कणिका मॉडल ने प्रागुक्त किया कि यदि प्रकाश की किरण (अपवर्तन के समय) अभिलंब की ओर मुड़ती है, तब दूसरे माध्यम में प्रकाश की चाल अधिक होगी। आइज़क न्यूटन ने प्रकाश के कणिका सिद्धांत को अपनी प्रसिद्ध पुस्तक ऑपटिक्स (Opticks) में और अधिक विकसित किया। इस पुस्तक की भारी लोकप्रियता के कारण कणिका मॉडल का श्रेय प्रायः न्यूटन को दिया जाता है।

सन् 1678 में डच भौतिकविद क्रिस्टिआन हाइगेंस ने प्रकाश के तरंग सिद्धांत को प्रस्तुत कियाइस अध्याय में हम प्रकाश के इसी तरंग सिद्धांत पर विचार करेंगे। हम देखेंगे कि तरंग मॉडल परावर्तन तथा अपवर्तन की घटनाओं की संतोषप्रद रूप से व्याख्या कर सकता है; तथापि, यह प्रागुक्त करता है कि अपवर्तन के समय यदि तरंग अभिलंब की ओर मुड़ती है तो दूसरे माध्यम में प्रकाश की चाल कम होगी। यह प्रकाश के कणिका मॉडल को उपयोग करते समय की गई प्रागुक्ति के विपरीत है। सन् 1850 में फूको द्वारा किए गए प्रयोग द्वारा दर्शाया गया कि जल में प्रकाश की चाल वायु में प्रकाश की चाल से कम है। इस प्रकार तरंग मॉडल की प्रागुक्ति की पुष्टि की गई।

मुख्यतः न्यूटन के प्रभाव के कारण तरंग सिद्धांत को सहज ही स्वीकार नहीं किया गया। इसका एक कारण यह भी था कि प्रकाश निर्वात में गमन कर सकता है और यह महसूस किया गया कि तरंगों के एक बिंदु से दूसरे बिंदु तक संचरण के लिए सदैव माध्यम की आवश्यकता होती है। तथापि, जब टॉमस यंग ने सन् 1801 में अपना व्यतिकरण संबंधी प्रसिद्ध प्रयोग किया तब यह निश्चित रूप से प्रमाणित हो गया कि वास्तव में प्रकाश की प्रकृति तरंगवत है। दृश्य प्रकाश की तरंगदैर्घ्य को मापा गया और यह पाया गया कि यह अत्यंत छोटी है; उदाहरण के लिए पीले प्रकाश की तरंगदैर्घ्य लगभग $0.6 \mu \mathrm{m}$ है। दृश्य प्रकाश की तरंगदैर्घ्य छोटी होने के कारण (सामान्य दर्पणों तथा लेंसों के आकार की तुलना में), प्रकाश को लगभग सरल रेखाओं में गमन करता हुआ माना जा सकता है। यह ज्यामितीय प्रकाशिकी का अध्ययन क्षेत्र है, जिसके विषय में हम अध्याय 9 में चर्चा कर चुके हैं। वास्तव में प्रकाशिकी की वह शाखा जिसमें तरंगदैर्घ्य की परिमितता को पूर्ण रूप से नगण्य मानते हैं ज्यामितीय प्रकाशिकी कहलाती है तथा किरण को ऊर्जा संचरण के उस पथ की भाँति परिभाषित करते हैं जिसमें तरंगदैर्घ्य का मान शून्य की ओर प्रवृत्त होता है।

सन् 1801 में टॉमस यंग द्वारा किए गए व्यतिकरण प्रयोग के पश्चात, आगामी लगभग 40 वर्ष तक प्रकाश तरंगों के व्यतिकरण तथा विवर्तन संबंधी अनेक प्रयोग किए गए। इन प्रयोगों का स्पष्टीकरण केवल प्रकाश के तरंग मॉडल के आधार पर संतोषजनक रूप से किया जा सका है। इस प्रकार उन्नीसवीं शताब्दी के लगभग मध्य तक तरंग सिद्धांत भली-भाँति स्थापित हो गया प्रतीत होता था। सबसे बड़ी कठिनाई उस मान्यता के कारण थी, जिसके अनुसार यह समझा जाता था कि तरंग संचरण के लिए किसी माध्यम की आवश्यकता होती है, तो फिर, प्रकाश तरंगें निर्वात में कैसे संचरित हो सकती हैं। इसकी व्याख्या मैक्सवेल द्वारा प्रकाश संबंधी प्रसिद्ध वैद्युतचुंबकीय सिद्धांत प्रस्तुत करने पर हो पाई। मैक्सवेल ने विद्युत तथा चुंबकत्व के नियमों का वर्णन करने वाले समीकरणों का एक सेट विकसित किया और इन समीकरणों का उपयोग करके उन्होंने तरंग समीकरण व्युत्पन्न किया, जिससे उन्होंने वैद्युतचुंबकीय तरंगों ${ }^{*}$ के अस्तित्व की भविष्यवाणी की। मैक्सवेल तंरग समीकरणों का उपयोग कर मुक्त आकाश में, वैद्युतचुंबकीय तरंगों के वेग की गणना कर पाए और उन्होंने पाया कि तरंग वेग का यह सैद्धांतिक मान, प्रकाश की चाल के मापे गए मान के अत्यंत निकट है। इससे उन्होंने यह निष्कर्ष निकाला कि प्रकाश अवश्य ही वैद्युतचुंबकीय तरंग है, इस प्रकार मैक्सवेल के अनुसार प्रकाश तरंगें परिवर्तनशील विद्युत तथा चुंबकीय क्षेत्रों से संबद्ध हैं। परिवर्तनशील विद्युत क्षेत्र समय तथा दिक्स्थान (आकाश) में परिवर्तनशील चुंबकीय क्षेत्र उत्पन्न करता है तथा परिवर्तनशील चुंबकीय क्षेत्र समय तथा दिक्स्थान में परिवर्तनशील विद्युत क्षेत्र उत्पन्न करता है। परिवर्तनशील विद्युत तथा चुंबकीय क्षेत्र निर्वात में भी वैद्युतचुंबकीय तरंगों (या प्रकाश तरंगों) का संचरण कर सकते हैं।

इस अध्याय में हम सर्वप्रथम हाइगेंस के सिद्धांत के मूल प्रतिपादन पर विचार-विमर्श करेंगे एवं परावर्तन तथा अपवर्तन के नियमों को व्युत्पन्न करेंगे। अनुच्छेद 10.4 तथा 10.5 में हम व्यतिकरण की परिघटना का वर्णन करेंगे जो अध्यारोपण के सिद्धांत पर आधारित है। अनुच्छेद 10.6 में हम विवर्तन की परिघटना पर विचार करेंगे जो हाइगेंस-फ्रेनेल सिद्धांत पर आधारित है। अंत में अनुच्छेद 10.7 में हम ध्रुवण के बारे में विचार-विमर्श करेंगे जो इस तथ्य पर आधारित है कि प्रकाश तरंगें अनुप्रस्थ वैद्युतचुंबकीय तरंगें हैं।

  • लगभग सन् 1864 में मैक्सवेल ने वैद्युतचुंबकीय तरंगों के अस्तित्व की भविष्यवाणी की; इसके काफ़ी समय पश्चात (लगभग 1890 में) हेनरी हर्ट्ज़ ने प्रयोगशाला में रेडियो तरंगें उत्पन्न कीं। जगदीश चंद्र बोस तथा मारकोनी ने हर्ट्ज़ की तरंगों का प्रायोगिक उपयोग किया।

10.2 हाइगेंस का सिद्धांत

सर्वप्रथम हम तरंगाग्र को परिभाषित करेंगे। जब हम किसी शांत जल के तालाब में एक छोटा पत्थर फेंकते हैं तब प्रतिघात बिंदु से चारों ओर तरंगें फैलती हैं। पृष्ठ का प्रत्येक बिंदु समय के साथ दोलन करना प्रारंभ कर देता है। किसी एक क्षण पर पृष्ठ का फ़ोटोग्राफ़ उन वृत्ताकार वलयों को दर्शाएगा जिनके ऊपर विक्षोभ अधिकतम हैं। स्पष्टतः इस प्रकार के वृत्त के सभी बिंदु समान कला में दोलन करते हैं क्योंकि वे स्रोत से समान दूरी पर हैं। समान कला में दोलन करते ऐसे सभी बिंदुओं का बिंदु पथ तरंगाग्र कहलाता है। अतः एक तरंगाग्र को एक समान कला के पृष्ठ के रूप में परिभाषित किया जाता है। जिस गति के साथ तरंगाग्र स्रोत से बाहर की ओर बढ़ता है, वह तरंग की चाल कहलाती है। तरंग की ऊर्जा तरंगाग्र के लंबवत चलती है।

चित्र 10.1 (a) एक बिंदु-स्रोत से निर्गमन होती एक अपसरित गोलीय तरंग। तरंगाग्र गोलीय है।

चित्र 10.1 (b) स्रोत से बहुत अधिक दूरी पर, गोलीय तरंग का एक छोटा भाग समतल तरंग माना जा सकता है।

यदि एक बिंदु-स्रोत प्रत्येक दिशा में एक समान तरंगें उत्सर्जित करता है तो उन बिंदुओं का बिंदुपथ, जिनका आयाम समान है और जो एक समान कला में कंपन करते हैं, गोला होता है तथा हमें चित्र 10.1 (a) की भाँति एक गोलीय तरंग प्राप्त होती है। स्रोत से बहुत अधिक दूरी पर, गोले का एक छोटा भाग समतल माना जा सकता है और हमें एक समतल तरंग प्राप्त होती है [चित्र 10.1 (b)]।

अब यदि हमें $t=0$ पर किसी तरंगाग्र की आकृति ज्ञात है तो हाइगेंस के सिद्धांत द्वारा हम किसी बाद के समय $\tau$ पर तरंगाग्र की आकृति ज्ञात कर सकते हैं। अतः हाइगेंस का सिद्धांत वास्तव में एक ज्यामितीय रचना है जो किसी समय यदि तरंगाग्र की आकृति दी हुई हो तो किसी बाद के समय पर हम तरंगाग्र की आकृति ज्ञात कर सकते हैं। आइए, एक अपसरित तरंग के बारे में विचार करें और मान लीजिए $F _{1} F _{2}, t=0$ समय पर एक गोलीय तरंगाग्र के एक भाग को प्रदर्शित करता है (चित्र 10.2)। अब हाइगेंस के सिद्धांत के अनुसार, तरंगाग्र का प्रत्येक बिंदु एक द्वितीयक विक्षोभ का स्रोत है और इन बिंदुओं से होने वाली तरंगिकाएँ तरंग की गति से सभी दिशाओं में फैलती हैं। तरंगाग्र से निर्गमन होने वाली इन तरंगिकाओं को प्रायः द्वितीयक तरंगिकाओं के नाम से जाना जाता है और यदि हम इन सभी गोलों पर एक उभयनिष्ठ स्पर्शक पृष्ठ खींचें तो हमें किसी बाद के समय पर तरंगाग्र की नयी स्थिति प्राप्त हो जाती है।

चित्र 10.2 $\mathrm{~F}_1 \mathrm{~F}_2$ गोलीय तरंगाग्र को $\mathrm{t}=0$ समय पर निरूपित करता है ( $\mathrm{O}$ केंद्र के साथ)। $\mathrm{F}_1 \mathrm{~F}_2$ से निर्गमन होने वाली द्वितीयक तरंगिकाओं का आवरण आगे बढ़ते हुए तरंगाग्र $\mathrm{G}_1 \mathrm{G}_2$ को उत्पन्न करता है। पश्च तरंग $\mathrm{D}_1 \mathrm{D}_2$ विद्यमान नहीं होती।

अतः यदि हम $t=\tau$ समय पर तरंगाग्र की आकृति ज्ञात करना चाहते हैं तो हम गोलीय तरंगाग्र के प्रत्येक बिंदु से $v \tau$ त्रिज्या के गोले खींचेंगे, जहाँ पर $v$ माध्यम में तरंग की चाल को निरूपित करता है। यदि हम इन सभी गोलों पर एक उभयनिष्ठ स्पर्श रेखा खींचें, तो हमें $t=\tau$ समय पर तरंगाग्र की नयी स्थिति प्राप्त होगी। चित्र 10.2 में $\mathrm{G} _{1} \mathrm{G} _{2}$ द्वारा प्रदर्शित नया तरंगाग्र पुनः गोलीय है जिसका केंद्र $\mathrm{O}$ है।

चित्र 10.3 दाईं ओर संचरित होने वाली एक समतल तरंग के लिए हाइगेंस का ज्यामितीय निर्माण। $\mathrm{F}_1 \mathrm{~F}_2$, $\mathrm{t}=0$ पर एक समतल तरंगाग्र है तथा $\mathrm{G}_1 \mathrm{G}_2 \tau$ समय बाद का एक तरंगाग्र है। रेखाएँ $\mathrm{A}_1 \mathrm{~A}_2, \mathrm{~B}_1 \mathrm{~B}_2 \ldots$ आदि $\mathrm{F}_1 \mathrm{~F}_2$ तथा $\mathrm{G}_1 \mathrm{G}_2$ दोनों के लंबवत हैं तथा किरणों को निरूपित करती हैं।

उपरोक्त मॉडल में एक दोष है। हमें एक पश्च तरंग भी प्राप्त होती है जिसे चित्र 10.2 में $\mathrm{D} _{1} \mathrm{D} _{2}$ द्वारा दर्शाया गया है। हाइगेंस ने तर्क प्रस्तुत किया कि आगे की दिशा में द्वितीयक तरंगिकाओं का आयाम अधिकतम होता है तथा पीछे की दिशा में यह शून्य होता है। इस तदर्थ कल्पना से हाइगेंस पश्च तरंगों की अनुपस्थिति को समझा पाए। तथापि यह तदर्थ कल्पना संतोषजनक नहीं है तथा पश्चतरंगों की अनुपस्थिति का औचित्य वास्तव में एक अधिक परिशुद्ध तरंग सिद्धांत द्वारा बताया जा सकता है।

इसी विधि द्वारा हम हाइगेंस के सिद्धांत का उपयोग किसी माध्यम में संचरित होने वाली समतल तरंग के तरंगाग्र की आकृति ज्ञात करने के लिए कर सकते हैं (चित्र 10.3)।

10.3 हाइगेंस सिद्धांत का उपयोग करते हुए समतल तरंगों का अपवर्तन तथा परावर्तन

10.3.1 समतल तरंगों का अपवर्तन

अब हम हाइगेंस के सिद्धांत का उपयोग अपवर्तन के नियमों को व्युत्पन्न करने के लिए करेंगे। मान लीजिए $\mathrm{PP}^{\prime}$ माध्यम 1 तथा माध्यम 2 को पृथक करने वाले पृष्ठ को निरूपित करता है (चित्र 10.4)। मान लीजिए $v _{1}$ तथा $v _{2}$ क्रमशः माध्यम 1 तथा माध्यम 2 में प्रकाश की चाल को निरूपित करते हैं। हम मान लेते हैं कि एक समतल तरंगाग्र $\mathrm{AB}, \mathrm{A}^{\prime} \mathrm{A}$ दिशा में संचरित होता हुआ चित्र में दर्शाए अनुसार अंतरापृष्ठ पर कोण $i$ बनाते हुए आपतित होता है। मान लीजिए $\mathrm{BC}$ दूरी चलने के लिए तरंगाग्र द्वारा लिया गया समय $\tau$ है। अत:

$B C=v _{1} \tau$

चित्र 10.4 एक समतल तरंगाग्र $\mathrm{AB}$ माध्यम 1 तथा माध्यम 2 को पृथक करने वाले पृष्ठ $\mathrm{PP}^{\prime}$ पर कोण $\mathrm{i}$ बनाते हुए आपतित होता है। समतल तरंगाग्र अपवर्तित होता है तथा $\mathrm{CE}$ अपवर्तित तरंगाग्र को निरूपित करता है। चित्र $\mathrm{v} _{2}<\mathrm{v} _{1}$ के तदनुरूप है, अतः अपवर्तित तरंगें अभिलंब की ओर मुड़ती हैं।

/>

क्रिस्टिआन हाइगेंस (1629-1695) डच भौतिकविद खगोलशास्त्री, गणितज्ञ एवं प्रकाश के तरंग सिद्धांत के प्रणेता। उनकी पुस्तक ट्रीटीज ऑन लाइट (Treatise on light), आज भी पढ़ने में अच्छी लगती है। इस पुस्तक में परावर्तन और अपवर्तन के अतिरिक्त, खनिज कैलसाइट द्वारा प्रदर्शित दोहरेअपवर्तन की प्रक्रिया को भी बहुत सुंदर ढंग से समझाया गया है। वही पहले व्यक्ति थे जिन्होंने वृत्तीय गति एवं सरल-आवर्त गति का विश्लेषण प्रस्तुत किया और सुधरी हुई घड़ियाँ एवं टेलिस्कोप बनाए। उन्होंने शनि-वलयों की सही ज्यामिति प्रस्तुत की।

अपवर्तित तरंगाग्र की आकृति ज्ञात करने के लिए हम बिंदु $\mathrm{A}$ से $v _{2} \tau$ त्रिज्या का एक गोला दूसरे माध्यम में खींचते हैं (दूसरे माध्यम में तरंग की चाल $v _{2}$ है)। मान लीजिए $\mathrm{CE}$ बिंदु $\mathrm{C}$ से गोले पर खींचे गए स्पर्शी तल को निरूपित करता है। तब, $\mathrm{AE}=v _{2} \tau$ तथा $\mathrm{CE}$ अपवर्तित तरंगाग्र को निरूपित करेगी। अब यदि हम त्रिभुज $\mathrm{ABC}$ तथा $\mathrm{AEC}$ पर विचार करें तो हमें प्राप्त होगा

$$ \begin{equation*} \sin i=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{v _{1} \tau}{\mathrm{AC}} \tag{10.1} \end{equation*} $$

और

$$ \begin{equation*} \sin r=\frac{\mathrm{AE}}{\mathrm{AC}}=\frac{v _{2} \tau}{\mathrm{AC}} \tag{10.2} \end{equation*} $$

यहाँ $i$ और $r$ क्रमशः आपतन कोण तथा अपवर्तन कोण हैं। अतः हमें प्राप्त होगा

$$ \begin{equation*} \frac{\sin i}{\sin r}=\frac{v _{1}}{v _{2}} \tag{10.3} \end{equation*} $$

उपरोक्त समीकरण से हमें एक महत्वपूर्ण परिणाम प्राप्त होता है। यदि $r<i$ (अर्थात, यदि किरण अभिलंब की ओर मुड़ती है), तो दूसरे माध्यम में प्रकाश तरंग की चाल $\left(v _{2}\right)$ पहले माध्यम में प्रकाश तरंग की चाल $\left(v _{1}\right)$ से कम होगी। यह प्रागुक्ति प्रकाश के कणिका मॉडल की प्रागुक्ति के विपरीत है और जैसा कि बाद के प्रयोगों ने दर्शाया, तरंग सिद्धांत की प्रागुक्ति सही है। अब यदि $c$ निर्वात में प्रकाश की चाल को निरूपित करती है, तब,

$$ \begin{equation*} n _{1}=\frac{c}{v _{1}} \tag{10.4} \end{equation*} $$

तथा

$$ \begin{equation*} n _{2}=\frac{c}{v _{2}} \tag{10.5} \end{equation*} $$

$n _{1}$ तथा $n _{2}$, क्रमशः माध्यम 1 तथा माध्यम 2 के अपवर्तनांक हैं। अपवर्तनांकों के रूप में समीकरण (10.3) को निम्न प्रकार से लिख सकते हैं

$$ \begin{equation*} n _{1} \sin i=n _{2} \sin r \tag{10.6} \end{equation*} $$

यह स्नैल का अपवर्तन संबंधी नियम है। यदि $\lambda _{1}$ तथा $\lambda _{2}$ क्रमशः माध्यम 1 तथा माध्यम 2 में प्रकाश की तरंगदैर्घ्य को निरूपित करते हैं और यदि दूरी $\mathrm{BC}, \lambda _{1}$ के बराबर है तब दूरी $\mathrm{AE}$, $\lambda _{2}$ के बराबर होगी (क्योंकि यदि कोई शृंग $\mathrm{B}$ से $\mathrm{C}$ तक $\tau$ समय में पहुँचता है तो वह श्रृंग $\mathrm{A}$ से $\mathrm{E}$ तक भी $\tau$ समय में ही पहुँचेगा); अत:

$$ \frac{\lambda _{1}}{\lambda _{2}}=\frac{\mathrm{BC}}{\mathrm{AE}}=\frac{v _{1}}{v _{2}} $$

अथवा

$$ \begin{equation*} \frac{v _{1}}{\lambda _{1}}=\frac{v _{2}}{\lambda _{2}} \tag{10.7} \end{equation*} $$

उपरोक्त समीकरण में अंतर्निहित है कि जब तरंग सघन माध्यम में अपवर्तित होती है $\left(v _{1}>v _{2}\right)$, तो तरंगदैर्घ्य तथा संचरण की चाल कम हो जाती है, लेकिन आवृत्ति $v(=v / \lambda)$ उतनी ही रहती है।

10.3.2 विरल माध्यम पर अपवर्तन

आइए, एक समतल तरंग के विरल माध्यम में होने वाले अपवर्तन पर विचार करें, अर्थात $v _{2}>v _{1}$ । पहले की भाँति ही कार्यवाही करते हुए हम चित्र 10.5 में दर्शाए अनुसार अपवर्तित तरंगाग्र का निर्माण कर सकते हैं। अब अपवर्तन कोण आपतन कोण से बड़ा होगा; तथापि इस बार भी $n _{1} \sin i=n _{2} \sin r$ । हम एक कोण $i _{\mathrm{c}}$ को निम्न समीकरण द्वारा परिभाषित कर सकते हैं

$$ \begin{equation*} \sin i _{c}=\frac{n _{2}}{n _{1}} \tag{10.8} \end{equation*} $$

अतः, यदि $i=i _{\mathrm{c}}$ तब $\sin r=1$ तथा $r=90^{\circ}$ । स्पष्टतया, $i>i _{\mathrm{c}}$ के लिए कोई भी अपवर्तित तरंग प्राप्त नहीं होगी। कोण $i _{\mathrm{c}}$ को क्रांतिक कोण कहते हैं तथा क्रांतिक कोण से अधिक सभी आपतन कोणों के लिए हमें कोई भी अपवर्तित तरंग प्राप्त नहीं होगी तथा तरंग का पूर्ण आंतरिक परावर्तन हो जाएगा। पूर्ण आंतरिक परावर्तन की परिघटना तथा इसके अनुप्रयोगों की परिचर्चा अनुच्छेद 9.4 में की गई थी।

चित्र 10.5 विरल माध्यम जिसके लिए $\mathrm{v} _{2}>\mathrm{v} _{1}$ पर आपतित एक समतल तरंग का अपवर्तन। समतल तरंग अभिलंब से दूर मुड़ जाती है।

10.3.3 समतल पृष्ठ से एक समतल तरंग का परावर्तन

अब हम एक परावर्तक पृष्ठ $\mathrm{MN}$ पर किसी कोण $i$ से आपतित एक समतल तरंग $\mathrm{AB}$ पर विचार करते हैं। यदि $v$ माध्यम में तरंग की चाल को निरूपित करता है तथा यदि $\tau$ तरंगाग्र द्वारा बिंदु $\mathrm{B}$ से $\mathrm{C}$ तक आगे बढ़ने में लिए गए समय को निरूपित करता है, तब दूरी

$$ \mathrm{BC}=v \tau $$

परावर्तित तरंगाग्र का निर्माण करने के लिए हम बिंदु $\mathrm{A}$ से त्रिज्या $v \tau$ का गोला खींचते हैं (चित्र 10.6)। मान लीजिए $\mathrm{CE}$ इस गोले पर बिंदु $\mathrm{C}$ से खींची गई स्पर्शी समतल को निरूपित करती है। स्पष्टतया

$$ \mathrm{AE}=\mathrm{BC}=v \tau $$

चित्र 10.6 परावर्तक पृष्ठ $\mathrm{MN}$ द्वारा समतल तरंग $\mathrm{AB}$ का परावर्तन। $\mathrm{AB}$ तथा $\mathrm{CE}$ क्रमशः आपतित तथा परावर्तित तरंगाग्र को निरूपित करती हैं।

अब यदि हम त्रिभुजों $\mathrm{EAC}$ तथा $\mathrm{BAC}$ पर विचार करें तो हम पाएँगे कि ये सर्वांगसम हैं और इसीलिए, कोण $i$ तथा $r$ बराबर होंगे (चित्र 10.6)। यह परावर्तन का नियम है।

एक बार परावर्तन तथा अपवर्तन के नियमों को जान लेने के पश्चात प्रिज़्मों, लेंसों तथा दर्पणों के व्यवहार को समझा जा सकता है। इस परिघटना की प्रकाश के सरल रेखीय पथ पर गमन करने के आधार पर अध्याय 9 में विस्तार से चर्चा की गई थी। यहाँ हम केवल परावर्तन तथा अपवर्तन के समय तरंगाग्रों के व्यवहार का वर्णन करेंगे। चित्र 10.7(a) में हम एक पतले प्रिज्म से गुज़रने वाली समतल तरंग पर विचार करते हैं। स्पष्टतया, क्योंकि काँच में प्रकाश तरंगों की चाल कम है, अंदर आते हुए तरंगाग्र का निचला भाग (जो काँच की अधिकतम मोटाई को पार करता है) सबसे अधिक विलंबित होगा। इसके परिणामस्वरूप प्रिज़्म से बाहर निकलने वाली तरंगाग्र चित्र में दर्शाए अनुसार झुक जाएगा। चित्र 10.7 (b) में हम एक पतले उत्तल लेंस पर आपतित होने वाली समतल तरंग पर विचार करते हैं। आपतित समतल तरंग का मध्य भाग लेंस के सबसे मोटे भाग से होकर जाता है तथा सर्वाधिक विलंबित होता है। लेंस से बाहर निकलने वाले तरंगाग्र में केंद्र पर अवनमन होता है और इसीलिए तरंगाग्र गोलीय हो जाता है तथा एक बिंदु $\mathrm{F}$ पर अभिसरित होता है जिसे फ़ोकस कहते हैं। चित्र 10.7(c) में एक अवतल दर्पण पर एक समतल तरंग आपतित होती है तथा परावर्तन पर हमें एक गोलीय तरंग प्राप्त होती है जो फ़ोकस बिंदु $\mathrm{F}$ पर अभिसरित होती है। इसी प्रकार हम अवतल लेंसों तथा उत्तल दर्पणों द्वारा अपवर्तन तथा परावर्तन को समझ सकते हैं।

उपरोक्त विवेचन से यह ज्ञात होता है कि वस्तु पर किसी बिंदु से प्रतिबिंब के संगत बिंदु तक लगा कुल समय एक ही होता है, चाहे जिस भी किरण के अनुदिश मापा जाए। उदाहरण के लिए, जब कोई उत्तल लेंस, प्रकाश को एक वास्तविक प्रतिबिंब बनाने के लिए फ़ोकस करता है तो यद्यपि केंद्र से होकर जाने वाली किरणें छोटा पथ तय करती हैं, लेकिन काँच में धीमी चाल के कारण लगने वाला समय उतना ही होता है जितना कि लेंस के किनारे के निकट से होकर चलने वाली किरणों के लिए होता है।

चित्र 10.7 एक समतल तरंगाग्र का अपवर्तन (a) एक पतले प्रिज़्म द्वारा, (b) एक उत्तल लेंस द्वारा, (c) एक समतल तरंगाग्र का अवतल दर्पण द्वारा परावर्तन।

उदाहरण 10.1 (a) जब एकवर्णीय प्रकाश दो माध्यमों को पृथक करने वाली सतह पर आपतित होता है, तब परावर्तित एवं अपवर्तित दोनों प्रकाश की आवृत्तियाँ समान होती हैं। स्पष्ट कीजिए क्यों?

(b) जब प्रकाश विरल से सघन माध्यम में गति करता है तो उसकी चाल में कमी आती है। क्या चाल में आई कमी प्रकाश तरंगों द्वारा संचारित ऊर्जा की कमी को दर्शाती है?

(c) प्रकाश की तरंग अवधारणा में, प्रकाश की तीव्रता का आकलन तरंग के आयाम के वर्ग से किया जाता है। वह क्या है जो प्रकाश की फ़ोटॉन अवधारणा में प्रकाश की तीव्रता का निर्धारण करता है?

हल (a) परावर्तन तथा अपवर्तन, आपतित प्रकाश की पदार्थ के परमाणवीय अवयवों के साथ अन्योन्य क्रिया के द्वारा हो पाता है। परमाणुओं को दोलित्र के रूप में देखा जा सकता है जो बाह्य साधन (प्रकाश) की आवृत्ति को लेकर प्रणोदित दोलन कर सकते हैं। एक आवेशित दोलक द्वारा उत्सर्जित प्रकाश की आवृत्ति उसके दोलन की आवृत्ति के बराबर होती है। अतः विकिरित प्रकाश की आवृत्ति आपतित प्रकाश की आवृत्ति के बराबर होती है।

(b) नहीं। तरंग द्वारा ले जाने वाली ऊर्जा तरंग के आयाम पर निर्भर करती है, यह तरंग संचरण की चाल पर निर्भर नहीं करती।

(c) फ़ोटॉन चित्रण में किसी दी हुई आवृत्ति के लिए प्रकाश की तीव्रता एकांक क्षेत्रफल से एकांक समय में गमन करने वाले फ़ोटॉन की संख्या द्वारा निर्धारित होती है।

10.4 तरंगों का कला-संबद्ध तथा कला-असंबद्ध योग

चित्र 10.8 (a) जल में समान कला में कंपन करती दो सुइयाँ दो संबद्ध स्रोतों को निरूपित करती हैं। (b) जल के पृष्ठ पर किसी समय पर जल के अणुओं के विस्थापन का पैटर्न जिसमें निस्पंदी (शून्य विस्थापन) तथा प्रस्पंदी (अधिकतम विस्थापन) रेखाएँ दर्शायी गई हैं।

इस अनुच्छेद में हम दो तरंगों के अध्यारोपण द्वारा उत्पन्न व्यतिकरण के चित्राम (पैटर्न) पर विचार-विमर्श करेंगे। आपको याद होगा, हमने कक्षा 11 की पाठ्यपुस्तक के अध्याय 14 में अध्यारोपण के सिद्धांत का विवेचन किया था। वास्तव में व्यतिकरण का समस्त क्षेत्र अध्यारोपण के सिद्धांत पर आधारित है, जिसके अनुसार किसी माध्यम में एक विशिष्ट बिंदु पर अनेक तरंगों द्वारा उत्पन्न परिणामी विस्थापन इनमें से प्रत्येक तरंग के विस्थापनों का सदिश योग होता है।

चित्र 10.9 (a) बिंदु $\mathrm{Q}$ पर संपोषी व्यतिकरण जिसके लिए पथांतर $2 \lambda$ है। (b) बिंदु $\mathrm{R}$ पर विनाशी व्यतिकरण जिसके लिए पथांतर $2.5 \lambda$ है ।

दो सुइयों $\mathrm{S} _{1}$ तथा $\mathrm{S} _{2}$ की कल्पना करें जो जल की एक द्रोणिका में ऊपर और नीचे समान आवर्ती गति कर रही हैं [चित्र 10.8 (a)]। वे जल की दो तरंगें उत्पन्न करती हैं तथा किसी विशिष्ट बिंदु पर, प्रत्येक तरंग द्वारा उत्पन्न विस्थापनों के बीच कलांतर समय के साथ नहीं बदलता। जब ऐसा होता है तो इन दो स्रोतों को कला-संबद्ध कहा जाता है। चित्र 10.8 (b) में किसी दिए हुए समय पर शृंग (सतत वृत्त) तथा गर्त (बिंदुकित वृत्त) दर्शाए गए हैं। एक बिंदु $P$ पर विचार करें जिसके लिए

$$ \mathrm{S} _{1} \mathrm{P}=\mathrm{S} _{2} \mathrm{P} $$

क्योंकि दूरियाँ $\mathrm{S} _{1} \mathrm{P}$ तथा $\mathrm{S} _{2} \mathrm{P}$ बराबर हैं, इसलिए $\mathrm{S} _{1}$ तथा $\mathrm{S} _{2}$ से तरंगें $\mathrm{P}$ बिंदु तक चलने में समान समय लेंगी तथा जो तरंगें $\mathrm{S} _{1}$ तथा $\mathrm{S} _{2}$ से समान कला में निर्गम होती हैं, वे $\mathrm{P}$ बिंदु पर भी समान कला में पहुँचेंगी।

इस प्रकार, यदि स्रोत $\mathrm{S} _{1}$ द्वारा किसी बिंदु $\mathrm{P}$ पर उत्पन्न विस्थापन

$$ y _{1}=a \cos \omega t $$

द्वारा दिया गया है तो स्रोत $\mathrm{S} _{2}$ द्वारा उत्पन्न विस्थापन (बिंदु $\mathrm{P}$ पर) भी

$$ y _{2}=a \cos \omega t $$

द्वारा प्रदर्शित होगा। अतः परिणामी विस्थापन होगा

$$ y=y _{1}+y _{2}=2 a \cos \omega t $$

क्योंकि तीव्रता विस्थापन के वर्ग के समानुपातिक है, इसलिए परिणामी तीव्रता होगी

$$ I=4 I _{0} $$

जहाँ $I _{0}$ प्रत्येक स्रोत की पृथक तीव्रता को निरूपित करती है। हम देख रहे हैं कि $I _{0}, a^{2}$ के समानुपाती है। वास्तव में $\mathrm{S} _{1} \mathrm{~S} _{2}$ के लंबअर्धक के किसी भी बिंदु पर तीव्रता $4 I _{0}$ होगी। दोनों स्रोतों को रचनात्मक रूप से व्यतिकरण करते हुए कहा जाता है और इसे हम संपोषी व्यतिकरण कहते हैं। अब हम बिंदु $Q$ पर विचार करते हैं [चित्र 10.9(a)], जिसके लिए

$$ \mathrm{S} _{2} \mathrm{Q}-\mathrm{S} _{1} \mathrm{Q}=2 \lambda $$

$\mathrm{S} _{1}$ से निर्गमित तरंगें $\mathrm{S} _{2}$ से आने वाली तरंगों की अपेक्षा ठीक दो चक्र पहले पहुँचती हैं तथा फिर से समान कला में होंगी [चित्र 10.9 (a)]। यदि $\mathrm{S} _{1}$ द्वारा उत्पन्न विस्थापन

$$ y _{1}=a \cos \omega t $$

हो तो $\mathrm{S} _{2}$ द्वारा उत्पन्न विस्थापन

$$ y _{2}=a \cos (\omega t-4 \pi)=a \cos \omega t \text { होगा। } $$

यहाँ हमने इस तथ्य का उपयोग किया है कि $2 \lambda$ का पथांतर $4 \pi$ के कलांतर के संगत है। दोनों विस्थापन फिर से समान कला में हैं तथा तीव्रता फिर $4 I _{0}$ होगी और इससे संपोषी व्यतिकरण होगा। उपरोक्त विश्लेषण में हमने यह मान लिया है कि दूरियाँ $\mathrm{S} _{1} \mathrm{Q}$ तथा $\mathrm{S} _{2} \mathrm{Q}, d$ (जो $\mathrm{S} _{1}$ तथा $\mathrm{S} _{2}$ के बीच दूरी निरूपित करता है) की अपेक्षा बहुत अधिक हैं, अतएव यद्यापि $\mathrm{S} _{1} Q$ तथा $\mathrm{S} _{2} \mathrm{Q}$ समान नहीं हैं, प्रत्येक तरंग द्वारा उत्पन्न विस्थापन का आयाम लगभग समान है।

अब हम एक बिंदु $R$ पर विचार करते हैं [चित्र 10.9(b)] जिसके लिए

$$ \mathrm{S} _{2} \mathrm{R}-\mathrm{S} _{1} \mathrm{R}=-2.5 \lambda $$

चित्र 10.10 उन बिंदुओं का बिंदुपथ जिनके लिए $\mathrm{S} _{1} \mathrm{P}-\mathrm{S} _{2} \mathrm{P}$ शून्य, $\pm \lambda$, $\pm 2 \lambda, \pm 3 \lambda$ हैं।

$\mathrm{S} _{1}$ से निर्गमित तरंगें स्रोत $\mathrm{S} _{2}$ से आने वाली तरंगों की अपेक्षा 2.5 चक्र बाद पहुँचती हैं [चित्र 10.10(b)]। अतः यदि स्रोत $\mathrm{S} _{1}$ द्वारा उत्पन्न विस्थापन का मान है

$$ y _{1}=a \cos \omega t $$

तब स्रोत $\mathrm{S} _{2}$ द्वारा उत्पन्न विस्थापन

$$ y _{2}=a \cos (\omega t+5 \pi)=-a \cos \omega t \text { होगा। } $$

यहाँ हमने इस तथ्य का उपयोग किया है कि $2.5 \lambda$ का पथांतर $5 \pi$ के कलांतर के संगत है। दोनों विस्थापन अब विपरीत कलाओं में हैं तथा दोनों विस्थापन एक-दूसरे को रद्द कर देते हैं तथा शून्य तीव्रता प्राप्त होती है। इसे विनाशी व्यतिकरण कहते हैं।

सारांशतः यदि दो संबद्ध स्रोत $\mathrm{S} _{1}$ तथा $\mathrm{S} _{2}$ समान कला में कंपन कर रहे हैं तब किसी यथेच्छ बिंदु $\mathrm{P}$ के लिए जबकि पथांतर

$$ \begin{equation*} \mathrm{S} _{1} \mathrm{P} \sim \mathrm{S} _{2} \mathrm{P}=n \lambda \quad(n=0,1,2,3, \ldots) \tag{10.9} \end{equation*} $$

हमें संपोषी व्यतिकरण प्राप्त होगा तथा परिणामी तीव्रता $4 I _{0}$ होगी। $\mathrm{S} _{1} \mathrm{P}$ तथा $\mathrm{S} _{2} \mathrm{P}$ के बीच चिह्न ( ) $\mathrm{S} _{1} \mathrm{P}$ तथा $\mathrm{S} _{2} \mathrm{P}$ के बीच अंतर को निरूपित करता है। दूसरी ओर यदि बिंदु $\mathrm{P}$ इस प्रकार है कि पथांतर,

$$ \begin{equation*} \mathrm{S} _{1} \mathrm{P} \sim \mathrm{S} _{2} \mathrm{P}=\left(n+\frac{1}{2}\right) \lambda \quad(n=0,1,2,3, \ldots) \tag{10.10} \end{equation*} $$

तो हमें विनाशी व्यतिकरण प्राप्त होगा तथा परिणामी तीव्रता शून्य होगी। अब, किसी दूसरे यथेच्छ बिंदु $\mathrm{G}$ (चित्र 10.10) के लिए मान लीजिए दो विस्थापनों के बीच कलांतर $\phi$ है; तब यदि स्रोत $\mathrm{S} _{1}$ द्वारा उत्पन्न विस्थापन

$$ y _{1}=a \cos \omega t $$

हो तो स्रोत $\mathrm{S} _{2}$ द्वारा उत्पन्न विस्थापन

$$ y _{2}=a \cos (\omega t+\phi) \text { होगा } $$

तथा परिणामी विस्थापन होगा

$$ \begin{aligned} y & =y _{1}+y _{2} \\ & =a[\cos \omega t+\cos (\omega t+\phi)] \\ & =2 a \cos (\phi / 2) \cos (\omega t+\phi / 2)\left[\because \cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)\right] \end{aligned} $$

परिणामी विस्थापन का आयाम $2 a \cos (\phi / 2)$ है इसलिए उस बिंदु पर तीव्रता होगी

$$ \begin{equation*} I=4 I _{0} \cos ^{2}(\phi / 2) \tag{10.11} \end{equation*} $$

यदि $\phi=0, \pm 2 \pi, \pm 4 \pi, \ldots$ जो समीकरण (10.9) की शर्त के संगत है, हमें संपोषी व्यतिकरण प्राप्त होगा तथा तीव्रता अधिकतम होगी। दूसरी ओर यदि $\phi= \pm \pi, \pm 3 \pi, \pm 5 \pi \ldots$ [जो समीकरण (10.10) की शर्त के संगत है] हमें विनाशी व्यतिकरण प्राप्त होगा तथा तीव्रता शून्य होगी।

अब यदि दो स्रोत कला-संबद्ध हैं (अर्थात इस प्रयोग में यदि दोनों सुइयाँ नियमित रूप से ऊपर नीचे आ-जा रही हैं) तो किसी भी बिंदु पर कलांतर $\phi$ समय के साथ नहीं बदलेगा तथा हमें स्थिर व्यतिकरण पैटर्न प्राप्त होगा, अर्थात् समय के साथ उच्चिष्ठ (maxima) तथा निम्निष्ठ (minima) की स्थितियाँ नहीं बदलेंगी। तथापि, यदि दोनों सुइयाँ निश्चित कलांतर नहीं रख पाती हैं, तो समय के साथ व्यतिकरण पैटर्न भी बदलेगा तथा यदि कलांतर समय के साथ बहुत तेज़ी से बदलता है, तो उच्चिष्ठ तथा निम्निष्ठ की स्थितियाँ भी समय के साथ तेज़ी से बदलेंगी तथा हम ‘काल औसत’ तीव्रता वितरण देखेंगे। जब ऐसा होता है तो हमें औसत तीव्रता प्राप्त होगी, जिसका मान होगा

$$ \begin{equation*} I=2 I _{0} \tag{10.12} \end{equation*} $$

जब समय के साथ दो कंपित स्रोतों का कलांतर तेज़ी से बदलता है, हम कहते हैं कि ये स्रोत कला-असंबद्ध हैं और जब ऐसा होता है तो तीव्रताएँ केवल जुड़ जाती हैं। वास्तव में ऐसा तब होता है जब दो अलग-अलग प्रकाश स्रोत किसी दीवार को प्रकाशित करते हैं।

10.5 प्रकाश तरंगों का व्यतिकरण तथा यंग का प्रयोग

अब हम प्रकाश तरंगों का उपयोग करके व्यतिकरण पर विचार करेंगे। यदि हम दो सूचिछिद्रों को प्रदीप्त करने के लिए दो सोडियम लैंपों का उपयोग करें (चित्र 10.11), तो हमें कोई व्यतिकरण फ्रिंज दिखाई नहीं देंगी। ऐसा इस तथ्य के कारण है कि एक सामान्य स्रोत (जैसे सोडियम लैंप) से उत्सर्जित होने वाली प्रकाश तरंगों में, $10^{-10} \mathrm{~s}$ की कोटि के समय अंतरालों पर, आकस्मिक कला-परिवर्तन होता है। अतः दो स्वतंत्र प्रकाश स्रोतों से आने वाली प्रकाश तरंगों में कोई निश्चित कला संबंध नहीं होता तथा ये कला-असंबद्ध होते हैं। जैसी कि पहले अनुच्छेद में विवेचना की जा चुकी है, ऐसा होने पर परदे पर तीव्रताएँ जुड़ जाती हैं।

चित्र 10.11 यदि दो सोडियम लैंप दो सूचिछिद्रों को प्रदीप्त करते हैं, तीव्रताएँ जुड़ जाती हैं तथा परदे पर व्यतिकरण फ्रिंजें दिखलाई नहीं देतीं।

इंग्लैंड के भौतिकशास्त्री टॉमस यंग ने स्रोतों $\mathrm{S} _{1}$ तथा $\mathrm{S} _{2}$ से उत्सर्जित होने वाली तरंगों की कलाओं को नियंत्रित करने के लिए एक उत्तम तकनीक उपयोग की। उन्होंने एक अपारदर्शी परदे पर दो सूचिछिद्र $\mathrm{S} _{1}$ तथा $\mathrm{S} _{2}$ (एक-दूसरे को बहुत निकट) बनाए [चित्र 10.12(a)]। इन्हें एक अन्य सूचिछिद्र से प्रदीप्त किया गया जिसे एक दीप्त स्रोत से प्रकाशित किया गया था। प्रकाश तरंगें $\mathrm{S}$ से निकलकर $\mathrm{S} _{1}$ तथा $\mathrm{S} _{2}$ पर गिरती हैं। $\mathrm{S} _{1}$ तथा $\mathrm{S} _{2}$ दो कला-संबद्ध स्रोतों की भाँति कार्य करते हैं क्योंकि $\mathrm{S} _{1}$ तथा $\mathrm{S} _{2}$ से निकलने वाली प्रकाश तरंगें एक ही मूल स्रोत से व्युत्पन्न होती हैं तथा स्रोत $\mathrm{S}$ में अचानक कोई भी कला परिवर्तन $\mathrm{S} _{1}$ तथा $\mathrm{S} _{2}$ से आने वाले प्रकाश में ठीक उसी प्रकार का कला परिवर्तन करेगा। इस प्रकार दोनों स्रोत $\mathrm{S} _{1}$ तथा $\mathrm{S} _{2}$ समान कला में बँध जाएँगे अर्थात वे हमारे जल तरंगों के उदाहरण में [चित्र 10.8(a)] दो कंपित सुइयों की भाँति कला-संबद्ध होंगे।

इस प्रकार $\mathrm{S} _{1}$ तथा $\mathrm{S} _{2}$ से उत्सर्जित होने वाली गोलीय तरंगें चित्र 10.12(b) की भाँति परदे $\mathrm{GG}^{\prime}$ पर व्यतिकरण फ्रिंजें उत्पन्न करेंगी। अधिकतम तथा न्यूनतम तीव्रता की स्थितियों की गणना अनुच्छेद 10.4 में दिए गए विश्लेषण का उपयोग करके की जा सकती है।

चित्र 10.12 व्यतिकरण पैटर्न उत्पन्न करने के लिए टॉमस यंग की व्यवस्था।

हमें संपोषी व्यतिकरण द्वारा दीप्त क्षेत्र प्राप्त होंगे जब $\frac{x d}{D}=n \lambda$, अर्थात

$$ \begin{equation*} x=x_{n}=\frac{n \lambda D}{d} ; \mathrm{n}=0, \pm 1, \pm 2, \ldots \tag{10.13} \end{equation*} $$

होगा। दूसरी ओर हमें विनाशी व्यतिकरण द्वारा अदीप्त क्षेत्र प्राप्त होंगे जब

$$\frac{x d}{D}=\left(n+\frac{1}{2}\right) \lambda$$

अर्थात,

$$ \begin{align*} & x=x _{\mathrm{n}}=\left(n+\frac{1}{2}\right) \frac{\lambda D}{d} ; n=0, \pm 1, \pm 2 \tag{10.14} \end{align*} $$

के निकट अदीप्त क्षेत्र प्राप्त होंगे। इस प्रकार चित्र 10.13 की भाँति परदे पर अदीप्त तथा दीप्त बैंड दिखलाई देंगे। ऐसे बैंडों को फ्रिंज कहते हैं। समीकरण (10.13) तथा (10.14) दर्शाते हैं कि काले तथा दीप्त फ्रिंज समान दूरी पर हैं।

टॉमस यंग (1773-1829) अंग्रेज़ भौतिकविद, कायचिकित्सक एवं मिस्र विशेषज्ञ। यंग ने बहुत तरह की वैज्ञानिक समस्याओं पर कार्य किया, जिनमें एक ओर आँख की संरचना और दृष्टि प्रक्रिया तो दूसरी ओर रोसेटा मणि का रहस्य भेदन शामिल है। उन्होंने प्रकाश के तरंग सिद्धांत को पुनर्जीवित किया और समझाया कि व्यतिकरण, प्रकाश के तरंग गुण का प्रमाण प्रस्तुत करता है।

$$ d=0.025 \mathrm{~mm}(\beta \approx 1 \mathrm{~mm}) $$

चित्र 10.13 दो स्रोतों $S _{1}$ तथा $S _{2}$ द्वारा $G^{\prime}$ परदे पर (देखिए चित्र 10.12 ) उत्पन्न हुआ कंप्यूटर द्वारा बनाया गया फ्रिंज पैटर्न; $\mathrm{d}=0.025 \mathrm{~mm}$ के लिए $\mathrm{D}=5 \mathrm{~cm}$ तथा $\lambda=5 \times 10^{-5} \mathrm{~cm}$ ) ( ऑपटिक्स’ ए. घटक, टाटा मैक्ग्रा हिल पब्लिशिंग कं. लि., नयी दिल्ली, 2000 से लिया गया।)

10.6 विवर्तन

यदि हम किसी अपारदर्शी वस्तु के द्वारा बनने वाली छाया को ध्यानपूर्वक देखें तो हम पाएँगे कि ज्यामितीय छाया के क्षेत्र के समीप व्यतिकरण के समान बारी-बारी से उदीप्त तथा दीप्त क्षेत्र आते हैं। ऐसा विवर्तन की परिघटना के कारण होता है। विवर्तन एक सामान्य अभिलक्षण है जो सभी प्रकार की तरंगों द्वारा प्रदर्शित किया जाता है, चाहे ये ध्वनि तरंगें हों, प्रकाश तरंगें हों, जल तरंगें हों अथवा द्रव्य तरंगें हों। क्योंकि अधिकांश अवरोधकों के विस्तार से प्रकाश की तरंगदैर्घ्य अत्यंत छोटी है इसीलिए हमें दैनिक जीवन के प्रेक्षणों में विवर्तन के प्रभावों का सामना नहीं करना पड़ता। तथापि, हमारी आँख या प्रकाशिक यंत्रों जैसे दूरदर्शकों अथवा सूक्ष्मदर्शियों का निश्चित वियोजन विवर्तन की परिघटना के कारण सीमित रहता है। वास्तव में जब हम किसी $\mathrm{CD}$ को देखते हैं तो उसमें रंग विवर्तन प्रभाव के कारण ही दिखलाई देते हैं। अब हम विवर्तन की परिघटना पर चर्चा करेंगे।

10.6.1 एकल झिरी

यंग के प्रयोग के विवेचन में, हमने कहा है कि एक संकीर्ण एकल झिरी नए स्रोत की तरह कार्य करती है, जहाँ से प्रकाश विस्तारित होता है। यंग के पहले भी, प्रारंभिक प्रयोगकर्ताओं जिनमें न्यूटन भी शामिल थे, के ध्यान में यह आ चुका था कि प्रकाश संकीर्ण छिद्रों तथा झिरियों से विस्तारित होता है। यह कोने से मुड़कर उस क्षेत्र में प्रवेश करता हुआ प्रतीत होता है जहाँ हम छाया की अपेक्षा करते हैं। इन प्रभावों को जिन्हें विवर्तन कहते हैं, केवल तरंग धारणा के उपयोग से ही उचित रूप से समझ सकते हैं। आखिर, आपको कोने के पीछे से किसी को बात करते हुए उसकी ध्वनि तरंगों को सुनकर शायद ही आश्चर्य होता है।

जब यंग के प्रयोग की एकवर्णी स्रोत से प्रकाशित द्विझिरी को एक संकीर्ण एकल झिरी द्वारा प्रतिस्थापित किया जाता है तो एक ब्रॉड (चौड़ा) पैटर्न दिखाई पड़ता है जिसके मध्य में दीप्त क्षेत्र होता है। इसके दोनों ओर क्रमागत दीप्त एवं अदीप्त क्षेत्र होते हैं जिनकी तीव्रता केंद्र से दूर होने पर कम होती जाती है (चित्र 10.15)। इसको समझने के लिए चित्र 10.14 देखिए, जिसमें $a$ चौड़ाई की एकल झिरी $\mathrm{LN}$ पर अभिलंबवत पड़ने वाले समांतर किरण पुंज को दर्शाया गया है। विवर्तित प्रकाश आगे रखे एक परदे पर आपतित होता है। झिरी का मध्य बिंदु $M$ है।

बिंदु $M$ से गुज़रने वाली और झिरी के तल के

चित्र 10.14 किसी एकल झिरी द्वारा विवर्तन में पथांतर की ज्यामिति। अभिलंबवत सरल रेखा परदे को बिंदु $\mathrm{C}$ पर मिलती है। हमें परदे के किसी बिंदु $\mathrm{P}$ पर तीव्रता ज्ञात करनी है। जैसा पहले चर्चा कर चुके हैं, $\mathrm{P}$ को विभिन्न बिंदुओं $\mathrm{L}, \mathrm{M}, \mathrm{N}$ आदि से जोड़ने वाली विभिन्न सरल रेखाएँ परस्पर समांतर एवं अभिलंब $\mathrm{MC}$ से कोण $\theta$ बनाती हुई मानी जा सकती हैं [चित्र 10.14]।

मूल धारणा यह है कि झिरी को बहुत से छोटे भागों में विभाजित किया जाए और बिंदु $\mathrm{P}$ पर उनके योगदानों को उचित कलांतर के साथ जोड़ा जाए। हम झिरी पर प्राप्त तरंगाग्र के विभिन्न भागों को द्वितीयक स्रोतों की तरह व्यवहार में लाते हैं। क्योंकि, आपाती तरंगाग्र झिरी के तल में समांतर है, तथा ये स्रोत एक ही कला में होते हैं।

प्रायोगिक प्रेक्षण दर्शाते हैं कि तीव्रता का केंद्रीय उच्चिष्ठ $\theta=0$ पर है तथा दूसरे द्वितीयक उच्चिष्ठ $\theta \approx(n+1 / 2) \lambda / a$ पर हैं जिनकी तीव्रता $n$ का मान बढ़ने पर लगातार कम होती जाती है। निम्निष्ठ (शून्य तीव्रता ) $\theta \approx n \lambda / a, n= \pm 1, \pm 2, \pm 3, \ldots$ पर हैं। फ़ोटोग्राफ़ तथा इसके संगत तीव्रता पैटर्न चित्र 10.15 में दर्शाए गए हैं।

व्यतिकरण तथा विवर्तन में क्या अंतर है, इस संबंध में इन परिघटनाओं की खोज के समय से ही वैज्ञानिकों में लंबा विचार-विमर्श होता रहा है। इस संबंध में रिचर्ड फ़ाइनमैन* ने अपने प्रसिद्ध फ़ाइनमैन लेक्चर्स ऑन फ़िजिक्स में क्या कहा है, यह जानना दिलचस्प रहेगा।

चित्र 10.15 एकल झिरी द्वारा विवर्तन के लिए फ्रिंजों का फ़ोटोग्राफ़ तथा तीव्रता वितरण।

अभी तक कोई भी व्यतिकरण तथा विवर्तन के बीच अंतर को संतोषप्रद रूप से परिभाषित नहीं कर पाया है। यह केवल उपयोग का प्रश्न है, इन दोनों के बीच कोई सुस्पष्ट तथा महत्वपूर्ण भौतिक अंतर नहीं है। मोटे तौर से हम अधिक से अधिक कह सकते हैं कि जब केवल कुछ स्रोत होते हैं, मान लीजिए दो व्यतिकारी स्रोत, तब प्रायः मिलने वाले परिणाम को व्यतिकरण कहते हैं, लेकिन यदि इनकी संख्या बहुत अधिक हो, ऐसा प्रतीत होता है कि विवर्तन शब्द प्रायः उपयोग किया जाता है।

  • रिचर्ड फ़ाइनमैन को 1965 का भौतिकी का नोबेल पुरस्कार मिला जो उनके क्वांटम वैद्युतगतिकी के मौलिक कार्य पर दिया गया।

द्विझिरी प्रयोग में, हमें ध्यान देना चाहिए कि परदे पर बनने वाला पैटर्न वास्तव में प्रत्येक झिरी या छिद्र द्वारा अध्यारोपण से बनने वाला एकल झिरी विवर्तन पैटर्न है, तथा द्विझिरी व्यतिकरण पैटर्न है।

10.6.2 एकल झिरी विवर्तन पैटर्न का अवलोकन

एकल झिरी विवर्तन पैटर्न को स्वयं ही देखना आश्चर्यजनक रूप से सरल है। आवश्यक उपकरण अधिकांश घरों में पाया जा सकता है- दो रेज़र ब्लेड तथा एक पारदर्शक काँच का विद्युत बल्ब (किसी सीधे तंतु वाले बल्ब को वरीयता प्रदान करें)। दोनों ब्लेडों को इस प्रकार पकड़ा जाता है कि उनके किनारे समांतर हों और दोनों के बीच एक संकीर्ण झिरी बने। यह सरलता से अँगूठे तथा उँगलियों के द्वारा भी किया जा सकता है (चित्र 10.16)।

चित्र 10.16 एक एकल झिरी निर्मित करने के लिए दो ब्लेडों को पकड़ना। एक बल्ब तंतु जिसे झिरी में से देखा जाता है, स्पष्ट विवर्तन बैंड दर्शाता है।

झिरी को फ़िलामेंट के समांतर रखिए, ठीक आँख के सामने। यदि आप चश्मा पहनते हैं तो उसका उपयोग करें। झिरी की चौड़ाई तथा किनारों की समांतरता के कुछ समायोजन से दीप्त तथा अदीप्त बैंडों के साथ पैटर्न दिखाई देना चाहिए। क्योंकि सभी बैंडों की स्थिति (केंद्रीय बैंड को छोड़कर) तरंगदैर्घ्य पर निर्भर है, वे कुछ रंग दर्शाएँगी। लाल तथा नीले के लिए फ़िल्टर के उपयोग से फ्रिंजें अधिक स्पष्ट हो जाएँगी। यदि दोनों फ़िल्टर उपलब्ध हों तो नीले की तुलना में लाल रंग की फ्रिंजें अधिक चौड़ी देखी जा सकती हैं।

इस प्रयोग में, तंतु प्रथम स्रोत $\mathrm{S}$ की भूमिका निभा रहा है (चित्र 10.14)। नेत्र का लेंस परदे (नेत्र के रेटिना) पर पैटर्न को फ़ोकस करता है।

थोड़े प्रयत्न से, एक ब्लेड की सहायता से ऐलुमिनियम की पन्नी में द्विझिरी काटी जा सकती है। बल्ब तंतु को यंग के प्रयोग को दोहराने के लिए पहले की भाँति देखा जा सकता है। दिन के समय में, नेत्र पर एक छोटा कोण बनाने वाला एक दूसरा उपयुक्त दीप्त स्रोत है। यह किसी चमकीले उत्तल पृष्ठ (उदाहरण के लिए एक साइकिल की घंटी) में सूर्य का परावर्तन है। सूर्य-प्रकाश के साथ सीधे ही प्रयोग न करें- यह नेत्र को क्षति पहुँचा सकता है तथा इससे फ्रिंजें भी नहीं मिलेंगी क्योंकि सूर्य $(1 / 2)^{\circ}$ का कोण बनाता है।

व्यतिकरण तथा विवर्तन में प्रकाश ऊर्जा का पुनर्वितरण होता है। यदि यह अदीप्त फ्रिंज उत्पन्न करते समय एक क्षेत्र में घटती है तो दीप्त फ्रिंज उत्पन्न करते समय दूसरे क्षेत्र में बढ़ती है। ऊर्जा में कोई लाभ अथवा हानि नहीं होती जो ऊर्जा संरक्षण के सिद्धांत के अनुकूल है।

10.7 ध्रुवण

एक लंबी डोरी पर विचार कीजिए जिसे क्षैतिज रखकर पकड़ा गया है और इसका दूसरा सिरा स्थिर माना गया है। यदि हम डोरी के सिरे को ऊपर-नीचे आवर्ती रूप से गति कराएँ तो एक तरंग उत्पन्न कर पाएँगे जो $+x$ दिशा में संचारित होगी (चित्र 10.17)। ऐसी तरंग को समीकरण (10.15) द्वारा व्यक्त किया जा सकता है।

चित्र 10.17 (a) वक्र किसी डोरी का क्रमश: $t=0$ तथा $t=\Delta t$ पर विस्थापन निरूपित करते हैं, जब एक ज्यावक्रीय तरंग $+x$ दिशा में संचरित होती है। (b) वक्र विस्थापन $x=0$ के समय-विचरण को निरूपित करता है, जबकि एक ज्यावक्रीय तरंग $+x$ दिशा में संचरित हो रही है। $x=\Delta x$ पर विस्थापन का समय-विचरण थोड़ा-सा दाईं ओर विस्थापित हो जाएगा।

$$ \begin{equation*} y(x, t)=a \sin (k x-\omega t) \tag{10.15} \end{equation*} $$

जहाँ $a$ तथा $\omega(=2 \pi v)$ क्रमशः तरंग का आयाम तथा कोणीय आवृत्ति निरूपित करते हैं। इसके अतिरिक्त,

$$ \begin{equation*} \lambda=\frac{2 \pi}{k} \tag{10.16} \end{equation*} $$

तरंग से संबद्ध तरंगदैर्घ्य को निरूपित करता है। इस प्रकार की तरंगों के संचरण की चर्चा हम कक्षा 11 की पाठ्यपुस्तक के अध्याय 14 में कर चुके हैं। क्योंकि विस्थापन (जो $y$ दिशा के अनुदिश है ) तरंग संचरण की दिशा के लंबवत है, हमें अनुप्रस्थ तरंगें प्राप्त होती हैं। साथ ही, क्योंकि विस्थापन $y$ दिशा में है, इसीलिए इसे प्राय: $y$-ध्रुवित तरंग कहा जाता है। क्योंकि डोरी का प्रत्येक बिंदु एक सरल रेखा में गति करता है, तरंग को रैखिकतः ध्रुवित तरंग कहा जाता है। इसके अतिरिक्त, डोरी सदैव $x-y$ तल में ही सीमित रहती है, इसीलिए इसे समतल ध्रुवित तरंग भी कहा जाता है।

इसी प्रकार हम $x-Z$ तल में $z$-ध्रुवित तरंग उत्पन्न करके किसी डोरी के कंपन पर विचार कर सकते हैं, जिसका विस्थापन प्राप्त होगा

$$ \begin{equation*} z(x, t)=a \sin (k x-\omega t) \tag{10.17} \end{equation*} $$

यह बतलाना आवश्यक है कि [समीकरणों (10.15) तथा (10.17) से वर्णित] सभी रैखिकत: ध्रुवित तरंगें अनुप्रस्थ तरंगें होती हैं; अर्थात डोरी के प्रत्येक बिंदु का विस्थापन सदैव तरंग संचरण की दिशा के लंबवत होता है। अंततः, यदि डोरी के कंपन के तल को अत्यंत अल्प अंतराल में यादृच्छिकतः बदला जाए तो हमें अध्रुवित तरंग प्राप्त होगी। इस प्रकार एक अध्रुवित तरंग के लिए विस्थापन, समय के साथ, यादृच्छिकतः बदलता रहता है, यद्यपि यह सदैव तरंग संचरण की दिशा के लंबवत रहता है।

प्रकाश की तरंगों की प्रकृति अनुप्रस्थ होती है; अर्थात संचरित हो रही प्रकाश तरंग से संबद्ध विद्युत क्षेत्र सदैव तरंग संचरण की दिशा के लंबवत होता है। इसे एक सरल पोलेरॉइड का उपयोग करके सरलता से प्रदर्शित किया जा सकता है। आपने पतली प्लास्टिक जैसी शीटें देखी होंगी जिन्हें पोलेरॉइड कहते हैं। पोलेरॉइड में अणुओं की एक लंबी भृंखला होती है जो एक विशेष दिशा में पंक्तिबद्ध होते हैं। पंक्तिबद्ध अणुओं की दिशा के अनुदिश विद्युत सदिश (संचरित होती प्रकाश तरंगों से संबद्ध) अवशोषित हो जाता है। इस प्रकार यदि कोई अध्रुवित प्रकाश तरंग ऐसे पोलेरॉइड पर आपतित होती तो प्रकाश तरंग रेखीय ध्रुवित हो जाती है, जिसमें विद्युत सदिश पंक्तिबद्ध अणुओं की लंबवत दिशा के अनुदिश दोलन करता है, इस दिशा को पोलेरॉइड की पारित-अक्ष (pass-axis) कहते हैं।

इस प्रकार, जब किसी साधारण स्रोत (जैसे एक सोडियम लैंप) का प्रकाश पोलेरॉइड की किसी शीट $\mathrm{P} _{1}$ से पारित होता है तो यह देखा जाता है कि इसकी तीव्रता आधी हो जाती है। $\mathrm{P} _{1}$ को घुमाने पर पारगत किरण-पुंज पर कोई प्रभाव नहीं पड़ता क्योंकि पारगमित तीव्रता स्थिर रहती है। अब हम एक समरूप पोलेरॉइड $P _{2}$ को $P _{1}$ से पहले रखते हैं। अपेक्षानुसार, लैंप से आने वाले प्रकाश की तीव्रता केवल $\mathrm{P} _{2}$ से ही पारित होने में कम हो जाएगी। परंतु अब $\mathrm{P} _{1}$ के घुमाने का $\mathrm{P} _{2}$ से आने वाले प्रकाश पर एक नाटकीय प्रभाव पड़ेगा। एक स्थिति में $\mathrm{P} _{2}$ से पारगमित तीव्रता $\mathrm{P} _{1}$ से पारित होने पर लगभग शून्य हो जाती है। जब इस स्थिति से $\mathrm{P} _{1}$ को $90^{\circ}$ पर घुमाते हैं तो यह $\mathrm{P} _{2}$ से आने वाली लगभग पूर्ण तीव्रता को पारगमित कर देता है (चित्र 10.18)।

उपरोक्त प्रयोग को यह मानकर आसानी से समझा जा सकता है कि पोलेरॉइड $\mathrm{P} _{2}$ से पारगमित प्रकाश का $\mathrm{P} _{2}$ की पारित अक्ष (pass-axis) के अनुदिश ध्रुवण हो जाता है। यदि $\mathrm{P} _{2}$ की पारित अक्ष, $\mathrm{P} _{1}$ की पारित अक्ष से $\theta$ कोण बनाती है, तब जबकि ध्रुवित प्रकाश-पुंज पोलोरॉइड $\mathrm{P} _{1}$ से पारगमित होती है, तो $\mathrm{P} _{1}$ से घटक $E \cos \theta$ ( $\mathrm{P} _{1}$ की पारित अक्ष के अनुदिश) पारित होगा। इस प्रकार जब हम पोलेरॉइड $\mathrm{P} _{1}\left(\right.$ या पोलेरॉइड $\left.\mathrm{P} _{2}\right)$ को घुमाते हैं तो तीव्रता निम्न प्रकार बदलेगी :

$$ \begin{equation*} I=I _{0} \cos ^{2} \theta \tag{10.18} \end{equation*} $$

यहाँ $I _{0}, \mathrm{P} _{1}$ से गुज़रने के पश्चात ध्रुवित प्रकाश की तीव्रता है। इसे मेलस का नियम (Malus’ Law) कहते हैं। उपरोक्त विवेचन दर्शाता है कि एक पोलेरॉइड से आने वाले प्रकाश की तीव्रता, आपतित तीव्रता की आधी है। दूसरा पोलेरॉइड रखकर तथा दोनों पोलेरॉइडों की पारित-अक्षों के बीच के कोण को समायोजित करके तीव्रता को आपतित तीव्रता के $50 %$ से शून्य तक नियंत्रित कर सकते हैं।

चित्र 10.18 (a) दो पोलेरॉइड $\mathrm{P} _{2}$ तथा $\mathrm{P} _{1}$ से होकर प्रकाश का पारगमन। पारगमित अंश 1 से 0 तक गिरता है, जब उनके बीच का कोण $0^{\circ}$ से $90^{\circ}$ तक परिवर्तित होता है। ध्यान रखें कि प्रकाश जब एक ही पोलेरॉइड $\mathrm{P} _{1}$ से देखा जाता है तब वह कोण के साथ परिवर्तित नहीं होता। (b) जब प्रकाश दो पोलेरॉइडों से पारित होता है तो विद्युत सदिश का व्यवहार पारगमित ध्रुवण पोलेरॉइड अक्ष के समांतर घटक है। द्विबाणाग्र विद्युत सदिश के दोलन को दर्शाते हैं।

पोलेरॉइडों को धूप के चश्मों, खिड़की के शीशों आदि में तीव्रता नियंत्रित करने में उपयोग किया जा सकता है। पोलेरॉइडों का उपयोग फ़ोटोग्राफ़ी कैमरों तथा 3D (त्रिआयामी) चलचित्र कैमरों में भी किया जाता है।

उदाहरण 10.2 जब दो क्रॉसित पोलेरॉइडों के बीच में पॉलराइड की एक तीसरी शीट को घुमाया जाता है तो पारगमित प्रकाश की तीव्रता में होने वाले परिवर्तन की विवेचना कीजिए।

हल माना कि प्रथम पोलेराइड $\mathrm{P} _{1}$ से गुज़रने के बाद ध्रुवित प्रकाश की तीव्रता $I _{a}$ है। तब दूसरे पोलेराइड $\mathrm{P} _{2}$ से गुज़रने के बाद प्रकाश की तीव्रता होगी,

$I=I _{0} \cos ^{2} \theta$,

जहाँ कोण $\theta, \mathrm{P} _{1}$ एवं $\mathrm{P} _{2}$ की पारित-अक्षों के बीच बना कोण है। क्योंकि $\mathrm{P} _{1}$ एवं $\mathrm{P} _{3}$ क्रॉसित हैं उनके पारित-अक्षों के बीच कोण $(\pi / 2-\theta)$ होगा। अतः $\mathrm{P} _{3}$ से निर्गमित होने वाले प्रकाश की तीव्रता होगी,

$$ \begin{aligned} I & =I _{0} \cos ^{2} \theta \cos ^{2}\left(\frac{\pi}{2}-\theta\right) \\ & =I _{0} \cos ^{2} \theta \sin ^{2} \theta=\left(I _{0} / 4\right) \sin ^{2} 2 \theta \end{aligned} $$

अतः, कोण $\theta=\pi / 4$ के लिए पारगमित प्रकाश की तीव्रता अधिकतम होगी।

सारांश

1. हाइगेंस का सिद्धांत बतलाता है कि किसी तरंगाग्र का प्रत्येक बिंदु द्वितीयक तरंगों का स्रोत होता है, जो जुड़कर कुछ समय पश्चात एक तरंगाग्र बनाते हैं।

2. हाइगेंस की रचना हमें यह बतलाती है कि नया तरंगाग्र द्वितीयक तरंगों का अग्र आवरण है। जब प्रकाश की चाल दिशा पर निर्भर नहीं करती हो तो द्वितीयक तरंगें गोलीय होती हैं। किरणें तब दोनों तरंगाग्रों के लंबवत होती हैं तथा यात्रा काल किसी भी किरण की दिशा में समान होता है। इस सिद्धांत से परावर्तन तथा अपवर्तन के सुज्ञात नियम प्राप्त होते हैं।

3. जब दो अथवा दो से अधिक प्रकाश स्रोत एक ही बिंदु को प्रदीप्त करते हैं तो तरंगों के अध्यारोपण का सिद्धांत लागू होता है। जब हम एक बिंदु पर इन स्रोतों द्वारा प्रकाश की तीव्रता का विचार करते हैं तो विशिष्ट तीव्रताओं के योग के अतिरिक्त एक व्यतिकरण पद प्राप्त होता है। परंतु यह पद तभी महत्वपूर्ण होता है जबकि इसका औसत शून्य नहीं है, जो केवल तभी होता है जबकि स्रोतों की आवृत्तियाँ समान हों तथा इनके बीच एक स्थिर कलांतर हो।

4. पृथकता $d$ वाली टॉमस यंग की द्विझिरी से समान अंतराल की व्यतिकरण फ्रिंजें प्राप्त होती हैं।

5. चौड़ाई $a$ की एक एकल झिरी एक विवर्तन पैटर्न देती है जिसमें एक केंद्रीय उच्चिष्ठ होता है। तीव्रता $\pm \lambda / a, \pm 2 \lambda / a$, आदि कोणों पर शून्य होती है तथा इनके बीच में उत्तरोत्तर क्षीण होते द्वितीयक उच्चिष्ठ होते हैं।

6. प्राकृतिक प्रकाश, जैसे सूर्य से प्राप्त प्रकाश, अध्रुवित होता है। इसका अर्थ यह हुआ कि अनुप्रस्थ तल में विद्युत सदिश मापन के समय, द्रुततः तथा यादृच्छिकतः सभी संभव दिशाओं में हो सकता है। पोलेरॉइड केवल एक घटक (एक विशिष्ट अक्ष के समांतर) को पारगमित करता है। परिणामी प्रकाश को रेखीय ध्रुवित अथवा समतल ध्रुवित कहते हैं। जब इस प्रकार के प्रकाश को एक दूसरे पोलेरॉइड में से देखते हैं, जिसका अक्ष $2 \pi$ से घूमता है तो तीव्रता के दो उच्चिष्ठ तथा निम्निष्ठ दिखलाई देते हैं।

विचारणीय विषय

1. एक बिंदु स्रोत से तरंगें सभी दिशाओं में प्रसरित होती हैं, जबकि प्रकाश को संकीर्ण किरणों के रूप में चलते हुए देखा गया था। तरंग सिद्धांत से प्रकाश के व्यवहार के सभी पक्षों के विश्लेषण को समझने के लिए हाइगेंस, यंग तथा फ्रेनेल के प्रयोगों तथा अंतर्दृष्टि की आवश्यकता हुई।

2. तरंगों का महत्वपूर्ण तथा नया स्वरूप भिन्न स्रोतों के आयामों का व्यतिकरण है, जो यंग के प्रयोग में दर्शाए अनुसार संपोषी तथा विनाशी दोनों हो सकता है।

3. विवर्तन परिघटना से किरण प्रकाशिकी की परिसीमा परिभाषित होती है। दो बहुत निकटस्थ वस्तुओं के विभेदन के लिए सूक्ष्मदर्शियों तथा दूरदर्शियों की सक्षमता की सीमाएँ भी प्रकाश की तरंगदैर्घ्य द्वारा निर्धारित होती हैं।

4. अधिकांश व्यतिकरण तथा विवर्तन प्रभाव अनुदैर्घ्य तरंगों, जैसे वायु में ध्वनि के लिए भी होते हैं। परंतु ध्रुवण परिघटना केवल अनुप्रस्थ तरंगों, जैसे प्रकाश तरंगों की, विशिष्टता है।

अभ्यास

10.1 $589 \mathrm{~nm}$ तरंगदैर्घ्य का एकवर्णीय प्रकाश वायु से जल की सतह पर आपतित होता है।

(a) परावर्तित तथा (b) अपवर्तित प्रकाश की तरंगदैर्घ्य, आवृत्ति तथा चाल क्या होगी? जल का आवर्तनांक 1.33 है।

Show Answer # Content Missing

10.2 निम्नलिखित दशाओं में प्रत्येक तरंगाग्र की आकृति क्या है?

(a) किसी बिंदु स्रोत से अपसरित प्रकाश।

(b) उत्तल लेंस से निर्गमित प्रकाश, जिसके फ़ोकस बिंदु पर कोई बिंदु स्रोत रखा है।

(c) किसी दूरस्थ तारे से आने वाले प्रकाश तरंगाग्र का पृथ्वी द्वारा अवरोधित (intercepted) भाग।

Show Answer # Content Missing

10.3 (a) काँच का अपवर्तनांक 1.5 है। काँच में प्रकाश की चाल क्या होगी? (निर्वात में प्रकाश की चाल $3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ है।)

(b) क्या काँच में प्रकाश की चाल, प्रकाश के रंग पर निर्भर करती है? यदि हाँ, तो लाल तथा बैंगनी में से कौन-सा रंग काँच के प्रिज्म में धीमा चलता है?

Show Answer # Content Missing

10.4 यंग के द्विझिरी प्रयोग में झिरियों के बीच की दूरी $0.28 \mathrm{~mm}$ है तथा परदा $1.4 \mathrm{~m}$ की दूरी पर रखा गया है। केंद्रीय दीप्त फ्रिंज एवं चतुर्थ दीप्त फ्रिंज के बीच की दूरी $1.2 \mathrm{~cm}$ मापी गई है। प्रयोग में उपयोग किए गए प्रकाश की तरंगदैर्घ्य ज्ञात कीजिए।

Show Answer # Content Missing

10.5 यंग के द्विझिरी प्रयोग में, $\lambda$ तरंगदैर्घ्य का एकवर्णीय प्रकाश उपयोग करने पर, परदे के एक बिंदु पर जहाँ पथांतर $\lambda$ है, प्रकाश की तीव्रता $K$ इकाई है। उस बिंदु पर प्रकाश की तीव्रता कितनी होगी जहाँ पथांतर $\lambda / 3$ है?

Show Answer # Content Missing

10.6 यंग के द्विझिरी प्रयोग में व्यतिकरण फ्रिंजों को प्राप्त करने के लिए, $650 \mathrm{~nm}$ तथा $520 \mathrm{~nm}$ तरंगदैर्घ्यों के प्रकाश-पुंज का उपयोग किया गया।

(a) $650 \mathrm{~nm}$ तरंगदैर्घ्य के लिए परदे पर तीसरे दीप्त फ्रिंज की केंद्रीय उच्चिष्ठ से दूरी ज्ञात कीजिए।

(b) केंद्रीय उच्चिष्ट से उस न्यूनतम दूरी को ज्ञात कीजिए जहाँ दोनों तरंगदैर्घ्यों के कारण दीप्त फ्रिंज संपाती (coincide) होते हैं।

Show Answer # Content Missing


Table of Contents