Chapter-01 Relations and Functions

There is no permanent place in the world for ugly mathematics … . It may be very hard to define mathematical beauty but that is just as true of beauty of any kind, we may not know quite what we mean by a beautiful poem, but that does not prevent us from recognising one when we read it. - G. H. HARDY

1.1 Introduction

Recall that the notion of relations and functions, domain, co-domain and range have been introduced in Class XI along with different types of specific real valued functions and their graphs. The concept of the term ‘relation’ in mathematics has been drawn from the meaning of relation in English language, according to which two objects or quantities are related if there is a recognisable connection or link between the two objects or quantities. Let A be the set of students of Class XII of a school and B be the set of students of Class XI of the same school. Then some of the examples of relations from $A$ to $B$ are

(i) $\{(a, b) \in A \times B: \text{a is brother of b}\}$

(ii) $\{(a, b) \in A \times B: \text{a is sister of b}\}$,

Lejeune Dirichlet (1805-1859)

(iii) $\{(a, b) \in A \times B : \text{age of a is greater than age of b}\}$,

(iv) $\{(a, b) \in A \times B$ : total marks obtained by a in the final examination is less than the total marks obtained by b in the final examination $\}$

(v) $\{(a, b) \in A \times B: a$ lives in the same locality as $b\}$. However, abstracting from this, we define mathematically a relation $R$ from $A$ to $B$ as an arbitrary subset of $A \times B$.

If $(a, b) \in R$, we say that $a$ is related to $b$ under the relation $R$ and we write as $a R b$. In general, $(a, b) \in R$, we do not bother whether there is a recognisable connection or link between $a$ and $b$. As seen in Class XI, functions are special kind of relations.

In this chapter, we will study different types of relations and functions, composition of functions, invertible functions and binary operations.

1.2 Types of Relations

In this section, we would like to study different types of relations. We know that a relation in a set $A$ is a subset of $A \times A$. Thus, the empty set $\phi$ and $A \times A$ are two extreme relations. For illustration, consider a relation $R$ in the set $A=\{1,2,3,4\}$ given by $R=\{(a, b): a-b=10\}$. This is the empty set, as no pair $(a, b)$ satisfies the condition $a-b=10$. Similarly, $R^{\prime}=\{(a, b):|a-b| \geq 0\}$ is the whole set $A \times A$, as all pairs $(a, b)$ in A $\times$ A satisfy $|a-b| \geq 0$. These two extreme examples lead us to the following definitions.

Definition 1 A relation $R$ in a set $A$ is called empty relation, if no element of $A$ is related to any element of $A$, i.e., $R=\phi \subset A \times A$.

Definition 2 A relation $R$ in a set $A$ is called universal relation, if each element of $A$ is related to every element of $A$, i.e., $R=A \times A$.

Both the empty relation and the universal relation are some times called trivial relations.

Example 1 Let $A$ be the set of all students of a boys school. Show that the relation $R$ in $A$ given by $R=\{(a, b): a$ is sister of $b\}$ is the empty relation and $R^{\prime}=\{(a, b):$ the difference between heights of $a$ and $b$ is less than 3 meters $\}$ is the universal relation.

Solution Since the school is boys school, no student of the school can be sister of any student of the school. Hence, $R=\phi$, showing that $R$ is the empty relation. It is also obvious that the difference between heights of any two students of the school has to be less than 3 meters. This shows that $R^{\prime}=A \times A$ is the universal relation.

Remark In Class XI, we have seen two ways of representing a relation, namely raster method and set builder method. However, a relation $R$ in the set $\{1,2,3,4\}$ defined by $R$ $=\{(a, b): b=a+1\}$ is also expressed as $a R b$ if and only if $b=a+1$ by many authors. We may also use this notation, as and when convenient.

If $(a, b) \in R$, we say that $a$ is related to $b$ and we denote it as $a R b$.

One of the most important relation, which plays a significant role in Mathematics, is an equivalence relation. To study equivalence relation, we first consider three types of relations, namely reflexive, symmetric and transitive.

Definition 3 A relation $R$ in a set $A$ is called

(i) reflexive, if $(a, a) \in R$, for every $a \in A$,

(ii) symmetric, if $(a_{1}, a_{2}) \in R$ implies that $(a_{2}, a_{1}) \in R$, for all $a_{1}, a_{2} \in A$.

(iii) transitive, if $(a_{1}, a_{2}) \in R$ and $(a_{2}, a_{3}) \in R$ implies that $(a_{1}, a_{3}) \in R$, for all $a_{1}, a_{2}$, $a_{3} \in A$.

Definition 4 A relation $R$ in a set $A$ is said to be an equivalence relation if $R$ is reflexive, symmetric and transitive.

Example 2 Let $T$ be the set of all triangles in a plane with $R$ a relation in $T$ given by $R=\{(T_{1}, T_{2}): T_{1}.$ is congruent to $.T_{2}\}$. Show that $R$ is an equivalence relation.

Solution $R$ is reflexive, since every triangle is congruent to itself. Further, $(T_{1}, T_{2}) \in R \Rightarrow T_{1}$ is congruent to $T_{2} \Rightarrow T_{2}$ is congruent to $T_{1} \Rightarrow(T_{2}, T_{1}) \in R$. Hence, $R$ is symmetric. Moreover, $(T_{1}, T_{2}),(T_{2}, T_{3}) \in R \Rightarrow T_{1}$ is congruent to $T_{2}$ and $T_{2}$ is congruent to $T_{3} \Rightarrow T_{1}$ is congruent to $T_{3} \Rightarrow(T_{1}, T_{3}) \in R$. Therefore, $R$ is an equivalence relation.

Example 3 $ Let L$ be the set of all lines in a plane and $R$ be the relation in $L$ defined as $R=\{(L_{1}, L_{2}): L_{1}.$ is perpendicular to $.L_{2}\}$. Show that $R$ is symmetric but neither reflexive nor transitive.

Solution $R$ is not reflexive, as a line $L_{1}$ can not be perpendicular to itself, i.e., $(L_{1}, L_{1})$ $\notin R$. R is symmetric as $(L_{1}, L_{2}) \in R$

$$ \begin{array}{ll} \Rightarrow & L_{1} \text { is perpendicular to } L_{2} \\ \Rightarrow & L_{2} \text { is perpendicular to } L_{1} \\ \Rightarrow & (L_{2}, L_{1}) \in R . \end{array} $$

$R$ is not transitive. Indeed, if $L_{1}$ is perpendicular to $L_{2}$ and $L_{2}$ is perpendicular to $L_{3}$, then $L_{1}$ can never be perpendicular to $L_{3}$. In fact, $L_{1}$ is parallel to $L_{3}$, i.e., $(L_{1}, L_{2}) \in R,(L_{2}, L_{3}) \in R$ but $(L_{1}, L_{3}) \notin R$.

Fig 1.1

Example 4 Show that the relation $R$ in the set $\{1,2,3\}$ given by R=$\{(1,1),(2,2), (3,3),(1,2),(2,3)\}$ is reflexive but neither symmetric nor transitive.

Solution $R$ is reflexive, since $(1,1),(2,2)$ and $(3,3)$ lie in $R$. Also, $R$ is not symmetric, as $(1,2) \in R$ but $(2,1) \notin R$. Similarly, $R$ is not transitive, as $(1,2) \in R$ and $(2,3) \in R$ but $(1,3) \notin R$.

Example 5 Show that the relation $R$ in the set $\mathbf{Z}$ of integers given by $R=\{(a, b): 2 \text { divides } a-b\}$ is an equivalence relation.

Solution $R$ is reflexive, as 2 divides $(a-a)$ for all $a \in \mathbf{Z}$. Further, if $(a, b) \in R$, then 2 divides $a-b$. Therefore, 2 divides $b-a$. Hence, $(b, a) \in R$, which shows that $R$ is symmetric. Similarly, if $(a, b) \in R$ and $(b, c) \in R$, then $a-b$ and $b-c$ are divisible by 2. Now, $a-c=(a-b)+(b-c)$ is even (Why?). So, $(a-c)$ is divisible by 2 . This shows that $R$ is transitive. Thus, $R$ is an equivalence relation in $\mathbf{Z}$.

In Example 5, note that all even integers are related to zero, as $(0, \pm 2),(0, \pm 4)$ etc., lie in $R$ and no odd integer is related to 0 , as $(0, \pm 1),(0, \pm 3)$ etc., do not lie in $R$. Similarly, all odd integers are related to one and no even integer is related to one. Therefore, the set $E$ of all even integers and the set $O$ of all odd integers are subsets of $\mathbf{Z}$ satisfying following conditions:

(i) All elements of $E$ are related to each other and all elements of $O$ are related to each other.

(ii) No element of $E$ is related to any element of $O$ and vice-versa.

(iii) $E$ and $O$ are disjoint and $\mathbf{Z}=E \cup O$.

The subset $E$ is called the equivalence class containing zero and is denoted by [0]. Similarly, $O$ is the equivalence class containing 1 and is denoted by [1]. Note that $[0] \neq[1],[0]=[2 r]$ and $[1]=[2 r+1], r \in \mathbf{Z}$. Infact, what we have seen above is true for an arbitrary equivalence relation $R$ in a set $X$. Given an arbitrary equivalence relation $R$ in an arbitrary set $X, R$ divides $X$ into mutually disjoint subsets $A_{i}$ called partitions or subdivisions of $X$ satisfying:

(i) all elements of $A_{i}$ are related to each other, for all $i$.

(ii) no element of $A_{i}$ is related to any element of $A_{j}, i \neq j$.

(iii) $\cup A_{j}=X$ and $A_{i} \cap A_{j}=\phi, i \neq j$.

The subsets $A_{i}$ are called equivalence classes. The interesting part of the situation is that we can go reverse also. For example, consider a subdivision of the set $\mathbf{Z}$ given by three mutually disjoint subsets $A_{1}, A_{2}$ and $A_{3}$ whose union is $\mathbf{Z}$ with

$$ \begin{aligned} & A_{1}=\{x \in \mathbf{Z}: x \text { is a multiple of } 3\}=\{\ldots,-6,-3,0,3,6, \ldots\} \\ & A_{2}=\{x \in \mathbf{Z}: x-1 \text { is a multiple of } 3\}=\{\ldots,-5,-2,1,4,7, \ldots\} \\ & A_{3}=\{x \in \mathbf{Z}: x-2 \text { is a multiple of } 3\}=\{\ldots,-4,-1,2,5,8, \ldots\} \end{aligned} $$

Define a relation $R$ in $\mathbf{Z}$ given by $R=\{(a, b): 3$ divides $a-b\}$. Following the arguments similar to those used in Example 5, we can show that $R$ is an equivalence relation. Also, $A_{1}$ coincides with the set of all integers in $\mathbf{Z}$ which are related to zero, $A_{2}$ coincides with the set of all integers which are related to 1 and $A_{3}$ coincides with the set of all integers in $\mathbf{Z}$ which are related to 2. Thus, $A_{1}=[0], A_{2}=[1]$ and $A_{3}=[2]$. In fact, $A_{1}=[3 r], A_{2}=[3 r+1]$ and $A_{3}=[3 r+2]$, for all $r \in \mathbf{Z}$.

Example 6 Let $R$ be the relation defined in the set $A=\{1,2,3,4,5,6,7\}$ by R=$\{(a, b) :$ both a and b are either odd or even $\}$. Show that $R$ is an equivalence relation. Further, show that all the elements of the subset $\{1,3,5,7\}$ are related to each other and all the elements of the subset $\{2,4,6\}$ are related to each other, but no element of the subset $\{1,3,5,7\}$ is related to any element of the subset $\{2,4,6\}$.

Solution Given any element $a$ in A, both $a$ and $a$ must be either odd or even, so that $(a, a) \in R$. Further, $(a, b) \in R \Rightarrow$ both $a$ and $b$ must be either odd or even $\Rightarrow(b, a) \in R$. Similarly, $(a, b) \in R$ and $(b, c) \in R \Rightarrow$ all elements $a, b, c$, must be either even or odd simultaneously $\Rightarrow(a, c) \in R$. Hence, $R$ is an equivalence relation. Further, all the elements of $\{1,3,5,7\}$ are related to each other, as all the elements of this subset are odd. Similarly, all the elements of the subset $\{2,4,6\}$ are related to each other, as all of them are even. Also, no element of the subset $\{1,3,5,7\}$ can be related to any element of $\{2,4,6\}$, as elements of $\{1,3,5,7\}$ are odd, while elements of $\{2,4,6\}$ are even.

EXERCISE 1.1

1. Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation $R$ in the set $A=\{1,2,3, \ldots, 13,14\}$ defined as

$$ R=\{(x, y): 3 x-y=0\} $$

(ii) Relation $R$ in the set $\mathbf{N}$ of natural numbers defined as $R=\{(x, y): y=x+5 \text { and } x<4\} $

(iii) Relation $R$ in the set $A=\{1,2,3,4,5,6\}$ as $R=\{(x, y): y \text { is divisible by } x\}$

(iv) Relation $R$ in the set $\mathbf{Z}$ of all integers defined as $R=\{(x, y): x-y \text { is an integer }\}$

(v) Relation $R$ in the set $A$ of human beings in a town at a particular time given by

(a) $R=\{(x, y): x \text { and } y \text { work at the same place } \}$

(b) $R=\{(x, y): x \text{ and } y \text{ live in the same locality } \}$

(c) $R=\{(x, y): x$ is exactly $7 cm$ taller than $y\}$

(d) $R=\{(x, y): x$ is wife of $y\}$

(e) $R=\{(x, y): x$ is father of $y\}$

Show Answer

Solution

(i) $A=\{1,2,3 \ldots 13,14\}$

$R=\{(x, y): 3 x-y=0\}$

$\therefore R=\{(1,3),(2,6),(3,9),(4,12)\}$

$R$ is not reflexive since $(1,1),(2,2) \ldots(14,14) \notin R$.

Also, $R$ is not symmetric as $(1,3) \in R$, but $(3,1) \notin R$. $[3(3)-1 \neq 0$ ]

Also, $R$ is not transitive as $(1,3),(3,9) \in R$, but $(1,9) \notin R$.

$[3(1)-9 \neq 0]$

Hence, $R$ is neither reflexive, nor symmetric, nor transitive.

(ii) $R=\{(x, y): y=x+5 \quad \text{and} \quad x<4\}=\{(1,6),(2,7),(3,8)\}$

It is seen that $(1,1) \notin R$.

$\therefore R$ is not reflexive.

$(1,6) \in R$

But, $(1,6) \notin R$.

$\therefore R$ is not symmetric.

Now, since there is no pair in $R$ such that $(x, y)$ and $(y, z) \in R$ so, we need not look for the orderd pair ( $x, z$ ) in $R$.

$\therefore R$ is transitive

Hence, $R$ is neither reflexive, nor symmetric but it is transitive.

(iii) $A=\{1,2,3,4,5,6\}$

$R=\{(x, y): y \quad \text{is divisible by} \quad x\}$

We know that any number $(x)$ is divisible by itself.

$\Rightarrow(x, x) \in R$

$\therefore R$ is reflexive.

Now,

$(2,4) \in R$ [as 4 is divisible by 2 ]

But,

$(4,2) \notin R$. [as 2 is not divisible by 4 ]

$\therefore R$ is not symmetric.

Let $(x, y),(y, z) \in R$. Then, $y$ is divisible by $x$ and $z$ is divisible by $y$.

$\therefore z$ is divisible by $x$.

$\Rightarrow(x, z) \in R$

$\therefore R$ is transitive.

Hence, $R$ is reflexive and transitive but not symmetric.

(iv) $R=\{(x, y): x-y \quad \text{is an integer} \}$

Now, for every $x \in \mathbf{Z},(x, x) \in R$ as $x-x=0$ is an integer.

$\therefore R$ is reflexive.

Now, for every $x, y \in \mathbf{Z}$ if $(x, y) \in \mathbf{R}$, then $x-y$ is an integer.

$\Rightarrow-(x-y)$ is also an integer.

$\Rightarrow(y-x)$ is an integer.

$\therefore(y, x) \in R$

$\therefore R$ is symmetric.

Now,

Let $(x, y)$ and $(y, z) \in R$, where $x, y, z \in \mathbf{Z}$.

$\Rightarrow(x-y)$ and $(y-z)$ are integers.

$\Rightarrow x-z=(x-y)+(y-z)$ is an integer. $\therefore(x, z) \in R$

$\therefore R$ is transitive.

Hence, $R$ is reflexive, symmetric, and transitive.

(v) (a) $R=\{(x, y): x \quad \text{and y work at the same place}\}$

$\Rightarrow(x, x) \in R$

$\therefore R$ is reflexive.

If $(x, y) \in R$, then $x$ and $y$ work at the same place.

$\Rightarrow y$ and $x$ work at the same place.

$\Rightarrow(y, x) \in R$.

$\therefore R$ is symmetric.

Now, let $(x, y),(y, z) \in R$

$\Rightarrow x$ and $y$ work at the same place and $y$ and $z$ work at the same place.

$\Rightarrow x$ and $z$ work at the same place.

$\Rightarrow(x, z) \in R$

$\therefore R$ is transitive.

Hence, $R$ is reflexive, symmetric, and transitive.

(b) $R=\{(x, y): x \quad \text{and y live in the same locality}\}$

Clearly $(x, x) \in R$ as $x$ and $x$ is the same human being.

$\therefore R$ is reflexive.

If $(x, y) \in R$, then $x$ and $y$ live in the same locality.

$\Rightarrow y$ and $x$ live in the same locality.

$\Rightarrow(y, x) \in R$

$\therefore R$ is symmetric.

Now, let $(x, y) \in R$ and $(y, z) \in R$.

$\Rightarrow x$ and $y$ live in the same locality and $y$ and $z$ live in the same locality.

$\Rightarrow x$ and $z$ live in the same locality.

$\Rightarrow(x, z) \in R$

$\therefore R$ is transitive.

Hence, $R$ is reflexive, symmetric, and transitive.

(c) $R=\{(x, y): x$ is exactly $7 cm$ taller than $y\}$

Now,

$(x, x) \notin R$

Since human being $x$ cannot be taller than himself. $\therefore R$ is not reflexive.

Now, let $(x, y) \in R$.

$\Rightarrow x$ is exactly $7 cm$ taller than $y$.

Then, $y$ is not taller than $x$.

$\therefore(y, x) \notin R$

Indeed if $x$ is exactly $7 cm$ taller than $y$, then $y$ is exactly $7 cm$ shorter than $x$.

$\therefore R$ is not symmetric.

Now,

Let $(x, y),(y, z) \in R$.

$\Rightarrow x$ is exactly $7 cm$ taller than $y$ and $y$ is exactly $7 cm$ taller than $z$.

$\Rightarrow x$ is exactly $14 cm$ taller than $z$.

$\therefore(x, z) \notin R$

$\therefore R$ is not transitive.

Hence, $R$ is neither reflexive, nor symmetric, nor transitive.

(d) $R=\{(x, y): x$ is the wife of $y\}$

Now,

$(x, x) \notin R$

Since $x$ cannot be the wife of herself.

$\therefore R$ is not reflexive.

Now, let $(x, y) \in R$

$\Rightarrow x$ is the wife of $y$.

Clearly $y$ is not the wife of $x$.

$\therefore(y, x) \notin R$

Indeed if $x$ is the wife of $y$, then $y$ is the husband of $x$.

$\therefore R$ is not symmetric.

Here, $R$ is transitive because if (x, y) is in the relation and there is a case where (y, z)is not in a relation, then, we say such type of relation will be transitive relation(or pseudo-transitive).

(e) $R=\{(x, y): x$ is the father of $y\}$

$(x, x) \notin R$

As $x$ cannot be the father of himself.

$\therefore R$ is not reflexive.

Now, let $(x, y) \in R$.

$\Rightarrow x$ is the father of $y$.

$\Rightarrow y$ cannot be the father of $y$.

Indeed, $y$ is the son or the daughter of $y$.

$\therefore(y, x) \notin R$

$\therefore R$ is not symmetric.

Now, let $(x, y) \in R$ and $(y, z) \in R$.

$\Rightarrow x$ is the father of $y$ and $y$ is the father of $z$.

$\Rightarrow x$ is not the father of $z$.

Indeed $x$ is the grandfather of $z$.

$\therefore(x, z) \notin R$

$\therefore R$ is not transitive.

Hence, $R$ is neither reflexive, nor symmetric, nor transitive.

2. Show that the relation $R$ in the set $\mathbf{R}$ of real numbers, defined as $R=\{(a, b): a \leq b^{2}\}$ is neither reflexive nor symmetric nor transitive.

Show Answer

Solution

$R=\{(a, b): a \leq b^{2}\}$

It can be observed that $(\frac{1}{2}, \frac{1}{2}) \notin \mathbf{R}$, since $\frac{1}{2}>(\frac{1}{2})^{2}=\frac{1}{4}$.

$\therefore R$ is not reflexive.

Now, $(1,4) \in R$ as $1<4^{2}$

But, 4 is not less than $1^{2}$.

$\therefore(4,1) \notin R$

$\therefore R$ is not symmetric.

Now,

$(3,2),(2,1.5) \in R$

(as $3<2^{2}=4$ and $2<(1.5)^{2}=2.25$ )

But, $3>(1.5)^{2}=2.25$ $\therefore(3,1.5) \notin R$

$\therefore R$ is not transitive.

Hence, $R$ is neither reflexive, nor symmetric, nor transitive.

3. Check whether the relation $R$ defined in the set $\{1,2,3,4,5,6\}$ as $R=\{(a, b): b=a+1\}$ is reflexive, symmetric or transitive.

Show Answer

Solution

Let $A=\{1,2,3,4,5,6\}$.

A relation $R$ is defined on set $A$ as:

$R=\{(a, b): b=a+1\}$

$\therefore R=\{(1,2),(2,3),(3,4),(4,5),(5,6)\}$

We can find $(a, a) \notin R$, where $a \in A$.

For instance,

$(1,1),(2,2),(3,3),(4,4),(5,5),(6,6) \notin R$

$\therefore R$ is not reflexive.

It can be observed that $(1,2) \in R$, but $(2,1) \notin R$.

$\therefore R$ is not symmetric.

Now, $(1,2),(2,3) \in \mathbf{R}$

But,

$(1,3) \notin R$

$\therefore R$ is not transitive

Hence, $R$ is neither reflexive, nor symmetric, nor transitive.

4. Show that the relation $R$ in $\mathbf{R}$ defined as $R=\{(a, b): a \leq b\}$, is reflexive and transitive but not symmetric.

Show Answer

Solution

$R=\{(a, b) ; a \leq b\}$

Clearly $(a, a) \in R$ as $a=a$.

$\therefore R$ is reflexive.

Now,

$(2,4) \in R($ as $2<4)$

But, $(4,2) \notin R$ as 4 is greater than 2 .

$\therefore R$ is not symmetric.

Now, let $(a, b),(b, c) \in R$.

Then,

$a \leq b$ and $b \leq c$

$\Rightarrow a \leq c$

$\Rightarrow(a, c) \in R$

$\therefore R$ is transitive.

Hence, $R$ is reflexive and transitive but not symmetric.

5. Check whether the relation $R$ in $\mathbf{R}$ defined by $R=\{(a, b): a \leq b^{3}\}$ is reflexive, symmetric or transitive.

Show Answer

Solution

$R=\{(a, b): a \leq b^{3}\}$

It is observed that $(\frac{1}{2}, \frac{1}{2}) \notin R$ as $\frac{1}{2}>(\frac{1}{2})^{3}=\frac{1}{8}$.

$\therefore R$ is not reflexive.

Now,

$(1,2) \in R(.$ as $.1<2^{3}=8)$

But,

$(2,1) \notin R(.$ as $.2^{3}>1)$

$\therefore R$ is not symmetric.

We have $(3, \frac{3}{2}),(\frac{3}{2}, \frac{6}{5}) \in R$ as $3<(\frac{3}{2})^{3}$ and $\frac{3}{2}<(\frac{6}{5})^{3}$.

But $(3, \frac{6}{5}) \notin R$ as $3>(\frac{6}{5})^{3}$.

$\therefore R$ is not transitive.

Hence, $R$ is neither reflexive, nor symmetric, nor transitive.

6. Show that the relation $R$ in the set $\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ is symmetric but neither reflexive nor transitive.

Show Answer

Solution

Let $A=\{1,2,3\}$.

A relation $R$ on $A$ is defined as $R=\{(1,2),(2,1)\}$.

It is seen that $(1,1),(2,2),(3,3) \notin R$.

$\therefore R$ is not reflexive.

Now, as $(1,2) \in R$ and $(2,1) \in R$, then $R$ is symmetric.

Now, $(1,2)$ and $(2,1) \in R$

However,

$(1,1) \notin R$

$\therefore R$ is not transitive.

Hence, $R$ is symmetric but neither reflexive nor transitive.

7. Show that the relation $R$ in the set $A$ of all the books in a library of a college, given by $R=\{(x, y): x \text{ and } y \text{ have same number of pages} \}$ is an equivalence relation.

Show Answer

Solution

Set $A$ is the set of all books in the library of a college.

$R=\{x, y): x$ and $y$ have the same number of pages $\}$

Now, $R$ is reflexive since $(x, x) \in R$ as $x$ and $x$ has the same number of pages.

Let $(x, y) \in R \Rightarrow x$ and $y$ have the same number of pages.

$\Rightarrow y$ and $x$ have the same number of pages.

$\Rightarrow(y, x) \in R$

$\therefore R$ is symmetric.

Now, let $(x, y) \in R$ and $(y, z) \in R$.

$\Rightarrow x$ and $y$ and have the same number of pages and $y$ and $z$ have the same number of pages.

$\Rightarrow x$ and $z$ have the same number of pages.

$\Rightarrow(x, z) \in R$

$\therefore R$ is transitive.

Hence, $R$ is an equivalence relation.

8. Show that the relation $R$ in the set $A=\{1,2,3,4,5\}$ given by $R=\{(a, b):|a-b|$ is even $\}$, is an equivalence relation. Show that all the elements of $\{1,3,5\}$ are related to each other and all the elements of $\{2,4\}$ are related to each other. But no element of $\{1,3,5\}$ is related to any element of $\{2,4\}$.

Show Answer

Solution

$A=\{1,2,3,4,5\}$

$R=\{(a, b):|a-b|$ is even $\}$

It is clear that for any element $a \in A$, we have $|a-a|=0$ (which is even).

$\therefore R$ is reflexive.

Let $(a, b) \in R$.

$\Rightarrow|a-b|$ is even.

$\Rightarrow|-(a-b)|=|b-a|$ is also even.

$\Rightarrow(b, a) \in R$

$\therefore R$ is symmetric.

Now, let $(a, b) \in R$ and $(b, c) \in R$.

$\Rightarrow|a-b|$ is even and $|b-c|$ is even.

$\Rightarrow(a-b)$ is even and $(b-c)$ is even.

$\Rightarrow(a-c)=(a-b)+(b-c)$ is even. [Sum of two even integers is even]

$\Rightarrow|a-c|$ is even.

$\Rightarrow(a, c) \in R$

$\therefore R$ is transitive.

Hence, $R$ is an equivalence relation.

Now, all elements of the set $\{1,2,3\}$ are related to each other as all the elements of this subset are odd. Thus, the modulus of the difference between any two elements will be even.

Similarly, all elements of the set $\{2,4\}$ are related to each other as all the elements of this subset are even.

Also, no element of the subset $\{1,3,5\}$ can be related to any element of $\{2,4\}$ as all elements of $\{1,3,5\}$ are odd and all elements of $\{2,4\}$ are even. Thus, the modulus of the difference between the two elements (from each of these two subsets) will not be even.

9. Show that each of the relation $R$ in the set $A=\{x \in \mathbf{Z}: 0 \leq x \leq 12\}$, given by

(i) $R=\{(a, b):|a-b|$ $\text{is a multiple of 4} \}$

(ii) $R=\{(a, b): a=b \}$

is an equivalence relation. Find the set of all elements related to 1 in each case.

Show Answer

Solution

$ A=\{x \in \mathbf{Z}: 0 \leq x \leq 12\}=\{0,1,2,3,4,5,6,7,8,9,10,11,12\} $

(i) $R=\{(a, b):|a-b|$ $\text{is a multiple of 4} \}$

For any element $a \in A$, we have $(a, a) \in R$ as $|a-a|=0$ is a multiple of 4 .

$\therefore R$ is reflexive.

Now, let $(a, b) \in R \Rightarrow|a-b|$ is a multiple of 4 .

$\Rightarrow|-(a-b)|=|b-a|$ is a multiple of 4 .

$\Rightarrow(b, a) \in R$

$\therefore R$ is symmetric.

Now, let $(a, b),(b, c) \in R$.

$\Rightarrow|a-b|$ is a multiple of 4 and $|b-c|$ is a multiple of 4 .

$\Rightarrow(a-b)$ is a multiple of 4 and $(b-c)$ is a multiple of 4 .

$\Rightarrow(a-c)=(a-b)+(b-c)$ is a multiple of 4 .

$\Rightarrow|a-c|$ is a multiple of 4 .

$\Rightarrow(a, c) \in R$

$\therefore R$ is transitive.

Hence, $R$ is an equivalence relation.

The set of elements related to 1 is $\{1,5,9\}$ since $|1-1|=0$ is a multiple of 4 ,

$|5-1|=4$ is a multiple of 4 , and

$|9-1|=8$ is a multiple of 4 .

(ii) $R=\{(a, b): a=b\}$

For any element $a \in A$, we have $(a, a) \in R$, since $a=a$.

$\therefore R$ is reflexive.

Now, let $(a, b) \in R$.

$\Rightarrow a=b$

$\Rightarrow b=a$

$\Rightarrow(b, a) \in R$

$\therefore R$ is symmetric.

Now, let $(a, b) \in R$ and $(b, c) \in R$.

$\Rightarrow a=b$ and $b=c$

$\Rightarrow a=c$

$\Rightarrow(a, c) \in R$

$\therefore R$ is transitive.

Hence, $R$ is an equivalence relation.

The elements in $R$ that are related to 1 will be those elements from set $A$ which are equal to 1.

Hence, the set of elements related to 1 is $\{1\}$.

10. Give an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

(iii) Reflexive and symmetric but not transitive.

(iv) Reflexive and transitive but not symmetric.

(v) Symmetric and transitive but not reflexive.

Show Answer

Solution

(i) Let $A=\{5,6,7\}$.

Define a relation $R$ on $A$ as $R=\{(5,6),(6,5)\}$.

Relation $R$ is not reflexive as $(5,5),(6,6),(7,7) \notin R$.

Now, as $(5,6) \in R$ and also $(6,5) \in R, R$ is symmetric.

$\Rightarrow(5,6),(6,5) \in R$, but $(5,5) \notin R$

$\therefore R$ is not transitive.

Hence, relation $R$ is symmetric but not reflexive or transitive.

(ii)Consider a relation $\mathbf{R}$ in $\mathbf{R}$ defined as:

$R=\{(a, b): a<b\}$

For any $a \in R$, we have $(a, a) \notin R$ since $a$ cannot be strictly less than $a$ itself. In fact, $a=$ a.

$\therefore R$ is not reflexive.

Now,

$(1,2) \in R($ as $1<2$ )

But, 2 is not less than 1 .

$\therefore(2,1) \notin R$

$\therefore R$ is not symmetric.

Now, let $(a, b),(b, c) \in R$.

$\Rightarrow a<b$ and $b<c$

$\Rightarrow a<c$

$\Rightarrow(a, c) \in R$

$\therefore R$ is transitive.

Hence, relation $R$ is transitive but not reflexive and symmetric.

(iii)Let $A=\{4,6,8\}$.

Define a relation $R$ on $A$ as:

$A=\{(4,4),(6,6),(8,8),(4,6),(6,4),(6,8),(8,6)\}$

Relation $R$ is reflexive since for every $a \in A,(a, a) \in R$ i.e., $(4,4),(6,6),(8,8) \in R$.

Relation $R$ is symmetric since $(a, b) \in R \Rightarrow(b, a) \in R$ for all $a, b \in R$.

Relation $R$ is not transitive since $(4,6),(6,8) \in R$, but $(4,8) \notin R$.

Hence, relation $R$ is reflexive and symmetric but not transitive.

(iv) Define a relation $R$ in $\mathbf{R}$ as:

$.R=\{a, b): a^{3} \geq b^{3}\}$

Clearly $(a, a) \in R$ as $a^{3}=a^{3}$.

$\therefore R$ is reflexive.

Now,

$(2,1) \in R(.$ as $.2^{3} \geq 1^{3})$

But,

$(1,2) \notin R(.$ as $.1^{3}<2^{3})$

$\therefore R$ is not symmetric.

Now,

Let $(a, b),(b, c) \in R$.

$\Rightarrow a^{3} \geq b^{3}$ and $b^{3} \geq c^{3}$

$\Rightarrow a^{3} \geq c^{3}$

$\Rightarrow(a, c) \in R$

$\therefore R$ is transitive.

Hence, relation $R$ is reflexive and transitive but not symmetric.

(v) Let $A=\{-5,-6\}$.

Define a relation $R$ on $A$ as:

$R=\{(-5,-6),(-6,-5),(-5,-5)\}$

Relation $R$ is not reflexive as $(-6,-6) \notin R$.

Relation $R$ is symmetric as $(-5,-6) \in R$ and $(-6,-5) \in R$.

It is seen that $(-5,-6),(-6,-5) \in R$. Also, $(-5,-5) \in R$.

$\therefore$ The relation $R$ is transitive.

Hence, relation $R$ is symmetric and transitive but not reflexive.

11. Show that the relation $R$ in the set $A$ of points in a plane given by $R = \{(P, Q)$ : distance of the point $P$ from the origin is same as the distance of the point $Q$ from the origin $\}$, is an equivalence relation. Further, show that the set of all points related to a point $P \neq(0,0)$ is the circle passing through $P$ with origin as centre.

Show Answer

Solution

$R=\{(P, Q):$ distance of point $P$ from the origin is the same as the distance of point $Q$ from the origin \}

Clearly, $(P, P) \in R$ since the distance of point $P$ from the origin is always the same as the distance of the same point $P$ from the origin.

$\therefore R$ is reflexive.

Now,

Let $(P, Q) \in R$. $\Rightarrow$ The distance of point $P$ from the origin is the same as the distance of point $Q$ from the origin.

$\Rightarrow$ The distance of point $Q$ from the origin is the same as the distance of point $P$ from the origin.

$\Rightarrow(Q, P) \in R$

$\therefore R$ is symmetric.

Now,

Let $(P, Q),(Q, S) \in R$.

$\Rightarrow$ The distance of points $P$ and $Q$ from the origin is the same and also, the distance of points $Q$ and $S$ from the origin is the same.

$\Rightarrow$ The distance of points $P$ and $S$ from the origin is the same.

$\Rightarrow(P, S) \in R$

$\therefore R$ is transitive.

Therefore, $R$ is an equivalence relation.

The set of all points related to $P \neq(0,0)$ will be those points whose distance from the origin is the same as the distance of point $P$ from the origin.

In other words, if $O(0,0)$ is the origin and $OP=k$, then the set of all points related to $P$ is at a distance of $k$ from the origin.

Hence, this set of points forms a circle with the centre as the origin and this circle passes through point $P$.

12. Show that the relation $R$ defined in the set $A$ of all triangles as $R=\{(T_{1}, T_{2}): T_{1}.$ is similar to $T_{2}\}$, is equivalence relation. Consider three right angle triangles $T_{1}$ with sides $3,4,5, T_{2}$ with sides $5,12,13$ and $T_{3}$ with sides $6,8,10$. Which triangles among $T_{1}, T_{2}$ and $T_{3}$ are related?

Show Answer

Solution

$R=\{(T_1, T_2): T_1.$ is similar to $.T_2\}$

$R$ is reflexive since every triangle is similar to itself.

Further, if $(T_1, T_2) \in R$, then $T_1$ is similar to $T_2$.

$\Rightarrow T_2$ is similar to $T_1$

$\Rightarrow(T_2, T_1) \in R$

$\therefore R$ is symmetric.

Now,

Let $(T_1, T_2),(T_2, T_3) \in R$.

$\Rightarrow T_1$ is similar to $T_2$ and $T_2$ is similar to $T_3$.

$\Rightarrow T_1$ is similar to $T_3$

$\Rightarrow(T_1, T_3) \in R$

$\therefore R$ is transitive.

Thus, $R$ is an equivalence relation.

Now, we can observe that:

$ \frac{3}{6}=\frac{4}{8}=\frac{5}{10}(=\frac{1}{2}) $

$\therefore$ The corresponding sides of triangles $T_1$ and $T_3$ are in the same ratio.

Then, triangle $T_1$ is similar to triangle $T_3$.

Hence, $T_1$ is related to $T_3$.

13. Show that the relation $R$ defined in the set $A$ of all polygons as $R=\{(P_{1}, P_{2})$ : $P_{1}$ and $P_{2}$ have same number of sides $\}$, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?

Show Answer

Solution

$R=\{(P_1, P_2): P_1.$ and $P_2$ have same the number of sides $\}$

$R$ is reflexive since $(P_1, P_1) \in R$ as the same polygon has the same number of sides with itself.

Let $(P_1, P_2) \in R$.

$\Rightarrow P_1$ and $P_2$ have the same number of sides.

$\Rightarrow P_2$ and $P_1$ have the same number of sides.

$\Rightarrow(P_2, P_1) \in R$

$\therefore R$ is symmetric.

Now,

Let $(P_1, P_2),(P_2, P_3) \in R$.

$\Rightarrow P_1$ and $P_2$ have the same number of sides. Also, $P_2$ and $P_3$ have the same number of sides.

$\Rightarrow P_1$ and $P_3$ have the same number of sides.

$\Rightarrow(P_1, P_3) \in R$ $\therefore R$ is transitive.

Hence, $R$ is an equivalence relation.

The elements in $A$ related to the right-angled triangle $(T)$ with sides 3,4 , and 5 are those polygons which have 3 sides (since $T$ is a polygon with 3 sides).

Hence, the set of all elements in $A$ related to triangle $T$ is the set of all triangles.

14. Let $L$ be the set of all lines in $XY$ plane and $R$ be the relation in $L$ defined as $R=\{(L_{1}, L_{2}): L_{1}$ is parallel to $L_{2}\}$. Show that $R$ is an equivalence relation. Find the set of all lines related to the line $y=2 x+4$.

Show Answer

Solution

$R=\{(L_1, L_2): L_1.$ is parallel to $.L_2\}$

$R$ is reflexive as any line $L_1$ is parallel to itself i.e., $(L_1, L_1) \in R$.

Now,

Let $(L_1, L_2) \in R$.

$\Rightarrow L_1$ is parallel to $L_2$.

$\Rightarrow L_2$ is parallel to $L_1$.

$\Rightarrow(L_2, L_1) \in R$

$\therefore R$ is symmetric.

Now,

Let $(L_1, L_2),(L_2, L_3) \in R$.

$\Rightarrow L_1$ is parallel to $L_2$. Also, $L_2$ is parallel to $L_3$.

$\Rightarrow L_1$ is parallel to $L_3$.

$\therefore R$ is transitive.

Hence, $R$ is an equivalence relation.

The set of all lines related to the line $y=2 x+4$ is the set of all lines that are parallel to the line $y=2 x+4$.

Slope of line $y=2 x+4$ is $m=2$

It is known that parallel lines have the same slopes.

The line parallel to the given line is of the form $y=2 x+c$, where $c \in \mathbf{R}$.

Hence, the set of all lines related to the given line is given by $y=2 x+c$, where $c \in \mathbf{R}$.

15. Let $R$ be the relation in the set $\{1,2,3,4\}$ given by $R=\{(1,2),(2,2),(1,1),(4,4)$, $(1,3),(3,3),(3,2)\}$. Choose the correct answer.

(A) $R$ is reflexive and symmetric but not transitive.

(B) $R$ is reflexive and transitive but not symmetric.

(C) $R$ is symmetric and transitive but not reflexive.

(D) $R$ is an equivalence relation.

Show Answer

Solution

$R=\{(1,2),(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)\}$

It is seen that $(a, a) \in \mathbf{R}$, for every $a \in\{1,2,3,4\}$.

$\therefore R$ is reflexive.

It is seen that $(1,2) \in R$, but $(2,1) \notin R$.

$\therefore R$ is not symmetric.

Also, it is observed that $(a, b),(b, c) \in R \Rightarrow(a, c) \in R$ for all $a, b, c \in\{1,2,3,4\}$.

$\therefore R$ is transitive.

Hence, $R$ is reflexive and transitive but not symmetric.

The correct answer is $B$.

16. Let $R$ be the relation in the set $\mathbf{N}$ given by $R=\{(a, b): a=b-2, b>6\}$. Choose the correct answer. (A) $(2,4) \in R$ (B) $(3,8) \in R$ (C) $(6,8) \in R$ (D) $(8,7) \in R$

Show Answer

Solution

$R=\{(a, b): a=b-2, b>6\}$

Now, since $b>6,(2,4) \notin R$

Also, as $3 \neq 8-2,(3,8) \notin R$

And, as $8 \neq 7-2$

$\therefore(8,7) \notin R$

Now, consider $(6,8)$.

We have $8>6$ and also, $6=8-2$.

$\therefore(6,8) \in R$

The correct answer is $C$.

1.3 Types of Functions

The notion of a function along with some special functions like identity function, constant function, polynomial function, rational function, modulus function, signum function etc. along with their graphs have been given in Class XI.

Addition, subtraction, multiplication and division of two functions have also been studied. As the concept of function is of paramount importance in mathematics and among other disciplines as well, we would like to extend our study about function from where we finished earlier. In this section, we would like to study different types of functions.

Consider the functions $f_{1}, f_{2}, f_{3}$ and $f_{4}$ given by the following diagrams.

In Fig 1.2, we observe that the images of distinct elements of $X_{1}$ under the function $f_{1}$ are distinct, but the image of two distinct elements 1 and 2 of $X_{1}$ under $f_{2}$ is same, namely $b$. Further, there are some elements like $e$ and $f$ in $X_{2}$ which are not images of any element of $X_{1}$ under $f_{1}$, while all elements of $X_{3}$ are images of some elements of $X_{1}$ under $f_{3}$. The above observations lead to the following definitions:

Definition 5 $ A$ function $f: X \rightarrow Y$ is defined to be one-one (or injective), if the images of distinct elements of $X$ under $f$ are distinct, i.e., for every $x_{1}, x_{2} \in X, f(x_{1})=f(x_{2})$ implies $x_{1}=x_{2}$. Otherwise, $f$ is called many-one.

The function $f_{1}$ and $f_{4}$ in Fig 1.2 (i) and (iv) are one-one and the function $f_{2}$ and $f_{3}$ in Fig 1.2 (ii) and (iii) are many-one.

Definition 6 A function $f: X \rightarrow Y$ is said to be onto (or surjective), if every element of $Y$ is the image of some element of $X$ under $f$, i.e., for every $y \in Y$, there exists an element $x$ in $X$ such that $f(x)=y$.

The function $f_{3}$ and $f_{4}$ in Fig 1.2 (iii), (iv) are onto and the function $f_{1}$ in Fig 1.2 (i) is not onto as elements $e, f$ in $X_{2}$ are not the image of any element in $X_{1}$ under $f_{1}$.

Fig 1.2 (i) to (iv)

Remark $f: X \rightarrow Y$ is onto if and only if Range of $f=Y$.

Definition 7 A function $f: X \rightarrow Y$ is said to be one-one and onto (or bijective), if $f$ is both one-one and onto.

The function $f_{4}$ in Fig 1.2 (iv) is one-one and onto.

Example 7 Let A be the set of all 50 students of Class $X$ in a school. Let $f: A \rightarrow \mathbf{N}$ be function defined by $f(x)=$ roll number of the student $x$. Show that $f$ is one-one but not onto.

Solution No two different students of the class can have same roll number. Therefore, $f$ must be one-one. We can assume without any loss of generality that roll numbers of students are from 1 to 50 . This implies that 51 in $\mathbf{N}$ is not roll number of any student of the class, so that 51 can not be image of any element of $X$ under $f$. Hence, $f$ is not onto.

Example 8 Show that the function $f: \mathbf{N}\rightarrow \mathbf{N}$, given by $f(x)=2 x$, is one-one but not onto.

Solution The function $f$ is one-one, for $f(x_{1})=f(x_{2}) \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$. Further, $f$ is not onto, as for $1 \in \mathbf{N}$, there does not exist any $x$ in $\mathbf{N}$ such that $f(x)=2 x=1$.

Example 9 Prove that the function $f: \mathbf{R} \rightarrow \mathbf{R}$, given by $f(x)=2 x$, is one-one and onto. Solution $f$ is one-one, as $f(x_{1})=f(x_{2}) \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$. Also, given any real number $y$ in $R$, there exists $\frac{y}{2}$ in $R$ such that $f(\frac{y}{2})=2 .(\frac{y}{2})=y$. Hence, $f$ is onto.

Fig 1.3

Example 10 Show that the function $f: \mathbf{N} \rightarrow \mathbf{N}$, given by $f(1)=f(2)=1$ and $f(x)=x-1$, for every $x>2$, is onto but not one-one.

Solution $f$ is not one-one, as $f(1)=f(2)=1$. But $f$ is onto, as given any $y \in \mathbf{N}, y \neq 1$, we can choose $x$ as $y+1$ such that $f(y+1)=y+1-1=y$. Also for $1 \in \mathbf{N}$, we have $f(1)=1$.

Example 11 Show that the function $f: \mathbf{R} \rightarrow \mathbf{R}$, defined as $f(x)=x^{2}$, is neither one-one nor onto.

Solution Since $f(-1)=1=f(1), f$ is not oneone. Also, the element -2 in the co-domain $\mathbf{R}$ is not image of any element $x$ in the domain $\mathbf{R}$ (Why?). Therefore $f$ is not onto.

Example 12 Show that $f: \mathbf{N} \rightarrow \mathbf{N}$, given by

$$ f(x)=\begin{aligned} & x+1, \text { if } x \text { is odd, } \\ & x-1, \text { if } x \text { is even } \end{aligned} $$ is both one-one and onto.

Fig 1.4

Solution Suppose $f(x_{1})=f(x_{2})$. Note that if $x_{1}$ is odd and $x_{2}$ is even, then we will have $x_{1}+1=x_{2}-1$, i.e., $x_{2}-x_{1}=2$ which is impossible. Similarly, the possibility of $x_{1}$ being even and $x_{2}$ being odd can also be ruled out, using the similar argument. Therefore, both $x_{1}$ and $x_{2}$ must be either odd or even. Suppose both $x_{1}$ and $x_{2}$ are odd. Then $f(x_{1})=f(x_{2}) \Rightarrow x_{1}+1=x_{2}+1 \Rightarrow x_{1}=x_{2}$. Similarly, if both $x_{1}$ and $x_{2}$ are even, then also $f(x_{1})=f(x_{2}) \Rightarrow x_{1}-1=x_{2}-1 \Rightarrow x_{1}=x_{2}$. Thus, $f$ is one-one. Also, any odd number $2 r+1$ in the co-domain $\mathbf{N}$ is the image of $2 r+2$ in the domain $\mathbf{N}$ and any even number $2 r$ in the co-domain $\mathbf{N}$ is the image of $2 r-1$ in the domain $\mathbf{N}$. Thus, $f$ is onto.

Example 13 Show that an onto function $f:\{1,2,3\} \Rightarrow\{1,2,3\}$ is always one-one.

Solution Suppose $f$ is not one-one. Then there exists two elements, say 1 and 2 in the domain whose image in the co-domain is same. Also, the image of 3 under $f$ can be only one element. Therefore, the range set can have at the most two elements of the co-domain $\{1,2,3\}$, showing that $f$ is not onto, a contradiction. Hence, $f$ must be one-one.

Example 14 Show that a one-one function $f:\{1,2,3\} \rightarrow\{1,2,3\}$ must be onto.

Solution Since $f$ is one-one, three elements of $\{1,2,3\}$ must be taken to 3 different elements of the co-domain $\{1,2,3\}$ under $f$. Hence, $f$ has to be onto.

Remark The results mentioned in Examples 13 and 14 are also true for an arbitrary finite set $X$, i.e., a one-one function $f: X \rightarrow X$ is necessarily onto and an onto map $f: X \rightarrow X$ is necessarily one-one, for every finite set $X$. In contrast to this, Examples 8 and 10 show that for an infinite set, this may not be true. In fact, this is a characteristic difference between a finite and an infinite set.

EXERCISE 1.2

1. Show that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=\frac{1}{x}$ is one-one and onto, where $\mathbf{R}$ is the set of all non-zero real numbers. Is the result true, if the domain $\mathbf{R}$ is replaced by $\mathbf{N}$ with co-domain being same as $\mathbf{R}$ ?

Show Answer

Solution

It is given that $f: \mathbf{R} * \to \mathbf{R} *$ is defined by $f(x)=\frac{1}{x}$.

One-one:

$ \begin{aligned} & f(x)=f(y) \\ & \Rightarrow \frac{1}{x}=\frac{1}{y} \\ & \Rightarrow x=y \end{aligned} $

$\therefore f$ is one-one.

Onto:

It is clear that for $y \in \mathbf{R} _{*}$, there exists $x=\frac{1}{y} \in \mathbf{R}$. (Exists as $.y \neq 0)$ such that

$ f(x)=\frac{1}{(\frac{1}{y})}=y . $

$\therefore f$ is onto.

Thus, the given function $(f)$ is one-one and onto.

Now, consider function $g: \mathbf{N} \to \mathbf{R} *$ defined by

$ g(x)=\frac{1}{x} $

We have,

$ g(x_1)=g(x_2) \Rightarrow \frac{1}{x_1}=\frac{1}{x_2} \Rightarrow x_1=x_2 $

$\therefore g$ is one-one.

Further, it is clear that $g$ is not onto as for $1.2 \in \mathbf{R} *$ there does not exit any $x$ in $\mathbf{N}$ such

that $g(x)=\frac{1}{1.2}$.

Hence, function $g$ is one-one but not onto.

2. Check the injectivity and surjectivity of the following functions:

(i) $f: \mathbf{N} \rightarrow \mathbf{N}$ given by $f(x)=x^{2}$

(ii) $f: \mathbf{Z} \rightarrow \mathbf{Z}$ given by $f(x)=x^{2}$

(iii) $f: \mathbf{R} \rightarrow \mathbf{R}$ given by $f(x)=x^{2}$

(iv) $f: \mathbf{N} \rightarrow \mathbf{N}$ given by $f(x)=x^{3}$

(v) $f: \mathbf{Z} \rightarrow \mathbf{Z}$ given by $f(x)=x^{3}$

Show Answer

Solution

(i) $f: \mathbf{N} \to \mathbf{N}$ is given by,

$f(x)=x^{2}$

It is seen that for $x, y \in \mathbf{N}, f(x)=f(y) \Rightarrow x^{2}=y^{2} \Rightarrow x=y$.

$\therefore f$ is injective.

Now, $2 \in \mathbf{N}$. But, there does not exist any $x$ in $\mathbf{N}$ such that $f(x)=x^{2}=2$.

$\therefore f$ is not surjective.

Hence, function $f$ is injective but not surjective.

(ii) $f: \mathbf{Z} \to \mathbf{Z}$ is given by,

$f(x)=x^{2}$

It is seen that $f(-1)=f(1)=1$, but $-1 \neq 1$.

$\therefore f$ is not injective.

Now, $-2 \in \mathbf{Z}$. But, there does not exist any element $x \in \mathbf{Z}$ such that $f(x)=x^{2}=-2$.

$\therefore f$ is not surjective.

Hence, function $f$ is neither injective nor surjective.

(iii) $f: \mathbf{R} \to \mathbf{R}$ is given by,

$f(x)=x^{2}$

It is seen that $f(-1)=f(1)=1$, but $-1 \neq 1$.

$\therefore f$ is not injective.

Now, $-2 \in \mathbf{R}$. But, there does not exist any element $x \in \mathbf{R}$ such that $f(x)=x^{2}=-2$. $\therefore f$ is not surjective.

Hence, function $f$ is neither injective nor surjective.

(iv) $f: \mathbf{N} \to \mathbf{N}$ given by,

$f(x)=x^{3}$

It is seen that for $x, y \in \mathbf{N}, f(x)=f(y) \Rightarrow x^{3}=y^{3} \Rightarrow x=y$.

$\therefore f$ is injective.

Now, $2 \in \mathbf{N}$. But, there does not exist any element $x$ in domain $\mathbf{N}$ such that $f(x)=x^{3}=$

$\therefore f$ is not surjective

Hence, function $f$ is injective but not surjective.

(v) $f: \mathbf{Z} \to \mathbf{Z}$ is given by,

$f(x)=x^{3}$

It is seen that for $x, y \in \mathbf{Z}, f(x)=f(y) \Rightarrow x^{3}=y^{3} \Rightarrow x=y$.

$\therefore f$ is injective.

Now, $2 \in \mathbf{Z}$. But, there does not exist any element $x$ in domain $\mathbf{Z}$ such that $f(x)=x^{3}=2$.

$\therefore f$ is not surjective.

Hence, function $f$ is injective but not surjective.

3. Prove that the Greatest Integer Function $f: \mathbf{R} \rightarrow \mathbf{R}$, given by $f(x)=[x]$, is neither one-one nor onto, where $[x]$ denotes the greatest integer less than or equal to $x$.

Show Answer

Solution

$f: \mathbf{R} \to \mathbf{R}$ is given by,

$f(x)=[x]$

It is seen that $f(1.2)=[1.2]=1, f(1.9)=[1.9]=1$.

$\therefore f(1.2)=f(1.9)$, but $1.2 \neq 1.9$.

$\therefore f$ is not one-one.

Now, consider $0.7 \in \mathbf{R}$.

It is known that $f(x)=[x]$ is always an integer. Thus, there does not exist any element $x$ $\in \mathbf{R}$ such that $f(x)=0.7$.

$\therefore f$ is not onto.

Hence, the greatest integer function is neither one-one nor onto.

4. Show that the Modulus Function $f: \mathbf{R} \rightarrow \mathbf{R}$, given by $f(x)=|x|$, is neither oneone nor onto, where $|x|$ is $x$, if $x$ is positive or 0 and $|x|$ is $-x$, if $x$ is negative.

Show Answer

Solution

$f: \mathbf{R} \to \mathbf{R}$ is given by,

$f(x)=|x|=\begin{cases} x, \text{ if } x \geq 0 \\ -x, \text{ if } x<0 \end{cases} .$

It is seen that $f(-1)=|-1|=1, f(1)=|1|=1$.

$\therefore f(-1)=f(1)$, but $-1 \neq 1$.

$\therefore f$ is not one-one.

Now, consider $-1 \in \mathbf{R}$.

It is known that $f(x)=|x|$ is always non-negative. Thus, there does not exist any element $x$ in domain $\mathbf{R}$ such that $f(x)=|x|=-1$.

$\therefore f$ is not onto.

Hence, the modulus function is neither one-one nor onto.

5. Show that the Signum Function $f: \mathbf{R} \rightarrow \mathbf{R}$, given by

$$ \begin{array}{r} 1, \text { if } x>0 \\ f(x)=0, \text { if } x=0 \\ 1, \text { if } x<0 \end{array} $$

is neither one-one nor onto.

Show Answer

Solution

$f: \mathbf{R} \to \mathbf{R}$ is given by,

$$ f(x)=\begin{matrix} 1, \text{ if } x>0 \\ 0, \text{ if } x=0 \\ -1, \text{ if } x<0 \end{matrix} $$

It is seen that $f(1)=f(2)=1$, but $1 \neq 2$.

$\therefore f$ is not one-one.

Now, as $f(x)$ takes only 3 values $(1,0$, or -1 ) for the element -2 in co-domain $\mathbf{R}$, there does not exist any $x$ in domain $\mathbf{R}$ such that $f(x)=-2$.

$\therefore f$ is not onto.

Hence, the signum function is neither one-one nor onto.

6. Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function from $A$ to $B$. Show that $f$ is one-one.

Show Answer

Solution

It is given that $A={1,2,3}, B={4,5,6,7}$.

$f: A \to B$ is defined as $f={(1,4),(2,5),(3,6)}$.

$\therefore f(1)=4, f(2)=5, f(3)=6$

It is seen that the images of distinct elements of $A$ under $f$ are distinct.

Hence, function $f$ is one-one.

7. In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

(i) $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=3-4 x$

(ii) $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=1+x^{2}$

Show Answer

Solution

(i) $f: \mathbf{R} \to \mathbf{R}$ is defined as $f(x)=3-4 x$.

Let $x_1, x_2 \in \mathbf{R}$ such that $f(x_1)=f(x_2)$.

$\Rightarrow 3-4 x_1=3-4 x_2$

$\Rightarrow-4 x_1=-4 x_2$

$\Rightarrow x_1=x_2$

$\therefore f$ is one-one.

For any real number $(y)$ in $\mathbf{R}$, there exists $\frac{3-y}{4}$ in $\mathbf{R}$ such that

$f(\frac{3-y}{4})=3-4(\frac{3-y}{4})=y$.

$\therefore f$ is onto.

Hence, $f$ is bijective.

(ii) $f: \mathbf{R} \to \mathbf{R}$ is defined as

$ f(x)=1+x^{2} . $

Let $x_1, x_2 \in \mathbf{R}$ such that $f(x_1)=f(x_2)$.

$\Rightarrow 1+x_1^{2}=1+x_2^{2}$

$\Rightarrow x_1^{2}=x_2^{2}$

$\Rightarrow x_1= \pm x_2$

$\therefore f(x_1)=f(x_2)$ does not imply that $x_1=x_2$.

For instance,

$ f(1)=f(-1)=2 $

$\therefore f$ is not one-one.

Consider an element -2 in co-domain $\mathbf{R}$.

It is seen that $f(x)=1+x^{2}$ is positive for all $x \in \mathbf{R}$.

Thus, there does not exist any $x$ in domain $\mathbf{R}$ such that $f(x)=-2$.

$\therefore f$ is not onto.

Hence, $f$ is neither one-one nor onto.

8. Let $A$ and $B$ be sets. Show that $f: A \times B \rightarrow B \times A$ such that $f(a, b)=(b, a)$ is bijective function.

Show Answer

Solution

$f: A \times B \to B \times A$ is defined as $f(a, b)=(b, a)$.

Let $(a_1, b_1),(a_2, b_2) \in A \times B$ such that $f(a_1, b_1)=f(a_2, b_2)$

$\Rightarrow(b_1, a_1)=(b_2, a_2)$

$\Rightarrow b_1=b_2$ and $a_1=a_2$

$\Rightarrow(a_1, b_1)=(a_2, b_2)$

$\therefore f$ is one-one.

Now, let $(b, a) \in B \times A$ be any element.

Then, there exists $(a, b) \in A \times B$ such that $f(a, b)=(b, a)$. [By definition of $f$ ] $\therefore f$ is onto.

Hence, $f$ is bijective.

9. Let $f: \mathbf{N} \to \mathbf{N}$ be defined by $f(n)=\begin{cases} \frac{n+1}{2}, & \text{ if } n \text{ is odd } \\ \frac{n}{2}, & \text{ if } n \text{ is even } \end{cases} .$ for all $n \in \mathbf{N}$.

State whether the function $f$ is bijective. Justify your answer.

Show Answer

Solution

$ f(n)=\begin{matrix} \frac{n+1}{2}, & \text{ if } n \text{ is odd } \\ \frac{n}{2}, & \text{ if } n \text{ is even }\\ \end{matrix} \text{ for all } n \in \mathbf{N}. $

It can be observed that:

$f(1)=\frac{1+1}{2}=1$ and $f(2)=\frac{2}{2}=1 \quad[$ By definition of $f]$

$\therefore f(1)=f(2)$, where $1 \neq 2$.

$\therefore f$ is not one-one.

Consider a natural number $(n)$ in co-domain $\mathbf{N}$.

Case I: $n$ is odd

$\therefore n=2 r+1$ for some $r \in \mathbf{N}$. Then, there exists $4 r+1 \in \mathbf{N}$ such that

$ f(4 r+1)=\frac{4 r+1+1}{2}=2 r+1 $

Case II: $n$ is even

$\therefore n=2 r$ for some $r \in \mathbf{N}$. Then, there exists $4 r \in \mathbf{N}$ such that $f(4 r)=\frac{4 r}{2}=2 r$.

$\therefore f$ is onto.

Hence, $f$ is not a bijective function.

10. Let $A=\mathbf{R}-\{3\}$ and $B=\mathbf{R}-\{1\}$. Consider the function $f: A \rightarrow B$ defined by $f(x)=(\frac{x-2}{x-3})$. Is $f$ one-one and onto? Justify your answer.

Show Answer

Solution

$A=\mathbf{R}-{3}, B=\mathbf{R}-{1}$

$f: A \to B$ is defined as $f(x)=(\frac{x-2}{x-3})$.

Let $x, y \in$ A such that $f(x)=f(y)$.

$\Rightarrow \frac{x-2}{x-3}=\frac{y-2}{y-3}$

$\Rightarrow(x-2)(y-3)=(y-2)(x-3)$

$\Rightarrow x y-3 x-2 y+6=x y-3 y-2 x+6$

$\Rightarrow-3 x-2 y=-3 y-2 x$

$\Rightarrow 3 x-2 x=3 y-2 y$

$\Rightarrow x=y$

$\therefore f$ is one-one.

Let $y \in B=\mathbf{R}-{1}$. Then, $y \neq 1$.

The function $f$ is onto if there exists $x \in A$ such that $f(x)=y$.

Now,

$ \begin{aligned} & f(x)=y \\ & \Rightarrow \frac{x-2}{x-3}=y \\ & \Rightarrow x-2=x y-3 y \\ & \Rightarrow x(1-y)=-3 y+2 \\ & \Rightarrow x=\frac{2-3 y}{1-y} \in A \quad[y \neq 1] \end{aligned} $

Thus, for any $y \in B$, there exists $\frac{2-3 y}{1-y} \in A$ such that $f(\frac{2-3 y}{1-y})=\frac{(\frac{2-3 y}{1-y})-2}{(\frac{2-3 y}{1-y})-3}=\frac{2-3 y-2+2 y}{2-3 y-3+3 y}=\frac{-y}{-1}=y$.

$\therefore f$ is onto.

Hence, function $f$ is one-one and onto.

11. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined as $f(x)=x^{4}$. Choose the correct answer.

(A) $f$ is one-one onto

(B) $f$ is many-one onto

(C) $f$ is one-one but not onto

(D) $f$ is neither one-one nor onto.

Show Answer

Solution

$f: \mathbf{R} \to \mathbf{R}$ is defined as $f(x)=x^{4}$.

Let $x, y \in \mathbf{R}$ such that $f(x)=f(y)$.

$\Rightarrow x^{4}=y^{4}$

$\Rightarrow x= \pm y$

$\therefore f(x_1)=f(x_2)$ does not imply that $x_1=x_2$.

For instance,

$ f(1)=f(-1)=1 $

$\therefore f$ is not one-one.

Consider an element 2 in co-domain $\mathbf{R}$. It is clear that there does not exist any $x$ in domain $\mathbf{R}$ such that $f(x)=2$.

$\therefore f$ is not onto.

Hence, function $f$ is neither one-one nor onto.

The correct answer is D.

12. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined as $f(x)=3 x$. Choose the correct answer.

(A) $f$ is one-one onto

(B) $f$ is many-one onto

(C) $f$ is one-one but not onto

(D) $f$ is neither one-one nor onto.

Show Answer

Solution

$f: \mathbf{R} \to \mathbf{R}$ is defined as $f(x)=3 x$.

Let $x, y \in \mathbf{R}$ such that $f(x)=f(y)$.

$\Rightarrow 3 x=3 y$

$\Rightarrow x=y$

$\therefore f$ is one-one.

Also, for any real number $(y)$ in co-domain $\mathbf{R}$, there exists $\frac{y}{3}$ in $\mathbf{R}$ such that $f(\frac{y}{3})=3(\frac{y}{3})=y$.

$\therefore f$ is onto.

Hence, function $f$ is one-one and onto.

The correct answer is A.

1.4 Composition of Functions and Invertible Function

Definition 8 Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions. Then the composition of $f$ and $g$, denoted by $g \circ f$, is defined as the function $g \circ f: A \rightarrow C$ given by $$g o f(x)=g(f(x)), \forall x \in A$$

Fig 1.5

Example 15 Let $f:\{2,3,4,5\} \rightarrow\{3,4,5,9\}$ and $g:\{3,4,5,9\} \rightarrow\{7,11,15\}$ be functions defined as $f(2)=3, f(3)=4, f(4)=f(5)=5$ and $g(3)=g(4)=7$ and $g(5)=g(9)=11$. Find $g \circ f$.

Solution We have $g \circ f(2)=g(f(2))=g(3)=7, g \circ f(3)=g(f(3))=g(4)=7$, $g \circ f(4)=g(f(4))=g(5)=11$ and $g \circ f(5)=g(5)=11$.

Example 16 Find $g$ of and $f \circ g$, if $f: \mathbf{R} \rightarrow \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ are given by $f(x)=\cos x$ and $g(x)=3 x^{2}$. Show that $g \circ f \neq f \circ g$.

Solution We have $g \circ f(x)=g(f(x))=g(\cos x)=3(\cos x)^{2}=3 \cos ^{2} x$. Similarly, $f \circ g(x)=f(g(x))=f(3 x^{2})=\cos (3 x^{2})$. Note that $3 \cos ^{2} x \neq \cos 3 x^{2}$, for $x=0$. Hence, gof $\neq$ fog.

Definition 9 A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $g: Y \rightarrow X$ such that $g \circ f=I_{X}$ and $f \circ g=I_{Y}$. The function $g$ is called the inverse of $f$ and is denoted by $f^{-1}$.

Thus, if $f$ is invertible, then $f$ must be one-one and onto and conversely, if $f$ is one-one and onto, then $f$ must be invertible. This fact significantly helps for proving a function $f$ to be invertible by showing that $f$ is one-one and onto, specially when the actual inverse of $f$ is not to be determined.

Example 17 Let $f: \mathbf{N} \rightarrow Y$ be a function defined as $f(x)=4 x+3$, where, $Y=\{y \in \mathbf{N}: y=4 x+3$ for some $x \in \mathbf{N}\}$. Show that $f$ is invertible. Find the inverse.

Solution Consider an arbitrary element $y$ of Y. By the definition of Y, $y=4 x+3$, for some $x$ in the domain $\mathbf{N}$. This shows that $x=\frac{(y-3)}{4}$. Define $g: Y \rightarrow \mathbf{N}$ by $g(y)=\frac{(y-3)}{4}$. Now, $g \circ f(x)=g(f(x))=g(4 x+3)=\frac{(4 x+3-3)}{4}=x$ and

$f \circ g(y)=f(g(y))=f(\frac{(y-3)}{4})=\frac{4(y-3)}{4}+3=y-3+3=y$. This shows that $g \circ f=I_{N}$ and $f o g=I_{Y}$, which implies that $f$ is invertible and $g$ is the inverse of $f$.

Miscellaneous Examples

Example 18 If $R_{1}$ and $R_{2}$ are equivalence relations in a set $A$, show that $R_{1} \cap R_{2}$ is also an equivalence relation.

Solution Since $R_{1}$ and $R_{2}$ are equivalence relations, $(a, a) \in R_{1}$, and $(a, a) \in R_{2} \forall a \in A$. This implies that $(a, a) \in R_{1} \cap R_{2}, \forall a$, showing $R_{1} \cap R_{2}$ is reflexive. Further, $(a, b) \in R_{1} \cap R_{2} \Rightarrow(a, b) \in R_{1}$ and $(a, b) \in R_{2} \Rightarrow(b, a) \in R_{1}$ and $(b, a) \in R_{2} \Rightarrow$ $(b, a) \in R_{1} \cap R_{2}$, hence, $R_{1} \cap R_{2}$ is symmetric. Similarly, $(a, b) \in R_{1} \cap R_{2}$ and $(b, c) \in R_{1} \cap R_{2} \Rightarrow(a, c) \in R_{1}$ and $(a, c) \in R_{2} \Rightarrow(a, c) \in R_{1} \cap R_{2}$. This shows that $R_{1} \cap R_{2}$ is transitive. Thus, $R_{1} \cap R_{2}$ is an equivalence relation.

Example 19 Let $R$ be a relation on the set $A$ of ordered pairs of positive integers defined by $(x, y) R(u, v)$ if and only if $x v=y u$. Show that $R$ is an equivalence relation.

Solution Clearly, $(x, y) R(x, y), \forall(x, y) \in A$, since $x y=y x$. This shows that $R$ is reflexive. Further, $(x, y) R(u, v) \Rightarrow x v=y u \Rightarrow u y=v x$ and hence $(u, v) R(x, y)$. This shows that $R$ is symmetric. Similarly, $(x, y) R(u, v)$ and $(u, v) R(a, b) \Rightarrow x v=y u$ and $u b=v a \Rightarrow x v \frac{a}{u}=y u \frac{a}{u} \Rightarrow x v \frac{b}{v}=y u \frac{a}{u} \Rightarrow x b=y a$ and hence $(x, y) R(a, b)$. Thus, $R$ is transitive. Thus, $R$ is an equivalence relation.

Example 20 Let $X=\{1,2,3,4,5,6,7,8,9\}$. Let $R_{1}$ be a relation in $X$ given by $R_{1}=\{(x, y): x-y$ is divisible by 3 and $R _{2}$ be another relation on $X$ given by $R _{2}= \{(x, y):\{x, y \} \subset \{1,4,7 \}\}$ or $\{x, y \} \subset \{2,5,8 \}$ or $\{x, y\} \subset \{3,6,9 \}\}$. Show that $R _{1}=R _{2}$.

Solution Note that the characteristic of sets $\{1,4,7\},\{2,5,8\}$ and $\{3,6,9\}$ is that difference between any two elements of these sets is a multiple of 3 . Therefore, $(x, y) \in R_{1} \Rightarrow x-y$ is a multiple of $3 \Rightarrow\{x, y\} \subset\{1,4,7\}$ or $\{x, y\} \subset\{2,5,8\}$ or $\{x, y\} \subset\{3,6,9\} \Rightarrow(x, y) \in R_{2}$. Hence, $R_{1} \subset R_{2}$. Similarly, $\{x, y\} \in R_{2} \Rightarrow\{x, y\}$ $\subset\{1,4,7\}$ or $\{x, y\} \subset\{2,5,8\}$ or $\{x, y\} \subset\{3,6,9\} \Rightarrow x-y$ is divisible by $3 \Rightarrow\{x, y\} \in R_{1}$. This shows that $R_{2} \subset R_{1}$. Hence, $R_{1}=R_{2}$.

Example 21 Let $f: X \rightarrow Y$ be a function. Define a relation $R$ in $X$ given by $R=\{(a, b): f(a)=f(b)\}$. Examine whether $R$ is an equivalence relation or not.

Solution For every $a \in X,(a, a) \in R$, since $f(a)=f(a)$, showing that $R$ is reflexive. Similarly, $(a, b) \in R \Rightarrow f(a)=f(b) \Rightarrow f(b)=f(a) \Rightarrow(b, a) \in R$. Therefore, $R$ is symmetric. Further, $(a, b) \in R$ and $(b, c) \in R \Rightarrow f(a)=f(b)$ and $f(b)=f(c) \Rightarrow f(a)$ $=f(c) \Rightarrow(a, c) \in R$, which implies that $R$ is transitive. Hence, $R$ is an equivalence relation.

Example 22 Find the number of all one-one functions from set $A=\{1,2,3\}$ to itself.

Solution One-one function from $\{1,2,3\}$ to itself is simply a permutation on three symbols $1,2,3$. Therefore, total number of one-one maps from $\{1,2,3\}$ to itself is same as total number of permutations on three symbols $1,2,3$ which is $3 !=6$.

Example 23 Let $A=\{1,2,3\}$. Then show that the number of relations containing $(1,2)$ and $(2,3)$ which are reflexive and transitive but not symmetric is three.

Solution The smallest relation $R_{1}$ containing $(1,2)$ and $(2,3)$ which is reflexive and transitive but not symmetric is $\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}$. Now, if we add the pair $(2,1)$ to $R_{1}$ to get $R_{2}$, then the relation $R_{2}$ will be reflexive, transitive but not symmetric. Similarly, we can obtain $R_{3}$ by adding $(3,2)$ to $R_{1}$ to get the desired relation. However, we can not add two pairs $(2,1),(3,2)$ or single pair $(3,1)$ to $R_{1}$ at a time, as by doing so, we will be forced to add the remaining pair in order to maintain transitivity and in the process, the relation will become symmetric also which is not required. Thus, the total number of desired relations is three.

Example 24 Show that the number of equivalence relation in the set $\{1,2,3\}$ containing $(1,2)$ and $(2,1)$ is two.

Solution The smallest equivalence relation $R_{1}$ containing $(1,2)$ and $(2,1)$ is $\{(1,1)$, $(2,2),(3,3),(1,2),(2,1)\}$. Now we are left with only 4 pairs namely $(2,3),(3,2)$, $(1,3)$ and $(3,1)$. If we add any one, say $(2,3)$ to $R_{1}$, then for symmetry we must add $(3,2)$ also and now for transitivity we are forced to add $(1,3)$ and $(3,1)$. Thus, the only equivalence relation bigger than $R_{1}$ is the universal relation. This shows that the total number of equivalence relations containing $(1,2)$ and $(2,1)$ is two.

Example 25 Consider the identity function $I_{\mathbf{N}}: \mathbf{N} \rightarrow \mathbf{N}$ defined as $I_{\mathbf{N}}(x)=x \forall x \in \mathbf{N}$. Show that although $I_{\mathbf{N}}$ is onto but $I_{\mathbf{N}}+I_{\mathbf{N}}: \mathbf{N} \rightarrow \mathbf{N}$ defined as

$$ (I_{N}+I_{N})(x)=I_{N}(x)+I_{N}(x)=x+x=2 x \text { is not onto. } $$

Solution Clearly $I_{N}$ is onto. But $I_{N}+I_{N}$ is not onto, as we can find an element 3 in the co-domain $\mathbf{N}$ such that there does not exist any $x$ in the domain $\mathbf{N}$ with $(I_{N}+I_{N})(x)=2 x=3$.

Example 26 Consider a function $f:[0, \frac{\pi}{2}] \rightarrow \mathbf{R}$ given by $f(x)=\sin x$ and $g:[0, \frac{\pi}{2}] \rightarrow \mathbf{R}$ given by $g(x)=\cos x$. Show that $f$ and $g$ are one-one, but $f+g$ is not one-one.

Solution Since for any two distinct elements $x_{1}$ and $x_{2}$ in $[0, \frac{\pi}{2}], \sin x_{1} \neq \sin x_{2}$ and $\cos x_{1} \neq \cos x_{2}$, both $f$ and $g$ must be one-one. But $(f+g)(0)=\sin 0+\cos 0=1$ and $(f+g)(\frac{\pi}{2})=\sin \frac{\pi}{2}+\cos \frac{\pi}{2}=1$. Therefore, $f+g$ is not one-one.

Miscellaneous Exercise on Chapter 1

1. Show that the function $f: \mathbf{R} \rightarrow\{x \in \mathbf{R}:-1<x<1\}$ defined by $f(x)=\frac{x}{1+|x|}$, $x \in \mathbf{R}$ is one one and onto function.

Show Answer

Solution

It is given that $f: \mathbf{R} \to{x \in \mathbf{R}:-1<x<1}$ is defined as $f(x)=\frac{x}{1+|x|}, x \in \mathbf{R}$.

Suppose $f(x)=f(y)$, where $x, y \in \mathbf{R}$.

$ \Rightarrow \frac{x}{1+|x|}=\frac{y}{1+|y|} $

It can be observed that if $x$ is positive and $y$ is negative, then we have:

$ \frac{x}{1+x}=\frac{y}{1-y} \Rightarrow 2 x y=x-y $

Since $x$ is positive and $y$ is negative:

$x>y \Rightarrow x-y>0$

But, $2 x y$ is negative.

Then, $2 x y \neq x-y$.

Thus, the case of $x$ being positive and $y$ being negative can be ruled out.

Under a similar argument, $x$ being negative and $y$ being positive can also be ruled out $\therefore x$ and $y$ have to be either positive or negative.

When $x$ and $y$ are both positive, we have:

$ f(x)=f(y) \Rightarrow \frac{x}{1+x}=\frac{y}{1+y} \Rightarrow x+x y=y+x y \Rightarrow x=y $

When $x$ and $y$ are both negative, we have:

$ f(x)=f(y) \Rightarrow \frac{x}{1-x}=\frac{y}{1-y} \Rightarrow x-x y=y-y x \Rightarrow x=y $

$\therefore f$ is one-one.

Now, let $y \in \mathbf{R}$ such that $-1<y<1$.

If $y$ is negative, then there exists $x=\frac{y}{1+v} \in \mathbf{R}$ such that

$f(x)=f(\frac{y}{1+y})=\frac{(\frac{y}{1+y})}{1+|\frac{y}{1+y}|}=\frac{\frac{y}{1+y}}{1+(\frac{-y}{1+y})}=\frac{y}{1+y-y}=y$.

If $y$ is positive, then there exists $x=\frac{y}{1-y} \in \mathbf{R}$ such that

$ f(x)=f(\frac{y}{1-y})=\frac{(\frac{y}{1-y})}{1+|(\frac{y}{1-y})|}=\frac{\frac{y}{1-y}}{1+\frac{y}{1-y}}=\frac{y}{1-y+y}=y . $

$\therefore f$ is onto.

Hence, $f$ is one-one and onto.

2. Show that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ given by $f(x)=x^{3}$ is injective.

Show Answer

Solution

$f: \mathbf{R} \to \mathbf{R}$ is given as $f(x)=x^{3}$.

Suppose $f(x)=f(y)$, where $x, y \in \mathbf{R}$.

$\Rightarrow x^{3}=y^{3}$

Now, we need to show that $x=y$.

Suppose $x \neq y$, their cubes will also not be equal.

$\Rightarrow x^{3} \neq y^{3}$

However, this will be a contradiction to (1).

$\therefore x=y$

Hence, $f$ is injective.

3. Given a non empty set $X$, consider $P(X)$ which is the set of all subsets of $X$. Define the relation $R$ in $P(X)$ as follows:

For subsets $A, B$ in $P(X), ARB$ if and only if $A \subset B$. Is $R$ an equivalence relation on $P(X)$ ? Justify your answer.

Show Answer

Solution

Since every set is a subset of itself, $A R A$ for all $A \in P(X)$.

$\therefore R$ is reflexive.

Let $A R B \Rightarrow A \subset B$.

This cannot be implied to $B \subset A$.

For instance, if $A={1,2}$ and $B={1,2,3}$, then it cannot be implied that $B$ is related to $A$.

$\therefore R$ is not symmetric.

Further, if $A R B$ and $B R C$, then $A \subset B$ and $B \subset C$.

$\Rightarrow A \subset C$

$\Rightarrow A R C$

$\therefore R$ is transitive.

Hence, $R$ is not an equivalence relation since it is not symmetric.

4. Find the number of all onto functions from the set $\{1,2,3, \ldots \ldots, n\}$ to itself.

Show Answer

Solution

Onto functions from the set ${1,2,3, \ldots, n}$ to itself is simply a permutation on $n$ symbols $1,2, \ldots, n$.

Thus, the total number of onto maps from ${1,2, \ldots, n}$ to itself is the same as the total number of permutations on $n$ symbols $1,2, \ldots, n$, which is $n$.

5. Let $A=\{-1,0,1,2\}, B=\{-4,-2,0,2\}$ and $f, g: A \rightarrow B$ be functions defined by $f(x)=x^{2}-x, x \in A$ and $g(x)=2|x-\frac{1}{2}|-1, x \in A$. Are $f$ and $g$ equal? Justify your answer. (Hint: One may note that two functions $f: A \rightarrow B$ and $g: A \rightarrow B$ such that $f(a)=g(a) \forall a \in A$, are called equal functions).

Show Answer

Solution

It is given that $A={-1,0,1,2}, B={-4,-2,0,2}$.

Also, it is given that $f, g: A \to B$ are defined by $f(x)=x^{2}-x, x \in A$ and

$ g(x)=2|x-\frac{1}{2}|-1, x \in A $

It is observed that:

$ \begin{aligned} & f(-1)=(-1)^{2}-(-1)=1+1=2 \\ & g(-1)=2|(-1)-\frac{1}{2}|-1=2(\frac{3}{2})-1=3-1=2 \\ & \Rightarrow f(-1)=g(-1) \\ & f(0)=(0)^{2}-0=0 \\ & g(0)=2|0-\frac{1}{2}|-1=2(\frac{1}{2})-1=1-1=0 \\ & \Rightarrow f(0)=g(0) \\ & f(1)=(1)^{2}-1=1-1=0 \\ & g(1)=2|1-\frac{1}{2}|-1=2(\frac{1}{2})-1=1-1=0 \\ & \Rightarrow f(1)=g(1) \\ & f(2)=(2)^{2}-2=4-2=2 \\ & g(2)=2|2-\frac{1}{2}|-1=2(\frac{3}{2})-1=3-1=2 \\ & \Rightarrow f(2)=g(2) \\ & \therefore f(a)=g(a) \forall a \in A \end{aligned} $

Hence, the functions $f$ and $g$ are equal.

6. Let $A=\{1,2,3\}$. Then number of relations containing $(1,2)$ and $(1,3)$ which are reflexive and symmetric but not transitive is

(A) 1

(B) 2

(C) 3

(D) 4

Show Answer

Solution

The given set is $A={1,2,3}$.

The smallest relation containing $(1,2)$ and $(1,3)$ which is reflexive and symmetric, but not transitive is given by: $R={(1,1),(2,2),(3,3),(1,2),(1,3),(2,1),(3,1)}$

This is because relation $R$ is reflexive as $(1,1),(2,2),(3,3) \in R$.

Relation $R$ is symmetric since $(1,2),(2,1) \in R$ and $(1,3),(3,1) \in R$.

But relation $R$ is not transitive as $(3,1),(1,2) \in R$, but $(3,2) \notin R$.

Now, if we add any two pairs $(3,2)$ and $(2,3)$ (or both) to relation $R$, then relation $R$ will become transitive.

Hence, the total number of desired relations is one.

The correct answer is A.

7. Let $A=\{1,2,3\}$. Then number of equivalence relations containing $(1,2)$ is

(A) 1

(B) 2

(C) 3

(D) 4

Show Answer

Solution

It is given that $A={1,2,3}$.

The smallest equivalence relation containing $(1,2)$ is given by,

$R_1={(1,1),(2,2),(3,3),(1,2),(2,1)}$

Now, we are left with only four pairs i.e., $(2,3),(3,2),(1,3)$, and $(3,1)$.

If we odd any one pair [say $(2,3)$ ] to $R_1$, then for symmetry we must add $(3,2)$. Also, for transitivity we are required to add $(1,3)$ and $(3,1)$.

Hence, the only equivalence relation (bigger than $R_1$ ) is the universal relation.

This shows that the total number of equivalence relations containing $(1,2)$ is two.

The correct answer is B.

Summary

In this chapter, we studied different types of relations and equivalence relation, composition of functions, invertible functions and binary operations. The main features of this chapter are as follows:

  • Empty relation is the relation $R$ in $X$ given by $R=\phi \subset X \times X$.

  • Universal relation is the relation $R$ in $X$ given by $R=X \times X$.

  • Reflexive relation $R$ in $X$ is a relation with $(a, a) \in R \forall a \in X$.

  • Symmetric relation $R$ in $X$ is a relation satisfying $(a, b) \in R$ implies $(b, a) \in R$.

  • Transitive relation $R$ in $X$ is a relation satisfying $(a, b) \in R$ and $(b, c) \in R$ implies that $(a, c) \in R$.

  • Equivalence relation $R$ in $X$ is a relation which is reflexive, symmetric and transitive.

  • Equivalence class $[a]$ containing $a \in X$ for an equivalence relation $R$ in $X$ is the subset of $X$ containing all elements $b$ related to $a$.

  • A function $f: X \rightarrow Y$ is one-one (or injective) if $f(x_{1})=f(x_{2}) \Rightarrow x_{1}=x_{2} \forall x_{1}, x_{2} \in X$.

  • A function $f: X \rightarrow Y$ is onto (or surjective) if given any $y \in Y, \exists x \in X$ such that $f(x)=y$.

  • A function $f: X \rightarrow Y$ is one-one and onto (or bijective), if $f$ is both one-one and onto.

  • Given a finite set $X$, a function $f: X \rightarrow X$ is one-one (respectively onto) if and only if $f$ is onto (respectively one-one). This is the characteristic property of a finite set. This is not true for infinite set

Historical Note

The concept of function has evolved over a long period of time starting from R. Descartes (1596-1650), who used the word ‘function’ in his manuscript “Geometrie” in 1637 to mean some positive integral power $x^{n}$ of a variable $x$ while studying geometrical curves like hyperbola, parabola and ellipse. James Gregory (1636-1675) in his work " Vera Circuli et Hyperbolae Quadratura" (1667) considered function as a quantity obtained from other quantities by successive use of algebraic operations or by any other operations. Later G. W. Leibnitz (1646-1716) in his manuscript “Methodus tangentium inversa, seu de functionibus” written in 1673 used the word ‘function’ to mean a quantity varying from point to point on a curve such as the coordinates of a point on the curve, the slope of the curve, the tangent and the normal to the curve at a point. However, in his manuscript “Historia” (1714), Leibnitz used the word ‘function’ to mean quantities that depend on a variable. He was the first to use the phrase ‘function of $x^{\prime}$. John Bernoulli (1667-1748) used the notation $\phi x$ for the first time in 1718 to indicate a function of $x$. But the general adoption of symbols like $f, F, \phi, \psi \ldots$ to represent functions was made by Leonhard Euler (1707-1783) in 1734 in the first part of his manuscript “Analysis Infinitorium”. Later on, Joeph Louis Lagrange (1736-1813) published his manuscripts “Theorie des functions analytiques” in 1793, where he discussed about analytic function and used the notion $f(x), F(x)$, $\phi(x)$ etc. for different function of $x$. Subsequently, Lejeunne Dirichlet (1805-1859) gave the definition of function which was being used till the set theoretic definition of function presently used, was given after set theory was developed by Georg Cantor (1845-1918). The set theoretic definition of function known to us presently is simply an abstraction of the definition given by Dirichlet in a rigorous manner.

There is no permanent place in the world for ugly mathematics … . It may be very hard to define mathematical beauty but that is just as true of beauty of any kind, we may not know quite what we mean by a beautiful poem, but that does not prevent us from recognising one when we read it. - G. H. Hardy

1.1 भूमिका (Introduction)

स्मरण कीजिए कि कक्षा XI में, संबंध एवं फलन, प्रांत, सहप्रांत तथा परिसर आदि की अवधारणाओं का, विभिन्न प्रकार के वास्तविक मानीय फलनों और उनके आलेखों सहित परिचय कराया जा चुका है। गणित में शब्द ‘संबंध (Relation)’ की सकंल्पना को अंग्रेज़ी भाषा में इस शब्द के अर्थ से लिया गया है, जिसके अनुसार दो वस्तुएँ परस्पर संबंधित होती है, यदि उनके बीच एक अभिज्ञेय (Recognisable) कड़ी हो। मान लीजिए कि $\mathrm{A}$, किसी स्कूल की कक्षा XII के विद्यार्थियों का समुच्चय है तथा $\mathrm{B}$ उसी स्कूल की कक्षा XI के विद्यार्थियों का समुच्चय हैं। अब समुच्चय $\mathrm{A}$ से समुच्चय $\mathrm{B}$ तक के संबंधों के कुछ उदाहरण इस प्रकार हैं

(i) $\{(a, b) \in \mathrm{A} \times \mathrm{B}: a, b$ का भाई है $\}$,

(ii) $\{(a, b) \in \mathrm{A} \times \mathrm{B}: a, b$ की बहन है $\}$,

Lejeune Dirichlet (1805-1859)

(iii) $\{(a, b) \in \mathrm{A} \times \mathrm{B}: a$ की आयु $b$ की आयु से अधिक है $\}$,

(iv) $\{(a, b) \in \mathrm{A} \times \mathrm{B}$ : पिछली अंतिम परीक्षा में $a$ द्वारा प्राप्त पूर्णांक $b$ द्वारा प्राप्त पूर्णांक से कम है $\}$,

(v) $\{(a, b) \in \mathrm{A} \times \mathrm{B}: a$ उसी जगह रहता है जहाँ $b$ रहता है $\}$. तथापि $\mathrm{A}$ से $\mathrm{B}$ तक के किसी संबंध $\mathrm{R}$ को अमूर्तरूप (Abstracting) से हम गणित में $\mathrm{A} \times \mathrm{B}$ के एक स्वेच्छ (Arbitrary) उपसमुच्चय की तरह परिभाषित करते हैं।

यदि $(a, b) \in \mathrm{R}$, तो हम कहते हैं कि संबंध $\mathrm{R}$ के अंतर्गत $a, b$ से संबंधित है और हम इसे $a \mathrm{R} b$ लिखते हैं। सामान्यतः, यदि $(a, b) \in \mathrm{R}$, तो हम इस बात की चिंता नहीं करते हैं कि $a$ तथा $b$ के बीच कोई अभिजेय कड़ी है अथवा नहीं है। जैसा कि कक्षा XI में देख चुके हैं, फलन एक विशेष प्रकार के संबंध होता हैं।

इस अध्याय में, हम विभिन्न प्रकार के संबंधों एवं फलनों, फलनों के संयोजन (composition), व्युत्क्रमणीय (Invertible) फलनों और द्विआधारी संक्रियाओं का अध्ययन करेंगे।

1.2 संबंधों के प्रकार (Types of Relations)

इस अनुच्छेद में हम विभिन्न प्रकार के संबंधों का अध्ययन करेंगे। हमें ज्ञात है कि किसी समुच्चय $\mathrm{A}$ में संबंध, $\mathrm{A} \times \mathrm{A}$ का एक उपसमुच्चय होता है। अतः रिक्त समुच्चय $\phi \subset \mathrm{A} \times \mathrm{A}$ तथा $\mathrm{A} \times \mathrm{A}$ स्वयं, दो अन्त्य संबंध हैं। स्पष्टीकरण हेतु, $\mathrm{R}=\{(a, b): a-b=10\}$ द्वारा प्रदत्त समुच्चय $\mathrm{A}=\{1,2,3,4\}$ पर परिभाषित एक संबंध $\mathrm{R}$ पर विचार कीजिए। यह एक रिक्त समुच्चय है, क्योंकि ऐसा कोई भी युग्म (pair) नहीं है जो प्रतिबंध $a-b=10$ को संतुष्ट करता है। इसी प्रकार $\mathrm{R}^{\prime}=\{(a, b):|a-b| \geq 0\}$, संपूर्ण समुच्चय $\mathrm{A} \times \mathrm{A}$ के तुल्य है, क्योंकि $\mathrm{A} \times \mathrm{A}$ के सभी युग्म $(a, b),|a-b| \geq 0$ को संतुष्ट करते हैं। यह दोनों अन्त्य के उदाहरण हमें निम्नलिखित परिभाषाओं के लिए प्रेरित करते हैं।

परिभाषा 1 समुच्चय $A$ पर परिभाषित संबंध $R$ एक रिक्त संबंध कहलाता है, यदि $A$ का कोई भी अवयव $\mathrm{A}$ के किसी भी अवयव से संबंधित नहीं है, अर्थात् $\mathrm{R}=\phi \subset \mathrm{A} \times \mathrm{A}$.

परिभाषा 2 समुच्चय $A$ पर परिभाषित संबंध $\mathrm{R}$, एक सार्वत्रिक (universal) संबंध कहलाता है, यदि $\mathrm{A}$ का प्रत्येक अवयव $\mathrm{A}$ के सभी अवयवों से संबंधित है, अर्थात् $\mathrm{R}=\mathrm{A} \times \mathrm{A}$.

रिक्त संबंध तथा सार्वत्रिक संबंध को कभी-कभी तुच्छ (trivial) संबंध भी कहते हैं।

उदाहरण 1 मान लीजिए कि $\mathrm{A}$ किसी बालकों के स्कूल के सभी विद्यार्थियों का समुच्चय है। दर्शाइए कि $\mathrm{R}=\{(a, b): a, b$ की बहन है $\}$ द्वारा प्रदत्त संबंध एक रिक्त संबंध है तथा $\mathrm{R}^{\prime}=\{(a, b)$ : $a$ तथा $b$ की ऊँचाईयों का अंतर 3 मीटर से कम है $\}$ द्वारा प्रदत्त संबंध एक सार्वत्रिक संबंध है।

हल प्रश्नानुसार, क्योंकि स्कूल बालकों का है, अतएव स्कूल का कोई भी विद्यार्थी, स्कूल के किसी भी विद्यार्थी की बहन नहीं हो सकता है। अत: $\mathrm{R}=\phi$, जिससे प्रदर्शित होता है कि $\mathrm{R}$ रिक्त संबंध है। यह भी स्पष्ट है कि किन्हीं भी दो विद्यार्थियों की ऊँचाइयों का अंतर 3 मीटर से कम होना ही चाहिए। इससे प्रकट होता है कि $\mathrm{R}^{\prime}=\mathrm{A} \times \mathrm{A}$ सार्वत्रिक संबंध है।

टिप्पणी कक्षा XI में विद्यार्थीगण सीख चुके हैं कि किसी संबंध को दो प्रकार से निरूपित किया जा सकता है, नामतः रोस्टर विधि तथा समुच्चय निर्माण विधि। तथापि बहुत से लेखकों द्वारा समुच्चय $\{1,2,3,4\}$ पर परिभाषित संबंध $\mathrm{R}=\{(a, b): b=a+1\}$ को $a \mathrm{R} b$ द्वारा भी निरूपित किया जाता है, यदि और केवल यदि $b=a+1$ हो। जब कभी सुविधाजनक होगा, हम भी इस संकेतन (notation) का प्रयोग करेंगे।

यदि $(a, b) \in \mathrm{R}$, तो हम कहते हैं कि $a, b$ से संबंधित है’ और इस बात को हम $a \mathrm{R} b$ द्वारा प्रकट करते हैं।

एक अत्यन्त महत्वपूर्ण संबंध, जिसकी गणित में एक सार्थक (significant) भूमिका है, तुल्यता संबंध (Equivalence Relation) कहलाता है। तुल्यता संबंध का अध्ययन करने के लिए हम पहले तीन प्रकार के संबंधों, नामतः स्वतुल्य (Reflexive), सममित (Symmetric) तथा संक्रामक (Transitive) संबंधों पर विचार करते हैं।

परिभाषा 3 समुच्चय $A$ पर परिभाषित संबंध $R$;

(i) स्वतुल्य (reflexive) कहलाता है, यदि प्रत्येक $a \in \mathrm{A}$ के लिए $(a, a) \in \mathrm{R}$,

(ii) सममित (symmetric) कहलाता है, यदि समस्त $a _{1}, a _{2} \in \mathrm{A}$ के लिए $\left(a _{1}, a _{2}\right) \in \mathrm{R}$ से $\left(a _{2}, a _{1}\right) \in \mathrm{R}$ प्राप्त हो।

(iii) संक्रामक (transitive) कहलाता है, यदि समस्त, $a _{1}, a _{2}, a _{3} \in \mathrm{A}$ के लिए $\left(a _{1}, a _{2}\right) \in \mathrm{R}$ तथा $\left(a _{2}, a _{3}\right) \in \mathrm{R}$ से $\left(a _{1}, a _{3}\right) \in \mathrm{R}$ प्राप्त हो।

परिभाषा 4 $\mathrm{~A}$ पर परिभाषित संबंध $\mathrm{R}$ एक तुल्यता संबंध कहलाता है, यदि $\mathrm{R}$ स्वतुल्य, सममित तथा संक्रामक है।

उदाहरण 2 मान लीजिए कि $\mathrm{T}$ किसी समतल में स्थित समस्त त्रिभुजों का एक समुच्चय है। समुच्चय $\mathrm{T}$ में $\mathrm{R}=\left\{\left(\mathrm{T} _{1}, \mathrm{~T} _{2}\right): \mathrm{T} _{1}, \mathrm{~T} _{2}\right.$ के सर्वागंसम है $\}$ एक संबंध है। सिद्ध कीजिए कि $\mathrm{R}$ एक तुल्यता संबंध है।

हल संबंध $\mathrm{R}$ स्वतुल्य है, क्योंकि प्रत्येक त्रिभुज स्वयं के सवार्गंसम होता है। पुन: $\left(\mathrm{T} _{1}, \mathrm{~T} _{2}\right) \in \mathrm{R} \Rightarrow \mathrm{T} _{1}, \mathrm{~T} _{2}$ के सर्वांगम है $\Rightarrow \mathrm{T} _{2}, \mathrm{~T} _{1}$ के सर्वागंसम है $\Rightarrow\left(\mathrm{T} _{2}, \mathrm{~T} _{1}\right) \in \mathrm{R}$. अत: संबंध $\mathrm{R}$ सममित है। इसके अतिरिक्त $\left(\mathrm{T} _{1}, \mathrm{~T} _{2}\right),\left(\mathrm{T} _{2}, \mathrm{~T} _{3}\right) \in \mathrm{R} \Rightarrow \mathrm{T} _{1}, \mathrm{~T} _{2}$ के सर्वागंसम है तथा $\mathrm{T} _{2}, \mathrm{~T} _{3}$ के सर्वागंसम है $\Rightarrow \mathrm{T} _{1}, \mathrm{~T} _{3}$ के सर्वागंसम है $\Rightarrow\left(\mathrm{T} _{1}, \mathrm{~T} _{3}\right) \in \mathrm{R}$. अतः संबंध $\mathrm{R}$ संक्रामक है। इस प्रकार $\mathrm{R}$ एक तुल्यता संबंध है।

उदाहरण 3 मान लीजिए कि $\mathrm{L}$ किसी समतल में स्थित समस्त रेखाओं का एक समुच्चय है तथा $\mathrm{R}=\left\{\left(\mathrm{L} _{1}, \mathrm{~L} _{2}\right): \mathrm{L} _{1}, \mathrm{~L} _{2}\right.$ पर लंब है $\}$ समुच्चय $\mathrm{L}$ में परिभाषित एक संबंध है। सिद्ध कीजिए कि $\mathrm{R}$ सममित है किंतु यह न तो स्वतुल्य है और न संक्रामक है।

हल $\mathrm{R}$ स्वतुल्य नहीं है, क्योंकि कोई रेखा $\mathrm{L} _{1}$ अपने आप पर लंब नहीं हो सकती है, अर्थात् $\left(\mathrm{L} _{1}, \mathrm{~L} _{1}\right) \notin \mathrm{R} . \mathrm{R}$ सममित है, क्योंकि $\left(\mathrm{L} _{1}, \mathrm{~L} _{2}\right) \in \mathrm{R}$

$$ \begin{array}{ll} \Rightarrow & \mathrm{L} _{1}, \mathrm{~L} _{2} \text { पर लंब है } \\ \Rightarrow & \mathrm{L} _{2}, \mathrm{~L} _{1} \text { पर लंब है } \\ \Rightarrow & \left(\mathrm{L} _{2}, \mathrm{~L} _{1}\right) \in \mathrm{R} \end{array} $$

$\mathrm{R}$ संक्रामक नहीं है। निश्चय ही, यदि $\mathrm{L} _{1}, \mathrm{~L} _{2}$ पर लंब है तथा $\mathrm{L} _{2}$, $\mathrm{L} _{3}$ पर लंब है, तो $\mathrm{L} _{1}, \mathrm{~L} _{3}$ पर कभी भी लंब नहीं हो सकती है। वास्तव में ऐसी दशा में $\mathrm{L} _{1}, \mathrm{~L} _{3}$ के समान्तर होगी। अर्थात्, $\left(\mathrm{L} _{1}, \mathrm{~L} _{2}\right) \in \mathrm{R}$, $\left(\mathrm{L} _{2}, \mathrm{~L} _{3}\right) \in \mathrm{R}$ परंतु $\left(\mathrm{L} _{1}, \mathrm{~L} _{3}\right) \notin \mathrm{R}$

आकृति 1.1

उदाहरण 4 सिद्ध कीजिए कि समुच्चय $\{1,2,3\}$ में $\mathrm{R}=\{(1,1),(2,2)$, $(3,3),(1,2),(2,3)\}$ द्वारा प्रदत्त संबंध स्वतुल्य है, परंतु न तो सममित है और न संक्रामक है।

हल $\mathrm{R}$ स्वतुल्य है क्योंकि $(1,1),(2,2)$ और $(3,3), \mathrm{R}$ के अवयव हैं। $\mathrm{R}$ सममित नहीं है, क्योंकि $(1,2) \in \mathrm{R}$ किंतु $(2,1) \notin \mathrm{R}$. इसी प्रकार $\mathrm{R}$ संक्रामक नहीं है, क्योंकि $(1,2) \in \mathrm{R}$ तथा $(2,3) \in \mathrm{R}$ परंतु $(1,3) \notin \mathrm{R}$

उदाहरण 5 सिद्ध कीजिए कि पूर्णांकों के समुच्चय $\mathbf{Z}$ में $\mathrm{R}=\{(a, b)$ : संख्या $2,(a-b)$ को विभाजित करती है द्वारा प्रदत्त संबंध एक तुल्यता संबंध है।

हल $\mathrm{R}$ स्वतुल्य है, क्योंकि समस्त $a \in \mathbf{Z}$ के लिए $2,(a-a)$ को विभाजित करता है। अत: $(a, a) \in \mathrm{R}$. पुन: यदि $(a, b) \in \mathrm{R}$, तो $2, a-b$ को विभाजित करता है । अतएव $b-a$ को भी 2 विभाजित करता है। अत: $(b, a) \in \mathrm{R}$, जिससे सिद्ध होता है कि $\mathrm{R}$ सममित है। इसी प्रकार, यदि $(a, b) \in \mathrm{R}$ तथा $(b, c) \in \mathrm{R}$, तो $a-b$ तथा $b-c$ संख्या 2 से भाज्य है। अब, $a-c=(a-b)+(b-c)$ सम (even) है (क्यों?)। अतः $(a-c)$ भी 2 से भाज्य है। इससे सिद्ध होता है कि $\mathrm{R}$ संक्रामक है। अतः समुच्चय $\mathrm{Z}$ में $\mathrm{R}$ एक तुल्यता संबंध है।

उदाहरण 5 में, नोट कीजिए कि सभी सम पूर्णांक शून्य से संबंधित हैं, क्योंकि $(0, \pm 2)$, $(0, \pm 4), \ldots$ आदि $\mathrm{R}$ में हैं और कोई भी विषम पूर्णांक 0 से संबंधित नहीं है, क्योंकि $(0, \pm 1)$, $(0, \pm 3), \ldots$ आदि $\mathrm{R}$ में नहीं हैं। इसी प्रकार सभी विषम पूर्णांक 1 से संबंधित हैं और कोई भी सम पूर्णांक 1 से संबंधित नहीं है। अतएव, समस्त सम पूर्णांकों का समुच्चय $\mathrm{E}$ तथा समस्त विषम पूर्णांकों का समुच्चय $\mathrm{O}$ समुच्चय $\mathrm{Z}$ के उप समुच्चय हैं, जो निम्नलिखित प्रतिबंधों को संतुष्ट करते हैं।

(i) $\mathrm{E}$ के समस्त अवयव एक दूसरे से संबंधित हैं तथा $\mathrm{O}$ के समस्त अवयव एक दूसरे से संबंधित हैं।

(ii) $\mathrm{E}$ का कोई भी अवयव $\mathrm{O}$ के किसी भी अवयव से संबंधित नहीं है और विलोमतः $\mathrm{O}$ का कोई भी अवयव $\mathrm{E}$ के किसी भी अवयव से संबंधित नहीं है।

(iii) $\mathrm{E}$ तथा $\mathrm{O}$ असंयुक्त है और $\mathbf{Z}=\mathrm{E} \cup \mathrm{O}$ है।

उपसमुच्चय $\mathrm{E}$, शून्य को अंतर्विष्ट (contain) करने वाला तुल्यता-वर्ग (Equivalence Class) कहलाता है और जिसे प्रतीक $[0]$ से निरूपित करते हैं। इसी प्रकार $O, 1$ को अंतर्विष्ट करने वाला तुल्यता-वर्ग है, जिसे [1] द्वारा निरूपित करते हैं। नोट कीजिए कि $[0] \neq[1],[0]=[2 r]$ और $[1]=[2 r+1], r \in \mathbf{Z}$. वास्तव में, जो कुछ हमने ऊपर देखा है, वह किसी भी समुच्चय $\mathrm{X}$ में एक स्वेच्छ तुल्यता संबंध $\mathrm{R}$ के लिए सत्य होता है। किसी प्रदत्त स्वेच्छ समुच्चय $\mathrm{X}$ में प्रदत्त एक स्वेच्छ (arbitrary) तुल्यता संबंध $\mathrm{R}, \mathrm{X}$ को परस्पर असंयुक्त उपसमुच्चयों $\mathrm{A} _{i}$ में विभाजित कर देता है, जिन्हें $\mathrm{X}$ का विभाजन (Partition) कहते हैं ओर जो निम्नलिखित प्रतिबंधों को संतुष्ट करते हैं:

(i) समस्त $i$ के लिए $\mathrm{A} _{i}$ के सभी अवयव एक दूसरे से संबंधित होते हैं।

(ii) $\mathrm{A} _{i}$ का कोई भी अवयव, $\mathrm{A} _{j}$ के किसी भी अवयव से संबंधित नहीं होता है, जहाँ $i \neq j$

(iii) $\cup \mathrm{A} _{j}=\mathrm{X}$ तथा $\mathrm{A} _{i} \cap \mathrm{A} _{j}=\phi, i \neq j$

उपसमुच्चय $\mathrm{A} _{i}$ तुल्यता-वर्ग कहलाते हैं। इस स्थिति का रोचक पक्ष यह है कि हम विपरीत क्रिया भी कर सकते हैं। उदाहरण के लिए $\mathbf{Z}$ के उन उपविभाजनों पर विचार कीजिए, जो $\mathbf{Z}$ के ऐसे तीन परस्पर असंयुक्त उपसमुच्चयों $\mathrm{A} _{1}, \mathrm{~A} _{2}$ तथा $\mathrm{A} _{3}$ द्वारा प्रदत्त हैं, जिनका सम्मिलन (Union) $\mathbf{Z}$ है,

$$ \begin{aligned} & \mathrm{A} _{1}=\{x \in \mathbf{Z}: x \text { संख्या } 3 \text { का गुणज है }\}=\{\ldots,-6,-3,0,3,6, \ldots\} \\ & \mathrm{A} _{2}=\{x \in \mathbf{Z}: x-1 \text { संख्या } 3 \text { का गुणज है }\}=\{\ldots,-5,-2,1,4,7, \ldots\} \\ & \mathrm{A} _{3}=\{x \in \mathbf{Z}: x-2 \text { संख्या } 3 \text { का गुणज है }\}=\{\ldots,-4,-1,2,5,8, \ldots\} \end{aligned} $$

$\mathbf{Z}$ में एक संबंध $\mathrm{R}=\{(a, b): 3, a-b$ को विभाजित करता है $\}$ परिभाषित कीजिए। उदाहरण 5 में प्रयुक्त तर्क के अनुसार हम सिद्ध कर सकते हैं कि $\mathrm{R}$ एक तुल्यता संबंध हैं। इसके अतिरिक्त $\mathrm{A} _{1}, \mathbf{Z}$ के उन सभी पूर्णांकों के समुच्चय के बराबर है, जो शून्य से संबंधित हैं, $\mathrm{A} _{2}, \mathbf{Z}$ के उन सभी पूर्णांकों के समुच्चय के बराबर है, जो 1 से संबंधित हैं और $\mathrm{A} _{3}, \mathbf{Z}$ के उन सभी पूर्णांकों के समुच्चय बराबर है, जो 2 से संबंधित हैं। अत: $\mathrm{A} _{1}=[0], \mathrm{A} _{2}=[1]$ और $\mathrm{A} _{3}=[2]$. वास्तव में $\mathrm{A} _{1}=[3 r]$, $\mathrm{A} _{2}=[3 r+1]$ और $\mathrm{A} _{3}=[3 r+2]$, जहाँ $r \in \mathbf{Z}$.

उदाहरण 6 मान लीजिए कि समुच्चय $\mathrm{A}=\{1,2,3,4,5,6,7\}$ में $\mathrm{R}=\{(a, b): a$ तथा $b$ दोनों ही या तो विषम हैं या सम हैं द्वारा परिभाषित एक संबंध है। सिद्ध कीजिए कि $\mathrm{R}$ एक तुल्यता संबंध है। साथ ही सिद्ध कीजिए कि उपसमुच्चय $\{1,3,5,7\}$ के सभी अवयव एक दूसरे से संबंधित है, और उपसमुच्चय $\{2,4,6\}$ के सभी अवयव एक दूसरे से संबंधित है, परंतु उपसमुच्चय $\{1,3,5,7\}$ का कोई भी अवयव उपसमुच्चय $\{2,4,6\}$ के किसी भी अवयव से संबंधित नहीं है।

हल $\mathrm{A}$ का प्रदत्त कोई अवयव $a$ या तो विषम है या सम है, अतएव $(a, a) \in \mathrm{R}$. इसके अतिरिक्त $(a, b) \in \mathrm{R} \Rightarrow a$ तथा $b$ दोनों ही, या तो विषम हैं या सम हैं $\Rightarrow(b, a) \in \mathrm{R}$. इसी प्रकार $(a, b) \in \mathrm{R}$ तथा $(b, c) \in \mathrm{R} \Rightarrow$ अवयव $a, b, c$, सभी या तो विषम हैं या सम हैं $\Rightarrow(a, c) \in \mathrm{R}$. अतः $\mathrm{R}$ एक तुल्यता संबंध है। पुन:, $\{1,3,5,7\}$ के सभी अवयव एक दूसरे से संबंधित हैं, क्योंकि इस उपसमुच्चय के सभी अवयव विषम हैं। इसी प्रकार $\{2,4,6$,$\} के सभी अवयव एक दूसरे से$ संबंधित हैं, क्योंकि ये सभी सम हैं। साथ ही उपसमुच्चय $\{1,3,5,7\}$ का कोई भी अवयव $\{2,4,6\}$ के किसी भी अवयव से संबंधित नहीं हो सकता है, क्योंकि $\{1,3,5,7\}$ के अवयव विषम हैं, जब कि $\{2,4,6\}$, के अवयव सम हैं।

प्रश्नावली 1.1

1. निर्धारित कीजिए कि क्या निम्नलिखित संबंधों में से प्रत्येक स्वतुल्य, सममित तथा संक्रामक हैं :

(i) समुच्चय $\mathrm{A}=\{1,2,3, \ldots, 13,14\}$ में संबंध $\mathrm{R}$, इस प्रकार परिभाषित है कि

$$ \mathrm{R}=\{(x, y): 3 x-y=0\} $$

(ii) प्राकृत संख्याओं के समुच्चय $\mathbf{N}$ में $\mathrm{R}=\{(x, y): y=x+5$ तथा $x<4\}$ द्वारा परिभाषित संबंध $\mathrm{R}$.

(iii) समुच्चय $\mathrm{A}=\{1,2,3,4,5,6\}$ में $\mathrm{R}=\{(x, y): y$ भाज्य है $x$ से $\}$ द्वारा परिभाषित संबंध $\mathrm{R}$ है।

(iv) समस्त पूर्णांकों के समुच्चय $\mathbf{Z}$ में $\mathrm{R}=\{(x, y): x-y$ एक पूर्णांक है $\}$ द्वारा परिभाषित संबंध R.

(v) किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध $\mathrm{R}$

(a) $\mathrm{R}=\{(x, y): x$ तथा $y$ एक ही स्थान पर कार्य करते हैं $\}$

(b) $\mathrm{R}=\{(x, y): x$ तथा $y$ एक ही मोहल्ले में रहते हैं $\}$

(c) $\mathrm{R}=\{(x, y): x, y$ से ठीक-ठीक 7 सेमी लंबा है $\}$

(d) $\mathrm{R}=\{(x, y): x, y$ की पत्नी है $\}$

(e) $\mathrm{R}=\{(x, y): x, y$ के पिता हैं $\}$

Show Answer #missing

2. सिद्ध कीजिए कि वास्तविक संख्याओं के समुच्चय $\mathrm{R}$ में $\mathrm{R}=\left\{(a, b): a \leq b^{2}\right\}$, द्वारा परिभाषित संबंध $\mathrm{R}$, न तो स्वतुल्य है, न सममित हैं और न ही संक्रामक है।

Show Answer #missing

3. जाँच कीजिए कि क्या समुच्चय $\{1,2,3,4,5,6\}$ में $\mathrm{R}=\{(a, b): b=a+1\}$ द्वारा परिभाषित संबंध $\mathrm{R}$ स्वतुल्य, सममित या संक्रामक है।

Show Answer #missing

4. सिद्ध कीजिए कि $\mathbf{R}$ में $\mathrm{R}=\{(a, b): a \leq b\}$, द्वारा परिभाषित संबंध $\mathrm{R}$ स्वतुल्य तथा संक्रामक है किंतु सममित नहीं है।

Show Answer #missing

5. जाँच कीजिए कि क्या $\mathbf{R}$ में $\mathrm{R}=\left\{(a, b): a \leq b^{3}\right\}$ द्वारा परिभाषित संबंध स्वतुल्य, सममित अथवा संक्रामक है?

Show Answer #missing

6. सिद्ध कीजिए कि समुच्चय $\{1,2,3\}$ में $\mathrm{R}=\{(1,2),(2,1)\}$ द्वारा प्रदत्त संबंध $\mathrm{R}$ सममित है किंतु न तो स्वतुल्य है और न संक्रामक है।

Show Answer #missing

7. सिद्ध कीजिए कि किसी कॉलेज के पुस्तकालय की समस्त पुस्तकों के समुच्चय $\mathrm{A}$ में $\mathrm{R}=\{(x, y): x$ तथा $y$ में पेजों की संख्या समान है $\}$ द्वारा प्रदत्त संबंध $\mathrm{R}$ एक तुल्यता संबंध है।

Show Answer #missing

8. सिद्ध कीजिए कि $\mathrm{A}=\{1,2,3,4,5\}$ में, $\mathrm{R}=\{(a, b):|a-b|$ सम है $\}$ द्वारा प्रदत्त संबंध $\mathrm{R}$ एक तुल्यता संबंध है। प्रमाणित कीजिए कि $\{1,3,5\}$ के सभी अवयव एक दूसरे से संबंधित हैं और समुच्चय $\{2,4\}$ के सभी अवयव एक दूसरे से संबंधित हैं परंतु $\{1,3,5\}$ का कोई भी अवयव $\{2,4\}$ के किसी अवयव से संबंधित नहीं है।

Show Answer #missing

9. सिद्ध किजिए कि समुच्चय $\mathrm{A}=\{x \in \mathbf{Z}: 0 \leq x \leq 12\}$, में दिए गए निम्नलिखित संबंधों $\mathrm{R}$ में से प्रत्येक एक तुल्यता संबंध है:

(i) $\mathrm{R}=\{(a, b):|a-b|, 4$ का एक गुणज है $\}$,

(ii) $\mathrm{R}=\{(a, b): a=b\}$,

प्रत्येक दशा में 1 से संबंधित अवयवों को ज्ञात कीजिए।

Show Answer #missing

10. ऐसे संबंध का उदाहरण दीजिए, जो

(i) सममित हो परंतु न तो स्वतुल्य हो और न संक्रामक हो।

(ii) संक्रामक हो परंतु न तो स्वतुल्य हो और न सममित हो। .

(iii) स्वतुल्य तथा सममित हो किंतु संक्रामक न हो।

(iv) स्वतुल्य तथा संक्रामक हो किंतु सममित न हो।

(v) सममित तथा संक्रामक हो किंतु स्वतुल्य न हो।

Show Answer #missing

11. सिद्ध कीजिए कि किसी समतल में स्थित बिंदुओं के समुच्चय में, $\mathrm{R}=\{(\mathrm{P}, \mathrm{Q})$ : बिंदु $\mathrm{P}$ की मूल बिंदु से दूरी, बिंदु $\mathrm{Q}$ की मूल बिंदु से दूरी के समान है $\}$ द्वारा प्रदत्त संबंध $\mathrm{R}$ एक तुल्यता संबंध है। पुनः सिद्ध कीजिए कि बिंदु $\mathrm{P} \neq(0,0)$ से संबंधित सभी बिंदुओं का समुच्चय $\mathrm{P}$ से होकर जाने वाले एक ऐसे वृत्त को निरूपित करता है, जिसका केंद्र मूलबिंदु पर है।

Show Answer #missing

12. सिद्ध कीजिए कि समस्त त्रिभुजों के समुच्चय $\mathrm{A}$ में, $\mathrm{R}=\left\{\left(\mathrm{T} _{1}, \mathrm{~T} _{2}\right): \mathrm{T} _{1}, \mathrm{~T} _{2}\right.$ के समरूप है $\}$ द्वारा परिभाषित संबंध $R$ एक तुल्यता संबंध है। भुजाओं $3,4,5$ वाले समकोण त्रिभुज $T _{1}$, भुजाओं $5,12,13$ वाले समकोण त्रिभुज $T _{2}$ तथा भुजाओं $6,8,10$ वाले समकोण त्रिभुज $\mathrm{T} _{3}$ पर विचार कीजिए। $\mathrm{T} _{1}, \mathrm{~T} _{2}$ और $\mathrm{T} _{3}$ में से कौन से त्रिभुज परस्पर संबंधित हैं?

Show Answer #missing

13. सिद्ध कीजिए कि समस्त बहुभुजों के समुच्चय $A$ में, $R=\left\{\left(P _{1}, P _{2}\right): P _{1}\right.$ तथा $P _{2}$ की भुजाओं की संख्या समान है प्रकार से परिभाषित संबंध $\mathrm{R}$ एक तुल्यता संबंध है। 3,4 , और 5 लंबाई की भुजाओं वाले समकोण त्रिभुज से संबंधित समुच्चय $\mathrm{A}$ के सभी अवयवों का समुच्चय ज्ञात कीजिए।

Show Answer #missing

14. मान लीजिए कि $\mathrm{XY}$-तल में स्थित समस्त रेखाओं का समुच्चय $\mathrm{L}$ है और $\mathrm{L}$ में $\mathrm{R}=\left\{\left(\mathrm{L} _{1}, \mathrm{~L} _{2}\right)\right.$ $: \mathrm{L} _{1}$ समान्तर है $\mathrm{L} _{2}$ के \} द्वारा परिभाषित संबंध $\mathrm{R}$ है। सिद्ध कीजिए कि $\mathrm{R}$ एक तुल्यता संबंध है। रेखा $y=2 x+4$ से संबंधित समस्त रेखाओं का समुच्चय ज्ञात कीजिए।

Show Answer #missing

15. मान लीजिए कि समुच्चय $\{1,2,3,4\}$ में, $\mathrm{R}=\{(1,2),(2,2),(1,1),(4,4)$, $(1,3),(3,3),(3,2)\}$ द्वारा परिभाषित संबंध $\mathrm{R}$ है। निम्नलिखित में से सही उत्तर चुनिए।

(A) $\mathrm{R}$ स्वतुल्य तथा सममित है किंतु संक्रामक नहीं है।

(B) $\mathrm{R}$ स्वतुल्य तथा संक्रामक है किंतु सममित नहीं है।

(C) $\mathrm{R}$ सममित तथा संक्रामक है किंतु स्वतुल्य नहीं है।

(D) $\mathrm{R}$ एक तुल्यता संबंध है।

Show Answer #missing

16. मान लीजिए कि समुच्चय $\mathbf{N}$ में, $\mathrm{R}=\{(a, b): a=b-2, b>6\}$ द्वारा प्रदत्त संबंध $\mathrm{R}$ है। निम्नलिखित में से सही उत्तर चुनिए: (A) $(2,4) \in \mathrm{R}$ (B) $(3,8) \in \mathrm{R}$ (C) $(6,8) \in \mathrm{R}$ (D) $(8,7) \in \mathrm{R}$

Show Answer #missing

1.3 फलनों के प्रकार (Types of Functions)

फलनों की अवधारणा, कुछ विशेष फलन जैसे तत्समक फलन, अचर फलन, बहुपद फलन, परिमेय फलन, मापांक फलन, चिहन फलन आदि का वर्णन उनके आलेखों सहित कक्षा XI में किया जा चुका है।

दो फलनों के योग, अंतर, गुणा तथा भाग का भी अध्ययन किया जा चुका है। क्योंकि फलन की संकल्पना गणित तथा अध्ययन की अन्य शाखाओं (Disciplines) में सर्वाधिक महत्वपूर्ण है, इसलिए हम फलन के बारे में अपना अध्ययन वहाँ से आगे बढ़ाना चाहते हैं, जहाँ इसे पहले समाप्त किया था। इस अनुच्छेद में, हम विभिन्न प्रकार के फलनों का अध्ययन करेंगे।

निम्नलिखित आकृतियों द्वारा दर्शाए गए फलन $f _{1}, f _{2}, f _{3}$ तथा $f _{4}$ पर विचार कीजिए।

आकृति 1.2 में हम देखते हैं कि $\mathrm{X} _{1}$ के भिन्न (distinct) अवयवों के, फलन $f _{1}$ के अंतर्गत, प्रतिबिंब भी भिन्न हैं, किंतु $f _{2}$ के अंतर्गत दो भिन्न अवयवों 1 तथा 2 के प्रतिबिंब एक ही हैं नामतः $b$ है। पुन: $\mathrm{X} _{2}$ में कुछ ऐसे अवयव है जैसे $e$ तथा $f$ जो $f _{1}$ के अंतर्गत $\mathrm{X} _{1}$ के किसी भी अवयव के प्रतिबिंब नहीं हैं, जबकि $f _{3}$ के अंतर्गत $\mathrm{X} _{3}$ के सभी अवयव $\mathrm{X} _{1}$ के किसी न किसी अवयव के प्रतिबिंब हैं। उपर्युक्त परिचर्चा से हमें निम्नलिखित परिभाषाएँ प्राप्त होती हैं।

परिभाषा 5 एक फलन $f: \mathrm{X} \rightarrow \mathrm{Y}$ एकैकी (one-one) अथवा एकैक (injective) फलन कहलाता है, यदि $f$ के अंतर्गत $\mathrm{X}$ के भिन्न अवयवों के प्रतिबिंब भी भिन्न होते हैं, अर्थात् प्रत्येक $x _{1}, x _{2} \in \mathrm{X}$, के लिए $f\left(x _{1}\right)=f\left(x _{2}\right)$ का तात्पर्य है कि $x _{1}=x _{2}$, अन्यथा $f$ एक बहुएक (many-one) फलन कहलाता है।

आकृति 1.2 (i) में फलन $f _{1}$ एकैकी फलन है तथा आकृति 1.2 (ii) में $f _{2}$ एक बहुएक फलन है।

परिभाषा 6 फलन $f: \mathrm{X} \rightarrow \mathrm{Y}$ आच्छादक (onto) अथवा आच्छादी (surjective) कहलाता है, यदि $f$ के अंतर्गत $\mathrm{Y}$ का प्रत्येक अवयव, $\mathrm{X}$ के किसी न किसी अवयव का प्रतिबिंब होता है, अर्थात् प्रत्येक $y \in \mathrm{Y}$, के लिए, $\mathrm{X}$ में एक ऐसे अवयव $x$ का अस्तित्व है कि $f(x)=y$.

आकृति 1.2 (iii) में, फलन $f _{3}$ आच्छादक है तथा आकृति 1.2 (i) में, फलन $f _{1}$ आच्छादक नहीं है, क्योंकि $\mathrm{X} _{2}$ के अवयव $e$, तथा $f, f _{1}$ के अंतर्गत $\mathrm{X} _{1}$ के किसी भी अवयव के प्रतिबिंब नहीं हैं।

आकृति 1.2

टिप्पणी $f: \mathrm{X} \rightarrow \mathrm{Y}$ एक आच्छादक फलन है, यदि और केवल यदि $f$ का परिसर (range) $=\mathrm{Y}$.

परिभाषा 7 एक फलन $f: \mathrm{X} \rightarrow \mathrm{Y}$ एक एकैकी तथा आच्छादक (one-one and onto) अथवा एकैकी आच्छादी (bijective) फलन कहलाता है, यदि $f$ एकैकी तथा आच्छादक दोनों ही होता है।

आकृति 1.2 (iv) में, फलन $f _{4}$ एक एकैकी तथा आच्छादी फलन है।

उदाहरण 7 मान लीजिए कि कक्षा $X$ के सभी 50 विद्यार्थियों का समुच्चय $A$ है। मान लीजिए $f: \mathbf{A} \rightarrow \mathbf{N}, f(x)=$ विद्यार्थी $x$ का रोल नंबर, द्वारा परिभाषित एक फलन है। सिद्ध कीजिए कि $f$ एकैकी है किंतु आच्छादक नहीं है।

हल कक्षा के दो भिन्न-भिन्न विद्यार्थियों के रोल नंबर समान नहीं हो सकते हैं। अतएव $f$ एकैकी है। व्यापकता की बिना क्षति किए हम मान सकते हैं कि विद्यार्थियों के रोल नंबर 1 से 50 तक हैं। इसकातात्पर्य यह हुआ कि $\mathbf{N}$ का अवयव 51 , कक्षा के किसी भी विद्यार्थी का रोल नंबर नहीं है, अतएव $f$ के अंतर्गत 51, $\mathrm{A}$ के किसी भी अवयव का प्रतिबिंब नहीं है। अतः $f$ आच्छादक नहीं है।

उदाहरण 8 सिद्ध कीजिए कि $f(x)=2 x$ द्वारा प्रदत्त फलन $f: \mathbf{N} \rightarrow \mathbf{N}$, एकैकी है किंतु आच्छादक नहीं है।

हल फलन $f$ एकैकी है, क्योंकि $f\left(x _{1}\right)=f\left(x _{2}\right) \Rightarrow 2 x _{1}=2 x _{2} \Rightarrow x _{1}=x _{2}$. पुन:, $f$ आच्छदक नहीं है, क्योंकि $1 \in \mathbf{N}$, के लिए $\mathbf{N}$ में ऐसे किसी $x$ का अस्तित्व नहीं है ताकि $f(x)=2 x=1$ हो।

उदाहरण 9 सिद्ध कीजिए कि $f(x)=2 x$ द्वारा प्रदत्त फलन $f: \mathbf{R} \rightarrow \mathbf{R}$, एकैकी तथा आच्छादक है। हल $f$ एकैकी है, क्योंकि $f\left(x _{1}\right)=f\left(x _{2}\right) \Rightarrow 2 x _{1}=2 x _{2} \Rightarrow x _{1}=x _{2}$. साथ ही, $\mathbf{R}$ में प्रदत्त किसी भी वास्तविक संख्या $y$ के लिए $\mathbf{R}$ में $\frac{y}{2}$ का अस्तित्व है, जहाँ $f\left(\frac{y}{2}\right)=2 \cdot\left(\frac{y}{2}\right)=y$ है। अतः $f$ आच्छादक भी है।

आकृति 1.3

उदाहरण 10 सिद्ध किजिए कि $f(1)=f(2)=1$ तथा $x>2$ के लिए $f(x)=x-1$ द्वारा प्रदत्त फलन $f: \mathbf{N} \rightarrow \mathbf{N}$, आच्छादक तो है किंतु एकैकी नहीं है।

हल $ f $ एकैकी नहीं है, क्योंकि $f(1)=f(2)=1$, परंतु $f$ आच्छादक है, क्योंकि किसी प्रदत्त $y \in \mathbf{N}, y \neq 1$, के लिए, हम $x$ को $y+1$ चुन लेते हैं, ताकि $f(y+1)=y+1-1=y$ साथ ही $1 \in \mathbf{N}$ के लिए $f(1)=1$ है।

उदाहरण 11 सिद्ध कीजिए कि $f(x)=x^{2}$ द्वारा परिभाषित फलन $f: \mathbf{R} \rightarrow \mathbf{R}$, न तो एकैकी है और न आच्छादक है।

हल क्योंकि $f(-1)=1=f(1)$, इसलिए $f$ एकैकी नहीं है। पुनः सहप्रांत $\mathbf{R}$ का अवयव -2 , प्रांत $\mathbf{R}$ के किसी भी अवयव $x$ का प्रतिबिंब नहीं है (क्यों?)। अतः $f$ आच्छादक नहीं है।

उदाहरण 12 सिद्ध कीजिए कि नीचे परिभाषित फलन $f: \mathbf{N} \rightarrow \mathbf{N}$, एकैकी तथा आच्छादक दोनों ही है

$$ f(x)=\begin{aligned} & x+1, \text { यदि } x \text { विषम है } \\ & x-1, \text { यदि } x \text { सम है } \end{aligned} $$

आकृति 1.4

हल मान लीजिए $f\left(x _{1}\right)=f\left(x _{2}\right)$ है। नोट कीजिए कि यदि $x _{1}$ विषम है तथा $x _{2}$ सम है, तो $x _{1}+1$ $=x _{2}-1$, अर्थात् $x _{2}-x _{1}=2$ जो असम्भव है। इस प्रकार $x _{1}$ के सम तथा $x _{2}$ के विषम होने की भी संभावना नहीं है। इसलिए $x _{1}$ तथा $x _{2}$ दोनों ही या तो विषम होंगे या सम होंगे। मान लीजिए कि $x _{1}$ तथा $x _{2}$ दोनों विषम हैं, तो $f\left(x _{1}\right)=f\left(x _{2}\right) \Rightarrow x _{1}+1=x _{2}+1 \Rightarrow x _{1}=x _{2}$. इसी प्रकार यदि $x _{1}$ तथा $x _{2}$ दोनों सम हैं, तो भी $f\left(x _{1}\right)=f\left(x _{2}\right) \Rightarrow x _{1}-1=x _{2}-1 \Rightarrow x _{1}=x _{2}$. अत: $f$ एकैकी है। साथ ही सहप्रांत $\mathbf{N}$ की कोई भी विषम संख्या $2 r+1$, प्रांत $\mathbf{N}$ की संख्या $2 r+2$ का प्रतिबिंब है और सहप्रांत $\mathbf{N}$ की कोई भी सम संख्या $2 r, \mathbf{N}$ की संख्या $2 r-1$ का प्रतिबिंब है। अतः $f$ आच्छादक है।

उदाहरण 13 सिद्ध कीजिए कि आच्छादक फलन $f:\{1,2,3\} \rightarrow\{1,2,3\}$ संदैव एकैकी फलन होता है।

हल मान लीजिए कि $f$ एकैकी नहीं है। अतः इसके प्रांत में कम से कम दो अवयव मान लिया कि 1 तथा 2 का अस्तित्व है जिनके सहप्रांत में प्रतिबिंब समान है। साथ ही $f$ के अंतर्गत 3 का प्रतिबिंब केवल एक ही अवयव है। अतः, परिसर में, सहप्रांत $\{1,2,3\}$ के, अधिकतम दो ही अवयव हो सकते हैं, जिससे प्रकट होता है कि $f$ आच्छादक नहीं है, जो कि एक विरोधोक्ति है। अतः $f$ को एकैकी होना ही चाहिए।

उदाहरण 14 सिद्ध कीजिए कि एक एकैकी फलन $f:\{1,2,3\} \rightarrow\{1,2,3\}$ अनिवार्य रूप से आच्छादक भी है।

हल चूँकि $f$ एकैकी है, इसलिए $\{1,2,3\}$ के तीन अवयव $f$ के अंतर्गत सहप्रांत $\{1,2,3\}$ के तीन अलग-अलग अवयवों से क्रमशः संबंधित होंगे। अतः $f$ आच्छादक भी है।

टिप्पणी उदाहरण 13 तथा 14 में प्राप्त परिणाम किसी भी स्वेच्छ परिमित (finite) समुच्चय $\mathrm{X}$, के लिए सत्य है, अर्थात् एक एकैकी फलन $f: \mathrm{X} \rightarrow \mathrm{X}$ अनिवार्यतः आच्छादक होता है तथा प्रत्येक परिमित समुच्चय $\mathrm{X}$ के लिए एक आच्छादक फलन $f: \mathrm{X} \rightarrow \mathrm{X}$ अनिवार्यतः एकैकी होता है। इसके विपरीत उदाहरण 8 तथा 10 से स्पष्ट होता है कि किसी अपरिमित (Infinite) समुच्चय के लिए यह सही नहीं भी हो सकता है। वास्तव में यह परिमित तथा अपरिमित समुच्चयों के बीच एक अभिलक्षणिक (characteristic) अंतर है।

प्रश्नावली 1.2

1. सिद्ध कीजिए कि $f(x)=\frac{1}{x}$ द्वारा परिभाषित फलन $f: \mathbf{R} _{\ast} \rightarrow \mathbf{R} _{\ast}$ एकैकी तथा आच्छादक है, जहाँ $\mathbf{R} _{\ast}$ सभी ऋणेतर वास्तविक संख्याओं का समुच्चय है। यदि प्रांत $\mathbf{R} _{\ast}$ को $\mathbf{N}$ से बदल दिया जाए, जब कि सहप्रांत पूर्ववत $\mathbf{R} _{\ast}$ ही रहे, तो भी क्या यह परिणाम सत्य होगा?

Show Answer #missing

2. निम्नलिखित फलनों की एकैक (Injective) तथा आच्छादी (Surjective) गुणों की जाँच कीजिए:

(i) $f(x)=x^{2}$ द्वारा प्रदत्त $f: \mathbf{N} \rightarrow \mathbf{N}$ फलन है।

(ii) $f(x)=x^{2}$ द्वारा प्रदत्त $f: \mathbf{Z} \rightarrow \mathbf{Z}$ फलन है।

(iii) $f(x)=x^{2}$ द्वारा प्रदत्त $f: \mathbf{R} \rightarrow \mathbf{R}$ फलन है।

(iv) $f(x)=x^{3}$ द्वारा प्रदत्त $f: \mathbf{N} \rightarrow \mathbf{N}$ फलन है।

(v) $f(x)=x^{3}$ द्वारा प्रदत्त $f: \mathbf{Z} \rightarrow \mathbf{Z}$ फलन है।

Show Answer #missing

3. सिद्ध कीजिए कि $f(x)=[x]$ द्वारा प्रदत्त महत्तम पूर्णांक फलन $f: \mathbf{R} \rightarrow \mathbf{R}$, न तो एकैकी है और न आच्छादक है, जहाँ $[x], x$ से कम या उसके बराबर महत्तम पूर्णांक को निरूपित करता है।

Show Answer #missing

4. सिद्ध कीजिए कि $f(x)=|x|$ द्वारा प्रदत्त मापांक फलन $f: \mathbf{R} \rightarrow \mathbf{R}$, न तो एकैकी है और न आच्छादक है, जहाँ $|x|$ बराबर $x$, यदि $x$ धन या शून्य है तथा $|x|$ बराबर $-x$, यदि $x$ ॠण है।

Show Answer #missing

5. सिद्ध कीजिए कि $f: \mathbf{R} \rightarrow \mathbf{R}$,

$$ \begin{array}{r} 1, \text { यदि } x>0 \\ f(x)=0, \text { यदि } x=0 \\ 1, \text { यदि } x<0 \end{array} $$

द्वारा प्रदत्त चिहन फलन न तो एकैकी है और न आच्छादक है।

Show Answer #missing

6. मान लीजिए कि $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{4,5,6,7\}$ तथा $f=\{(1,4),(2,5),(3,6)\} \mathrm{A}$ से $\mathrm{B}$ तक एक फलन है। सिद्ध कीजिए कि $f$ एकैकी है।

Show Answer #missing

7. निम्नलिखित में से प्रत्येक स्थिति में बतलाइए कि क्या दिए हुए फलन एकैकी, आच्छादक अथवा एकैकी आच्छादी (bijective) हैं। अपने उत्तर का औचित्य भी बतलाइए।

(i) $f(x)=3-4 x$ द्वारा परिभाषित फलन $f: \mathbf{R} \rightarrow \mathbf{R}$ है।

(ii) $f(x)=1+x^{2}$ द्वारा परिभाषित फलन $f: \mathbf{R} \rightarrow \mathbf{R}$ है।

Show Answer #missing

8. मान लीजिए कि $\mathrm{A}$ तथा $\mathrm{B}$ दो समुच्चय हैं। सिद्ध कीजिए कि $f: \mathrm{A} \times \mathrm{B} \rightarrow \mathrm{B} \times \mathrm{A}$, इस प्रकार कि $f(a, b)=(b, a)$ एक एकैकी आच्छादी (bijective) फलन है।

Show Answer #missing

9. मान लीजिए कि समस्त $n \in \mathbf{N}$ के लिए, $f(n)= \begin{cases}\frac{n+1}{2}, & \text { यदि } n \text { विषम है } \\ \frac{n}{2} & \text {, यदि } n \text { सम है }\end{cases}$

द्वारा परिभाषित एक फलन $f: \mathbf{N} \rightarrow \mathbf{N}$ है। बतलाइए कि क्या फलन $f$ एकैकी आच्छादी (bijective) है। अपने उत्तर का औचित्य भी बतलाइए।

Show Answer #missing

10. मान लीजिए कि $\mathrm{A}=\mathbf{R}-\{3\}$ तथा $\mathrm{B}=\mathbf{R}-\{1\}$ हैं। $f(x)=\left(\frac{x-2}{x-3}\right)$ द्वारा परिभाषित फलन $f: \mathrm{A} \rightarrow \mathrm{B}$ पर विचार कीजिए। क्या $f$ एकैकी तथा आच्छादक है? अपने उत्तर का औचित्य भी बतलाइए।

Show Answer #missing

11. मान लीजिए कि $f: \mathbf{R} \rightarrow \mathbf{R}, f(x)=x^{4}$ द्वारा परिभाषित है। सही उत्तर का चयन कीजिए।

(A) $f$ एकैकी आच्छादक है

(B) $f$ बहुएक आच्छादक है

(C) $f$ एकैकी है किंतु आच्छादक नहीं है

(D) $f$ न तो एकैकी है और न आच्छादक है।

Show Answer #missing

12. मान लीजिए कि $f(x)=3 x$ द्वारा परिभाषित फलन $f: \mathbf{R} \rightarrow \mathbf{R}$ है। सही उत्तर चुनिए:

(A) $f$ एकैकी आच्छादक है

(B) $f$ बहुएक आच्छादक है

(C) $f$ एकैकी है परंतु आच्छादक नहीं है

(D) $f$ न तो एकैकी है और न आच्छादक है

Show Answer #missing

1.4 फलनों का संयोजन तथा व्युत्क्रमणीय फलन (Composition of Functions and Invertible Function)

परिभाषा 8 मान लीजिए कि $f: \mathrm{A} \rightarrow \mathrm{B}$ तथा $g: \mathrm{B} \rightarrow \mathrm{C}$ दो फलन हैं। तब $f$ और $g$ का संयोजन, $g \circ f$ द्वारा निरूपित होता है, तथा फलन $g \circ f: \mathrm{A} \rightarrow \mathrm{C}, g \circ f(x)=g(f(x)), \forall x \in \mathrm{A}$ द्वारा परिभाषित होता है।

आकृति 1.5

उदाहरण 15 मान लीजिए कि $f:\{2,3,4,5\} \rightarrow\{3,4,5,9\}$ और $g:\{3,4,5,9\} \rightarrow 7,11,15\}$ दो फलन इस प्रकार हैं कि $f(2)=3, f(3)=4, f(4)=f(5)=5$ और $g(3)=g(4)=7$ तथा $g(5)=g(9)=11$, तो $g$ of ज्ञात कीजिए।

हल यहाँ $g \circ f(2)=g(f(2))=g(3)=7, \operatorname{gof}(3)=g(f(3))=g(4)=7, g \circ f(4)=g(f(4))$ $=g(5)=11$ और $g \circ f(5)=g(5)=11$.

उदाहरण 16 यदि $f: \mathbf{R} \rightarrow \mathbf{R}$ तथा $g: \mathbf{R} \rightarrow \mathbf{R}$ फलन क्रमशः $f(x)=\cos x$ तथा $g(x)=3 x^{2}$ द्वारा परिभाषित है तो $g \circ f$ और $f \circ g$ ज्ञात कीजिए। सिद्ध कीजिए $g \circ f \neq f \circ g$.

हल यहाँ $g \circ f(x)=g(f(x))=g(\cos x)=3(\cos x)^{2}=3 \cos ^{2} x$. इसी प्रकार, $f \circ g(x)=$ $f(g(x))=f\left(3 x^{2}\right)=\cos \left(3 x^{2}\right)$ हैं। नोट कीजिए कि $x=0$ के लिए $3 \cos ^{2} x \neq \cos 3 x^{2}$ है। अत: gof $\neq$ fog. उपर्युक्त परिचर्चा, उदाहरण 22 तथा टिप्पणी निम्नलिखित परिभाषा के लिए प्रेरित करते हैं:

परिभाषा 9 फलन $f: \mathrm{X} \rightarrow \mathrm{Y}$ व्युत्क्रमणीय (Invertible) कहलाता है, यदि एक फलन $g: \mathrm{Y} \rightarrow \mathrm{X}$ का अस्तित्व इस प्रकार है कि $g \circ f=\mathrm{I} _{\mathrm{X}}$ तथा $f \circ g=\mathrm{I} _{\mathrm{Y}}$ है। फलन $g$ को फलन $f$ का प्रतिलोम (Inverse) कहते हैं और इसे प्रतीक $f^{-1}$ द्वारा प्रकट करते हैं।

अतः, यदि $f$ व्युत्क्रमणीय है, तो $f$ अनिवार्यतः एकैकी तथा आच्छादक होता है और विलोमतः, यदि $f$ एकैकी तथा आच्छादक है, तो $f$ अनिवार्यतः व्युत्क्रमणीय होता है। यह तथ्य, $f$ को एकैकी तथा आच्छादक सिद्ध करके, व्युत्क्रमणीय प्रमाणित करने में महत्वपूर्ण रूप से सहायक होता है, विशेष रूप से जब $f$ का प्रतिलोम वास्तव में ज्ञात नहीं करना हो।

उदाहरण 17 मान लीजिए कि $f: \mathbf{N} \rightarrow \mathrm{Y}, f(x)=4 x+3$, द्वारा परिभाषित एक फलन है, जहाँ $\mathrm{Y}=\{y \in \mathbf{N}: y=4 x+3$ किसी $x \in \mathbf{N}$ के लिए $\}$ । सिद्ध कीजिए कि $f$ व्युत्क्रमणीय है। प्रतिलोम फलन भी ज्ञात कीजिए।

हल$\mathrm{Y}$ के किसी स्वेच्छ अवयव $y$ पर विचार कीजिए। $\mathrm{Y}$, की परिभाषा द्वारा, प्रांत $\mathbf{N}$ के किसी अवयव $x$ के लिए $y=4 x+3$ है। इससे निष्कर्ष निकलता है कि $x=\frac{(y-3)}{4}$ है। अब $g(y)=\frac{(y-3)}{4}$ द्वारा $g: \mathrm{Y} \rightarrow \mathbf{N}$ को परिभाषित कीजिए। इस प्रकार

$g \circ f(x)=g(f(x))=g(4 x+3)=\frac{(4 x+3-3)}{4}=x$ तथा $f \circ g(y)=f(g(y))=f\left(\frac{(y-3)}{4}\right)=\frac{4(y-3)}{4}+3=y-3+3=y$ है। इससे स्पष्ट होता है कि $g \circ f=\mathrm{I} _{\mathrm{N}}$ तथा $f \circ g=\mathrm{I} _{\mathrm{Y}}$, जिसका तात्पर्य यह हुआ कि $f$ व्युत्क्रमणीय है और फलन $g$ फलन $f$ का प्रतिलोम है।

विविध उदाहरण

उदाहरण 18 यदि $R _{1}$ तथा $R _{2}$ समुच्चय $A$ में तुल्यता संबंध हैं, तो सिद्ध कीजिए कि $R _{1} \cap R _{2}$ भी एक तुल्यता संबंध है।

हलक्योंकि $\mathrm{R} _{1}$ तथा $\mathrm{R} _{2}$ तुल्यता संबंध है इसलिए $(a, a) \in \mathrm{R} _{1}$, तथा $(a, a) \in \mathrm{R} _{2}, \forall a \in \mathrm{A}$ इसका तात्पर्य है कि $(a, a) \in \mathrm{R} _{1} \cap \mathrm{R} _{2}, \forall a$, जिससे सिद्ध होता है कि $\mathrm{R} _{1} \cap \mathrm{R} _{2}$ स्वतुल्य है। पुन: $(a, b) \in \mathrm{R} _{1} \cap \mathrm{R} _{2} \Rightarrow(a, b) \in \mathrm{R} _{1}$ तथा $(a, b) \in \mathrm{R} _{2} \Rightarrow(b, a) \in \mathrm{R} _{1}$ तथा $(b, a) \in \mathrm{R} _{2} \Rightarrow$ $(b, a) \in \mathrm{R} _{1} \cap \mathrm{R} _{2}$, अत: $\mathrm{R} _{1} \cap \mathrm{R} _{2}$ सममित है। इसी प्रकार $(a, b) \in \mathrm{R} _{1} \cap \mathrm{R} _{2}$ तथा $(b, c) \in \mathrm{R} _{1} \cap \mathrm{R} _{2}$ $\Rightarrow(a, c) \in \mathrm{R} _{1}$ तथा $(a, c) \in \mathrm{R} _{2} \Rightarrow(a, c) \in \mathrm{R} _{1} \cap \mathrm{R} _{2}$. इससे सिद्ध होता है कि $\mathrm{R} _{1} \cap \mathrm{R} _{2}$ संक्रामक है। अत: $\mathrm{R} _{1} \cap \mathrm{R} _{2}$ एक तुल्यता संबंध है।

उदाहरण 19 मान लीजिए कि समुच्चय A में धन पूर्णांकों के क्रमित युग्मों (ordered pairs)का एक संबंध $\mathrm{R},(x, y) \mathrm{R}(u, v)$, यदि और केवल यदि, $x v=y u$ द्वारा परिभाषित है। सिद्ध कीजिए कि $\mathrm{R}$ एक तुल्यता संबंध है।

हल स्पष्टतया $(x, y) \mathrm{R}(x, y), \forall(x, y) \in \mathrm{A}$, क्योंकि $x y=y x$ है। इससे स्पष्ट होता है कि $\mathrm{R}$ स्वतुल्य है। पुन: $(x, y) \mathrm{R}(u, v) \Rightarrow x v=y u \Rightarrow u y=v x$ और इसलिए $(u, v) \mathrm{R}(x, y)$ है। इससे स्पष्ट होता है कि $\mathrm{R}$ सममित है। इसी प्रकार $(x, y) \mathrm{R}(u, v)$ तथा $(u, v) \mathrm{R}(a, b) \Rightarrow x v=y u$ तथा $u b=v a \Rightarrow x v \frac{a}{u}=y u \frac{a}{u} \Rightarrow x v \frac{b}{v}=y u \frac{a}{u} \Rightarrow x b=y a$ और इसलिए $(x, y) \mathrm{R}(a, b)$ है। अतएव $\mathrm{R}$ संक्रामक है। अत: $\mathrm{R}$ एक तुल्यता संबंध है।

उदाहरण 20 मान लीजिए कि $\mathrm{X}=\{1,2,3,4,5,6,7,8,9\}$ है। मान लीजिए कि $\mathrm{X}$ में $\mathrm{R} _{1}=\{(x, y): x-y$ संख्या 3 से भाज्य है $\}$ द्वारा प्रदत्त एक संबंध $\mathrm{R} _{1}$ है तथा $\mathrm{R} _{2}=\{(x, y):\{x, y\}$ $\subset\{1,4,7\}$ या $\{x, y\} \subset\{2,5,8\}$ या $\left\{(x, y\} \subset\{3,6,9\}\right.$ द्वारा प्रदत्त $\mathrm{X}$ में एक अन्य संबंध $\mathrm{R} _{2}$ है। सिद्ध कीजिए कि $\mathrm{R} _{1}=\mathrm{R} _{2}$ है।

हल नोट कीजिए कि $\{1,4,7\},\{2,5,8\}$ तथा $\{3,6,9\}$ समुच्चयों में से प्रत्येक का अभिलक्षण (characterstic) यह है कि इनके किसी भी दो अवयवों का अंतर 3 का एक गुणज है। इसलिए $(x, y) \in \mathrm{R} _{1} \Rightarrow x-y$ संख्या 3 का गुणज है $\Rightarrow\{x, y\} \subset\{1,4,7\}$ या $\{x, y\} \subset\{2,5,8\}$ या $\{x, y\} \subset\{3,6,9\} \Rightarrow(x, y) \in \mathrm{R} _{2}$, अत: $\mathrm{R} _{1} \subset \mathrm{R} _{2}$. इसी प्रकार $\{x, y\} \in \mathrm{R} _{2} \Rightarrow\{x, y\} \subset$ $\{1,4,7\}$ या $\{x, y\} \subset\{2,5,8\}$ या $\{x, y\} \subset\{3,6,9\} \Rightarrow x-y$ संख्या 3 से भाज्य है $\Rightarrow\{x, y\}$ $\in \mathrm{R} _{1}$. इससे स्पष्ट होता है कि $\mathrm{R} _{2} \subset \mathrm{R} _{1}$. अत: $\mathrm{R} _{1}=\mathrm{R} _{2}$ है।

उदाहरण 21 मान लीजिए कि $f: \mathrm{X} \rightarrow \mathrm{Y}$ एक फलन है। $\mathrm{X}$ में $\mathrm{R}=\{(a, b): f(a)=f(b)\}$ द्वारा प्रदत्त एक संबंध $\mathrm{R}$ परिभाषित कीजिए। जाँचिए कि क्या $\mathrm{R}$ एक तुल्यता संबंध है।

हल प्रत्येक $a \in \mathrm{X}$ के लिए $(a, a) \in \mathrm{R}$, क्योंकि $f(a)=f(a)$, जिससे स्पष्ट होता है कि $\mathrm{R}$ स्वतुल्य है। इसी प्रकार, $(a, b) \in \mathrm{R} \Rightarrow f(a)=f(b) \Rightarrow f(b)=f(a) \Rightarrow(b, a) \in \mathrm{R}$. इसलिए $\mathrm{R}$ सममित है। पुन: $(a, b) \in \mathrm{R}$ तथा $(b, c) \in \mathrm{R} \Rightarrow f(a)=f(b)$ तथा $f(b)=f(c) \Rightarrow f(a)=f(c) \Rightarrow$ $(a, c) \in \mathrm{R}$, जिसका तात्पर्य है कि $\mathrm{R}$ संक्रामक है। अतः $\mathrm{R}$ एक तुल्यता संबंध है।

उदाहरण 22 समुच्चय $\mathrm{A}=\{1,2,3\}$ से स्वयं तक सभी एकैकी फलन की संख्या ज्ञात कीजिए।

हल $\{1,2,3\}$ से स्वयं तक एकैकी फलन केवल तीन प्रतीकों $1,2,3$ का क्रमचय है। अतः $\{1,2,3\}$ से स्वयं तक के प्रतिचित्रों (Maps) की कुल संख्या तीन प्रतीकों $1,2,3$ के क्रमचयों की कुल संख्या के बराबर होगी, जो कि $3 !=6$ है।

उदाहरण 23 मान लीजिए कि $\mathrm{A}=\{1,2,3\}$ है। तब सिद्ध कीजिए कि ऐसे संबंधों की संख्या चार है, जिनमें $(1,2)$ तथा $(2,3)$ हैं और जो स्वतुल्य तथा संक्रामक तो हैं किंतु सममित नहीं हैं।

हल $\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\},(1,2)$ तथा $(2,3)$ अवयवों वाला वह सबसे छोटा संबंध $\mathrm{R} _{1}$ है, जो स्वतुल्य तथा संक्रामक है किंतु सममित नहीं है। अब यदि $\mathrm{R} _{1}$ में युग्म $(2,1)$ बढ़ा दें, तो प्राप्त संबंध $\mathrm{R} _{2}$ अब भी स्वतुल्य तथा संक्रामक है परंतु सममित नहीं है। इसी प्रकार, हम $\mathrm{R} _{1}$ में $(3,2)$ बढ़ा कर $\mathbf{R} _{3}$ प्राप्त कर सकते हैं, जिनमें अभीष्ट गुणधर्म हैं। तथापि हम $\mathbf{R} _{1}$ में किन्हीं दो युग्मों $(2,1),(3,2)$ या एक युग्म $(3,1)$ को नहीं बढ़ा सकते हैं, क्योंकि ऐसा करने पर हम, संक्रामकता बनाए रखने के लिए, शेष युग्म को लेने के लिए बाध्य हो जाएँगे और इस प्रक्रिया द्वारा प्राप्त संबंध सममित भी हो जाएगा, जो अभीष्ट नहीं है। अतः अभीष्ट संबंधों की कुल संख्या तीन है।

उदाहरण 24 सिद्ध कीजिए कि समुच्चय $\{1,2,3\}$ में $(1,2)$ तथा $(2,1)$ को अन्तर्विष्ट करने वाले तुल्यता संबंधों की संख्या 2 है।

हल $(1,2)$ तथा $(2,1)$ को अंतर्विष्ट करने वाला सबसे छोटा तुल्यता संबंध $\mathrm{R} _{1},\{(1,1),(2,2)$, $(3,3),(1,2),(2,1)\}$ है। अब केवल 4 युग्म, नामतः $(2,3),(3,2),(1,3)$ तथा $(3,1)$ शेष बचते हैं। यदि हम इनमें से किसी एक को, जैसे $(2,3)$ को $\mathrm{R} _{1}$ में अंतर्विष्ट करते हैं, तो सममित के लिए हमें $(3,2)$ को भी लेना पड़ेगा, साथ ही संक्रमकता हेतु हम $(1,3)$ तथा $(3,1)$ को लेने के लिए बाध्य होंगे। अतः $\mathrm{R} _{1}$ से बड़ा तुल्यता संबंध केवल सार्वत्रिक संबंध है। इससे स्पष्ट होता है कि $(1,2)$ तथा $(2,1)$ को अंतर्विष्ट करने वाले तुल्यता संबंधों की कुल संख्या दो है।

उदाहरण 25 तत्समक फलन $\mathrm{I} _{\mathrm{N}}: \mathbf{N} \rightarrow \mathbf{N}$ पर विचार कीजिए, जो $\mathrm{I} _{\mathrm{N}}(x)=x, \forall x \in \mathbf{N}$ द्वारा परिभाषित है। सिद्ध कीजिए कि, यद्यपि $\mathrm{I} _{\mathrm{N}}$ आच्छादक है किंतु निम्नलिखित प्रकार से परिभाषित फलन $\mathrm{I} _{\mathrm{N}}+\mathrm{I} _{\mathrm{N}}: \mathbf{N} \rightarrow \mathbf{N}$ आच्छादक नहीं है

$$ \left(\mathrm{I} _{\mathrm{N}}+\mathrm{I} _{\mathrm{N}}\right)(x)=\mathrm{I} _{\mathrm{N}}(x)+\mathrm{I} _{\mathrm{N}}(x)=x+x=2 x $$

हल स्पष्टतया $\mathrm{I} _{\mathrm{N}}$ आच्छादक है किंतु $\mathrm{I} _{\mathrm{N}}+\mathrm{I} _{\mathrm{N}}$ आच्छादक नहीं है। क्योंकि हम सहप्रांत $\mathbf{N}$ में एक अवयव 3 ले सकते हैं जिसके लिए प्रांत $\mathbf{N}$ में किसी ऐसे $x$ का अस्तित्व नहीं है कि $\left(\mathrm{I} _{\mathrm{N}}+\mathrm{I} _{\mathrm{N}}\right)(x)=2 x=3$ हो।

उदाहरण$26 f(x)=\sin x$ द्वारा प्रदत्त फलन $f:\left[0, \frac{\pi}{2}\right] \rightarrow \mathbf{R}$ तथा $g(x)=\cos x$ द्वारा प्रदत्त फलन $g:\left[0, \frac{\pi}{2}\right] \rightarrow \mathbf{R}$ पर विचार कीजिए। सिद्ध कीजिए कि $f$ तथा $g$ एकैकी है, परंतु $f+g$ एकैकी नहीं है।

हल क्योंकि $\left[0, \frac{\pi}{2}\right]$, के दो भिन्न-भिन्न अवयवों $x _{1}$ तथा $x _{2}$ के लिए $\sin x _{1} \neq \sin x _{2}$ तथा $\cos x _{1} \neq \cos x _{2}$ इसलिए $f$ तथा $g$ दोनों ही आवश्यक रूप से एकैकी हैं। परंतु $(f+g)(0)=$ $\sin 0+\cos 0=1$ तथा $(f+g)\left(\frac{\pi}{2}\right)=\sin \frac{\pi}{2}+\cos \frac{\pi}{2}=1$ है। अतः $f+g$ एकैकी नहीं है।

अध्याय 1 पर विविध प्रश्नावली

1. सिद्ध कीजिए कि $f: \mathbf{R} \rightarrow\{x \in \mathbf{R}:-1<x<1\}$ जहाँ $f(x)=\frac{x}{1+|x|}, x \in \mathbf{R}$ द्वारा परिभाषित फलन एकैकी तथा आच्छादक है।

Show Answer #missing

2. सिद्ध कीजिए कि $f(x)=x^{3}$ द्वारा प्रदत्त फलन $f: \mathbf{R} \rightarrow \mathbf{R}$ एकैक (Injective) है।

Show Answer #missing

3. एक अरिक्त समुच्चय $X$ दिया हुआ है। $P(X)$ जो कि $X$ के समस्त उपसमुच्चयों का समुच्चय है, पर विचार कीजिए। निम्नलिखित तरह से $\mathrm{P}(\mathrm{X})$ में एक संबंध $\mathrm{R}$ परिभाषित कीजिए:

$P(X)$ में उपसमुच्चयों $A, B$ के लिए, $A R B$, यदि और केवल यदि $A \subset B$ है। क्या $R, P(X)$ में एक तुल्यता संबंध है? अपने उत्तर का औचित्य भी लिखिए।

Show Answer #missing

4. समुच्चय $\{1,2,3, \ldots, n\}$ से स्वयं तक के समस्त आच्छादक फलनों की संख्या ज्ञात कीजिए।

Show Answer #missing

5. मान लीजिए कि $\mathrm{A}=\{-1,0,1,2\}, \mathrm{B}=\{-4,-2,0,2\}$ और $f, g: \mathrm{A} \rightarrow \mathrm{B}$, क्रमश: $f(x)=x^{2}-x, x \in \mathrm{A}$ तथा $g(x)=2\left|x-\frac{1}{2}\right|-1, x \in \mathrm{A}$ द्वारा परिभाषित फलन हैं। क्या $f$ तथा $g$ समान हैं? अपने उत्तर का औचित्य भी बतलाइए। (संकेत : नोट कीजिए कि दो फलन $f: \mathrm{A} \rightarrow \mathrm{B}$ तथा $g: \mathrm{A} \rightarrow \mathrm{B}$ समान कहलाते हैं यदि $f(a)=g(a) \forall a \in \mathrm{A}$ हो।

Show Answer #missing

6. यदि $\mathrm{A}=\{1,2,3\}$ हो तो ऐसे संबंध जिनमें अवयव $(1,2)$ तथा $(1,3)$ हों और जो स्वतुल्य तथा सममित हैं किंतु संक्रामक नहीं है, की संख्या है

(A) 1

(B) 2

(C) 3

(D) 4

Show Answer #missing

7. यदि $\mathrm{A}=\{1,2,3\}$ हो तो अवयव $(1,2)$ वाले तुल्यता संबंधों की संख्या है।

(A) 1

(B) 2

(C) 3

(D) 4

Show Answer #missing

सारांश

इस अध्याय में, हमने विविध प्रकार के संबंधों, फलनों तथा द्विआधारी संक्रियाओं का अध्ययन किया है। इस अध्याय की मुख्य विषय-वस्तु निम्नलिखित है:

  • $\mathrm{X}$ में, $\mathrm{R}=\phi \subset \mathrm{X} \times \mathrm{X}$ द्वारा प्रदत्त संबंध $\mathrm{R}$, रिक्त संबंध होता है।

  • $\mathrm{X}$ में, $\mathrm{R}=\mathrm{X} \times \mathrm{X}$ द्वारा प्रदत्त संबंध $\mathrm{R}$, सार्वत्रिक संबंध है।

  • $\mathrm{X}$ में, ऐसा संबंध कि $\forall a \in \mathrm{X},(a, a) \in \mathrm{R}$, स्वतुल्य संबंध है।

  • $\mathrm{X}$ में, इस प्रकार का संबंध $\mathrm{R}$, जो प्रतिबंध $(a, b) \in \mathrm{R}$ का तात्पर्य है कि $(b, a) \in \mathrm{R}$ को संतुष्ट करता है सममित संबंध है।

  • $\mathrm{X}$ में, प्रतिबंध $\mathrm{R},(a, b) \in \mathrm{R}$ तथा $(b, c) \in \mathrm{R} \Rightarrow(a, c) \in \mathrm{R} \forall a, b, c \in \mathrm{X}$ को संतुष्ट करने वाला संबंध $\mathrm{R}$ संक्रामक संबंध है।

  • $\mathrm{X}$ में, संबंध $\mathrm{R}$, जो स्वतुल्य, सममित तथा संक्रामक है, तुल्यता संबंध है।

  • $\mathrm{X}$ में, किसी तुल्यता संबंध $\mathrm{R}$ के लिए $a \in \mathrm{X}$ के संगत तुल्यता वर्ग $[a], \mathrm{X}$ का वह उपसमुच्चय है जिसके सभी अवयव $a$ से संबंधित हैं।

  • एक फलन $f: \mathrm{X} \rightarrow \mathrm{Y}$ एकैकी (अथवा एकैक) फलन है, यदि $f\left(x _{1}\right)=f\left(x _{2}\right) \Rightarrow x _{1}=x _{2}, \forall x _{1}, x _{2} \in \mathrm{X}$

  • एक फलन $f: \mathrm{X} \rightarrow \mathrm{Y}$ आच्छादक (अथवा आच्छादी ) फलन है, यदि किसी प्रदत्त $y \in \mathrm{Y}, \exists x \in \mathrm{X}$, इस प्रकार कि $f(x)=y$

  • एक फलन $f: \mathrm{X} \rightarrow \mathrm{Y}$ व्युत्क्रमणीय है, यदि और केवल यदि $f$ एकैकी तथा आच्छादक है।

  • किसी प्रदत्त परिमित समुच्चय $\mathrm{X}$ के लिए फलन $f: \mathrm{X} \rightarrow \mathrm{X}$ एकैकी (तदानुसार आच्छादक) होता है, यदि और केवल यदि $f$ आच्दछादक (तदानुसार एकैकी) है। यह किसी परिमित समुच्चय का अभिलाक्षणिक गुणधर्म (Characterstic Property) है। यह अपरिमित समुच्चय के लिए सत्य नहीं है।

ऐतिहासिक पृष्ठभूमि

फलन की संकल्पना, R. Descartes (सन् 1596-1650 ई.) से प्रारंभ हो कर एक लंबे अंतराल में विकसित हुई है। Descartes ने सन् 1637 ई. में अपनी पांडुलिपि “Geometrie” में शब्द ‘फलन’ का प्रयोग, ज्यामितीय वक्रों, जैसे अतिपरवलय (Hyperbola), परिवलय (Parabola) तथा दीर्घवृत्त (Ellipse), का अध्ययन करते समय, एक चर राशि $x$ के धन पूर्णांक घात $x^{n}$ के अर्थ में किया था। James Gregory (सन् 1636-1675 ई.) ने अपनी कृति “Vera Circuliet Hyperbolae Quadratura” (सन् 1667 ई.) में, फलन को एक ऐसी राशि माना था, जो किसी अन्य राशि पर बीजीय अथवा अन्य संक्रियाओं को उत्तरोत्तर प्रयोग करने से प्राप्त होती है। बाद में G. W. Leibnitz (1646-1716 ई.) नें 1673 ई. में लिखित अपनी पांडुलिपि “Methodus tangentium inversa, seu de functionibus” में शब्द ‘फलन’ को किसी ऐसी राशि के अर्थ में प्रयोग किया, जो किसी वक्र के एक बिंदु से दूसरे बिंदु तक इस प्रकार परिवर्तित होती रहती है, जैसे वक्र पर बिंदु के निर्देशांक, वक्र की प्रवणता, वक्र की स्पर्शी तथा अभिलंब परिवर्तित होते हैं। तथापि अपनी कृति “Historia” (1714 ई.) में Leibnitz ने फलन को एक चर पर आधारित राशि के रूप में प्रयोग किया था। वाक्यांश ’ $x$ का फलन’ प्रयोग में लाने वाले वे सर्वप्रथम व्यक्ति थे। John Bernoulli (1667-1748 ई.) ने सर्वप्रथम 1718 ई. में संकेतन (Notation) $\phi x$ को वाक्यांश ’ $x$ का फलन’ को प्रकट करने के लिए किया था। परंतु फलन को निरूपित करने के लिए प्रतीकों, जैसे $f, \mathrm{~F}, \phi, \psi \ldots$ का व्यापक प्रयोग Leonhard Euler (1707-1783 ई.) द्वारा 1734 ई. में अपनी पांडुलिपि “Analysis Infinitorium” के प्रथम खण्ड में किया गया था। बाद में Joeph Louis Lagrange (1736-1813 ई.) ने 1793 ई. में अपनी पांडुलिपि “Theorie des functions analytiques” प्रकाशित की, जिसमें उन्होंने विश्लेषणात्मक (Analytic) फलन के बारे में परिचर्चा की थी तथा संकेतन $f(x), \mathrm{F}(x), \phi(x)$ आदि का प्रयोग $x$ के भिन्न-भिन्न फलनों के लिए किया था। तदोपरांत Lejeunne Dirichlet (1805-1859 ई.) ने फलन की परिभाषा दी। जिसका प्रयोग उस समय तक होता रहा जब तक वर्तमान काल में फलन की समुच्चय सैद्धांतिक परिभाषा का प्रचलन नहीं हुआ, जो Georg Cantor (1845-1918 ई) द्वारा विकसित समुच्चय सिद्धांत के बाद हुआ। वर्तमान काल में प्रचलित फलन की समुच्चय सैद्धांतिक परिभाषा Dirichlet द्वारा प्रदत्त फलन की परिभाषा का मात्र अमूर्तीकरण (Abstraction) है।



Table of Contents