Chapter-13 Probability
The Theory of probabilities is simply the science of logic quantitatively treated - C.S. PEIRCE
13.1 Introduction
Pierre de Fermat $(1601-1665)$
In earlier Classes, we have studied the probability as a measure of uncertainty of events in a random experiment. We discussed the axiomatic approach formulated by Russian Mathematician, A.N. Kolmogorov (1903-1987) and treated probability as a function of outcomes of the experiment. We have also established equivalence between the axiomatic theory and the classical theory of probability in case of equally likely outcomes. On the basis of this relationship, we obtained probabilities of events associated with discrete sample spaces. We have also studied the addition rule of probability. In this chapter, we shall discuss the important concept of conditional probability of an event given that another event has occurred, which will be helpful in understanding the Bayes’ theorem, multiplication rule of probability and independence of events. We shall also learn an important concept of random variable and its probability distribution and also the mean and variance of a probability distribution. In the last section of the chapter, we shall study an important discrete probability distribution called Binomial distribution. Throughout this chapter, we shall take up the experiments having equally likely outcomes, unless stated otherwise.
13.2 Conditional Probability
Uptill now in probability, we have discussed the methods of finding the probability of events. If we have two events from the same sample space, does the information about the occurrence of one of the events affect the probability of the other event? Let us try to answer this question by taking up a random experiment in which the outcomes are equally likely to occur.
Consider the experiment of tossing three fair coins. The sample space of the experiment is
$$ \mathrm{S}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\} $$
Since the coins are fair, we can assign the probability $\frac{1}{8}$ to each sample point. Let $E$ be the event ‘at least two heads appear’ and $F$ be the event ‘first coin shows tail’. Then
$\mathrm{E}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$
or $\mathrm{F}=\{ \mathrm{THH, THT, TTH, TTT} \}$
therefore $$ \mathrm{P}(\mathrm{E})=\mathrm{P}(\{\mathrm{HHH}\})+\mathrm{P}(\{\mathrm{HHT}\})+\mathrm{P}(\{\mathrm{HTH}\})+\mathrm{P}(\{\mathrm{THH}\}) $$
$$ =\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2} \text { (क्यों ?) } $$
or $$ \mathrm{P}(\mathrm{F})=\mathrm{P}(\{\mathrm{THH}\})+\mathrm{P}(\{\mathrm{THT}\})+\mathrm{P}(\{\mathrm{TTH}\})+\mathrm{P}(\{\mathrm{TTT}\}) $$
$$ =\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2} $$
with $\mathrm{E} \cap \mathrm{F}=\{\mathrm{THH}\}$
therefore $\quad \mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\{\mathrm{THH}\})=\frac{1}{8}$
Now, suppose we are given that the first coin shows tail, i.e. F occurs, then what is the probability of occurrence of $E$ ? With the information of occurrence of $F$, we are sure that the cases in which first coin does not result into a tail should not be considered while finding the probability of $E$. This information reduces our sample space from the set $S$ to its subset $F$ for the event $E$. In other words, the additional information really amounts to telling us that the situation may be considered as being that of a new random experiment for which the sample space consists of all those outcomes only which are favourable to the occurrence of the event $F$.
Now, the sample point of $F$ which is favourable to event $E$ is THH.
Thus, Probability of $E$ considering $F$ as the sample space $=\frac{1}{4}$,
or $\quad$ Probability of $E$ given that the event $F$ has occurred $=\frac{1}{4}$
This probability of the event $E$ is called the conditional probability of $E$ given that $F$ has already occurred, and is denoted by $P(E \mid F)$.
Thus $\quad P(E \mid F)=\frac{1}{4}$
Note that the elements of $F$ which favour the event $E$ are the common elements of $E$ and $F$, i.e. the sample points of $E \cap F$.
Thus, we can also write the conditional probability of $E$ given that $F$ has occurred as
$$ \begin{aligned} P(E \mid F) & =\frac{\text{ Number of elementary events favourable to } E \cap F}{\text{ Number of elementary events which are favourable to } F} \\ & =\frac{n(E \cap F)}{n(F)} \end{aligned} $$
Dividing the numerator and the denominator by total number of elementary events of the sample space, we see that $P(EIF)$ can also be written as
$$ P(E \mid F)=\frac{\frac{n(E \cap F)}{n(S)}}{\frac{n(F)}{n(S)}}=\frac{P(E \cap F)}{P(F)} \tag{1} $$
Note that (1) is valid only when $P(F) \neq 0$ i.e., $F \neq \phi$ (Why?) Thus, we can define the conditional probability as follows :
Definition 1 If $E$ and $F$ are two events associated with the same sample space of a random experiment, the conditional probability of the event $E$ given that $F$ has occurred, i.e. $P(E \mid F)$ is given by
$$ P(EIF)=\frac{P(E \cap F)}{P(F)} \text{ provided } P(F) \neq 0 $$
13.2.1 Properties of conditional probability
Let $E$ and $F$ be events of a sample space $S$ of an experiment, then we have
Property $1 P(S \mid F)=P(F \mid F)=1$
We know that $$ \mathrm{P}(\mathrm{S} \mid \mathrm{F})=\frac{\mathrm{P}(\mathrm{S} \cap \mathrm{F})}{\mathrm{P}(\mathrm{F})}=\frac{\mathrm{P}(\mathrm{F})}{\mathrm{P}(\mathrm{F})}=1 $$
Thus $$ P(F \mid F)=\frac{P(F \cap F)}{P(F)}=\frac{P(F)}{P(F)}=1 $$
or $$ \mathrm{P}(\mathrm{S} \mid \mathrm{F})=\mathrm{P}(\mathrm{F} \mid \mathrm{F})=1 $$
Property 2 If $A$ and $B$ are any two events of a sample space $S$ and $F$ is an event of $S$ such that $P(F) \neq 0$, then
$$ P((A \cup B) \mid F)=P(A \mid F)+P(B \mid F)-P((A \cap B) \mid F) $$
In particular, if $A$ and $B$ are disjoint events, then
We have $$ P((A \cup B) \mid F)=P(A \mid F)+P(B \mid F) $$
we know $$ \begin{aligned} P((A \cup B) \mid F) & =\frac{P[(A \cup B) \cap F]}{P(F)} \\ & =\frac{P[(A \cap F) \cup(B \cap F)]}{P(F)} \end{aligned} $$
(by distributive law of union of sets over intersection)
$$ \begin{aligned} & =\frac{P(A \cap F)+P(B \cap F)-P(A \cap B \cap F)}{P(F)} \\ & =\frac{P(A \cap F)}{P(F)}+\frac{P(B \cap F)}{P(F)}-\frac{P[(A \cap B) \cap F]}{P(F)} \\ & =P(A \mid F)+P(B \mid F)-P((A \cap B) \mid F) \end{aligned} $$
When $A$ and $B$ are disjoint events, then
$$
\begin{matrix}
& P((A \cap B) \mid F)=0 \\
\Rightarrow \quad & P((A \cup B) \mid F)=P(A \mid F)+P(B \mid F)
\end{matrix}
$$
when $\mathrm{A}$ and $\mathrm{B}$ are disjoint events,then $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A} \mid F)+\mathrm{P}(\mathrm{B} \mid \mathrm{F})$
Property $3 P(E^{\prime} \mid F)=1-P(E \mid F)$
From Property 1 , we know that $P(SIF)=1$
$$ \begin{matrix} \Rightarrow & P(E \cup E^{\prime} \mid F)=1 & \text{ since } S=E \cup E^{\prime} \\ \Rightarrow & P(E \mid F)+P(E^{\prime} \mid F)=1 & \text{ since } E \text{ and } E^{\prime} \text{ are disjoint events } \\ \text{ Thus, } & P(E^{\prime} \mid F)=1-P(E \mid F) & \end{matrix} $$
Let us now take up some examples.
Example 1 If $P(A)=\frac{7}{13}, P(B)=\frac{9}{13}$ and $P(A \cap B)=\frac{4}{13}$, evaluate $P(A \mid B)$.
Solution We have $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{4}{13}}{\frac{9}{13}}=\frac{4}{9}$
Example 2 A family has two children. What is the probability that both the children are boys given that at least one of them is a boy?
Solution Let $b$ stand for boy and $g$ for girl. The sample space of the experiment is
$$ S=\{(b, b),(g, b),(b, g),(g, g)\} $$
Let $E$ and $F$ denote the following events :
E : ‘both the children are boys’
$F$ : ‘at least one of the child is a boy’
Then $$E=\{(b, b)\} and F=\{(b, b),(g, b),(b, g)\}$$
Now $$E \cap F=\{(b, b)\}$$
Thus $$ P(F)=\frac{3}{4} \text{ and } P(E \cap F)=\frac{1}{4} $$
Therefore $$ P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{1}{4}}{\frac{3}{4}}=\frac{1}{3} $$
Example 3 Ten cards numbered 1 to 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3 , what is the probability that it is an even number?
Solution Let A be the event ’the number on the card drawn is even’ and B be the event ’the number on the card drawn is greater than 3 ‘. We have to find $P(AlB)$.
Now, the sample space of the experiment is $S=\{1,2,3,4,5,6,7,8,9,10\}$
Then $$ A=\{2,4,6,8,10\}, B=\{4,5,6,7,8,9,10\} $$
and $$ A \cap B=\{4,6,8,10\} $$
Also $$ P(A)=\frac{5}{10}, P(B)=\frac{7}{10} \text{ and } P(A \cap B)=\frac{4}{10} $$
$$ P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{4}{10}}{\frac{7}{10}}=\frac{4}{7} $$
Example 4 In a school, there are 1000 students, out of which 430 are girls. It is known that out of $430,10 \%$ of the girls study in class XII. What is the probability that a student chosen randomly studies in Class XII given that the chosen student is a girl?
Solution Let E denote the event that a student chosen randomly studies in Class XII and $F$ be the event that the randomly chosen student is a girl. We have to find $P(EIF)$.
Now $\quad P(F)=\frac{430}{1000}=0.43$ and $P(E \cap F)=\frac{43}{1000}=0.043$(Why?)
Then $$\quad P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{0.043}{0.43}=0.1$$
Example 5 A die is thrown three times. Events A and B are defined as below:
A : 4 on the third throw
B : 6 on the first and 5 on the second throw
Find the probability of A given that B has already occurred.
Solution The sample space has 216 outcomes.
Now
$\mathrm{A} =\left\lbrace \begin{array}{ccccccc}
(1,1,4) & (1,2,4) & \ldots & (1,6,4) & (2,1,4)& (2,2,4)& \ldots & (2,6,4) \\
(3,1,4) & (3,2,4) &\ldots & (3,6,4)& (4,1,4)& (4,2,4) &\ldots &(4,6,4) \\
(5,1,4) & (5,2,4) & \ldots & (5,6,4)& (6,1,4)&(6,2,4)& \ldots &(6,6,4) \\ \end{array}\right\rbrace $
$$ \begin{aligned} & B=\{(6,5,1),(6,5,2),(6,5,3),(6,5,4),(6,5,5),(6,5,6)\} \end{aligned} $$
and $$ A \cap B=\{(6,5,4)\} . $$
Now $$ P(B)=\frac{6}{216} \text{ and } P(A \cap B)=\frac{1}{216} $$
Then $$ P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{1}{216}}{\frac{6}{216}}=\frac{1}{6} $$
Example 6 A die is thrown twice and the sum of the numbers appearing is observed to be 6 . What is the conditional probability that the number 4 has appeared at least once?
Solution Let $E$ be the event that ’number 4 appears at least once’ and $F$ be the event that ’the sum of the numbers appearing is 6 ‘.
Then, $$ \begin{aligned} & E=\{(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(1,4),(2,4),(3,4),(5,4),(6,4)\} \\ & F=\{(1,5),(2,4),(3,3),(4,2),(5,1)\} \end{aligned} $$
and We have $$ P(E)=\frac{11}{36} \text{ and } P(F)=\frac{5}{36} $$
Also $$ E \cap F=\{(2,4),(4,2)\} $$
Therefore $$ P(E \cap F)=\frac{2}{36} $$
Hence, the required probability $$ P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{2}{36}}{\frac{5}{36}}=\frac{2}{5} $$
For the conditional probability discussed above, we have considered the elementary events of the experiment to be equally likely and the corresponding definition of the probability of an event was used. However, the same definition can also be used in the general case where the elementary events of the sample space are not equally likely, the probabilities $P(E \cap F)$ and $P(F)$ being calculated accordingly. Let us take up the following example.
Example 7 Consider the experiment of tossing a coin. If the coin shows head, toss it again but if it shows tail, then throw a die. Find the conditional probability of the event that ’the die shows a number greater than 4 ’ given that ’there is at least one tail’.
Solution The outcomes of the experiment can be represented in following diagrammatic manner called the ’tree diagram’.
The sample space of the experiment may be described as
$ S=\{(H, H),(H, T),(T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\} $
where $(H, H)$ denotes that both the tosses result into head and $(T, i)$ denote the first toss result into a tail and the number $i$ appeared on the die for $i=1,2,3,4,5,6$. Thus, the probabilities assigned to the 8 elementary events
$(H, H),(H, T),(T, 1),(T, 2),(T, 3)(T, 4),(T, 5),(T, 6)$ are $\frac{1}{4}, \frac{1}{4}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12}$ respectively
which is clear from the Fig 13.2.
Let $F$ be the event that ’there is at least one tail’ and $E$ be the event ’the die shows a number greater than 4 ‘.
Then $$ \begin{aligned} & F=\{(H, T),(T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\} \\ & E=\{(T, 5),(T, 6)\} \text{ and } E \cap F=\{(T, 5),(T, 6)\} \end{aligned} $$
Now $$ \begin{aligned} P(F)= & P(\{(H, T)\})+P(\{(T, 1)\})+P(\{(T, 2)\})+P(\{(T, 3)\}) \\ & +P(\{(T, 4)\})+P(\{(T, 5)\})+P(\{(T, 6)\}) \\ = & \frac{1}{4}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{4} \end{aligned} $$
and $\quad P(E \cap F)=P(\{(T, 5)\})+P(\{(T, 6)\})=\frac{1}{12}+\frac{1}{12}=\frac{1}{6}$
Hence $\quad P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{1}{6}}{\frac{3}{4}}=\frac{2}{9}$
EXERCISE 13.1
1. Given that $E$ and $F$ are events such that $P(E)=0.6, P(F)=0.3$ and $P(E \cap F)=0.2$, find $P(E \mid F)$ and $P(F \mid E)$
Show Answer
Solution
It is given that $P(E)=0.6, P(F)=0.3$, and $P(E \cap F)=0.2$
$\Rightarrow P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{0.2}{0.3}=\frac{2}{3}$
$\Rightarrow P(F \mid E)=\frac{P(E \cap F)}{P(E)}=\frac{0.2}{0.6}=\frac{1}{3}$
2. Compute $P(A \mid B)$, if $P(B)=0.5$ and $P(A \cap B)=0.32$
Show Answer
Solution
It is given that $P(B)=0.5$ and $P(A \cap B)=0.32$
$\Rightarrow P(\frac{A}{B})=\frac{P(A \cap B)}{P(B)}=\frac{0.32}{0.5}=\frac{16}{25}$
3. If $P(A)=0.8, P(B)=0.5$ and $P(B \mid A)=0.4$, find
(i) $P(A \cap B)$
(ii) $P(A \mid B)$
(iii) $P(A \cup B)$
Show Answer
Solution
It is given that $P(A)=0.8, P(B)=0.5$, and $P(B \mid A)=0.4$
(i) $P(B \mid A)=0.4$
$\therefore \frac{P(A \cap B)}{P(A)}=0.4$
$\Rightarrow \frac{P(A \cap B)}{0.8}=0.4$
$\Rightarrow P(A \cap B)=0.32$
(ii) $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
$\Rightarrow P(A \mid B)=\frac{0.32}{0.5}=0.64$
(iii) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$\Rightarrow P(A \cup B)=0.5+0.5-0.32=0.98$
4. Evaluate $P(A \cup B)$, if $2 P(A)=P(B)=\frac{5}{13}$ and $P(A \mid B)=\frac{2}{5}$
Show Answer
Solution
It is given that, $2 P(A)=P(B)=\frac{5}{13}$
$\Rightarrow P(A)=\frac{5}{26}$ and $P(B)=\frac{5}{13}$
$P(A \mid B)=\frac{2}{5}$
$\Rightarrow \frac{P(A \cap B)}{P(B)}=\frac{2}{5}$
$\Rightarrow P(A \cap B)=\frac{2}{5} \times P(B)=\frac{2}{5} \times \frac{5}{13}=\frac{2}{13}$
It is known that, $P(A \cup B)=P(A)+P(B)-P(A \cap B)$ $\Rightarrow P(A \cup B)=\frac{5}{26}+\frac{5}{13}-\frac{2}{13}$
$\Rightarrow P(A \cup B)=\frac{5+10-4}{26}$
$\Rightarrow P(A \cup B)=\frac{11}{26}$
5. If $P(A)=\frac{6}{11}, P(B)=\frac{5}{11}$ and $P(A \cup B)=\frac{7}{11}$, find
(i) $P(A \cap B)$
(ii) $P(A \mid B)$
(iii) $P(B \mid A)$
Show Answer
Solution
It is given that $P(A)=\frac{6}{11}, P(B)=\frac{5}{11}$, and $P(A \cup B)=\frac{7}{11}$
(i) $P(A \cup B)=\frac{7}{11}$
$\therefore P(A)+P(B)-P(A \cap B)=\frac{7}{11}$
$\Rightarrow \frac{6}{11}+\frac{5}{11}-P(A \cap B)=\frac{7}{11}$
$\Rightarrow P(A \cap B)=\frac{11}{11}-\frac{7}{11}=\frac{4}{11}$
(ii) It is known that, $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
$\Rightarrow P(A \mid B)=\frac{\frac{4}{11}}{\frac{5}{11}}=\frac{4}{5}$
(iii) It is known that, $P(B \mid A)=\frac{P(A \cap B)}{P(A)}$
$ \Rightarrow P(B \mid A)=\frac{\frac{4}{11}}{\frac{6}{11}}=\frac{4}{6}=\frac{2}{3} $
Determine $P(E \mid F)$ in Exercises 6 to 9.
6. A coin is tossed three times, where
(i) $E$ : head on third toss , $F$ : heads on first two tosses
(ii) $E$ : at least two heads, $F$ : at most two heads
(iii) $E$ : at most two tails , $F$ : at least one tail
Show Answer
Solution
If a coin is tossed three times, then the sample space $S$ is
$S={H H H, H H T, H T H, H T T, T H H, T H T, T T H, ~ T T T}$
It can be seen that the sample space has 8 elements.
(i) $E={HHH, HTH, THH, TTH}$
$F={HHH, HHT}$
$\therefore E \cap F={HHH}$
$P(F)=\frac{2}{8}=\frac{1}{4}$ and $P(E \cap F)=\frac{1}{8}$
$P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{1}{8}}{\frac{1}{4}}=\frac{4}{8}=\frac{1}{2}$
(ii) $E={HHH, HHT, HTH, THH}$
$F={H H T, H T H, H T T, T H H, T H T, T T H, T T T}$
$\therefore E \cap F={HHT, HTH, THH}$
Clearly, $P(E \cap F)=\frac{3}{8}$ and $P(F)=\frac{7}{8}$
$P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{3}{8}}{\frac{7}{8}}=\frac{3}{7}$
(iii) $E={HHH, HHT, HTT, HTH, THH, THT, TTH}$
$F={HHT, HTT, HTH, THH, THT, TTH, TTT}$ $\therefore E \cap F={HHT, HTT, HTH, THH, THT, TTH}$
$P(F)=\frac{7}{8}$ and $P(E \cap F)=\frac{6}{8}$
Therefore, $P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{6}{7}}{\frac{7}{8}}=\frac{6}{7}$
7. Two coins are tossed once, where
(i) $E$ : tail appears on one coin, $\quad F$ : one coin shows head
(ii) E : no tail appears, F : no head appears
Show Answer
Solution
If two coins are tossed once, then the sample space $S$ is
$S={HH, HT, TH, TT}$
(i) $E={HT, TH}$
$F={HT, TH}$
$\therefore E \cap F={HT, TH}$
$P(F)=\frac{2}{8}=\frac{1}{4}$
$P(E \cap F)=\frac{2}{8}=\frac{1}{4}$
$\therefore P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{2}{2}=1$
(ii) $E={HH}$
$F={TT}$
$\therefore E \cap F=\Phi$
$P(F)=1$ and $P(E \cap F)=0$ $\therefore P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{0}{1}=0$
8. A die is thrown three times,
E : 4 appears on the third toss,
F : 6 and 5 appears respectively on first two tosses
Show Answer
Solution
If a die is thrown three times, then the number of elements in the sample space will be 6 $\times 6 \times 6=216$
$E=\begin{bmatrix} (1,1,4),(1,2,4), \ldots(1,6,4) \\ (2,1,4),(2,2,4), \ldots(2,6,4) \\ (3,1,4),(3,2,4), \ldots(3,6,4) \\ (4,1,4),(4,2,4), \ldots(4,6,4) \\ (5,1,4),(5,2,4), \ldots(5,6,4) \\ (6,1,4),(6,2,4), \ldots(6,6,4) \end{bmatrix} $
$F={(6,5,1),(6,5,2),(6,5,3),(6,5,4),(6,5,5),(6,5,6)}$
$\therefore E \cap F={(6,5,4)}$
$P(F)=\frac{6}{216}$ and $P(E \cap F)=\frac{1}{216}$
$\therefore P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{1}{216}}{\frac{6}{216}}=\frac{1}{6}$
9. Mother, father and son line up at random for a family picture
E : son on one end,
$F$ : father in middle
Show Answer
Solution
If mother (M), father (F), and son (S) line up for the family picture, then the sample space will be
$S={M F S, M S F, F M S, F S M, S M F, S F M}$
$\Rightarrow E={MFS, FMS, SMF, SFM}$
$F={M F S, S F M}$
$\therefore E \cap F={MFS, SFM}$
$P(E \cap F)=\frac{2}{6}=\frac{1}{3}$
$P(F)=\frac{2}{6}=\frac{1}{3}$
$\therefore P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{1}{3}}{\frac{1}{3}}=1$
10. A black and a red dice are rolled.
(a) Find the conditional probability of obtaining a sum greater than 9 , given that the black die resulted in a 5 .
(b) Find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4.
Show Answer
Solution
Let the first observation be from the black die and second from the red die.
When two dice (one black and another red) are rolled, the sample space $S$ has $6 \times 6=$ 36 number of elements.
1. Let
A: Obtaining a sum greater than 9
$={(4,6),(5,5),(5,6),(6,4),(6,5),(6,6)}$
B: Black die results in a 5 .
$={(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)}$
$\therefore A \cap B={(5,5),(5,6)}$
The conditional probability of obtaining a sum greater than 9, given that the black die resulted in a 5 , is given by $P(A \mid B)$.
$\therefore P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{2}{36}}{\frac{6}{35}}=\frac{2}{6}=\frac{1}{3}$
(b) E: Sum of the observations is 8 .
$={(2,6),(3,5),(4,4),(5,3),(6,2)}$
$F$ : Red die resulted in a number less than 4.
$$=\begin{bmatrix}(1,1),(1,2),(1,3),(2,1),(2,2),(2,3), \\ (3,1),(3,2),(3,3),(4,1),(4,2),(4,3), \\ (5,1),(5,2),(5,3),(6,1),(6,2),(6,3)\end{bmatrix}$$
$\begin{aligned} & \therefore E \cap F=\{(5,3),(6,2)\} \\ & P(F)=\frac{18}{36} \text { and } P(E \cap F)=\frac{2}{36}\end{aligned}$
The conditional probability of obtaining the sum equal to 8 , given that the red die resulted in a number less than 4 , is given by $P$ (E|F).
Therefore, $P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{2}{36}}{\frac{18}{36}}=\frac{2}{18}=\frac{1}{9}$
11. A fair die is rolled. Consider events $E={1,3,5}, F={2,3}$ and $G={2,3,4,5}$ Find
(i) $P(E \mid F)$ and $P(F \mid E)$
(ii) $P(E \mid G)$ and $P(G \mid E)$
(iii) $P((E \cup F) \mid G)$ and $P((E \cap F) \mid G)$
Show Answer
Solution
When a fair die is rolled, the sample space $S$ will be
$S={1,2,3,4,5,6}$
It is given that $E={1,3,5}, F={2,3}$, and $G={2,3,4,5}$
$\therefore P(E)=\frac{3}{6}=\frac{1}{2}$
$P(F)=\frac{2}{6}=\frac{1}{3}$
$P(G)=\frac{4}{6}=\frac{2}{3}$
(i) $E \cap F={3}$
$\therefore P(E \cap F)=\frac{1}{6}$
$\therefore P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{1}{6}}{\frac{1}{3}}=\frac{1}{2}$
$P(F \mid E)=\frac{P(E \cap F)}{P(E)}=\frac{\frac{1}{6}}{\frac{1}{2}}=\frac{1}{3}$
(ii) $E \cap G={3,5}$ $\therefore P(E \cap G)=\frac{2}{6}=\frac{1}{3}$
$\therefore P(E \mid G)=\frac{P(E \cap G)}{P(G)}=\frac{\frac{1}{3}}{\frac{2}{3}}=\frac{1}{2}$
$P(G \mid E)=\frac{P(E \cap G)}{P(E)}=\frac{\frac{1}{3}}{\frac{1}{2}}=\frac{2}{3}$
(iii) $E \cup F={1,2,3,5}$
$(E \cup F) \cap G={1,2,3,5} \cap{2,3,4,5}={2,3,5}$
$E \cap F={3}$
$(E \cap F) \cap G={3} \cap{2,3,4,5}={3}$ $\therefore P(E \cup G)=\frac{4}{6}=\frac{2}{3}$
$P((E \cup F) \cap G)=\frac{3}{6}=\frac{1}{2}$
$P(E \cap F)=\frac{1}{6}$
$P((E \cap F) \cap G)=\frac{1}{6}$
$\therefore P((E \cup F) \mid G)=\frac{P((E \cup F) \cap G)}{P(G)}$
$=\frac{\frac{1}{2}}{\frac{2}{3}}=\frac{1}{2} \times \frac{3}{2}=\frac{3}{4}$
$P((E \cap F) \mid G)=\frac{P((E \cap G) \cap G)}{P(G)}$
$=\frac{\frac{1}{6}}{\frac{2}{3}}=\frac{1}{6} \times \frac{3}{2}=\frac{1}{4}$
12. Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that (i) the youngest is a girl, (ii) at least one is a girl?
Show Answer
Solution
Let $b$ and $g$ represent the boy and the girl child respectively. If a family has two children, the sample space will be
$S={(b, b),(b, g),(g, b),(g, g)}$
Let $A$ be the event that both children are girls.
$\therefore A={(g, g)}$
(i) Let $B$ be the event that the youngest child is a girl. $\therefore B=[(b, g),(g, g)]$
$\Rightarrow A \cap B={(g, g)}$
$\therefore P(B)=\frac{2}{4}=\frac{1}{2}$
$P(A \cap B)=\frac{1}{4}$
The conditional probability that both are girls, given that the youngest child is a girl, is given by $P(A \mid B)$.
$P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{1}{4}}{\frac{1}{2}}=\frac{1}{2}$
Therefore, the required probability is $\frac{1}{2}$.
(ii) Let $C$ be the event that at least one child is a girl.
$\therefore C={(b, g),(g, b),(g, g)}$
$\Rightarrow A \cap C={g, g}$
$\Rightarrow P(C)=\frac{3}{4}$
$P(A \cap C)=\frac{1}{4}$
The conditional probability that both are girls, given that at least one child is a girl, is given by $P(A \mid C)$.
Therefore, $P(A \mid C)=\frac{P(A \cap C)}{P(C)}=\frac{\frac{1}{4}}{\frac{3}{4}}=\frac{1}{3}$
13. An instructor has a question bank consisting of 300 easy True / False questions, 200 difficult True / False questions, 500 easy multiple choice questions and 400 difficult multiple choice questions. If a question is selected at random from the question bank, what is the probability that it will be an easy question given that it is a multiple choice question?
Show Answer
Solution
The given data can be tabulated as
True/False | Multiple choice | Total | |
---|---|---|---|
Easy | 300 | 500 | 800 |
Difficult | 200 | 400 | 600 |
Total | 500 | 900 | 1400 |
Let us denote $E=$ easy questions, $M=$ multiple choice questions, $D=$ difficult questions, and $T=$ True/False questions
Total number of questions $=1400$
Total number of multiple choice questions $=900$
Therefore, probability of selecting an easy multiple choice question is
$P(E \cap M)=\frac{500}{1400}=\frac{5}{14}$
Probability of selecting a multiple choice question, $P(M)$, is $\frac{900}{1400}=\frac{9}{14}$
$P(E \mid M)$ represents the probability that a randomly selected question will be an easy question, given that it is a multiple choice question.
$\therefore P(E \mid M)=\frac{P(E \cap M)}{P(M)}=\frac{\frac{5}{14}}{\frac{9}{14}}=\frac{5}{9}$
Therefore, the required probability is $\frac{5}{9}$.
14. Given that the two numbers appearing on throwing two dice are different. Find the probability of the event ’the sum of numbers on the dice is 4 ‘.
Show Answer
Solution
When dice is thrown, number of observations in the sample space $=6 \times 6=36$
Let $A$ be the event that the sum of the numbers on the dice is 4 and $B$ be the event that the two numbers appearing on throwing the two dice are different.
$ \begin{aligned} & \therefore A={(1,3),(2,2),(3,1)} \\ & B={\begin{matrix} (1,2),(1,3),(1,4),(1,5),(1,6) \\ (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\ (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) \\ (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\ (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) \\ (6,1),(6,2),(6,3),(6,4),(6,5),(6,6) \end{matrix} } \end{aligned} $
$A \cap B={(1,3),(3,1)}$
$\therefore P(B)=\frac{30}{36}=\frac{5}{6}$ and $P(A \cap B)=\frac{2}{36}=\frac{1}{18}$
Let $P(A \mid B)$ represent the probability that the sum of the numbers on the dice is 4 , given that the two numbers appearing on throwing the two dice are different.
$ \therefore P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{1}{18}}{\frac{5}{6}}=\frac{1}{15} $
Therefore, the required probability is $\frac{1}{15}$.
15. Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the die again and if any other number comes, toss a coin. Find the conditional probability of the event ’the coin shows a tail’, given that ‘at least one die shows a 3’.
Show Answer
Solution
The outcomes of the given experiment can be represented by the following tree diagram.
The sample space of the experiment is,
$ S={\begin{matrix} (1, H),(1, T),(2, H),(2, T),(3,1)(3,2),(3,3),(3,4),(3,5),(3,6), \\ (4, H),(4, T),(5, H),(5, T),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6) \end{matrix} } $
Let $A$ be the event that the coin shows a tail and $B$ be the event that at least one die shows 3.
$ \begin{aligned} & \therefore A={(1, T),(2, T),(4, T),(5, T)} \\ & B={(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(6,3)} \\ & \Rightarrow A \cap B=\phi \\ & \therefore P(A \cap B)=0 \end{aligned} $
Then, $P(B)=P({3,1})+P({3,2})+P({3,3})+P({3,4})+P({3,5})+P({3,6})+P({6,3})$
$ \begin{aligned} & =\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36} \\ & =\frac{7}{36} \end{aligned} $
Probability of the event that the coin shows a tail, given that at least one die shows 3, is given by $P(A \mid B)$.
Therefore,
$ P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0}{\frac{7}{36}}=0 $
In each of the Exercises 16 and 17 choose the correct answer:
16. If $P(A)=\frac{1}{2}, P(B)=0$, then $P(A \mid B)$ is
(A) 0
(B) $\frac{1}{2}$
(C) not defined
(D) 1
Show Answer
Solution
It is given that $P(A)=\frac{1}{2}$ and $P(B)=0$ $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A \cap B)}{0}$
Therefore, $P(A \mid B)$ is not defined.
Thus, the correct answer is $C$.
17. If $A$ and $B$ are events such that $P(A \mid B)=P(B \mid A)$, then
(A) $A \subset B$ but $A \neq B$
(B) $A=B$
(C) $A \cap B=\phi$
(D) $P(A)=P(B)$
Show Answer
Solution
It is given that, $P(A \mid B)=P(B \mid A)$
$\Rightarrow \frac{P(A \cap B)}{P(B)}=\frac{P(A \cap B)}{P(A)}$
$\Rightarrow P(A)=P(B)$
Thus, the correct answer is D.
13.3 Multiplication Theorem on Probability
Let $E$ and $F$ be two events associated with a sample space $S$. Clearly, the set $E \cap F$ denotes the event that both $E$ and $F$ have occurred. In other words, $E \cap F$ denotes the simultaneous occurrence of the events $E$ and $F$. The event $E \cap F$ is also written as $EF$.
Very often we need to find the probability of the event EF. For example, in the experiment of drawing two cards one after the other, we may be interested in finding the probability of the event ‘a king and a queen’. The probability of event EF is obtained by using the conditional probability as obtained below :
We know that the conditional probability of event $E$ given that $F$ has occurred is denoted by $P(E \mid F)$ and is given by
$$ P(E \mid F)=\frac{P(E \cap F)}{P(F)}, P(F) \neq 0 $$
From this result, we can write
$$ P(E \cap F)=P(F) . P(E \mid F) \tag{1} $$
Also, we know that
$$ \begin{aligned} & P(F \mid E)=\frac{P(F \cap E)}{P(E)}, P(E) \neq 0 \\ & P(F \mid E)=\frac{P(E \cap F)}{P(E)}(\text{ since } E \cap F=F \cap E) \end{aligned} $$
Thus, $$ P(E \cap F)=P(E) . P(F \mid E) \tag{2} $$
Combining (1) and (2), we find that
$$ \begin{aligned} P(E \cap F) & =P(E) P(F \mid E) \\ & =P(F) P(E \mid F) \text{ provided } P(E) \neq 0 \text{ and } P(F) \neq 0 . \end{aligned} $$
The above result is known as the multiplication rule of probability.
Let us now take up an example.
Example 8 An urn contains 10 black and 5 white balls. Two balls are drawn from the urn one after the other without replacement. What is the probability that both drawn balls are black?
Solution Let $E$ and $F$ denote respectively the events that first and second ball drawn are black. We have to find $P(E \cap F)$ or $P(EF)$.
Now $$ P(E)=P(\text{ black ball in first draw })=\frac{10}{15} $$
Also given that the first ball drawn is black, i.e., event $E$ has occurred, now there are 9 black balls and five white balls left in the urn. Therefore, the probability that the second ball drawn is black, given that the ball in the first draw is black, is nothing but the conditional probability of $F$ given that $E$ has occurred.
i.e. $$ P(F \mid E)=\frac{9}{14} $$
By multiplication rule of probability, we have
$$ \begin{aligned} \mathrm{P}(\mathrm{E} \cap \mathrm{F}) & =\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{F} \mid \mathrm{E})=\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F} \mid \mathrm{E}) \cdot \mathrm{P}(\mathrm{G} \mid \mathrm{EF}) \\ & =\frac{10}{15} \times \frac{9}{14}=\frac{3}{7} \end{aligned} $$
Multiplication rule of probability for more than two events If $E, F$ and $G$ are three events of sample space, we have
$$ P(E \cap F \cap G)=P(E) P(F \mid E) P(G \mid(E \cap F))=P(E) P(F \mid E) P(G \mid E F) $$
Similarly, the multiplication rule of probability can be extended for four or more events.
The following example illustrates the extension of multiplication rule of probability for three events.
Example 9 Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that first two cards are kings and the third card drawn is an ace?
Solution Let $K$ denote the event that the card drawn is king and $A$ be the event that the card drawn is an ace. Clearly, we have to find P (KKA)
Now $$ P(K)=\frac{4}{52} $$
Also, $P(K \mid K)$ is the probability of second king with the condition that one king has already been drawn. Now there are three kings in $(52-1)=51$ cards.
Therefore $$ P(K \mid K)=\frac{3}{51} $$
Lastly, $P(A \mid KK)$ is the probability of third drawn card to be an ace, with the condition that two kings have already been drawn. Now there are four aces in left 50 cards.
Therefore $$ P(A \mid KK)=\frac{4}{50} $$
By multiplication law of probability, we have
$$ \begin{aligned} P(KKA) & =P(K) \quad P(K \mid K) \quad P(A \mid KK) \\ & =\frac{4}{52} \times \frac{3}{51} \times \frac{4}{50}=\frac{2}{5525} \end{aligned} $$
13.4 Independent Events
Consider the experiment of drawing a card from a deck of 52 playing cards, in which the elementary events are assumed to be equally likely. If $E$ and $F$ denote the events ’the card drawn is a spade’ and ’the card drawn is an ace’ respectively, then
$$ P(E)=\frac{13}{52}=\frac{1}{4} \text{ and } P(F)=\frac{4}{52}=\frac{1}{13} $$
Also $E$ and $F$ is the event ’ the card drawn is the ace of spades’ so that
Hence $$ \begin{aligned} & P(E \cap F)=\frac{1}{52} \\ & P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{1}{52}}{\frac{1}{13}}=\frac{1}{4} \end{aligned} $$
Since $P(E)=\frac{1}{4}=P(E \mid F)$, we can say that the occurrence of event $F$ has not affected the probability of occurrence of the event $E$.
We also have $$ P(F \mid E)=\frac{P(E \cap F)}{P(E)}=\frac{\frac{1}{52}}{\frac{1}{4}}=\frac{1}{13}=P(F) $$
Again, $P(F)=\frac{1}{13}=P(F \mid E)$ shows that occurrence of event $E$ has not affected the probability of occurrence of the event $F$.
Thus, $E$ and $F$ are two events such that the probability of occurrence of one of them is not affected by occurrence of the other.
Such events are called independent events.
Definition 2 Two events $E$ and $F$ are said to be independent, if
$$ \begin{aligned} & P(F \mid E)=P(F) \text{ provided } P(E) \neq 0 \\ & P(E \mid F)=P(E) \text{ provided } P(F) \neq 0 \end{aligned} $$
and Thus, in this definition we need to have $P(E) \neq 0$ and $P(F) \neq 0$
Now, by the multiplication rule of probability, we have
$$ P(E \cap F)=P(E) \cdot P(F \mid E) \tag{1} $$
If $E$ and $F$ are independent, then (1) becomes
$$ P(E \cap F)=P(E) \cdot P(F) \tag{2} $$
Thus, using (2), the independence of two events is also defined as follows:
Definition 3 Let $E$ and $F$ be two events associated with the same random experiment, then $E$ and $F$ are said to be independent if
$$ P(E \cap F)=P(E) . P(F) $$
Remarks
(i) Two events $E$ and $F$ are said to be dependent if they are not independent, i.e. if $ P(E \cap F) \neq P(E) . P(F) $
(ii) Sometimes there is a confusion between independent events and mutually exclusive events. Term ‘independent’ is defined in terms of ‘probability of events’ whereas mutually exclusive is defined in term of events (subset of sample space). Moreover, mutually exclusive events never have an outcome common, but independent events, may have common outcome. Clearly, ‘independent’ and ‘mutually exclusive’ do not have the same meaning.
In other words, two independent events having nonzero probabilities of occurrence can not be mutually exclusive, and conversely, i.e. two mutually exclusive events having nonzero probabilities of occurrence can not be independent.
(iii) Two experiments are said to be independent if for every pair of events $E$ and $F$, where $E$ is associated with the first experiment and $F$ with the second experiment, the probability of the simultaneous occurrence of the events $E$ and $F$ when the two experiments are performed is the product of $P(E)$ and $P(F)$ calculated separately on the basis of two experiments, i.e., $P(E \cap F)=P(E)$. $P(F)$
(iv) Three events A, B and C are said to be mutually independent, if
$$ \begin{aligned} P(A \cap B) & =P(A) P(B) \\ P(A \cap C) & =P(A) P(C) \\ P(B \cap C) & =P(B) P(C) \end{aligned} $$
$$ \text{ and } \quad P(A \cap B \cap C)=P(A) P(B) P(C) $$
If at least one of the above is not true for three given events, we say that the events are not independent.
Example 10 $A$ die is thrown. If $E$ is the event ’the number appearing is a multiple of 3 ’ and $F$ be the event ’the number appearing is even’ then find whether $E$ and $F$ are independent?
Solution We know that the sample space is $S=\{1,2,3,4,5,6\}$
Now $$ E=\{3,6\}, F=\{2,4,6\} \text{ and } E \cap F=\{6\} $$
Then $$ P(E)=\frac{2}{6}=\frac{1}{3}, P(F)=\frac{3}{6}=\frac{1}{2} \text{ and } P(E \cap F)=\frac{1}{6} $$
Clearly $$ P(E \cap F)=P(E) \cdot P(F) $$
Hence $\quad E$ and $F$ are independent events.
Example 11 An unbiased die is thrown twice. Let the event A be ‘odd number on the first throw’ and B the event ‘odd number on the second throw’. Check the independence of the events A and B.
Solution If all the 36 elementary events of the experiment are considered to be equally likely, we have
Also $$ P(A)=\frac{18}{36}=\frac{1}{2} \text{ and } P(B)=\frac{18}{36}=\frac{1}{2} $$
$$ P(A \cap B)=P(\text{ odd number on both throws }) $$
$$ =\frac{9}{36}=\frac{1}{4} $$
Now $$ P(A) P(B)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4} $$
Clearly $$ P(A \cap B)=P(A) \times P(B) $$
Thus, $\quad A$ and $B$ are independent events
Example 12 Three coins are tossed simultaneously. Consider the event $E$ ’three heads or three tails’, $F$ ‘at least two heads’ and $G$ ‘at most two heads’. Of the pairs (E,F), $(E, G)$ and $(F, G)$, which are independent? which are dependent?
Solution The sample space of the experiment is given by
$$ S=\{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\} $$
Clearly $\quad E=\{HHH, TTT\}, F=\{HHH, HHT, HTH, THH\}$
And $$ G=\{HHT, HTH, THH, HTT, THT, TTH, TTT\} $$
Also $E \cap F=\{HHH\}, E \cap G=\{TTT\}, F \cap G=\{HHT, HTH, THH\}$
Therefore $$ \begin{array}{r} \mathrm{P}(\mathrm{E})=\frac{2}{8}=\frac{1}{4}, \mathrm{P}(\mathrm{F})=\frac{4}{8}=\frac{1}{2}, \mathrm{P}(\mathrm{G})=\frac{7}{8} \\ \mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{8}, \mathrm{P}(\mathrm{E} \cap \mathrm{G})=\frac{1}{8}, \mathrm{P}(\mathrm{F} \cap \mathrm{G})=\frac{3}{8} \end{array} $$
as well as $$ P(E) \cdot P(F)=\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}, P(E) \cdot P(G)=\frac{1}{4} \times \frac{7}{8}=\frac{7}{32} $$ $$ P(F) \cdot P(G)=\frac{1}{2} \times \frac{7}{8}=\frac{7}{16} $$
Thus $$ P(E \cap F)=P(E) \cdot P(F) $$
$$ P(E \cap G) \neq P(E) \cdot P(G) $$
and $$ P(F \cap G) \neq P(F) . P(G) $$
Hence, the events ( $E$ and $F$ ) are independent, and the events $(E$ and $G)$ and $(F$ and $G)$ are dependent.
Example 13 Prove that if $E$ and $F$ are independent events, then so are the events $E$ and $F^{\prime}$.
Solution Since $E$ and $F$ are independent, we have
$$ P(E \cap F)=P(E) . P(F) \tag{1} $$
From the venn diagram in Fig 13.3, it is clear that $E \cap F$ and $E \cap F^{\prime}$ are mutually exclusive events and also $E=(E \cap F) \cup(E \cap F^{\prime})$.
Therefore $$ P(E)=P(E \cap F)+P(E \cap F^{\prime}) $$
$$ \begin{aligned} P(E \cap F^{\prime})= & P(E)-P(E \cap F) \\ = & P(E)-P(E) \cdot P(F) \\ & (\text{ by }(1)) \\ \text{ or } \qquad= & P(E)(1-P(F)) \\ = & P(E) \cdot P(F^{\prime}) \end{aligned} $$
fig 13.3
Hence, $E$ and $F^{\prime}$ are independent
Note In a similar manner, it can be shown that if the events $E$ and $F$ are independent, then
(a) $E^{\prime}$ and $F$ are independent,
(b) $E^{\prime}$ and $F^{\prime}$ are independent
Example 14 If $A$ and $B$ are two independent events, then the probability of occurrence of at least one of $A$ and $B$ is given by $1-P(A^{\prime}) P(B^{\prime})$
Solution We have
$$ \begin{aligned} & P(\text{ at least one of } A \text{ and } B)=P(A \cup B) \\ &=P(A)+P(B)-P(A \cap B) \\ &=P(A)+P(B)-P(A) P(B) \\ &=P(A)+P(B)[1-P(A)] \\ &=P(A)+P(B) . P(A^{\prime}) \\ &=1-P(A^{\prime})+P(B) P(A^{\prime}) \\ &=1-P(A^{\prime})[1-P(B)] \\ &=1-P(A^{\prime}) P(B^{\prime}) \\ & \text{ } \end{aligned} $$
EXERCISE 13.2
1. If $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$, find $P(A \cap B)$ if $A$ and $B$ are independent events.
Show Answer
Solution
It is given that $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$
$A$ and $B$ are independent events. Therefore,
$ P(A \cap B)=P(A) \cdot P(B)=\frac{3}{5} \cdot \frac{1}{5}=\frac{3}{25} $
2. Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.
Show Answer
Solution
There are 26 black cards in a deck of 52 cards.
Let $P(A)$ be the probability of getting a black card in the first draw.
$\therefore P(A)=\frac{26}{52}=\frac{1}{2}$
Let $P(B)$ be the probability of getting a black card on the second draw.
Since the card is not replaced,
$\therefore P(B)=\frac{25}{51}$
Thus, probability of getting both the cards black $=\frac{1}{2} \times \frac{25}{51}=\frac{25}{102}$
3. A box of oranges is inspected by examining three randomly selected oranges drawn without replacement. If all the three oranges are good, the box is approved for sale, otherwise, it is rejected. Find the probability that a box containing 15 oranges out of which 12 are good and 3 are bad ones will be approved for sale.
Show Answer
Solution
Let $A, B$, and $C$ be the respective events that the first, second, and third drawn orange is good.
Therefore, probability that first drawn orange is good, $P(A)=\frac{12}{15}$
The oranges are not replaced.
Therefore, probability of getting second orange good, $P(B)=\frac{11}{14}$
Similarly, probability of getting third orange good, $P(C)=\frac{10}{13}$
The box is approved for sale, if all the three oranges are good.
Thus, probability of getting all the oranges good $=\frac{12}{15} \times \frac{11}{14} \times \frac{10}{13}=\frac{44}{91}$
Therefore, the probability that the box is approved for sale is $\frac{44}{91}$.
4. A fair coin and an unbiased die are tossed. Let A be the event ‘head appears on the coin’ and B be the event ’ 3 on the die’. Check whether A and B are independent events or not.
Show Answer
Solution
If a fair coin and an unbiased die are tossed, then the sample space $S$ is given by,
$S=\begin{cases} (H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6), \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6) \end{cases} $
Let A: Head appears on the coin
$A={(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6)}$
$\Rightarrow P(A)=\frac{6}{12}=\frac{1}{2}$
B: 3 on die $={(H, 3),(T, 3)}$
$P(B)=\frac{2}{12}=\frac{1}{6}$ $\therefore A \cap B={(H, 3)}$
$P(A \cap B)=\frac{1}{12}$
$P(A) \cdot P(B)=\frac{1}{2} \times \frac{1}{6}=P(A \cap B)$
Therefore, $A$ and $B$ are independent events.
5. A die marked 1,2,3 in red and 4, 5, 6 in green is tossed. Let A be the event, ’the number is even,’ and B be the event, ’the number is red’. Are A and B independent?
Show Answer
Solution
When a die is thrown, the sample space (S) is
$S={1,2,3,4,5,6}$
Let $A$ : the number is even $={2,4,6}$
$\Rightarrow P(A)=\frac{3}{6}=\frac{1}{2}$
$B:$ the number is red $={1,2,3}$
$\Rightarrow P(B)=\frac{3}{6}=\frac{1}{3}$
$\therefore A \cap B={2}$ $P(A B)=P(A \cap B)=\frac{1}{6}$
$P(A) \cdot P(B)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4} \neq \frac{1}{6}$
$\Rightarrow P(A) \cdot P(B) \neq P(AB)$
Therefore, A and B are not independent.
6. Let $E$ and $F$ be events with $P(E)=\frac{3}{5}, P(F)=\frac{3}{10}$ and $P(E \cap F)=\frac{1}{5}$. Are $E$ and $F$ independent?
Show Answer
Solution
It is given that $P(E)=\frac{3}{5}, P(F)=\frac{3}{10}$, and $P(EF)=P(E \cap F)=\frac{1}{5}$
$P(E) \cdot P(F)=\frac{3}{5} \cdot \frac{3}{10}=\frac{9}{50} \neq \frac{1}{5}$
$\Rightarrow P(E) \cdot P(F) \neq P(EF)$
Therefore, $E$ and $F$ are not independent.
7. Given that the events $A$ and $B$ are such that $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ and $P(B)=p$. Find $p$ if they are
(i) mutually exclusive
(ii) independent.
Show Answer
Solution
It is given that $P(A)=\frac{1}{2}, P(A \cap B)=\frac{3}{5}$, and $P(B)=p$
(i) When $A$ and $B$ are mutually exclusive, $A \cap B=\Phi$
$\therefore P(A \cap B)=0$
It is known that, $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$ \begin{aligned} & \Rightarrow \frac{3}{5}=\frac{1}{2}+p-0 \\ & \Rightarrow p=\frac{3}{5}-\frac{1}{2}=\frac{1}{10} \end{aligned} $
(ii) When $A$ and $B$ are independent, $P(A \cap B)=P(A) \cdot P(B)=\frac{1}{2} p$
It is known that, $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$\Rightarrow \frac{3}{5}=\frac{1}{2}+p-\frac{1}{2} p$
$\Rightarrow \frac{3}{5}=\frac{1}{2}+\frac{p}{2}$
$\Rightarrow \frac{p}{2}=\frac{3}{5}-\frac{1}{2}=\frac{1}{10}$
$\Rightarrow p=\frac{2}{10}=\frac{1}{5}$
8. Let $A$ and $B$ be independent events with $P(A)=0.3$ and $P(B)=0.4$. Find
(i) $P(A \cap B)$
(ii) $P(A \cup B)$
(iii) $P(A \mid B)$
(iv) $P(B \mid A)$
Show Answer
Solution
It is given that $P(A)=0.3$ and $P(B)=0.4$
(i) If $A$ and $B$ are independent events, then
$P(A \cap B)=P(A) \cdot P(B)=0.3 \times 0.4=0.12$
(ii) It is known that, $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$\Rightarrow P(A \cup B)=0.3+0.4-0.12=0.58$ (iii) It is known that, $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
$\Rightarrow P(A \mid B)=\frac{0.12}{0.4}=0.3$
(iv) It is known that, $P(B \mid A)=\frac{P(A \cap B)}{P(A)}$
$\Rightarrow P(B \mid A)=\frac{0.12}{0.3}=0.4$
9. If $A$ and $B$ are two events such that $P(A)=\frac{1}{4}, P(B)=\frac{1}{2}$ and $P(A \cap B)=\frac{1}{8}$, find $P($ not $A$ and not $B)$.
Show Answer
Solution
It is given that, $P(A)=\frac{1}{2}$ and $P(A \cap B)=\frac{1}{8}$
$P(not$ on $A$ and not on $B)=P(A^{\prime} \cap B^{\prime})$
$P(not$ on $A$ and not on $B)=P((A \cup B))^{\prime}$
$=1-P(A \cup B)$
$ [A^{\prime} \cap B^{\prime}=(A \cup B)^{\prime}] $
$=1-[P(A)+P(B)-P(A \cap B)]$
$=1-[\frac{1}{4}+\frac{1}{2}-\frac{1}{8}]$
$=1-\frac{5}{8}$
$=\frac{3}{8}$
10. Events $A$ and $B$ are such that $P(A)=\frac{1}{2}, P(B)=\frac{7}{12}$ and $P(not A$ or not $B)=\frac{1}{4}$. State whether A and B are independent?
Show Answer
Solution
It is given that $P(A)=\frac{1}{2}, P(B)=\frac{7}{12}$, and $P(not A$ or $not B)=\frac{1}{4}$
$\Rightarrow P(A^{\prime} \cup B^{\prime})=\frac{1}{4}$
$\Rightarrow P((A \cap B)^{\prime})=\frac{1}{4} \quad[A^{\prime} \cup B^{\prime}=(A \cap B)^{\prime}]$
$\Rightarrow 1-P(A \cap B)=\frac{1}{4}$
$\Rightarrow P(A \cap B)=\frac{3}{4}$
However, $P(A) \cdot P(B)=\frac{1}{2} \cdot \frac{7}{12}=\frac{7}{24}$
Here, $\frac{3}{4} \neq \frac{7}{24}$
$\therefore P(A \cap B) \neq P(A) \cdot P(B)$
Therefore, A and B are independent events.
11. Given two independent events $A$ and $B$ such that $P(A)=0.3, P(B)=0.6$. Find
(i) $P(A$ and $B)$
(ii) $P(A$ and not $B)$
(iii) $P(A$ or $B)$
(iv) $P$ (neither $A$ nor $B$ )
Show Answer
Solution
It is given that $P(A)=0.3$ and $P(B)=0.6$
Also, $A$ and $B$ are independent events.
(i) $\therefore P(A$ and $B)=P(A) \cdot P(B)$
$\Rightarrow P(A \cap B)=0.3 \times 0.6=0.18$
(ii) $P(A$ and not $B)=P(A \cap B^{\prime})$ $=P(A)-P(A \cap B)$
$=0.3-0.18$
$=0.12$
(iii) $P(A$ or $B)=P(A \cup B)$
$=P(A)+P(B)-P(A \cap B)$
$=0.3+0.6-0.18$
$=0.72$
(iv) $P($ neither $A$ nor $B)=P(A^{\prime} \cap B^{\prime})$
$=P((A \cup B)^{\prime})$
$=1-P(A \cup B)$
$=1-0.72$
$=0.28$
12. A die is tossed thrice. Find the probability of getting an odd number at least once.
Show Answer
Solution
Probability of getting an odd number in a single throw of a die $=\frac{3}{6}=\frac{1}{2}$
Similarly, probability of getting an even number $=\frac{3}{6}=\frac{1}{2}$
Probability of getting an even number three times $=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8}$
Therefore, probability of getting an odd number at least once
$=1-$ Probability of getting an odd number in none of the throws
$=1-$ Probability of getting an even number thrice
$=1-\frac{1}{8}$
$=\frac{7}{8}$
13. Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that
(i) both balls are red.
(ii) first ball is black and second is red.
(iii) one of them is black and other is red.
Show Answer
Solution
Total number of balls $=18$
Number of red balls $=8$
Number of black balls $=10$
(i) Probability of getting a red ball in the first draw $=\frac{8}{18}=\frac{4}{9}$
The ball is replaced after the first draw.
$\therefore$ Probability of getting a red ball in the second draw $=\frac{8}{18}=\frac{4}{9}$
Therefore, probability of getting both the balls red $=\frac{4}{9} \times \frac{4}{9}=\frac{16}{81}$
(ii) Probability of getting first ball black $=\frac{10}{18}=\frac{5}{9}$
The ball is replaced after the first draw.
Probability of getting second ball as red $=\frac{8}{18}=\frac{4}{9}$
Therefore, probability of getting first ball as black and second ball as red $=\frac{5}{9} \times \frac{4}{9}=\frac{20}{81}$
(iii) Probability of getting first ball as red $=\frac{8}{18}=\frac{4}{9}$
The ball is replaced after the first draw.
Probability of getting second ball as black $=\frac{10}{18}=\frac{5}{9}$
Therefore, probability of getting first ball as black and second ball as red $=\frac{4}{9} \times \frac{5}{9}=\frac{20}{81}$ Therefore, probability that one of them is black and other is red
$=$ Probability of getting first ball black and second as red + Probability of getting first ball
red and second ball black $=\frac{20}{81}+\frac{20}{81}$
$ =\frac{40}{81} $
14. Probability of solving specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that
(i) the problem is solved
(ii) exactly one of them solves the problem.
Show Answer
Solution
Probability of solving the problem by $A, P(A)=\frac{1}{2}$
Probability of solving the problem by $B, P(B)=\frac{1}{3}$
Since the problem is solved independently by $A$ and $B$,
$\therefore P(AB)=P(A) \cdot P(B)=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$
$P(A^{\prime})=1-P(A)=1-\frac{1}{2}=\frac{1}{2}$
$P(B^{\prime})=1-P(B)=1-\frac{1}{3}=\frac{2}{3}$ i. $\quad$ Probability that the problem is solved $=P(A \cup B)$
$=P(A)+P(B)-P(A B)$ $=\frac{1}{2}+\frac{1}{3}-\frac{1}{6}$
$=\frac{4}{6}$
$=\frac{2}{3}$
(ii) Probability that exactly one of them solves the problem is given by,
$ \begin{aligned} & P(A) \cdot P(B^{\prime})+P(B) \cdot P(A^{\prime}) \\ & =\frac{1}{2} \times \frac{2}{3}+\frac{1}{2} \times \frac{1}{3} \\ & =\frac{1}{3}+\frac{1}{6} \\ & =\frac{1}{2} \end{aligned} $
15. One card is drawn at random from a well shuffled deck of 52 cards. In which of the following cases are the events $E$ and $F$ independent?
(i) $E$ : ’the card drawn is a spade’
$F$ : ’the card drawn is an ace'
(ii) $E$ : ’the card drawn is black'
F : ’the card drawn is a king'
(iii) $E$ : ’the card drawn is a king or queen'
$F$ : ’the card drawn is a queen or jack'.
Show Answer
Solution
(i) In a deck of 52 cards, 13 cards are spades and 4 cards are aces.
$\therefore P(E)=P($ the card drawn is a spade $)=\frac{13}{52}=\frac{1}{4}$ $\therefore P(F)=P($ the card drawn is an ace $)=\frac{4}{52}=\frac{1}{13}$
In the deck of cards, only 1 card is an ace of spades.
$P(E F)=P($ the card drawn is spade and an ace $)=\frac{1}{52}$
$P(E) \times P(F)=\frac{1}{4} \cdot \frac{1}{13}=\frac{1}{52}=P(E F)$
$\Rightarrow P(E) \times P(F)=P(E F)$
Therefore, the events $E$ and $F$ are independent.
(ii) In a deck of 52 cards, 26 cards are black and 4 cards are kings.
$\therefore P(E)=P($ the card drawn is black $)=\frac{26}{52}=\frac{1}{2}$
$\therefore P(F)=P($ the card drawn is a king $)=\frac{4}{52}=\frac{1}{13}$
In the pack of 52 cards, 2 cards are black as well as kings.
$\therefore P(EF)=P($ the card drawn is a black king $)=\frac{2}{52}=\frac{1}{26}$ $P(E) \times P(F)=\frac{1}{2} \cdot \frac{1}{13}=\frac{1}{26}=P(EF)$
Therefore, the given events $E$ and $F$ are independent.
(iii) In a deck of 52 cards, 4 cards are kings, 4 cards are queens, and 4 cards are jacks.
$\therefore P(E)=P($ the card drawn is a king or a queen $)=\frac{8}{52}=\frac{2}{13}$
$\therefore P(F)=P($ the card drawn is a queen or a jack $)=\frac{8}{52}=\frac{2}{13}$
There are 4 cards which are king or queen and queen or jack.
$\therefore P(EF)=P$ (the card drawn is a king or a queen, or queen or a jack)
$=\frac{4}{52}=\frac{1}{13}$
$P(E) \times P(F)=\frac{2}{13} \cdot \frac{2}{13}=\frac{4}{169} \neq \frac{1}{13}$
$\Rightarrow P(E) \cdot P(F) \neq P(EF)$
Therefore, the given events $E$ and $F$ are not independent.
16. In a hostel, $60 %$ of the students read Hindi newspaper, $40 %$ read English newspaper and $20 %$ read both Hindi and English newspapers. A student is selected at random.
(a) Find the probability that she reads neither Hindi nor English newspapers.
(b) If she reads Hindi newspaper, find the probability that she reads English newspaper.
(c) If she reads English newspaper, find the probability that she reads Hindi newspaper.
Show Answer
Solution
Let $H$ denote the students who read Hindi newspaper and $E$ denote the students who read English newspaper.
It is given that,
$ \begin{aligned} & P(H)=60 %=\frac{6}{10}=\frac{3}{5} \\ & P(E)=40 %=\frac{40}{100}=\frac{2}{5} \\ & P(H \cap E)=20 %=\frac{20}{100}=\frac{1}{5} \end{aligned} $
i. Probability that a student reads Hindi or English newspaper is,
$ \begin{aligned} (H \cup E)^{\prime} & =1-P(H \cup E) \\ & =1-{P(H)+P(E)-P(H \cap E)} \\ & =1-(\frac{3}{5}+\frac{2}{5}-\frac{1}{5}) \\ & =1-\frac{4}{5} \\ & =\frac{1}{5} \end{aligned} $
(ii) Probability that a randomly chosen student reads English newspaper, if she reads Hindi news paper, is given by $P(E \mid H)$.
$ \begin{aligned} P(E \mid H) & =\frac{P(E \cap H)}{P(H)} \\ & =\frac{\frac{1}{3}}{\frac{3}{5}} \\ & =\frac{1}{3} \end{aligned} $
(iii) Probability that a randomly chosen student reads Hindi newspaper, if she reads English newspaper, is given by $P(H \mid E)$.
$ \begin{aligned} P(H \mid E) & =\frac{P(H \cap E)}{P(E)} \\ & =\frac{\frac{1}{5}}{\frac{2}{5}} \\ & =\frac{1}{2} \end{aligned} $
Choose the correct answer in Exercises 17 and 18.
17. The probability of obtaining an even prime number on each die, when a pair of dice is rolled is
(A) 0
(B) $\frac{1}{3}$
(C) $\frac{1}{12}$
(D) $\frac{1}{36}$
Show Answer
Solution
When two dice are rolled, the number of outcomes is 36 .
The only even prime number is 2 .
Let $E$ be the event of getting an even prime number on each die.
$\therefore E={(2,2)}$
$\Rightarrow P(E)=\frac{1}{36}$
Therefore, the correct answer is D.
18. Two events $A$ and $B$ will be independent, if
(A) $A$ and $B$ are mutually exclusive
(B) $P(A^{\prime} B^{\prime})=[1-P(A)][1-P(B)]$
(C) $P(A)=P(B)$
(D) $P(A)+P(B)=1$
Show Answer
Solution
Two events $A$ and $B$ are said to be independent, if $P(A B)=P(A) \times P(B)$
Consider the result given in alternative $\mathbf{B}$.
$P(A^{\prime} B^{\prime})=[1-P(A)][1-P(B)]$
$\Rightarrow P(A^{\prime} \cap B^{\prime})=1-P(A)-P(B)+P(A) \cdot P(B)$
$\Rightarrow 1-P(A \cup B)=1-P(A)-P(B)+P(A) \cdot P(B)$
$\Rightarrow P(A \cup B)=P(A)+P(B)-P(A) \cdot P(B)$
$\Rightarrow P(A)+P(B)-P(AB)=P(A)+P(B)-P(A) \cdot P(B)$
$\Rightarrow P(AB)=P(A) \cdot P(B)$
This implies that $A$ and $B$ are independent, if $P(A^{\prime} B^{\prime})=[1-P(A)][1-P(B)]$
Distracter Rationale
A. Let $P(A)=m, P(B)=n, 0<m, n<1$
$A$ and $B$ are mutually exclusive.
$\therefore A \cap B=\phi$
$\Rightarrow P(AB)=0$
However, $P(A) \cdot P(B)=m n \neq 0$
$\therefore P(A) \cdot P(B) \neq P(AB)$
C. Let A: Event of getting an odd number on throw of a die $={1,3,5}$
$\Rightarrow P(A)=\frac{3}{6}=\frac{1}{2}$
B: Event of getting an even number on throw of a die $={2,4,6}$
$P(B)=\frac{3}{6}=\frac{1}{2}$
Here, $A \cap B=\phi$
$\therefore P(AB)=0$
$P(A) \cdot P(B)=\frac{1}{4} \neq 0$
$\Rightarrow P(A) \cdot P(B) \neq P(AB)$
D. From the above example, it can be seen that, $P(A)+P(B)=\frac{1}{2}+\frac{1}{2}=1$
However, it cannot be inferred that $A$ and $B$ are independent.
Thus, the correct answer is $B$.
13.5 Bayes’ Theorem
Consider that there are two bags I and II. Bag I contains 2 white and 3 red balls and Bag II contains 4 white and 5 red balls. One ball is drawn at random from one of the bags. We can find the probability of selecting any of the bags (i.e. $\frac{1}{2}$ ) or probability of drawing a ball of a particular colour (say white) from a particular bag (say Bag I). In other words, we can find the probability that the ball drawn is of a particular colour, if we are given the bag from which the ball is drawn. But, can we find the probability that the ball drawn is from a particular bag (say Bag II), if the colour of the ball drawn is given? Here, we have to find the reverse probability of Bag II to be selected when an event occurred after it is known. Famous mathematician, John Bayes’ solved the problem of finding reverse probability by using conditional probability. The formula developed by him is known as ‘Bayes theorem’ which was published posthumously in 1763. Before stating and proving the Bayes’ theorem, let us first take up a definition and some preliminary results.
13.5.1 Partition of a sample space
A set of events $E_1, E_2, \ldots, E_n$ is said to represent a partition of the sample space $S$ if
(a) $E_i \cap E_j=\phi, i \neq j, i, j=1,2,3, \ldots, n$
(b) $E_1 \cup E_2 \cup \ldots \cup E_n=S$ and
(c) $P(E_i)>0$ for all $i=1,2, \ldots, n$.
In other words, the events $E_1, E_2, \ldots, E_n$ represent a partition of the sample space $S$ if they are pairwise disjoint, exhaustive and have nonzero probabilities.
As an example, we see that any nonempty event $E$ and its complement $E^{\prime}$ form a partition of the sample space $S$ since they satisfy $E \cap E^{\prime}=\phi$ and $E \cup E^{\prime}=S$.
From the Venn diagram in Fig 13.3, one can easily observe that if $E$ and $F$ are any two events associated with a sample space $S$, then the set $\{E \cap F^{\prime}, E \cap F, E^{\prime} \cap F, E^{\prime} \cap F^{\prime}\}$ is a partition of the sample space $S$. It may be mentioned that the partition of a sample space is not unique. There can be several partitions of the same sample space. we shall now prove a theorem known as Theorem of total probability.
13.5.2 Theorem of total probability
Let $\{E_1, E_2, \ldots, E_n\}$ be a partition of the sample space $S$, and suppose that each of the events $E_1, E_2, \ldots, E_n$ has nonzero probability of occurrence. Let $A$ be any event associated with $S$, then
$ \begin{aligned} P(A) & =P(E_1) P(AlE_1)+P(E_2) P(AlE_2)+\ldots+P(E_n) P(AlE_n) \\ & =\sum _{j=1}^{n} P(E_j) P(AlE_j) \end{aligned} $
Proof Given that $E_1, E_2, \ldots, E_n$ is a partition of the sample space $S$ (Fig 13.4). Therefore,
$$ S=E_1 \cup E_2 \cup \ldots \cup E_n $$
and $$ E_i \cap E_j=\phi, i \neq j, i, j=1,2, \ldots, n $$
Now, we know that for any event $A$,
$$ \begin{aligned} A & =A \cap S \\ & =A \cap(E_1 \cup E_2 \cup \ldots \cup E_n) \\ & =(A \cap E_1) \cup(A \cap E_2) \cup \ldots \cup(A \cap E_n) \end{aligned} $$
Fig 13.4
Also $A \cap E_i$ and $A \cap E_j$ are respectively the subsets of $E_i$ and $E_j$. We know that $E_i$ and $E_j$ are disjoint, for $i \neq j$, therefore, $A \cap E_i$ and $A \cap E_j$ are also disjoint for all $i \neq j, i, j=1,2, \ldots, n$.
Thus, $$ \begin{aligned} P(A) & =P[(A \cap E_1) \cup(A \cap E_2) \cup \ldots . . \cup(A \cap E_n)] \\ & =P(A \cap E_1)+P(A \cap E_2)+\ldots+P(A \cap E_n) \end{aligned} $$
Now, by multiplication rule of probability, we have
Now $ P(A \cap E_i)=P(E_i) P(AlE_i) \text{ as } P(E_i) \neq 0 \forall i=1,2, \ldots, n $
Therefore, $$ P(A)=P(E_1) P(AlE_1)+P(E_2) P(AlE_2)+\ldots+P(E_n) P(AlE_n) $$
or $$ P(A)=\sum _{j=1}^{n} P(E_j) P(AlE_j) $$
Example 15 A person has undertaken a construction job. The probabilities are 0.65 that there will be strike, 0.80 that the construction job will be completed on time if there is no strike, and 0.32 that the construction job will be completed on time if there is a strike. Determine the probability that the construction job will be completed on time.
Solution Let A be the event that the construction job will be completed on time, and B be the event that there will be a strike. We have to find $P(A)$.
We have $ \begin{aligned} P(B) & =0.65, P(\text{ no strike })=P(B^{\prime})=1-P(B)=1-0.65=0.35 \\ P(A \mid B) & =0.32, P(A \mid B^{\prime})=0.80 \end{aligned} $
Since events B and B’ form a partition of the sample space S, therefore, by theorem on total probability, we have
$$ =\mathrm{P}(\mathrm{B}) \cdot \mathrm{P}(\mathrm{A} \mid \mathrm{B})+\mathrm{P}\left(\mathrm{B}^{\prime}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{B}^{\prime}\right) $$
$$ \begin{aligned} & =0.65 \times 0.32+0.35 \times 0.8 \\ & =0.208+0.28=0.488 \end{aligned} $$
Thus, the probability that the construction job will be completed in time is 0.488 .
We shall now state and prove the Bayes’ theorem.
Bayes’ Theorem If $E_1, E_2, \ldots, E_n$ are $n$ non empty events which constitute a partition of sample space $S$, i.e. $E_1, E_2, \ldots, E_n$ are pairwise disjoint and $E_1 \cup E_2 \cup \ldots \cup E_n=S$ and A is any event of nonzero probability, then
$$ P(E_i \mid A)=\frac{P(E_i) P(AlE_i)}{\sum _{j=1}^{n} P(E_j) P(AlE_j)} \text{ for any } i=1,2,3, \ldots, n $$
Proof By formula of conditional probability, we know that
$$ \begin{aligned} P(E_i \mid A) & =\frac{P(A \cap E_i)}{P(A)} \\ & =\frac{P(E_i) P(AlE_i)}{P(A)} \text{ (by multiplication rule of probability) } \\ & =\frac{P(E_i) P(AlE_i)}{\sum _{j=1}^{n} P(E_j) P(AlE_j)} \text{ (by the result of theorem of total probability) } \end{aligned} $$
Remark The following terminology is generally used when Bayes’ theorem is applied. The events $E_1, E_2, \ldots, E_n$ are called hypotheses. The probability $P(E_i)$ is called the priori probability of the hypothesis $E_i$ The conditional probability $P(E_i \mid A)$ is called a posteriori probability of the hypothesis $E_i$.
Bayes’ theorem is also called the formula for the probability of “causes”. Since the $E_i$ ’s are a partition of the sample space $S$, one and only one of the events $E_i$ occurs (i.e. one of the events $E_i$ must occur and only one can occur). Hence, the above formula gives us the probability of a particular $E_i$ (i.e. a “Cause”), given that the event $A$ has occurred.
The Bayes’ theorem has its applications in variety of situations, few of which are illustrated in following examples.
Example 16 Bag I contains 3 red and 4 black balls while another Bag II contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. Find the probability that it was drawn from Bag II.
Solution Let $E_1$ be the event of choosing the bag I, $E_2$ the event of choosing the bag II and $A$ be the event of drawing a red ball.
Then $$ P(E_1)=P(E_2)=\frac{1}{2} $$
Also $ P(AlE_1)=P(\text{ drawing a red ball from Bag } I)=\frac{3}{7} $
and $$ P(AlE_2)=P(\text{ drawing a red ball from Bag II })=\frac{5}{11} $$
Now, the probability of drawing a ball from Bag II, being given that it is red, is $P(E_2 \mid A)$
$$ P(E_2 \mid A)=\frac{P(E_2) P(A_2 E_2)}{P(E_1) P(A_1 E_1)+P(E_2) P(A_I E_2)}=\frac{\frac{1}{2} \times \frac{5}{11}}{\frac{1}{2} \times \frac{3}{7}+\frac{1}{2} \times \frac{5}{11}}=\frac{35}{68} $$
Example 17 Given three identical boxes I, II and III, each containing two coins. In box I, both coins are gold coins, in box II, both are silver coins and in the box III, there is one gold and one silver coin. A person chooses a box at random and takes out a coin. If the coin is of gold, what is the probability that the other coin in the box is also of gold?
Solution Let $E_1, E_2$ and $E_3$ be the events that boxes I, II and III are chosen, respectively.
Then $$ P(E_1)=P(E_2)=P(E_3)=\frac{1}{3} $$
Also, let A be the event that ’the coin drawn is of gold’
Then $$ \begin{aligned} & P(AIE_1)=P(\text{ a gold coin from bag } I)=\frac{2}{2}=1 \\ & P(AIE_2)=P(\text{ a gold coin from bag II })=0 \\ & P(AIE_3)=P(\text{ a gold coin from bag III })=\frac{1}{2} \end{aligned} $$
Now, the probability that the other coin in the box is of gold $$ \begin{aligned} & =\text{ the probability that gold coin is drawn from the box } I \text{. } \\ & =P(E_1 \mid A) \end{aligned} $$
By Bayes’ theorem, we know that
$ \begin{aligned} P(E_1 \mid A) & =\frac{P(E_1) P(AlE_1)}{P(E_1) P(AlE E_1)+P(E_2) P(AlE_2)+P(E_3) P(AlE_3)} \\ & =\frac{\frac{1}{3} \times 1}{\frac{1}{3} \times 1+\frac{1}{3} \times 0+\frac{1}{3} \times \frac{1}{2}}=\frac{2}{3} \end{aligned} $
Example 18 Suppose that the reliability of a HIV test is specified as follows:
Of people having HIV, $90 \%$ of the test detect the disease but $10 \%$ go undetected. Of people free of HIV, $99 \%$ of the test are judged HIV-ive but $1 \%$ are diagnosed as showing HIV+ive. From a large population of which only $0.1 \%$ have HIV, one person is selected at random, given the HIV test, and the pathologist reports him/her as HIV+ive. What is the probability that the person actually has HIV?
Solution Let $E$ denote the event that the person selected is actually having HIV and A the event that the person’s HIV test is diagnosed as +ive. We need to find P(EIA).
Also $E^{\prime}$ denotes the event that the person selected is actually not having HIV.
Clearly, $\{E, E^{\prime}\}$ is a partition of the sample space of all people in the population. We are given that
$$ \begin{aligned} & P(E)=0.1 \%=\frac{0.1}{100}=0.001 \\ & P\left(E^{\prime}\right)=1-P(E)=0.999 \end{aligned} $$
$ \begin{aligned} P(A \mid E)= & P(Person \text{ tested as HIV+ive given that he/she } \\ & \quad \text{ is actually having HIV }) = & 90 \%=\frac{90}{100}=0.9 \end{aligned} $
and $P(A \mid E^{\prime})=P($ Person tested as HIV +ive given that he/she is actually not having HIV) $=1 \%=0.01$
Now, by Bayes’ theorem
$ \begin{aligned} P(E \mid A) & =\frac{P(E) P(A \mid E)}{P(E) P(A \mid E)+P(E^{\prime}) P(AlE^{\prime})} \\ & =\frac{0.001 \times 0.9}{0.001 \times 0.9+0.999 \times 0.01}=\frac{90}{1089} \\ & =0.083 \text{ approx. } \end{aligned} $
Thus, the probability that a person selected at random is actually having HIV given that he/she is tested HIV+ive is 0.083 .
Example 19 In a factory which manufactures bolts, machines A, B and C manufacture respectively $25 \%, 35 \%$ and $40 \%$ of the bolts. Of their outputs, 5, 4 and 2 percent are respectively defective bolts. A bolt is drawn at random from the product and is found to be defective. What is the probability that it is manufactured by the machine $B$ ?
Solution Let events $B_1, B_2, B_3$ be the following :
$B_1$ : the bolt is manufactured by machine $A$
$B_2$ : the bolt is manufactured by machine $B$
$B_3$ : the bolt is manufactured by machine $C$
Clearly, $B_1, B_2, B_3$ are mutually exclusive and exhaustive events and hence, they represent a partition of the sample space.
Let the event $E$ be ’the bolt is defective’. The event $E$ occurs with $B_1$ or with $B_2$ or with $B_3$. Given that,
$$ \mathrm{P}\left(\mathrm{B} _{1}\right)=25 \%=0.25, \mathrm{P}\left(\mathrm{B} _{2}\right)=0.35 \text { or} \mathrm{P}\left(\mathrm{B} _{3}\right)=0.40 $$
Again $P(E_1 B_1)=$ Probability that the bolt drawn is defective given that it is manufactured by machine $A=5 \%=0.05$
Similarly $\mathrm{P}\left(\mathrm{E} \mid B _{2}\right)=0.04, \mathrm{P}\left(\mathrm{ElB} _{3}\right)=0.02$
Hence, by Bayes’ Theorem, we have
$$ \begin{aligned} \mathrm{P}\left(\mathrm{B} _{2} \mid \mathrm{E}\right) & =\frac{\mathrm{P}\left(\mathrm{B} _{2}\right) \mathrm{P}\left(\mathrm{ElB} _{2}\right)}{\mathrm{P}\left(\mathrm{B} _{1}\right) \mathrm{P}\left(\mathrm{ElB} _{1}\right)+\mathrm{P}\left(\mathrm{B} _{2}\right) \mathrm{P}\left(\mathrm{ElB} _{2}\right)+\mathrm{P}\left(\mathrm{B} _{3}\right) \mathrm{P}\left(\mathrm{E}+\mid \mathrm{B} _{3}\right)} \\ & =\frac{0.35 \times 0.04}{0.25 \times 0.05+0.35 \times 0.04+0.40 \times 0.02}=\frac{0.0140}{0.0345}=\frac{28}{69} \end{aligned} $$
Example 20 A doctor is to visit a patient. From the past experience, it is known that the probabilities that he will come by train, bus, scooter or by other means of transport are respectively $\frac{3}{10}, \frac{1}{5}, \frac{1}{10}$ and $\frac{2}{5}$. The probabilities that he will be late are $\frac{1}{4}, \frac{1}{3}$, and $\frac{1}{12}$, if he comes by train, bus and scooter respectively, but if he comes by other means of transport, then he will not be late. When he arrives, he is late. What is the probability that he comes by train?
Solution Let $E$ be the event that the doctor visits the patient late and let $T_1, T_2, T_3, T_4$ be the events that the doctor comes by train, bus, scooter, and other means of transport respectively.
Then $$ P(T_1)=\frac{3}{10}, P(T_2)=\frac{1}{5}, P(T_3)=\frac{1}{10} \text{ and } P(T_4)=\frac{2}{5} \quad \text{ (given) } $$
$ P(ElT_1)=\text{ Probability that the doctor arriving late comes by train }=\frac{1}{4} $
Similarly, $P(E \mid T_2)=\frac{1}{3}, P(E \mid T_3)=\frac{1}{12}$ and $P(E \mid T_4)=0$, since he is not late if he comes by other means of transport.
Therefore, by Bayes’ Theorem, we have
$P(T_1 \mid E)=$ Probability that the doctor arriving late comes by train
$$ \begin{aligned} & =\frac{P(T_1) P(ElT_1)}{P(T_1) P(E \mid T_1)+P(T_2) P(ElT T_2)+P(T_3) P(ElT_3)+P(T_4) P(ElT_4)} \\ & =\frac{\frac{3}{10} \times \frac{1}{4}}{\frac{3}{10} \times \frac{1}{4}+\frac{1}{5} \times \frac{1}{3}+\frac{1}{10} \times \frac{1}{12}+\frac{2}{5} \times 0}=\frac{3}{40} \times \frac{120}{18}=\frac{1}{2} \end{aligned} $$
Hence, the required probability is $\frac{1}{2}$.
Example 21 A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.
Solution Let $E$ be the event that the man reports that six occurs in the throwing of the die and let $S_1$ be the event that six occurs and $S_2$ be the event that six does not occur.
Then $ \begin{aligned} & P(S_1)=\text{ Probability that six occurs }=\frac{1}{6} \end{aligned} $
$ \begin{aligned} & P(S_2)=\text{ Probability that six does not occur }=\frac{5}{6} \end{aligned} $
$$P(ElS_1)=\text{ Probability that the man reports that six occurs when six has }$$
Probability that the man speaks the truth $=\frac{3}{4} $
$\mathrm{P}\left(\mathrm{ElS} _2\right)=$ Probability that the man reports that six occurs when six has not actually occurred on the die
= Probability that the man does not speak the truth $=1-\frac{3}{4}=\frac{1}{4}$ Thus, by Bayes’ theorem, we get
$\mathrm{P}(\mathrm{S}, \mathrm{E})=$ Probability that the report of the man that six has occurred is actually a six
$ \begin{aligned} & =\frac{P(S_1) P(E \mid S_1)}{P(S_1) P(EIS_1)+P(S_2) P(E \mid S_2)} & =\frac{\frac{1}{6} \times \frac{3}{4}}{\frac{1}{6} \times \frac{3}{4}+\frac{5}{6} \times \frac{1}{4}}=\frac{1}{8} \times \frac{24}{8}=\frac{3}{8} \end{aligned} $
Hence, the required probability is $\frac{3}{8}$.
Remark A random variable is a real valued function whose domain is the sample space of a random experiment.
For example, let us consider the experiment of tossing a coin two times in succession. The sample space of the experiment is
$$S=\{HH, HT, TH, TT\}$$.
If $X$ denotes the number of heads obtained, then $X$ is a random variable and for each outcome, its value is as given below :
$$ X(HH)=2, X(HT)=1, X(TH)=1, X(TT)=0 . $$
More than one random variables can be defined on the same sample space. For example, let $Y$ denote the number of heads minus the number of tails for each outcome of the above sample space $S$.
$$ Y(HH)=2, Y(HT)=0, Y(TH)=0, Y(TT)=-2 $$
Thus, $X$ and $Y$ are two different random variables defined on the same sample space $S$.
EXERCISE 13.3
1. An urn contains 5 red and 5 black balls. A ball is drawn at random, its colour is noted and is returned to the urn. Moreover, 2 additional balls of the colour drawn are put in the urn and then a ball is drawn at random. What is the probability that the second ball is red?
Show Answer
Solution
The urn contains 5 red and 5 black balls.
Let a red ball be drawn in the first attempt.
$\therefore P($ drawing a red ball $)=\frac{5}{10}=\frac{1}{2}$
If two red balls are added to the urn, then the urn contains 7 red and 5 black balls.
$P(.$ drawing a red ball) $=\frac{7}{12}$
Let a black ball be drawn in the first attempt.
$\therefore P$ (drawing a black ball in the first attempt) $=\frac{5}{10}=\frac{1}{2}$
If two black balls are added to the urn, then the urn contains 5 red and 7 black balls.
$P($ drawing a red ball $)=\frac{5}{12}$
Therefore, probability of drawing second ball as red is
$\frac{1}{2} \times \frac{7}{12}+\frac{1}{2} \times \frac{5}{12}=\frac{1}{2}(\frac{7}{12}+\frac{5}{12})=\frac{1}{2} \times 1=\frac{1}{2}$
2. A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black balls. One of the two bags is selected at random and a ball is drawn from the bag which is found to be red. Find the probability that the ball is drawn from the first bag.
Show Answer
Solution
Let $E_1$ and $E_2$ be the events of selecting first bag and second bag respectively. $\therefore P(E_1)=P(E_2)=\frac{1}{2}$
Let $A$ be the event of getting a red ball.
$\Rightarrow P(A \mid E_1)=P($ drawing a red ball from first bag $)=\frac{4}{8}=\frac{1}{2}$
$\Rightarrow P(A \mid E_2)=P($ drawing a red ball from second bag $)=\frac{2}{8}=\frac{1}{4}$
The probability of drawing a ball from the first bag, given that it is red, is given by $P$ $(E_2 \mid A)$.
By using Bayes’ theorem, we obtain
$ \begin{aligned} P(E_1 \mid A) & =\frac{P(E_1) \cdot P(A \mid E_1)}{P(E_1) \cdot P(A \mid E_1)+P(E_2) \cdot P(A \mid E_2)} \\ & =\frac{\frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{4}} \\ & =\frac{\frac{1}{4}}{\frac{1}{4}+\frac{1}{8}} \\ & =\frac{\frac{1}{3}}{\frac{3}{8}} \\ & =\frac{2}{3} \end{aligned} $
3. Of the students in a college, it is known that $60 %$ reside in hostel and $40 %$ are day scholars (not residing in hostel). Previous year results report that $30 %$ of all students who reside in hostel attain A grade and $20 %$ of day scholars attain A grade in their annual examination. At the end of the year, one student is chosen at random from the college and he has an A grade, what is the probability that the student is a hostlier?
Show Answer
Solution
Let $E_1$ and $E_2$ be the events that the student is a hostler and a day scholar respectively and $A$ be the event that the chosen student gets grade $A$.
$\therefore P(E_1)=60 %=\frac{60}{100}=0.6$
$P(E_2)=40 %=\frac{40}{100}=0.4$
$P(A \mid E_1)=P$ (student getting an A grade is a hostler) $=30 %=0.3$
$P(A \mid E_2)=P($ student getting an A grade is a day scholar $)=20 %=0.2$
The probability that a randomly chosen student is a hostler, given that he has an A grade, is given by $P(E_1 \mid A)$.
By using Bayes’ theorem, we obtain
$ \begin{aligned} P(E_1 \mid A) & =\frac{P(E_1) \cdot P(A \mid E_1)}{P(E_1) \cdot P(A \mid E_1)+P(E_2) \cdot P(A \mid E_2)} \\ & =\frac{0.6 \times 0.3}{0.6 \times 0.3+0.4 \times 0.2} \\ & =\frac{0.18}{0.26} \\ & =\frac{18}{26} \\ & =\frac{9}{13} \end{aligned} $
4. In answering a question on a multiple choice test, a student either knows the answer or guesses. Let $\frac{3}{4}$ be the probability that he knows the answer and $\frac{1}{4}$ be the probability that he guesses. Assuming that a student who guesses at the answer will be correct with probability $\frac{1}{4}$. What is the probability that the student knows the answer given that he answered it correctly?
Show Answer
Solution
Let $E_1$ and $E_2$ be the respective events that the student knows the answer and he guesses the answer.
Let $A$ be the event that the answer is correct.
$\therefore P(E_1)=\frac{3}{4}$
$P(E_2)=\frac{1}{4}$
The probability that the student answered correctly, given that he knows the answer, is 1.
$\therefore P(A \mid E_1)=1$
Probability that the student answered correctly, given that he guessed, is $\frac{1}{4}$.
$\therefore P(A \mid E_2)=\frac{1}{4}$
The probability that the student knows the answer, given that he answered it correctly, is given by $P(E_1 \mid A)$
By using Bayes’ theorem, we obtain
$ \begin{aligned} P(E_1 \mid A) & =\frac{P(E_1) \cdot P(A \mid E_1)}{P(E_1) \cdot P(A \mid E_1)+P(E_2) \cdot P(A \mid E_2)} \\ & =\frac{\frac{3}{4} \cdot 1}{\frac{3}{4} \cdot 1+\frac{1}{4} \cdot \frac{1}{4}} \\ & =\frac{\frac{3}{4}}{\frac{3}{4}+\frac{1}{16}} \\ & =\frac{\frac{3}{13}}{\frac{16}{16}} \\ & =\frac{12}{13} \end{aligned} $
5. A laboratory blood test is $99 %$ effective in detecting a certain disease when it is in fact, present. However, the test also yields a false positive result for $0.5 %$ of the healthy person tested (i.e. if a healthy person is tested, then, with probability 0.005 , the test will imply he has the disease). If 0.1 percent of the population actually has the disease, what is the probability that a person has the disease given that his test result is positive?
Show Answer
Solution
Let $E_1$ and $E_2$ be the respective events that a person has a disease and a person has no disease.
Since $E_1$ and $E_2$ are events complimentary to each other,
$\therefore P(E_1)+P(E_2)=1$
$\Rightarrow P(E_2)=1-P(E_1)=1-0.001=0.999$
Let $A$ be the event that the blood test result is positive.
$P(E_1)=0.1 %=\frac{0.1}{100}=0.001$
$P(A \mid E_1)=P($ result is positive given the person has disease $)=99 %=0.99$
$P(A \mid E_2)=P($ result is positive given that the person has no disease $)=0.5 %=0.005$
Probability that a person has a disease, given that his test result is positive, is given by P $(E_1 \mid A)$.
By using Bayes’ theorem, we obtain
$ \begin{aligned} P(E_1 \mid A) & =\frac{P(E_1) \cdot P(A \mid E_1)}{P(E_1) \cdot P(A \mid E_1)+P(E_2) \cdot P(A \mid E_2)} \\ & =\frac{0.001 \times 0.99}{0.001 \times 0.99+0.999 \times 0.005} \\ & =\frac{0.00099}{0.00099+0.004995} \\ & =\frac{0.00099}{0.005985} \\ & =\frac{990}{5985} \\ & =\frac{110}{665} \\ & =\frac{22}{133} \end{aligned} $
6. There are three coins. One is a two headed coin (having head on both faces), another is a biased coin that comes up heads $75 %$ of the time and third is an unbiased coin. One of the three coins is chosen at random and tossed, it shows heads, what is the probability that it was the two headed coin?
Show Answer
Solution
Let $E_1, E_2$, and $E_3$ be the respective events of choosing a two headed coin, a biased coin, and an unbiased coin.
$\therefore P(E_1)=P(E_2)=P(E_3)=\frac{1}{3}$
Let $A$ be the event that the coin shows heads.
A two-headed coin will always show heads.
$\therefore P(A \mid E_1)=P($ coin showing heads, given that it is a two-headed coin $)=1$
Probability of heads coming up, given that it is a biased coin $=75 %$
$\therefore P(A \mid E_2)=P($ coin showing heads, given that it is a biased coin $)=\frac{75}{100}=\frac{3}{4}$
Since the third coin is unbiased, the probability that it shows heads is always $\frac{1}{2}$.
$\therefore P(A \mid E_3)=P($ coin showing heads, given that it is an unbiased coin $)=\frac{1}{2}$
The probability that the coin is two-headed, given that it shows heads, is given by $P(E_1 \mid A)$.
By using Bayes’ theorem, we obtain
$ \begin{aligned} P(E_1 \mid A) & =\frac{P(E_1) \cdot P(A \mid E_1)}{P(E_1) \cdot P(A \mid E_1)+P(E_2) \cdot P(A \mid E_2)+P(E_3) \cdot P(A \mid E_3)} \\ & =\frac{\frac{1}{3} \cdot 1}{\frac{1}{3} \cdot 1+\frac{1}{3} \cdot \frac{3}{4}+\frac{1}{3} \cdot \frac{1}{2}} \\ & =\frac{\frac{1}{3}}{\frac{1}{3}(1+\frac{3}{4}+\frac{1}{2})} \\ & =\frac{1}{\frac{9}{4}} \\ & =\frac{4}{9} \end{aligned} $
7. An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probability of an accidents are $0.01,0.03$ and 0.15 respectively. One of the insured persons meets with an accident. What is the probability that he is a scooter driver?
Show Answer
Solution
Let $E_1, E_2$, and $E_3$ be the respective events that the driver is a scooter driver, a car driver, and a truck driver.
Let $A$ be the event that the person meets with an accident.
There are 2000 scooter drivers, 4000 car drivers, and 6000 truck drivers.
Total number of drivers $=2000+4000+6000=12000$
$P(E_1)=P(.$ driver is a scooter driver) $=\frac{2000}{12000}=\frac{1}{6}$
$P(E_2)=P$ (driver is a car driver) $=\frac{4000}{12000}=\frac{1}{3}$
$P(E_3)=P(.$ driver is a truck driver) $=\frac{6000}{12000}=\frac{1}{2}$
$P(A \mid E_1)=P($ scooter driver met with an accident $)=0.01=\frac{1}{100}$
$P(A \mid E_2)=P($ car driver met with an accident $)=0.03=\frac{3}{100}$
$P(A \mid E_3)=P($ truck driver met with an accident $)=0.15=\frac{15}{100}$
The probability that the driver is a scooter driver, given that he met with an accident, is given by $P(E_1 \mid A)$.
By using Bayes’ theorem, we obtain
$ \begin{aligned} P(E_1 \mid A) & =\frac{P(E_1) \cdot P(A \mid E_1)}{P(E_1) \cdot P(A \mid E_1)+P(E_2) \cdot P(A \mid E_2)+P(E_3) \cdot P(A \mid E_3)} \\ & =\frac{\frac{1}{6} \cdot \frac{1}{100}}{\frac{1}{6} \cdot \frac{1}{100}+\frac{1}{3} \cdot \frac{3}{100}+\frac{1}{2} \cdot \frac{15}{100}} \\ & =\frac{\frac{1}{6} \cdot \frac{1}{100}}{\frac{1}{100}(\frac{1}{6}+1+\frac{15}{2})} \end{aligned} $
$ \begin{aligned} & =\frac{\frac{1}{6}}{\frac{104}{12}} \\ & =\frac{1}{6} \times \frac{12}{104} \\ & =\frac{1}{52} \end{aligned} $
8. A factory has two machines A and B. Past record shows that machine A produced $60 %$ of the items of output and machine B produced $40 %$ of the items. Further, $2 %$ of the items produced by machine $A$ and $1 %$ produced by machine $B$ were defective. All the items are put into one stockpile and then one item is chosen at random from this and is found to be defective. What is the probability that it was produced by machine $B$ ?
Show Answer
Solution
Let $E_1$ and $E_2$ be the respective events of items produced by machines $A$ and $B$. Let $X$ be the event that the produced item was found to be defective.
$\therefore$ Probability of items produced by machine $A, P(E_1)=60 %=\frac{3}{5}$
Probability of items produced by machine $B, P(E_2)=40 %=\frac{2}{5}$
Probability that machine A produced defective items, $P(X \mid E_1)=2 %=\frac{2}{100}$
Probability that machine $B$ produced defective items, $P(X \mid E_2)=1 %=\frac{1}{100}$
The probability that the randomly selected item was from machine $B$, given that it is defective, is given by $P(E_2 \mid X)$.
By using Bayes’ theorem, we obtain
$ \begin{aligned} P(E_2 \mid X) & =\frac{P(E_2) \cdot P(X \mid E_2)}{P(E_1) \cdot P(X \mid E_1)+P(E_2) \cdot P(X \mid E_2)} \\ & =\frac{\frac{2}{5} \cdot \frac{1}{100}}{\frac{3}{5} \cdot \frac{2}{100}+\frac{2}{5} \cdot \frac{1}{100}} \\ & =\frac{\frac{2}{500}}{\frac{6}{500}+\frac{2}{500}} \\ & =\frac{2}{8} \\ & =\frac{1}{4} \end{aligned} $
9. Two groups are competing for the position on the Board of directors of a corporation. The probabilities that the first and the second groups will win are 0.6 and 0.4 respectively. Further, if the first group wins, the probability of introducing a new product is 0.7 and the corresponding probability is 0.3 if the second group wins. Find the probability that the new product introduced was by the second group.
Show Answer
Solution
Let $E_1$ and $E_2$ be the respective events that the first group and the second group win the competition. Let $A$ be the event of introducing a new product.
$P(E_1)=$ Probability that the first group wins the competition $=0.6$
$P(E_2)=$ Probability that the second group wins the competition $=0.4$
$P(A \mid E_1)=$ Probability of introducing a new product if the first group wins $=0.7$
$P(A \mid E_2)=$ Probability of introducing a new product if the second group wins $=0.3$
The probability that the new product is introduced by the second group is given by $P(E_2 \mid A)$.
By using Bayes’ theorem, we obtain
$ \begin{aligned} P(E_2 \mid A) & =\frac{P(E_2) \cdot P(A \mid E_2)}{P(E_1) \cdot P(A \mid E_1)+P(E_2) \cdot P(A \mid E_2)} \\ & =\frac{0.4 \times 0.3}{0.6 \times 0.7+0.4 \times 0.3} \\ & =\frac{0.12}{0.42+0.12} \\ & =\frac{0.12}{0.54} \\ & =\frac{12}{54} \\ & =\frac{2}{9} \end{aligned} $
10. Suppose a girl throws a die. If she gets a 5 or 6 , she tosses a coin three times and notes the number of heads. If she gets $1,2,3$ or 4 , she tosses a coin once and notes whether a head or tail is obtained. If she obtained exactly one head, what is the probability that she threw $1,2,3$ or 4 with the die?
Show Answer
Solution
Let $E_1$ be the event that the outcome on the die is 5 or 6 and $E_2$ be the event that the outcome on the die is $1,2,3$, or 4 .
$\therefore P(E_1)=\frac{2}{6}=\frac{1}{3}$ and $P(E_2)=\frac{4}{6}=\frac{2}{3}$
Let $A$ be the event of getting exactly one head.
$P(A \mid E_1)=$ Probability of getting exactly one head by tossing the coin three times if she gets 5 or $6=\frac{3}{8}$
$P(A \mid E_2)=$ Probability of getting exactly one head in a single throw of coin if she gets 1 ,
2,3, or $4=\frac{1}{2}$
The probability that the girl threw $1,2,3$, or 4 with the die, if she obtained exactly one head, is given by $P(E_2 \mid A)$.
By using Bayes’ theorem, we obtain
$ \begin{aligned} P(E_2 \mid A) & =\frac{P(E_2) \cdot P(A \mid E_2)}{P(E_1) \cdot P(A \mid E_1)+P(E_2) \cdot P(A \mid E_2)} \\ & =\frac{\frac{2}{3} \cdot \frac{1}{2}}{\frac{1}{3} \cdot \frac{3}{8}+\frac{2}{3} \cdot \frac{1}{2}} \\ & =\frac{\frac{1}{3}}{\frac{1}{3}(\frac{3}{8}+1)} \\ & =\frac{1}{\frac{11}{8}} \\ & =\frac{8}{11} \end{aligned} $
11. A manufacturer has three machine operators $A, B$ and $C$. The first operator $A$ produces $1 %$ defective items, where as the other two operators $B$ and $C$ produce 5% and 7% defective items respectively. A is on the job for 50% of the time, B is on the job for $30 %$ of the time and $C$ is on the job for $20 %$ of the time. A defective item is produced, what is the probability that it was produced by A?
Show Answer
Solution
Let $E_1, E_2$ and $E_3$ be the respective events of the time consumed by machines $A, B$, and C for the job.
$ \begin{aligned} & P(E_1)=50 %=\frac{50}{100}=\frac{1}{2} \\ & P(E_2)=30 %=\frac{30}{100}=\frac{3}{10} \\ & P(E_3)=20 %=\frac{20}{100}=\frac{1}{5} \end{aligned} $
Let $X$ be the event of producing defective items.
$ \begin{aligned} & P(X \mid E_1)=1 %=\frac{1}{100} \\ & P(X \mid E_2)=5 %=\frac{5}{100} \\ & P(X \mid E_3)=7 %=\frac{7}{100} \end{aligned} $
The probability that the defective item was produced by $A$ is given by $P(E_1 \mid A)$.
By using Bayes’ theorem, we obtain
$ \begin{aligned} P(E_1 \mid X) & =\frac{P(E_1) \cdot P(X \mid E_1)}{P(E_1) \cdot P(X \mid E_1)+P(E_2) \cdot P(X \mid E_2)+P(E_3) \cdot P(X \mid E_3)} \\ & =\frac{\frac{1}{2} \cdot \frac{1}{100}}{\frac{1}{2} \cdot \frac{1}{100}+\frac{3}{10} \cdot \frac{5}{100}+\frac{1}{5} \cdot \frac{7}{100}} \\ & =\frac{\frac{1}{100} \cdot \frac{1}{2}}{\frac{1}{100}(\frac{1}{2}+\frac{3}{2}+\frac{7}{5})} \\ & =\frac{\frac{1}{17}}{\frac{5}{5}} \\ & =\frac{5}{34} \end{aligned} $
12. A card from a pack of 52 cards is lost. From the remaining cards of the pack, two cards are drawn and are found to be both diamonds. Find the probability of the lost card being a diamond.
Show Answer
Solution
Let $E_1$ and $E_2$ be the respective events of choosing a diamond card and a card which is not diamond.
Let $A$ denote the lost card.
Out of 52 cards, 13 cards are diamond and 39 cards are not diamond. $\therefore P(E_1)=\frac{13}{52}=\frac{1}{4}$
$P(E_2)=\frac{39}{52}=\frac{3}{4}$
When one diamond card is lost, there are 12 diamond cards out of 51 cards.
Two cards can be drawn out of 12 diamond cards in ${ }^{12} C_2$ ways.
Similarly, 2 diamond cards can be drawn out of 51 cards in ${ }^{51} C_2$ ways. The probability of getting two cards, when one diamond card is lost, is given by $P(A \mid E_1)$.
$P(A \mid E_1)=\frac{{ }^{12} C_2}{{ }^{51} C_2}=\frac{12 !}{2 ! 10 !} \times \frac{21 \times 49 !}{51 !}=\frac{11 \times 12}{50 \times 51}=\frac{22}{425}$
When the lost card is not a diamond, there are 13 diamond cards out of 51 cards.
Two cards can be drawn out of 13 diamond cards in ${ }^{13} C_2$ ways whereas 2 cards can be drawn out of 51 cards in ${ }^{51} C_2$ ways.
The probability of getting two cards, when one card is lost which is not diamond, is given by $P(A \mid E_2)$.
$ P(A \mid E_2)=\frac{{ }^{13} C_2}{{ }^{51} C_2}=\frac{13 !}{2 ! \times 11 !} \times \frac{2 ! \times 49 !}{51 !}=\frac{12 \times 13}{50 \times 51}=\frac{26}{425} $
The probability that the lost card is diamond is given by $P(E_1 \mid A)$.
By using Bayes’ theorem, we obtain
$ \begin{aligned} P(E_1 \mid A) & =\frac{P(E_1) \cdot P(A \mid E_1)}{P(E_1) \cdot P(A \mid E_1)+P(E_2) \cdot P(A \mid E_2)} \\ & =\frac{\frac{1}{4} \cdot \frac{22}{425}}{\frac{1}{4} \cdot \frac{22}{425}+\frac{3}{4} \cdot \frac{26}{425}} \\ & =\frac{\frac{1}{425}(\frac{22}{4})}{\frac{1}{425}(\frac{22}{4}+\frac{26 \times 3}{4})} \end{aligned} $
$ \begin{matrix} =\frac{\frac{11}{2}}{25} \\ =\frac{11}{50} \end{matrix} $
13. Probability that A speaks truth is $\frac{4}{5}$. A coin is tossed. A reports that a head appears. The probability that actually there was head is
(A) $\frac{4}{5}$
(B) $\frac{1}{2}$
(C) $\frac{1}{5}$
(D) $\frac{2}{5}$
Show Answer
Solution
Let $E_1$ and $E_2$ be the events such that
$E_1:$ A speaks truth
$E_2$ : A speaks false
Let $X$ be the event that a head appears.
$P(E_1)=\frac{4}{5}$
$\therefore P(E_2)=1-P(E_1)=1-\frac{4}{5}=\frac{1}{15}$
If a coin is tossed, then it may result in either head $(H)$ or tail $(T)$.
The probability of getting a head is $\frac{1}{2}$ whether A speaks truth or not.
$\therefore P(X \mid E_1)=P(X \mid E_2)=\frac{1}{2}$
The probability that there is actually a head is given by $P(E_1 \mid X)$.
$ \begin{aligned} P(E_1 \mid X) & =\frac{P(E_1) \cdot P(X \mid E_1)}{P(E_1) \cdot P(X \mid E_1)+P(E_2) \cdot P(X \mid E_2)} \\ & =\frac{\frac{4}{5} \cdot \frac{1}{2}}{\frac{4}{5} \cdot \frac{1}{2}+\frac{1}{5} \cdot \frac{1}{2}} \\ & =\frac{\frac{1}{2} \cdot \frac{4}{5}}{\frac{1}{2}(\frac{4}{5}+\frac{1}{5})} \\ & =\frac{4}{\frac{5}{1}} \\ & =\frac{4}{5} \end{aligned} $
Therefore, the correct answer is A.
14. If $A$ and $B$ are two events such that $A \subset B$ and $P(B) \neq 0$, then which of the following is correct?
(A) $P(A \mid B)=\frac{P(B)}{P(A)}$
(B) $P(A \mid B)<P(A)$
(C) $P(A \mid B) \geq P(A)$
(D) None of these
Show Answer
Solution
If $A \subset B$, then $A \cap B=A$ $\Rightarrow P(A \cap B)=P(A)$
Also, $P(A)<P(B)$
Consider $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A)}{P(B)} \neq \frac{P(B)}{P(A)} \ldots$ (1)
Consider $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A)}{P(B)} \ldots$ (2)
It is known that, $P(B) \leq 1$
$\Rightarrow \frac{1}{P(B)} \geq 1$
$\Rightarrow \frac{P(A)}{P(B)} \geq P(A)$
From (2), we obtain
$\Rightarrow P(A \mid B) \geq P(A)$
$\therefore P(A \mid B)$ is not less than $P(A)$.
Thus, from (3), it can be concluded that the relation given in alternative $C$ is correct.
Miscellaneous Examples
Example 22 Coloured balls are distributed in four boxes as shown in the following table:
Box | Colour | |||
---|---|---|---|---|
I | 3 | 4 | 5 | 6 |
II | 2 | 2 | 2 | 2 |
III | 1 | 2 | 3 | 1 |
IV | 4 | 3 | 1 | 5 |
A box is selected at random and then a ball is randomly drawn from the selected box. The colour of the ball is black, what is the probability that ball drawn is from the box III?
Solution Let $A, E_1, E_2, E_3$ and $E_4$ be the events as defined below :
$ \begin{matrix} A: \text{ a black ball is selected } & E_1: \text{ box I is selected } \\ E_2: \text{ box II is selected } & E_3: \text{ box III is selected } \\ E_4: \text{ box IV is selected } & \end{matrix} $
Since the boxes are chosen at random,
Therefore $ P(E_1)=P(E_2)=P(E_3)=P(E_4)=\frac{1}{4} $
Also $ P(AlE E_1)=\frac{3}{18}, P(AlE_2)=\frac{2}{8}, P(AlE_3)=\frac{1}{7} \text{ and } P(AlE_4)=\frac{4}{13} $
$P($ box III is selected, given that the drawn ball is black $)=P(E_3 \mid A)$. By Bayes’ theorem,
$ \begin{aligned} P(E_3 \mid A) & =\frac{P(E_3) \cdot P(AlE_3)}{P(E_1) P(Al E_1)+P(E_2) P(AlE_2)+P(E_3) P(AlE_3)+P(E_4) P(AlE_4)} \\ & =\frac{\frac{1}{4} \times \frac{1}{7}}{\frac{1}{4} \times \frac{3}{18}+\frac{1}{4} \times \frac{1}{4}+\frac{1}{4} \times \frac{1}{7}+\frac{1}{4} \times \frac{4}{13}}=0.165 \end{aligned} $
Example 23 $A$ and $B$ throw a die alternatively till one of them gets a ’ 6 ’ and wins the game. Find their respective probabilities of winning, if A starts first.
Solution Let S denote the success (getting a ’ 6 ‘) and $F$ denote the failure (not getting a ’ 6 ‘).
Thus, $$ P(S)=\frac{1}{6}, P(F)=\frac{5}{6} $$
$P(A$ wins in the first throw $)=P(S)=\frac{1}{6}$
A gets the third throw, when the first throw by $A$ and second throw by $B$ result into failures.
Therefore, $\quad P(A$ wins in the 3rd throw $)=P(FFS)=P(F) P(F) P(S)=\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}$ $ =(\frac{5}{6})^{2} \times \frac{1}{6} $
$P(A$ wins in the 5 th throw $)=P($ FFFFS $)=(\frac{5}{6})^{4}(\frac{1}{6})$ and so on.
Hence, $ \begin{aligned} P(\text{ A wins }) & =\frac{1}{6}+(\frac{5}{6})^{2}(\frac{1}{6})+(\frac{5}{6})^{4}(\frac{1}{6})+\ldots \\ \end{aligned} $
$$\begin{aligned} & =\frac{\frac{1}{6}}{1-\frac{25}{36}}=\frac{6}{11} \\ P(B \text{ wins }) & =1-P(\text{ A wins })=1-\frac{6}{11}=\frac{5}{11} \end{aligned}$$
Remark If $a+a r+a r^{2}+\ldots+a r^{n-1}+\ldots$, where $|r|<1$, then sum of this infinite G.P. is given by $\frac{a}{1-r} \cdot($ Refer A.1.3 of Class XI Text book).
Example 24 If a machine is correctly set up, it produces $90 \%$ acceptable items. If it is incorrectly set up, it produces only $40 \%$ acceptable items. Past experience shows that $80 \%$ of the set ups are correctly done. If after a certain set up, the machine produces 2 acceptable items, find the probability that the machine is correctly setup.
Solution Let A be the event that the machine produces 2 acceptable items. Also let $B_1$ represent the event of correct set up and $B_2$ represent the event of incorrect setup.
Now $$ P(B_1)=0.8, P(B_2)=0.2 $$ $$ P(AlB_1)=0.9 \times 0.9 \text{ and } P(AlB_2)=0.4 \times 0.4 $$
Therefore $$ \begin{aligned} \mathrm{P}\left(\mathrm{B} _{1} \mid \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{B} _{1}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{B} _{1}\right)}{\mathrm{P}\left(\mathrm{B} _{1}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{B} _{1}\right)+\mathrm{P}\left(\mathrm{B} _{2}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{B} _{2}\right)} \\ & =\frac{0.8 \times 0.9 \times 0.9}{0.8 \times 0.9 \times 0.9+0.2 \times 0.4 \times 0.4}=\frac{648}{680}=0.95 \end{aligned} $$
Miscellaneous Exercise on Chapter 13
1. $A$ and $B$ are two events such that $P(A) \neq 0$. Find $P(B \mid A)$, if
(i) $A$ is a subset of $B$
(ii) $A \cap B=\phi$
Show Answer
Solution
It is given that, $P(A) \neq 0$
(i) $A$ is a subset of $B$.
$\Rightarrow A \cap B=A$
$\therefore P(A \cap B)=P(B \cap A)=P(A)$
$\therefore P(B \mid A)=\frac{P(B \cap A)}{P(A)}=\frac{P(A)}{P(A)}=1$
(ii) $A \cap B=\phi$
$\Rightarrow P(A \cap B)=0$
$\therefore P(B \mid A)=\frac{P(A \cap B)}{P(A)}=0$
2. A couple has two children,
(i) Find the probability that both children are males, if it is known that at least one of the children is male.
(ii) Find the probability that both children are females, if it is known that the elder child is a female.
Show Answer
Solution
If a couple has two children, then the sample space is
$S=\{(b, b),(b, g),(g, b),(g, g)\}$
(i) Let $E$ and $F$ respectively denote the events that both children are males and at least one of the children is a male. $\therefore E \cap F=\{(b, b)\} \Rightarrow P(E \cap F)=\frac{1}{4}$
$P(E)=\frac{1}{4}$
$P(F)=\frac{3}{4}$
$\Rightarrow P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{1}{4}}{\frac{3}{4}}=\frac{1}{3}$
(ii) Let $A$ and $B$ respectively denote the events that both children are females and the elder child is a female.
$ \begin{aligned} & A=\{(g, g)\} \Rightarrow P(A)=\frac{1}{4} \\ & B=\{(g, b),(g, g)\} \Rightarrow P(B)=\frac{2}{4} \\ & A \cap B=\{(g, g)\} \Rightarrow P(A \cap B)=\frac{1}{4} \\ & P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{1}{2}}{\frac{2}{4}}=\frac{1}{2} \end{aligned} $
3. Suppose that $5 \%$ of men and $0.25 \%$ of women have grey hair. A grey haired person is selected at random. What is the probability of this person being male? Assume that there are equal number of males and females.
Show Answer
Solution
It is given that $5 \%$ of men and $0.25 \%$ of women have grey hair.
Therefore, percentage of people with grey hair $=(5+0.25) \%=5.25 \%$
$\square$ Probability that the selected haired person is a male $=\frac{5}{5.25}=\frac{20}{21}$
4. Suppose that $90 \%$ of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?
Show Answer
Solution
A person can be either right-handed or left-handed.
It is given that $90 \%$ of the people are right-handed.
$\therefore p=P($ right-handed $)=\frac{9}{10}$
$q=P($ left-handed $)=1-\frac{9}{10}=\frac{1}{10}$
Using binomial distribution, the probability that more than 6 people are right-handed is given by,
$\sum _{r=7}^{10}{ }^{10} C_r p^{r} q^{n-r}=\sum _{r=7}^{10}{ }^{10} C_r(\frac{9}{10})^{r}(\frac{1}{10})^{10-r}$
Therefore, the probability that at most 6 people are right-handed
$=1-P$ (more than 6 are right-handed)
$=1-\sum _{r=7}^{10}{ }^{10} C_r(0.9)^{r}(0.1)^{10-r}$
5. If a leap year is selected at random, what is the chance that it will contain 53 tuesdays?
Show Answer
Solution
In a leap year, there are 366 days i.e., 52 weeks and 2 days.
In 52 weeks, there are 52 Tuesdays.
Therefore, the probability that the leap year will contain 53 Tuesdays is equal to the probability that the remaining 2 days will be Tuesdays.
The remaining 2 days can be
Monday and Tuesday
Tuesday and Wednesday
Wednesday and Thursday
Thursday and Friday
Friday and Saturday
Saturday and Sunday
Sunday and Monday
Total number of cases $=7$
Favourable cases $=2$
$\square$ Probability that a leap year will have 53 Tuesdays $=\frac{2}{7}$
6. Suppose we have four boxes A,B,C and D containing coloured marbles as given below:One of the boxes has been selected at random and a single marble is drawn from it. If the marble is red, what is the probability that it was drawn from box A?, box B?, box $C$ ?
Box | Marble colour | ||
---|---|---|---|
Red | White | Black | |
A | 1 | 6 | 3 |
B | 6 | 2 | 2 |
C | 8 | 1 | 1 |
D | 0 | 6 | 4 |
Show Answer
Solution
Let $R$ be the event of drawing the red marble.
Let $E_A, E_B$, and $E_C$ respectively denote the events of selecting the box $A, B$, and $C$.
Total number of marbles $=40$
Number of red marbles $=15$
$\therefore P(R)=\frac{15}{40}=\frac{3}{8}$
Probability of drawing the red marble from box $A$ is given by $P(E_A \mid R)$.
$\therefore P(E_A \mid R)=\frac{P(E_A \cap R)}{P(R)}=\frac{\frac{1}{40}}{\frac{3}{8}}=\frac{1}{15}$
Probability that the red marble is from box $B$ is $P(E_B \mid R)$.
$\Rightarrow P(E_B \mid R)=\frac{P(E_B \cap R)}{P(R)}=\frac{\frac{6}{40}}{\frac{3}{8}}=\frac{2}{5}$
Probability that the red marble is from box $C$ is $P(E_C \mid R)$.
$\Rightarrow P(E_C \mid R)=\frac{P(E_C \cap R)}{P(R)}=\frac{\frac{8}{40}}{\frac{3}{8}}=\frac{8}{15}$
7. Assume that the chances of a patient having a heart attack is $40 \%$. It is also assumed that a meditation and yoga course reduce the risk of heart attack by $30 \%$ and prescription of certain drug reduces its chances by $25 \%$. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga?
Show Answer
Solution
Let $A, E_1$, and $E_2$ respectively denote the events that a person has a heart attack, the selected person followed the course of yoga and meditation, and the person adopted the drug prescription.
$\therefore P(A)=0.40$
$P(E_1)=P(E_2)=\frac{1}{2}$
$P(A \mid E_1)=0.40 \times 0.70=0.28$
$P(A \mid E_2)=0.40 \times 0.75=0.30$
Probability that the patient suffering a heart attack followed a course of meditation and yoga is given by $P(E_1 \mid A)$.
$ \begin{aligned} P(E_1 \mid A) & =\frac{P(E_1) P(A \mid E_1)}{P(E_1) P(A \mid E_1)+P(E_2) P(A \mid E_2)} \\ & =\frac{\frac{1}{2} \times 0.28}{\frac{1}{2} \times 0.28+\frac{1}{2} \times 0.30} \\ & =\frac{14}{29} \end{aligned} $
8. If each element of a second order determinant is either zero or one, what is the probability that the value of the determinant is positive? (Assume that the individual entries of the determinant are chosen independently, each value being assumed with probability $\frac{1}{2}$ ).
Show Answer
Solution
The total number of determinants of second order with each element being 0 or 1 is (2) $=16$
The value of determinant is positive in the following cases. $ \begin{vmatrix} 1 & 0 \\ 0 & 1\end{vmatrix} \begin{vmatrix} 1 & 1 \\ 0 & 1\end{vmatrix} \begin{vmatrix} 1 & 0 \\ 1 & 1\end{vmatrix} $
$\square$ Required probability $=\frac{3}{16}$
9. An electronic assembly consists of two subsystems, say, A and B. From previous testing procedures, the following probabilities are assumed to be known:
$ \begin{aligned} P(A \text{ fails }) & =0.2 \\ P(B \text{ fails alone }) & =0.15 \\ P(A \text{ and } B \text{ fail }) & =0.15 \end{aligned} $
Evaluate the following probabilities
(i) $P$ (A fails $\mid B$ has failed)
(ii) $P$ (A fails alone)
Show Answer
Solution
Let the event in which $A$ fails and $B$ fails be denoted by $E_A$ and $E_B$.
$P(E_A)=0.2$
$P(E_A \square E_B)=0.15$
$P(B$ fails alone $)=P(E_B)-P(E_A \square E_B)$
$\square 0.15=P(E_B)-0.15$
$\square P(E_B)=0.3$
(i) $P(E_A \mid E_B)=\frac{P(E_A \cap E_B)}{P(E_B)}=\frac{0.15}{0.3}=0.5$
(ii) $P(A$ fails alone $)=P(E_A)-P(E_A \square E_B)$
$=0.2-0.15$
$=0.05$
10. Bag I contains 3 red and 4 black balls and Bag II contains 4 red and 5 black balls. One ball is transferred from Bag I to Bag II and then a ball is drawn from Bag II. The ball so drawn is found to be red in colour. Find the probability that the transferred ball is black.
Show Answer
Solution
Let $E_1$ and $E_2$ respectively denote the events that a red ball is transferred from bag I to II and a black ball is transferred from bag I to II.
$P(E_1)=\frac{3}{7}$ and $P(E_2)=\frac{4}{7}$
Let $A$ be the event that the ball drawn is red.
When a red ball is transferred from bag I to II,
$P(A \mid E_1)=\frac{5}{10}=\frac{1}{2}$
When a black ball is transferred from bag I to II,
$P(A \mid E_2)=\frac{4}{10}=\frac{2}{5}$
$ \begin{aligned} \therefore P(E_2 \mid A) & =\frac{P(E_2) P(A \mid E_2)}{P(E_1) P(A \mid E_1)+P(E_2) P(A \mid E_2)} \\ & =\frac{\frac{4}{7} \times \frac{2}{5}}{\frac{3}{7} \times \frac{1}{2}+\frac{4}{7} \times \frac{2}{5}} \\ & =\frac{16}{31} \end{aligned} $
Choose the correct answer in each of the following:
11. If $A$ and $B$ are two events such that $P(A) \neq 0$ and $P(B \mid A)=1$, then
(A) $A \subset B$
(B) $B \subset A$
(C) $B=\phi$
(D) $A=\phi$
Show Answer
Solution
$P(A) \neq 0$ and $P(B \mid A)=1$
$P(B \mid A)=\frac{P(B \cap A)}{P(A)}$
$1=\frac{P(B \cap A)}{P(A)}$
$P(A)=P(B \cap A)$
$\Rightarrow A \subset B$
Thus, the correct answer is $A$.
12. If $P(A \mid B)>P(A)$, then which of the following is correct :
(A) $P(B \mid A)<P(B)$
(B) $P(A \cap B)<P(A) \cdot P(B)$
(C) $P(B \mid A)>P(B)$
(D) $P(B \mid A)=P(B)$
Show Answer
Solution
$ \begin{aligned} & P(A \mid B)>P(A) \\ & \Rightarrow \frac{P(A \cap B)}{P(B)}>P(A) \\ & \Rightarrow P(A \cap B)>P(A) \cdot P(B) \\ & \Rightarrow \frac{P(A \cap B)}{P(A)}>P(B) \\ & \Rightarrow P(B \mid A)>P(B) \end{aligned} $
Thus, the correct answer is $C$.
13. If $A$ and $B$ are any two events such that $P(A)+P(B)-P(A$ and $B)=P(A)$, then
(A) $P(B \mid A)=1$
(B) $P(A \mid B)=1$
(C) $P(B \mid A)=0$
(D) $P(A \mid B)=0$
Show Answer
Solution
$ \begin{aligned} & P(A)+P(B)-P(A \text{ and } B)=P(A) \\ & \Rightarrow P(A)+P(B)-P(A \cap B)=P(A) \\ & \Rightarrow P(B)-P(A \cap B)=0 \\ & \Rightarrow P(A \cap B)=P(B) \\ & \therefore P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(B)}{P(B)}=1 \end{aligned} $
Thus, the correct answer is B.
Summary
The salient features of the chapter are -
- The conditional probability of an event $E$, given the occurrence of the event $F$ is given by
$P(E \mid F)=\frac{P(E \cap F)}{P(F)}, P(F) \neq 0$
- $\Delta 0 \leq P(E \mid F) \leq 1, \quad P(E^{\prime} \mid F)=1-P(E \mid F)$
$P((E \cup F) \mid G)=P(E \mid G)+P(F \mid G)-P((E \cap F) \mid G)$
- $\Delta P(E \cap F)=P(E) P(F \mid E), P(E) \neq 0$
$P(E \cap F)=P(F) P(EIF), P(F) \neq 0$
- If E and F are independent, then
$P(E \cap F)=P(E) P(F)$
$P(EIF)=P(E), P(F) \neq 0$
$P(F \mid E)=P(F), P(E) \neq 0$
- Theorem of total probability
Let $\{E_1, E_2, \ldots, E_n\}$ be a partition of a sample space and suppose that each of $E_1, E_2, \ldots, E_n$ has nonzero probability. Let $A$ be any event associated with $S$, then $P(A)=P(E_1) P(AlE_1)+P(E_2) P(AlE_2)+\ldots+P(E_n) P(AlE_n)$
- Bayes’ theorem If $E_1, E_2, \ldots, E_n$ are events which constitute a partition of sample space $S$, i.e. $E_1, E_2, \ldots, E_n$ are pairwise disjoint and $E_1 \cup E_2 \cup \ldots \cup E_n=S$ and $A$ be any event with nonzero probability, then
$$ P(E_i \mid A)=\frac{P(E_i) P(A \mid E_i)}{\sum _{j=1}^{n} P(E_j) P(A \mid E_j)} $$
Historical Note
The earliest indication on measurement of chances in game of dice appeared in 1477 in a commentary on Dante’s Divine Comedy. A treatise on gambling named liber de Ludo Alcae, by Geronimo Carden (1501-1576) was published posthumously in 1663 . In this treatise, he gives the number of favourable cases for each event when two dice are thrown. Galileo (1564-1642) gave casual remarks concerning the correct evaluation of chance in a game of three dice. Galileo analysed that when three dice are thrown, the sum of the number that appear is more likely to be 10 than the sum 9 , because the number of cases favourable to 10 are more than the number of cases for the appearance of number 9.
Apart from these early contributions, it is generally acknowledged that the true origin of the science of probability lies in the correspondence between two great men of the seventeenth century, Pascal (1623-1662) and Pierre de Fermat (1601-1665). A French gambler, Chevalier de Metre asked Pascal to explain some seeming contradiction between his theoretical reasoning and the observation gathered from gambling. In a series of letters written around 1654, Pascal and Fermat laid the first foundation of science of probability. Pascal solved the problem in algebraic manner while Fermat used the method of combinations.
Great Dutch Scientist, Huygens (1629-1695), became acquainted with the content of the correspondence between Pascal and Fermat and published a first book on probability, “De Ratiociniis in Ludo Aleae” containing solution of many interesting rather than difficult problems on probability in games of chances. The next great work on probability theory is by Jacob Bernoulli (1654-1705), in the form of a great book, “Ars Conjectendi” published posthumously in 1713 by his nephew, Nicholes Bernoulli. To him is due the discovery of one of the most important probability distribution known as Binomial distribution. The next remarkable work on probability lies in 1993. A. N. Kolmogorov (1903-1987) is credited with the axiomatic theory of probability. His book, ‘Foundations of probability’ published in 1933, introduces probability as a set function and is considered a ‘classic!’.
The Theory of probabilities is simply the science of logic quantitatively treated - C.S. PEIRCE
13.1 भूमिका (Introduction)
Pierre de Fermat (1601-1665)
पहले की कक्षाओं में हमने प्रायिकता को किसी यादृच्छिक परीक्षण की घटनाओं के घटित होने की अनिश्चितता की माप के रूप में पढ़ा था। हमने रूसी गणितज्ञ ए.एन. कौल्मोग्रोब (1903-1987) द्वारा प्रतिपादित अभिगृहितीय दृष्टिकोण का उपयोग किया था और प्रायिकता को परीक्षण के परिणामों पर परिभाषित फलन के रूप में निरूपित किया था। हमने समसंभाव्य परिणामों की दशा में प्रायिकता के अभिगृहितीय दृष्टिकोण और क्लासिकल सिद्धांत (classical theory) में समकक्षता भी स्थापित की थी। इस समकक्षता के आधार पर हमने असंतत प्रतिदर्श समष्टि की घटनाओं की प्रायिकता ज्ञात की थी। हमने प्रायिकता के योग नियम का भी अध्ययन किया है। इस अध्याय में हम किसी घटना की सप्रतिबंध प्रायिकता (conditional probability) के बारे में विचार करेंगे, जबकि किसी अन्य घटना के घटित होने की सूचना हमारे पास हो, तथा इस महत्त्वपूर्ण अवधारणा की सहायता से बेज-प्रमेय (Bayes’ theorem), प्रायिकता का गुणन नियम तथा स्वतंत्र घटनाओं के बारे में समझेंगे। हम यादृच्छिक चर (random variable) और इसके प्रायिकता बंटन की महत्त्वपूर्ण अवधारणा को भी समझेंगे तथा किसी प्रायिकता बंटन के माध्य (mean) व प्रसरण के बारे में भी पढ़ेंगे। अध्याय के अंतिम अनुभाग में हम एक महत्त्वपूर्ण असंतत प्रायिकता बंटन (discrete probability distribution) के बारे में पढ़ेंगे जिसे द्विपद बंटन कहा जाता है। इस अध्याय में हम ऐसे परीक्षण लेंगे जिनके परिणाम समसंभाव्य होते हैं, जब तक कि अन्यथा न कहा गया हो।
13.2 सप्रतिबंध प्रायिकता (Conditional Probability)
अभी तक हमने किसी घटना की प्रायिकता ज्ञात करने पर चर्चा की है। यदि हमें किसी प्रतिदर्श समष्टि की दो घटनाएँ दी गई हों, तो क्या किसी एक घटना के घटित होने की सूचना का प्रभाव दूसरी घटनाकी प्रायिकता पर पड़ता है? आइए इस प्रश्न के उत्तर के लिए एक यादृच्छिक परीक्षण पर विचार करें जिसके परिणाम समसंभाव्य हैं।
आइए अब तीन न्याय्य (fair) सिक्कों को उछालने के परीक्षण पर विचार कीजिए। इस परीक्षण का प्रतिदर्श समष्टि है:
$$ \mathrm{S}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\} $$
क्योंकि सिक्के न्याय्य हैं, इसलिए हम प्रतिदर्श समष्टि के प्रत्येक प्रतिदर्श बिंदु की प्रायिकता $\frac{1}{8}$ निर्दिष्ट कर सकते हैं। मान लीजिए $\mathrm{E}$ घटना “न्यूनतम दो चित प्रकट होना” और $\mathrm{F}$ घटना “पहले सिक्के पर पट प्रदर्शित होना” को निरूपित करते हैं।
$\mathrm{E}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$
और $\mathrm{F}=\{ \mathrm{THH, THT, TTH, TTT} \}$
इसलिए $$ \mathrm{P}(\mathrm{E})=\mathrm{P}(\{\mathrm{HHH}\})+\mathrm{P}(\{\mathrm{HHT}\})+\mathrm{P}(\{\mathrm{HTH}\})+\mathrm{P}(\{\mathrm{THH}\}) $$
$$ =\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2} \text { (क्यों?) } $$
और $$ \mathrm{P}(\mathrm{F})=\mathrm{P}(\{\mathrm{THH}\})+\mathrm{P}(\{\mathrm{THT}\})+\mathrm{P}(\{\mathrm{TTH}\})+\mathrm{P}(\{\mathrm{TTT}\}) $$
$$ =\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2} $$
साथ ही $\mathrm{E} \cap \mathrm{F}=\{\mathrm{THH}\}$
इसलिए $\quad \mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\{\mathrm{THH}\})=\frac{1}{8}$
अब मान लीजिए हमें दिया गया है कि पहले सिक्के पर पट प्रकट होता है अर्थात् घटना $\mathrm{F}$ घटित हुई है, तब घटना $\mathrm{E}$ की प्रायिकता क्या है? $\mathrm{F}$ के घटित होने की सूचना पर यह निश्चित है कि $\mathrm{E}$ की प्रायिकता ज्ञात करने के लिए उन प्रतिदर्श बिंदुओं पर विचार नहीं किया जाएगा जिनमें पहले सिक्के पर पट नहीं है। घटना $\mathrm{E}$ के लिए इस सूचना से प्रतिदर्श समष्टि $\mathrm{S}$ से घटकर इसका उपसमुच्चय $\mathrm{F}$ बन गया है। अन्य शब्दों में, इस अतिरिक्त सूचना ने हमें वास्तव में यह बताया है कि हालात को एक ऐसे नए यादृच्छिक परीक्षण के रूप में समझना चाहिए जिसका प्रतिदर्श समष्टि केवल उन परिणामों का समुच्चय है जो कि घटना $\mathrm{F}$ के अनुकूल है।
अब $\mathrm{F}$ का वह प्रतिदर्श बिंदु जो $\mathrm{E}$ के भी अनुकूल है; $\mathrm{THH}$ है। अतः
$\mathrm{F}$ को प्रतिदर्श समष्टि मानते हुए घटना $\mathrm{E}$ की प्रायिकता $=\frac{1}{4}$
या $\mathrm{F}$ का घटित होना दिया गया होने पर $\mathrm{E}$ की प्रायिकता $=\frac{1}{4}$
घटना $\mathrm{E}$ की इस प्रायिकता को सप्रतिबंध प्रायिकता कहते हैं, जबकि ज्ञात है कि घटना $\mathrm{F}$ घटित हो चुकी है, और इसे $\mathrm{P}(\mathrm{ElF})$ द्वारा दर्शाते हैं।
अर्थात् $\mathrm{P}(\mathrm{E} \mid \mathrm{F})=\frac{1}{4}$
नोट कीजिए कि $F$ के वो अवयव जो घटना $E$ के भी अनुकूल हैं, $E$ तथा $F$ के साझे अवयव होते हैं, अर्थात् $\mathrm{E} \cap \mathrm{F}$ के प्रतिदर्श बिंदु हैं।
अतः हम घटना $\mathrm{E}$ की सप्रतिबंध प्रायिकता, जबकि ज्ञात है कि घटा $\mathrm{F}$ घटित हो चुकी है को निम्न प्रकार से ज्ञात कर सकते हैं।
$$ \begin{aligned} \mathrm{P}(\mathrm{EIF}) & =\frac{(\mathrm{E} \cap \mathrm{F}) \text { के अनुकूल प्रतिदर्श बिंदुओं की संख्या }}{\mathrm{F} \text { के अनुकूल प्रतिदर्श बिंदुओं की संख्या }} \\ & =\frac{n(\mathrm{E} \cap \mathrm{F})}{n(\mathrm{~F})} \end{aligned} $$
अब अंश व हर को प्रतिदर्श समष्टि के अवयवों की कुल संख्या से विभाजित करने पर हम देखते हैं कि $\mathrm{P}(\mathrm{ElF})$ को निम्न प्रकार से लिखा जा सकता है:
$$ \begin{equation*} \mathrm{P}(\mathrm{E} \mid \mathrm{F})=\frac{\frac{n(\mathrm{E} \cap \mathrm{F})}{n(\mathrm{~S})}}{\frac{n(\mathrm{~F})}{n(\mathrm{~S})}}=\frac{\mathrm{P}(\mathrm{E} \cap \mathrm{F})}{\mathrm{P}(\mathrm{F})} \tag{1} \end{equation*} $$
नोट कीजिए कि (1) तभी मान्य है जब $\mathrm{P}(\mathrm{F}) \neq 0$ अर्थात् $\mathrm{F} \neq \phi$ (क्यों?) अतः हम सप्रतिबंध प्रायिकता को निम्न प्रकार से परिभाषित कर सकते हैं:
परिभाषा 1 यदि $\mathrm{E}$ तथा $\mathrm{F}$ किसी यादृच्छिक परीक्षण के प्रतिदर्श समष्टि से सबंधित दो घटनाएँ हैं, तो $\mathrm{F}$ के घटित होने की सूचना पर, $\mathrm{E}$ की प्रायिकता निम्नलिखित सूत्र से प्राप्त होती है:
$$ \mathrm{P}(\mathrm{E} \mid \mathrm{F})=\frac{\mathrm{P}(\mathrm{E} \cap \mathrm{F})}{\mathrm{P}(\mathrm{F})} \text {, जबकि } \mathrm{P}(\mathrm{F}) \neq 0 $$
13.2.1 सप्रतिबंध प्रायिकता के गुण (Properties of conditional probability)
मान लें कि $\mathrm{E}$ तथा $\mathrm{F}$ किसी प्रतिदर्श समष्टि $\mathrm{S}$ की दो घटनाएँ हैं
गुण $1 \mathrm{P}(\mathrm{S} \mid \mathrm{F})=\mathrm{P}(\mathrm{F} \mid \mathrm{F})=1$
हमें ज्ञात है कि $$ \mathrm{P}(\mathrm{S} \mid \mathrm{F})=\frac{\mathrm{P}(\mathrm{S} \cap \mathrm{F})}{\mathrm{P}(\mathrm{F})}=\frac{\mathrm{P}(\mathrm{F})}{\mathrm{P}(\mathrm{F})}=1 $$
साथ ही $$ P(F \mid F)=\frac{P(F \cap F)}{P(F)}=\frac{P(F)}{P(F)}=1 $$
अत: $$ \mathrm{P}(\mathrm{S} \mid \mathrm{F})=\mathrm{P}(\mathrm{F} \mid \mathrm{F})=1 $$
गुण 2 यदि $\mathrm{A}$ और $\mathrm{B}$ प्रतिदर्श समष्टि $\mathrm{S}$ की कोई दो घटनाएँ हैं और $\mathrm{F}$ एक अन्य घटना इस प्रकार है कि $\mathrm{P}(\mathrm{F}) \neq 0$, तब
$\mathrm{P}[(\mathrm{A} \cup \mathrm{B}) \mid \mathrm{F})]=\mathrm{P}(\mathrm{A} \mid \mathrm{F})+\mathrm{P}(\mathrm{B} \mid \mathrm{F})-\mathrm{P}[(\mathrm{A} \cap \mathrm{B}) \mid \mathrm{F}]$
विशेष रूप से, यदि $\mathrm{A}$ और $\mathrm{B}$ परस्पर अपवर्जी घटनाएँ हों,
तो $$ \mathrm{P}[(\mathrm{A} \cup \mathrm{B}) \mid \mathrm{F})]=\mathrm{P}(\mathrm{A} \mid \mathrm{F})+\mathrm{P}(\mathrm{B} \mid \mathrm{F}) $$
हम जानते हैं कि $$ \begin{aligned} \mathrm{P}[(\mathrm{A} \cup \mathrm{B}) \mid \mathrm{F})] & =\frac{\mathrm{P}[(\mathrm{A} \cup \mathrm{B}) \cap \mathrm{F}]}{\mathrm{P}(\mathrm{F})} \\ & =\frac{\mathrm{P}[(\mathrm{A} \cap \mathrm{F}) \cup(\mathrm{B} \cap \mathrm{F})]}{\mathrm{P}(\mathrm{F})} \end{aligned} $$
(समुच्चयों के सर्वनिष्ठ पर सम्मिलन के बंटन नियम द्वारा)
$$ \begin{aligned} & =\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{F})+\mathrm{P}(\mathrm{B} \cap \mathrm{F})-\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{F})}{\mathrm{P}(\mathrm{F})} \\ & =\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{F})}{\mathrm{P}(\mathrm{F})}+\frac{\mathrm{P}(\mathrm{B} \cap \mathrm{F})}{\mathrm{P}(\mathrm{F})}-\frac{\mathrm{P}[(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{F}]}{\mathrm{P}(\mathrm{F})} \\ & =\mathrm{P}(\mathrm{A} \mid \mathrm{F})+\mathrm{P}(\mathrm{B} \mid \mathrm{F})-\mathrm{P}(\mathrm{A} \cap \mathrm{B} \mid \mathrm{F}) \end{aligned} $$
जब $\mathrm{A}$ तथा $\mathrm{B}$ परस्पर अपवर्जी हों तो
$$ \begin{aligned} & \mathrm{P}[(\mathrm{A} \cap \mathrm{B}) \mid \mathrm{F})]=0 \\ \Rightarrow & \mathrm{P}[(\mathrm{A} \cup \mathrm{B}) \mid \mathrm{F})]=\mathrm{P}(\mathrm{A} \mid \mathrm{F})+\mathrm{P}(\mathrm{B} \mid \mathrm{F}) \end{aligned} $$
अतः जब $\mathrm{A}$ तथा $\mathrm{B}$ परस्पर अपवर्जी घटनाएँ हों तो $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A} \mid F)+\mathrm{P}(\mathrm{B} \mid \mathrm{F})$
गुण 3 $\mathrm{P}\left(\mathrm{E}^{\prime} \mid \mathrm{F}\right)=1-\mathrm{P}(\mathrm{E} \mid \mathrm{F})$
गुण 1 से हमें ज्ञात है कि $\mathrm{P}(\mathrm{S} \mid \mathrm{F})=1$
$$ \begin{matrix} \Rightarrow & P(E \cup E^{\prime} \mid F)=1 & \text{ तब से } S=E \cup E^{\prime} \\ \Rightarrow & P(E \mid F)+P(E^{\prime} \mid F)=1 & \text{ तब से } E \text{ और } E^{\prime} \text{ असंयुक्त घटनाएँ हैं } \\ \text{ इस प्रकार } & P(E^{\prime} \mid F)=1-P(E \mid F) & \end{matrix} $$
आइए अब कुछ उदाहरण लें।
उदाहरण 1 यदि $\mathrm{P}(\mathrm{A})=\frac{7}{13}, \mathrm{P}(\mathrm{B})=\frac{9}{13}$ और $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{4}{13}$, तो $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ ज्ञात कीजिए।
हल हम जानते हैं कि $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{\frac{4}{13}}{\frac{9}{13}}=\frac{4}{9}$
उदाहरण 2 एक परिवार में दो बच्चे हैं। यदि यह ज्ञात हो कि बच्चों में से कम से कम एक बच्चा लड़का है, तो दोनों बच्चों के लड़का होने की क्या प्रायिकता है?
हल मान लीजिए $b$ लड़के को व $g$ लड़की को निरूपित करते हैं। परीक्षण का प्रतिदर्श समष्टि है:
$$ \mathrm{S}=\{(b, b),(g, b),(b, g),(g, g)\} $$
मान लीजिए $\mathrm{E}$ तथा $\mathrm{F}$ क्रमशः निम्नलिखित घटनाओं को दर्शाते हैं:
$\mathrm{E}:$ ‘दोनों बच्चे लड़के हैं’
$\mathrm{F}$ : ‘बच्चों में से कम से कम एक लड़का है’
तब $$ \mathrm{E}=\{(b, b)\} \text { और } \mathrm{F}=\{(b, b),(g, b),(b, g)\} $$
अब $$ \mathrm{E} \cap \mathrm{F}=\{(b, b)\} $$
अत: $$ \mathrm{P}(\mathrm{F})=\frac{3}{4} \text { और } \mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{4} $$
इसलिए $$\quad \mathrm{P}(\mathrm{EIF})=\frac{\mathrm{P}(\mathrm{E} \cap \mathrm{F})}{\mathrm{P}(\mathrm{F})}=\frac{\frac{1}{4}}{\frac{3}{4}}=\frac{1}{3}$$
उदाहरण 3 एक बक्से में दस कार्ड 1 से 10 तक पूर्णांक लिख कर रखे गए और उन्हें अच्छी तरह मिलाया गया। इस बक्से से एक कार्ड यादृच्छया निकाला गया। यदि यह ज्ञात हो कि निकाले गए कार्ड पर संख्या 3 से अधिक है, तो इस संख्या के सम होने की क्या प्रायिकता है?
हल मान लीजिए कि $\mathrm{A}$ घटना ‘निकाले गए कार्ड पर सम संख्या है’ और $\mathrm{B}$ घटना ‘निकाले गए कार्ड पर संख्या 3 से बड़ी है’ को निरूपित करते हैं। हमें $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ ज्ञात करना है।
इस परीक्षण का प्रतिदर्श समष्टि है: $\mathrm{S}=\{1,2,3,4,5,6,7,8,9,10\}$
तब $$ A=\{2,4,6,8,10\}, \quad B=\{4,5,6,7,8,9,10\} $$
और $$ A \cap B=\{4,6,8,10\} $$
अब $$ \mathrm{P}(\mathrm{A})=\frac{5}{10}, \mathrm{P}(\mathrm{B})=\frac{7}{10} \text { और } \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{4}{10} $$
$$ P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{4}{10}}{\frac{7}{10}}=\frac{4}{7} $$
उदाहरण 4 एक पाठशाला में 1000 विद्यार्थी हैं, जिनमें से 430 लड़कियाँ हैं। यह ज्ञात है कि 430 में से $10 \%$ लड़कियाँ कक्षा XII में पढ़ती हैं। क्या प्रायिकता है कि एक यादृच्छया चुना गया विद्यार्थी कक्षा XII में पढ़ता है यदि यह ज्ञात है कि चुना गया विद्यार्थी लड़की है?
हल मान लीजिए $\mathrm{E}$ घटना ‘यादृच्छया चुना गया विद्यार्थी कक्षा XII में पढ़ता है’ और $\mathrm{F}$ घटना ‘यादृच्छया चुना गया विद्यार्थी लड़की है’, को व्यक्त करते हैं। हमें $\mathrm{P}(\mathrm{ElF})$ ज्ञात करना है।
अब $$ P(F)=\frac{430}{1000}=0.43 \text { और } \mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{43}{1000}=0.043 \text { (क्यों?) } $$
तब $$ P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{0.043}{0.43}=0.1 $$
उदाहरण 5 एक पासे को तीन बार उछालने के परीक्षण में घटना $\mathrm{A}$ तथा $\mathrm{B}$ को निम्न प्रकार से परिभाषित किया गया है:
$\mathrm{A}$ : ‘तीसरी उछाल पर संख्या 4 प्रकट होना’
$\mathrm{B}$ : ‘पहली उछाल पर संख्या 6 और दूसरी उछाल पर संख्या 5 प्रकट होना’
यदि $\mathrm{B}$ का घटित होना दिया गया है, तो घटना $\mathrm{A}$ की प्रायिकता ज्ञात कीजिए।
हल प्रतिदर्श समष्टि में 216 परिणाम हैं।
अब,
$\mathrm{A} =\left\lbrace \begin{array}{ccccccc}
(1,1,4) & (1,2,4) & \ldots & (1,6,4) & (2,1,4)& (2,2,4)& \ldots & (2,6,4) \\
(3,1,4) & (3,2,4) &\ldots & (3,6,4)& (4,1,4)& (4,2,4) &\ldots &(4,6,4) \\
(5,1,4) & (5,2,4) & \ldots & (5,6,4)& (6,1,4)&(6,2,4)& \ldots &(6,6,4) \\ \end{array}\right\rbrace $
$$ \begin{aligned} & B=\{(6,5,1),(6,5,2),(6,5,3),(6,5,4),(6,5,5),(6,5,6)\} \end{aligned} $$
और $$ A \cap B=\{(6,5,4)\} $$
अब $$ \mathrm{P}(\mathrm{B})=\frac{6}{216} \text { और } \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{216} $$
तब $$ P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{1}{216}}{\frac{6}{216}}=\frac{1}{6} $$
उदाहरण 6 एक पासे को दो बार उछाला गया और प्रकट हुई संख्याओं का योग 6 पाया गया। संख्या 4 के न्यूनतम एक बार प्रकट होने की सप्रतिबंध प्रायिकता ज्ञात कीजिए।
हल मान लीजिए $\mathrm{E}$ घटना ‘संख्या 4 का न्यूनतम एक बार प्रकट होना’ और $\mathrm{F}$ घटना ‘दोनों पासों पर प्रकट संख्याओं का योग 6 होने’ को दर्शाते हैं।
तब $$ \begin{aligned} & E=\{(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(1,4),(2,4),(3,4),(5,4),(6,4)\} \\ & F=\{(1,5),(2,4),(3,3),(4,2),(5,1)\} \end{aligned} $$
और हम जानते हैं कि $$\mathrm{P}(\mathrm{E})=\frac{11}{36}, \mathrm{P}(\mathrm{F})=\frac{5}{36}$$
तथा $$ E \cap F=\{(2,4),(4,2)\} $$
अब $$ \mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{2}{36} $$
अतः वांछित प्रायिकता $$ P(E I F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{2}{36}}{\frac{5}{36}}=\frac{2}{5} $$
अभी तक हमने उन परीक्षणों पर विचार किया है जिनके सभी परिणाम समसंभाव्य थे। इन परीक्षणों के लिए हमनें सप्रतिबंध प्रायिकता को परिभाषित किया है। तथापि सप्रतिबंध प्रायिकता की यही परिभाषा, व्यापक रूप से, उस स्थिति मे भी प्रयोग की जा सकती है, जब मौलिक घटनाएँ समसंभाव्य न हों। प्रायिकताओं $\mathrm{P}(\mathrm{E} \cap \mathrm{F})$ तथा $\mathrm{P}(\mathrm{F})$ का परिकलन तदनुसार किया जाता है। आइए निम्नलिखित उदाहरण से इसे समझें।
उदाहरण 7 एक सिक्के को उछालने के परीक्षण पर विचार कीजिए। यदि सिक्के पर चित प्रकट हो तो सिक्के को पुनः उछालें परंतु यदि सिक्के पर पट प्रकट हो तो एक पासे को फेंकें। यदि घटना ‘कम से कम एक पट प्रकट होना’ का घटित होना दिया गया है तो घटना ‘पासे पर 4 से बड़ी संख्या प्रकट होना’ की सप्रतिबंध प्रायिकता ज्ञात कीजिए।
हल परीक्षण के परिणामों को चित्र 13.1 से व्यक्त किया जा सकता है। इस प्रकार के चित्र को वृक्षारेख कहते हैं।
परीक्षण का प्रतिदर्श समष्टि है:
$ S=\{(H, H),(H, T),(T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\} $
जहाँ $(\mathrm{H}, \mathrm{H})$ दर्शाता है कि दोनों उछालों पर चित प्रकट हुआ है, तथा $(\mathrm{T}, i)$ दर्शाता है कि पहली उछाल पर पट प्रकट हुआ और पासे को फेंकने पर संख्या $i$ प्रकट हुई।
अतः 8 मौलिक घटनाओं $(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T}),(\mathrm{T}, 1),(\mathrm{T}, 2)$, $(T, 3)(T, 4),(T, 5),(T, 6)$ की क्रमश: $\frac{1}{4}, \frac{1}{4}, \frac{1}{12}, \frac{1}{12}$, $\frac{1}{12}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12}$ प्रायिकता निर्धारित कीजा सकती है, जैसा कि
चित्र 13.2 से स्पष्ट है।
मान लें $\mathrm{F}$ घटना ‘न्यूनतम एक पट प्रकट होना’ और $\mathrm{E}$ घटना ‘पासे पर 4 से बड़ी संख्या प्रकट होना’ को दर्शाते हैं।
तब $$ \begin{aligned} & \mathrm{F}=\{(\mathrm{H}, \mathrm{T}),(\mathrm{T}, 1),(\mathrm{T}, 2),(\mathrm{T}, 3),(\mathrm{T}, 4),(\mathrm{T}, 5),(\mathrm{T}, 6)\} \\ & \mathrm{E}=\{(\mathrm{T}, 5), \mathrm{T}, 6)\} \text { और } \mathrm{E} \cap \mathrm{F}=\{(\mathrm{T}, 5),(\mathrm{T}, 6)\} \end{aligned} $$
अब $$ \begin{aligned} \mathrm{P}(\mathrm{F})= & \mathrm{P}(\{(\mathrm{H}, \mathrm{T})\})+\mathrm{P}(\{(\mathrm{T}, 1)\})+\mathrm{P}(\{(\mathrm{T}, 2)\})+\mathrm{P}(\{(\mathrm{T}, 3)\})+ \\ & \mathrm{P}(\{(\mathrm{T}, 4)\})+\mathrm{P}(\{(\mathrm{T}, 5)\})+\mathrm{P}(\{(\mathrm{T}, 6)\}) \\ = & \frac{1}{4}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{4} \end{aligned} $$
और $$ P(E \cap F)=P(\{(T, 5)\})+P(\{(T, 6)\})=\frac{1}{12}+\frac{1}{12}=\frac{1}{6} $$
अत $$ P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{1}{6}}{\frac{3}{4}}=\frac{2}{9} $$
प्रश्नावली 13.1
1. यदि $\mathrm{E}$ और $\mathrm{F}$ इस प्रकार की घटनाएँ हैं कि $\mathrm{P}(\mathrm{E})=0.6, \mathrm{P}(\mathrm{F})=0.3$ और $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=0.2$, तो $\mathrm{P}(\mathrm{E} \mid \mathrm{F})$ और $\mathrm{P}(\mathrm{F} \mid \mathrm{E})$ ज्ञात कीजिए।
Show Answer
#missing2. $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ ज्ञात कीजिए, यदि $\mathrm{P}(\mathrm{B})=0.5$ और $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.32$
Show Answer
#missing3. यदि $\mathrm{P}(\mathrm{A})=0.8, \mathrm{P}(\mathrm{B})=0.5$ और $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=0.4$ ज्ञात कीजिए
(i) $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
(ii) $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$
(iii) $\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
Show Answer
#missing4. $\mathrm{P}(\mathrm{A} \cup \mathrm{B})$ ज्ञात कीजिए यदि $2 \mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B})=\frac{5}{13}$ और $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{2}{5}$
Show Answer
#missing5. यदि $\mathrm{P}(\mathrm{A})=\frac{6}{11}, \mathrm{P}(\mathrm{B})=\frac{5}{11}$ और $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{7}{11}$ तो ज्ञात कीजिए
(i) $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
(ii) $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$
(iii) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$
Show Answer
#missingनिम्नलिखित प्रश्न 6 से 9 तक $\mathrm{P}(\mathrm{ElF})$ ज्ञात कीजिए।
6. एक सिक्के को तीन बार उछाला गया है:
(i) $\mathrm{E}$ : तीसरी उछाल पर चित $\mathrm{F}$ : पहली दोनों उछालों पर चित
(ii) $\mathrm{E}$ : न्यूनतम दो चित $\mathrm{F}$ : अधिकतम एक चित
(iii) $\mathrm{E}$ : अधिकतम दो पट $\mathrm{F}$ : न्यूनतम दो पट
Show Answer
#missing7. दो सिक्कों को एक बार उछाला गया है:
(i) $\mathrm{E}$ : एक सिक्के पर पट प्रकट होता है $\mathrm{F}$ : एक सिक्के पर चित प्रकट होता है
(ii) $\mathrm{E}$ : कोई पट प्रकट नहीं होता है $\mathrm{F}$ कोई चित प्रकट नहीं होता है
Show Answer
#missing8. एक पासे को तीन बार उछाला गया है:
$\mathrm{E}$ : तीसरी उछाल पर संख्या 4 प्रकट होना
$\mathrm{F}$ : पहली दो उछालों पर क्रमशः 6 तथा 5 प्रकट होना
Show Answer
#missing9. एक पारिवारिक चित्र में माता, पिता व पुत्र यादृच्छया खड़े हैं:
$\mathrm{E}$ : पुत्र एक सिरे पर खड़ा है
$\mathrm{F}$ : पिता मध्य में खड़े हैं
Show Answer
#missing10. एक काले और एक लाल पासे को उछाला गया है:
(a) पासों पर प्राप्त संख्याओं का योग 9 होने की सप्रतिबंध प्रायिकता ज्ञात कीजिए यदि यह ज्ञात हो कि काले पासे पर 5 प्रकट हुआ है।
(b) पासों पर प्राप्त संख्याओं का योग 8 होने की सप्रतिबंध प्रायिकता ज्ञात कीजिए यदि यह ज्ञात हो कि लाल पासे पर प्रकट संख्या 4 से कम है।
Show Answer
#missing11. एक न्याय्य पासे को उछाला गया है। घटनाओं $\mathrm{E}=\{1,3,5\}, \mathrm{F}=\{2,3\}$, और $\mathrm{G}=\{2,3,4,5\}$ के लिए निम्नलिखित ज्ञात कीजिए:
(i) $\mathrm{P}(\mathrm{E} \mid \mathrm{F})$ और $\mathrm{P}(\mathrm{F} \mid \mathrm{E})$
(ii) $\mathrm{P}(\mathrm{E} \mid \mathrm{G})$ और $\mathrm{P}(\mathrm{G} \mid \mathrm{E})$
(iii) $\mathrm{P}(\mathrm{E} \cup \mathrm{F} \mid \mathrm{G})$ और $\mathrm{P}(\mathrm{E} \cap \mathrm{F} \mid \mathrm{G})$
Show Answer
#missing12. मान लें कि जन्म लेने वाले बच्चे का लड़का या लड़की होना समसंभाव्य है। यदि किसी परिवार में दो बच्चे हैं, तो दोनों बच्चों के लड़की होने की सप्रतिबंध प्रायिकता क्या है, यदि यह दिया गया है कि $(i)$ सबसे छोटा बच्चा लड़की है (ii) न्यूनतम एक बच्चा लड़की है।
Show Answer
#missing13. एक प्रशिक्षक के पास 300 सत्य/असत्य प्रकार के आसान प्रश्न 200 सत्य/असत्य प्रकार के कठिन प्रश्न, 500 बहु-विकल्पीय प्रकार के आसान प्रश्न और 400 बहु-विकल्पीय प्रकार के कठिन प्रश्नों का संग्रह है। यदि प्रश्नों के संग्रह से एक प्रश्न यादृच्छया चुना जाता है, तो एक आसान प्रश्न की बहु-विकल्पीय होने की प्रायिकता क्या होगी?
Show Answer
#missing14. यह दिया गया है कि दो पासों को फेंकने पर प्राप्त संख्याएँ भिन्न-भिन्न हैं। दोनों संख्याओं का योग 4 होने की प्रायिकता ज्ञात कीजिए।
Show Answer
#missing15. एक पासे को फेंकने के परीक्षण पर विचार कीजिए। यदि पासे पर प्रकट संख्या 3 का गुणज है तो पासे को पुन: फेंकें और यदि कोई अन्य संख्या प्रकट हो तो एक सिक्के को उछालें। घटना ‘न्यूनतम एक पासे पर संख्या 3 प्रकट होना’ दिया गया है तो घटना ‘सिक्के पर पट प्रकट होने’ की सप्रतिबंध प्रायिकता ज्ञात कीजिए।
Show Answer
#missingनिम्नलिखित प्रश्नों में से प्रत्येक में सही उत्तर चुनें।
16. यदि $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=0$ तब $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ है:
(A) 0
(B) $\frac{1}{2}$
(C) परिभाषित नहीं
(D) 1
Show Answer
#missing17. यदि $\mathrm{A}$ और $\mathrm{B}$ दो घटनाएँ इस प्रकार हैं कि $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \neq 0$ तब
(A) $\mathrm{A} \subset \mathrm{B}$
(B) $\mathrm{A}=\mathrm{B}$
(C) $\mathrm{A} \cap \mathrm{B}=\phi$
(D) $\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B})$
Show Answer
#missing13.3 प्रायिकता का गुणन नियम (Multiplication Theorem on Probability)
मान लीजिए कि $\mathrm{E}$ तथा $\mathrm{F}$ एक प्रतिदर्श समष्टि $\mathrm{S}$ की दो घटनाएँ हैं। स्पष्टतया समुच्चय $\mathrm{E} \cap \mathrm{F}$ दोनों घटनाओं $\mathrm{E}$ तथा $\mathrm{F}$ के घटित होने को दर्शाता है। अन्य शब्दों में $\mathrm{E} \cap \mathrm{F}$ घटनाओं $\mathrm{E}$ तथा $\mathrm{F}$ के युगपत् घटित होने को दर्शाता है। घटना $\mathrm{E} \cap \mathrm{F}$ को $\mathrm{EF}$ भी लिखा जाता है।
प्रायः हमें सयुंक्त घटना $\mathrm{EF}$ की प्रायिकता ज्ञात करने की आवश्यकता होती है। उदाहरण के लिए, एक के बाद दूसरा पत्ता निकालने के परीक्षण में हम मिश्र घटना ‘एक बादशाह और एक रानी’ की प्रायिकता ज्ञात करने में इच्छुक हो सकते हैं। घटना $\mathrm{EF}$ की प्रायिकता ज्ञात करने के लिए हम सप्रतिबंध प्रायिकता का उपयोग करते हैं जैसा कि नीचे दिखाया गया है।
हम जानते हैं कि घटना $\mathrm{F}$ के दिए जाने पर घटना $\mathrm{E}$ की सप्रतिबंध प्रायिकता को $\mathrm{P}(\mathrm{EIF})$ द्वारा दर्शाते हैं और इसे निम्नलिखित प्रकार से ज्ञात करते हैं।
$$ \mathrm{P}(\mathrm{E} \mid \mathrm{F})=\frac{\mathrm{P}(\mathrm{E} \cap \mathrm{F})}{\mathrm{P}(\mathrm{F})}, \mathrm{P}(\mathrm{F}) \neq 0 $$
उपरोक्त परिणाम से हम लिख सकते हैं कि
$$ \begin{equation*} \mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{F}) . \mathrm{P}(\mathrm{E} \mid \mathrm{F}) \tag{1} \end{equation*} $$
हम यह भी जानते हैं कि
$$ \begin{aligned} & P(F \mid E)=\frac{P(F \cap E)}{P(E)}, P(E) \neq 0 \\ & P(F \mid E)=\frac{P(E \cap F)}{P(E)}(\text{ क्योंकि} E \cap F=F \cap E) \end{aligned} $$
अत: $$ \begin{equation*} \mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F} \mid \mathrm{E}) \tag{2} \end{equation*} $$
(1) और (2) को मिलाने से हमें प्राप्त होता है कि
$$ \begin{aligned} P(E \cap F) & =P(E) P(F \mid E) \\ & =P(F) P(E \mid F) \text{ जब कि } P(E) \neq 0 \text{ और } P(F) \neq 0 . \end{aligned} $$
उपरोक्त परिणाम को ‘प्रायिकता का गुणन नियम’ कहते हैं।
आइए एक उदाहरण लें।
उदाहरण 8 एक कलश में 10 काली और 5 सफ़ेद गेंदें हैं। दो गेंद एक के बाद एक निकाली जाती हैं और पहली गेंद दूसरे के निकालने से पहले वापस नहीं रखी जाती हैं। मान लीजिए कि कलश में से प्रत्येक गेंद का निकालना समसंभाव्य है, तो दोनों काले गेंद निकलने की क्या प्रायिकता है?
हल माना कि $\mathrm{E}$ ‘पहली काली गेंद के निकलने’ की घटना है और $\mathrm{F}$ ‘दूसरी काली गेंद के निकलने’ की घटना है। हमें $\mathrm{P}(\mathrm{E} \cap \mathrm{F})$ या $\mathrm{P}(\mathrm{EF})$ ज्ञात करना है।
अब $$ P(E)=P(\text { पहली निकाल में काली गेंद निकालना })=\frac{10}{15} $$
साथ ही दिया गया है कि पहली निकाल में काली गेंद निकली है अर्थात् घटना $\mathrm{E}$ घटित हुई है, अब कलश में 9 काली गेंद और 5 सफ़ेद गेंद रह गई हैं। इसलिए, दूसरी गेंद काली होने की प्रायिकता जब कि पहली गेंद का काला होना हमें ज्ञात है, कुछ और नहीं केवल $\mathrm{F}$ का सप्रतिबंध प्रायिकता है जब $\mathrm{E}$ का घटित होना ज्ञात है।
अर्थात् $$ \mathrm{P}(\mathrm{F} \mid \mathrm{E})=\frac{9}{14} $$
अब प्रायिकता के गुणन नियम द्वारा हमें प्राप्त होता है
$$ \begin{aligned} \mathrm{P}(\mathrm{E} \cap \mathrm{F}) & =\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{F} \mid \mathrm{E})=\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F} \mid \mathrm{E}) \cdot \mathrm{P}(\mathrm{G} \mid \mathrm{EF}) \\ & =\frac{10}{15} \times \frac{9}{14}=\frac{3}{7} \end{aligned} $$
दो से अधिक घटनाओं के लिए प्रायिकता का गुणन नियम यदि $\mathrm{E}, \mathrm{F}$ और $\mathrm{G}$ एक प्रतिदर्श समष्टि की घटनाएँ हैं तो
$$ \mathrm{P}(\mathrm{E} \cap \mathrm{F} \cap \mathrm{G})=\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{F} \mid \mathrm{E}) \mathrm{P}(\mathrm{G} \mid \mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{F} \mid \mathrm{E}) \mathrm{P}(\mathrm{G} \mid E F) $$
इसी प्रकार प्रायिकता के गुणन नियम का विस्तार चार या अधिक घटनाओं के लिए भी किया जा सकता है।
निम्नलिखित उदाहरण तीन घटनाओं के लिए प्रायिकता के गुणन नियम का दृष्टांत प्रस्तुत करता है।
उदाहरण 9 52 पत्तों की अच्छी तरह फेंटी गई गड्डी में से एक के बाद एक तीन पत्ते बिना प्रतिस्थापित किए निकाले गए। पहले दो पत्तों का बादशाह और तीसरे का इक्का होने की क्या प्रायिकता है?
हल मान लें कि $\mathrm{K}$ घटना ‘निकाला गया पत्ता बादशाह है’ को और $\mathrm{A}$ घटना ‘निकाला गया पत्ता इक्का है’ को व्यक्त करते हैं। स्पष्टतया हमें $\mathrm{P}(\mathrm{KKA})$ ज्ञात करना है।
अब $$ P(K)=\frac{4}{52} $$
साथ ही $\mathrm{P}(\mathrm{K} \mid \mathrm{K})$ यह ज्ञात होने पर कि ‘पहले निकाला गया पत्ता बादशाह है’ पर दूसरे पत्ते का बादशाह होने की प्रायिकता को दर्शाता है। अब गड्डी में $(52-1)=51$ पत्ते हैं जिनमें तीन बादशाह है
इसलिए $$ P(K \mid K)=\frac{3}{51} $$
अंततः $\mathrm{P}(\mathrm{A} \mid \mathrm{KK})$ तीसरे निकाले गए पत्ते का इक्का होने की सप्रतिबंध प्रायिकता है जब कि हमें ज्ञात है कि दो बादाह पहले ही निकाले जा चुके हैं। अब गड्डी में 50 पत्ते रह गए हैं
इसलिए $$ \mathrm{P}(\mathrm{A} \mid \mathrm{KK})=\mathrm{P}(\mathrm{A} \mid \mathrm{KK})=\frac{4}{50} $$
प्रायिकता के गुणन नियम द्वारा हमें प्राप्त होता है कि
$$ \begin{aligned} \mathrm{P}(\mathrm{KKA}) & =\mathrm{P}(\mathrm{K}) \mathrm{P}(\mathrm{K} \mid \mathrm{K}) \mathrm{P}(\mathrm{A} \mid \mathrm{KK}) \\ & =\frac{4}{52} \times \frac{3}{51} \times \frac{4}{50}=\frac{2}{5525} \end{aligned} $$
13.4 स्वतंत्र घटनाएँ (Independent Events)
52 पत्तों की गड्डी में से एक पत्ता निकालने के परीक्षण पर विचार कीजिए जिसमें प्रत्येक मौलिक घटना को समसंभाव्य माना गया है। यदि $\mathrm{E}$ तथा $\mathrm{F}$ क्रमशः घटनाओं ‘निकाला गया पत्ता चिड़ी का है’ और ‘निकाला गया पत्ता एक इक्का है’ को व्यक्त करते हैं, तो
$$ \mathrm{P}(\mathrm{E})=\frac{13}{52}=\frac{1}{4} \text { तथा } \mathrm{P}(\mathrm{F})=\frac{4}{52}=\frac{1}{13} $$
साथ ही ’ $\mathrm{E}$ और $\mathrm{F}$ ’ घटना ‘निकाला गया पत्ता चिड़ी का इक्का है’ को व्यक्त करती है,
इसलिए $$ \begin{aligned} \mathrm{P}(\mathrm{E} \cap \mathrm{F}) & =\frac{1}{52} \\ \mathrm{P}(\mathrm{E} \mid \mathrm{F}) & =\frac{\mathrm{P}(\mathrm{E} \cap \mathrm{F})}{\mathrm{P}(\mathrm{F})}=\frac{\frac{1}{52}}{\frac{1}{13}}=\frac{1}{4} \end{aligned} $$
अतः क्योंकि $\mathrm{P}(\mathrm{E})=\frac{1}{4}=\mathrm{P}(\mathrm{E} \mid \mathrm{F})$, हम कह सकते हैं कि घटना $\mathrm{F}$ के घटित होने की सूचना ने घटना $\mathrm{E}$ की प्रायिकता पर कोई प्रभाव नहीं डाला है।
हमें यह भी प्राप्त है कि $$ P(F \mid E)=\frac{P(E \cap F)}{P(E)}=\frac{\frac{1}{52}}{\frac{1}{4}}=\frac{1}{13}=P(F) $$
पुन: $\mathrm{P}(\mathrm{F})=\frac{1}{13}=\mathrm{P}(\mathrm{F} \mid \mathrm{E})$ दर्शाता है कि घटना $\mathrm{E}$ के घटित होने की सूचना ने घटना $\mathrm{F}$ की प्रायिकता पर कोई प्रभाव नहीं डाला है।
अतः $\mathrm{E}$ तथा $\mathrm{F}$ इस प्रकार की घटनाएँ है कि किसी एक घटना के घटित होने की सूचना दूसरी घटना की प्रायिकता पर कोई प्रभाव नहीं डालती है।
इस प्रकार की घटनाओं को ‘स्वतंत्र घटनाएँ’ कहते हैं।
परिभाषा 2 दो घटनाओं $\mathrm{E}$ तथा $\mathrm{F}$ को स्वतंत्र घटनाएँ कहते हैं यदि
$$ \begin{aligned} & \mathrm{P}(\mathrm{F} \mid \mathrm{E})=\mathrm{P}(\mathrm{F}) \text { जबकी } \mathrm{P}(\mathrm{E}) \neq 0 \\ & \mathrm{P}(\mathrm{E} \mid \mathrm{F})=\mathrm{P}(\mathrm{E}) \text { जबकी } \mathrm{P}(\mathrm{F}) \neq 0 \end{aligned} $$
अतः इस परिभाषा में $\mathrm{P}(\mathrm{E})$ और $\mathrm{P}(\mathrm{F})$ का शून्येत्तर होना आवश्यक है।
अब प्रायिकता के गुणन नियम से
$$ \begin{equation*} \mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F} \mid \mathrm{E}) \tag{1} \end{equation*} $$
यदि $\mathrm{E}$ और $\mathrm{F}$ स्वतंत्र घटनाएँ हों तो (1) से हमें प्राप्त होता है कि
$$ \begin{equation*} \mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) . \mathrm{P}(\mathrm{F}) \tag{2} \end{equation*} $$
अतः (2) के उपयोग से हम दो घटनाओं की स्वतंत्रता को निम्नलिखित तरह से भी परिभाषित कर सकते हैं।
परिभाषा 3 मान लें $\mathrm{E}$ और $\mathrm{F}$ किसी यादृच्छिक परीक्षण के प्रतिदर्श समष्टि की दो घटनाएँ हैं, तो $\mathrm{E}$ और $\mathrm{F}$ स्वतंत्र घटनाएँ होती हैं यदि
$$ \mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \quad \mathrm{P}(\mathrm{F}) $$
टिप्पणी
1. दो घटनाओं $\mathrm{E}$ तथा $\mathrm{F}$ को पराश्रित (dependent) कहते हैं, यदि वे स्वतंत्र न हों अर्थात् यदि $\mathrm{P}(\mathrm{E} \cap \mathrm{F}) \neq \mathrm{P}(\mathrm{E})$. $\mathrm{P}(\mathrm{F})$
2. कभी-कभी स्वतंत्र घटनाओं और परस्पर अपवर्जी घटनाओं के बीच भ्रम पैदा हो जाता है। ‘स्वतंत्र घटनाओं की परिभाषा ‘घटनाओं की प्रायिकता’ के रूप में की गई है जब कि ‘परस्पर अपवर्जी घटनाओं’ की परिभाषा ‘घटनाओं’ के रूप में की गई है। इसके अतिरिक्त, परस्पर अपवर्जी घटनाओं में कोई भी परिणाम सार्व कदापि नहीं हो सकता है किंतु स्वतंत्र घटनाओं में परिणाम सार्व भी हो सकते हैं, यदि प्रत्येक घटना अरिक्त है। स्पष्टतया ‘स्वतंत्र घटनाएँ’ और ‘परस्पर अपवर्जी घटनाएँ’ समानार्थी नहीं हैं।
दूसरे शब्दों में, यदि दो ऐसी स्वतंत्र घटनाएँ घटती हैं जिनकी प्रयिकता शून्येतर है, तो वह परस्पर अपवर्जी नहीं हो सकती हैं। विलोमतः यदि दो शून्येतर प्रायिकता वाली परस्पर अपवर्जी घटनाएँ घटती हैं, तो वह स्वतंत्र नहीं हो सकती हैं।
3. दो यादृच्छिक परीक्षण स्वतंत्र कहलाते हैं, यदि प्रत्येक घटना युग्म $\mathrm{E}$ और $\mathrm{F}$ के लिए, जहाँ $\mathrm{E}$ पहले परीक्षण से तथा $\mathrm{F}$ दूसरे परीक्षण से संबंधित हैं, घटनाओं $\mathrm{E}$ तथा $\mathrm{F}$ के एक साथ घटित होने की प्रायिकता, जब दोनों परीक्षण संपन्न किए जाएँ, प्रायिकता $\mathrm{P}(\mathrm{E})$ और $\mathrm{P}(\mathrm{F})$ के गुणनफल के बराबर होती हैं, जिनका परिकलन दोनों परीक्षणों के आधार पर अलग-अलग किया जाता है। अर्थात् $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})$
4. तीन घटनाओं $\mathrm{A}, \mathrm{B}$ और $\mathrm{C}$ को स्वतंत्र कहा जाता है यदि और केवल यदि
$$ \begin{aligned} & \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B}) \\ & \mathrm{P}(\mathrm{A} \cap \mathrm{C})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{C}) \\ & \mathrm{P}(\mathrm{B} \cap \mathrm{C})=\mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{C}) \end{aligned} $$
$$ \text { और } \quad \mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B}) \quad \mathrm{P}(\mathrm{C}) $$
यदि उपरोक्त में से कम से कम एक भी शर्त सत्य नहीं होती है तो दी गई घटनाओं को स्वतंत्र नहीं कहा जाता है।
उदाहरण 10 एक पासे को एक बार उछाला जाता है। घटना ‘पासे पर प्राप्त संख्या 3 का अपवर्त्य है’, को $\mathrm{E}$ से और ‘पासे पर प्राप्त संख्या सम है’, को $\mathrm{F}$ से निरूपित किया जाए तो बताएँ क्या घटनाएँ $\mathrm{E}$ और $\mathrm{F}$ स्वतंत्र हैं?
हल हम जानते हैं कि इस परीक्षण का प्रतिदर्श समष्टि है: $\mathrm{S}=\{1,2,3,4,5,6\}$
अब $$ \mathrm{E}=\{3,6\}, \mathrm{F}=\{2,4,6\} \text { और } \mathrm{E} \cap \mathrm{F}=\{6\} $$
तब $$ \mathrm{P}(\mathrm{E})=\frac{2}{6}=\frac{1}{3}, \mathrm{P}(\mathrm{F})=\frac{3}{6}=\frac{1}{2} \text { और } \mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{6} $$
स्पष्टतया $$\quad \mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) . \mathrm{P}(\mathrm{F})$$
अतः $\mathrm{E}$ और $\mathrm{F}$ स्वतंत्र घटनाएँ हैं।
उदाहरण 11 एक अनभिनत (unbiased) पासे को दो बार उछाला गया। मान लें $\mathrm{A}$ घटना ‘पहली उछाल पर विषम संख्या प्राप्त होना’ और $\mathrm{B}$ घटना ‘द्वितीय उछाल पर विषम संख्या प्राप्त होना’ दर्शाते हैं। घटनाओं $\mathrm{A}$ और $\mathrm{B}$ के स्वातंत्र्य का परीक्षण कीजिए।
हल यदि सभी 36 मौलिक घटनाओं को समसंभाव्य मान लें
तो $$ \mathrm{P}(\mathrm{A})=\frac{18}{36}=\frac{1}{2} \text { और } \mathrm{P}(\mathrm{B})=\frac{18}{36}=\frac{1}{2} $$
साथ ही $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}$ (दोनों उछालों में विषम संख्या प्राप्त होना $)$
$$ =\frac{9}{36}=\frac{1}{4} $$
अब $$ \mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4} $$
स्पष्टतया $$ \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B}) $$
अतः $\mathrm{A}$ और $\mathrm{B}$ स्वतंत्र घटनाएँ हैं।
उदाहरण 12 तीन सिक्कों को उछाला गया है। मान लें $\mathrm{E}$ घटना ‘तीन चित या तीन पट प्राप्त होना’ और $\mathrm{F}$ घटना ‘न्यूनतम दो चित प्राप्त होना’ और $\mathrm{G}$ घटना ‘अधिकतम दो पट प्राप्त होना’ को निरूपित करते हैं। युग्म $(\mathrm{E}, \mathrm{F}),(\mathrm{E}, \mathrm{G})$ और $(\mathrm{F}, \mathrm{G})$ में कौन-कौन से स्वतंत्र हैं? कौन-कौन से पराश्रित हैं?
हल परीक्षण का प्रतिदर्श समष्टि है :
$$ \mathrm{S}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \text { THT, TTH, TTT }\} $$
स्पष्टतया $\mathrm{E}=\{\mathrm{HHH}, \mathrm{TTT}\}, \mathrm{F}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$
और $$G=\{HHT, HTH, THH, HTT, THT, TTH, TTT\}$$
साथ ही $\mathrm{E} \cap \mathrm{F}=\{\mathrm{HHH}\}, \mathrm{E} \cap \mathrm{G}=\{\mathrm{TTT}\}, \mathrm{F} \cap \mathrm{G}=\{\mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$
इसलिए $$ \begin{array}{r} \mathrm{P}(\mathrm{E})=\frac{2}{8}=\frac{1}{4}, \mathrm{P}(\mathrm{F})=\frac{4}{8}=\frac{1}{2}, \mathrm{P}(\mathrm{G})=\frac{7}{8} \\ \mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{8}, \mathrm{P}(\mathrm{E} \cap \mathrm{G})=\frac{1}{8}, \mathrm{P}(\mathrm{F} \cap \mathrm{G})=\frac{3}{8} \end{array} $$
साथ ही $$ P(E) \cdot P(F)=\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}, P(E) \cdot P(G)=\frac{1}{4} \times \frac{7}{8}=\frac{7}{32} $$ $$ P(F) \cdot P(G)=\frac{1}{2} \times \frac{7}{8}=\frac{7}{16} $$
अत: $$ \mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F}) $$
$$\mathrm{P}(\mathrm{E} \cap \mathrm{G}) \neq \mathrm{P}(\mathrm{E}) . \mathrm{P}(\mathrm{G})$$
और $$ \mathrm{P}(\mathrm{F} \cap \mathrm{G}) \neq \mathrm{P}(\mathrm{F}) . \mathrm{P}(\mathrm{G}) $$
इसलिए घटनाएँ $(\mathrm{E}$ और $\mathrm{F})$ स्वतंत्र हैं जबकी घटनाएँ $(\mathrm{F}$ और $\mathrm{G})$ और $(\mathrm{E}$ और $\mathrm{G})$ पराश्रित हैं।
उदाहरण 13 सिद्ध कीजिए कि यदि $\mathrm{E}$ और $\mathrm{F}$ दो स्वतंत्र घटनाएँ हैं तो $\mathrm{E}$ और $\mathrm{F}^{\prime}$ भी स्वतंत्र होंगी।
हल क्योंकि $\mathrm{E}$ तथा $\mathrm{F}$ स्वतंत्र है, इसलिए
$$ \begin{equation*} \mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F}) \tag{1} \end{equation*} $$
चित्र 13.3, के वेन-आरेख से यह स्पष्ट है कि $\mathrm{E} \cap \mathrm{F}$ और $\mathrm{E} \cap \mathrm{F}^{\prime}$ परस्पर अपवर्जी हैं और साथ ही $$ \mathrm{E}=(\mathrm{E} \cap \mathrm{F}) \cup\left(\mathrm{E} \cap \mathrm{F}^{\prime}\right) $$
इसलिए $$ \mathrm{P}(\mathrm{E})=\mathrm{P}(\mathrm{E} \cap \mathrm{F})+\mathrm{P}\left(\mathrm{E} \cap \mathrm{F}^{\prime}\right) $$
$$ \begin{aligned} \mathrm{P}\left(\mathrm{E} \cap \mathrm{F}^{\prime}\right) & =\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{E} \cap \mathrm{F}) \\ & =\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})(1) \text { से } \\ & \text{ या } \qquad=\mathrm{P}(\mathrm{E})[1-\mathrm{P}(\mathrm{F}] \\ & =\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}\left(\mathrm{F}^{\prime}\right) \end{aligned} $$
आकृति 13.3
अतः $\mathrm{E}$ और $\mathrm{F}^{\prime}$ स्वतंत्र घटनाएँ हैं।
0 टिप्पणी इसी प्रकार यह दर्शाया जा सकता है कि यदि
(a) $\mathrm{E}^{\prime}$ तथा $\mathrm{F}$ स्वतंत्र हैं
(b) $\mathrm{E}^{\prime}$ तथा $\mathrm{F}^{\prime}$ स्वतंत्र हैं।
उदाहरण 14 यदि $\mathrm{A}$ और $\mathrm{B}$ स्वतंत्र घटनाएँ हैं तो $\mathrm{A}$ या $\mathrm{B}$ में से न्यूनतम एक के होने की प्रायिकता $=1-\mathrm{P}\left(\mathrm{A}^{\prime}\right) \mathrm{P}\left(\mathrm{B}^{\prime}\right)$
हल $\mathrm{P}(\mathrm{A}$ या $\mathrm{B}$ में से न्यूनतम एक का होना $)=\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
$$ \begin{aligned} & =\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \\ & =\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B}) \\ & =\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})[1-\mathrm{P}(\mathrm{A})] \\ & =\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B}) \cdot \mathrm{P}\left(\mathrm{A}^{\prime}\right) \\ & =1-\mathrm{P}\left(\mathrm{A}^{\prime}\right)+\mathrm{P}(\mathrm{B}) \mathrm{P}\left(\mathrm{A}^{\prime}\right) \\ & =1-\mathrm{P}\left(\mathrm{A}^{\prime}\right)[1-\mathrm{P}(\mathrm{B})] \\ & =1-\mathrm{P}\left(\mathrm{A}^{\prime}\right) \mathrm{P}\left(\mathrm{B}^{\prime}\right) \end{aligned} $$
प्रश्नावली 13.2
1. यदि $\mathrm{P}(\mathrm{A})=\frac{3}{5}, \mathrm{P}(\mathrm{B})=\frac{1}{5}$ और $\mathrm{A}$ तथा $\mathrm{B}$ स्वतंत्र घटनाएँ हैं तो $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ ज्ञात कीजिए।
Show Answer
#missing2. 52 पत्तों की एक गड्डी में से यादृच्छया बिना प्रतिस्थापित किए गए दो पत्ते निकाले गए। दोनों पत्तों के काले रंग का होने की प्रायिकता ज्ञात कीजिए।
Show Answer
#missing3. संतरों के एक डिब्बे का निरीक्षण उसमें से तीन संतरों को यादृच्छया बिना प्रतिस्थापित किए हुए निकाल कर किया जाता है। यदि तीनों निकाले गए संतरे अच्छे हों तो डिब्बे को बिक्री के लिए स्वीकृत किया जाता है अन्यथा अस्वीकृत कर देते हैं। एक डिब्बा जिसमें 15 संतरे हैं जिनमें से 12 अच्छे व 3 खराब संतरे हैं, के बिक्री के लिए स्वीकृत होने की प्रायिकता ज्ञात कीजिए।
Show Answer
#missing4. एक न्याय्य सिक्का और एक अभिनत पासे को उछाला गया। मान लें $\mathrm{A}$ घटना ‘सिक्के पर चित प्रकट होता है’ और $\mathrm{B}$ घटना ‘पासे पर संख्या 3 प्रकट होती है’ को निरूपित करते हैं। निरीक्षण कीजिए कि घटनाएँ $\mathrm{A}$ और $\mathrm{B}$ स्वतंत्र हैं या नहीं?
Show Answer
#missing5. एक पासे पर $1,2,3$ लाल रंग से और $4,5,6$ हरे रंग से लिखे गए हैं। इस पासे को उछाला गया। मान लें $\mathrm{A}$ घटना ‘संख्या सम है’ और $\mathrm{B}$ घटना ‘संख्या लाल रंग से लिखी गई है’, को निरूपित करते हैं। क्या $\mathrm{A}$ और $\mathrm{B}$ स्वतंत्र हैं?
Show Answer
#missing6. मान लें $\mathrm{E}$ तथा $\mathrm{F}$ दो घटनाएँ इस प्रकार हैं कि $\mathrm{P}(\mathrm{E})=\frac{3}{5}, \mathrm{P}(\mathrm{F})=\frac{3}{10}$ और $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{5}$ तब क्या $\mathrm{E}$ तथा $\mathrm{F}$ स्वतंत्र हैं ?
Show Answer
#missing7. $\mathrm{A}$ और $\mathrm{B}$ ऐसी घटनाएँ दी गई हैं जहाँ $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{3}{5}$ तथा $\mathrm{P}(\mathrm{B})=p$. $p$ का मान ज्ञात कीजिए यदि
(i) घटनाएँ परस्पर अपवर्जी हैं।
(ii) घटनाएँ स्वतंत्र हैं।
Show Answer
#missing8. मान ले $\mathrm{A}$ और $\mathrm{B}$ स्वतंत्र घटनाएँ हैं तथा $\mathrm{P}(\mathrm{A})=0.3$ और $\mathrm{P}(\mathrm{B})=0.4$. तब
(i) $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
(ii) $\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
(iii) $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$
(iv) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$ ज्ञात कीजिए।
Show Answer
#missing9. दी गई घटनाएँ $\mathrm{A}$ और $\mathrm{B}$ ऐसी हैं, जहाँ $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ और $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ तब $\mathrm{P}(\mathrm{A}$-नहीं और $\mathrm{B}$-नहीं $)$ ज्ञात कीजिए।
Show Answer
#missing10. मान लें $\mathrm{A}$ तथा $\mathrm{B}$ स्वतंत्र घटनाएँ हैं और $\mathrm{P}(\mathrm{A})=\frac{1}{2}$ तथा $\mathrm{P}(\mathrm{B})=\frac{7}{12}$ और $\mathrm{P}(\mathrm{A}$-नहीं और $\mathrm{B}-$ नहीं $)=\frac{1}{4}$. क्या $\mathrm{A}$ और $\mathrm{B}$ स्वतंत्र घटनाएँ हैं?
Show Answer
#missing11. $\mathrm{A}$ और $\mathrm{B}$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $\mathrm{P}(\mathrm{A})=0.3, \mathrm{P}(\mathrm{B})=0.6$ तो
(i) $\mathrm{P}(\mathrm{A}$ और $\mathrm{B})$
(ii) $\mathrm{P}(\mathrm{A}$ और $\mathrm{B}$-नहीं)
(iii) $\mathrm{P}(\mathrm{A}$ या $\mathrm{B})$
(iv) $\mathrm{P}(\mathrm{A}$ और $\mathrm{B}$ में कोई भी नहीं $)$ का मान ज्ञात कीजिए।
Show Answer
#missing12. एक पासे को तीन बार उछाला जाता है तो कम से कम एक बार विषम संख्या प्राप्त होने की प्रायिकता ज्ञात कीजिए।
Show Answer
#missing13. दो गेंद एक बॉक्स से बिना प्रतिस्थापित किए निकाली जाती है। बॉक्स में 10 काली और 8 लाल गेदें हैं तो प्रायिकता ज्ञात कीजिए
(i) दोनों गेंदें लाल हों
(ii) प्रथम काली एवं दूसरी लाल हो
(iii) एक काली तथा दूसरी लाल हो।
Show Answer
#missing14. एक विशेष समस्या को $\mathrm{A}$ और $\mathrm{B}$ द्वारा स्वतंत्र रूप से हल करने की प्रायिकताएँ क्रमशः $\frac{1}{2}$ और $\frac{1}{3}$ हैं। यदि दोनों, स्वतंत्र रूप से, समस्या हल करने का प्रयास करते हैं, तो प्रायिकता ज्ञात कीजिए कि
(i) समस्या हल हो जाती है
(ii) उनमें से तथ्यतः कोई एक समस्या हल कर लेता है।
Show Answer
#missing15. ताश के 52 पत्तों की एक सुमिश्रित गड्डी से एक पत्ता यादृच्छया निकाला जाता है। निम्नलिखित में से किन दशाओं में घटनाएँ $\mathrm{E}$ और $\mathrm{F}$ स्वतंत्र हैं?
(i) $\mathrm{E}$ : ‘निकाला गया पत्ता हुकुम का है’
$\mathrm{F}$ : ‘निकाला गया पत्ता इक्का है’
(ii) $\mathrm{E}$ : ‘निकाला गया पत्ता काले रंग का है’
$\mathrm{F}$ : ‘निकाला गया पत्ता एक बादशाह है’
(iii) $\mathrm{E}$ : ‘निकाला गया पत्ता एक बादशाह या एक बेगम है’
$\mathrm{F}$ : ‘निकाला गया पत्ता एक बेगम या एक गुलाम है’
Show Answer
#missing16. एक छात्रावास में $60 \%$ विद्यार्थी हिंदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छया चुना जाता है।
(a) प्रायिकता ज्ञात कीजिए कि वह न तो हिंदी और न ही अंग्रेज़ी का अखबार पढ़ती है।
(b) यदि वह हिंदी का अखबार पढ़ती है तो उसके अंग्रेज़ी का अखबार भी पढ़ने वाली होने की प्रायिकता ज्ञात कीजिए।
(c) यदि वह अंग्रेज़ी का अखबार पढ़ती है तो उसके हिंदी का अखबार भी पढ़ने वाली होने की प्रायिकता ज्ञात कीजिए।
Show Answer
#missing17. यदि पासों का एक जोड़ा उछाला जाता है तो प्रत्येक पासे पर सम अभाज्य संख्या प्राप्त करने की प्रायिकता निम्नलिखित में से क्या है?
(A) 0
(B) $\frac{1}{3}$
(C) $\frac{1}{12}$
(D) $\frac{1}{36}$
Show Answer
#missing18. दो घटनाओं $\mathrm{A}$ और $\mathrm{B}$ को परस्पर स्वतंत्र कहते हैं, यदि
(A) $\mathrm{A}$ और $\mathrm{B}$ परस्पर अपवर्जी हैं
(B) $\mathrm{P}\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right)=[1-\mathrm{P}(\mathrm{A})][1-\mathrm{P}(\mathrm{B})]$
(C) $\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B})$
(D) $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=1$
Show Answer
#missing13.5 बेज़-प्रमेय (Bayes’ Theorem)
मान लीजिए कि दो थैले I और II दिए गए हैं। थेला I में 2 सफ़ेद और 3 लाल गेंदें हैं। और थैला II में 4 सफ़ेद और 5 लाल गेंदें हैं। किसी एक थैले में से एक गेंद यादृच्छया निकाली जाती है। हम किसी एक थैले को चुनने की प्रायिकता $\frac{1}{2}$ ज्ञात कर सकते हैं या किसी विशेष थैले (मान लें थैला I) में से एक विशेष रंग (मान लें सफ़ेद) गेंद को निकालने की प्रायिकता भी ज्ञात कर सकते हैं। अन्य शब्दों में हम किसी विशेष रंग की गेंद निकालने की प्रायिकता ज्ञात कर सकते हैं, यदि हमें यह दिया गया हो कि गेंद कौन-से थैले से निकाली गई है। लेकिन क्या हम इस बात की प्रायिकता ज्ञात कर सकते हैं कि गेंद किसी विशेष थैले (मान लें थैला-II) से निकाली गई है यदि हमें निकाली गई गेंद का रंग पता है? यहाँ हमें थैला-II के चुनने की प्रतिलोम (reverse)प्रायिकता ज्ञात करनी है जबकि इसके बाद होने वाली घटना का हमें ज्ञान है। प्रसिद्ध गणितज्ञ जॉन बेज़ ने प्रतिलोम प्रायिकता ज्ञात करने की समस्या का समाधान सप्रतिबंध प्रायिकता के उपयोग द्वारा किया है। उनके द्वारा बनाया गया सूत्र ‘बेज़-प्रमेय’ के नाम से जाना जाता है जो उनकी मृत्योपरांत 1763 में प्रकाशित हुआ था। बेज़-प्रमेय के कथन व प्रमाण से पूर्व आइए एक परिभाषा और कुछ प्रारंभिक परिणामों पर विचार कीजिए।
13.5.1 एक प्रतिदर्श समष्टि का विभाजन (Partition of a sample space)
घटनाओं $\mathrm{E} _{1}, \mathrm{E} _{2} \ldots \mathrm{E} _{n}$ के समुच्चय को प्रतिदर्श समष्टि $\mathrm{S}$ के विभाजन को निरूपित करता है यदि
(a) $\mathrm{E} _{i} \cap \mathrm{E} _{j}=\phi, i \neq j, i, j=1,2,3, \ldots n$
(b) $\mathrm{E} _{1} \cup \mathrm{E} _{2} \cup \ldots \cup \mathrm{E} _{n}=\mathrm{S}$ तथा
(c) $\mathrm{P}\left(\mathrm{E} _{i}\right)>0$, प्रत्येक $i=1,2, \ldots, n$ के लिए
दूसरे शब्दों में, घटनाएँ $\mathrm{E} _{1}, \mathrm{E} _{2}, \ldots \mathrm{E} _{n}$ प्रतिदर्श समष्टि $\mathrm{S}$ के विभाजन को निरूपित करती हैं यदि वे युग्मतः असंयुक्त हैं, समग्र है तथा उनकी प्रायिकता शून्येतर है।
उदाहरणतः हम देखते हैं कि कोई घटना $\mathrm{E}$ और उसकी पूरक घटना $\mathrm{E}^{\prime}$ प्रतिदर्श समष्टि $\mathrm{S}$ का विभाजन है क्योंकि $\mathrm{E} \cap \mathrm{E}^{\prime}=\phi$ और $\mathrm{E} \cup \mathrm{E}^{\prime}=\mathrm{S}$.
वेन-आरेख चित्र 13.3, से हम आसानी से प्रेक्षण कर सकते हैं कि यदि $\mathrm{E}$ और $\mathrm{F}$ किसी प्रतिदर्श समष्टि $\mathrm{S}$, के संगत कोई दो घटनाएँ हैं, तो $\left\{\mathrm{E} \cap \mathrm{F}, \mathrm{E} \cap \mathrm{F}^{\prime}\right\}$ समुच्चय $\mathrm{E}$ का एक विभाजन है। समुच्चय $\left\{\mathrm{E}^{\prime} \cap \mathrm{F}, \mathrm{E} \cap \mathrm{F}, \mathrm{E} \cap \mathrm{F}^{\prime}\right\}$ समुच्चय $\mathrm{E} \cup \mathrm{F}$ का एक विभाजन है और समुच्चय $\left\{\mathrm{E} \cap \mathrm{F}^{\prime}, \mathrm{E} \cap \mathrm{F}, \mathrm{E}^{\prime} \cap \mathrm{F}, \mathrm{E}^{\prime} \cap \mathrm{F}^{\prime}\right\}$ संपूर्ण प्रतिदर्श $\mathrm{S}$ का एक विभाजन है। अब हम संपूर्ण प्रायिकता की प्रमेय को सिद्ध करेंगे।
13.5.2 संपूर्ण प्रायिकता की प्रमेय (Theorem of Total Probability)
मान लें $\left\{\mathrm{E} _{1}, \mathrm{E} _{2}, \ldots, \mathrm{E} _{n}\right\}$ प्रतिदर्श समष्टि $\mathrm{S}$, का एक विभाजन है और मान लें कि प्रत्येक घटना $\mathrm{E} _{1}, \mathrm{E} _{2}, \ldots, \mathrm{E} _{n}$ की प्रायिकता शून्येत्तर है। मान लीजिए $\mathrm{A}$ प्रतिदर्श समष्टि के संगत एक घटना है, तब,
$$ \begin{aligned} \mathrm{P}(\mathrm{A}) & =\mathrm{P}\left(\mathrm{E} _{1}\right) \mathrm{P}\left(\mathrm{A} _{1} \mathrm{E} _{1}\right)+\mathrm{P}\left(\mathrm{E} _{2}\right) \mathrm{P}\left(\mathrm{A} _{2}\right)+\ldots+\mathrm{P}\left(\mathrm{E} _{n}\right) \mathrm{P}\left(\mathrm{A} _{2} \mathrm{E} _{n}\right) \\ & =\sum _{j=1}^{n} \mathrm{P}\left(\mathrm{E} _{j}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{E} _{j}\right) \end{aligned} $$
उपपत्ति दिया गया है कि $\mathrm{E} _{1}, \mathrm{E} _{2}, \ldots, \mathrm{E} _{n}$ प्रतिदर्श समष्टि $\mathrm{S}$ का एक विभाजन है (चित्र 13.4) इसलिए,
$$ \mathrm{S}=\mathrm{E} _{1} \cup \mathrm{E} _{2} \cup \ldots \cup \mathrm{E} _{n} \ldots \text { (1) } $$
और $$ \mathrm{E} _{i} \cap \mathrm{E} _{j}=\phi \forall i \neq j, i, j=1,2, \ldots ., n $$
हमें ज्ञात है कि किसी घटना $\mathrm{A}$, के लिए
$$ \begin{aligned} A & =A \cap S \\ & =A \cap\left(E _{1} \cup E _{2} \ldots E _{n}\right) \\ & =\left(A \cap E _{1}\right) \cup\left(A \cap E _{2}\right) \cup \ldots \cup\left(A \cap E _{n}\right) \end{aligned} $$
आकृति 13.4
साथ ही $\mathrm{A} \cap \mathrm{E} _{i}$, और $\mathrm{A} \cap \mathrm{E} _{j}$, क्रमशः समुच्चयो $\mathrm{E} _{i}$ और $\mathrm{E} _{j}$ के उपसमुच्चय हैं जो $i \neq j$, के लिए असंयुक्त है इसलिए $i \neq j, i, j=1,2 \ldots, n$ के लिए $\mathrm{A} \cap \mathrm{E} _{i}$ और $\mathrm{A} \cap \mathrm{E} _{j}$ भी असंयुक्त हैं।
इसलिए $$ \begin{aligned} \mathrm{P}(\mathrm{A}) & =\mathrm{P}\left[\left(\mathrm{A} \cap \mathrm{E} _{1}\right) \cup\left(\mathrm{A} \cap \mathrm{E} _{2}\right) \cup \ldots . . \cup\left(\mathrm{A} \cap \mathrm{E} _{n}\right)\right] \\ & =\mathrm{P}\left(\mathrm{A} \cap \mathrm{E} _{1}\right)+\mathrm{P}\left(\mathrm{A} \cap \mathrm{E} _{2}\right)+\ldots+\mathrm{P}\left(\mathrm{A} \cap \mathrm{E} _{n}\right) \end{aligned} $$
प्रायिकता के गुणन नियम द्वारा हम जानते हैं कि
अब $\quad \mathrm{P}\left(\mathrm{A} \cap \mathrm{E} _{i}\right)=\mathrm{P}\left(\mathrm{E} _{i}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{E} _{i}\right)$ क्योंकि $\mathrm{P}\left(\mathrm{E} _{i}\right) \neq 0 \forall i=1,2, \ldots, n$
इसलिए $$ \mathrm{P}(\mathrm{A})=\mathrm{P}\left(\mathrm{E} _{1}\right) \mathrm{P}\left(\mathrm{AlE} _{1}\right)+\mathrm{P}\left(\mathrm{E} _{2}\right) \mathrm{P}\left(\mathrm{AlE} \mathrm{E} _{2}\right)+\ldots+\mathrm{P}\left(\mathrm{E} _{n}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{E} _{n}\right) $$
या $$ \mathrm{P}(\mathrm{A})=\sum _{j=1}^{n} \mathrm{P}\left(\mathrm{E} _{j}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{E} _{j}\right) $$
उदाहरण 15 किसी व्यक्ति ने एक निर्माण कार्य का ठेका लिया है। हड़ताल होने की प्रायिकता 0.65 है। हड़ताल न होने की तथा हड़ताल होने की स्थितियों में निर्माण कार्य के समयानुसार पूर्ण होने की प्रायिकताएँ क्रमशः 0.80 तथा 0.32 हैं। निर्माण कार्य के समयानुसार पूर्ण होने की प्रायिकता ज्ञात कीजिए।
हल मान लीजिए कि ‘निर्माण कार्य के समयानुसार पूर्ण होने’ की घटना को $\mathrm{A}$ और ‘हड़ताल होने’ की घटना को $\mathrm{B}$ द्वारा निरूपित किया जाता है। हमें $\mathrm{P}(\mathrm{A})$ ज्ञात करना है।
हमें ज्ञात है कि $$ \begin{aligned} \mathrm{P}(\mathrm{B}) & =0.65, \mathrm{P}(\text { हड़ताल नहीं })=\mathrm{P}\left(\mathrm{B}^{\prime}\right)=1-\mathrm{P}(\mathrm{B})=1-0.65=0.35 \\ \mathrm{P}(\mathrm{A} \mid \mathrm{B}) & =0.32, \mathrm{P}\left(\mathrm{A} \mid \mathrm{B}^{\prime}\right)=0.80 \end{aligned} $$
क्योंकि घटनाएँ $\mathrm{B}$ और $\mathrm{B}^{\prime}$ समष्टि समुच्चय के विभाजन हैं इसलिए संपूर्ण प्रायिकता प्रमेय द्वारा
$$ =\mathrm{P}(\mathrm{B}) \cdot \mathrm{P}(\mathrm{A} \mid \mathrm{B})+\mathrm{P}\left(\mathrm{B}^{\prime}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{B}^{\prime}\right) $$
$$ \begin{aligned} & =0.65 \times 0.32+0.35 \times 0.8 \\ & =0.208+0.28=0.488 \end{aligned} $$
अतः निर्माण कार्य समयानुसार पूर्ण होने की प्रायिकता 0.488 है।
अब हम बेज़-प्रमेय का प्रकथन करेंगे तथा इसे सिद्ध करेंगे।
बेज़-प्रमेय (Bayes’ Theorem) यदि $\mathrm{E} _{1}, \mathrm{E} _{2}, \ldots, \mathrm{E} _{n}$ अरिक्त घटनाएँ हैं जो कि प्रतिदर्श समष्टि $\mathrm{S}$ के विभाजन का निर्माण करती हैं अर्थात् $\mathrm{E} _{1}, \mathrm{E} _{2}, \ldots, \mathrm{E} _{n}$ युग्मतः असंयुक्त हैं और $\mathrm{E} _{1} \cup \mathrm{E} _{2} \cup, \ldots, \cup$ $\mathrm{E} _{n}=\mathrm{S}$ और $\mathrm{A}$ कोई ऐसी घटना है जिसकी प्रायिकता शून्येतर है, तो
$$ P(E_i \mid A)=\frac{P(E_i) P(AlE_i)}{\sum _{j=1}^{n} P(E_j) P(AlE_j)} i=1,2,3, \ldots, n $$
उपपत्ति हमें ज्ञात है कि
$$ \begin{aligned} P(E_i \mid A) & =\frac{P(A \cap E_i)}{P(A)} \\ & =\frac{P(E_i) P(AlE_i)}{P(A)} \text{ (प्रायिकता के गुणन नियम से) } \\ & =\frac{P(E_i) P(AlE_i)}{\sum _{j=1}^{n} P(E_j) P(AlE_j)} \text{ (संपूर्ण प्रायिकता के नियम से) } \end{aligned} $$
टिप्पणी बेज़-प्रमेय के अनुप्रयोग में निम्नलिखित शब्दावली का उपयोग करते हैं घटनाओं $\mathrm{E} _{1}, \mathrm{E} _{2}, \ldots \mathrm{E} _{n}$ को परिकल्पनाएँ (hypotheses)कहते हैं। $\mathrm{P}\left(\mathrm{E} _{i}\right)$ को परिकल्पना $\mathrm{E} _{i}$ की पूर्वकालीन (a priori) प्रायिकता कहते हैं। सप्रतिबंध प्रायिकता $\mathrm{P}\left(\mathrm{E} _{i} \mathrm{~A}\right)$ को परिकल्पना $\mathrm{E} _{i}$ की उत्तरकालीन (a posteriori) प्रायिकता कहते हैं।
बेज़ प्रमेय को ‘कारणों’ की प्रायिकता का सूत्र भी कहा जाता है। क्योंकि $\mathrm{E} _{i}$ प्रतिदर्श समष्टि $\mathrm{S}$ के एक विभाजन का निर्माण करते हैं इसलिए घटनाओं $\mathrm{E} _{i}$ में से एक समय में एक और केवल एक ही घटित होती है (अर्थात् $\mathrm{E} _{i}$ में से केवल एक ही घटना घटती है और एक से अधिक नहीं घट सकती है) अतः उपरोक्त सूत्र हमें किसी विशेष $\mathrm{E} _{i}$ (अर्थात् एक कारण)की प्रायिकता देता है जबकि घटना $\mathrm{A}$ का घटित होना दिया गया है।
बेज़-प्रमेय की विविध परिस्थितियों में उपयोगिता है। इनमें से कुछ को निम्नलिखित उदाहरणों में स्पष्ट किया गया है।
उदाहरण 16 दो थैले I और II दिए हैं। थैले I में 3 लाल और 4 काली गेंदें हैं जब कि थैले II में 5 लाल और 6 काली गेंदें हैं। किसी एक थैले में से यादृच्छया एक गेंद निकाली गई है जो कि लाल रंग की है। इस बात की क्या प्रायिकता है कि यह गेंद थैले II से निकाली गई है?
हल थैले $\mathrm{I}$ का चयन होना को $\mathrm{E} _{1}$ से और थैले $\mathrm{II}$ के चयन को $\mathrm{E} _{2}$ मान लीजिए। मान लीजिए कि लाल रंग की गेंद निकलने की घटना को $\mathrm{A}$ से निरूपित करते हैं।
तब $$ \mathrm{P}\left(\mathrm{E} _{1}\right)=\mathrm{P}\left(\mathrm{E} _{2}\right)=\frac{1}{2} $$
साथ ही $\mathrm{P}\left(\mathrm{AlE} _{1}\right)=\mathrm{P}($ थैले $\mathrm{I}$ में से लाल रंग की गेंद निकालना $)=\frac{3}{7}$
और $$ \mathrm{P}\left(\mathrm{AlE} _{2}\right)=\mathrm{P}(\text { थैले } \mathrm{II} \text { में से लाल रंग की गेंद निकालना })=\frac{5}{11} $$
अब थैले II में से गेंद निकालने की प्रायिकता, जब कि यह ज्ञात है कि वाल रंग की है $=\mathrm{P}\left(\mathrm{E} _{2} \mid \mathrm{A}\right)$, बेज़-प्रमेय द्वारा
$$ P\left(E _{2} \mid A\right)=\frac{P\left(E _{2}\right) P\left(A \mid E _{2}\right)}{P\left(E _{1}\right) P\left(A \mid E _{1}\right)+P\left(E _{2}\right) P\left(A \mid E _{2}\right)}=\frac{\frac{1}{2} \times \frac{5}{11}}{\frac{1}{2} \times \frac{3}{7}+\frac{1}{2} \times \frac{5}{11}}=\frac{35}{68} $$
उदाहरण 17 तीन अभिन्न डिब्बे I, II और III दिए गए हैं जहाँ प्रत्येक में दो सिक्के हैं। डिब्बे I में दोनों सिक्के सोने के है, डिब्बे II में दोनों सिक्के चाँदी के हैं और डिब्बे III में एक सोने और एक चाँदी का सिक्का है। एक व्यक्ति यादृच्छया एक डिब्बा चुनता है और उसमें से यादृच्छया एक सिक्का निकालता है। यदि सिक्का सोने का है, तो इस बात की क्या प्रायिकता है कि डिब्बे में दूसरा सिक्का भी सोने का ही है?
हल मान लें $\mathrm{E} _{1}, \mathrm{E} _{2}$ और $\mathrm{E} _{3}$ क्रमशः डिब्बे $\mathrm{I}, \mathrm{II}$ और III के चयन को निरूपित करते हैं
तब $$ \mathrm{P}\left(\mathrm{E} _{1}\right)=\mathrm{P}\left(\mathrm{E} _{2}\right)=\mathrm{P}\left(\mathrm{E} _{3}\right)=\frac{1}{3} $$
साथ ही मान लें $\mathrm{A}$ घटना ‘निकाला गया सिक्का सोने का है’ को दर्शाता है।
तब $$ \begin{aligned} & \mathrm{P}\left(\mathrm{AlE} _{1}\right)=\mathrm{P}(\text { डिब्बे I से सोने का सिक्का निकलना })=\frac{2}{2}=1 \\ & \mathrm{P}\left(\mathrm{AlE} _{2}\right)=\mathrm{P}(\text { डिब्बे II से सोने का एक सिक्का निकलना })=0 \\ & \mathrm{P}\left(\mathrm{AlE} _{3}\right)=\mathrm{P}(\text { डिब्बे III से सोने का सिक्का निकलना })=\frac{1}{2} \end{aligned} $$
अब डिब्बे में दूसरा सिक्का भी सोने का होने की प्रायिकता $$ \begin{aligned} & =\text{ निकाला गया सोने का सिक्का डिब्बे } I \text{. } \\ & =P(E_1 \mid A) \end{aligned} $$
अब बेज़-प्रमेय द्वारा
$$ \begin{aligned} & \mathrm{P}\left(\mathrm{E} _{1} \mid \mathrm{A}\right)=\frac{\mathrm{P}\left(\mathrm{E} _{1}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{E} _{1}\right)}{\left.\mathrm{P}\left(\mathrm{E} _{1}\right) \mathrm{PA} \mid \mathrm{E} _{1}\right)+\mathrm{P}\left(\mathrm{E} _{2}\right) \mathrm{P}\left(\mathrm{AlE} _{2}\right)+\mathrm{P}\left(\mathrm{E} _{3}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{E} _{3}\right)} \\ & =\frac{\frac{1}{3} \times 1}{\frac{1}{3} \times 1+\frac{1}{3} \times 0+\frac{1}{3} \times \frac{1}{2}}=\frac{2}{3} \end{aligned} $$
उदाहरण 18 मान लें कि एक एच.आई.वी. परीक्षण की विश्वसनीयता निम्नलिखित प्रकार से निर्दिष्ट की गई है।
एच.आई.वी. पोजीटिव व्यक्तियों के लिए परीक्षण $90 \%$ पता लगाने में और $10 \%$ पता न लगाने में सक्षम है। एच.आई.वी. से स्वतंत्र व्यक्तियों के लिए परीक्षण, $99 \%$ सही पता लगाता है यानी एच. आई.वी नेगेटिव बताता है जबकि $1 \%$ परीक्षित व्यक्तियों के लिए एच.आई.वी. पोजीटिव बताता है। एक बड़ी जनसंख्या, जिसमें $0.1 \%$ व्यक्ति एच.आई.वी. ग्रस्त है, में से एक व्यक्ति यादृच्छया चुना जाता है और उस का परीक्षण किया जाने पर रोगविज्ञानी एच.आई.वी. की उपस्थिति बताता है। क्या प्रायिकता है कि वह व्यक्ति वास्तव में एच.आई.वी. (पोजीटिव) है?
हल मान लें $E$ चुने गए व्यक्ति के वास्तव में एच.आई.वी. पोजीटिव होने की घटना और $A$ व्यक्ति के एच.आई.वी. परीक्षण में पोजीटिव होने की घटना को दर्शाते हैं। हमें $\mathrm{P}(E \mid A)$ ज्ञात करना है।
साथ ही $\mathrm{E}^{\prime}$ चुने गए व्यक्ति के एच.आई.वी. पोजीटिव न होने की घटना को दर्शाता है।
स्पष्टतया $\left\{\mathrm{E}, \mathrm{E}^{\prime}\right\}$ जनसंख्या में सभी व्यक्तियों के प्रतिदर्श समष्टि का एक विभाजन है। हमें ज्ञात है
$$ \begin{aligned} & P(E)=0.1 \%=\frac{0.1}{100}=0.001 \\ & P\left(E^{\prime}\right)=1-P(E)=0.999 \end{aligned} $$
$ \begin{aligned} P(A \mid E)= & P(Person \text{ यह देखते हुए कि वह एचआईवी पॉजिटिव है } \\ & \quad \text{ वास्तव में एचआईवी से पीड़ित है }) = & 90 %=\frac{90}{100}=0.9 \end{aligned} $
और $\mathrm{P}\left(\mathrm{A} \mid \mathrm{E}^{\prime}\right)=\mathrm{P}$ (व्यक्ति का परीक्षण में एच.आई.वी. पोजीटिव दर्शाना जब कि दिया गया है कि वह वास्तव में एच.आई.वी. पोजीटिव नहीं है) $=1 \%=0.01$
अब बेज़-प्रमेय द्वारा
$$ \begin{aligned} \mathrm{P}(\mathrm{E} \mid \mathrm{A}) & =\frac{\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{A} \mid \mathrm{E})}{\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{A} \mid \mathrm{E})+\mathrm{P}\left(\mathrm{E}^{\prime}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{E}^{\prime}\right)} \\ & =\frac{0.001 \times 0.9}{0.001 \times 0.9+0.999 \times 0.01}=\frac{90}{1089} \\ & = 0.083 \text { ( लगभग )} \end{aligned} $$
अतः एक यादृच्छया चुने गए व्यक्ति के वास्तव में एच.आई.वी. पोजीटिव होने की प्रायिकता जब कि ज्ञात है कि उसका एच.आई.वी. परीक्षण पोजीटिव है, 0.083 है।
उदाहरण 19 एक बोल्ट बनाने के कारख़ाने में मशीनें (यंत्र) $\mathrm{A}, \mathrm{B}$ और $\mathrm{C}$ कुल उत्पादन का क्रमशः $25 \%, 35 \%$ और $40 \%$ बोल्ट बनाती हैं। इन मशीनों के उत्पादन का क्रमशः 5,4 , और 2 प्रतिशत भाग खराब (त्रुटिपूर्ण) हैं। बोल्टों के कुल उत्पादन में से एक बोल्ट यादृच्छया निकाला जाता है और वह खराब पाया जाता है। इसकी क्या प्रायिकता है कि यह बोल्ट मशीन $\mathrm{B}$ द्वारा बनाया गया है?
हल मान लिया कि घटनाएँ $\mathrm{B} _{1}, \mathrm{~B} _{2}, \mathrm{~B} _{3}$ निम्न प्रकार है:
$\mathrm{B} _{1}$ : बोल्ट मशीन $\mathrm{A}$ द्वारा बनाया गया है
$\mathrm{B} _{2}$ : बोल्ट मशीन $\mathrm{B}$ द्वारा बनाया गया है
$\mathrm{B} _{3}$ : बोल्ट मशीन $\mathrm{C}$ द्वारा बनाया गया है
स्पष्ट है कि घटनाएँ $\mathrm{B} _{1}, \mathrm{~B} _{2}, \mathrm{~B} _{3}$ परस्पर अपवर्जी और परिपूर्ण है। मान लिया कि घटना $\mathrm{E}$ निम्न प्रकार है: $\mathrm{E}$ बोल्ट खराब है।
घटना $\mathrm{E}$, घटनाओं $\mathrm{B} _{1}$ या $\mathrm{B} _{2}$ या $\mathrm{B} _{3}$ के साथ घटित होती है। दिया है:
$$ \mathrm{P}\left(\mathrm{B} _{1}\right)=25 \%=0.25, \mathrm{P}\left(\mathrm{B} _{2}\right)=0.35 \text { और } \mathrm{P}\left(\mathrm{B} _{3}\right)=0.40 $$
पुन: $\mathrm{P}\left(\mathrm{ElB} _{1}\right)=$ बोल्ट के खराब होने की प्रायिकता जब कि दिया हो कि वह मशीन $\mathrm{B}$ द्वारा निर्मित है $ =5 \%=0.05 $
इसी प्रकार $\mathrm{P}\left(\mathrm{E} \mid B _{2}\right)=0.04, \mathrm{P}\left(\mathrm{ElB} _{3}\right)=0.02$
बेज़-प्रमेय द्वारा हमें ज्ञात है कि
$$ \begin{aligned} \mathrm{P}\left(\mathrm{B} _{2} \mid \mathrm{E}\right) & =\frac{\mathrm{P}\left(\mathrm{B} _{2}\right) \mathrm{P}\left(\mathrm{ElB} _{2}\right)}{\mathrm{P}\left(\mathrm{B} _{1}\right) \mathrm{P}\left(\mathrm{ElB} _{1}\right)+\mathrm{P}\left(\mathrm{B} _{2}\right) \mathrm{P}\left(\mathrm{ElB} _{2}\right)+\mathrm{P}\left(\mathrm{B} _{3}\right) \mathrm{P}\left(\mathrm{E}+\mid \mathrm{B} _{3}\right)} \\ & =\frac{0.35 \times 0.04}{0.25 \times 0.05+0.35 \times 0.04+0.40 \times 0.02}=\frac{0.0140}{0.0345}=\frac{28}{69} \end{aligned} $$
उदाहरण 20 एक डॉक्टर को एक रोगी को देखने आना है। पहले के अनुभवों से यह ज्ञात है कि उसके ट्रेन, बस, स्कूटर या किसी अन्य वाहन से आने की प्रायिकताएँ क्रमशः $\frac{3}{10}, \frac{1}{5}, \frac{1}{10}$ या $\frac{2}{5}$ है यदि वह ट्रेन, बस या स्कूटर से आता है तो उसके देर से आने की प्रायिकताएँ क्रमशः $\frac{1}{4}, \frac{1}{3}$, या $\frac{1}{12}$ है, परंतु किसी अन्य वाहन से आने पर उसे देर नहीं होती है। यदि वह देर से आया, तो उसके ट्रेन से आने की प्रायिकता ज्ञात कीजिए।
हल मान लीजिए कि ‘डॉक्टर के रोगी के यहाँ देर से आने’ की घटना $\mathrm{E}$ है। यदि डॉक्टर के ट्रेन, बस, स्कूटर या किसी अन्य वाहन द्वारा आने की घटनाएँ क्रमश: $\mathrm{T} _{1}, \mathrm{~T} _{2}, \mathrm{~T} _{3}$, और $\mathrm{T} _{4}$ हो,
तो $$ \begin{equation*} \mathrm{P}\left(\mathrm{T} _{1}\right)=\frac{3}{10}, \mathrm{P}\left(\mathrm{T} _{2}\right)=\frac{1}{5}, \mathrm{P}\left(\mathrm{T} _{3}\right)=\frac{1}{10} \text { और } \mathrm{P}\left(\mathrm{T} _{4}\right)=\frac{2}{5} \tag{दियाहै} \end{equation*} $$
$$ \mathrm{P}\left(\mathrm{ElT} _{1}\right)=\text { डॉक्टर के ट्रेन द्वारा आने पर देर से पहुँचने की प्रायिकता }=\frac{1}{4} $$
इसी प्रकार, $\mathrm{P}\left(\mathrm{ElT} _{2}\right)=\frac{1}{3}, \mathrm{P}\left(\mathrm{ElT} _{3}\right)=\frac{1}{12}, \mathrm{P}\left(\mathrm{ElT} _{4}\right)=0$, क्योंकि अन्य वाहन द्वारा आने पर उसे देरी नहीं होती।
अब बेज़-प्रमेय द्वारा
$\mathrm{P}\left(\mathrm{T} _{1} \mathrm{E}\right)=$ डॉक्टर द्वारा देर से आने पर ट्रेन द्वारा आने की प्रायिकता
$$ \begin{aligned} & =\frac{\mathrm{P}\left(\mathrm{T} _{1}\right) \mathrm{P}\left(\mathrm{ElT} _{1}\right)}{\mathrm{P}\left(\mathrm{T} _{1}\right) \mathrm{P}\left(\mathrm{ElT} _{1}\right)+\mathrm{P}\left(\mathrm{T} _{2}\right) \mathrm{P}\left(\mathrm{ElT} _{2}\right)+\mathrm{P}\left(\mathrm{T} _{3}\right) \mathrm{P}\left(\mathrm{ElT} _{3}\right)+\mathrm{P}\left(\mathrm{T} _{4}\right) \mathrm{P}\left(\mathrm{ElT} _{4}\right)} \\ & =\frac{\frac{3}{10} \times \frac{1}{4}}{\frac{3}{10} \times \frac{1}{4}+\frac{1}{5} \times \frac{1}{3}+\frac{1}{10} \times \frac{1}{12}+\frac{2}{5} \times 0}=\frac{3}{40} \times \frac{120}{18}=\frac{1}{2} \end{aligned} $$
अतः अभीष्ट प्रायिकता $\frac{1}{2}$ है।
उदाहरण 21 एक व्यक्ति के बारे में ज्ञात है कि वह 4 में से 3 बार सत्य बोलता है। वह एक पासे को उछालता है और बतलाता है कि उस पर आने वाली संख्या 6 है। इस की प्रायिकता ज्ञात कीजिए कि पासे पर आने वाली संख्या वास्तव में 6 है।
हल मान लीजिए कि $\mathrm{E}$, ‘व्यक्ति द्वारा पासे को उछाल कर यह बताने की कि उस पर आने वाली संख्या 6 है ’ की घटना है। मान लीजिए कि $\mathrm{S} _{1}$, पासे पर संख्या 6 आने की घटना और $\mathrm{S} _{2}$ पासे पर संख्या 6 नहीं आने की घटना हैं।
तब $ \mathrm{P}\left(\mathrm{S} _{1}\right)=\text { संख्या } 6 \text { आने की घटना की प्रायिकता }=\frac{1}{6} $
$$ \mathrm{P}\left(\mathrm{S} _{2}\right)=\text { संख्या } 6 \text { नहीं आने की घटना की प्रायिकता }=\frac{5}{6} $$
$\mathrm{P}\left(\mathrm{EIS} _{1}\right)=$ व्यक्ति द्वारा यह बताने पर कि पासे कि संख्या 6 आई है जबकि पासे पर आने वाली संख्या वास्तव में 6 है, की प्रायिकता
$$ =\text { व्यक्ति द्वारा सत्य बोलने की प्रायिकता }=\frac{3}{4} $$
$\mathrm{P}\left(\mathrm{EIS} _{2}\right)=$ व्यक्ति द्वारा यह बताने पर कि पासे पर संख्या 6 आई है जबकि पासे पर आने वाली संख्या वास्तव में 6 नहीं है, की प्रायिकता
$$ =\text { व्यक्ति द्वारा सत्य नहीं बोलने की प्रायिकता }=1-\frac{3}{4}=\frac{1}{4} $$ अब बेज़-प्रमेय द्वारा
$\mathrm{P}\left(\mathrm{S} _{1} \mathrm{IE}\right)=$ व्यक्ति द्वारा यह बताने की प्रायिकता कि संख्या 6 प्रकट हुई है, जब वास्तव में संख्या 6 है
$$ =\frac{\mathrm{P}\left(\mathrm{S} _{1}\right) \mathrm{P}\left(\mathrm{EIS} _{1}\right)}{\mathrm{P}\left(\mathrm{S} _{1}\right) \mathrm{P}\left(\mathrm{E} \mid \mathrm{S} _{1}\right)+\mathrm{P}\left(\mathrm{S} _{2}\right) \mathrm{P}\left(\mathrm{EIS} _{2}\right)}=\frac{\frac{1}{6} \times \frac{3}{4}}{\frac{1}{6} \times \frac{3}{4} \times \frac{5}{6} \times \frac{1}{4}}=\frac{1}{8} \times \frac{24}{8}=\frac{3}{8} $$
अतः अभीष्ट प्रायिकता $\frac{3}{8}$ है।
एक यादृच्छिक चर वह फलन होता है जिसका प्रांत किसी यादृच्छिक परीक्षण का प्रतिदर्श समष्टि होता है।
उदाहरण के लिए, आइए एक सिक्के को दो बार अनुक्रम में उछाले जाने के परीक्षण पर विचार कीजिए। इस परीक्षण का प्रतिदर्श समष्टि है:
$$ \mathrm{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\} $$
यदि $\mathrm{X}$, प्राप्त चितों की संख्या को व्यक्त करता है तो $\mathrm{X}$ एक यादृच्छिक चर है और प्रत्येक परिणाम के लिए इसका मान निम्न प्रकार से दिया गया है:
$$ \mathrm{X}(\mathrm{HH})=2, \mathrm{X}(\mathrm{HT})=1, \mathrm{X}(\mathrm{TH})=1, \mathrm{X}(\mathrm{TT})=0 \text {. } $$
एक ही प्रतिदर्श समष्टि पर एक से अधिक यादृच्छिक चर परिभाषित किए जा सकते हैं। उदाहरण के लिए मान लें कि $\mathrm{Y}$, प्रतिदर्श समष्टि $\mathrm{S}$ के प्रत्येक परिणाम के लिए चितों की संख्या से पटों की संख्या के घटाव को व्यक्त करता है। तब
$$ \mathrm{Y}(\mathrm{HH})=2, \mathrm{Y}(\mathrm{HT})=0, \mathrm{Y}(\mathrm{TH})=0, \mathrm{Y}(\mathrm{TT})=-2 $$
अतः एक प्रतिदर्श समष्टि $\mathrm{S}$ में $\mathrm{X}$ और $\mathrm{Y}$ दो भिन्न यादृच्छिक चर परिभाषित किए गए हैं।
प्रश्नावली 13.3
1. एक कलश में 5 लाल और 5 काली गेदें हैं। यादृच्छया एक गेंद निकाली जाती है, इसका रंग नोट करने के बाद पुनः कलश में रख दी जाती है। पुन: निकाले गए रंग की 2 अतिरिक्त गेंदें कलश में रख दी जाती है तथा कलश में से एक गेंद निकाली जाती है। दूसरी गेंदें की लाल होने की प्रायिकता क्या है?
Show Answer
#missing2. एक थैले में 4 लाल और 4 काली गेंदें हैं और एक अन्य थैले में 2 लाल और 6 काली गेंदें हैं। दोनों थैलों में से एक को यादृच्छया चुना जाता है और उसमें एक गेंद निकाली जाती है जो कि लाल है। इस बात की क्या प्रायिकता है कि गेंद पहले थैले से निकाली गई है?
Show Answer
#missing3. यह ज्ञात है कि एक महाविद्यालय के छात्रों में से $60 \%$ छात्रावास में रहते हैं और $40 \%$ छात्रावास में नहीं रहते हैं। पूर्ववर्ती वर्ष के परिणाम सूचित करते हैं कि छात्रावास में रहने वाले छात्रों में से $30 \%$ और छात्रावास में न रहने वाले छात्रों में से $20 \%$ छात्रों ने $\mathrm{A}$-ग्रेड लिया। वर्ष के अंत में महाविद्यालय के एक छात्र को यादृच्छया चुना गया और यह पाया गया कि उसे $\mathrm{A}$-ग्रेड मिला है। इस बात की क्या प्रायिकता है कि वह छात्र छात्रावास मे रहने वाला है?
Show Answer
#missing4. एक बहुविकल्पी प्रश्न का उत्तर देने में एक विद्यार्थी या तो प्रश्न का उत्तर जानता है या वह अनुमान लगाता है। मान लें कि उसके उत्तर जानने की प्रायिकता $\frac{3}{4}$ है और अनुमान लगाने की प्रायिकता $\frac{1}{4}$ है। मान लें कि छात्र के प्रश्न के उत्तर का अनुमान लगाने पर सही उत्तर देने की प्रायिकता $\frac{1}{4}$ है तो इस बात की क्या प्रायिकता है कि कोई छात्र प्रश्न का उत्तर जानता है यदि यह ज्ञात है कि उसने सही उत्तर दिया है?
Show Answer
#missing5. किसी विशेष रोग के सही निदान के लिए रक्त की जाँच $99 \%$ असरदार है, जब वास्तव में रोगी उस रोग से ग्रस्त होता है। किंतु $0.5 \%$ बार किसी स्वस्थ व्यक्ति की रक्त जाँच करने पर निदान गलत रिपोर्ट देता है यानी व्यक्ति को रोग से ग्रस्त बतलाता है। यदि किसी जनसमुदाय में $0.1 \%$ लोग उस रोग से ग्रस्त है तो क्या प्रायिकता है कि कोई यादृच्छया चुना गया व्यक्ति उस रोग से ग्रस्त होगा यदि उसके रक्त की जाँच में यह बताया जाता है कि उसे यह रोग है?
Show Answer
#missing6. तीन सिक्के दिए गए हैं। एक सिक्के के दोनों ओर चित ही है। दूसरा सिक्का अभिनत है जिसमें चित $75 \%$ बार प्रकट होता है और तीसरा अनभितन सिक्का है। तीनों में से एक सिक्के को यादृच्छया चुना गया और उसे उछाला गया है। यदि सिक्के पर चित प्रकट हो, तो क्या प्रायिकता है कि वह दोनों चित वाला सिक्का है?
Show Answer
#missing7. एक बीमा कंपनी 2000 स्कूटर चालकों, 4000 कार चालकों और 6000 ट्रक चालकों का बीमा करती है। दुर्घटनाओं की प्रायिकताएँ क्रमशः $0.01,0.03$ और 0.15 है। बीमाकृत व्यक्तियों (चालकों) में से एक दुर्घटनाग्रस्त हो जाता है। उस व्यक्ति के स्कूटर चालक होने की प्रायिकता क्या है?
Show Answer
#missing8. एक कारखाने में $\mathrm{A}$ और $\mathrm{B}$ दो मशीने लगी हैं। पूर्व विवरण से पता चलता है कि कुल उत्पादन का $60 \%$ मशीन $\mathrm{A}$ और $40 \%$ मशीन $\mathrm{B}$ द्वारा किया जाता है। इसके अतिरिक्त मशीन $\mathrm{A}$ का $2 \%$ और मशीन $\mathrm{B}$ का $1 \%$ उत्पादन खराब है। यदि कुल उत्पादन का एक ढेर बना लिया जाता है और उस ढेर से यादृच्छया निकाली गई वस्तु खराब हो, तो इस वस्तु के ‘मशीन $\mathrm{A}$ ’ द्वारा बने होने की प्रायिकता क्या होगी?
Show Answer
#missing9. दो दल एक निगम के निदेशक मंडल में स्थान पाने की प्रतिस्पर्धा में हैं। पहले तथा दूसरे दल के जीतने की प्रायिकताएँ क्रमशः 0.6 तथा 0.4 हैं। इसके अतिरिक्त यदि पहला दल जीतता है तो एक नए उत्पाद के प्रारम्भ होने की प्रायिकता 0.7 है और यदि दूसरा दल जीतता है तो इस बात की संगत प्रायिकता 0.3 है। इसकी प्रायिकता ज्ञात कीजिए कि नया उत्पादन दूसरे दल द्वारा प्रारम्भ किया गया था।
Show Answer
#missing10. मान लीजिए कि कोई लड़की एक पासा उछालती है। यदि उसे 5 या 6 की संख्या प्राप्त होती है तो वह एक सिक्के को तीन बार उछालती है और ‘चितों की संख्या नोट करती है। यदि उसे $1,2,3$ या 4 की संख्या प्राप्त होती है तो वह एक सिक्के को एक बार उछालती है और यह नोट करती है कि उस पर ‘चित’ या ‘पट’ प्राप्त हुआ। यदि उसे ठीक एक चित प्राप्त होता है, तो उसके द्वारा उछाले गए पासे पर $1,2,3$ या 4 प्राप्त होने की प्रायिकता क्या है?
Show Answer
#missing11. एक व्यावसायिक निर्माता के पास $\mathrm{A}, \mathrm{B}$ तथा $\mathrm{C}$ मशीन ऑपरेटर हैं। प्रथम ऑपरेटर $\mathrm{A} 1 \%$ खराब सामग्री उत्पादित करता हैं तथा ऑपरेटर $\mathrm{B}$ और $\mathrm{C}$ क्रमशः $5 \%$ और $7 \%$ खराब सामग्री उत्पादित करता है। कार्य पर $\mathrm{A}$ कुल समय का $50 \%$ लगाता है, $\mathrm{B}$ कुल समय का $30 \%$ तथा $\mathrm{C}$ कुल समय का $20 \%$ लगाता है। यदि एक खराब सामग्री उत्पादित है तो इसे $\mathrm{A}$ द्वारा उत्पादित किए जाने की प्रायिकता क्या है?
Show Answer
#missing12. 52 ताशों की गड्डी से एक पत्ता खो जाता है। शेष पत्तों से दो पत्ते निकाले जाते हैं जो ईंट के पत्ते हैं। खो गए पत्ते की ईंट होने की प्रायिकता क्या है?
Show Answer
#missing13. $A$ द्वारा सत्य बोलने की प्रायिकता $\frac{4}{5}$ है। एक सिक्का उछाला जाता है तथा $A$ बताता है कि चित प्रदर्शित हुआ। वास्तविक रूप में चित प्रकट होने की प्रायिकता है:
(A) $\frac{4}{5}$
(B) $\frac{1}{2}$
(C) $\frac{1}{5}$
(D) $\frac{2}{5}$
Show Answer
#missing14. यदि $\mathrm{A}$ और $\mathrm{B}$ ऐसी घटनाएँ हैं कि $\mathrm{A} \subset \mathrm{B}$ तथा $\mathrm{P}(\mathrm{B}) \neq 0$ तो निम्न में से कौन ठीक है:
(A) $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{B})}{\mathrm{P}(\mathrm{A})}$
(B) $\mathrm{P}(\mathrm{A} \mid \mathrm{B})<\mathrm{P}(\mathrm{A})$
(C) $\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \geq \mathrm{P}(\mathrm{A})$
(D) इनमें से कोई नहीं
Show Answer
#missingविविध उदाहरण
उदाहरण 22 चार डिब्बों में रगींन गेंदें निम्न सारणी में दर्शाए गए तरह से आंबटित की गई है:
डिब्बा | रंग | |||
---|---|---|---|---|
काला | सफेद | लाल | नीला | |
I | 3 | 4 | 5 | 6 |
II | 2 | 2 | 2 | 2 |
III | 1 | 2 | 3 | 1 |
IV | 4 | 3 | 1 | 5 |
एक डिब्बे को यादृच्छया चुना गया और फिर उसमें से एक गेंद निकाली गई। यदि गेंद का रंग काला है तो इसकी क्या प्रायिकता है कि गेंद को डिब्बा- III से निकाला गया है?
हल मान लीजिए $\mathrm{A}, \mathrm{E} _{1}, \mathrm{E} _{2}, \mathrm{E} _{3}$ और $\mathrm{E} _{4}$ निम्न प्रकार से परिभाषित घटनाएँ हैं:
$\mathrm{A}$ : एक काली गेंद का निकलना $\mathrm{E} _{1}:$ डिब्बा-I का चुनाव $\mathrm{E} _{2}:$ डिब्बा-II का चुनाव $\mathrm{E} _{3}$ : डिब्बा-III का चुनाव $\mathrm{E} _{4}$ : डिब्बा-IV का चुनाव
क्योंकि डिब्बों को यादृच्छया चुना गया है,
इसलिए $ \mathrm{P}\left(\mathrm{E} _{1}\right)=\mathrm{P}\left(\mathrm{E} _{2}\right)=\mathrm{P}\left(\mathrm{E} _{3}\right)=\mathrm{P}\left(\mathrm{E} _{4}\right)=\frac{1}{4} $
साथ ही $\mathrm{P}\left(\mathrm{AlE} _{1}\right)=\frac{3}{18}, \mathrm{P}\left(\mathrm{AlE} _{2}\right)=\frac{2}{8}, \mathrm{P}\left(\mathrm{AlE} _{3}\right)=\frac{1}{7}$ और $\mathrm{P}\left(\mathrm{AlE} _{4}\right)=\frac{4}{13}$
$$ \begin{aligned} & \mathrm{P} \text { (डिब्बा - III का चुनाव, जब यह ज्ञात है कि काली गेंद निकाली गई है) } \\ & =\mathrm{P}\left(\mathrm{E} _{3} \mid \mathrm{A}\right) \text { बेज़-प्रमेय से } \end{aligned} $$
$$ \begin{aligned} \mathrm{P}\left(\mathrm{E} _{3} \mid \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{E} _{3}\right) \cdot \mathrm{P}\left(\mathrm{AlE} _{3}\right)}{\mathrm{P}\left(\mathrm{E} _{1}\right) \mathrm{P}\left(\mathrm{Al} \mathrm{E} _{1}\right)+\mathrm{P}\left(\mathrm{E} _{2}\right) \mathrm{P}\left(\mathrm{AlE} \mathrm{E} _{2}\right)+\mathrm{P}\left(\mathrm{E} _{3}\right) \mathrm{P}\left(\mathrm{AlE} _{3}\right)+\mathrm{P}\left(\mathrm{E} _{4}\right) \mathrm{P}\left(\mathrm{AlE} _{4}\right)} \\ & =\frac{\frac{1}{4} \times \frac{1}{7}}{\frac{1}{4} \times \frac{3}{18}+\frac{1}{4} \times \frac{1}{4}+\frac{1}{4} \times \frac{1}{7}+\frac{1}{4} \times \frac{4}{13}}=0.165 \end{aligned} $$
उदाहरण $23 \mathrm{~A}$ और $\mathrm{B}$ बारी-बारी से एक पासे को उछालते हैं जब तक कि उनमें से कोई एक पासे पर छः प्राप्त कर खेल को जीत नहीं लेता। यदि $\mathrm{A}$ खेल को शुरू करें तो उनके जीतने की क्रमशः प्रायिकता ज्ञात कीजिए।
हल मान लीजिए $\mathrm{S}$ सफलता (पासे पर 6 प्रकट होना) को और $\mathrm{F}$ असफलता (पासे पर 6 प्रकट न होना ) को व्यक्त करते हैं।
अत: $$ \mathrm{P}(\mathrm{S})=\frac{1}{6}, \mathrm{P}(\mathrm{F})=\frac{5}{6} $$
$\mathrm{P}(\mathrm{A}$ के पहली उछाल में जीतना $)=\mathrm{P}(\mathrm{S})=\frac{1}{6}$
$\mathrm{A}$ को तीसरी उछाल का अवसर तब मिलता है जब $\mathrm{A}$ पहली उछाल में और $\mathrm{B}$ दूसरी उछाल में असफल होते हैं। इसलिए
$\mathrm{P}(\mathrm{A}$ का तीसरी उछाल में जीतना $)=\mathrm{P}(\mathrm{FFS})=\mathrm{P}(\mathrm{F}) \mathrm{P}(\mathrm{F}) \mathrm{P}(\mathrm{S})=\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}=\left(\frac{5}{6}\right)^{2} \times \frac{1}{6}$
इसी प्रकार $\mathrm{P}(\mathrm{A}$ का पाँचवीं उछाल में जीतना $)=\mathrm{P}(\mathrm{FFFFS})=\left(\frac{5}{6}\right)^{4}\left(\frac{1}{6}\right)$
और इसी प्रकार अन्य अतः $\mathrm{P}(\mathrm{A}$ जीतना $)=\frac{1}{6}+\left(\frac{5}{6}\right)^{2}\left(\frac{1}{6}\right)+\left(\frac{5}{6}\right)^{4}\left(\frac{1}{6}\right)+\ldots$
$ \begin{aligned} & =\frac{\frac{1}{6}}{\frac{1-25}{36}}=\frac{6}{11} \\ \mathrm{P}(\mathrm{B} \text { जीतना }) & =1-\mathrm{P}(\mathrm{A} \text { जीतना })=1-\frac{6}{11}=\frac{5}{11} \end{aligned} $
टिप्पणी यदि $a+a r+a r^{2}+\ldots+a r^{n-1}+\ldots$, जहाँ $r \mid<1$, तब इस अनंत श्रेणी का योग $\frac{a}{1-r}$. (देखिए कक्षा XI की पाठ्यपुस्तक का A.1.3)
उदाहरण 24 यदि एक मशीन समुचित ढंग से स्थापित की जाती है तो यह $90 \%$ स्वीकार्य वस्तु उत्पादित करती है। यदि यह समुचित ढंग से स्थापित नहीं की जाती है तो यह मात्र $40 \%$ स्वीकार्य वस्तु बनाती है। पूर्व अनुभव यह दर्शाता है कि मशीन स्थापन $80 \%$ समुचित है। यदि एक निश्चित स्थापन के बाद मशीन 2 स्वीकार्य वस्तु उत्पादित करती है तो मशीन की समुचित ढंग से स्थापित होने की प्रायिकता ज्ञात कीजिए।
हल मान लीजिए $A$ एक घटना है जिसमें एक मशीन दो स्वीकार्य वस्तुओं का उत्पादन करती है। साथ ही मान लीजिए $\mathrm{B} _{1}$ सही कार्य प्रणाली की घटना को प्रदर्शित करता है और $\mathrm{B} _{2}$ गलत कार्य प्रणाली की घटना को प्रदर्शित करता है।
अब $$ \begin{aligned} \mathrm{P}\left(\mathrm{B} _{1}\right) & =0.8, \mathrm{P}\left(\mathrm{B} _{2}\right)=0.2 \\ \mathrm{P}\left(\mathrm{A} \mid \mathrm{B} _{1}\right) & =0.9 \times 0.9 \text { और } \mathrm{P}\left(\mathrm{A} \mid \mathrm{B} _{2}\right)=0.4 \times 0.4 \end{aligned} $$
इसलिए $$ \begin{aligned} \mathrm{P}\left(\mathrm{B} _{1} \mid \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{B} _{1}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{B} _{1}\right)}{\mathrm{P}\left(\mathrm{B} _{1}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{B} _{1}\right)+\mathrm{P}\left(\mathrm{B} _{2}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{B} _{2}\right)} \\ & =\frac{0.8 \times 0.9 \times 0.9}{0.8 \times 0.9 \times 0.9+0.2 \times 0.4 \times 0.4}=\frac{648}{680}=0.95 \end{aligned} $$
अध्याय 13 पर आधारित विविध प्रश्नावली
1. $\mathrm{A}$ और $\mathrm{B}$ इस प्रकार घटनाएँ हैं कि $\mathrm{P}(\mathrm{A}) \neq 0 . \mathrm{P}(\mathrm{B} \mid \mathrm{A})$ ज्ञात कीजिए यदि
(i) $\mathrm{A}$, समुच्चय $\mathrm{B}$ का उपसमुच्चय है
(ii) $\mathrm{A} \cap \mathrm{B}=\phi$
Show Answer
#missing2. एक दंपति के दो बच्चे हैं
(i) दोनों बच्चों के लड़का होने की प्रायिकता ज्ञात कीजिए यदि यह ज्ञात हैं कि दोनों बच्चों में से कम से कम एक बच्चा लडका है।
(ii) दोनों बच्चों के लड़की होने की प्रायिकता ज्ञात कीजिए यदि यह ज्ञात है कि बड़ा बच्चा लड़की है।
Show Answer
#missing3. कल्पना कीजिए कि $5 \%$ पुरुषों और $0.25 \%$ महिलाओं के बाल सफ़ेद हैं। एक सफ़ेद बालों वाले व्यक्ति को यादृच्छिक चुना गया है। इस व्यक्ति के पुरुष होने की प्रायिकता क्या है? यह मान लें कि पुरुषों और महिलाओं की संख्या समान है।
Show Answer
#missing4. मान लीजिए कि $90 \%$ लोग दाहिने हाथ से काम करने वाले हैं। इसकी प्रायिकता क्या है कि 10 लोगों में से यादृच्छया चुने गए अधिक से अधिक 6 लोग दाहिने हाथ से काम करने वाले हों?
Show Answer
#missing5. यदि एक लीप वर्ष को यादृच्छया चुना गया हो तो इसकी क्या प्रायिकता है कि उस वर्ष में 53 मंगलवार होंगे?
Show Answer
#missing6. मान लीजिए हमारे पास $\mathrm{A}, \mathrm{B}, \mathrm{C}$ और $\mathrm{D}$ बक्से हैं जिसमें रखी संगमरमर की लाल, सफेद और काली टुकड़ियों का विवरण निम्न तरीके से है यादृच्छया एक बॉक्स चुना जाता है तथा इससे एक टुकड़ा निकाला जाता है। यदि टुकड़ा लाल हो तो इसे बॉक्स $\mathrm{A}$; बॉक्स $\mathrm{B}$, बॉक्स $\mathrm{C}$ से निकाले जाने की क्या प्रायिकता है?
बॉक्स | संगमरमर की टुकड़ियों का रंग | ||
---|---|---|---|
लाल | सफ़ेद | काला | |
A | 1 | 6 | 3 |
B | 6 | 2 | 2 |
C | 8 | 1 | 1 |
D | 0 | 6 | 4 |
Show Answer
#missing7. मान लीजिए किसी रोगी को दिल का दौरा पड़ने का संयोग $40 \%$ है। यह मान लिया जाता है कि ध्यान ओर योग विधि दिल का दौरा पड़ने के खतरे को $30 \%$ कम कर देता है और दवा द्वारा खतरे को $25 \%$ कम किया जा सकता है। किसी भी समय रोगी इन दोनों में से किसी एक विकल्प का चयन करता है। यह दिया गया है कि उपरोक्त विकल्पों से किसी एक का चुनाव करने वाले रोगियों से यादृच्छया चुना गया रोगी दिल के दौरे से ग्रसित हो जाता है। रोगी द्वारा ध्यान और योग विधि का उपयोग किए जाने की प्रायिकता ज्ञात कीजिए।
Show Answer
#missing8. यदि 2 कोटि के एक सारणिक के सभी अवयव शून्य या एक हो तो सारणिक का धनात्मक मान होने की क्या प्रायिकता हैं। (मान लीजिए की सारणिक के प्रत्येक अवयव स्वतंत्र रूप से चुने जा सकते हैं तथा प्रत्येक की चुने जाने की प्रायिकता $\frac{1}{2}$ है।)
Show Answer
#missing9. एक इलेक्ट्रॉनिक एसेंबली के दो सहायक निकाय $A$ और $B$ हैं। पूर्ववर्ती निरीक्षण द्वारा निम्न प्रायिकताएँ ज्ञात है:
$ \begin{aligned} \mathrm{P}(\mathrm{A} \text { के असफल होने की }) & =0.2 \\ \mathrm{P}(\mathrm{B} \text{ के अकेले असफल होने की} ) & =0.15 \\ \mathrm{P}(\mathrm{A} \text{ और } \mathrm{B} \text { के असफल होने की } ) & =0.15 \end{aligned} $
तो, निम्न प्रायिकताएँ ज्ञात कीजिए:
(i) $\mathrm{P}(\mathrm{A}$ असफल/B असफल हो चुकी हो)
(ii) $\mathrm{P}(\mathrm{A}$ के अकेले असफल होने की $)$
Show Answer
#missing10. थैला 1 में 3 लाल तथा 4 काली गेंदें है तथा थैला II में 4 लाल और 5 काली गेंदें हैं। एक गेंद को थैला 1 से थैला 2 में स्थानांतरित किया जाता है और तब एक गेंद थैला 2 से निकाली जाती है। निकाली गई गेंद लाल रंग की है। स्थानांतरित गेंद की काली होने की प्रायिकता ज्ञात कीजिए। निम्नलिखित प्रश्नों में सही उत्तर का चुनाव कीजिए:
Show Answer
#missing11. यदि $\mathrm{A}$ और $\mathrm{B}$ दो ऐसी घटनाएँ है कि $\mathrm{P}(\mathrm{A}) \neq 0$ और $\mathrm{P}(\mathrm{B} / \mathrm{A})=1$, तब
(A) $\mathrm{A} \subset \mathrm{B}$
(B) $\mathrm{B} \subset \mathrm{A}$
(C) $\mathrm{B}=\phi$
(D) $\mathrm{A}=\phi$
Show Answer
#missing12. यदि $\mathrm{P}(\mathrm{A} / \mathrm{B})>\mathrm{P}(\mathrm{A})$, तब निम्न में से कौन सही है।
(A) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})<\mathrm{P}(\mathrm{B})$
(B) $\mathrm{P}(\mathrm{A} \cap \mathrm{B})<\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
(C) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})>\mathrm{P}(\mathrm{B})$
(D) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{B})$
Show Answer
#missing13. यदि $\mathrm{A}$ और $\mathrm{B}$ ऐसी दो घटनाएँ हैं कि $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ और $\mathrm{B})=\mathrm{P}(\mathrm{A})$, तब
(A) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=1$
(B) $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=1$
(C) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=0$
(D) $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=0$
Show Answer
#missingसारांश
इस अध्याय के मुख्य बिंदु निम्न प्रकार से हैं
- घटना $\mathrm{E}$ की सप्रतिबंध प्रायिकता जब कि घटना $\mathrm{F}$ दी गई है, निम्न प्रकार से ज्ञात की जाती है
$\mathrm{P}(\mathrm{E} \mid \mathrm{F})=\frac{\mathrm{P}(\mathrm{E} \cap \mathrm{F})}{\mathrm{P}(\mathrm{F})}, \mathrm{P}(\mathrm{F}) \neq 0$
- $0 \leq \mathrm{P}(\mathrm{E} \mid \mathrm{F}) \leq 1, \quad \mathrm{P}\left(\mathrm{E}^{\prime} \mid \mathrm{F}\right)=1-\mathrm{P}(\mathrm{E} \mid \mathrm{F})$
$P(E \cup F \mid G)=P(E \mid G)+P(F \mid G)-P(E \cap F \mid G)$
- P $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{F} \mid \mathrm{E}), \mathrm{P}(\mathrm{E}) \neq 0$
या $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{F})(\mathrm{E} \mid \mathrm{F}), \mathrm{P}(\mathrm{F}) \neq 0$
- यदि $\mathrm{E}$ और $\mathrm{F}$ स्वतंत्र घटनाएँ हैं तो
$\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{F})$
और $\mathrm{P}(\mathrm{E} \mid \mathrm{F})=\mathrm{P}(\mathrm{E}), \mathrm{P}(\mathrm{F}) \neq 0$
$\mathrm{P}(\mathrm{F} \mid \mathrm{E})=\mathrm{P}(\mathrm{F}), \mathrm{P}(\mathrm{E}) \neq 0$
- संपूर्ण प्रायिकता की प्रमेय:
मान लें $\left\{\mathrm{E} _{1}, \mathrm{E} _{2}, \ldots \mathrm{E} _{n}\right\}$ प्रतिदर्श समष्टि $\mathrm{S}$ का एक विभाजन है और $\mathrm{E} _{1}, \mathrm{E} _{2}, \ldots \mathrm{E} _{n}$, में प्रत्येक की प्रायिकता शून्येत्तर है। साथ ही $\mathrm{A}$ प्रतिदर्श समष्टि से संबधित एक घटना है, तब $\mathrm{P}(\mathrm{A})=\mathrm{P}\left(\mathrm{E} _{1}\right) \mathrm{P}\left(\mathrm{AlE} _{1}\right)+\mathrm{P}\left(\mathrm{E} _{2}\right) \mathrm{P}\left(\mathrm{AlE} _{2}\right)+\ldots+\mathrm{P}\left(\mathrm{E} _{n}\right) \mathrm{P}\left(\mathrm{AlE} \mathrm{E} _{n}\right)$
- बेज़-प्रमेयः यदि $\mathrm{E} _{1}, \mathrm{E} _{2}, \ldots . \mathrm{E} _{n}$ प्रतिदर्श समष्टि $\mathrm{S}$ के विभाजन का निर्माण करती हैं अर्थात् $\mathrm{E} _{1}, \mathrm{E} _{2}, \ldots, \mathrm{E} _{n}$ युग्मतः असंयुक्त हैं और $\mathrm{E} _{1} \cup \mathrm{E} _{2} \cup \ldots \cup \mathrm{E} _{n}=\mathrm{S}$ और $\mathrm{A}$ एक शून्येतर प्रायिकता की घटना है तब
$$ \mathrm{P}\left(\mathrm{E} _{i} \mid \mathrm{A}\right)=\frac{\mathrm{P}\left(\mathrm{E} _{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{E} _{\mathrm{i}}\right)}{n \underset{j=1}{n}\left(\mathrm{E} _{j}\right) \mathrm{P}\left(\mathrm{AlE} _{j}\right)} $$
ऐतिहासिक नोट
एक पासे पर आधारित खेल में प्रायिकता (अवसर) के माप का पहला संदर्भ दाँते के दैवी प्रहसन पर एक व्याख्या में मिलता है। जेरनीमोंकॉरडन (1501-1576) ने जुए के खेल पर एक विस्तृत निबंध जिसका नाम ‘लिबर डे लूडो अलकाए’ लिखा था जो उनके मृत्योपरांत 1663 में प्रकाशित हुआ था। इस निबंध में उन्होंने दो पासों को उछालने पर प्रत्येक घटना के अनुकूल परिणामों की संख्या के बारे में बताया है। गैलिलियो (1564-1642) ने तीन पासों के एक खेल में संयोग के माप के संबंध में आकस्मिक टिप्पणी की है। गैलिलियो ने विश्लेषण किया था कि जब तीन पासों को उछाला जाता है तो प्रकट संख्याओं के योग का 10 होना योग 9 से अधिक संभाव्य है क्योंकि योग को दस होने के अनुकूल परिणामों की संख्या योग 9 के अनुकूल परिणामों की संख्या से अधिक है।
इस प्रारंभिक योगदान के अतिरिक्त यह सामान्यतः माना जाता है कि प्रायिकता के विज्ञान का प्रमाणिक उद्गम सत्रहवीं शताब्दी के दो महान गणितज्ञों पॉस्कल (1623-1662) और पीअरे द् फ़र्मा (1601-1665) के मध्य हुए पत्र व्यवहार से हुआ है। एक फ्रांसिसी जुआरी शेवेलियर डे मेरे ने सैंद्धातिक तर्क और जुए में एकत्रित प्रेक्षणों में अंतर्विरोध की व्याख्या के लिए पॉस्कल से पूछा। इस प्रश्न के हल के लिए 1654 के इर्द-गिर्द पॉस्कल और फ़र्मा के बीच हुए पत्र व्यवहार की श्रृंखला में प्रायिकता के विज्ञान की प्रथम नींव रखी गई। पॉस्कल ने समस्या को बीजगणितीय रूप में हल किया जबकि फ़र्मा ने संचय की विधियों का उपयोग किया।
महान हालैंड निवासी वैज्ञानिक ह्यजेन (1629-1695) को पॉस्कल और फ़र्मा के मध्य हुए पत्र व्यवहार के बारे में जानकारी मिली तो उन्होंने प्रायिकता की प्रथम पुस्तक ‘डे रेशियोसिनिस इन लूडो अलाय’ को प्रकाशित किया जिसमें संयोग के खेल में प्रायिकता पर बहुत सारी रोचक लेकिन कठिन समस्याओं के हल प्रस्तुत किए। प्रायिकता सिद्धांत पर अगला महान कार्य जैकब बरनौली (1654-1705) ने एक पुस्तक ‘आर्स कंजेकटेंडी’ के रूप में किया जो उनके मृत्योपरांत उनके भतीजे निकॉलस बरनौली ने 1713 में प्रकाशित की थी। उन्हें एक महत्त्वपूर्ण प्रायिकता बंटन ‘द्विपद बंटन’ की खोज का श्रेय भी जाता है। प्रायिकता पर अगला आकर्षक कार्य ‘अब्राहम डे मोवियर (1667-1754) की पुस्तक ‘द डॉक्ट्रिन ऑफ चांस’ में विद्यमान है जिसे 1718 में प्रकाशित किया गया था। थॉमस बेज़ (1702-1761) ने उनके नाम पर प्रसिद्ध प्रमेय ‘बेज़-प्रमेय’ को व्युत्पन्न करने के लिए सप्रतिबंध प्रायिकता का उपयोग किया। प्रसिद्ध खगोलशास्त्री ‘पियरे साइमन डे लॉपलास (1749-1827) ने भी प्रायिकता सिद्धांत पर कार्य किया और 1812 में एक पुस्तक ‘थियोरी एनॉलिटिक डेस प्रोबेबिलिटिज़’ प्रकाशित की। इसके बाद रूसी गणितज्ञों शेबीशेव (1821-1894), मॉरकोव (1856-1922), ए. लियापोनोव (1821-1918) और ए. एन. कॉल्मोग्रोव (1903-1987) ने प्रायिकता सिद्धांत पर सार्थक योगदान दिया। कॉल्मोग्रोव ने प्रायिकता का समुच्चय फलन के रूप में सूत्रपात किया। जिसे 1933 में प्रकाशित पुस्तक ‘प्रायिकता का आधारभूत सिद्धांत’ में प्रायिकता के अभिगृहितीय दृष्टिकोण के नाम से जाना जाता है।