Chapter-08 The d and f Block Elements

The $d$-block of the periodic table contains the elements of the groups 3-12 in which the $d$ orbitals are progressively filled in each of the four long periods. The $f$-block consists of elements in which $4 f$ and $5 f$ orbitals are progressively filled. They are placed in a separate panel at the bottom of the periodic table. The names transition metals and inner transition metals are often used to refer to the elements of $d$-and $f$-blocks respectively.

There are mainly four series of the transition metals, $3 d$ series ( $\mathrm{Sc}$ to $\mathrm{Zn}$ ), $4 d$ series ( $\mathrm{Y}$ to $\mathrm{Cd}$ ), $5 d$ series (La and $\mathrm{Hf}$ to $\mathrm{Hg}$ ) and $6 d$ series which has $\mathrm{Ac}$ and elements from $\mathrm{Rf}$ to $\mathrm{Cn}$. The two series of the inner transition metals; $4 f(\mathrm{Ce}$ to $\mathrm{Lu})$ and $5 f$ (Th to $\mathrm{Lr}$ ) are known as lanthanoids and actinoids respectively.

Originally the name transition metals was derived from the fact that their chemical properties were transitional between those of $s$ and $p$-block elements. Now according to IUPAC, transition metals are defined as metals which have incomplete $d$ subshell either in neutral atom or in their ions. Zinc, cadmium and mercury of group 12 have full $d^{10}$ configuration in their ground state as well as in their common oxidation states and hence, are not regarded as transition metals. However, being the end members of the $3 d, 4 d$ and $5 d$ transition series, respectively, their chemistry is studied along with the chemistry of the transition metals.

The presence of partly filled d or f orbitals in their atoms makes transition elements different from that of the non-transition elements. Hence, transition elements and their compounds are studied separately. However, the usual theory of valence as applicable to the nontransition elements can be applied successfully to the transition elements also.

Various precious metals such as silver, gold and platinum and industrially important metals like iron, copper and titanium belong to the transition metals series. In this Unit, we shall first deal with the electronic configuration, occurrence and general characteristics of transition elements with special emphasis on the trends in the properties of the first row (3d) transition metals along with the preparation and properties of some important compounds. This will be followed by consideration of certain general aspects such as electronic configurations, oxidation states and chemical reactivity of the inner transition metals.

8.1 Position in the Periodic Table

The $d$-block occupies the large middle section of the periodic table flanked between $s$ - and $p$-blocks in the periodic table. The $d$-orbitals of the penultimate energy level of atoms receive electrons giving rise to four rows of the transition metals, i.e., $3 d, 4 d, 5 d$ and $6 d$. All these series of transition elements are shown in Table 8.1.

8.2 Electronic Configurations of the d-Block Elements

In general the electronic configuration of outer orbitals of these elements is $(n-1) d^{1-10} n s^{1-2}$ except for Pd where its electronic configuration is $4 d^{10} 5 s^{0}$. The ( $n-1$ ) stands for the inner $d$ orbitals which may have one to ten electrons and the outermost ns orbital may have one or two electrons. However, this generalisation has several exceptions because of very little energy difference between (n-1)d and ns orbitals. Furthermore, half and completely filled sets of orbitals are relatively more stable. A consequence of this factor is reflected in the electronic configurations of $\mathrm{Cr}$ and $\mathrm{Cu}$ in the $3 d$ series. For example, consider the case of $\mathrm{Cr}$, which has $3 d^{5} 4 s^{1}$ configuration instead of $3 d^{4} 4 s^{2}$; the energy gap between the two sets ( $3 d$ and $4 s$ ) of orbitals is small enough to prevent electron entering the $3 d$ orbitals. Similarly in case of $\mathrm{Cu}$, the configuration is $3 d^{10} 4 s^{1}$ and not $3 d^{9} 4 s^{2}$. The ground state electronic configurations of the outer orbitals of transition elements are given in Table 8.1.

Table 8.1: Electronic Configurations of outer orbitals of the Transition Elements (ground state)

1st Series
$\mathrm{Sc}$ $\mathrm{Ti}$ $\mathrm{V}$ $\mathrm{Cr}$ $\mathrm{Mn}$ $\mathrm{Fe}$ $\mathrm{Co}$ $\mathrm{Ni}$ $\mathrm{Cu}$ $\mathrm{Zn}$
$Z$ 21 22 23 24 25 26 27 28 29 30
$4 s$ 2 2 2 1 2 2 2 2 1 2
$3 d$ 1 2 3 5 5 6 7 8 10 10
2nd Series
$\mathrm{Y}$ $\mathrm{Zr}$ $\mathrm{Nb}$ $\mathrm{Mo}$ $\mathrm{Tc}$ $\mathrm{Ru}$ $\mathrm{Rh}$ $\mathrm{Pd}$ $\mathrm{Ag}$ $\mathrm{Cd}$
$Z$ 39 40 41 42 43 44 45 46 47 48
$5 s$ 2 2 1 1 1 1 1 0 1 2
$4 d$ 1 2 4 5 6 7 8 10 10 10
3rd Series
$\mathrm{La}$ $\mathrm{Hf}$ $\mathrm{Ta}$ $\mathrm{W}$ $\mathrm{Re}$ $\mathrm{Os}$ $\mathrm{Ir}$ $\mathrm{Pt}$ $\mathrm{Au}$ $\mathrm{Hg}$
$Z$ 57 72 73 74 75 76 77 78 79 80
$6 d$ 2 2 2 2 2 2 2 1 1 2
$5 d$ 1 2 3 4 5 6 7 9 10 10
4th Series
$\mathrm{Ac}$ $\mathrm{Rf}$ $\mathrm{Db}$ $\mathrm{Sg}$ $\mathrm{Bh}$ $\mathrm{Hs}$ $\mathrm{Mt}$ $\mathrm{Ds}$ $\mathrm{Rg}$ $\mathrm{Cn}$
$Z$ 89 104 105 106 107 108 109 110 111 112
$7 s$ 2 2 2 2 2 2 2 2 1 2
$6 d$ 1 2 3 4 5 6 7 8 10 10

The electronic configurations of outer orbitals of $\mathrm{Zn}, \mathrm{Cd}, \mathrm{Hg}$ and $\mathrm{Cn}$ are represented by the general formula $(n-1) d^{10} n s^{2}$. The orbitals in these elements are completely filled in the ground state as well as in their common oxidation states. Therefore, they are not regarded as transition elements. The $d$ orbitals of the transition elements protrude to the periphery of an atom more than the other orbitals (i.e., $s$ and $p$ ), hence, they are more influenced by the surroundings as well as affect the atoms or molecules surrounding them. In some respects, ions of a given $d^{\mathrm{n}}$ configuration ( $n=1-9$ ) have similar magnetic and electronic properties. With partly filled $d$ orbitals these elements exhibit certain characteristic properties such as display of a variety of oxidation states, formation of coloured ions and entering into complex formation with a variety of ligands.

The transition metals and their compounds also exhibit catalytic property and paramagnetic behaviour. All these characteristics have been discussed in detail later in this Unit.

There are greater similarities in the properties of the transition elements of a horizontal row in contrast to the non-transition elements. However, some group similarities also exist. We shall first study the general characteristics and their trends in the horizontal rows (particularly $3 d$ row) and then consider some group similarities.

Intext Question

8.1 Silver atom has completely filled $d$ orbitals $\left(4 d^{10}\right)$ in its ground state. How can you say that it is a transition element?

Show Answer

Answer

Ag has a completely filled $4 d$ orbital $\left(4 d^{10} 5 s^{1}\right)$ in its ground state. Now, silver displays two oxidation states (+1 and +2 ). In the +1 oxidation state, an electron is removed from the $s$-orboital. However, in the +2 oxidation state, an electron is removed from the $d$-orbital. Thus, the $d$-orbital now becomes incomplete $\left(4 d^{9}\right)$. Hence, it is a transition element.

8.3 General Properties of the Transition Elements (d-Block)

We will discuss the properties of elements of first transition series only in the following sections.

8.3.1 Physical Properties

Nearly all the transition elements display typical metallic properties such as high tensile strength, ductility, malleability, high thermal and electrical conductivity and metallic lustre. With the exceptions of $\mathrm{Zn}$, $\mathrm{Cd}, \mathrm{Hg}$ and $\mathrm{Mn}$, they have one or more typical metallic structures at normal temperatures.

Lattice Structures of Transition Metals

Sc Ti V Cr Mn Fe Co Ni Cu Zn
$hcp$ $hcp$ $bcc$ $bcc$ $X$ $bcc$ $ccp$ $ccp$ $ccp$ $X$
$(bcc)$ $(bcc)$ $(bcc, ccp)$ $(hcp)$ $(hcp)$ $(hcp)$
$\mathbf{Y}$ $\mathbf{Z r}$ $\mathbf{N b}$ $\mathbf{M o}$ $\mathbf{T c}$ $\mathbf{R u}$ $\mathbf{R h}$ $\mathbf{P d}$ $\mathbf{A g}$ $\mathbf{C d}$
$hcp$ $hcp$ $bcc$ $bcc$ $hcp$ $hcp$ $ccp$ $ccp$ $ccp$ $X$
$(bcc)$ $(bcc)$ $(hcp)$
$\mathbf{L a}$ $\mathbf{H f}$ $\mathbf{T a}$ $\mathbf{W}$ $\mathbf{R e}$ $\mathbf{O s}$ $\mathbf{I r}$ $\mathbf{P t}$ $\mathbf{A u}$ $\mathbf{H g}$
$hcp$ $hcp$ $bcc$ $bcc$ $hcp$ $hcp$ $ccp$ $ccp$ $ccp$ $X$
$(ccp,bcc)$ $(bcc)$

Fig. 8.1: Trends in melting points of transition elements

The transition metals (with the exception of $\mathrm{Zn}, \mathrm{Cd}$ and $\mathrm{Hg}$ ) are very hard and have low volatility. Their melting and boiling points are high. Fig. 8.1 depicts the melting points of transition metals belonging to $3 d, 4 d$ and $5 d$ series. The high melting points of these metals are attributed to the involvement of greater number of electrons from (n-1)d in addition to the ns electrons in the interatomic metallic bonding. In any row the melting points of these metals rise to a maximum at $d^{5}$ except for anomalous values of $\mathrm{Mn}$ and $\mathrm{Tc}$ and fall regularly as the atomic number increases. They have high enthalpies of atomisation which are shown in Fig. 8.2. The maxima at about the middle of each series indicate that one unpaired electron per $d$ orbital is particularly favourable for strong interatomic interaction. In general, greater the number of valence electrons, stronger is the resultant bonding. Since the enthalpy of atomisation is an important factor in determining the standard electrode potential of a metal, metals with very high enthalpy of atomisation (i.e., very high boiling point) tend to be noble in their reactions (see later for electrode potentials).

Another generalisation that may be drawn from Fig. 8.2 is that the metals of the second and third series have greater enthalpies of atomisation than the corresponding elements of the first series; this is an important factor in accounting for the occurrence of much more frequent metal - metal bonding in compounds of the heavy transition metals.

Fig. 8.2 Trends in enthalpies of atomisation of transition elements

8.3.2 Variation in Atomic and Ionic Sizes of Transition Metals

In general, ions of the same charge in a given series show progressive decrease in radius with increasing atomic number. This is because the new electron enters a $d$ orbital each time the nuclear charge increases by unity. It may be recalled that the shielding effect of a $d$ electron is not that effective, hence the net electrostatic attraction between the nuclear charge and the outermost electron increases and the ionic radius decreases. The same trend is observed in the atomic radii of a given series. However, the variation within a series is quite small. An interesting point emerges when atomic sizes of one series are compared with those of the corresponding elements in the other series. The curves in Fig. 8.3 show an increase from the first (3d) to the second (4d) series of the elements but the radii of the third $(5 d)$ series are virtually the same as those of the corresponding members of the second series. This phenomenon is associated with the intervention of the $4 f$ orbitals which must be filled before the $5 d$ series of elements begin. The filling of $4 f$ before $5 d$ orbital results in a regular decrease in atomic radii called Lanthanoid contraction which essentially compensates for the expected increase in atomic size with increasing atomic number. The net result of the lanthanoid contraction is that the second and the third $d$ series exhibit similar radii (e.g., Zr 160 pm, Hf $159 \mathrm{pm}$ ) and have very similar physical and chemical properties much more than that expected on the basis of usual family relationship.

Fig. 8.3: Trends in atomic radii of transition elements

The factor responsible for the lanthanoid contraction is somewhat similar to that observed in an ordinary transition series and is attributed to similar cause, i.e., the imperfect shielding of one electron by another in the same set of orbitals. However, the shielding of one $4 f$ electron by another is less than that of one $d$ electron by another, and as the nuclear charge increases along the series, there is fairly regular decrease in the size of the entire $4 f^{n}$ orbitals.

The decrease in metallic radius coupled with increase in atomic mass results in a general increase in the density of these elements. Thus, from titanium $(Z=22)$ to copper $(Z=29)$ the significant increase in the density may be noted (Table 8.2).

Table 8.2: Electronic Configurations and some other Properties of the First Series of Transition Elements

Element Sc $\mathbf{T i}$ $\mathbf{V}$ $\mathrm{Cr}$ $\mathbf{M n}$ $\mathrm{Fe}$ Co Ni $\mathrm{Cu}$ $\mathbf{Z n}$
Atomic number
Electronic configuration
21 22 23 24 25 26 27 28 29 30
$\mathrm{M}$ $3 d^1 4 s^2$ $3 d^2 4 s^2$ $3 d^3 4 s^2$ $3 d^5 4 s^1$ $3 d^5 4 s^2$ $3 d^8 4 s^2$ $3 d^7 4 s^2$ $3 d^8 4 s^2$ $3 d^{10} 4 s^1$ $3 d^{10} 4 s^2$
$\mathrm{M}^{+}$ $3 d^1 4 s^1$ $3 d^2 4 s^1$ $3 d^3 4 s^1$ $3 d^5$ $3 d^5 4 s^1$ $3 d^6 4 s^1$ $3 d^7 4 s^1$ $3 d^8 4 s^1$ $3 d^{10}$ $3 d^{10} 4 s^1$
$\mathrm{M}^{2+}$ $3 d^1$ $3 d^2$ $3 d^3$ $3 d^4$ $3 d^5$ $3 d^6$ $3 d^7$ $3 d^8$ $3 d^2$ $3 d^{10}$
$\mathrm{M}^{3+}$ $[A r]$ $3 d^1$ $3 d^2$ $3 d^3$ $3 d^4$ $3 d^5$ $3 d^6$ $3 d^7$ - -
Enthalpy of ato isation, $\Delta_a H^{\circ} / \mathbf{k} \mathbf{J}$ $\mathrm{mol}^{-1}$
326 473 515 397 281 416 425 430 339 126
Ionisation enth $\mathrm{py} / \Delta_i H^{\circ} / \mathbf{1}$ $\mathbf{k} \mathbf{J} \mathrm{mol}^{-1}$
$\Delta_2 H^{\circ}$ I 631 656 650 653 717 762 758 736 745 906
$\Delta_1 H^{\circ}$ II 1235 1309 1414 1592 1509 1561 1644 1752 1958 1734
$\Delta_i H^{\circ}$ III 2393 2657 2833 2990 3260 2962 3243 3402 3556 3837
Metallic/ionic $\mathrm{M}$ 164 147 135 129 137 126 125 125 128 137
radii/pm $\mathrm{M}^{2+}$ - - 79 82 82 77 74 70 73 75
$\mathrm{M}^{3+}$ 73 67 64 62 65 65 61 60 - -
Standard
electrode $\mathrm{M}^{2+} / \mathrm{M}$ - -1.63 -1.18 -0.90 -1.18 -0.44 -0.28 -0.25 +0.34 -0.76
potential $E^{\circ} / \mathrm{V}$ $\mathrm{M}^{3+} / \mathrm{M}^{2+}$ - -0.37 -0.26 -0.41 +1.57 +0.77 +1.97 - - -
Density/g $\mathrm{cm}^{-3}$ 3.43 4.1 6.07 7.19 7.21 7.8 8.7 8.9 8.9 7.1

Example 8.2 Why do the transition elements exhibit higher enthalpies of atomisation?

Solution Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction and hence stronger bonding between atoms resulting in higher enthalpies of atomisation.

Intext Question

8.2 In the series $\mathrm{Sc}(Z=21)$ to $\mathrm{Zn}(Z=30)$, the enthalpy of atomization of zinc is the lowest, i.e., $126 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Why?

Show Answer

Answer

The extent of metallic bonding an element undergoes decides the enthalpy of atomization. The more extensive the metallic bonding of an element, the more will be its enthalpy of atomization. In all transition metals (except Zn, electronic configuration: $3 d^{10} 4 s^{2}$ ), there are some unpaired electrons that account for their stronger metallic bonding. Due to the absence of these unpaired electrons, the inter-atomic electronic bonding is the weakest in $\mathrm{Zn}$ and as a result, it has the least enthalpy of atomization.

8.3.3 Ionisation Enthalpies

There is an increase in ionisation enthalpy along each series of the transition elements from left to right due to an increase in nuclear charge which accompanies the filling of the inner d orbitals. Table 8.2 gives the values of the first three ionisation enthalpies of the first series of transition elements. These values show that the successive enthalpies of these elements do not increase as steeply as in the case of non-transition elements. The variation in ionisation enthalpy along a series of transition elements is much less in comparison to the variation along a period of non-transition elements. The first ionisation enthalpy, in general, increases, but the magnitude of the increase in the second and third ionisation enthalpies for the successive elements, is much higher along a series.

The irregular trend in the first ionisation enthalpy of the metals of $3 d$ series, though of little chemical significance, can be accounted for by considering that the removal of one electron alters the relative energies of $4 s$ and $3 d$ orbitals. You have learnt that when $d$-block elements form ions, $n s$ electrons are lost before $(n-1) d$ electrons. As we move along the period in $3 d$ series, we see that nuclear charge increases from scandium to zinc but electrons are added to the orbital of inner subshell, i.e., $3 d$ orbitals. These $3 d$ electrons shield the $4 s$ electrons from the increasing nuclear charge somewhat more effectively than the outer shell electrons can shield one another. Therefore, the atomic radii decrease less rapidly. Thus, ionization energies increase only slightly along the $3 d$ series. The doubly or more highly charged ions have $d^{\mathrm{n}}$ configurations with no $4 s$ electrons. A general trend of increasing values of second ionisation enthalpy is expected as the effective nuclear charge increases because one $d$ electron does not shield another electron from the influence of nuclear charge because $d$-orbitals differ in direction. However, the trend of steady increase in second and third ionisation enthalpy breaks for the formation of $\mathrm{Mn}^{2+}$ and $\mathrm{Fe}^{3+}$ respectively. In both the cases, ions have $d^{5}$ configuration. Similar breaks occur at corresponding elements in the later transition series.

The interpretation of variation in ionisation enthalpy for an electronic configuration $d^{n}$ is as follows:

The three terms responsible for the value of ionisation enthalpy are attraction of each electron towards nucleus, repulsion between the electrons and the exchange energy. Exchange energy is responsible for the stabilisation of energy state. Exchange energy is approximately proportional to the total number of possible pairs of parallel spins in the degenerate orbitals. When several electrons occupy a set of degenerate orbitals, the lowest energy state corresponds to the maximum possible extent of single occupation of orbital and parallel spins (Hunds rule). The loss of exchange energy increases the stability. As the stability increases, the ionisation becomes more difficult. There is no loss of exchange energy at $d^{6}$ configuration. $\mathrm{Mn}^{+}$has $3 d^{5} 4 s^{1}$ configuration and configuration of $\mathrm{Cr}^{+}$is $d^{5}$, therefore, ionisation enthalpy of $\mathrm{Mn}^{+}$is lower than $\mathrm{Cr}^{+}$. In the same way, $\mathrm{Fe}^{2+}$ has $d^{6}$ configuration and $\mathrm{Mn}^{2+}$ has $3 d^{5}$ configuration. Hence, ionisation enthalpy of $\mathrm{Fe}^{2+}$ is lower than the $\mathrm{Mn}^{2+}$. In other words, we can say that the third ionisation enthalpy of $\mathrm{Fe}$ is lower than that of Mn.

The lowest common oxidation state of these metals is +2 . To form the $\mathrm{M}^{2+}$ ions from the gaseous atoms, the sum of the first and second ionisation enthalpy is required in addition to the enthalpy of atomisation. The dominant term is the second ionisation enthalpy which shows unusually high values for $\mathrm{Cr}$ and $\mathrm{Cu}$ where $\mathrm{M}^{+}$ions have the $d^{5}$ and $d^{10}$ configurations respectively. The value for $\mathrm{Zn}$ is correspondingly low as the ionisation causes the removal of one $4 s$ electron which results in the formation of stable $d^{10}$ configuration. The trend in the third ionisation enthalpies is not complicated by the $4 s$ orbital factor and shows the greater difficulty of removing an electron from the $d^{5}\left(\mathrm{Mn}^{2+}\right)$ and $d^{10}\left(\mathrm{Zn}^{2+}\right)$ ions. In general, the third ionisation enthalpies are quite high. Also the high values for third ionisation enthalpies of copper, nickel and zinc indicate why it is difficult to obtain oxidation state greater than two for these elements.

Although ionisation enthalpies give some guidance concerning the relative stabilities of oxidation states, this problem is very complex and not amenable to ready generalisation.

8.3.4 Oxidation States

One of the notable features of a transition elements is the great variety of oxidation states these may show in their compounds. Table 8.3 lists the common oxidation states of the first row transition elements.

Table 8.3: Oxidation States of the first row Transition Metal (the most common ones are in bold types)

Sc Ti V Cr Mn Fe Co Ni Cu Zn
+3 +2 +2 +2 +2 +2 +2 +2 +1 $\mathbf{+ 2}$
+3 +3 +3 +3 $\mathbf{+ 3}$ $\mathbf{+ 3}$ +3 +2
+4 +4 +4 +4 +4 +4 +4
+5 +5 +5
+6 +6 +6
+7

The elements which give the greatest number of oxidation states occur in or near the middle of the series. Manganese, for example, exhibits all the oxidation states from +2 to +7 . The lesser number of oxidation states at the extreme ends stems from either too few electrons to lose or share ( $\mathrm{Sc}, \mathrm{Ti}$ ) or too many $d$ electrons (hence fewer orbitals available in which to share electrons with others) for higher valence $(\mathrm{Cu}, \mathrm{Zn})$. Thus, early in the series scandium(II) is virtually unknown and titanium (IV) is more stable than Ti(III) or Ti(II). At the other end, the only oxidation state of zinc is +2 (no $d$ electrons are involved). The maximum oxidation states of reasonable stability correspond in value to the sum of the $s$ and $d$ electrons upto manganese $\left(\mathrm{Ti}^{\mathrm{VV}} \mathrm{O_2}, \mathrm{~V}^{\mathrm{V}} \mathrm{O_2} ^{+}\right).$, $\mathrm{Cr}^{\mathrm{Vl}} \mathrm{O_4} ^{2-}, \mathrm{Mn}^{\mathrm{VII}} \mathrm{O_4}^-$ followed by a rather abrupt decrease in stability of higher oxidation states, so that the typical species to follow are $\mathrm{Fe}^{\mathrm{IIIIII}}$, $\mathrm{Co}^{\mathrm{II}, \mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}, \mathrm{Cu}^{\mathrm{I}, \mathrm{II}}, \mathrm{Zn}^{\mathrm{II}}$.

The variability of oxidation states, a characteristic of transition elements, arises out of incomplete filling of $d$ orbitals in such a way that their oxidation states differ from each other by unity, e.g., $V^{\mathrm{II}}, V^{\mathrm{II}}$, $\mathrm{V}^{\mathrm{V}}, \mathrm{V}$. This is in contrast with the variability of oxidation states of non transition elements where oxidation states normally differ by a unit of two.

An interesting feature in the variability of oxidation states of the $d-$ block elements is noticed among the groups (groups 4 through 10). Although in the $p$-block the lower oxidation states are favoured by the heavier members (due to inert pair effect), the opposite is true in the groups of $d$-block. For example, in group 6, Mo(VI) and W(VI) are found to be more stable than $\mathrm{Cr}(\mathrm{VI})$. Thus $\mathrm{Cr}(\mathrm{VI})$ in the form of dichromate in acidic medium is a strong oxidising agent, whereas $\mathrm{MoO_3}$ and $\mathrm{WO_3}$ are not.

Low oxidation states are found when a complex compound has ligands capable of $\pi$-acceptor character in addition to the $\sigma$-bonding. For example, in $\mathrm{Ni}\mathrm{CO_4}$ and $\mathrm{Fe}\mathrm{CO_5}$, the oxidation state of nickel and iron is zero.

Example 8.3 Name a transition element which does not exhibit variable oxidation states.

Solution Scandium $(Z=21)$ does not exhibit variable oxidation states.

Intext Question

8.3 Which of the $3 d$ series of the transition metals exhibits the largest number of oxidation states and why?

Show Answer

Answer

$\mathrm{Mn}(\mathrm{Z}=25)=3 d^{5} 4 \mathrm{~s}^{2}$

Mn has the maximum number of unpaired electrons present in the $d$-subshell (5 electrons). Hence, Mn exhibits the largest number of oxidation states, ranging from +2 to +7 .

Table 8.4 contains the thermochemical parameters related to the transformation of the solid metal atoms to $\mathrm{M}^{2+}$ ions in solution and their standard electrode potentials. The observed values of $E^{\ominus}$ and those calculated using the data of Table 8.4 are compared in Fig. 8.4.

Fig. 8.4: Observed and calculated values for the standard electrode potentials

The unique behaviour of $\mathrm{Cu}$, having a positive $E^{\ominus}$, accounts for its inability to liberate $\mathrm{H_2}$ from acids. Only oxidising acids (nitric and hot concentrated sulphuric) react with $\mathrm{Cu}$, the acids being reduced. The high energy to transform $\mathrm{Cu}(\mathrm{s})$ to $\mathrm{Cu}^{2+}(\mathrm{aq})$ is not balanced by its hydration enthalpy. The general trend towards less negative $E^{\ominus}$ values across the series is related to the general increase in the sum of the first and second ionisation enthalpies. It is interesting to note that the value of $E^{\ominus}$ for Mn, $\mathrm{Ni}$ and $\mathrm{Zn}$ are more negative than expected from the trend.

Fig. 8.4: Observed and calculated values for the standard electrode potentials $\left(M^{2+} \rightarrow M^{\circ}\right)$ of the elements Ti to $\mathrm{Zn}$

Element (M) $\Delta_{\mathbf{a}} \boldsymbol{H}^{\circ}(\mathbf{M})$ $\Delta_{\imath} \mathbf{H}_1^{\circ}$ $\Delta_1 \mathbf{H}_2^{\circ}$ $\Delta_{\text {hyd }} \mathbf{H}^0\left(\mathbf{M}^{2+}\right)$ $\mathbf{E}^{\circ} / \mathbf{v}$
$\mathrm{Ti}$ 469 656 1309 -1866 -1.63
$\mathrm{V}$ 515 650 1414 -1895 -1.18
$\mathrm{Cr}$ 398 653 1592 -1925 -0.90
$\mathrm{Mn}$ 279 717 1509 -1862 -1.18
$\mathrm{Fe}$ 418 762 1561 -1998 -0.44
Co 427 758 1644 -2079 -0.28
$\mathrm{Ni}$ 431 736 1752 -2121 -0.25
$\mathrm{Cu}$ 339 745 1958 -2121 0.34
$\mathrm{Zn}$ 130 906 1734 -2059 -0.76

Example 8.4 Why is $\mathrm{Cr}^{2+}$ reducing and $\mathrm{Mn}^{3+}$ oxidising when both have $d^{4}$ configuration?

Solution $\mathrm{Cr}^{2+}$ is reducing as its configuration changes from $d^{4}$ to $d^{3}$, the latter having a half-filled $t_{2 g}$ level (see Unit 9) . On the other hand, the change from $\mathrm{Mn}^{3+}$ to $\mathrm{Mn}^{2+}$ results in the half-filled $\left(d^{5}\right)$ configuration which has extra stability.

The stability of the half-filled $d$ sub-shell in $\mathrm{Mn}^{2+}$ and the completely filled $d^{10}$ configuration in $\mathrm{Zn}^{2+}$ are related to their $E^{\ominus}$ values, whereas $E^{\ominus}$ for Ni is related to the highest negative $\Delta_{\text {hyd }} H^{\ominus}$.

An examination of the $E^{\ominus}\left(\mathrm{M}^{3+} / \mathrm{M}^{2+}\right)$ values (Table 8.2) shows the varying trends. The low value for $\mathrm{Sc}$ reflects the stability of $\mathrm{Sc}^{3+}$ which has a noble gas configuration. The highest value for $\mathrm{Zn}$ is due to the removal of an electron from the stable $d^{10}$ configuration of $\mathrm{Zn}^{2+}$. The comparatively high value for $\mathrm{Mn}$ shows that $\mathrm{Mn}^{2+}\left(d^{5}\right)$ is particularly stable, whereas comparatively low value for $\mathrm{Fe}$ shows the extra stability of $\mathrm{Fe}^{3+}\left(d^{5}\right)$. The comparatively low value for $\mathrm{V}$ is related to the stability of $\mathrm{V}^{2+}$ (half-filled $t_{2 \mathrm{~g}}$ level, Unit 9).

Table 8.5 shows the stable halides of the $3 d$ series of transition metals. The highest oxidation numbers are achieved in $\mathrm{TiX_4}$ (tetrahalides), $\mathrm{VF_5}$ and $\mathrm{CrF_6}$. The +7 state for $\mathrm{Mn}$ is not represented in simple halides but $\mathrm{MnO_3} \mathrm{~F}$ is known, and beyond $\mathrm{Mn}$ no metal has a trihalide except $\mathrm{FeX_3}$ and $\mathrm{CoF_3}$. The ability of fluorine to stabilise the highest oxidation state is due to either higher lattice energy as in the case of $\mathrm{CoF_3}$, or higher bond enthalpy terms for the higher covalent compounds, e.g., $\mathrm{VF_5}$ and $\mathrm{CrF_6}$.

Although $\mathrm{V}^{+5}$ is represented only by $\mathrm{VF_5}$, the other halides, however, undergo hydrolysis to give oxohalides, $\mathrm{VOX_3}$. Another feature of fluorides is their instability in the low oxidation states e.g., $\mathrm{VX_2}(\mathrm{X}=\mathrm{CI}, \mathrm{Br}$ or $\mathrm{I})$

Table 8.5: Formulas of Halides of 3d Metals

and the same applies to $\mathrm{CuX}$. On the other hand, all $\mathrm{Cu}^{\mathrm{II}}$ halides are known except the iodide. In this case, $\mathrm{Cu}^{2+}$ oxidises $\mathrm{I}^{-}$to $\mathrm{I_2}$ :

$$ 2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \rightarrow \mathrm{Cu_2} \mathrm{I_2}(\mathrm{~s})+\mathrm{I_2} $$

However, many copper (I) compounds are unstable in aqueous solution and undergo disproportionation.

$$ 2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Cu} $$

The stability of $\mathrm{Cu}^{2+}$ (aq) rather than $\mathrm{Cu}^{+}(\mathrm{aq})$ is due to the much more negative $\Delta_{\text {hyd }} \mathrm{H}^{\ominus}$ of $\mathrm{Cu}^{2+}$ (aq) than $\mathrm{Cu}^{+}$, which more than compensates for the second ionisation enthalpy of $\mathrm{Cu}$.

The ability of oxygen to stabilise the highest oxidation state is demonstrated in the oxides. The highest oxidation number in the oxides (Table 8.6) coincides with the group number and is attained in $\mathrm{Sc_2} \mathrm{O_3}$ to $\mathrm{Mn_2} \mathrm{O_7}$. Beyond Group 7, no higher oxides of $\mathrm{Fe}$ above $\mathrm{Fe_2} \mathrm{O_3}$, are known, although ferrates (VI) $\left(\mathrm{FeO_4}\right)^{2-}$, are formed in alkaline media but they readily decompose to $\mathrm{Fe_2} \mathrm{O_3}$ and $\mathrm{O_2}$. Besides the oxides, oxocations stabilise $\mathrm{V}^{\mathrm{v}}$ as $\mathrm{VO_2}^{+}, \mathrm{V}^{\mathrm{IV}}$ as $\mathrm{VO}^{2+}$ and $\mathrm{Ti}^{\mathrm{IV}}$ as $\mathrm{TiO}^{2+}$. The ability of oxygen to stabilise these high oxidation states exceeds that of fluorine. Thus the highest Mn fluoride is $\mathrm{MnF_4}$ whereas the highest oxide is $\mathrm{Mn_2} \mathrm{O_7}$. The ability of oxygen to form multiple bonds to metals explains its superiority. In the covalent oxide $\mathrm{Mn_2} \mathrm{O_7}$, each $\mathrm{Mn}$ is tetrahedrally surrounded by O’s including a Mn-O-Mn bridge. The tetrahedral $\left[\mathrm{MO_4}\right]^{\mathrm{n}-}$ ions are known for $\mathrm{V}^{\mathrm{V}}, \mathrm{Cr}^{\mathrm{V}}, \mathrm{Mn}^{\mathrm{v}}, \mathrm{Mn}^{\mathrm{V}}$ and $\mathrm{Mn}^{\mathrm{VII}}$.

Table 8.5: Formulas of Halides of 3d Metals

Oxidation
Number
Groups
3 4 5 6 7 8 9 10 11 12
+7 $\mathrm{Mn} _{2} \mathrm{O} _{7}$
+6 $\mathrm{CrO} _{3}$
+5 $\mathrm{~V} _{2} \mathrm{O} _{5}$
+4 $\mathrm{TiO} _{2}$ $\mathrm{~V} _{2} \mathrm{O} _{4}$ $\mathrm{CrO} _{2}$ $\mathrm{MnO} _{2}$
+3 $\mathrm{Sc} _{2} \mathrm{O} _{3}$ $\mathrm{Ti} _{2} \mathrm{O} _{3}$ $\mathrm{~V} _{2} \mathrm{O} _{3}$ $\mathrm{Cr} _{2} \mathrm{O} _{3}$ $\mathrm{Mn} _{2} \mathrm{O} _{3}$ $\mathrm{Fe} _{2} \mathrm{O} _{3}$
$\mathrm{Mn} _{3} \mathrm{O} _{4}{ }^{\ast}$ $\mathrm{Fe} _{3} \mathrm{O} _{4}{ }^{\ast}$ $\mathrm{Co} _{3} \mathrm{O} _{4}{ }^{\ast}$
+2 $\mathrm{TiO}$ VO $(\mathrm{CrO})$ $\mathrm{MnO}$ $\mathrm{FeO}$ $\mathrm{CoO}$ $\mathrm{NiO}$ $\mathrm{CuO}$ $\mathrm{ZnO}$
+1 $\mathrm{Cu} _{2} \mathrm{O}$

Example 8.5 How would you account for the increasing oxidising power in the series $\mathrm{VO_2}^{+}<\mathrm{Cr_2} \mathrm{O_7}^{2-}<\mathrm{MnO_4}{ }^{-}$?

Solution This is due to the increasing stability of the lower species to which they are reduced.

Intext Question

8.5 How would you account for the irregular variation of ionisation enthalpies (first and second) in the first series of the transition elements?

Show Answer

Answer

Ionization enthalpies are found to increase in the given series due to a continuous filling of the inner $d$-orbitals. The irregular variations of ionization enthalpies can be attributed to the extra stability of configurations such as $d^{0}, d^{5}, d^{10}$. Since these states are exceptionally stable, their ionization enthalpies are very high.

In case of first ionization energy, $\mathrm{Cr}$ has low ionization energy. This is because after losing one electron, it attains the stable configuration $\left(3 d^{5}\right)$. On the other hand, $\mathrm{Zn}$ has exceptionally high first ionization energy as an electron has to be removed from stable and fully-filled orbitals $\left(3 d^{10} 4 s^{2}\right)$.

Second ionization energies are higher than the first since it becomes difficult to remove an electron when an electron has already been taken out. Also, elements like $\mathrm{Cr}$ and $\mathrm{Cu}$ have exceptionally high second ionization energies as after losing the first electron, they have attained the stable configuration $\left(\mathrm{Cr}^{+}: 3 d^{5}\right.$ and $\mathrm{Cu}^{+}: 3 d^{10}$ ). Hence, taking out one electron more from this stable configuration will require a lot of energy.

8.3.8 Chemical Reactivity and $\mathbf{E}^{\ominus}$ Values

Transition metals vary widely in their chemical reactivity. Many of them are sufficiently electropositive to dissolve in mineral acids, although a few are ‘noble’—that is, they are unaffected by single acids.

The metals of the first series with the exception of copper are relatively more reactive and are oxidised by $1 \mathrm{M} \mathrm{H}^{+}$, though the actual rate at which these metals react with oxidising agents like hydrogen ion $\left(\mathrm{H}^{+}\right)$is sometimes slow. For example, titanium and vanadium, in practice, are passive to dilute non oxidising acids at room temperature. The $E^{\ominus}$ values for $\mathrm{M}^{2+} / \mathrm{M}$ (Table 8.2) indicate a decreasing tendency to form divalent cations across the series. This general trend towards less negative $E^{\ominus}$ values is related to the increase in the sum of the first and second ionisation enthalpies. It is interesting to note that the $E^{\ominus}$ values for Mn, $\mathrm{Ni}$ and $\mathrm{Zn}$ are more negative than expected from the general trend. Whereas the stabilities of half-filled $d$ subshell $\left(d^{5}\right)$ in $\mathrm{Mn}^{2+}$ and completely filled $d$ subshell $\left(d^{10}\right)$ in zinc are related to their $E^{\mathrm{e}}$ values; for nickel, $E^{\oplus}$ value is related to the highest negative enthalpy of hydration.

An examination of the $E^{\ominus}$ values for the redox couple $\mathrm{M}^{3+} / \mathrm{M}^{2+}$ (Table 8.2) shows that $\mathrm{Mn}^{3+}$ and $\mathrm{Co}^{3+}$ ions are the strongest oxidising agents in aqueous solutions. The ions $\mathrm{Ti}^{2+}, \mathrm{V}^{2+}$ and $\mathrm{Cr}^{2+}$ are strong reducing agents and will liberate hydrogen from a dilute acid, e.g.,

$$ 2 \mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{H_2}(\mathrm{~g}) $$

Example 8.6 For the first row transition metals the $E^{\circ}$ values are:

$\boldsymbol{E}^{\oplus}$ $\mathrm{V}$ $\mathrm{Cr}$ $\mathrm{Mn}$ $\mathrm{Fe}$ $\mathrm{Co}$ $\mathrm{Ni}$ $\mathrm{Cu}$
$\left(\mathrm{M}^{2+} / \mathrm{M}\right)$ -1.18 -0.91 -1.18 -0.44 -0.28 -0.25 +0.34

Explain the irregularity in the above values.

Solution The $E^{\ominus}\left(\mathrm{M}^{2+} / \mathrm{M}\right)$ values are not regular which can be explained from the irregular variation of ionisation enthalpies $\left(\Delta_{\mathrm{i}} H_{1}+\Delta_{\mathrm{i}} H_{2}\right)$ and also the sublimation enthalpies which are relatively much less for manganese and vanadium.

Example 8.7 Why is the $E^{\ominus}$ value for the $\mathrm{Mn}^{3+} / \mathrm{Mn}^{2+}$ couple much more positive than that for $\mathrm{Cr}^{3+} / \mathrm{Cr}^{2+}$ or $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ ? Explain.

Solution

Much larger third ionisation energy of Mn (where the required change is $d^{5}$ to $d^{4}$ ) is mainly responsible for this. This also explains why the +3 state of Mn is of little importance.

Intext Questions

8.6 Why is the highest oxidation state of a metal exhibited in its oxide or fluoride only?

Show Answer

Answer

Both oxide and fluoride ions are highly electronegative and have a very small size. Due to these properties, they are able to oxidize the metal to its highest oxidation state.

8.7 Which is a stronger reducing agent $\mathrm{Cr}^{2+}$ or $\mathrm{Fe}^{2+}$ and why?

Show Answer

Answer

Stronger reducing agent out of $\mathrm{Cr}^{2+}$ and $\mathrm{Fe}^{2+}$ Hence, $\mathrm{Cr}^{2+}$ can easily oxidize to $\mathrm{Cr}^{3+}$, but $\mathrm{Fe}^{2+}$ does not get oxidized to $\mathrm{Fe}^{3+}$ easily.

Therefore, $\mathrm{Cr}^{2+}$ is a better reducing agent that $\mathrm{Fe}^{3+}$.

8.3.9 Magnetic Properties

When a magnetic field is applied to substances, mainly two types of magnetic behaviour are observed: diamagnetism and paramagnetism (Unit 1). Diamagnetic substances are repelled by the applied field while the paramagnetic substances are attracted. Substances which are attracted very strongly are said to be ferromagnetic. In fact, ferromagnetism is an extreme form of paramagnetism. Many of the transition metal ions are paramagnetic.

Paramagnetism arises from the presence of unpaired electrons, each such electron having a magnetic moment associated with its spin angular momentum and orbital angular momentum. For the compounds of the first series of transition metals, the contribution of the orbital angular momentum is effectively quenched and hence is of no significance. For these, the magnetic moment is determined by the number of unpaired electrons and is calculated by using the ‘spin-only’ formula, i.e.,

$$ \mu=\sqrt{\mathrm{n}(\mathrm{n}+2)} $$

where $\mathrm{n}$ is the number of unpaired electrons and $\mu$ is the magnetic moment in units of Bohr magneton (BM). A single unpaired electron has a magnetic moment of 1.73 Bohr magnetons (BM).

The magnetic moment increases with the increasing number of unpaired electrons. Thus, the observed magnetic moment gives a useful indication about the number of unpaired electrons present in the atom, molecule or ion. The magnetic moments calculated from the ‘spin-only’ formula and those derived experimentally for some ions of the first row transition elements are given in Table 8.7. The experimental data are mainly for hydrated ions in solution or in the solid state.

Table 8.7: Calculated and Observed Magnetic Moments (BM)

Ion Configuration Unpaired
electron(s)
Magnetic moment
Calculated Observed
$\mathrm{Sc}^{3+}$ $3 d^0$ 0 0 0
$\mathrm{Ti}^{3+}$ $3 d^1$ 1 1.73 1.75
$\mathrm{Tn}^{2+}$ $3 d^2$ 2 2.84 2.76
$\mathrm{~V}^{2+}$ $3 d^3$ 3 3.87 3.86
$\mathrm{Cr}^{2+}$ $3 d^4$ 4 4.90 4.80
$\mathrm{Mn}^{2+}$ $3 d^5$ 5 5.92 5.96
$\mathrm{Fe}^{2+}$ $3 d^6$ 4 4.90 $5.3-5.5$
$\mathrm{Co}^{2+}$ $3 d^7$ 3 3.87 $4.4-5.2$
$\mathrm{Ni}^{2+}$ $3 d^8$ 2 2.84 $2.9-3,4$
$\mathrm{Cu}^{2+}$ $3 d^9$ 1 1.73 $1.8-2.2$
$\mathrm{Zn}^{2+}$ $3 d^10$ 0 0

Example 8.8 Calculate the magnetic moment of a divalent ion in aqueous solution if its atomic number is 25.

Solution With atomic number 25 , the divalent ion in aqueous solution will have $d^5$ configuration (five unpaired electrons). The magnetic moment, $\mu$ is $ \mu=\sqrt{5(5+2)}=5.92 \mathrm{BM} $

Intext Question

8.8 Calculate the ‘spin only’ magnetic moment of $\mathrm{M}^{2+}{ _(a q)}$ ion $(Z=27)$.

Show Answer

Answer

Number of unpaired electrons

Given:

Atomic number $(Z)=27$

The valence electronic configuration of cobalt ( $\mathrm{Co}$ ) is $3 d^7, 4 s^2$.

$\mathrm{M}^{2+}(\mathrm{aq})$ ion means, it loses two electrons.

Hence, valence electronic configuration becomes $d^7$.

Now, Number of unpaired electrons $=3$

Spin only magnetic moment

We know that $\mu=\sqrt{n(n+2)}$

where $n=$ number of unpaired electrons

Putting $\mathrm{n}=3$

we get, $\mu=\sqrt{3(3+2)}=3.87 \mathrm{BM}$

8.3.10 Formation of Coloured Ions

When an electron from a lower energy d orbital is excited to a higher energy d orbital, the energy of excitation corresponds to the frequency of light absorbed (Unit 9). This frequency generally lies in the visible region. The colour observed corresponds to the complementary colour of the light absorbed. The frequency of the light absorbed is determined by the nature of the ligand. In aqueous solutions where water molecules are the ligands, the colours of the ions observed are listed in Table 8.8. A few coloured solutions of d–block elements are illustrated in Fig. 8.5.

Fig. 8.5: Colours of some of the first row transition metal ions in aqueous solutions. From left to right: $\mathrm{V}^{4+}, \mathrm{V}^{3+}, \mathrm{Mn}^{2+}$, $\mathrm{Fe}^{3+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}$ $\mathrm{Cu}^{2+}$.

Table 8.8: Colours of Some of the First Row (aquated) Transition Metal Ions

Configuration Example Colour
$3 \mathrm{~d}^0$ $\mathrm{Sc}^{3+}$ colourless
$3 \mathrm{~d}^0$ $\mathrm{Ti}^{4+}$ colourless
$3 \mathrm{~d}^1$ $\mathrm{Ti}^{3+}$ purple
$3 \mathrm{~d}^1$ $\mathrm{~V}^{3+}$ blue
$3 \mathrm{~d}^{2+}$ $\mathrm{V}^{3+}$ green
$3 \mathrm{~d}^3$ $\mathrm{~V}^{2+}$ violet
$3 \mathrm{~d}^3$ $\mathrm{Cr}^{3+}$ violet
$3 \mathrm{~d}^4$ $\mathrm{Mn}^{3+}$ violet
$3 \mathrm{~d}^4$ $\mathrm{Cr}^{2+}$ blue
$3 \mathrm{~d}^5$ $\mathrm{Mn}^{2+}$ pink
$3 \mathrm{~d}^5$ $\mathrm{Fe}^{3+}$ yellow
$3 \mathrm{~d}^6$ $\mathrm{Fe}^{2+}$ green
$3 \mathrm{~d}^6 3 \mathrm{~d}^7$ $\mathrm{Co}^{3+} \mathrm{Co}^{2+}$ bluepink
$3 \mathrm{~d}^8$ $\mathrm{Ni}^{2+}$ green
$3 \mathrm{~d}^9$ $\mathrm{Cu}^{2+}$ blue
$3 \mathrm{~d}^{10}$ $\mathrm{Zn}^{2^{2+}}$ colourless

8.3.11 Formation of Complex Compounds

Complex compounds are those in which the metal ions bind a number of anions or neutral molecules giving complex species with characteristic properties. A few examples are: $\left[\mathrm{Fe}\mathrm{CN}_6\right]^{3-},\left[\mathrm{Fe}\mathrm{CN}_6\right)^{4-}$, $\left[\mathrm{Cu}\left(\mathrm{NH_3}\right)_4\right]^{2+}$ and $\left[\mathrm{PtCl_4}\right]^{2-}$. (The chemistry of complex compounds is dealt with in detail in Unit 9). The transition metals form a large number of complex compounds. This is due to the comparatively smaller sizes of the metal ions, their high ionic charges and the availability of d orbitals for bond formation.

8.3.12 Catalytic Properties

The transition metals and their compounds are known for their catalytic activity. This activity is ascribed to their ability to adopt multiple oxidation states and to form complexes. Vanadium(V) oxide (in Contact Process), finely divided iron (in Haber’s Process), and nickel (in Catalytic Hydrogenation) are some of the examples. Catalysts at a solid surface involve the formation of bonds between reactant molecules and atoms of the surface of the catalyst (first row transition metals utilise 3d and 4s electrons for bonding). This has the effect of increasing the concentration of the reactants at the catalyst surface and also weakening of the bonds in the reacting molecules (the activation energy is lowering). Also because the transition metal ions can change their oxidation states, they become more effective as catalysts. For example, iron(III) catalyses the reaction between iodide and persulphate ions.

$$ 2 \mathrm{I}^{-}+\mathrm{S_2} \mathrm{O_8}{ }^{2-} \rightarrow \mathrm{I_2}+2 \mathrm{SO_4}{ }^{2-} $$

An explanation of this catalytic action can be given as:

$$ \begin{aligned} & 2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I_2} \\ & 2 \mathrm{Fe}^{2+}+\mathrm{S_2} \mathrm{O_8}{ }^{2-} \rightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{SO_4}{ }^{2-} \end{aligned} $$

8.3.13 Formation of Interstitial Compounds

Interstitial compounds are those which are formed when small atoms like $\mathrm{H}, \mathrm{C}$ or $\mathrm{N}$ are trapped inside the crystal lattices of metals. They are usually non stoichiometric and are neither typically ionic nor covalent, for example, TiC, $\mathrm{Mn_4} \mathrm{~N}, \mathrm{Fe_3} \mathrm{H}, \mathrm{VH_0.56}$ and $\mathrm{TiH_1.7}$, etc. The formulas quoted do not, of course, correspond to any normal oxidation state of the metal. Because of the nature of their composition, these compounds are referred to as interstitial compounds. The principal physical and chemical characteristics of these compounds are as follows:

(i) They have high melting points, higher than those of pure metals.

(ii) They are very hard, some borides approach diamond in hardness.

(iii) They retain metallic conductivity.

(iv) They are chemically inert.

8.3.14 Alloy Formation

An alloy is a blend of metals prepared by mixing the components. Alloys may be homogeneous solid solutions in which the atoms of one metal are distributed randomly among the atoms of the other. Such alloys are formed by atoms with metallic radii that are within about 15 percent of each other. Because of similar radii and other characteristics of transition metals, alloys are readily formed by these metals. The alloys so formed are hard and have often high melting points. The best known are ferrous alloys: chromium, vanadium, tungsten, molybdenum and manganese are used for the production of a variety of steels and stainless steel. Alloys of transition metals with non transition metals such as brass (copper-zinc) and bronze (copper-tin), are also of considerable industrial importance.

Example 8.9 What is meant by ‘disproportionation’ of an oxidation state? Give an example.

Solution When a particular oxidation state becomes less stable relative to other oxidation states, one lower, one higher, it is said to undergo disproportionation. For example, manganese (VI) becomes unstable relative to manganese(VII) and manganese (IV) in acidic solution.

$$ 3 \mathrm{Mn}^{\mathrm{VI}} \mathrm{O_4} ^{2-}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{\mathrm{VII}} \mathrm{O_4}^-+\mathrm{Mn}^{\mathrm{IV}} \mathrm{O_2}+2 \mathrm{H_2} \mathrm{O} $$

Intext Question

8.9 Explain why $\mathrm{Cu}^{+}$ ion is not stable in aqueous solutions?

Show Answer

Answer

In an aqueous medium, $\mathrm{Cu}^{2+}$ is more stable than $\mathrm{Cu}^{+}$. This is because although energy is required to remove one electron from $\mathrm{Cu}^{+}$to $\mathrm{Cu}^{2+}$, high hydration energy of $\mathrm{Cu2+}$ compensates for it. Therefore, $\mathrm{Cu}^{+}$ion in an aqueous solution is unstable. It disproportionates to give $\mathrm{Cu}^{2+}$ and $\mathrm{Cu}$.

$2 \mathrm{Cu _{(a q)}}^{+} \longrightarrow \mathrm{Cu}^{2+}{ _{(a q)}}+\mathrm{Cu _{(s)}}$

8.4 Some Important Compounds of Transition Elements

8.4.1 Oxides and Oxoanions of Metals

These oxides are generally formed by the reaction of metals with oxygen at high temperatures. All the metals except scandium form MO oxides which are ionic. The highest oxidation number in the oxides, coincides with the group number and is attained in $\mathrm{Sc_2} \mathrm{O_3}$ to $\mathrm{Mn_2} \mathrm{O_7}$. Beyond group 7, no higher oxides of iron above $\mathrm{Fe_2} \mathrm{O_3}$ are known. Besides the oxides, the oxocations stabilise $\mathrm{V}^{\mathrm{V}}$ as $\mathrm{VO_2}{ }^{+}, \mathrm{V}^{\mathrm{VV}}$ as $\mathrm{VO}^{2+}$ and $\mathrm{Ti}^{\mathrm{IV}}$ as $\mathrm{TiO}^{2+}$.

As the oxidation number of a metal increases, ionic character decreases. In the case of $\mathrm{Mn}, \mathrm{Mn_2} \mathrm{O_7}$ is a covalent green oil. Even $\mathrm{CrO_3}$ and $\mathrm{V_2} \mathrm{O_5}$ have low melting points. In these higher oxides, the acidic character is predominant.

Thus, $\mathrm{Mn_2} \mathrm{O_7}$ gives $\mathrm{HMnO_4}$ and $\mathrm{CrO_3}$ gives $\mathrm{H_2} \mathrm{CrO_4}$ and $\mathrm{H_2} \mathrm{Cr_2} \mathrm{O_7}$. $\mathrm{V_2} \mathrm{O_5}$ is, however, amphoteric though mainly acidic and it gives $\mathrm{VO_4}{ }^{3-}$ as well as $\mathrm{VO_2}{ }^{+}$ salts. In vanadium there is gradual change from the basic $\mathrm{V_2} \mathrm{O_3}$ to less basic $\mathrm{V_2} \mathrm{O_4}$ and to amphoteric $\mathrm{V_2} \mathrm{O_5}$. $\mathrm{V_2} \mathrm{O_4}$ dissolves in acids to give $\mathrm{VO}^{2+}$ salts. Similarly, $\mathrm{V_2} \mathrm{O_5}$ reacts with alkalies as well as acids to give $\mathrm{VO_4}^{3-}$ and $\mathrm{VO_4}^{+}$ respectively. The well characterised $\mathrm{CrO}$ is basic but $\mathrm{Cr_2} \mathrm{O_3}$ is amphoteric.

Potassium dichromate is a very important chemical used in leather industry and as an oxidant for preparation of many azo compounds. Dichromates are generally prepared from chromate, which in turn are obtained by the fusion of chromite ore $\left(\mathrm{FeCr_2} \mathrm{O_4}\right)$ with sodium or potassium carbonate in free access of air. The reaction with sodium carbonate occurs as follows:

$$ 4 \mathrm{FeCr_2} \mathrm{O_4}+8 \mathrm{Na_2} \mathrm{CO_3}+7 \mathrm{O_2} \rightarrow 8 \mathrm{Na_2} \mathrm{CrO_4}+2 \mathrm{Fe_2} \mathrm{O_3}+8 \mathrm{CO_2} $$

The yellow solution of sodium chromate is filtered and acidified with sulphuric acid to give a solution from which orange sodium dichromate, $\mathrm{Na_2} \mathrm{Cr_2} \mathrm{O_7} \cdot 2 \mathrm{H_2} \mathrm{O}$ can be crystallised.

$$ 2 \mathrm{Na_2} \mathrm{CrO_4}+2 \mathrm{H}^{+} \rightarrow \mathrm{Na_2} \mathrm{Cr_2} \mathrm{O_7}+2 \mathrm{Na}^{+}+\mathrm{H_2} \mathrm{O} $$

Sodium dichromate is more soluble than potassium dichromate. The latter is therefore, prepared by treating the solution of sodium dichromate with potassium chloride.

$$ \mathrm{Na_2} \mathrm{Cr_2} \mathrm{O_7}+2 \mathrm{KCl} \rightarrow \mathrm{K_2} \mathrm{Cr_2} \mathrm{O_7}+2 \mathrm{NaCl} $$

Orange crystals of potassium dichromate crystallise out. The chromates and dichromates are interconvertible in aqueous solution depending upon $\mathrm{pH}$ of the solution. The oxidation state of chromium in chromate and dichromate is the same.

$$ \begin{aligned} & 2 \mathrm{CrO_4}^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cr_2} \mathrm{O_7}^{2-}+\mathrm{H_2} \mathrm{O} \\ & \mathrm{Cr_2} \mathrm{O_7}^{2-}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{CrO_4}^{2-}+\mathrm{H_2} \mathrm{O} \end{aligned} $$

The structures of chromate ion, $\mathrm{CrO_4}{ }^{2-}$ and the dichromate ion, $\mathrm{Cr_2} \mathrm{O_7}{ }^{2-}$ are shown below. The chromate ion is tetrahedral whereas the dichromate ion consists of two tetrahedra sharing one corner with $\mathrm{Cr}-\mathrm{O}-\mathrm{Cr}$ bond angle of $126^{\circ}$.

Sodium and potassium dichromates are strong oxidising agents; the sodium salt has a greater solubility in water and is extensively used as an oxidising agent in organic chemistry. Potassium dichromate is used as a primary standard in volumetric analysis. In acidic solution, its oxidising action can be represented as follows:

$$ \mathrm{Cr_2} \mathrm{O_7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H_2} \mathrm{O}\left(E^{\ominus}=1.33 \mathrm{~V}\right) $$

Thus, acidified potassium dichromate will oxidise iodides to iodine, sulphides to sulphur, tin(II) to tin(IV) and iron(II) salts to iron(III). The half-reactions are noted below:

$$ \begin{aligned} & 6 \mathrm{I}^{-} \rightarrow 3 \mathrm{I} _{2}+6 \mathrm{e}^{-} \\ & 3 \mathrm{H} _{2} \mathrm{~S} _{2+} \rightarrow 6 \mathrm{H}^{+}+3 \mathrm{~S}+6 \mathrm{e}^{-} \\ & 3 \mathrm{Sn}^{-+} \rightarrow 3 \mathrm{Sn}^{4+}+6 \mathrm{e}^{-} \\ & 6 \mathrm{Fe}^{2+} \rightarrow 6 \mathrm{Fe}^{3+}+6 \mathrm{e}^{-} \end{aligned} $$

The full ionic equation may be obtained by adding the half-reaction for potassium dichromate to the half-reaction for the reducing agent, for e.g.,

$$ \mathrm{Cr_2} \mathrm{O_7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H_2} \mathrm{O} $$

Potassium permanganate $\small{\mathbf{K M n O_4}}$

Potassium permanganate is prepared by fusion of $\mathrm{MnO_2}$ with an alkali metal hydroxide and an oxidising agent like $\mathrm{KNO_3}$. This produces the dark green $\mathrm{K_2} \mathrm{MnO_4}$ which disproportionates in a neutral or acidic solution to give permanganate.

$$ \begin{aligned} & 2 \mathrm{MnO_2}+4 \mathrm{KOH}+\mathrm{O_2} \rightarrow 2 \mathrm{~K_2} \mathrm{MnO_4}+2 \mathrm{H_2} \mathrm{O} \\ & 3 \mathrm{MnO_4}{ }^{2-}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{MnO_4}{ }^{-}+\mathrm{MnO_2}+2 \mathrm{H_2} \mathrm{O} \end{aligned} $$

Commercially it is prepared by the alkaline oxidative fusion of $\mathrm{MnO_2}$ followed by the electrolytic oxidation of manganate (Vl).

In the laboratory, a manganese (II) ion salt is oxidised by peroxodisulphate to permanganate.

$$ 2 \mathrm{Mn}^{2+}+5 \mathrm{~S_2} \mathrm{O_8}^{2-}+8 \mathrm{H_2} \mathrm{O} \rightarrow 2 \mathrm{MnO_4}^{-}+10 \mathrm{SO_4}{ }^{2-}+16 \mathrm{H}^{+} $$

Potassium permanganate forms dark purple (almost black) crystals which are isostructural with those of $\mathrm{KClO_4}$. The salt is not very soluble in water $(6.4 \mathrm{~g} / 100 \mathrm{~g}$ of water at $293 \mathrm{~K})$, but when heated it decomposes at $513 \mathrm{~K}$.

$$ 2 \mathrm{KMnO_4} \rightarrow \mathrm{K_2} \mathrm{MnO_4}+\mathrm{MnO_2}+\mathrm{O_2} $$

It has two physical properties of considerable interest: its intense colour and its diamagnetism along with temperature-dependent weak paramagnetism. These can be explained by the use of molecular orbital theory which is beyond the present scope.

The manganate and permanganate ions are tetrahedral; the $\pi$ bonding takes place by overlap of $p$ orbitals of oxygen with $d$ orbitals of manganese. The green manganate is paramagnetic because of one unpaired electron but the permanganate is diamagnetic due to the absence of unpaired electron.

Acidified permanganate solution oxidises oxalates to carbon dioxide, iron(II) to iron(III), nitrites to nitrates and iodides to free iodine. The half-reactions of reductants are:

$$ \begin{aligned} & 5 \underset{\mathrm{COO}^{-}}{\mathrm{COO}^{-}} \rightarrow 10 \mathrm{CO}_2+10 \mathrm{e} \\ & 5 \mathrm{Fe}^{2+} \rightarrow 5 \mathrm{Fe}^{3+}+5 \mathrm{e}^{-} \\ & 5 \mathrm{NO}_2{ }^{-}+5 \mathrm{H}_2 \mathrm{O} \rightarrow 5 \mathrm{NO}_3^{-}+10 \mathrm{H}^{+}+10 \mathrm{e}^{-} \\ & 10 \mathrm{I}^{-} \rightarrow 5 \mathrm{I}_2+10 \mathrm{e}^{-} \\ & \end{aligned} $$

The full reaction can be written by adding the half-reaction for $\mathrm{KMnO_4}$ to the half-reaction of the reducing agent, balancing wherever necessary.

If we represent the reduction of permanganate to manganate, manganese dioxide and manganese(II) salt by half-reactions,

$$ \begin{array}{ll} \mathrm{MnO_4}^{-}+\mathrm{e}^{-} \rightarrow \mathrm{MnO_4}{ }^{2-} & \left(E^{\ominus}=+0.56 \mathrm{~V}\right) \\ \mathrm{MnO_4}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{MnO_2}+2 \mathrm{H_2} \mathrm{O} & \left(E^{\ominus}=+1.69 \mathrm{~V}\right) \\ \mathrm{MnO_4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H_2} \mathrm{O} & \left(E^{\ominus}=+1.52 \mathrm{~V}\right) \end{array} $$

We can very well see that the hydrogen ion concentration of the solution plays an important part in influencing the reaction. Although many reactions can be understood by consideration of redox potential, kinetics of the reaction is also an important factor. Permanganate at $\left[\mathrm{H}^{+}\right]=1$ should oxidise water but in practice the reaction is extremely slow unless either manganese(11) ions are present or the temperature is raised.

A few important oxidising reactions of $\mathrm{KMnO_4}$ are given below:

1. In acid solutions:

(a) Iodine is liberated from potassium iodide :

$$ 10 \mathrm{I}^{-}+2 \mathrm{MnO_4}^{-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H_2} \mathrm{O}+5 \mathrm{I_2} $$

(b) $\mathrm{Fe}^{2+}$ ion (green) is converted to $\mathrm{Fe}^{3+}$ (yellow):

$$ 5 \mathrm{Fe}^{2+}+\mathrm{MnO_4}^{-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H_2} \mathrm{O}+5 \mathrm{Fe}^{3+} $$

(c) Oxalate ion or oxalic acid is oxidised at $333 \mathrm{~K}$ :

$$ 5 \mathrm{C_2} \mathrm{O_4}{ }^{2-}+2 \mathrm{MnO_4}^{-}+16 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H_2} \mathrm{O}+10 \mathrm{CO_2} $$

(d) Hydrogen sulphide is oxidised, sulphur being precipitated:

$$ \begin{aligned} & \mathrm{H_2} \mathrm{~S} \longrightarrow 2 \mathrm{H}^{+}+\mathrm{S}^{2-} \\ & 5 \mathrm{~S}^{2-}+2 \mathrm{MnO_4}^{-}+16 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H_2} \mathrm{O}+5 \mathrm{~S} \end{aligned} $$

(e) Sulphurous acid or sulphite is oxidised to a sulphate or sulphuric acid:

$$ 5 \mathrm{SO_3}{ }^{2-}+2 \mathrm{MnO_4}{ }^{-}+6 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+3 \mathrm{H_2} \mathrm{O}+5 \mathrm{SO_4}{ }^{2-} $$

(f) Nitrite is oxidised to nitrate:

$$ 5 \mathrm{NO_2}^{-}+2 \mathrm{MnO_4}^{-}+6 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{NO_3}^{-}+3 \mathrm{H_2} \mathrm{O} $$

2. In neutral or faintly alkaline solutions:

(a) A notable reaction is the oxidation of iodide to iodate:

$$ 2 \mathrm{MnO_4}^{-}+\mathrm{H_2} \mathrm{O}+\mathrm{I}^{-} \longrightarrow 2 \mathrm{MnO_2}+2 \mathrm{OH}^{-}+\mathrm{IO_3}^{-} $$

(b) Thiosulphate is oxidised almost quantitatively to sulphate:

$$ 8 \mathrm{MnO_4}{ }^{-}+3 \mathrm{~S_2} \mathrm{O_3}{ }^{2-}+\mathrm{H_2} \mathrm{O} \longrightarrow 8 \mathrm{MnO_2}+6 \mathrm{SO_4}{ }^{2-}+2 \mathrm{OH} $$

(c) Manganous salt is oxidised to $\mathrm{MnO_2}$; the presence of zinc sulphate or zinc oxide catalyses the oxidation:

$$ 2 \mathrm{MnO_4}^{-}+3 \mathrm{Mn}^{2+}+2 \mathrm{H_2} \mathrm{O} \longrightarrow 5 \mathrm{MnO_2}+4 \mathrm{H}^{+} $$

Note: Permanganate titrations in presence of hydrochloric acid are unsatisfactory since hydrochloric acid is oxidised to chlorine.

Uses: Besides its use in analytical chemistry, potassium permanganate is used as a favourite oxidant in preparative organic chemistry. Its uses for the bleaching of wool, cotton, silk and other textile fibres and for the decolourisation of oils are also dependent on its strong oxidising power.

THE INNER TRANSITION ELEMENTS ( $f$-BLOCK)

The f-block consists of the two series, lanthanoids (the fourteen elements following lanthanum) and actinoids (the fourteen elements following actinium). Because lanthanum closely resembles the lanthanoids, it is usually included in any discussion of the lanthanoids for which the general symbol Ln is often used. Similarly, a discussion of the actinoids includes actinium besides the fourteen elements constituting the series. The lanthanoids resemble one another more closely than do the members of ordinary transition elements in any series. They have only one stable oxidation state and their chemistry provides an excellent opportunity to examine the effect of small changes in size and nuclear charge along a series of otherwise similar elements. The chemistry of the actinoids is, on the other hand, much more complicated. The complication arises partly owing to the occurrence of a wide range of oxidation states in these elements and partly because their radioactivity creates special problems in their study; the two series will be considered separately here.

8.5 The Lanthanoids

The names, symbols, electronic configurations of atomic and some ionic states and atomic and ionic radii of lanthanum and lanthanoids (for which the general symbol Ln is used) are given in Table 8.9.

8.5.1 Electronic Configurations

It may be noted that atoms of these elements have electronic configuration with $6 s^{2}$ common but with variable occupancy of $4 f$ level (Table 8.9). However, the electronic configurations of all the tripositive ions (the most stable oxidation state of all the lanthanoids) are of the form $4 f^{\mathrm{n}}$ ( $\mathrm{n}=1$ to 14 with increasing atomic number).

8.5.2 Atomic and Ionic Sizes

Fig. 8.6: Trends in ionic radii of lanthanoids

The overall decrease in atomic and ionic radii from lanthanum to lutetium (the lanthanoid contraction) is a unique feature in the chemistry of the lanthanoids. It has far reaching consequences in the chemistry of the third transition series of the elements. The decrease in atomic radii (derived from the structures of metals) is not quite regular as it is regular in $\mathrm{M}^{3+}$ ions (Fig. 8.6). This contraction is, of course, similar to that observed in an ordinary transition series and is attributed to the same cause, the imperfect shielding of one electron by another in the same sub-shell. However, the shielding of one $4 f$ electron by another is less than one $d$ electron by another with the increase in nuclear charge along the series. There is fairly regular decrease in the sizes with increasing atomic number.

The cumulative effect of the contraction of the lanthanoid series, known as lanthanoid contraction, causes the radii of the members of the third transition series to be very similar to those of the corresponding members of the second series. The almost identical radii of $\mathrm{Zr}$ $(160 \mathrm{pm})$ and $\mathrm{Hf}(159 \mathrm{pm})$, a consequence of the lanthanoid contraction, account for their occurrence together in nature and for the difficulty faced in their separation.

8.5.3 Oxidation States

In the lanthanoids, $\mathrm{La}(\mathrm{II})$ and $\mathrm{Ln}$ (III) compounds are predominant species. However, occasionally +2 and +4 ions in solution or in solid compounds are also obtained. This irregularity (as in ionisation enthalpies) arises mainly from the extra stability of empty, half-filled or filled $f$ subshell. Thus, the formation of $\mathrm{Ce}^{\mathrm{IV}}$ is favoured by its noble gas configuration, but it is a strong oxidant reverting to the common +3 state. The $E^{\circ}$ value for $\mathrm{Ce}^{4+} / \mathrm{Ce}^{3+}$ is $+1.74 \mathrm{~V}$ which suggests that it can oxidise water. However, the reaction rate is very slow and hence Ce(IV) is a good analytical reagent. Pr, Nd, Tb and Dy also exhibit +4 state but only in oxides, $\mathrm{MO_2} . \mathrm{Eu}^{2+}$ is formed by losing the two $s$ electrons and its $f^{7}$ configuration accounts for the formation of this ion. However, $\mathrm{Eu}^{2+}$ is a strong reducing agent changing to the common +3 state. Similarly $\mathrm{Yb}^{2+}$ which has $f^{14}$ configuration is a reductant. $\mathrm{Tb}^{\mathrm{IV}}$ has half-filled $f$-orbitals and is an oxidant. The behaviour of samarium is very much like europium, exhibiting both +2 and +3 oxidation states.

Table 8.9: Electronic Configurations and Radii of Lanthanum and Lanthanoids

Atomic
Number
Name Symbol Electronic configurations* Radii/pm
$\mathbf{Ln}$ $\mathbf{L n}^{2+}$ $\mathbf{L n}^{3+}$ $\mathbf{L n}^{4+}$ Ln $\mathbf{L n}^{3+}$
57 Lanthanum $\mathrm{La}$ $5 d^1 6 s^2$ $5 d^1$ $4 f^{\circ}$ 187 106
58 Cerium $\mathrm{Ce}$ $4 f^2 5 d^1 6 \mathrm{~s}^2$ $4 f^2$ $4 f^1$ $4 f^{\circ}$ 183 103
59 Praseodymium $\operatorname{Pr}$ $4 f^3 6 \mathrm{~s}^2$ $4 f^3$ $4 f^2$ $4 f^1$ 182 101
60 Neodymium $\mathrm{Nd}$ $4 f^4 6 \mathrm{~s}^2$ $4 f^4$ $4 f^3$ $4 f^2$ 181 99
61 Promethium $\operatorname{Pm}$ $4 f^5 6 \mathrm{~s}^2$ $4 f^5$ $4 f^4$ 181 98
62 Samarium Sm $4 f^6 6 \mathrm{~s}^2$ $4 f^6$ $4 f^5$ 180 96
63 Europium $\mathrm{Eu}$ $4 f^7 6 \mathrm{~s}^2$ $4 f^7$ $4 f^6$ 199 95
64 Gadolinium $\mathrm{Gd}$ $4 f^7 5 d^1 6 s^2$ $4 f^7 5 d^1$ $4 f^7$ 180 94
65 Terbium $\mathrm{Tb}$ $4 f^9 6 \mathrm{~s}^2$ $4 f^9$ $4 f^8$ $4 f^7$ 178 92
66 Dysprosium Dy $4 f^{10} 6 \mathrm{~s}^2$ $4 f^{10}$ $4 f^9$ $4 f^8$ 177 91
67 Holmium Ho $4 f^{11} 6 \mathrm{~s}^2$ $4 f^{11}$ $4 f^{10}$ 176 89
68 Erbium $\mathrm{Er}$ $4 f^{12} 6 \mathrm{~s}^2$ $4 f^{12}$ $4 f^{11}$ 175 88
69 Thulium $\mathrm{Tm}$ $4 f^{13} 6 \mathrm{~s}^2$ $4 f^{13}$ $4 f^{12}$ 174 87
70 Ytterbium $\mathrm{Yb}$ $4 f^{14} 6 \mathrm{~s}^2$ $4 f^{14}$ $4 f^{13}$ 173 86
71 Lutetium Lu $4 f^{14} 5 d^1 6 s^2$ $4 f^{14} 5 d^1$ $4 f^{14}$ - -
  • Only electrons outside $[\mathrm{Xe}]$ core are indicated

8.5.4 General Characteristics

All the lanthanoids are silvery white soft metals and tarnish rapidly in air. The hardness increases with increasing atomic number, samarium being steel hard. Their melting points range between 1000 to $1200 \mathrm{~K}$ but samarium melts at $1623 \mathrm{~K}$. They have typical metallic structure and are good conductors of heat and electricity. Density and other properties change smoothly except for $\mathrm{Eu}$ and $\mathrm{Yb}$ and occasionally for $\mathrm{Sm}$ and $\mathrm{Tm}$.

Many trivalent lanthanoid ions are coloured both in the solid state and in aqueous solutions. Colour of these ions may be attributed to the presence of $f$ electrons. Neither $\mathrm{La}^{3+}$ nor $\mathrm{Lu}^{3+}$ ion shows any colour but the rest do so. However, absorption bands are narrow, probably because of the excitation within $f$ level. The lanthanoid ions other than the $f^{0}$ type $\left(\mathrm{La}^{3+}\right.$ and $\left.\mathrm{Ce}^{4+}\right)$ and the $f^{14}$ type $\left(\mathrm{Yb}^{2+}\right.$ and $\left.\mathrm{Lu}^{3+}\right)$ are all paramagnetic.

The first ionisation enthalpies of the lanthanoids are around $600 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the second about $1200 \mathrm{~kJ} \mathrm{~mol}^{-1}$ comparable with those of calcium. A detailed discussion of the variation of the third ionisation enthalpies indicates that the exchange enthalpy considerations (as in $3 d$ orbitals of the first transition series), appear to impart a certain degree of stability to empty, half-filled and completely filled orbitals $f$ level. This is indicated from the abnormally low value of the third ionisation enthalpy of lanthanum, gadolinium and lutetium.

In their chemical behaviour, in general, the earlier members of the series are quite reactive similar to calcium but, with increasing atomic number, they behave more like aluminium. Values for $E^{\ominus}$ for the half-reaction:

$ \mathrm{Ln}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \operatorname{Ln}(\mathrm{s}) $ are in the range of –2.2 to –2.4 V except for Eu for which the value is - 2.0 V. This is, of course, a small variation. The metals combine with hydrogen when gently heated in the gas. The carbides, Ln3C, Ln2C3 and LnC2 are formed when the metals are heated with carbon. They liberate hydrogen from dilute acids and burn in halogens to form halides. They form oxides M2O3 and hydroxides M(OH)3. The hydroxides are definite compounds, not just hydrated oxides. They are basic like alkaline earth metal oxides and hydroxides. Their general reactions are depicted in Fig. 8.7.

Fig. 8.7: Chemical reactions of the lanthanoids.

The best single use of the lanthanoids is for the production of alloy steels for plates and pipes. A well known alloy is mischmetall which consists of a lanthanoid metal (~ 95%) and iron (~ 5%) and traces of S, C, Ca and Al. A good deal of mischmetall is used in Mg-based alloy to produce bullets, shell and lighter flint. Mixed oxides of lanthanoids are employed as catalysts in petroleum cracking. Some individual Ln oxides are used as phosphors in television screens and similar fluorescing surfaces.

8.6 The Actinoids

Table 8.10: Some Properties of Actinium and Actinoids

Atomic
Number
Name Symbol Electronic conifigurations* Radii/pm
${\mathbf{M}}$ $\mathbf{M}^{3+}$ ${\mathbf{M}^{3+}}$ ${\mathbf{M}^{3+}}$ ${\mathbf{M}^{4+}}$
89 Actinium $\mathrm{Ac}$ $6 d^1 7 s^2$ $5 f^{\circ}$ 111
90 Thorium Th $6 d^2 7 s^2$ $5 f^1$ $5 f^{\circ}$ 99
91 Protactinium $\mathrm{Pa}$ $5 f^2 6 d^1 7 s^2$ $5 f^2$ $5 f^1$ 96
92 Uranium $\mathrm{U}$ $5 f^3 6 d^1 7 s^2$ $5 f^3$ $5 f^2$ 103 93
93 Neptunium $\mathrm{Np}$ $5 f^4 6 d^1 7 s^2$ $5 f^4$ $5 f^3$ 101 92
94 Plutonium $\mathrm{Pu}$ $5 f^6 7 s^2$ $5 f^5$ $5 f^4$ 100 90
95 Americium Am $5 f^7 7 s^2$ $5 f^6$ $5 f^5$ 99 89
96 Curium $\mathrm{Cm}$ $5 f^7 6 d^1 7 s^2$ $5 f^7$ $5 f^6$ 99 88
97 Berkelium $\mathrm{Bk}$ $5 f^9 7 s^2$ $5 f^8$ $5 f^7$ 98 87
98 Californium Cf $5 f^{10} 7 s^2$ $5 f^9$ $5 f^8$ 98 86
99 Einstenium Es $5 f^{11} 7 \mathrm{~s}^2$ $5 f^{10}$ $5 f^9$ - -
100 Fermium $\mathrm{Fm}$ $5 f^{12} 7 s^2$ $5 f^{11}$ $5 f^{10}$ - -
101 Mendelevium Md $5 f^{13} 7 s^2$ $5 f^{12}$ $5 f^{11}$ - -
102 Nobelium No $5 f^{14} 7 s^2$ $5 f^{13}$ $5 f^{12}$ - -
103 Lawrencium $\mathrm{Lr}$ $5 f^{14} 6 d^1 7 s^2$ $5 f^{14}$ $5 f^{13}$ - -

The actinoids are radioactive elements and the earlier members have relatively long half-lives, the latter ones have half-life values ranging from a day to 3 minutes for lawrencium $(Z=103)$. The latter members could be prepared only in nanogram quantities. These facts render their study more difficult.

8.6.1 Electronic Configurations

All the actinoids are believed to have the electronic configuration of $7 \mathrm{~s}^{2}$ and variable occupancy of the $5 \mathrm{f}$ and $6 \mathrm{~d}$ subshells. The fourteen electrons are formally added to $5 f$, though not in thorium $(Z=90)$ but from $\mathrm{Pa}$ onwards the $5 f$ orbitals are complete at element 103. The irregularities in the electronic configurations of the actinoids, like those in the lanthanoids are related to the stabilities of the $f^{0}, f^{7}$ and $f^{14}$ occupancies of the $5 \mathrm{f}$ orbitals. Thus, the configurations of $\mathrm{Am}$ and $\mathrm{Cm}$ are $[\mathrm{Rn}] 5 f^{7} 7 s^{2}$ and $[\mathrm{Rn}] 5 f^{7} 6 d^{1} 7 s^{2}$. Although the $5 f$ orbitals resemble the $4 f$ orbitals in their angular part of the wave-function, they are not as buried as $4 f$ orbitals and hence $5 f$ electrons can participate in bonding to a far greater extent.

8.6.2 Ionic Sizes

The general trend in lanthanoids is observable in the actinoids as well. There is a gradual decrease in the size of atoms or $\mathrm{M}^{3+}$ ions across the series. This may be referred to as the actinoid contraction (like lanthanoid contraction). The contraction is, however, greater from element to element in this series resulting from poor shielding by $5 f$ electrons.

8.6.3 Oxidation States

There is a greater range of oxidation states, which is in part attributed to the fact that the $5 f, 6 d$ and $7 \mathrm{~s}$ levels are of comparable energies. The known oxidation states of actinoids are listed in Table 8.11.

The actinoids show in general +3 oxidation state. The elements, in the first half of the series frequently exhibit higher oxidation states. For example, the maximum oxidation state increases from +4 in $\mathrm{Th}$ to $+5,+6$ and +7 respectively in $\mathrm{Pa}, \mathrm{U}$ and $\mathrm{Np}$ but decreases in succeeding elements (Table 8.11). The actinoids resemble the lanthanoids in having more compounds in +3 state than in the +4 state. However, +3 and +4 ions tend to hydrolyse. Because the distribution of oxidation states among the actinoids is so uneven and so different for the former and later elements, it is unsatisfactory to review their chemistry in terms of oxidation states.

Table 8.11: Oxidation States of Actinium and Actinoids

Ac Th Pa U Np Pu Am Cm Bk Cf Ds Fm Md No Lr
3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5
6 6 6 6
7 7
7

8.6.4 General Characteristics and Comparison with Lanthanoids

The actinoid metals are all silvery in appearance but display a variety of structures. The structural variability is obtained due to irregularities in metallic radii which are far greater than in lanthanoids.

The actinoids are highly reactive metals, especially when finely divided. The action of boiling water on them, for example, gives a mixture of oxide and hydride and combination with most non metals takes place at moderate temperatures. Hydrochloric acid attacks all metals but most are slightly affected by nitric acid owing to the formation of protective oxide layers; alkalies have no action.

The magnetic properties of the actinoids are more complex than those of the lanthanoids. Although the variation in the magnetic susceptibility of the actinoids with the number of unpaired 5 f electrons is roughly parallel to the corresponding results for the lanthanoids, the latter have higher values.

It is evident from the behaviour of the actinoids that the ionisation enthalpies of the early actinoids, though not accurately known, but are lower than for the early lanthanoids. This is quite reasonable since it is to be expected that when 5f orbitals are beginning to be occupied, they will penetrate less into the inner core of electrons. The 5f electrons, will therefore, be more effectively shielded from the nuclear charge than the 4f electrons of the corresponding lanthanoids. Because the outer electrons are less firmly held, they are available for bonding in the actinoids.

A comparison of the actinoids with the lanthanoids, with respect to different characteristics as discussed above, reveals that behaviour similar to that of the lanthanoids is not evident until the second half of the actinoid series. However, even the early actinoids resemble the lanthanoids in showing close similarities with each other and in gradual variation in properties which do not entail change in oxidation state. The lanthanoid and actinoid contractions, have extended effects on the sizes, and therefore, the properties of the elements succeeding them in their respective periods. The lanthanoid contraction is more important because the chemistry of elements succeeding the actinoids are much less known at the present time.

Intext Question

8.9 Explain why $\mathrm{Cu}^{+}$ ion is not stable in aqueous solutions?

Show Answer

Answer

In an aqueous medium, $\mathrm{Cu}^{2+}$ is more stable than $\mathrm{Cu}^{+}$. This is because although energy is required to remove one electron from $\mathrm{Cu}^{+}$to $\mathrm{Cu}^{2+}$, high hydration energy of $\mathrm{Cu2+}$ compensates for it. Therefore, $\mathrm{Cu}^{+}$ion in an aqueous solution is unstable. It disproportionates to give $\mathrm{Cu}^{2+}$ and $\mathrm{Cu}$.

$2 \mathrm{Cu _{(a q)}}^{+} \longrightarrow \mathrm{Cu}^{2+}{ _{(a q)}}+\mathrm{Cu _{(s)}}$

8.7 Some Applications of d- and f-Block Elements

Iron and steels are the most important construction materials. Their production is based on the reduction of iron oxides, the removal of impurities and the addition of carbon and alloying metals such as $\mathrm{Cr}, \mathrm{Mn}$ and Ni. Some compounds are manufactured for special purposes such as TiO for the pigment industry and $\mathrm{MnO_2}$ for use in dry battery cells. The battery industry also requires $\mathrm{Zn}$ and $\mathrm{Ni} / \mathrm{Cd}$. The elements of Group 11 are still worthy of being called the coinage metals, although $\mathrm{Ag}$ and $\mathrm{Au}$ are restricted to collection items and the contemporary UK ‘copper’ coins are copper-coated steel. The ‘silver’ UK coins are a Cu/Ni alloy. Many of the metals and/or their compounds are essential catalysts in the chemical industry. $\mathrm{V_2} \mathrm{O_5}$ catalyses the oxidation of $\mathrm{SO_2}$ in the manufacture of sulphuric acid. $\mathrm{TiCl_4}$ with $\mathrm{Al}\left(\mathrm{CH_3}\right)_{3}$ forms the basis of the Ziegler catalysts used to manufacture polyethylene (polythene). Iron catalysts are used in the Haber process for the production of ammonia from $\mathrm{N_2} / \mathrm{H_2}$ mixtures. Nickel catalysts enable the hydrogenation of fats to proceed. In the Wacker process the oxidation of ethyne to ethanal is catalysed by $\mathrm{PdCl_2}$. Nickel complexes are useful in the polymerisation of alkynes and other organic compounds such as benzene. The photographic industry relies on the special light-sensitive properties of $\mathrm{AgBr}$.

Summary

The $d$-block consisting of Groups 3-12 occupies the large middle section of the periodic table. In these elements the inner $d$ orbitals are progressively filled. The $f$-block is placed outside at the bottom of the periodic table and in the elements of this block, $4 f$ and $5 f$ orbitals are progressively filled.

Corresponding to the filling of $3 d, 4 d$ and $5 d$ orbitals, three series of transition elements are well recognised. All the transition elements exhibit typical metallic properties such as -high tensile strength, ductility, malleability, thermal and electrical conductivity and metallic character. Their melting and boiling points are high which are attributed to the involvement of $(n-1) d$ electrons resulting into strong interatomic bonding. In many of these properties, the maxima occur at about the middle of each series which indicates that one unpaired electron per $d$ orbital is particularly a favourable configuration for strong interatomic interaction.

Successive ionisation enthalpies do not increase as steeply as in the main group elements with increasing atomic number. Hence, the loss of variable number of electrons from $(n-1) d$ orbitals is not energetically unfavourable. The involvement of $(\boldsymbol{n}-\mathbf{1}) d$ electrons in the behaviour of transition elements impart certain distinct characteristics to these elements. Thus, in addition to variable oxidation states, they exhibit paramagnetic behaviour, catalytic properties and tendency for the formation of coloured ions, interstitial compounds and complexes.

The transition elements vary widely in their chemical behaviour. Many of them are sufficiently electropositive to dissolve in mineral acids, although a few are ’noble’. Of the first series, with the exception of copper, all the metals are relatively reactive.

The transition metals react with a number of non-metals like oxygen, nitrogen, sulphur and halogens to form binary compounds. The first series transition metal oxides are generally formed from the reaction of metals with oxygen at high temperatures. These oxides dissolve in acids and bases to form oxometallic salts. Potassium dichromate and potassium permanganate are common examples. Potassium dichromate is prepared from the chromite ore by fusion with alkali in presence of air and acidifying the extract. Pyrolusite ore $\left(\mathrm{MnO_2}\right)$ is used for the preparation of potassium permanganate. Both the dichromate and the permanganate ions are strong oxidising agents.

The two series of inner transition elements, lanthanoids and actinoids constitute the $\boldsymbol{f}$-block of the periodic table. With the successive filling of the inner orbitals, $4 f$, there is a gradual decrease in the atomic and ionic sizes of these metals along the series (lanthanoid contraction). This has far reaching consequences in the chemistry of the elements succeeding them. Lanthanum and all the lanthanoids are rather soft white metals. They react easily with water to give solutions giving +3 ions. The principal oxidation state is +3 , although +4 and +2 oxidation states are also exhibited by some occasionally. The chemistry of the actinoids is more complex in view of their ability to exist in different oxidation staexercites. Furthermore, many of the actinoid elements are radioactive which make the study of these elements rather difficult.

There are many useful applications of the $d$ - and $f$-block elements and their compounds, notable among them being in varieties of steels, catalysts, complexes, organic syntheses, etc.

Exercises

8.1 Write down the electronic configuration of:

(i) $\mathrm{Cr}^{3+}+$

(ii) $\mathrm{Pm}^{3+}$

(iii) $\mathrm{Cu}^{+}$

(iv) $\mathrm{Ce}^{4+}$

(v) $\mathrm{Co}^{2}+$

(vi) $\mathrm{Lu}^{2+}$

(vii) $\mathrm{Mn}^{2+}$

(viii) $\mathrm{Th}^{4+}$

Show Answer

Answer

(i) $\mathrm{Cr}^{3+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3}$

Or, $[\mathrm{Ar}]^{18} 3 d^{3}$

(ii) $\mathrm{Pm}^{3+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{6} 4 f^{4}$

Or, $[\mathrm{Xe}]^{54} 3 d^{3}$

(iii) $\mathrm{Cu}^{+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}$

Or, $[\operatorname{Ar}]^{18} 3 d^{10}$

(iv) $\mathrm{Ce}^{4+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{6}$

Or, $[\mathrm{Xe}]^{54}$

(v) $\mathrm{Co}^{2+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{7}$

Or, $[\mathrm{Ar}]^{18} 3 d^{7}$

(vi) $\mathrm{Lu}^{2+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{6} 4 f^{14} 5 d^{1}$

Or, $[X e]^{54} 2 f^{14} 3 d^{3}$

(vii) $\mathrm{Mn}^{2+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}$

8.2 Why are $\mathrm{Mn}^{2+}$ compounds more stable than $\mathrm{Fe}^{2+}$ towards oxidation to their +3 state?

Show Answer

Answer

Electronic configuration of $\mathrm{Mn}^{2+}$ is $[\mathrm{Ar}]^{18} 3 d^{5}$.

Electronic configuration of $\mathrm{Fe}^{2+}$ is $[\mathrm{Ar}]^{18} 3 d^{6}$.

It is known that half-filled and fully-filled orbitals are more stable. Therefore, $\mathrm{Mn}$ in (+2) state has a stabled ${ }^{5}$ configuration. This is the reason $\mathrm{Mn}^{2+}$ shows resistance to oxidation to $\mathrm{Mn}^{3+}$. Also, $\mathrm{Fe}^{2+}$ has $3 d^{6}$ configuration and by losing one electron, its configuration changes to a more stable $3 d^{5}$ configuration. Therefore, $\mathrm{Fe}^{2+}$ easily gets oxidized to $\mathrm{Fe}^{+3}$ oxidation state.

8.3 Explain briefly how +2 state becomes more and more stable in the first half of the first row transition elements with increasing atomic number?

Show Answer

Answer

Element (+2 state) $ _{21} \mathrm{Sc}^{2+} , _{22} \mathrm{Ti}^{2+} , _{23} \mathrm{~V}^{2+} , _{24} \mathrm{Cr}^{2+} , _{25} \mathrm{Mn}^{2+}$

Electronic configuration $3 d^1 3 d^2 3 d^3 3 d^4 3 d^5$

In all the elements listed, the removal of two $4 \mathrm{~s}$ electrons (in $\mathrm{Cr}^{2+}$ i.e., from $4 \mathrm{~s}$ and $1 e^{-}$from $3 d$ ), the $3 d$-orbitals get gradually occupied. Since, the number of empty d-orbitals decreases or the number of unpaired electrons in 3d-orbitals increases with increase in atomic number of cations, so the stability of the cations $\left(\mathrm{M}^{2+}\right)$ increases from $\mathrm{Sc}^{2+}$ to $\mathrm{Mn}^{2+}$

8.4 To what extent do the electronic configurations decide the stability of oxidation states in the first series of the transition elements? Illustrate your answer with examples.

Show Answer

Answer

The elements in the first-half of the transition series exhibit many oxidation states with Mn exhibiting maximum number of oxidation states ( +2 to +7 ). The stability of +2 oxidation state increases with the increase in atomic number. This happens as more electrons are getting filled in the $d$-orbital. However, $\mathrm{Sc}$ does not show +2 oxidation state. Its electronic configuration is $4 s^{2} 3 d^{1}$. It loses all the three electrons to form $\mathrm{Sc}^{3+} .+3$ oxidation state of $\mathrm{Sc}$ is very stable as by losing all three electrons, it attains stable noble gas configuration, $[\mathrm{Ar}]$. $\mathrm{Ti}(+4)$ and $\mathrm{V}(+5)$ are very stable for the same reason. For Mn, +2 oxidation state is very stable as after losing two electrons, its $d$-orbital is exactly halffilled, $[\mathrm{Ar}] 3 d^{5}$.

8.5 What may be the stable oxidation state of the transition element with the following $d$ electron configurations in the ground state of their atoms : $3 d^{3}$, $3 d^{5}, 3 d^{3}$ and $3 d^{4} ?$

Show Answer

Answer

Electronic configuration in ground state Stable oxidation states
(i) $3 d^{3}$ (Vanadium) $+2,+3,+4$ and +5
(ii) $3 d^{5}$ (Chromium) $+3,+4,+6$
(iii) $3 d^{5}$ (Manganese) $+2,+4,+6,+7$
(iv) $3 d^{8}$ (Cobalt) $+2,+3$
(v) $3 d^{4}$ There is no $3d^{4}$ configuration in ground state.

8.6 Name the oxometal anions of the first series of the transition metals in which the metal exhibits the oxidation state equal to its group number.

Show Answer

Answer

$\mathrm{MnO}_4^{-}: \mathrm{Mn}$ has +7 oxidation number and group number is 7 .

$\mathrm{CrO}_4^{2-}: \mathrm{Cr}$ has +6 oxidation state and group number is 6 .

$\mathrm{VO}_3^{-}: \mathrm{V}$ has +5 oxidation state and the group number is 5 .

8.7 What is lanthanoid contraction? What are the consequences of lanthanoid contraction?

Show Answer

Answer

As we move along the lanthanoid series, the atomic number increases gradually by one. This means that the number of electrons and protons present in an atom also increases by one. As electrons are being added to the same shell, the effective nuclear charge increases. This happens because the increase in nuclear attraction due to the addition of proton is more pronounced than the increase in the interelectronic repulsions due to the addition of electron. Also, with the increase in atomic number, the number of electrons in the 4 forbital also increases. The 4 felectrons have poor shielding effect. Therefore, the effective nuclear charge experienced by the outer electrons increases. Consequently, the attraction of the nucleus for the outermost electrons increases. This results in a steady decrease in the size of lanthanoids with the increase in the atomic number. This is termed as lanthanoid contraction.

Consequences of lanthanoid contraction

(i) There is similarity in the properties of second and third transition series.

ii. Separation of lanthanoids is possible due to lanthanide contraction.

(iii) It is due to lanthanide contraction that there is variation in the basic strength of lanthanide hydroxides. (Basic strength decreases from $\mathrm{La}\mathrm{(OH) _3}$ to $\mathrm{Lu}(\mathrm{OH}) _{3}$.)

8.8 What are the characteristics of the transition elements and why are they called transition elements? Which of the $d$-block elements may not be regarded as the transition elements?

Show Answer

Answer

Transition elements are those elements in which the atoms or ions (in stable oxidation state) contain partially filled $d$ orbital. These elements lie in the $d$-block and show a transition of properties between $s$-block and $p$-block. Therefore, these are called transition elements.

Elements such as $\mathrm{Zn}, \mathrm{Cd}$, and $\mathrm{Hg}$ cannot be classified as transition elements because these have completely filled $d$ subshell.

8.9 In what way is the electronic configuration of the transition elements different from that of the non-transition elements?

Show Answer

Answer

Transition metals have a partially filled $d$-orbital. Therefore, the electronic configuration of transition elements is ( $n$ 1) $d^{1-10} \mathrm{~ns}^{0.2}$.

The non-transition elements either do not have a $d$-orbital or have a fully filled $d$-orbital. Therefore, the electronic configuration of non-transition elements is $n s^{1-2}$ or $n s^{2} n p^{1-6}$.

8.10 What are the different oxidation states exhibited by the lanthanoids?

Show Answer

Answer

In the lanthanide series, +3 oxidation state is most common i.e., Ln(III) compounds are predominant. However, +2 and +4 oxidation states can also be found in the solution or in solid compounds.

8.11 Explain giving reasons:

(i) Transition metals and many of their compounds show paramagnetic behaviour.

(ii) The enthalpies of atomisation of the transition metals are high.

(iii) The transition metals generally form coloured compounds.

(iv) Transition metals and their many compounds act as good catalyst.

Show Answer

Answer

(i) Transition metals show paramagnetic behaviour. Paramagnetism arises due to the presence of unpaired electrons with each electron having a magnetic moment associated with its spin angular momentum and orbital angular momentum. However, in the first transition series, the orbital angular momentum is quenched. Therefore, the resulting paramagnetism is only because of the unpaired electron.

(ii) Transition elements have high effective nuclear charge and a large number of valence electrons. Therefore, they form very strong metallic bonds. As a result, the enthalpy of atomization of transition metals is high.

(iii) Most of the complexes of transition metals are coloured. This is because of the absorption of radiation from visible light region to promote an electron from one of the $d$-orbitals to another. In the presence of ligands, the $d$ orbitals split up into two sets of orbitals having different energies. Therefore, the transition of electrons can take place from one set toanother. The energy required for these transitions is quite small and falls in the visible region of radiation. The ions of transition metals absorb the radiation of a particular wavelength and the rest is reflected, imparting colour to the solution.

(iv) The catalytic activity of the transition elements can be explained by two basic facts.

(a) Owing to their ability to show variable oxidation states and form complexes, transition metals form unstable intermediate compounds. Thus, they provide a new path with lower activation energy, $E_{\mathrm{a}}$, for the reaction.

(b) Transition metals also provide a suitable surface for the reactions to occur.

8.12 What are interstitial compounds? Why are such compounds well known for transition metals?

Show Answer

Answer

Transition metals are large in size and contain lots of interstitial sites. Transition elements can trap atoms of other elements (that have small atomic size), such as H, C, N, in the interstitial sites of their crystal lattices. The resulting compounds are called interstitial compounds.

8.13 How is the variability in oxidation states of transition metals different from that of the non-transition metals? Illustrate with examples.

Show Answer

Answer

In transition elements, the oxidation state can vary from +1 to the highest oxidation state by removing all its valence electrons. Also, in transition elements, the oxidation states differ by $1\left(\mathrm{Fe}^{2+}\right.$ and $\mathrm{Fe}^{3+} ; \mathrm{Cu}^{+}$ and $\left.\mathrm{Cu}^{2+}\right)$. In non-transition elements, the oxidation states differ by 2 , for example, +2 and +4 or +3 and +5 , etc.

8.14 Describe the preparation of potassium dichromate from iron chromite ore. What is the effect of increasing $\mathrm{pH}$ on a solution of potassium dichromate?

Show Answer

Answer

(i) Preparation of $\mathrm{K}_2 \mathrm{Cr}_2 \mathrm{O}_7$ from chromite ore

(a) Potassium dichromate is obtained by the fusion of chromite ore $\left(\mathrm{FeCr}_2 \mathrm{O}_4\right)$ with sodium (or potassium) carbonate in the presence of excess air.

$ 4 \mathrm{FeCr}_2 \mathrm{O}_4+8 \mathrm{Na}_2 \mathrm{CO}_3+7 \mathrm{O}_2 \rightarrow \underset{\left(\substack{ \text{Yellow} \\ \text{solution} }\right)}{8 \mathrm{Na}_2 \mathrm{CrO}_4}+2 \mathrm{Fe}_2 \mathrm{O}_3+8 \mathrm{CO}_2 $

(b) The solution is filtered and treated with sulphuric acid.

$ 2 \mathrm{Na}_2 \mathrm{CrO}_4+\underset{\left(\mathrm{From} \mathrm{H}_2 \mathrm{SO}_4\right)}{2 \mathrm{H}^{+}} \rightarrow \underset{\substack{\text{Sodium}\\ \substack{\text{dichromate}\\ \text{(orange)}}}}{\mathrm{Na}_2 \mathrm{Cr}_2 \mathrm{O}_7(\mathrm{~s})}+2 \mathrm{Na}^{+}+\mathrm{H}_2 \mathrm{O} $

(c) Now sodium dichromate is treated with potassium chloride.

As a result, potassium dichromate is produced.

$ \mathrm{Na}_2 \mathrm{Cr}_2 \mathrm{O}_7+2 \mathrm{KCl} \rightarrow \underset{\substack{\text { Potassium } \\ \text { dichromate } \\ \text { crystals }}}{\mathrm{K}_2 \mathrm{Cr}_2 \mathrm{O}_7} +2 \mathrm{NaCl} $

(ii) Effect of increasing $\mathrm{pH}$ on $\mathrm{K}_2 \mathrm{Cr}_2 \mathrm{O}_7$ solution

$ \underset{\text { Orange }}{\mathrm{Cr}_2 \mathrm{O}_7^{2-}}+2 \mathrm{OH}^{-} \rightarrow \underset{\text { Yellow }}{2 \mathrm{CrO}_4^{2-}}+\mathrm{H}_2 \mathrm{O} $

On increasing $\mathrm{pH} ; \mathrm{K}_2 \mathrm{Cr}_2 \mathrm{O}_7$ changes into $\mathrm{K}_2 \mathrm{CrO}_4$ (orange to yellow).

8.15 Describe the oxidising action of potassium dichromate and write the ionicequations for its reaction with:

(i) iodide

(ii) iron(II) solution and

(iii) $\mathrm{H_2} \mathrm{~S}$

Show Answer

Answer

$\mathrm{K_2} \mathrm{Cr_2} \mathrm{O_7}$ acts as a very strong oxidising agent in the acidic medium.

$\mathrm{K_2} \mathrm{Cr_2} \mathrm{O_7}+4 \mathrm{H_2} \mathrm{SO_4} \longrightarrow \mathrm{K_2} \mathrm{SO_4}+\mathrm{Cr_2}\left(\mathrm{SO_4}\right)_{3}+4 \mathrm{H_2} \mathrm{O}+3[\mathrm{O}]$

$\mathrm{K_2} \mathrm{Cr_2} \mathrm{O_7}$ takes up electrons to get reduced and acts as an oxidising agent. The reaction of $\mathrm{K_2} \mathrm{Cr_2} \mathrm{O_7}$ with other iodide, iron (II) solution, and $\mathrm{H_2} \mathrm{~S}$ are given below.

(i) $\mathrm{K_2} \mathrm{Cr_2} \mathrm{O_7}$ oxidizes iodide to iodine.

$ \begin{aligned} \mathrm{Cr}_2 \mathrm{O}_7^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} & \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_2 \mathrm{O} \\ 2 \mathrm{I}^{-} & \left.\longrightarrow \mathrm{I}_2+2 \mathrm{e}^{-}\right] \times 3 \\ \hline \mathrm{Cr}_2 \mathrm{O}_7^{2-}+6 \mathrm{I}^{-}+14 \mathrm{H}^{+} & \longrightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{I}_2+7 \mathrm{H}_2 \mathrm{O} \\ \hline \end{aligned} $

(ii) $\mathrm{K_2} \mathrm{Cr_2} \mathrm{O_7}$ oxidizes iron (II) solution to iron (III) solution i.e., ferrous ions to ferric ions.

$ \begin{aligned} \mathrm{Cr_2} \mathrm{O_7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} & \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H_2} \mathrm{O} \\ \mathrm{Fe}^{2+} & \left.\longrightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}\right] \times 6 \\ \hline \mathrm{Cr_2} \mathrm{O_7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} & \longrightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H_2} \mathrm{O} \\ \hline \end{aligned} $

(iii) $\mathrm{K_2} \mathrm{Cr_2} \mathrm{O_7}$ oxidizes $\mathrm{H_2} \mathrm{~S}$ to sulphur.

$ \begin{aligned} \mathrm{Cr_2} \mathrm{O_7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} & \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H_2} \mathrm{O} \\ \mathrm{H_2} \mathrm{~S} & \left.\longrightarrow \mathrm{S}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}\right] \times 3 \\ \hline \mathrm{Cr_2} \mathrm{O_7}^{2-}+3 \mathrm{H_2} \mathrm{~S}+8 \mathrm{H}^{+} & \longrightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{~S}+7 \mathrm{H_2} \mathrm{O} \\ \hline \end{aligned} $

8.16 Describe the preparation of potassium permanganate. How does the acidifiedpermanganate solution react with (i) iron(II) ions (ii) $\mathrm{SO_2}$ and (iii) oxalic acid? Write the ionic equations for the reactions.

Show Answer

Answer

Potassium permanganate can be prepared from pyrolusite $\left(\mathrm{MnO_2}\right)$. The ore is fused with $\mathrm{KOH}$ in the presence of either atmospheric oxygen or an oxidising agent, such as $\mathrm{KNO_3}$ or $\mathrm{KClO_4}$, to give $\mathrm{K_2} \mathrm{MnO_4}$.

$ 2 \mathrm{MnO_2}+4 \mathrm{KOH}+\mathrm{O_2} \xrightarrow{\text { heat }} {\text{(Green)}}{2 \mathrm{~K_2} \mathrm{MnO_4}}+2 \mathrm{H_2} \mathrm{O} $

The green mass can be extracted with water and then oxidized either electrolytically or by passing chlorine/ozone into the solution.

Electrolytic oxidation

$ \begin{aligned} & \mathrm{K_2} \mathrm{MnO_4} \longleftrightarrow 2 \mathrm{~K}^{+}+\mathrm{MnO_4}^{2-} \\ & \mathrm{H_2} \mathrm{O} \longleftrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-} \end{aligned} $

At anode, manganate ions are oxidized to permanganate ions.

$ \underset{\text{Green}}{\mathrm{MnO_4}^{2-}} \longleftrightarrow \underset{\text{Green}}{\mathrm{MnO_4}^{-}}+\mathrm{e}^{-} $

Oxidation by chlorine

$ \begin{aligned} & 2 \mathrm{~K_2} \mathrm{MnO_4}+\mathrm{Cl_2} \longrightarrow 2 \mathrm{KMnO_4}+2 \mathrm{KCl} \\ & 2 \mathrm{MnO_4}^{2-}+\mathrm{Cl_2} \longrightarrow 2 \mathrm{MnO_4}^{-}+2 \mathrm{Cl}^{-} \end{aligned} $

Oxidation by ozone

$ \begin{aligned} 2 \mathrm{~K_2} \mathrm{MnO_4}+\mathrm{O_3}+\mathrm{H_2} \mathrm{O} \longrightarrow 2 \mathrm{KMnO_4}+2 \mathrm{KOH}+\mathrm{O_2} \\ 2 \mathrm{MnO_4}^{2-}+\mathrm{O_3}+\mathrm{H_2} \mathrm{O} \longrightarrow 2 \mathrm{MnO_4}^{2-}+2 \mathrm{OH}^{-}+\mathrm{O_2} \end{aligned} $

(i) Acidified $\mathrm{KMnO_4}$ solution oxidizes $\mathrm{Fe}$ (II) ions to $\mathrm{Fe}$ (III) ions i.e., ferrous ions to ferric ions.

$ \begin{aligned} \mathrm{MnO_4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} & \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H_2} \mathrm{O} \\ \mathrm{Fe}^{2+} & \longrightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-} ] \times 5 \\ \hline \mathrm{MnO_4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+} & \longrightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H_2} \mathrm{O} \\ \hline \end{aligned} $

(ii) Acidified potassium permanganate oxidizes $\mathrm{SO_2}$ to sulphuric acid.

$ \begin{aligned} & \mathrm{MnO_4}^{-}+6 \mathrm{H}^{+}+5 \mathrm{e}^{-}\left.\longrightarrow \mathrm{Mn}^{2+}+3 \mathrm{H_2} \mathrm{O}\right] \times 2 \\ & 2 \mathrm{H_2} \mathrm{O}+2 \mathrm{SO_2}+\mathrm{O_2}\left.\longrightarrow 4 \mathrm{H}^{+}+2 \mathrm{SO_4}^{2-}+2 \mathrm{e}^{-}\right] \times 5 \\ \hline & 2 \mathrm{MnO_4}^{-}+10 \mathrm{SO_2}+5 \mathrm{O_2}+4 \mathrm{H_2} \mathrm{O} \longrightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{SO_4}^{2-}+8 \mathrm{H}^{+}\\ \hline \end{aligned} $

(iii) Acidified potassium permanganate oxidizes oxalic acid to carbon dioxide.

$ \begin{aligned} \mathrm{MnO _4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} & \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H_2} \mathrm{O}] \times 2 \\ \mathrm{C _2} \mathrm{O_4}^{2-} & \longrightarrow 2 \mathrm{CO _2}+2 \mathrm{e}^{-}] \times 5 \\ \hline 2 \mathrm{MnO _4}^{-}+5 \mathrm{C _2} \mathrm{O_4}^{2-}+16 \mathrm{H}^{+} & \longrightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO _2}+8 \mathrm{H _2} \mathrm{O} \\ \hline \end{aligned} $

8.17 For $\mathrm{M}^{2+} / \mathrm{M}$ and $\mathrm{M}^{3+} / \mathrm{M}^{2+}$ systems, the $\mathrm{E}^{\ominus}$ values for some metals are as follows:

$\mathrm{Cr}^{2+} / \mathrm{Cr}$ $-0.9 \mathrm{~V}$ $\mathrm{Cr}^{3} / \mathrm{Cr}^{2+}$ $-0.4 \mathrm{~V}$
$\mathrm{Mn}^{2+} / \mathrm{Mn}$ $-1.2 \mathrm{~V}$ $\mathrm{Mn}^{3+} / \mathrm{Mn}^{2+}$ $+1.5 \mathrm{~V}$
$\mathrm{Fe}^{2+} / \mathrm{Fe}$ $-0.4 \mathrm{~V}$ $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ $+0.8 \mathrm{~V}$

Use this data to comment upon:

(i) The stability of $\mathrm{Fe}^{3+}$ in acid solution as compared to that of $\mathrm{Cr}^{3+} \mathrm{or} \mathrm{Mn}^{3+}$ and

(ii) The ease with which iron can be oxidised as compared to a similar process for either chromium or manganese metal.

Show Answer

Answer

(i) The $\mathrm{E}^{\ominus}$ value for $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ is higher than that for $\mathrm{Cr}^{3+} / \mathrm{Cr}^{2+}$ and lower than that for $\mathrm{Mn}^{3+} / \mathrm{Mn}^{2+}$. So, the reduction of $\mathrm{Fe}^{3+}$ to $\mathrm{Fe}^{2+}$ is easier than the reduction of $\mathrm{Mn}^{3+}$ to $\mathrm{Mn}^{2+}$, but not as easy as the reduction of $\mathrm{Cr}^{3+}$ to $\mathrm{Cr}^{2+}$. Hence, $\mathrm{Fe}^{3+i}$ is more stable than $\mathrm{Mn}^{3+}$, but less stable than $\mathrm{Cr}^{3+}$. These metal ions can be arranged in the increasing order of their stability as: $\mathrm{Mn}^{3+}<\mathrm{Fe}^{3+}<\mathrm{Cr}^{3+}$

(ii) The reduction potentials for the given pairs increase in the following order.

$\mathrm{Mn}^{2+} / \mathrm{Mn}<\mathrm{Cr}^{2+} / \mathrm{Cr}<\mathrm{Fe}^{2+} / \mathrm{Fe}$

So, the oxidation of $\mathrm{Fe}$ to $\mathrm{Fe}^{2+}$ is not as easy as the oxidation of $\mathrm{Cr}$ to $\mathrm{Cr}^{2+}$ and the oxidation of $\mathrm{Mn}$ to $\mathrm{Mn}^{2+}$. Thus, these metals can be arranged in the increasing order of their ability to get oxidised as: $\mathrm{Fe}<\mathrm{Cr}<\mathrm{Mn}$

8.18 Predict which of the following will be coloured in aqueous solution? $\mathrm{Ti}^{3+}, \mathrm{V}^{3+}$, $\mathrm{Cu}^{+}, \mathrm{Sc}^{3+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{3+}$ and $\mathrm{Co}^{2+}$. Give reasons for each.

Show Answer

Answer

Only the ions that have electrons in $d$-orbital and in which $d$-d transition is possible will be coloured. The ions in which $d$-orbitals are empty or completely filled will be colourless as no $d$-d transition is possible in those configurations.

Element Atomic Number Ionic State Electronic configuration in ionic state
$\mathrm{Ti}$ 22 $\mathrm{T1}^{3+}$ $[\mathrm{Ar}] 3 d^{1}$
$\mathrm{V}$ 23 $\mathrm{~V}^{3+}$ $[\mathrm{Ar}] 3 d^{2}$
$\mathrm{Cu}$ 29 $\mathrm{Cu}^{+}$ $[\mathrm{Ar}] 3 d^{10}$
$\mathrm{Sc}$ 21 $\mathrm{Sc}^{3+}$ $[\mathrm{Ar}]$
$\mathrm{Mn}$ 25 $\mathrm{Mn}^{2+}$ $[\mathrm{Ar}] 3 d^{5}$
$\mathrm{Fe}$ 26 $\mathrm{Fe}^{3+}$ $[\mathrm{Ar}] 3 d^{5}$
$\mathrm{Co}$ 27 $\mathrm{Co}^{2+}$ $[\mathrm{Ar}] 3 d^{7}$

From the above table, it can be easily observed that only $\mathrm{Sc}^{3+}$ has an empty $d$-orbital and $\mathrm{Cu}^{+}$has completely filled $\mathrm{d}$ orbitals. All other ions, except $\mathrm{Sc}^{3+}$ and $\mathrm{Cu}^{+}$, will be coloured in aqueous solution because of $d$ - $d$ transitions.

8.19 Compare the stability of +2 oxidation state for the elements of the first transition series.

Show Answer

Answer

$ \begin{array}{|c|c|c|c|c|c|c|c|} \hline \text{Sc} & & & +3 & & & \\ \hline \mathrm{Ti} & +1 & +2 & +3 & +4 & & \\ \hline \mathrm{V} & +1 & +2 & +3 & +4 & +5 & \\ \hline \mathrm{Cr} & +1 & +2 & +3 & +4 & +5 & +6 \\ \hline \mathrm{Mn} & +1 & +2 & +3 & +4 & +5 & +6 & +7 \\ \hline \mathrm{Fe} & +1 & +2 & +3 & +4 & +5 & +6 & \\ \hline \mathrm{Co} & +1 & +2 & +3 & +4 & +5 & & \\ \hline \mathrm{Ni} & +1 & +2 & +3 & +4 & & & \\ \hline \mathrm{Cu} & +1 & +2 & +3 & & & & \\ \hline \mathrm{Zn} & & +2 & & & & & \\ \hline \end{array} $

From the above table, it is evident that the maximum number of oxidation states is shown by $\mathrm{Mn}$, varying from +2 to +7. The number of oxidation states increases on moving from Sc to Mn. On moving from Mn to Zn, the number of oxidation states decreases due to a decrease in the number of available unpaired electrons. The relative stability of the +2 oxidation state increases on moving from top to bottom. This is because on moving from top to bottom, it becomes more and more difficult to remove the third electron from the $d$-orbital.

8.20 Compare the chemistry of actinoids with that of the lanthanoids with specialreference to:

(i) electronic configuration

(iii) oxidation state

(ii) atomic and ionic sizes and

(iv) chemical reactivity.

Show Answer

Answer

(i) Electronic configuration

The general electronic configuration for lanthanoids is $[\mathrm{Xe}]^{54} 4 f^{0-14} 5 d^{0-1} 6 s^{2}$ and that for actinoids is $[\mathrm{Rn}]^{86} 5 f^{-14} 6 d^{0-1} 7 s^{2}$. Unlike 4 forbitals, $5 f$ orbitals are not deeply buried and participate in bonding to a greater extent.

(ii) Oxidation states

The principal oxidation state of lanthanoids is (+3). However, sometimes we also encounter oxidation states of +2 and +4 . This is because of extra stability of fully-filled and half-filled orbitals. Actinoids exhibit a greater range of oxidation states. This is because the $5 f, 6 d$, and 7 slevels are of comparable energies. Again, (+3) is the principal oxidation state for actinoids. Actinoids such as lanthanoids have more compounds in +3 state than in +4 state.

(iii) Atomic and lonic sizes

Similar to lanthanoids, actinoids also exhibit actinoid contraction (overall decrease in atomic and ionic radii). The contraction is greater due to the poor shielding effect of 5 forbitals.

(iv) Chemical reactivity

In the lanthanide series, the earlier members of the series are more reactive. They have reactivity that is comparable to $\mathrm{Ca}$. With an increase in the atomic number, the lanthanides start behaving similar to Al. Actinoids, on the other hand, are highly reactive metals, especially when they are finely divided. When they are added to boiling water, they give a mixture of oxide and hydride. Actinoids combine with most of the non-metals at moderate temperatures. Alkalies have no action on these actinoids. In case of acids, they are slightly affected by nitric acid (because of the formation of a protective oxide layer).

8.21 How would you account for the following:

(i) Of the $d^{4}$ species, $\mathrm{Cr}^{2+}$ is strongly reducing while manganese(III) is strongly oxidising.

(ii) Cobalt(II) is stable in aqueous solution but in the presence of complexing reagents it is easily oxidised.

(iii) The $d^{1}$ configuration is very unstable in ions.

Show Answer

Answer

(i) $\mathrm{Cr}^{2+}$ is strongly reducing in nature. It has a $d^{4} c$ configuration. While acting as a reducing agent, it gets oxidized to

$\mathrm{Cr}^{3+}\left(\right.$ electronic configuration, $\left.d^{\beta}\right)$. This $d^{3}$ configuration can be written as $t_{2 \mathrm{~g}}^{3}$ configuration, which is a more stable configuration. In the case of $\mathrm{Mn}^{3+}\left(d^{4}\right)$, it acts as an oxidizing agent and gets reduced to $\mathrm{Mn}^{2+}\left(d^{5}\right)$. This has an exactly half-filled $d$-orbital and is highly stable.

(ii) $\mathrm{Co}(\mathrm{II})$ is stable in aqueous solutions. However, in the presence of strong field complexing reagents, it is oxidized to Co (III). Although the 3rionization energy for Co is high, but the higher amount of crystal field stabilization energy (CFSE) released in the presence of strong field ligands overcomes this ionization energy.

(iii) The ions in $d^{11}$ configuration tend to lose one more electron to get into stable $d^{0}$ configuration. Also, the hydration or lattice energy is more than sufficient to remove the only electron present in the $d$-orbital of these ions. Therefore, they act as reducing agents.

8.22 What is meant by ‘disproportionation’? Give two examples of disproportionation reaction in aqueous solution.

Show Answer

Answer

It is found that sometimes a relatively less stable oxidation state undergoes an oxidation - reduction reaction in which it is simultaneously oxidised and reduced. This is called disproportionation.

Forexample,

(i) $\underset{\mathrm{Cr(V)}}{\mathrm{3CrO_{4}^{3-}}} + \mathrm{8H^+} \longrightarrow \underset{\mathrm{Cr(VI)}}{\mathrm{3CrO_{4}^{2-}}} + \underset{\mathrm{Cr(III)}}{\mathrm{CrO^{3+}}} + \mathrm{4H_2O} $

$\mathrm{Cr}(\mathrm{V})$ is oxidized to $\mathrm{Cr}(\mathrm{VI})$ and reduced to $\mathrm{Cr}(\mathrm{III})$.

(ii) $\underset{\mathrm{Mn(VI)}}{3 \mathrm{MnO_{4}^{2-}}}+4 \mathrm{H}^{+} \longrightarrow \underset{\mathrm{Mn(VII)}}{2 \mathrm{MnO_{4}^{-}}}+\underset{\mathrm{Mn(IV)}}{\mathrm{MnO_2}}+2 \mathrm{H_2} \mathrm{O}$

$\mathrm{Mn}(\mathrm{VI})$ is oxidized to $\mathrm{Mn}(\mathrm{VII})$ and reduced to Mn (IV).

8.23 Which metal in the first series of transition metals exhibits +1 oxidationstate most frequently and why?

Show Answer

Answer

In the first transition series, Cu exhibits +1 oxidation state very frequently. It is because $\mathrm{Cu}(+1)$ has an electronic configuration of $[\mathrm{Ar}] 3 d^{10}$. The completely filled $d$-orbital makes it highly stable.

8.24 Calculate the number of unpaired electrons in the following gaseous ions: $\mathrm{Mn}^{3+}, \mathrm{Cr}^{3+}, \mathrm{V}^{3+}$ and $\mathrm{Ti}^{3+}$. Which one of these is the most stable in aqueous solution?

Show Answer

Answer

Gaseous ions Number of unpaired electrons
(i) $\mathrm{Mn}^{3+},[\mathrm{Ar}] 3 d^{4}$ 4
(ii) $\mathrm{Cr}^{3+},[\mathrm{Ar}] 3 d^{3}$ 3
(iii) $\mathrm{V}^{3+},[\mathrm{Ar}] 3 d^{2}$ 2
(vi) $\mathrm{Ti}^{3+},[\mathrm{Ar}] 3 d^{1}$ 1

$\mathrm{Cr}^{3+}$ is the most stable in aqueous solutions owing to a $t_{2 \mathrm{~g}}^{3}$ configuration.

8.25 Give examples and suggest reasons for the following features of the transition metal chemistry:

(i)The lowest oxide of transition metal is basic, the highest is amphoteric/acidic.

(ii)A transition metal exhibits highest oxidation state in oxides and fluorides.

(iii) The highest oxidation state is exhibited in oxoanions of a metal.

Show Answer

Answer

(i) In the case of a lower oxide of a transition metal, the metal atom has a low oxidation state. This means that some of the valence electrons of the metal atom are not involved in bonding. As a result, it can donate electrons and behave as a base.

On the other hand, in the case of a higher oxide of a transition metal, the metal atom has a high oxidation state. This means that the valence electrons are involved in bonding and so, they are unavailable. There is also a high effective nuclear charge.

As a result, it can accept electrons and behave as an acid.

For example, $\mathrm{Mn}^{\mathrm{II}} \mathrm{O_\text {is basic and }} \mathrm{Mn_2} \mathrm{O_7}$ is acidic.

(ii) Oxygen and fluorine act as strong oxidising agents because of their high electronegativities and small sizes. Hence, they bring out the highest oxidation states from the transition metals. In other words, a transition metal exhibits higher oxidation states in oxides and fluorides. For example, in $\mathrm{OsF_6}$ and $\mathrm{V_2} \mathrm{O_5}$, the oxidation states of $\mathrm{Os}$ and V are +6 and +5 respectively.

(iii) Oxygen is a strong oxidising agent due to its high electronegativity and small size. So, oxo-anions of a metal have the highest oxidation state. For example, in $\mathrm{MnO_4}^{-}$, the oxidation state of $\mathrm{Mn}$ is +7 .

8.26 Indicate the steps in the preparation of:

(i) $\mathrm{K} 2 \mathrm{Cr} 2 \mathrm{O} 7$ from chromite ore.

(ii) $\mathrm{KMnO4}$ from pyrolusite ore.

Show Answer

Answer

(i)

Potassium dichromate $\left(\mathrm{K_2} \mathrm{Cr_2} \mathrm{O_7}\right)$ is prepared from chromite ore $\left(\mathrm{FeCr_2} \mathrm{O_4}\right)$ in the following steps.

Step (1):Preparation of sodium chromate

$ 4 \mathrm{FeCr_2} \mathrm{O_4}+16 \mathrm{NaOH}+7 \mathrm{O_2} \longrightarrow 8 \mathrm{Na_2} \mathrm{CrO_4}+2 \mathrm{Fe_2} \mathrm{O_3}+8 \mathrm{H_2} \mathrm{O} $

Step (2):Conversion of sodium chromate into sodium dichromate

$ 2 \mathrm{Na_2} \mathrm{CrO_4}+\text { conc. } \mathrm{H_2} \mathrm{SO_4} \longrightarrow \mathrm{Na_2} \mathrm{Cr_2} \mathrm{O_7}+\mathrm{Na_2} \mathrm{SO_4}+\mathrm{H_2} \mathrm{O} $

Step(3):Conversion of sodium dichromate to potassium dichromate

$ \mathrm{Na_2} \mathrm{Cr_2} \mathrm{O_7}+2 \mathrm{KCl} \longrightarrow \mathrm{K_2} \mathrm{Cr_2} \mathrm{O_7}+2 \mathrm{NaCl} $

Potassium chloride being less soluble than sodium chloride is obtained in the form of orange coloured crystals and can be removed by filtration.

$ \underset{\substack{\text{Chromate}\\ \text{(Yellow)}}}{2 \mathrm{CrO_{4}^{2-}}} \stackrel{\text{Acid}}{\underset{\text{Alkali}}{\leftarrow\rightarrow}} \underset{\substack{\text{Hydrogen} \\ \text{(Chromate)}}}{2 \mathrm{HCrO_{4}^{-}}}\stackrel{\text{Acid}}{\underset{\text{Alkali}}{\leftarrow\rightarrow}} \underset{\substack{\text{Dichromate}\\ \text{(Orange)}}}{\mathrm{Cr_2} \mathrm{O_7}^{2-}} $

The dichromate ion $\left(\mathrm{Cr_2} \mathrm{O_7}^{2-}\right)$ exists in equilibrium with chromate $\left(\mathrm{CrO_4}^{2-}\right)$ ion at $\mathrm{pH} 4$. However, by changing the $\mathrm{pH}$, they can be interconverted. (ii)

Potassium permanganate $\left(\mathrm{KMnO_4}\right.$ ) can be prepared from pyrolusite $\left(\mathrm{MnO_2}\right)$. The ore is fused with $\mathrm{KOH}$ in the presence of either atmospheric oxygen or an oxidising agent, such as $\mathrm{KNO_3} \mathrm{Or} \mathrm{KClO_4}$, to give $\mathrm{K_2} \mathrm{MnO_4}$.

$ 2 \mathrm{MnO_2}+4 \mathrm{KOH}+\mathrm{O_2} \xrightarrow{\text { heat }} \underset{\text{(Green)}}{2 \mathrm{~K_2} \mathrm{MnO_4}}+2 \mathrm{H_2} \mathrm{O} $

The green mass can be extracted with water and then oxidized either electrolytically or by passing chlorine/ozone into the solution.

Electrolytic oxidation

$ \begin{aligned} & \mathrm{K_2} \mathrm{MnO_4} \longleftrightarrow 2 \mathrm{~K}^{+}+\mathrm{MnO_4}^{2-} \\ & \mathrm{H_2} \mathrm{O} \longleftrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-} \end{aligned} $

At anode, manganate ions are oxidized to permanganate ions.

$ \underset{\text{Green}}{\mathrm{MnO_4}^{2-}} \longleftrightarrow \underset{\text{Purple}}{\mathrm{MnO_4}^{-}}+\mathrm{e}^{-} $

Green Purple

Oxidation by chlorine

$ \begin{aligned} & 2 \mathrm{~K_2} \mathrm{MnO_4}+\mathrm{Cl_2} \longrightarrow 2 \mathrm{KMnO_4}+2 \mathrm{KCl} \\ & 2 \mathrm{MnO_4}^{2-}+\mathrm{Cl_2} \longrightarrow 2 \mathrm{MnO_4}^{-}+2 \mathrm{Cl}^{-} \end{aligned} $

Oxidation by ozone

$ \begin{aligned} & 2 \mathrm{~K_2} \mathrm{MnO_4}+\mathrm{O_3}+\mathrm{H_2} \mathrm{O} \longrightarrow 2 \mathrm{KMnO_4}+2 \mathrm{KOH}+\mathrm{O_2} \\ & 2 \mathrm{MnO_4}^{2-}+\mathrm{O_3}+\mathrm{H_2} \mathrm{O} \longrightarrow 2 \mathrm{MnO_4}^{2-}+2 \mathrm{OH}^{-}+\mathrm{O_2} \end{aligned} $

8.27 What are alloys? Name an important alloy which contains some of thelanthanoid metals. Mention its uses.

Show Answer

Answer

An alloy is a solid solution of two or more elements in a metallic matrix. It can either be a partial solid solution or a complete solid solution. Alloys are usually found to possess different physical properties than those of the component elements.

An important alloy of lanthanoids is Mischmetal. It contains lanthanoids (94-95 $\%$), iron (5 $\%$), and traces of S, C, Si, $\mathrm{Ca}$, and $\mathrm{Al}$.

Uses

(1) Mischmetal is used in cigarettes and gas lighters.

(2) It is used in flame throwing tanks.

(3) It is used in tracer bullets and shells.

8.28 What are inner transition elements? Decide which of the following atomic numbers are the atomic numbers of the inner transition elements: 29, 59, 74, 95, 102, 104.

Show Answer

Answer

Inner transition metals are those elements in which the last electron enters the $f$-orbital. The elements in which the $4 f$ and the $5 f$ orbitals are progressively filled are called $f$-block elements. Among the given atomic numbers, the atomic numbers of the inner transition elements are 59, 95, and 102.

8.29 The chemistry of the actinoid elements is not so smooth as that of the Lanthanoids. Justify this statement by giving some examples from the oxidation state of these elements.

Show Answer

Answer

Lanthanoids primarily show three oxidation states (+2,+3,+4). Among these oxidation states, +3 state is the most common. Lanthanoids display a limited number of oxidation states because the energy difference between $4 f, 5 d$, and 6 sorbitals is quite large. On the other hand, the energy difference between $5 f, 6 d$, and $7 s$ orbitals is very less. Hence, actinoids display a large number of oxidation states. For example, uranium and plutonium display +3,+4,+5, and +6 oxidation states while neptunium displays +3,+4,+5, and +7 . The most common oxidation state in case of actinoids is also +3 .

8.30 Which is the last element in the series of the actinoids? Write the electronic configuration of this element. Comment on the possible oxidation state of this element.

Show Answer

Answer

The last element in the actinoid series is lawrencium, Lr. Its atomic number is 103 and its electronic configuration is $[\operatorname{Rn}] 5 f^{14} 6 d^{1} 7 s^{2}$. The most common oxidation state displayed by it is +3 ; because after losing 3 electrons it attains stablef ${ }^{14}$ configuration.

8.31 Use Hund’s rule to derive the electronic configuration of $\mathrm{Ce}^{3+}$ ion and calculate its magnetic moment on the basis of ‘spin-only’ formula.

Show Answer

Answer

Ce : $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{6} 4 f^{1} 5 d^{1} 6 s^{2}$

Magnetic moment can be calculated as:

$\mu=\sqrt{n(n+2)}$

Where,

$n=$ number of unpaired electrons

The electronic configuration of $\mathrm{Ce}^{3+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{6} 4 f^{1}$

In $\mathrm{Ce}^{3+}, n=1$

$\therefore$ Magnetic moment, $\mu=\sqrt{\mathrm{n}(\mathrm{n}+2)}$ B.M

$ \begin{aligned} & \Longrightarrow \mu=\sqrt{1(1+2)} \text { B.M } \\ & \Longrightarrow \mu=\sqrt{3} \text { B.M } \\ & \Longrightarrow \mu=1.73 \text { B.M } \end{aligned} $

8.32 Name the members of the lanthanoid series which exhibit +4 oxidation state and those which exhibit +2 oxidation state. Try to correlate this type of behavior with the electronic configurations of these elements.

Show Answer

Answer

The lanthanides that exhibit +2 and +4 states are shown in the given table. The atomic numbers of the elements are given in the parenthesis.

$\mathbf{+ 2}$ $\mathbf{+ 4}$
$\mathrm{Nd}(60)$ $\mathrm{Ce}(58)$
$\mathrm{Sm}(62)$ $\operatorname{Pr}(59)$
$\operatorname{Eu}(63)$ $\mathrm{Nd}(60)$
$\mathrm{Tm}(69)$ $\mathrm{Tb}(65)$
$\mathrm{Yb}(70)$ $\mathrm{Dy}(66)$

Ce after forming $\mathrm{Ce}^{4+}$ attains a stable electronic configuration of $[\mathrm{Xe}]$.

$\mathrm{Tb}$ after forming $\mathrm{Tb}^{4+}$ attains a stable electronic configuration of $[\mathrm{Xe}] 4 f$.

Eu after forming $\mathrm{Eu}^{2+}$ attains a stable electronic configuration of $[\mathrm{Xe}] 4 f^{\prime}$.

$\mathrm{Yb}$ after forming $\mathrm{Yb}^{2+}$ attains a stable electronic configuration of $[\mathrm{Xe}] 4 f^{44}$

8.33 Compare the chemistry of the actinoids with that of lanthanoids with reference to:

(i) electronic configuration

(ii) oxidation states and

(iii) chemical reactivity.

Show Answer

Answer

Electronic configuration

The general electronic configuration for lanthanoids is $[\mathrm{Xe}]^{54} 4 f^{0-14} 5 d^{0-1} 6 s^{2}$ and that for actinoids is $[\mathrm{Rn}]^{86} 5 f^{-14} 6 d^{0-1} 7 s^{2}$. Unlike 4 forbitals, $5 f$ orbitals are not deeply buried and participate in bonding to a greater extent.

Oxidation states

The principal oxidation state of lanthanoids is (+3). However, sometimes we also encounter oxidation states of +2 and +4 . This is because of extra stability of fully-filled and half-filled orbitals. Actinoids exhibit a greater range of oxidation states. This is because the $5 f, 6 d$, and 7 slevels are of comparable energies. Again, $(+3)$ is the principal oxidation state for actinoids. Actinoids such as lanthanoids have more compounds in +3 state than in +4 state.

Chemical reactivity

In the lanthanide series, the earlier members of the series are more reactive. They have reactivity that is comparable to Ca. With an increase in the atomic number, the lanthanides start behaving similar to Al. Actinoids, on the other hand, are highly reactive metals, especially when they are finely divided. When they are added to boiling water, they give a mixture of oxide and hydride. Actinoids combine with most of the non-metals at moderate temperatures. Alkalies have no action on these actinoids. In case of acids, they are slightly affected by nitric acid (because of the formation of a protective oxide layer).

8.34 Write the electronic configurations of the elements with the atomic numbers 61, 91, 101, and 109.

Show Answer

Answer

Atomic number Electronic configuration
61 $[\mathrm{Xe}]^{54} 4 f^{5} 5 d^{0} 6 s^{2}$
91 $[\mathrm{Rn}]^{86} 5 f^{2} 6 d^{1} 7 s^{2}$
101 $[\mathrm{Rn}]^{86} 5 f^{13} 5 d^{0} 7 s^{2}$
109 $[\mathrm{Rn}]^{86} 5 f^{14} 6 d^{7} 7 s^{2}$

8.35 Compare the general characteristics of the first series of the transition metals with those of the second and third series metals in the respective vertical columns. Give special emphasis on the following points:

(i) electronic configurations,

(ii) oxidation states,

(iii) ionisation enthalpies, and

(iv) atomic sizes.

Show Answer

Answer

(i) In the $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ transition series, the $3 d, 4 d$ and $5 d$ orbitals are respectively filled.

We know that elements in the same vertical column generally have similar electronic configurations.

In the first transition series, two elements show unusual electronic configurations:

$ \begin{aligned} & \operatorname{Cr}(24)=3 d^{5} 4 s^{1} \\ & \mathrm{Cu}(29)=3 d^{10} 4 s^{1} \end{aligned} $

Similarly, there are exceptions in the second transition series. These are:

$ \begin{aligned} & \mathrm{Mo}(42)=4 d^{5} 5 s^{1} \\ & \mathrm{Tc}(43)=4 d^{6} 5 s^{1} \\ & \mathrm{Ru}(44)=4 d^{7} 5 s^{1} \\ & \mathrm{Rh}(45)=4 d^{8} 5 s^{1} \\ & \mathrm{Pd}(46)=4 d^{10} 5 s^{0} \\ & \mathrm{Ag}(47)=4 d^{10} 5 s^{1} \end{aligned} $

There are some exceptions in the third transition series as well. These are:

$ \begin{aligned} & \mathrm{W}(74)=5 d^{4} 6 s^{2} \\ & \mathrm{Pt}(78)=5 d^{9} 6 s^{1} \\ & \mathrm{Au}(79)=5 d^{10} 6 s^{1} \end{aligned} $

As a result of these exceptions, it happens many times that the electronic configurations of the elements present in the same group are dissimilar.

(ii) In each of the three transition series the number of oxidation states shown by the elements is the maximum in the middle and the minimum at the extreme ends.

However, +2 and +3 oxidation states are quite stable for all elements present in the first transition series. All metals present in the first transition series form stable compounds in the +2 and +3 oxidation states. The stability of the +2 and +3 oxidation states decreases in the second and the third transition series, wherein higher oxidation states are more important.

For example $\left[\stackrel{\text{II}}{\mathrm{Fe}}(\mathrm{Cn}) _{6}\right]^{4-},\left[\stackrel{\text{III}}{\mathrm{Co}}\left(\mathrm{NH _3}\right) _{6}\right]^{3+},\left[\mathrm{Ti} \left(\mathrm{H _2} \mathrm{O}\right) _{6}\right]^{3+}$ are stable complexes, but no such complexes are known for the second and third transition series such as Mo, W, Rh, In. They form complexes in which their oxidation states are high. For example: $\mathrm{WCl _6}, \mathrm{ReF _7}, \mathrm{RuO _4}$, etc.

(iii) In each of the three transition series, the first ionisation enthalpy increases from left to right. However, there are some exceptions. The first ionisation enthalpies of the third transition series are higher than those of the first and second transition series. This occurs due to the poor shielding effect of 4 felectrons in the third transition series.

Certain elements in the second transition series have higher first ionisation enthalpies than elements corresponding to the same vertical column in the first transition series. There are also elements in the $2^{\text {nd }}$ transition series whose first ionisation enthalpies are lower than those of the elements corresponding to the same vertical column in the $1^{\text {st }}$ transition series.

(iv) Atomic size generally decreases from left to right across a period. Now, among the three transition series, atomic sizes of the elements in the second transition series are greater than those of the elements corresponding to the same vertical column in the first transition series. However, the atomic sizes of the elements in the third transition series are virtually the same as those of the corresponding members in the second transition series. This is due to lanthanoid contraction.

8.36 Write down the number of 3d electrons in each of the following ions:

$\mathrm{Ti}^{2+}, \mathrm{V}^{2+}, \mathrm{Cr}^{3+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{CO}^{2+}, \mathrm{Ni}^{2+}$ and $\mathrm{Cu}^{2+}$.

Indicate how would you expect the five 3d orbitals to be occupied for these hydrated ions (octahedral).

Show Answer

Answer

$ \begin{array}{|c|c|c|} \hline \text{Metal ion} & \text{Number of } \mathbf{d}\text{-electrons} & \text{Filling of } \mathbf{d}\text{-orbitals} \\ \hline \mathrm{Ti}^{2+} & 2 & t_{2 g}^{2} \\ \hline \mathrm{V}^{2+} & 3 & t_{2 g}^{3} \\ \hline \mathrm{Cr}^{3+} & 3 & t_{2 g}^{3} \\ \hline \mathrm{Mn}^{2+} & 5 & t_{2 g}^{3} e_{g}^{2} \\ \hline \mathrm{Fe}^{2+} & 6 & t_{2 g}^{4} e_{g}^{2} \\ \hline \mathrm{Fe}^{3+} & 5 & t_{2 g}^{3} e_{g}^{2} \\ \hline \mathrm{CO}^{2+} & 7 & t_{2 g}^{5} e_{g}^{2} \\ \hline \mathrm{Ni}^{2+} & 8 & t_{2 g}^{6} e_{g}^{2} \\ \hline \mathrm{Cu}^{2+} & 9 & t_{2 g}^{6} e_{g}^{3} \\ \hline \end{array} $

8.37 Comment on the statement that elements of the first transition series possess many properties different from those of heavier transition elements.

Show Answer

Answer

The properties of the elements of the first transition series differ from those of the heavier transition elements in many ways.

(i) The atomic sizes of the elements of the first transition series are smaller than those of the heavier elements (elements of $2^{\text {nd }}$ and $3^{\text {rd }}$ transition series).

However, the atomic sizes of the elements in the third transition series are virtually the same as those of the corresponding members in the second transition series. This is due to lanthanoid contraction.

(ii) +2 and +3 oxidation states are more common for elements in the first transition series, while higher oxidation states are more common for the heavier elements.

(iii) The enthalpies of atomisation of the elements in the first transition series are lower than those of the corresponding elements in the second and third transition series.

(iv) The melting and boiling points of the first transition series are lower than those of the heavier transition elements. This is because of the occurrence of stronger metallic bonding ( $M-M$ bonding).

(v) The elements of the first transition series form low-spin or high-spin complexes depending upon the strength of the ligand field. However, the heavier transition elements form only low-spin complexes, irrespective of the strength of the ligand field.

8.38 What can be inferred from the magnetic moment values of the following complex species?

Example Moment Magnetic $(\mathrm{BM})$
$\mathrm{K}_4\left[\mathrm{Mn}(\mathrm{CN})_6\right)$ 2.2
$\left[\mathrm{Fe}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{2+}$ 5.3
$\mathrm{~K}_2\left[\mathrm{MnCl}_4\right]$ 5.9
Show Answer

Answer

Magnetic moment $\left(\mu\right)$ is given as $\mu=\sqrt{n(n+2)}$.

For value $n=1, \mu=\sqrt{1(1+2)}=\sqrt{3}=1.732$.

For value $n=2, \quad \mu=\sqrt{2(2+2)}=\sqrt{8}=2.83$.

For value $n=3, \mu=\sqrt{3(3+2)}=\sqrt{15}=3.87$.

For value $n=4, \mu=\sqrt{4(4+2)}=\sqrt{24}=4.899$.

For value $n=5, \mu=\sqrt{5(5+2)}=\sqrt{35}=5.92$.

(i) $\mathrm{K_4}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$

For in transition metals, the magnetic moment is calculated from the spin-only formula. Therefore,

$ \sqrt{n(n+2)}=2.2 $

We can see from the above calculation that the given value is closest to $n=1$. Also, in this complex, $\mathrm{Mn}$ is in the +2 oxidation state. This means that Mn has 5 electrons in the $d$-orbital.

Hence, we can say that $\mathrm{CN}$ - is a strong field ligand that causes the pairing of electrons.

(ii) $\left[\mathrm{Fe}\left(\mathrm{H_2} \mathrm{O}\right)_{6}\right]^{2+}$

$ \sqrt{n(n+2)}=5.3 $

We can see from the above calculation that the given value is closest to $n=4$. Also, in this complex, $\mathrm{Fe}$ is in the +2 oxidation state. This means that $\mathrm{Fe}$ has 6 electrons in the $d$-orbital.

Hence, we can say that $\mathrm{H_2} \mathrm{O}$ is a weak field ligand and does not cause the pairing of electrons.

(iii) $\mathrm{K_2}\left[\mathrm{MnCl_4}\right]$

$ \sqrt{n(n+2)}=5.9 $

We can see from the above calculation that the given value is closest to $n=5$. Also, in this complex, $\mathrm{Mn}$ is in the +2 oxidation state. This means that Mn has 5 electrons in the $d$-orbital.

Hence, we can say that $\mathrm{Cl}$ is a weak field ligand and does not cause the pairing of electrons.

“आयरन, कॉपर, सिल्वर और गोल्ड - सभी संक्रमण तत्वों में आते हैं जिन्होंने मानव सभ्यता के विकास में महत्वपूर्ण भूमिका निभाई है। आंतरिक संक्रमण तत्व जैसे $\boldsymbol{T h}$, $\mathrm{Pa}$ तथा $\mathrm{U}$ आधुनिक काल में नाभिकीय ऊर्जा के श्रेष्ठ स्रोत सिद्ध हो रहे हैं।” आवर्त सारणी के $d$-ब्लॉक में वर्ग 3 से 12 के तत्व आते हैं, जिसमें चारों दीर्घ आवर्तों में $d$ कक्षक भरे जाते हैं। $f$-ब्लॉक के तत्व वे हैं जिनमें दीर्घ आवर्तों में $4 f$ तथा $5 f$ कक्षक उत्तरोत्तर भरे जाते हैं; इन्हें आवर्त सारणी के नीचे एक अलग खण्ड में रखा गया है। $d$ - एवं $f$ - ब्लॉक के तत्वों को क्रमशः संक्रमण तत्व एवं आंतरिक संक्रमण तत्व भी कहते हैं।

संक्रमण तत्वों की मुख्य रूप से चार श्रेणियाँ हैं, $3 d$ श्रेणी ( $\mathrm{Sc}$ से $\mathrm{Zn}$ ), $4 d$ श्रेणी ( $\mathrm{Y}$ से $\mathrm{Cd}$ ), तथा $5 d$ श्रेणी ( $\mathrm{La}$ तथा $\mathrm{Hf}$ से $\mathrm{Hg}$ ) तथा चौथी $6 d$ श्रेणी जिसमें $\mathrm{Ac}$ तथा $\mathrm{Rf}$ से $\mathrm{Cn}$ तक तत्व आते हैं। आंतरिक संक्रमण तत्वों की दो श्रेणियाँ, $4 f(\mathrm{Ce}$ से $\mathrm{Lu})$ तथा $5 f(\mathrm{Th}$ से $\mathrm{Lr})$ क्रमशः लैन्थेनॉयड तथा ऐक्टिनॉयड कहलाती हैं।

मूलरूप से संक्रमण धातु नाम इस तथ्य से आया कि इनके रासायनिक गुण $\mathrm{s}$ तथा $\mathrm{p}$ ब्लॉक के मध्य परिवर्ती होते हैं। अब IUPAC के अनुसार संक्रमण धातुओं को ऐसी धातुओं के रूप में परिभाषित किया जाता है जिनके परमाणु अथवा आयन में $d$-कक्षक अपूर्ण होते हैं। वर्ग 12 के ज़िंक, कैडमियम तथा मर्क्यूरी में उनकी मूल अवस्था तथा उनकी सामान्य ऑक्सीकरण अवस्था में पूर्ण $d^{10}$ विन्यास है और इसीलिए इन्हें संक्रमण धातु नहीं माना जाता। फिर भी, क्रमशः $3 d, 4 d$ तथा $5 d$ संक्रमण श्रेणियों के अंतिम सदस्य होने के कारण इनके रसायन का अध्ययन संक्रमण धातुओं के रसायन के साथ किया जाता है।

इनके परमाणुओं में आंशिक भरित $d$-अथवा $f$ - कक्षकों की उपस्थिति संक्रमण तत्वों को असंक्रमण तत्वों से अलग कर देती है। इसलिए संक्रमण धातुओं और उनके यौगिकों का अध्ययन अलग से किया जाता है। फिर भी संयोजकता का सामान्य सिद्धांत जो असंक्रमण तत्वों पर लागू होता है, संक्रमण तत्वों पर भी सफलतापूर्वक प्रयुक्त किया जा सकता है।

अनेक बहुमूल्य धातुएं जैसे सिल्वर, गोल्ड तथा प्लैटिनम और औद्योगिक रूप से महत्वपूर्ण धातुएं जैसे आयरन, कॉपर तथा टाइटेनियम सभी संक्रमण धातुएं हैं। इस एकक में हम, संक्रमण तत्वों के इलेक्ट्रॉनिक विन्यास, उपलब्धता तथा सामान्य गुणों पर विचार करेंगे जिसमें प्रथम पंक्ति $(3 d)$ के तत्वों के गुणों में प्रवृत्ति पर अधिक ध्यान देंगे तथा उनके कुछ प्रमुख यौगिकों के विरचन व गुणों का अध्ययन करेंगे। तत्पश्चात आंतरिक संक्रमण धातुओं के सामान्य पहलुओं जैसे इलेक्ट्रॉनिक विन्यास, ऑक्सीकरण अवस्थाएं तथा रासायनिक अभिक्रियाशीलता पर विचार करेंगे।

4.1 आवर्त शारणी में स्थिति

आवर्त सारणी का बड़ा मध्य भाग $d$ - ब्लॉक ने घेरा हुआ है, जिसके दोनों ओर $s$ - तथा $p$ ब्लॉक स्थित हैं। इनके परमाणुओं में उपांतिम ऊर्जा स्तरों के $d$-कक्षकों में इलेक्ट्रॉन भरे जाते हैं तथा इस प्रकार संक्रमण धातुओं की चार पंक्तियाँ अर्थात् $3 d, 4 d, 5 d$ तथा $6 d$ प्राप्त होती हैं। संक्रमण तत्वों की यह श्रेणियाँ सारणी 4.1 में दर्शायी गई हैं।

4.2 $d$-ब्लॉक तत्वों के इलेक्ट्रॉनिक विन्यास

सामान्य रूप से इन तत्वों के बाहय कक्षकों का इलेक्ट्रॉनिक विन्यास $(\mathrm{n}-1) d^{1-10} \mathrm{~ns}^{1-2}$ है। $(\mathrm{n}-1)$ आंतरिक $d$ कक्षकों को इंगित करता है, जिनमें एक से दस तक इलेक्ट्रॉन हो सकते हैं तथा बाह्यतम $\mathrm{ns}$ कक्षक में एक अथवा दो इलेक्ट्रॉन हो सकते हैं। परंतु $(\mathrm{n}-1) d$ तथा $n s$ कक्षकों की ऊर्जाओं में बहुत कम अंतर के कारण इस सामान्य नियम के अनेक अपवाद हैं। पुनश्चः अर्ध एवं पूर्ण भरित कक्षकों का स्थायित्व अपेक्षाकृत अधिक होता है। इसका परिणाम $3 d$ श्रेणी के संक्रमण तत्वों, $\mathrm{Cr}$ तथा $\mathrm{Cu}$ के इलेक्ट्रॉनिक विन्यासों में प्रतिबिंबित होता है। उदाहरण के लिए $\mathrm{Cr}$ में $3 d^{4} 4 s^{2}$ के स्थान पर $3 d^{5} 4 s^{1}$ विन्यास है। $3 d$ व $4 s$ कक्षकों की ऊर्जाओं में अंतर इतना कम है कि वह $4 s$ इलेक्ट्रॉन के $3 d$ कक्षक में प्रवेश को रोक नहीं पाता। इसी प्रकार से $\mathrm{Cu}$ में इलेक्ट्रॉनिक विन्यास $3 d^{9} 4 s^{2}$ न होकर $3 d^{10} 4 s^{1}$ है। संक्रमण तत्वों की मूल अवस्था में बाहय कक्षकों के इलेक्ट्रॉनिक विन्यास सारणी 4.1 में दिए गए हैं।

सारणी 4.1- संक्रमण तत्वों के बाह्य इलेक्ट्रॉनिक विन्यास (मूल अवस्था )

प्रथम श्रेणी
$\mathrm{Sc}$ $\mathrm{Ti}$ $\mathrm{V}$ $\mathrm{Cr}$ $\mathrm{Mn}$ $\mathrm{Fe}$ $\mathrm{Co}$ $\mathrm{Ni}$ $\mathrm{Cu}$ $\mathrm{Zn}$
$Z$ 21 22 23 24 25 26 27 28 29 30
$4 s$ 1 2 2 1 2 2 2 2 1 2
$3 d$ 1 2 3 5 5 6 7 8 10 10
द्वितीय श्रेणी
$\mathrm{Y}$ $\mathrm{Zr}$ $\mathrm{Nb}$ $\mathrm{Mo}$ $\mathrm{Tc}$ $\mathrm{Ru}$ $\mathrm{Rh}$ $\mathrm{Pd}$ $\mathrm{Ag}$ $\mathrm{Cd}$
$Z$ 39 40 41 42 43 44 45 46 47 48
$5 s$ 2 2 1 1 1 1 1 0 1 2
$4 d$ 1 2 4 5 6 7 8 10 10 10
तृतीय श्रेणी
$\mathrm{La}$ $\mathrm{Hf}$ $\mathrm{Ta}$ $\mathrm{W}$ $\mathrm{Re}$ $\mathrm{Os}$ $\mathrm{Ir}$ $\mathrm{Pt}$ $\mathrm{Au}$ $\mathrm{Hg}$
$Z$ 57 72 73 74 75 76 77 78 79 80
$6 s$ 2 2 2 2 2 2 2 1 1 2
$5 d$ 1 2 3 4 5 6 7 9 10 10
चतुर्थ श्रेणी
$\mathrm{Ac}$ $\mathrm{Rf}$ $\mathrm{Db}$ $\mathrm{Sg}$ $\mathrm{Bh}$ $\mathrm{Hs}$ $\mathrm{Mt}$ $\mathrm{Ds}$ $\mathrm{Rg}$ $\mathrm{Cn}$
$Z$ 89 104 105 106 107 108 109 110 111 112
$7 \mathrm{~s}$ 2 2 2 2 2 2 2 2 1 2
$6 d$ 1 2 3 4 5 6 7 8 10 10

$\mathrm{Zn}, \mathrm{Cd}, \mathrm{Hg}$ तथा $\mathrm{Cn}$ के इलेक्ट्रॉनिक विन्यास, सामान्य सूत्र $(\mathrm{n}-1) d^{10} \mathrm{~ns}^{2}$ से प्रदर्शित किए जाते हैं। इन तत्वों की मूल अवस्थाओं तथा सामान्य ऑक्सीकरण अवस्थाओं में इनके कक्षक पूर्ण भरित होते हैं। इसीलिए इन्हें संक्रमण तत्वों की श्रेणी में नहीं माना जाता। संक्रमण तत्वों के $d$ कक्षक अन्य कक्षकों ( $s$ व $p$ ) की अपेक्षा परमाणु की सतह पर अधिक प्रक्षिप्त होते हैं, अतः वे अपने परिवेश से अधिक प्रभावित होते हैं तथा इसी प्रकार अपने चारों ओर के परमाणुओं अथवा अणुओं को भी प्रभावित करते हैं। कुछ पहलुओं में, एक से विन्यास $d^{n}(n=1-9)$ वाले आयनों में समान चुंबकीय एवं इलेक्ट्रॉनिक गुण पाए जाते हैं। आंशिक रूप से भरित $d$ कक्षकों के कारण ये तत्व कुछ अभिलक्षणिक गुण दर्शाते हैं, जैसे- अनेक ऑक्सीकरण अवस्थाएं, रंगीन आयनों का बनना तथा अनेक प्रकार के लिगन्डों के साथ संकुल निर्माण आदि।

संक्रमण धातुएं तथा इनके यौगिक उत्प्रेरकी गुण व अनुचुंबकीय व्यवहार भी दर्शाते हैं। इन सभी विशेषताओं की विवेचना विस्तार से इस एकक में बाद में की गई है।

असंक्रमण तत्वों के विपरीत संक्रमण तत्वों के गुणों में क्षैतिज समानताएं अधिक पाई जाती हैं। तथापि, कुछ वर्ग समानताएं भी पाई जाती हैं। हम पहले सामान्य अभिलक्षणों तथा उनकी क्षैतिज पंक्ति (प्रमुखतः $3 d$ पंक्ति) में प्रवृत्ति का अध्ययन करेंगे, तत्पश्चात् कुछ वर्ग समानताओं पर विचार करेंगे। निम्न खण्डों में हम केवल संक्रमण तत्वों की प्रथम श्रेणी की व्याख्या करेंगे।

पाठ्यनिहित प्रश्न

4.1 सिल्वर परमाणु की मूल अवस्था में पूर्ण भरित $d$ कक्षक $\left(4 d^{10}\right)$ हैं। आप कैसे कह सकते हैं कि यह एक संक्रमण तत्व है?

Show Answer #missing

4.3 संक्रगण तत्वों (d-ब्लॉक) के सामान्य गुण

समानताओं पर विचार करेंगे। निम्न खण्डों में हम केवल संक्रमण तत्वों की प्रथम श्रेणी की व्याख्या करेंगे।

4.3.1 भौतिक गुण

लगभग सभी संक्रमण तत्व अभिधात्विक गुण, जैसे उच्च तनन सामर्थ्य (tensile strength), तन्यता (ductility), वर्धनीयता (malleability), उच्च तापीय तथा विद्युत् चालकता एवं धात्विक चमक दर्शाते हैं। $\mathrm{Zn}, \mathrm{Cd}, \mathrm{Hg}$ तथा $\mathrm{Mn}$ जैसे अपवादों को छोड़कर सामान्य ताप पर इनकी एक या अधिक प्रारूपिक धात्विक संरचनाएं होती हैं। संक्रमण धातुओं की विभिन्न जालक संरचनाओं को आगे सारणी में दिया गया है।

संक्रमण धातुओं की जालक संरचनाएं

$\mathbf{S c}$ $\mathbf{T i}$ $\mathbf{V}$ $\mathbf{C r}$ $\mathbf{M n}$ $\mathbf{F e}$ $\mathbf{C o}$ $\mathbf{N i}$ $\mathbf{C u}$ $\mathbf{Z n}$
$h c p$ $h c p$ $b c c$ $b c c$ $X$ $b c c$ $c c p$ $c c p$ $c c p$ $X$
$(b c c)$ $(b c c)$ $(b c c, c c p)$ $(h c p)$ $(h c p)$ $(h c p)$
$\mathbf{Y}$ $\mathbf{Z r}$ $\mathbf{N b}$ $\mathbf{M o}$ $\mathbf{T c}$ $\mathbf{R u}$ $\mathbf{R h}$ $\mathbf{P d}$ $\mathbf{A g}$ $\mathbf{C d}$
$h c p$ $h c p$ $b c c$ $b c c$ $h c p$ $h c p$ $c c p$ $c c p$ $c c p$ $X$
$(b c c)$ $(b c c)$ $(hcp)$
$\mathbf{L a}$ $\mathbf{H f}$ $\mathbf{T a}$ $\mathbf{W}$ $\mathbf{R e}$ $\mathbf{O s}$ $\mathbf{I r}$ $\mathbf{P t}$ $\mathbf{A u}$ $\mathbf{H g}$
$h c p$ $h c p$ $b c c$ $b c c$ $h c p$ $h c p$ $c c p$ $c c p$ $c c p$ $X$
$(c c p, b c c)$ $(b c c)$

चित्र 4.1- संक्रमण तत्वों के गलनांकों की प्रवृत्तियाँ

$(b c c=$ काय केंद्रित घनीय; $h c p=$ षट्कोणीय निबिडतम संकुलन; $c c p=$ घनीय निबिड संकुलन; $X=$ एक विशेष धात्विक संरचना $)$. संक्रमण धातुएं (ज़िंक, कैडमियम तथा मर्क्यूरी के अपवादों के साथ) अतिकठोर तथा अल्प वाष्पशील होती हैं। इनके गलनांक व क्वथनांक उच्च होते हैं। चित्र 4.1 में $3 d, 4 d$ तथा $5 d$ श्रेणी की संक्रमण धातुओं के गलनांक दिए गए हैं। उच्च गलनांक का कारण अंतरापरमाण्विक धात्विक बंधन में $\mathrm{ns}$ इलेक्ट्रॉन के अतिरिक्त $(\mathrm{n}-1) d$ कक्षकों के अधिक इलेक्ट्रॉनों की भागीदारी है। केवल $\mathrm{Mn}$ तथा $\mathrm{Tc}$ के अपवादों को छोड़कर किसी भी श्रेणी में धातुओं के गलनांक $d^{5}$ विन्यास पर अधिकतम होते हैं तथा बढ़ते हुए परमाणु क्रमांकों के साथ गलनांकों में नियमित रूप से कमी आती है। इनकी कणन एन्थैल्पी (enthalpy of atomisation) के मान उच्च होते हैं जैसा कि चित्र 4.2 में दर्शाया गया है। प्रत्येक श्रेणी के लगभग मध्य में उच्चतम मान इस तथ्य को दर्शाता है कि प्रबल अंतरापरमाण्विक अन्योन्यक्रिया के लिए प्रति $d$ कक्षक एक अयुगलित इलेक्ट्रॉन का होना विशेष रूप से अनुकूल है। सामान्यतः संयोजकता इलेक्ट्रॉनों की संख्या जितनी अधिक होगी, उतना ही प्रबल परिमाणी आबंधन होगा। चूँकि धातुओं के मानक इलैक्ट्रोड विभव के निर्धारण में कणन एन्थैल्पी एक महत्वपूर्ण कारक है। अतः बहुत उच्च कणन एन्थैल्पी (अर्थात बहुत उच्च क्वथनांक) वाली धातुओं की प्रवृत्ति अभिक्रियाओं में उत्कृष्ट रहने की होती है। (इलैक्ट्रोड विभव के लिए बाद में देखें।)

चित्र 4.2 के आधार पर एक अन्य सामान्य नियम निकाला जा सकता है कि प्रथम संक्रमण श्रेणी के संगत तत्वों की तुलना में द्वितीय तथा तृतीय श्रेणी के तत्वों की कणन एन्थैल्पी के मान अधिक होते हैं; यह भारी संक्रमण धातुओं के यौगिकों में धातु-धातु आबंधों के बहुधा बनने में एक महत्वपूर्ण कारक है।

चित्र 4.2- संक्रमण तत्वों की कणन एन्थैल्पी की प्रवृत्तियाँ

4.3.2संक्रमण धातुओं के परमाण्विक एवं आयनिक आकारों में परिवर्तन

सामान्यत: श्रेणी में बढ़ते हुए परमाणु क्रमांक के साथ समान आवेश वाले आयनों की त्रिज्याओं में उत्तरोत्तर ह्रास होता है। इसका कारण है कि जब भी नाभिकीय आवेश में वृद्धि होती है, अतिरिक्त इलेक्ट्रॉन हर बार $d$ ऑर्बिटल में प्रवेश करता है। पुन: स्मरण करें कि $d$ इलेक्ट्रॉन का आवरण प्रभाव (screening effect) कम प्रभावशाली होता है, अतः नाभिकीय आवेश तथा बाह्यतम इलेक्ट्रॉन के बीच नेट वैद्युत आकर्षण में वृद्धि हो जाती है जिससे आयनी त्रिज्या का मान घट जाता है। इसी प्रकार की प्रवृत्ति किसी श्रेणी में परमाणु त्रिज्याओं में भी देखी जाती है। परंतु श्रेणी में त्रिज्याओं के मानों में यह परिवर्तन बहुत थोड़ा होता है। एक रोचक तथ्य प्रकाश में तब आता है जब किसी विशेष संक्रमण श्रेणी के तत्वों के आकार की तुलना, दूसरी श्रेणी के संगत तत्वों के आकार से की जाती है। चित्र 4.3 के वक्र दर्शाते हैं कि प्रथम संक्रमण श्रेणी ( $3 d)$ के तत्वों की तुलना में द्वितीय संक्रमण श्रेणी $(4 d)$ के संगत तत्वों का आकार बड़ा है परंतु तृतीय संक्रमण श्रेणी $(5 d)$ के तत्वों की त्रिज्याएं लगभग वही हैं जो कि द्वितीय संक्रमण श्रेणी के संगत तत्वों की हैं। यह परिघटना $4 f$ कक्षकों के बीच में आने के कारण होती है जिनमें इलेक्ट्रॉनों की आपूर्ति, $5 d$ श्रेणी के तत्वों के $d$ कक्षक में आपूर्ति प्रारंभ होने से पहले होनी चाहिए। $5 d$ कक्षकों के पूर्व $4 f$ कक्षकों में इलेक्ट्रॉनों की आपूर्ति के कारण परमाणु त्रिज्याओं में नियमित ह्रास होता है, जिसे लैन्थेनॉयड आकुंचन (Lanthanoid Contraction) कहते हैं। जो आवश्यक रूप से बढ़ते हुए परमाणु क्रमांक के साथ परमाणवीय आकार में हुई संभावित वृद्धि की क्षतिपूर्ति करता है। लैन्थेनॉयड आकुंचन के समग्र प्रभाव के कारण द्वितीय एवं तृतीय संक्रमण श्रेणी के अनुरूप तत्वों की त्रिज्याएं समान हो जाती हैं (उदाहरण $\mathrm{Zr}, 160 \mathrm{pm}$ तथा $\mathrm{Hf}$, $159 \mathrm{pm}$ ) तथा इनके भौतिक एवं रासायनिक गुणों में अत्यधिक समानता पाई जाती है, जो सामान्य जातिगत संबंधों के आधार पर अपेक्षित समानता से भी बहुत अधिक होती है।

चित्र 4.3- संक्रमण तत्वों की परमाणु त्रिज्याओं में प्रवृत्तियाँ

लैन्थेनॉयड आकुंचन के लिए उत्तरदायी कारक लगभग वही है जो एक सामान्य संक्रमण श्रेणी के लिए देखा जाता है तथा समान कारण के लिए उत्तरदायी है, अर्थात् एक ही समुच्चय के कक्षकों में एक इलेक्ट्रॉन द्वारा दूसरे पर अपूर्ण आवरण प्रभाव। परंतु एक $4 f$ इलेक्ट्रॉन द्वारा दूसरे पर आवरण प्रभाव, एक $d$ इलेक्ट्रॉन द्वारा दूसरे पर आवरण प्रभाव की तुलना में कम होता है तथा जैसे-जैसे एक श्रेणी में नाभिकीय आवेश में वृद्धि होती है, सभी $4 f^{\mathrm{n}}$ कक्षकों के आकार में नियमित ह्रास होता है।

धात्विक त्रिज्या में ह्रास के साथ परमाण्विक द्रव्यमान में वृद्धि के परिणामस्वरूप इन तत्वों के घनत्व में सामान्यतः वृद्धि होती है। इस प्रकार की महत्वपूर्ण घनत्व वृद्धि टाइटेनियम $(Z=22)$ से कॉपर $(Z=29)$ तक देखने को मिलती है (सारणी 4.2)।

सारणी 4.2- प्रथम संक्रमण श्रेणी के तत्वों के इलेक्ट्रॉनिक विन्यास एवं कुछ अन्य गुण

तत्व Sc $\mathbf{T i}$ $\mathbf{V}$ Cr Mn $\mathrm{Fe}$ Co $\mathbf{N i}$ $\mathbf{C u}$ $\mathrm{Zn}$
परमाणु क्रमांक इलेक्ट्रॉॉनिक विन्यार 21 22 23 24 25 26 27 28 29 30
M $3 d^{1} 4 s^{2}$ $3 d^{2} 4 s^{2}$ $3 d^{3} 4 s^{2}$ $3 d^{5} 4 s^{1}$ $3 d^{5} 4 s^{2}$ $3 d^{6} 4 s^{2}$ $3 d^{7} 4 s^{2}$ $3 d^{8} 4 s^{2}$ $3 d^{10} 4 s^{1}$ $3 d^{10} 4 s^{2}$
$\mathrm{M}^{+}$ $3 d^{1} 4 s^{1}$ $3 d^{2} 4 s^{1}$ $3 d^{3} 4 s^{1}$ $3 d^{5}$ $3 d^{5} 4 s^{1}$ $3 d^{6} 4 s^{1}$ $3 d^{7} 4 s^{1}$ $3 d^{8} 4 s^{1}$ $3 d^{10}$ $3 d^{10} 4 s^{1}$
$\mathrm{M}^{2+}$ $3 d^{1}$ $3 d^{2}$ $3 d^{3}$ $3 d^{4}$ $3 d^{5}$ $3 d^{6}$ $3 d^{7}$ $3 d^{8}$ $3 d^{9}$ $3 d^{10}$
$\mathrm{M}^{3+}$ [Ar] $3 d^{1}$ $3 d^{2}$ $3 d^{3}$ $3 d^{4}$ $3 d^{5}$ $3 d^{6}$ $3 d^{7}$ - -
कणन एन्थैल्पी, $\Delta _{a} H^{\ominus} / \mathbf{k J} \mathbf{~ m o l}^{-\mathbf{1}}$
326 473 515 397 281 416 425 430 339 126
आयनन एन्थैल्पी $/ \Delta _{i} H^{\ominus} / \mathrm{kJ} \mathrm{mol}{ }^{-1}$
$\Delta _{\mathrm{i}} H^{\ominus}$ I 631 656 650 653 717 762 758 736 745 906
$\Delta _{\mathrm{i}} H^{\ominus}$ II 1235 1309 1414 1592 1509 1561 1644 1752 1958 1734
$\Delta _{\mathrm{i}} H^{\ominus}$ III 2393 2657 2833 2990 3260 2962 3243 3402 3556 3837
धात्विक/आयनिक M 164 147 135 129 137 126 125 125 128 137
त्रिज्याएं/pm $\mathrm{M}^{2+}$ - - 79 82 82 77 74 70 73 75
$\mathrm{M}^{3+}$ 73 67 64 62 65 65 61 60 - -
मानक इलैक्ट्रोड $\mathrm{M}^{2+} / \mathrm{M}$ - -1.63 -1.18 -0.90 -1.18 -0.44 -0.28 -0.25 +0.34 -0.76
विभव $E^{\ominus} / \mathrm{V}$ $\mathrm{M}^{3+} / \mathrm{M}^{2+}$ - -0.37 -0.26 -0.41 +1.57 +0.77 +1.97 - - -
घनत्व/g cm ${ }^{-3}$ 3.43 4.1 6.07 7.19 7.21 7.8 8.7 8.9 8.9 7.1

उदाहरण 4.2 संक्रमण तत्व कणन एन्थैल्पी के उच्च मान क्यों दर्शाते हैं?

हल क्योंकि इनके परमाणुओं में बड़ी संख्या में अयुगलित इलेक्ट्रॉन होते हैं, इसलिए इनमें प्रबल अंतरापरमाण्विक अन्योन्य क्रिया होती है अतः परमाणुओं के मध्य प्रबल आबंधन के फलस्वरूप कणन एन्थैल्पी उच्च होती है।

पाव्यनिहित प्रश्न

4.2 श्रेणी, $\mathrm{Sc}(Z=21)$ से $\mathrm{Zn}(Z=30)$ में, ज़िंक की कणन एन्थैल्पी का मान सबसे कम होता है, अर्थात् $126 \mathrm{~kJ} \mathrm{~mol}^{-1}$; क्यों?

Show Answer #missing

4.3.3आयनन एन्थैल्पी

आंतरिक $d$ कक्षकों के भरने के साथ नाभिकीय आवेश में वृद्धि होने के कारण श्रेणी में बाएं से दाहिनी ओर बढ़ने पर संक्रमण श्रेणी के तत्वों की आयनन एन्थैल्पी में वृद्धि होती है, सारणी 4.2 में प्रथम संक्रमण श्रेणी के तत्वों की प्रथम तीन आयनन एन्थैल्पियों के मान दिए गए हैं। इन मानों से स्पष्ट है कि इन तत्वों की क्रमिक एन्थैल्पी में वैसी तीव्र वृद्धि नहीं होती जैसी कि असंक्रमण तत्वों में। संक्रमण तत्वों की श्रेणी में आयनन एन्थैल्पी में परिवर्तन असंक्रमण तत्वों की श्रेणी से कम होता है। सामान्यतः प्रथम आयनन एन्थैल्पी के मान में वृद्धि होती है परंतु उत्तरोत्तर तत्वों की द्वितीय एवं तृतीय आयनन एन्थैल्पी के मानों में हुई वृद्धि का परिमाण सामान्यतः बहुत अधिक होता है।

$3 d$ श्रेणी की धातुओं की प्रथम आयनन एन्थैल्पी की अनियमित प्रवृत्ति का यद्यपि कोई खास रासायनिक महत्व नहीं है फिर भी यह स्पष्टीकरण दिया जा सकता है कि एक इलेक्ट्रॉन पृथक करने से $4 s$ तथा $3 d$ कक्षकों की आपेक्षिक ऊर्जाओं में परिवर्तन होता है। आपने पढ़ा है कि जब $d$-ब्लॉक के तत्व आयन बनाते हैं तो $n s$ इलेक्ट्रॉन $(n-1) d$ इलेक्ट्रॉनों से पहले निकलते हैं। हम जैसे-जैसे $3 d$ शृंखला के आवर्त में बढ़ते हैं तो स्कैन्डियम से ज़िंक की ओर जाने पर नाभिक का आवेश बढ़ता है परंतु इलेक्ट्रॉन आतंरिक उपकोश के कक्षक यानी $3 d$ कक्षक में जाते हैं। यह $3 d$ इलेक्ट्रॉन $4 s$ इलेक्ट्रॉनों को बढ़ते हुए नाभिक आवेश से उस स्थिति के मुकाबले कुछ अधिक प्रभावी ढंग से परिरक्षित कर सकते हैं, जिसमें वाहय इलेक्ट्रॉन एक दूसरे को परिरक्षित करते हैं। अतः परमाण्विक त्रिज्या कम तेज़ी से घटती है। इसलिए $3 d$ शृंख्ला में इलेक्ट्रॉनी ऊर्जा में मामूली वृद्धि होती है। दो या अधिक धन आवेश वाले आयनों का विन्यास $d^{\mathrm{n}}$ होता है तथा $4 s$ में इलेक्ट्रॉन नहीं होते। सामान्यतः द्वितीय आयनन एन्थैल्पी के मान में नाभिकीय आवेश में वृद्धि के साथ बढ़ने की प्रवृत्ति की अपेक्षा होती है, क्योंकि एक $d$ इलेक्ट्रॉन दूसरे $d$ इलेक्ट्रॉन को नाभिक के आवेश के प्रभाव से परिरक्षित नहीं करता। इसका कारण $d$-कक्षकों की दिशा का भिन्न होना है। यद्यपि द्वितीय एवं तृतीय आयनन एन्थैल्पी में निरंतर वृद्धि का प्रवाह $\mathrm{Mn}^{2+}$ तथा $\mathrm{Fe}^{3+}$ आयन बनने में टूट जाता है। दोनों में ही आयनों का विन्यास $\mathrm{d}^{5}$ है। इसी प्रकार का विचलन बाद की संक्रमण श्रृंखलाओं के संगत तत्वों में भी आता है।

$d^{n}$ इलेक्ट्रॉनी विन्यास के लिए आयनन एन्थैल्पी में परिवर्तन की व्याख्या निम्नलिखित है -

आयनन एन्थैल्पी का मान प्रत्येक इलेक्ट्रॉन के नाभिक की ओर आकर्षण, दो इलेक्ट्रॉनों के बीच प्रतिकर्षण और विनिमय ऊर्जा पर निर्भर करता है। ऊर्जा स्तर के स्थायित्व के लिए विनिमय ऊर्जा उत्तरदायी होती है। विनिमय ऊर्जा, अपभ्रष्ट कक्षकों में समदिश प्रचक्रणों के कुल संभव युगलों के लगभग समानुपाती होती है। जब अपभ्रष्ट कक्षकों में अनेक इलेक्ट्रॉन होते हैं तो निम्नतम ऊर्जा वाला स्तर वह होता है जिसमें अधिकतम कक्षकों में समदिश प्रचक्रण वाले एक-एक इलेक्ट्रॉन होते हैं (हुंड का नियम)। विनिमय ऊर्जा का ह्रास होने से स्थायित्व बढ़ता है और स्थायित्व बढ़ने से आयनन कठिन हो जाता है। $d^{6}$ विन्यास में विनिमय ऊर्जा का ह्रास नहीं होता। $\mathrm{Mn}^{+}$आयन का विन्यास $3 d^{5} 4 \mathrm{~s}^{1}$ और $\mathrm{cr}^{+}$आयन का विन्यास $d^{5}$ है अत: $\mathrm{Mn}^{+}$की एन्थैल्पी $\mathrm{Cr}^{+}$से कम होती है। इसी प्रकार से $\mathrm{Mn}^{2+}$ का विन्यास $d^{5}$ है अत: $\mathrm{Fe}^{2+}$ की एन्थैल्पी $\mathrm{Mn}^{2+}$ से कम है। दूसरे शब्दों में हम कह सकते हैं कि $\mathrm{Fe}$ की तृतीय आयनन एन्थैल्पी $\mathrm{Mn}$ से कम है।

इन धातुओं की निम्नतम ऑक्सीकरण अवस्था +2 है। गैसीय अणुओं से $\mathrm{M}^{2+}$ आयन बनाने हेतु, कणन एन्थैल्पी के साथ-साथ प्रथम एवं द्वितीय आयनन ऊर्जाओं की भी आवश्यकता होती है। प्रमुख पद द्वितीय आयनन एन्थैल्पी है, जिसका मान $\mathrm{Cr}$ और $\mathrm{Cu}$ के लिए अप्रत्याशित रूप से उच्च है, जिनमें $\mathrm{M}^{+}$आयनों का क्रमशः $d^{5}$ तथा $d^{10}$ विन्यास होता है। $\mathrm{Zn}$ के लिए संगत मान कम होता है क्योंकि आयनन हेतु एक $1 \mathrm{~s}$ इलेक्ट्रॉन निकलता है जिससे स्थायी $d^{10}$ विन्यास प्राप्त होता है। तृतीय आयनन एन्थैल्पी में प्रवृत्ति $4 \mathrm{~s}$ कक्षक के कारक द्वारा जटिल नहीं बनती और $d^{5}\left(\mathrm{Mn}^{2+}\right)$ तथा $d^{10}\left(\mathrm{Zn}^{2+}\right)$ से एक इलेक्ट्रॉन हटाने में अधिक कठिनाई प्रदर्शित होती है। सामान्यतः, तृतीय आयनन एन्थैल्पी पर्याप्त उच्च हैं। कॉपर, जिंक और निकैल की तृतीय आयनन एन्थैल्पी के उच्च मान इंगित करते हैं कि क्यों इन तत्वों की +2 से उच्च ऑक्सीकरण अवस्थाएँ प्राप्त करना कठिन है।

यद्यपि आयनन एन्थैल्पियाँ, ऑक्सीकरण अवस्थाओं के तुलनात्मक स्थायित्व से संबंधित कुछ मार्गदर्शन देती हैं, फिर भी यह समस्या बहुत जटिल है और तात्कालिक व्यापकीकरण हेतु संशोधनीय नहीं है।

4.3.4 ऑक्सीकरण अवस्था

संक्रमण तत्वों के विशिष्ट लक्षणों में से एक लक्षण इन तत्त्वों द्वारा यौगिकों में कई ऑक्सीकरण अवस्थाएं दर्शाना है। सारणी 4.3 में प्रथम संक्रमण श्रेणी के तत्त्वों की सामान्य ऑक्सीकरण अवस्थाओं को सूचीबद्ध किया गया है।

सारणी 4.3- प्रथम संक्रमण श्रेणी की धातुओं की ऑक्सीकरण अवस्थाएं ( अति सामान्य ऑक्सीकरण अवस्थाओं को मोटे टाइप में दिखाया गया है।)

Sc $\mathbf{T i}$ $\mathbf{V}$ $\mathrm{Cr}$ Mn $\mathrm{Fe}$ Co $\mathbf{N i}$ $\mathrm{Cu}$ $\mathrm{Zn}$
+3 +2 +2 +2 +2 +2 +2 +2 +1 +2
+3 +3 +3 +3 +3 +3 +3 +2
+4 +4 +4 +4 +4 +4 +4
+5 +5 +5
+6 +6 +6
+7

अत्यधिक संख्या में ऑक्सीकरण अवस्थाएं दर्शाने वाले तत्व संक्रमण श्रेणी के मध्य में या इसके निकट स्थित हैं। उदाहरणार्थ, मैंगनीज +2 से +7 तक की सभी ऑक्सीकरण अवस्थाएं दर्शाता है। श्रेणी के दोनों किनारों पर ऑक्सीकरण अवस्थाओं की संख्या कम पाई जाती है। इसका कारण तत्वों $(\mathrm{Sc}, \mathrm{Ti})$ में परित्याग या साझेदारी के लिए कम इलेक्ट्रॉनों की उपलब्धता अथवा तत्वों के संयोजकता कोश में $d$ इलेक्ट्रॉनों की अधिक संख्या (परिमाणत: भागीदारी के लिए कम कक्षकों की उपलब्धता) $[\mathrm{Cu}, \mathrm{Zn}]$ है। इस प्रकार प्रथम श्रेणी के आरंभ में स्कैन्डियम (II) वास्तविकता में अज्ञात है तथा $\mathrm{Ti}(\mathrm{II})$ या $\mathrm{Ti}(\mathrm{III})$ की तुलना में $\mathrm{Ti}(\mathrm{IV})$ अधिक स्थायी है। श्रेणी के दूसरे छोर पर ज़िंक की एकमात्र ऑक्सीकरण अवस्था +2 है ( $d$ इलेक्ट्रॉनों की भागीदारी नहीं है)। सामान्य स्थायित्व वाली अधिकतम ऑक्सीकरण अवस्थाओं की संख्या मैंगनीज तक $s$ तथा $d$ कक्षकों में उपस्थित इलेक्ट्रॉनों की संख्या के योग के बराबर है। $\left(\mathrm{Ti}^{\mathrm{IV}} \mathrm{O} _{2} \mathrm{~V}^{\mathrm{V}} \mathrm{O} _{2}^{+}, \mathrm{Cr}^{\mathrm{VI}} \mathrm{O} _{4}^{2-} \mathrm{Mn}^{\mathrm{VII}} \mathrm{O} _{4}^{-}\right)$। इसके पश्चात् तत्वों की उच्च ऑक्सीकरण अवस्थाओं के स्थायित्व में आकस्मिक कमी आ जाती है जिसका अनुगमन करने वाली अभिलक्षणिक स्पीशीज़ हैं $\left(\mathrm{Fe}^{\mathrm{II}, \mathrm{II}}, \mathrm{Co}^{\mathrm{II}, \mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}, \mathrm{Cu}^{\mathrm{I}, \mathrm{II}}\right.$ तथा $\left.\mathrm{Zn}^{\mathrm{II}}\right)$ ।

परिवर्तनीय ऑक्सीकरण अवस्थाएं जो कि संक्रमण तत्वों की एक विशेषता हैं, का कारण है, अपूर्ण $d$ कक्षकों में इलेक्ट्रॉनों का इस प्रकार से प्रवेश करना, जिससे इन तत्वों की ऑक्सीकरण अवस्थाओं में एक का अंतर बना रहता है। इसका उदाहरण, $\mathrm{V}^{\mathrm{II}}, \mathrm{V}^{\mathrm{II}}, \mathrm{V}^{\mathrm{IV}}, \mathrm{V}^{\mathrm{V}}$ हैं। उल्लेखनीय है कि असंक्रमण तत्वों (non-transition elements) में, विभिन्न ऑक्सीकरण अवस्थाओं में सामान्यतः दो का अंतर पाया जाता है।

$d$-ब्लॉक तत्त्वों के वर्गों (वर्ग 4 से 10) की ऑक्सीकरण अवस्थाओं की परिवर्तनशीलता में एक रोचक तथ्य देखने को मिलता है। $p$-ब्लॉक में (अक्रिय युगल प्रभाव के कारण) भारी सदस्यों द्वारा निम्न ऑक्सीकरण अवस्थाएं बनना अनुकूल होता है, जबकि $d$-ब्लॉक में इसका विपरीत सही है। उदाहरणार्थ- वर्ग 6 में $\mathrm{Mo}(\mathrm{VI})$ तथा $\mathrm{W}(\mathrm{VI})$ का स्थायित्व $\mathrm{Cr}(\mathrm{VI})$ से अधिक हैं। अतः अम्लीय माध्यम में $\mathrm{Cr}(\mathrm{VI})$, डाइक्रोमेट के रूप में प्रबल ऑक्सीकारक है जबकि $\mathrm{MoO} _{3}$ एवं $\mathrm{WO} _{3}$ नहीं।

निम्न ऑक्सीकरण अवस्थाएं तब पाई जाती है जब एक संकुल यौगिक में ऐसे लिगन्ड हों जिनमें $\sigma$-आबंधन के अतिरिक्त $\pi$-ग्राही गुण भी पाए जाते हों। उदाहरणार्थ - $\mathrm{Ni}(\mathrm{CO}) _{4}$ और $\mathrm{Fe}(\mathrm{CO}) _{5}$, में निकैल और आयरन की ऑक्सीकरण अवस्था शून्य है।

उदाहरण 4.3 ऐसे संक्रमण तत्त्व का नाम बताइए जिसमें परिवर्तनीय ऑक्सीकरण अवस्थाएं नहीं पाई जातीं।

हल स्कैन्डियम $(Z=21)$ परिवर्तनीय ऑक्सीकरण अवस्थाएं नहीं दर्शाता।

पाठ्यनिहित प्रश्न

4.3 संक्रमण तत्त्वों की $3 d$ श्रेणी का कौन सा तत्व बड़ी संख्या में ऑक्सीकरण अवस्थाएं दर्शाता है एवं क्यों?

Show Answer #missing

4.3.5 $\mathbf{~ M}^{2+} / \mathbf{M}$ मानक इलैक्ट्रोड विभवों में प्रवृत्तियाँ

विलयन में ठोस धातु के $\mathrm{M}^{2+}$ आयन में रूपांतरण से संबंधित ऊष्मा-रासायनिक प्राचल और मानक इलैक्ट्रोड विभव सारणी 4.4 में दिए गए हैं। सारणी 4.4 के मानों का उपयोग करके परिकलित मानों तथा $\mathrm{E}^{\ominus}$ के प्रेक्षित मानों के मध्य तुलना को चित्र 4.4 में दर्शाया गया है।

चित्र 4.4-Ti से $\mathrm{Zn}$ तक के तत्त्वों के $\left(\mathrm{M}^{2+} \rightarrow \mathrm{M}^{\circ}\right)$ मानक इलैक्ट्रोड विभवों के प्रेक्षित तथा परिकलित मान

कॉपर का घनात्मक $\mathrm{E}^{\ominus}$ के कारण अद्वितीय व्यवहार, इसकी अम्लों से $\mathrm{H} _{2}$ मुक्त करने की असमर्थता का स्पष्टीकरण देता है। केवल ऑक्सीकारक अम्ल (नाइट्रिक अम्ल और गरम सांद्र सल्फ्यूरिक अम्ल) ही $\mathrm{Cu}$ के साथ अभिक्रिया करते हैं और ये अम्ल अपचित हो जाते हैं। $\mathrm{Cu}(\mathrm{s})$ के $\mathrm{Cu}^{2+}(\mathrm{aq})$ में रूपांतरण के लिए आवश्यक उच्च ऊर्जा, इसकी जलयोजन एन्थैल्पी से संतुलित नहीं हो पाती। श्रेणी में $\mathrm{E}^{\ominus}$ के कम ॠणात्मक मानों की सामान्य प्रवृत्ति धातुओं के प्रथम एवं द्वितीय आयनन एन्थैल्पी के योग में सामान्य वृद्धि से संबंधित है। यह जानना रोचक है कि $\mathrm{Mn}, \mathrm{Ni}$ तथा $\mathrm{Zn}$ के $\mathrm{E}^{\ominus}$ के मान सामान्य प्रवृत्ति द्वारा आपेक्षित मानों से अधिक ऋणात्मक होते हैं।

सारणी 4.4- प्रथम श्रेणी के संक्रमण तत्वों के ऊष्मा-रासायनिक मान (kJ mol-1) और $M(I I)$ से $M$ में अपचयन के मानक इलैक्ट्रोड विभवों के मान

तत्त्व $(\mathbf{M})$ $\Delta _{a} \mathbf{H}^{\ominus}(\mathbf{M})$ $\boldsymbol{\Delta} _{\boldsymbol{i}} \mathbf{H} _{1}^{\ominus}$ $\boldsymbol{\Delta} _{\mathbf{i}} \mathbf{H} _{2}^{\ominus}$ $\boldsymbol{\Delta} _{\mathbf{h y d}} \mathbf{H}^{\ominus}\left(\mathbf{M}^{2+}\right)$ $\mathbf{E}^{\ominus} / \mathbf{V}$
$\mathrm{Ti}$ 469 656 1309 -1866 -1.63
$\mathrm{~V}$ 515 650 1414 -1895 -1.18
$\mathrm{Cr}$ 398 653 1592 -1925 -0.90
$\mathrm{Mn}$ 279 717 1509 -1862 -1.18
$\mathrm{Fe}$ 418 762 1561 -1998 -0.44
$\mathrm{Co}$ 427 758 1644 -2079 -0.28
$\mathrm{Ni}$ 431 736 1752 -2121 -0.25
$\mathrm{Cu}$ 339 745 1958 -2121 0.34
$\mathrm{Zn}$ 130 906 1734 -2059 -0.76

उदाहरण 4.4 $\mathrm{Cr}^{2+}$ अपचायक है जबकि $\mathrm{Mn}^{3+}$ ऑक्सीकारक, जबकि दोनों का $d^{4}$ विन्यास है, क्यों?

हल $\mathrm{Cr}^{2+}$ एक अपचायक है; क्योंकि इसका विन्यास $d^{4}$ से $d^{3}$ में परिवर्तित होता है जिसमें अर्ध-भरित $t _{2 g}$ स्तर (एकक 5 देखें) होता है। दूसरी ओर $\mathrm{Mn}^{3+}$ से $\mathrm{Mn}^{2+}$ में परिवर्तन से अर्धभरित $\left(d^{5}\right)$ विन्यास प्राप्त होता है जो इसे अतिरिक्त स्थायित्व प्रदान करता है।

$\mathrm{Mn}^{2+}$ में अर्ध-भरित $d$ - कक्षक का स्थायित्व और $\mathrm{Zn}^{2+}$ में पूर्णभरित $d^{10}$ विन्यास इनके $\mathrm{E}^{\ominus}$ मानों से संबंधित है, जबकि $\mathrm{Ni}$ का $\mathrm{E}^{\ominus}$ इसके उच्चतम ॠणात्मक $\Delta_{\mathrm{hyd}} \mathrm{H}^{\ominus}$ से संबंधित है।

4.3.6 मानक इलैक्ट्रोड विभवों $\mathbf{M}^{3+} / \mathbf{M}^{2+}$ में प्रवृत्तियाँ

सारणी 4.2 में $\mathrm{E}^{\ominus}\left(\mathrm{M}^{3+} / \mathrm{M}^{2+}\right)$ के मानों का अवलोकन इनकी परिवर्तनशील प्रवृत्तियों को दर्शाता है। $\mathrm{Sc}$ के लिए इसका निम्न मान, $\mathrm{Sc}^{3+}$ के स्थायित्व को दर्शाता है जिसका विन्यास अक्रिय गैस विन्यास है। $\mathrm{Zn}$ के लिए इसके उच्चतम मान का कारण $\mathrm{Zn}^{2+}$ के स्थायी $d^{10}$ विन्यास से एक इलेक्ट्रॉन का हटना है। $\mathrm{Mn}$ के लिए अपेक्षाकृत उच्च मान दर्शाता है कि $\mathrm{M} _{\mathrm{n}}^{2+}\left(d^{5}\right)$ विशेष रूप से स्थायी है जबकि $\mathrm{Fe}$ के अपेक्षाकृत निम्न मान, $\mathrm{Fe}^{3+}\left(d^{5}\right)$ के अतिरिक्त स्थायित्व को दर्शाते हैं। $\mathrm{V}$ के अपेक्षाकृत निम्न मान $\mathrm{V}^{2+}$ के स्थायित्व से संबंधित हैं। (अर्धभरित $\mathrm{t} _{2 \mathrm{~g}}$ स्तर, एकक 5 )।

4.3.7 उच्चतम ऑक्सीकरण अवस्थाओं के स्थायित्व की प्रवृत्तियाँ

सारणी 4.5 संक्रमण धातुओं की $3 d$ श्रेणी के स्थायी हैलाइडों को दर्शाती है। उच्चतम ऑक्सीकरण संख्या $\mathrm{TiX} _{4}$ (टेट्राहैलाइडों), $\mathrm{VF} _{5}$ और $\mathrm{CrF} _{6}$ में प्राप्त होती हैं। $\mathrm{Mn}$ की +7 ऑक्सीकरण अवस्था सरल हैलाइड में प्रदर्शित नहीं होती परंतु $\mathrm{MnO} _{3} \mathrm{~F}$ ज्ञात है और $\mathrm{Mn}$ के पश्चात् सिवाय $\mathrm{FeX} _{3}$ और $\mathrm{CoF} _{3}$ के कोई भी धातु ट्राइहैलाइड नहीं बनाता। अधिकतम ऑक्सीकरण अवस्था को स्थायित्व प्रदान करने की फ्लुओरीन की क्षमता या तो इसकी उच्च जालक ऊर्जा के कारण होती है, जैसे कि $\mathrm{CoF} _{3}$ के संदर्भ में या उच्च सहसंयोजक यौगिकों जैसे $\mathrm{VF} _{5}$ और $\mathrm{CrF} _{6}$ में, उच्च आबंध एन्थैल्पी के कारण होती है।

यद्यपि $\mathrm{VF} _{5}$ केवल $\mathrm{V}^{\mathrm{V}}$ को प्रदर्शित करता है, अन्य हैलाइड जलअपघटन पर ऑक्सोहैलाइड, $\mathrm{VOX} _{3}$ देते हैं। फ्लुओराइडों का दूसरा गुण, निम्न ऑक्सीकरण अवस्था में इनका अस्थायित्व है, जैसे- $\mathrm{VX} _{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$

सारणी 4.5-3d धातुओं के हैलाइडों के सूत्र

और $\mathrm{I})$ में और यही $\mathrm{CuX}$ के लिए लागू होता है। दूसरी ओर आयोडाइड के अतिरिक्त $\mathrm{Cu}^{\mathrm{II}}$ के सभी हैलाइड ज्ञात हैं। यहाँ $\mathrm{Cu}^{2+}, \mathrm{I}^{-}$को $\mathrm{I} _{2}$ में ऑक्सीकृत करता है-

$$ 2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \rightarrow \mathrm{Cu} _{2} \mathrm{I} _{2}(\mathrm{~s})+\mathrm{I} _{2} $$

तथापि अनेक $\mathrm{Cu}^{+}$यौगिक जलीय विलयन में अस्थायी हैं तथा निम्नानुसार असमानुपातित होते हैं-

$$ 2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Cu} $$

$\mathrm{Cu}^{2+}(\mathrm{aq})$ का स्थायित्व $\mathrm{Cu}^{+}(\mathrm{aq})$ से अधिक होने का कारण इसकी जलयोजन एन्थैल्पी $\Delta _{\mathrm{hyd}} \mathrm{H}^{\ominus}$ का $\mathrm{Cu}^{2+}$ की तुलना में बहुत अधिक ॠणात्मक मान होना है, जो कॉपर की द्वितीय आयनन एन्थैल्पी की क्षतिपूर्ति से अधिक है।

ऑक्सीजन की उच्चतम ऑक्सीकरण अवस्था को स्थायित्व प्रदान करने की क्षमता ऑक्साइडों में प्रदर्शित होती है। ऑक्साइडों में उच्चतम ऑक्सीकरण संख्या (सारणी 4.6) उनकी वर्ग संख्या से मेल खाती है और यह $\mathrm{Sc} _{2} \mathrm{O} _{3}$ से $\mathrm{Mn} _{2} \mathrm{O} _{7}$ तक देखने को मिलती है। वर्ग 7 के बाद, $\mathrm{Fe}$ के उच्च ऑक्साइड $\mathrm{Fe} _{2} \mathrm{O} _{3}$ से आगे ज्ञात नहीं है। यद्यपि क्षारकीय माध्यम में फेरेट $(\mathrm{VI})$ अवस्था में, $\left(\mathrm{FeO} _{4}\right)^{2-}$, आयन बनते हैं परंतु यह शीष्र ही $\mathrm{Fe} _{2} \mathrm{O} _{3}$ व $\mathrm{O} _{2}$ में विघटित हो जाते हैं। ऑक्साइड के अतिरिक्त, ऑक्सोकैटायन $\mathrm{V}^{\mathrm{V}}$ को $\mathrm{VO} _{2}^{+}, \mathrm{V}^{\mathrm{IV}}$ को $\mathrm{VO}^{2+}$ तथा $\mathrm{Ti}^{\mathrm{IV}}$ को $\mathrm{TiO}^{2+}$ के रूप में स्थायित्व प्रदान करते हैं। फ्लुओरीन की अपेक्षा ऑक्सीजन की इन उच्च ऑक्सीकरण अवस्थाओं को स्थायित्व प्रदान करने की क्षमता अधि क होती है। इस प्रकार $\mathrm{Mn}$ का उच्चतम फ्लुओराइड $\mathrm{MnF} _{4}$ है जबकि उच्च ऑक्साइड $\mathrm{Mn} _{2} \mathrm{O} _{7}$ है। ऑक्सीजन की धातुओं के साथ बहुआबंध बनाने की क्षमता से इसकी उत्कृष्टता को समझा जा सकता है। सहसंयोजक ऑक्साइड $\mathrm{Mn} _{2} \mathrm{O} _{7}$ में, प्रत्येक $\mathrm{Mn}$ परमाणु, चतुष्फलकीय रूप से एक $\mathrm{Mn}-\mathrm{O}-\mathrm{Mn}$ सेतु सहित $\mathrm{O}$ परमाणुओं से घिरा रहता है। $\mathrm{V}^{\mathrm{v}}$, $\mathrm{Cr}^{\mathrm{VI}}, \mathrm{Mn}^{\mathrm{V}}, \mathrm{Mn}^{\mathrm{VI}}$ और $\mathrm{Mn}^{\mathrm{VII}}$ के लिए चतुष्फलकीय $\left[\mathrm{MO} _{4}\right]^{\mathrm{n}-}$ आयन ज्ञात है।

सारणी 4.6- $3 d$ धातुओं के ऑक्साइड

ऑक्सीकरण
संख्या
समूह
3 4 5 6 7 8 9 10 11 12
+7 $\mathrm{Mn} _{2} \mathrm{O} _{7}$
+6 $\mathrm{CrO} _{3}$
+5 $\mathrm{~V} _{2} \mathrm{O} _{5}$
+4 $\mathrm{TiO} _{2}$ $\mathrm{~V} _{2} \mathrm{O} _{4}$ $\mathrm{CrO} _{2}$ $\mathrm{MnO} _{2}$
+3 $\mathrm{Sc} _{2} \mathrm{O} _{3}$ $\mathrm{Ti} _{2} \mathrm{O} _{3}$ $\mathrm{~V} _{2} \mathrm{O} _{3}$ $\mathrm{Cr} _{2} \mathrm{O} _{3}$ $\mathrm{Mn} _{2} \mathrm{O} _{3}$ $\mathrm{Fe} _{2} \mathrm{O} _{3}$
$\mathrm{Mn} _{3} \mathrm{O} _{4}{ }^{\ast}$ $\mathrm{Fe} _{3} \mathrm{O} _{4}{ }^{\ast}$ $\mathrm{Co} _{3} \mathrm{O} _{4}{ }^{\ast}$
+2 $\mathrm{TiO}$ VO $(\mathrm{CrO})$ $\mathrm{MnO}$ $\mathrm{FeO}$ $\mathrm{CoO}$ $\mathrm{NiO}$ $\mathrm{CuO}$ $\mathrm{ZnO}$
+1 $\mathrm{Cu} _{2} \mathrm{O}$

उदाहरण 4.5आप श्रेणी $\mathrm{VO}_2^{+}<\mathrm{Cr}_2 \mathrm{O}_7^{2-}<\mathrm{MnO}_4^{-}$ में ऑक्सीकारक क्षमता में वृद्धि को कैसे स्पष्ट करेंगे?

हल इसका कारण इनके अपचयन के बाद प्राप्त निम्न स्पीशीज़ के स्थायित्व में वृद्धि है।

पाठ्यनिहित प्रश्न

4.5 संक्रमण तत्त्वों की प्रथम श्रेणी में आयनन एन्थैल्पी (प्रथम और द्वितीय) में अनियमित परिवर्तन को आप कैसे समझायेंगे?

Show Answer #missing

4.3.8रासायनिक अभिक्रियाशीलता एवं $\mathbf{E}^{\ominus}$ मान

संक्रमण धातुओं की रासायनिक अभिक्रियाशीलता व्यापक रूप से परिवर्तनशील है। बहुत-सी धातुएं पर्याप्त विद्युतधनीय हैं तथा खनिज अम्लों में विलेय हैं, जबकि कुछ धातुएँ ‘उत्कृष्ट’ हैं, जो कि साधारण अम्लों द्वारा प्रभावित नहीं होती।

कॉपर धातु को छोड़कर प्रथम श्रेणी के तत्व अपेक्षाकृत अधिक अभिक्रियाशील होते हैं जो $1 \mathrm{M} \mathrm{H}^{+}$आयनों द्वारा ऑक्सीकृत हो जाते हैं, यद्यपि इन धातुओं की हाइड्रोजन आयन $\left(\mathrm{H}^{+}\right)$ जैसे ऑक्सीकारकों से अभिक्रिया करने की वास्तविक दर में कभी-कभी कमी आ जाती है। उदाहरणार्थ— कक्ष ताप पर टाइटेनियम एवं वैनेडियम तनु ऑक्सीकारक अम्लों के प्रति निष्क्रिय हैं। $\mathrm{M}^{2+} / \mathrm{M}$ के $\mathrm{E}^{\ominus}$ के मान श्रेणी में द्विसंयोजी धनायनों के बनाने की घटती हुई प्रवृत्ति को दर्शाते हैं (सारणी 4.2)। $\mathrm{E}^{\ominus}$ के कम ऋणात्मक मानों की ओर जाने की सामान्य प्रवृत्ति प्रथम एवं द्वितीय आयनन एन्थैल्पी के योग में सामान्य वृद्धि से संबंधित है। यह जानना रोचक है कि $\mathrm{Mn}, \mathrm{Ni}$ और $\mathrm{Zn}$ के $\mathrm{E}^{\ominus}$ मान सामान्य प्रवृत्ति से आपेक्षित मानो की तुलना में अधिक ऋणात्मक हैं। जबकि $\mathrm{Mn}^{2+}$ में अर्ध भरित (d) उपकोश $\left(d^{5}\right)$ तथा $\mathrm{Zn}^{2+}$ में पूर्ण भरित $d$-उपकोश का स्थायित्व इनके $\mathrm{E}^{\ominus}$ के मानों से संबंधित है; निकैल के लिए $\mathrm{E}^{\ominus}$ का मान इसकी उच्चतम ऋणात्मक जलयोजन एन्थैल्पी से संबंधित है।

$\mathrm{M}^{3+} / \mathrm{M}^{2+}$ रेडॉक्स युग्म के $\mathrm{E}^{\ominus}$ मानों के अवलोकन (सारणी 4.2) से स्पष्ट है कि $\mathrm{Mn}^{3+}$ तथा $\mathrm{Co}^{3+}$ आयन जलीय विलयन में प्रबलतम ऑक्सीकरण कर्मक का कार्य करते हैं। $\mathrm{Ti}^{2+}, \mathrm{V}^{2+}$ तथा $\mathrm{Cr}^{2+}$ आयन प्रबल अपचायी कर्मक (अपचायक) हैं तथा तनु अम्ल से हाइड्रोजन गैस मुक्त करते हैं। उदाहरणार्थ-

$$ 2 \mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{H} _{2}(\mathrm{~g}) $$

उदाहरण 4.6 संक्रमण धातुओं की प्रथम श्रेणी के $\mathrm{E}^{\ominus}$ के मान है-

$\mathbf{E}^{\ominus}$ $\mathrm{V}$ $\mathrm{Cr}$ $\mathrm{Mn}$ $\mathrm{Fe}$ $\mathrm{Co}$ $\mathrm{Ni}$ $\mathrm{Cu}$
$\left(\mathrm{M}^{2+} / \mathrm{M}\right)$ -1.18 -0.91 -1.18 -0.44 -0.28 -0.25 +0.34

इन मानों में अनियमितता के कारण को समझाइए।

हल $\mathrm{E}^{\ominus}\left(\mathrm{M}^{2+} /(\mathrm{M})\right.$ के मान नियमित नहीं हैं, इसे हम आयनन एन्थैल्पी में अनियमित परिवर्तन $\left(\Delta _{i} \mathrm{H} _{1}+\Delta _{i} \mathrm{H} _{2}\right)$ तथा उध्र्वपातन एन्थैल्पी द्वारा समझा सकते हैं जो कि मैंगनीज और वैनेडियम के लिए अपेक्षाकृत बहुत कम होती है।

उदाहरण 4.7 $\mathrm{Mn}^{3+} / \mathrm{Mn}^{+2}$ युग्म के लिए $\mathrm{E}^{\ominus}$ का मान $\mathrm{Cr}^{3+} / \mathrm{Cr}^{2+}$ अथवा $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ के मानों से बहुत अधिक धनात्मक क्यों होता है? समझाइए।

हल

इसके लिए $\mathrm{Mn}$ की तृतीय आयनन ऊर्जा का बहुत अधिक मान $\left(\mathrm{d}^{5}\right.$ से $\mathrm{d}^{4}$ में परिवर्तन के लिए आवश्यक) उत्तरदायी है। इससे यह भी स्पष्ट होता है कि क्यों $\mathrm{Mn}$ की +3 अवस्था ज़्यादा महत्त्व की नहीं है।

पाठ्यनिहित प्रश्न

4.6 कोई धातु अपनी उच्चतम ऑक्सीकरण अवस्था केवल ऑक्साइड अथवा फ्लुओराइड में ही क्यों प्रदर्शित करती है?

Show Answer #missing

4.7 $\mathrm{Cr}^{2+}$ और $\mathrm{Fe}^{2+}$ में से कौन प्रबल अपचायक है और क्यों?

Show Answer #missing

4.3.9 चुबंकीय गुण

पदार्थ पर चुंबकीय क्षेत्र अनुप्रयुक्त करने पर मुख्यतः दो प्रकार के चुंबकीय व्यवहार प्रदर्शित होते हैं - प्रतिचुंबकत्व (diamagnetism) तथा अनुचुंबकत्व (Paramagnetism)। प्रतिचुंबकीय पदार्थ, अनुप्रयुक्त चुंबकीय क्षेत्र द्वारा प्रतिकर्षित होते हैं परंतु अनुचुंबकीय पदार्थ आकर्षित होते हैं। जो पदार्थ चुंबकीय क्षेत्र में प्रबल रूप से आकर्षित होते हैं, वे लोहचुंबकीय (Ferromagnetic) कहलाते हैं। वास्तव में, लोहचुंबकत्व, अनुचुंबकत्व का चरम स्वरूप है। बहुत से संक्रमण धातु आयन अनुचुंबकीय हैं।

अनुचुंबकत्व की उत्पत्ति, अयुगलित इलेक्ट्रॉनों की उपस्थिति के कारण होती है, प्रत्येक ऐसे अयुगलित इलेक्ट्रॉन का चुंबकीय आघूर्ण (magnetic moment), प्रचक्रण कोणीय संवेग (spin angular momentum) तथा कक्षीय कोणीय संवेग (orbital angular momentum) से संबंधित होता है। प्रथम संक्रमण श्रेणी की धातुओं के यौगिकों में कक्षीय कोणीय संवेग का योगदान प्रभावी रूप से शमित (quench) हो जाता है इसलिए इसका कोई महत्व नहीं रह जाता। अतः इनके लिए चुंबकीय आघूर्ण का निर्धरण उसमें उपस्थित अयुगलित इलेक्ट्रॉनों की संख्या के आधार पर किया जाता है तथा इसकी गणना नीचे दिए गए ‘प्रचक्रण-मात्र’ (Spin only) सूत्र द्वारा की जाती है।

$$ \mu=\sqrt{\mathrm{n}(\mathrm{n}+2)} $$

यहाँ $\mathrm{n}$ अयुगलित इलेक्ट्रॉनों की संख्या है तथा $\mu$ चुंबकीय आघूर्ण है जिसका मात्रक बोर मैग्नेटॉन $(\mathrm{BM})$ है। एक अयुगलित इलेक्ट्रॉन का चुंबकीय आघूर्ण 1.73 बोर मैग्नेटॉन (BM) होता है।

अयुगलित इलेक्ट्रॉनों की बढ़ती संख्या के साथ चुंबकीय आघूर्ण का मान बढ़ता है। अत: प्रेक्षित चुंबकीय आघूर्ण से परमाणुओं, अणुओं तथा आयनों में उपस्थित अयुगलित इलेक्ट्रॉनों की संख्या का संकेत मिलता है। ‘प्रचक्रण-मात्र’ सूत्र द्वारा गणना से प्राप्त चुंबकीय आघूर्ण के मान तथा प्रयोगों के आधार पर निर्धारित प्रथम संक्रमण श्रेणी के तत्वों के चुंबकीय आघूर्णों के मान सारणी 4.7 में दिए गए हैं। प्रायोगिक आँकड़े मुख्य रूप से विलयन में उपस्थित जलयोजित आयनों अथवा ठोस अवस्था के लिए हैं।

सारणी 4.7- चुंबकीय आघूर्ण के परिकलित एवं प्रेक्षित मान (BM)

आयन विन्यास अयुग्मित इलेक्ट्रॉन चुंबकीय आघूर्ण
परिकलित प्रेक्षित
$\mathrm{Sc}^{3+}$ $3 d^{0}$ 0 0 0
$\mathrm{Ti}^{3+}$ $3 d^{1}$ 1 1.73 1.75
$\mathrm{Ti}^{2+}$ $3 d^{2}$ 2 2.84 2.76
$\mathrm{~V}^{2+}$ $3 d^{3}$ 3 3.87 3.86
$\mathrm{Cr}^{2+}$ $3 d^{4}$ 4 4.90 4.80
$\mathrm{Mn}^{2+}$ $3 d^{5}$ 5 5.92 5.96
$\mathrm{Fe}^{2+}$ $3 d^{6}$ 4 4.90 $5.3-5.5$
$\mathrm{Co}^{2+}$ $3 d^{7}$ 3 3.87 $4.4-5.2$
$\mathrm{Ni}^{2+}$ $3 d^{8}$ 2 2.84 $2.9-3,4$
$\mathrm{Cu}^{2+}$ $3 d^{9}$ 1 1.73 $1.8-2.2$
$\mathrm{Zn}^{2+}$ $3 d^{10}$ 0 0

उदाहरण 4.8 जलीय विलयन में द्विसंयोजी आयन के चुंबकीय आघूर्ण की गणना कीजिए; यदि इसका परमाणु क्रमांक 25 है।

हल जलीय विलयन में परमाणु क्रमांक 25 वाले द्विसंयोजी आयन में अयुगलित इलेक्ट्रॉनों की संख्या 5 होगी। अतः इसका चुंबकीय आघूर्ण होगा, $\mu=\sqrt{5(5+2)}=5.92 \mathrm{BM}$

पाठ्यनिहित प्रश्न

4.8 $\mathrm{M}^{2+}(\mathrm{aq})$ ion $(Z=27)$ के लिए ‘प्रचक्रण-मात्र’ चुंबकीय आघूर्ण की गणना कीजिए।

Show Answer #missing

4.3.10 रंगीन आयनों का बनना

जब निम्न उर्जा वाले $d$-कक्षक से इलेक्ट्रॉन का उत्तेजन, उच्च ऊर्जा वाले $d$-कक्षक में होता है तो उत्तेजन ऊर्जा (energy of excitation) का मान अवशोषित प्रकाश की आवृत्ति के संगत होता है (एकक 5)। सामान्यतः यह आवृत्ति, दृश्य प्रक्षेत्र (visible region) में स्थित होती है। प्रेक्षित रंग, अवशोषित प्रकाश का पूरक रंग होता है। अवशोषित प्रकाश के आवृत्ति का निर्धारण लिगन्ड (Ligand) के स्वभाव के आधार पर किया जाता है। सारणी 4.8 में आयनों के जलीय विलयन में प्रेक्षित रंगों को क्रमबद्ध किया गया है, यहाँ जल के अणु लिगन्ड का कार्य करते हैं। चित्र 4.5 में कुछ $d$-ब्लॉक तत्वों के रंगीन विलयनों को दर्शाया गया है।

चित्र 4.5- प्रथम संक्रमण श्रेणी के कुछ धात्विक आयनों के जलीय विलयनों के रंग। बाईं ओर से दाईं ओर $\mathrm{V}^{4+}, \mathrm{V}^{3+}, \mathrm{Mn}^{2+}$, $\mathrm{Fe}^{3+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}$ और $\mathrm{Cu}^{2+}$.

सारणी 4.8- प्रथम संक्रमण श्रेणी के कुछ जलयोजित धातु आयनों के रंग

विन्यास उदाहरण रंग
$3 \mathrm{~d}^{0}$ $\mathrm{Sc}^{3+}$ रंगहीन
$3 \mathrm{~d}^{0}$ $\mathrm{Ti}^{4+}$ रंगहीन
$3 \mathrm{~d}^{1}$ $\mathrm{Ti}^{3+}$ नीललोहित
$3 \mathrm{~d}^{1}$ $\mathrm{~V}^{4+}$ नीला
$3 \mathrm{~d}^{2}$ $\mathrm{~V}^{3+}$ हरा
$3 \mathrm{~d}^{3}$ $\mathrm{~V}^{2+}$ बैंगनी
$3 \mathrm{~d}^{3}$ $\mathrm{Cr}^{3+}$ बैंगनी
$3 \mathrm{~d}^{4}$ $\mathrm{Mn}^{3+}$ बैंगनी
$3 \mathrm{~d}^{4}$ $\mathrm{Cr}^{2+}$ नीला
$3 \mathrm{~d}^{5}$ $\mathrm{Mn}^{2+}$ गुलाबी
$3 \mathrm{~d}^{5}$ $\mathrm{Fe}^{3+}$ पीला
$3 \mathrm{~d}^{6}$ $\mathrm{Fe}^{2+}$ हरा
$3 \mathrm{~d}^{6} 3 \mathrm{~d}^{7}$ $\mathrm{Co}^{3+} \mathrm{Co}^{2+}$ नीला-गुलाबी
$3 \mathrm{~d}^{8}$ $\mathrm{Ni}^{2+}$ हरा
$3 \mathrm{~d}^{9}$ $\mathrm{Cu}^{2+}$ नीला
$3 \mathrm{~d}^{10}$ $\mathrm{Zn}^{2+}$ रंगहीन

4.3.11 संकुल यौगिकों का बनना

संकुल यौगिक वे यौगिक होते हैं जिनमें धातु आयन निश्चित संख्या में ऋणायन अथवा उदासीन अणुओं से बंधन करके संकुलन स्पीशीज़ बनाते हैं। जिनके अपने अभिलक्षणिक गुण होते हैं। इसके कुछ उदाहरण हैं - $\left[\mathrm{Fe}(\mathrm{CN}) _{6}\right]^{3-},\left[\mathrm{Fe}(\mathrm{CN}) _{6}\right]^{4-},\left[\mathrm{Cu}\left(\mathrm{NH} _{3}\right) _{4}\right]^{2+}$ तथा $\left[\mathrm{PtCl} _{4}\right]^{2-}$ (एकक 5 में संकुल यौगिकों के रसायन की विस्तृत चर्चा की गई है)। संक्रमण तत्त्व अनेक संकुल यौगिकों की रचना करते हैं। इसका मुख्य कारण है धातु आयनों के आकार का छोटा होना, धातु आयनों पर उच्च आयनिक आवेश तथा आबंधों के बनने के लिए $d$ कक्षकों की उपलब्धता।

4.3.12 उत्प्रेरकीय गुण

संक्रमण धातुएं तथा इनके यौगिक उत्प्रेरकीय सक्रियता के लिए जाने जाते हैं। संक्रमण धातुओं का यह गुण उनकी परिवर्तनशील संयोजकता एवं संकुल यौगिक के बनाने के गुण के कारण हैं। वैनेडियम (V) ऑक्साइड (संस्पर्श प्रक्रम में), सूक्ष्म विभाजित आयरन (हाबर प्रक्रम में) और निकैल (उत्प्रेरकीय हाइड्रोजनन में) संक्रमण धातुओं के द्वारा उत्प्रेरण के कुछ उदाहरण हैं। उत्प्रेरक के ठोस पृष्ठ पर अभिकारक के अणुओं तथा उत्प्रेरक की सतह के परमाणुओं के बीच आबंधों की रचना होती है। आंबध बनाने के लिए प्रथम संक्रमण श्रेणी की धातुएं $3 d$ एवं $4 s$ इलेक्ट्रॉनों का उपयोग करती हैं। परिणामस्वरूप, उत्प्रेक की सतह पर अभिकारक की सांद्रता में वृद्धि हो जाती है तथा अभिकारक के अणुओं में उपस्थित आबंध दुर्बल हो जाते हैं। सक्रियण ऊर्जा का मान घट जाता है। ऑक्सीकरण अवस्थाओं में परिवर्तन हो सकने के कारण संक्रमण धातुएं उत्प्रेरक के रूप में अधिक प्रभावी होती हैं। उदाहरणार्थ आयरन (III), आयोडाइड आयन तथा परसल्फेट आयन के बीच संपन्न होने वाली अभिक्रिया को उत्प्रेरित करता है।

$$ 2 \mathrm{I}^{-}+\mathrm{S} _{2} \mathrm{O} _{8}{ }^{2-} \rightarrow \mathrm{I} _{2}+2 \mathrm{SO} _{4}{ }^{2-} $$

इस उत्प्रेरकीय अभिक्रिया का स्पष्टीकरण इस प्रकार हैं-

$$ \begin{aligned} & 2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I} _{2} \\ & 2 \mathrm{Fe}^{2+}+\mathrm{S} _{2} \mathrm{O} _{8}{ }^{2-} \rightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{SO} _{4}{ }^{2-} \end{aligned} $$

4.3.13 अंतराकाशी यौगिकों का बनना

जब संक्रमण धातुओं के क्रिस्टल जालक के भीतर छोटे आकार वाले परमाणु जैसे $\mathrm{H}, \mathrm{N}$ या $\mathrm{C}$ संपाशित हो जाते हैं तो अंतराकाशी यौगिकों की रचना होती है। ये यौगिक सामान्यतया असमीकरणमितीय (non-stoichiometric) होते हैं तथा न तो आयनी होते हैं और न ही सहसंयोजी। उदाहरण के लिए $\mathrm{TiC}, \mathrm{Mn} _{4} \mathrm{~N}, \mathrm{Fe} _{3} \mathrm{H}, \mathrm{VH} _{0.56}$ तथा $\mathrm{TiH} _{1.7}$ इत्यादि। उद्धृत सूत्र धातुओं की कोई सामान्य ऑक्सीकरण अवस्था प्रदर्शित नहीं करते। संघटनों की प्रकृति के आधार पर, इस प्रकार के यौगिक अंतराकाशी यौगिक (interstitial compounds) कहलाते हैं। इन यौगिकों के मुख्य भौतिक एवं रासायनिक अभिलक्षण निम्न होते हैं -

(i) अंतराकाशी यौगिकों के गलनांक उच्च होते हैं जो शुद्ध धातुओं से भी अधिक हैं।

(ii) ये अति कठोर होते हैं। यहाँ तक कि कुछ बोराइडों की कठोरता लगभग हीरे की कठोरता के समान होती है।

(iii) इन यौगिकों की धात्विक चालकता सुरक्षित रहती है।

(iv) रासायनिक रूप से अंतराकाशी यौगिक निष्क्रिय होते हैं।

4.3.14 मिश्रातुओं का बनना

मिश्रातु (alloy) विभिन्न धातुओं का सम्मिश्रण होते हैं जो कि धातुओं के सम्मिश्रण से प्राप्त होते हैं। मिश्रातु समांगी ठोस विलयन हो सकते हैं जिनमें एक धातु के परमाणु, दूसरी धातु के परमाणुओं में अनियमित रूप से वितरित रहते हैं। इस प्रकार के मिश्रातुओं की रचनाएं उन परमाणुओं द्वारा होती हैं जिनकी धात्विक त्रिज्याओं में $15 \%$ का अंतर हो। संक्रमण धातुओं के अभिलक्षणिक गुणों तथा उनकी त्रिज्याओं में समानता के कारण संक्रमण धातुओं द्वारा मिश्रातुओं की रचना सरलतापूर्वक होती है। इस प्रकार प्राप्त मिश्रातु कठोर होते हैं तथा इनके गलनांक सामान्यतया उच्च होते हैं। फेरस मिश्रातु सबसे सुपरिचित मिश्रातु हैं। क्रोमियम, वैनेडियम, टंगस्टन, मॉलिब्डेनम तथा मैंगनीज का उपयोग विभिन्न प्रकार के स्टील तथा स्टेनलेस स्टील के उत्पादन में किया जाता है। असंक्रमण धातुओं तथा संक्रमण धातुओं के संयोग से प्राप्त मिश्रातु औद्योगिक महत्त्व के होते हैं, जिनके उदाहरण हैं — पीतल (कॉपर-जिंक), कांसा (कॉपर-टिन) आदि।

उदाहरण 4.9 ऑक्सीकरण अवस्था के ‘असमानुपातन’ का क्या अर्थ है? एक उदाहरण दीजिए।

हल जब एक विशिष्ट ऑक्सीकरण अवस्था उससे कम तथा उच्च ऑक्सीकरण अवस्थाओं की तुलना में कम स्थायी हो तो उसका असमानुपातन होता है। उदाहरण- मैंगनीज (VI), ऑक्सीकरण अवस्था मैंगनीज (VII) तथा मैंगनीज (IV) की तुलना में अम्लीय माध्यम में कम स्थायी है।

$$ 3 \mathrm{Mn}^{\mathrm{VI}} \mathrm{O} _{4}{ }^{2-}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{\mathrm{VII}} \mathrm{O} _{4}^{-}+\mathrm{Mn}^{\mathrm{IV}} \mathrm{O} _{2}+2 \mathrm{H} _{2} \mathrm{O} $$

पाठ्यनिहित प्रश्न

4.9 स्पष्ट कीजिए कि $\mathrm{Cu}^{+}$आयन जलीय विलयन में स्थायी नहीं है, क्यों? समझाइए।

Show Answer #missing

4.4 संक्रमण तत्वों के कुण महत्वपूर्ण यौगिक

4.4.1 धातुओं के ऑक्साइड एवं ऑक्सो-ऋणायन

उच्च ताप पर संक्रमण धातुओं एवं ऑक्सीजन के मध्य अभिक्रिया के फलस्वरूप संक्रमण धातुओं के ऑक्साइड प्राप्त होते हैं। स्कैंडियम के अतिरिक्त सभी धातुएं $\mathrm{MO}$ प्रकार के आयनिक ऑक्साइड बनाती हैं। इन ऑक्साइडों में धातुओं की उच्चतम ऑक्सीकरण संख्या इनकी वर्ग संख्या के (समान होती है। जैसा कि $\mathrm{Sc} _{2} \mathrm{O} _{3}$ से $\mathrm{Mn} _{2} \mathrm{O} _{7}$ यौगिकों तक देखने को मिलता है। वर्ग 7 के पश्चात् आयरन का $\mathrm{Fe} _{2} \mathrm{O} _{3}$ से ऊपर कोई उच्च ऑक्साइड ज्ञात नहीं है। ऑक्साइड के अतिरिक्त ऑक्सो-धनायन (oxocations) $\mathrm{V}^{\mathrm{v}}$ को $\mathrm{VO} _{2}{ }^{+}$ में, $\mathrm{V}^{\mathrm{IV}}$ को $\mathrm{VO}^{2+}$ में तथा $\mathrm{TiO}^{2+}$ को $\mathrm{Ti}^{\mathrm{IV}}$ स्थायित्व देते हैं।

धातुओं की ऑक्सीकरण संख्या में वृद्धि के साथ ऑक्साइडों के आयनिक गुण में कमी आती है। मैंगनीज का ऑक्साइड, $\mathrm{Mn} _{2} \mathrm{O} _{7}$ सहसंयोजी तथा हरा तैलीय पदार्थ होता है। यहाँ तक कि $\mathrm{CrO} _{3}$ तथा $\mathrm{V} _{2} \mathrm{O} _{5}$ के गलनांक भी निम्न होते हैं। इन उच्च ऑक्साइडों में अम्लीय स्वभाव की प्रमुखता होती है।

इस प्रकार $\mathrm{Mn} _{2} \mathrm{O} _{7}$ से $\mathrm{HMnO} _{4}$ प्राप्त होता है। $\mathrm{H} _{2} \mathrm{CrO} _{4}$ तथा $\mathrm{H} _{2} \mathrm{Cr} _{2} \mathrm{O} _{7}$ दोनों ही $\mathrm{CrO} _{3}$ से प्राप्त होते हैं। $\mathrm{V} _{2} \mathrm{O} _{5}$ उभयधर्मी होने पर भी मुख्यतः अम्लीय है और $\mathrm{VO} _{4}{ }^{3-}$ तथा $\mathrm{VO} _{2}^{+}$के लवण देता है। वैनेडियम के ऑक्साइडों में क्षारिकीय $\mathrm{V} _{2} \mathrm{O} _{3}$ से, अल्प क्षारिकीय $\mathrm{V} _{2} \mathrm{O} _{4}$ और उभयधर्मी $\mathrm{V} _{2} \mathrm{O} _{5}$ तक क्रमिक परिवर्तन देखने को मिलता है। $\mathrm{V} _{2} \mathrm{O} _{4}$, अम्ल में विलेय होकर $\mathrm{VO}^{2+}$ लवण बनाता है। इसी प्रकार $\mathrm{V} _{2} \mathrm{O} _{5}$, अम्ल तथा क्षारों से अभिक्रिया कर क्रमशः $\mathrm{VO} _{4}^{+}$तथा $\mathrm{VO} _{4}^{3-}$ देता है। पूर्णरूप से अभिलक्षणित $\mathrm{CrO}$ क्षारकीय है परंतु $\mathrm{Cr} _{2} \mathrm{O} _{3}$ उभयधर्मी है।

पोटैशियम डाइक्रोमेट चर्म उद्योग के लिए एक महत्त्वपूर्ण रसायन है। इसका उपयोग कई ऐज़ो (azo) यौगिकों को बनाने में ऑक्सीकारक के रूप में किया जाता है। डाइक्रोमेट को सामान्यतः क्रोमेट से बनाया जाता है। क्रोमाइट अयस्क $\left(\mathrm{FeCr} _{2} \mathrm{O} _{4}\right)$ को जब वायु की उपस्थिति में सोडियम या पोटैशियम कार्बोनेट के साथ संगलित किया जाता है तो क्रोमेट प्राप्त होता है। क्रोमाइट की सोडियम कार्बोनेट के साथ अभिक्रिया नीचे दी गई हैं-

$4 \mathrm{FeCr} _{2} \mathrm{O} _{4}+8 \mathrm{Na} _{2} \mathrm{CO} _{3}+7 \mathrm{O} _{2} \rightarrow 8 \mathrm{Na} _{2} \mathrm{CrO} _{4}+2 \mathrm{Fe} _{2} \mathrm{O} _{3}+8 \mathrm{CO} _{2}$

सोडियम क्रोमेट के पीले विलयन को छानकर उसे सल्फ्यूरिक अम्ल द्वारा अम्लीय बना लिया जाता है जिसमें से नारंगी सोडियम डाइक्रोमेट, $\mathrm{Na} _{2} \mathrm{Cr} _{2} \mathrm{O} _{7} \cdot 2 \mathrm{H} _{2} \mathrm{O}$ को क्रिस्टलित कर लिया जाता है।

$$ 2 \mathrm{Na} _{2} \mathrm{CrO} _{4}+2 \mathrm{H}^{+} \rightarrow \mathrm{Na} _{2} \mathrm{Cr} _{2} \mathrm{O} _{7}+2 \mathrm{Na}^{+}+\mathrm{H} _{2} \mathrm{O} $$

सोडियम डाइक्रोमेट की विलेयता, पोटैशियम डाइक्रोमेट से अधिक होती है। इसलिए सोडियम डाइक्रोमेट के विलयन में पोटैशियम क्लोराइड डालकर पोटैशियम डाइक्रोमेट प्राप्त कर लिया जाता है।

$$ \mathrm{Na} _{2} \mathrm{Cr} _{2} \mathrm{O} _{7}+2 \mathrm{KCl} \rightarrow \mathrm{K} _{2} \mathrm{Cr} _{2} \mathrm{O} _{7}+2 \mathrm{NaCl} $$

पोटैशियम डाइक्रोमेट के नारंगी रंग के क्रिस्टल, क्रिस्टलीकृत हो जाते हैं। जलीय विलयन में क्रोमेट तथा डाइक्रोमेट का अंतरारूपांतरण होता है जो विलयन के $\mathrm{pH}$ पर निर्भर करता है। क्रोमेट तथा डाइक्रोमेट में क्रोमियम की ऑक्सीकरण संख्या समान है।

$$ \begin{aligned} & 2 \mathrm{CrO} _{4}^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cr} _{2} \mathrm{O} _{7}^{2-}+\mathrm{H} _{2} \mathrm{O} \\ & \mathrm{Cr} _{2} \mathrm{O} _{7}^{2-}+2 \mathrm{OH}^{-2} \rightarrow 2 \mathrm{CrO} _{4}{ }^{2-}+\mathrm{H} _{2} \mathrm{O} \end{aligned} $$

क्रोमेट आयन $\mathrm{CrO} _{4}{ }^{2-}$ तथा डाइक्रोमेट आयन $\mathrm{Cr} _{2} \mathrm{O} _{7}^{2-}$ की संरचनाएं नीचे दी गई हैं। क्रोमेट आयन चतुष्फलकीय होता है जबकि डाइक्रोमेट आयन में दो चतुष्फलकों के शीर्ष आपस में साझेदारी किए रहते हैं, जिसमें $\mathrm{Cr}-\mathrm{O}-\mathrm{Cr}$ आबंध कोण का मान $126^{\circ}$ होता है।

सोडियम तथा पोटैशियम डाइक्रोमेट प्रबल ऑक्सीकरण कर्मक का कार्य करते हैं। सोडियम लवण की जल में विलेयता अधिक होती है तथा यह कार्बनिक रसायन में ऑक्सीकरण कर्मक के रूप में अत्यधिक प्रयुक्त किया जाता है। पोटैशियम डाइक्रोमेट का उपयोग आयतनमितीय विश्लेषण में प्राथमिक मानक के रूप में किया जाता है। अम्लीय माध्यम में डाइक्रोमेट आयन की ऑक्सीकरण क्रिया निम्न प्रकार से प्रदर्शित की जा सकती हैं -

$$ \mathrm{Cr} _{2} \mathrm{O} _{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H} _{2} \mathrm{O}\left(E^{\ominus}=1.33 \mathrm{~V}\right) $$

इस प्रकार अम्लीय पोटैशियम डाइक्रोमेट, आयोडाइड का ऑक्सीकरण आयोडीन में, सल्फाइड का सल्फर में, टिन (II) का टिन (IV) में तथा आयरन (II) लवण का आयरन (III) लवण में करेगा। अर्ध अभिक्रियाएं निम्न हैं -

$$ \begin{aligned} & 6 \mathrm{I}^{-} \rightarrow 3 \mathrm{I} _{2}+6 \mathrm{e}^{-} \\ & 3 \mathrm{H} _{2} \mathrm{~S} _{2+} \rightarrow 6 \mathrm{H}^{+}+3 \mathrm{~S}+6 \mathrm{e}^{-} \\ & 3 \mathrm{Sn}^{-+} \rightarrow 3 \mathrm{Sn}^{4+}+6 \mathrm{e}^{-} \\ & 6 \mathrm{Fe}^{2+} \rightarrow 6 \mathrm{Fe}^{3+}+6 \mathrm{e}^{-} \end{aligned} $$

संपूर्ण आयनिक अभिक्रिया को पोटैशियम डाइक्रोमेट की ऑक्सीकरण अर्ध अभिक्रिया तथा अपचायकों की अपचयन अर्ध अभिक्रिया को जोड़कर प्राप्त किया जा सकता है।

$$ \mathrm{Cr} _{2} \mathrm{O} _{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H} _{2} \mathrm{O} $$

पोटैशियम परमैंगनेट $\mathbf{K M n O} _{4}$

पोटैशियम परमैंगनेट को प्राप्त करने के लिए $\mathrm{MnO} _{2}$ को क्षारीय धातु हाइड्रॉक्साइड तथा $\mathrm{KNO} _{3}$ जैसे ऑक्सीकारक के साथ संगलित किया जाता है। इससे गाढ़े हरे रंग का उत्पाद $\mathrm{K} _{2} \mathrm{MnO} _{4}$ प्राप्त होता है जो उदासीन या अम्लीय माध्यम में असमानुपातित होकर पोटैशियम परमैंगनेट देता है।

$$ \begin{aligned} & 2 \mathrm{MnO} _{2}+4 \mathrm{KOH}+\mathrm{O} _{2} \rightarrow 2 \mathrm{~K} _{2} \mathrm{MnO} _{4}+2 \mathrm{H} _{2} \mathrm{O} \\ & 3 \mathrm{MnO} _{4}{ }^{2-}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{MnO} _{4}{ }^{-}+\mathrm{MnO} _{2}+2 \mathrm{H} _{2} \mathrm{O} \end{aligned} $$

औद्योगिक स्तर पर इसका उत्पादन $\mathrm{MnO} _{2}$ के क्षारीय ऑक्सीकरणी संगलन के पश्चात्, मैंगनेट (VI) के वैद्युतअपघटनी ऑक्सीकरण द्वारा किया जाता है।

प्रयोगशाला में मैंगनीज (II) आयन के लवण परऑक्सोडाइसल्फेट द्वारा ऑक्सीकृत होकर परमैंगनेट बनाते हैं।

$$ 2 \mathrm{Mn}^{2+}+5 \mathrm{~S_2} \mathrm{O_8}^{2-}+8 \mathrm{H_2} \mathrm{O} \rightarrow 2 \mathrm{MnO_4}^{-}+10 \mathrm{SO_4}{ }^{2-}+16 \mathrm{H}^{+} $$

पोटैशियम परमैंगनेट गहरे बैंगनी (लगभग काला) रंग के क्रिस्टल बनाता है जो $\mathrm{KClO} _{4}$ के साथ समसंरचनात्मकता दर्शाते हैं। यह लवण जल में बहुत विलेय नहीं है, ( $293 \mathrm{~K}$ ताप पर 6.4 ग्राम/ 100 ग्राम जल में)। परंतु $513 \mathrm{~K}$ तक गरम करने पर अपघटित हो जाता है।

$$ 2 \mathrm{KMnO} _{4} \rightarrow \mathrm{K} _{2} \mathrm{MnO} _{4}+\mathrm{MnO} _{2}+\mathrm{O} _{2} $$

इसके दो भौतिक गुण अधिक रोचक हैं — इसका अत्यधिक गहरा रंग तथा प्रतिचुम्बकीय होने के साथ-साथ इसका तापक्रम पर आश्रित दुर्बल अनुचुंबकत्व। इन्हें अणु कक्षक सिद्धांत द्वारा समझाया जा सकता है, जो कि इस पुस्तक की सीमा से बाहर है।

मैंगनेट तथा परमैंगनेट आयन चतुष्फलकीय होते हैं। ऑक्सीजन के $p$ कक्षकों व मैंगनीज के $d$ कक्षकों के अतिव्यापन से इनमें $\pi$ आबंधन पाया जाता है। हरा मैंगनेट आयन एक अयुगलित इलेक्ट्रॉन के कारण अनुचुंबकीय होता है परंतु परमैंगनेट आयन अयुगलित इलेक्ट्रॉन न होने के कारण प्रतिचुंबकीय होता है।

अम्लीय परमैंगनेट विलयन ऑक्सैलेट को कार्बनडाइऑक्साइड में, आयरन (II) लवण को आयरन (III) लवण में, नाइट्राइट को नाइट्रेट में तथा आयोडाइड को मुक्त आयोडीन में ऑक्सीकृत कर देता है। अपचायकों की अर्ध अभिक्रियाएं इस प्रकार हैं-

$$ \begin{aligned} & 5 \underset{\mathrm{COO}^{-}}{\mathrm{COO}^{-}} \rightarrow 10 \mathrm{CO} _{2}+10 \mathrm{e}^{-} \\ & 5 \mathrm{Fe}^{2+} \rightarrow 5 \mathrm{Fe}^{3+}+5 \mathrm{e}^{-} \\ & 5 \mathrm{NO} _{2}^{-}+5 \mathrm{H} _{2} \mathrm{O} \rightarrow 5 \mathrm{NO} _{3}^{-}+10 \mathrm{H}^{+}+10 \mathrm{e}^{-} \\ & 10 \mathrm{I}^{-} \rightarrow 5 \mathrm{I} _{2}+10 \mathrm{e}^{-} \end{aligned} $$

$\mathrm{KMnO} _{4}$ की अर्ध-अभिक्रिया एवं अपचायकों की अर्ध-अभिक्रियाओं को जोड़कर संपूर्ण अभिक्रिया को लिखा जा सकता है तथा आवश्यकतानुसार समीकरण को संतुलित कर लिया जाता है।

यदि हम परमैंगनेट के मैंगनेट, मैंगनीज डाइऑक्साइड तथा मैंगनीज (II) लवणों में अपचयन की अर्ध-अभिक्रियाओं को निम्न रूप से प्रदर्शित करें,

$$ \begin{array}{ll} \mathrm{MnO} _{4}{ }^{-}+\mathrm{e}^{-} \rightarrow \mathrm{MnO} _{4}{ }^{2-} & \left(E^{\ominus}=+0.56 \mathrm{~V}\right) \\ \mathrm{MnO} _{4}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{MnO} _{2}+2 \mathrm{H} _{2} \mathrm{O} & \left(E^{\ominus}=+1.69 \mathrm{~V}\right) \\ \mathrm{MnO} _{4}{ }^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H} _{2} \mathrm{O} & \left(E^{\ominus}=+1.52 \mathrm{~V}\right) \end{array} $$

तो हम भली प्रकार देख सकते हैं कि विलयन में हाइड्रोजन आयन की सांद्रता अभिक्रियाओं को प्रभावित करने में महत्वपूर्ण भूमिका निभाती है। यद्यपि कई अभिक्रियाओं को रेडॉक्स-विभव की सहायता से समझाया जा सकता है लेकिन अभिक्रिया की गतिकी भी एक महत्त्वपूर्ण कारक है। परमैंगनेट आयन द्वारा $\left[\mathrm{H}^{+}\right]=1$ पर जल को ऑक्सीकृत किया जाना चाहिए। परंतु प्रायोगिक रूप से अभिक्रिया धीमी होती है जब तक कि मैंगनीज (II) आयन उपस्थित न हो अथवा तापक्रम बढ़ाया न जाए।

$\mathrm{KMnO} _{4}$ की कुछ महत्वपूर्ण ऑक्सीकरण अभिक्रियाएं निम्नलिखित हैं-

1. अम्लीय विलयन में -

(क) पोटैशियम आयोडाइड से आयोडीन मुक्त होती है-

$$ 10 \mathrm{I}^{-}+2 \mathrm{MnO} _{4}^{-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H} _{2} \mathrm{O}+5 \mathrm{I} _{2} $$

(ख) $\mathrm{Fe}^{2+}$ आयन (हरा) का, $\mathrm{Fe}^{3+}$ (पीला) में परिवर्तन -

$$ 5 \mathrm{Fe}^{2+}+\mathrm{MnO} _{4}^{-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H} _{2} \mathrm{O}+5 \mathrm{Fe}^{3+} $$

(ग) $333 \mathrm{~K}$ पर ऑक्सैलेट आयन अथवा ऑक्सैलिक अम्ल का ऑक्सीकरण होता है-

$ 5 \mathrm{C} _{2} \mathrm{O} _{4}{ }^{2-}+2 \mathrm{MnO} _{4}^{-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H} _{2} \mathrm{O}+10 \mathrm{CO} _{2} $

(घ) हाइड्रोजन सल्फाइड का सल्फर में ऑक्सीकरण, जिसमें सल्फर अवक्षेपित हो जाता है -

$$ \begin{aligned} & \mathrm{H_2} \mathrm{~S} \longrightarrow 2 \mathrm{H}^{+}+\mathrm{S}^{2-} \\ & 5 \mathrm{~S}^{2-}+2 \mathrm{MnO_4}^{-}+16 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H_2} \mathrm{O}+5 \mathrm{~S} \end{aligned} $$

(च) सल्फ्यूरस अम्ल अथवा सल्फाइट का सल्फेट अथवा सल्फ्यूरिक अम्ल में ऑक्सीकरण-

$$ 5 \mathrm{SO} _{3}{ }^{2-}+2 \mathrm{MnO} _{4}{ }^{-}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+3 \mathrm{H} _{2} \mathrm{O}+5 \mathrm{SO} _{4}{ }^{2-} $$

(छ) नाइट्राइट का नाइट्रेट में ऑक्सीकरण-

$$ 5 \mathrm{NO} _{2}^{-}+2 \mathrm{MnO} _{4}^{-}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{NO} _{3}^{-}+3 \mathrm{H} _{2} \mathrm{O} $$

2. उदासीन अथवा दुर्बल क्षारीय माध्यम में-

(क) ध्यान देने योग्य अभिक्रिया है, आयोडाइड का आयोडेट में परिवर्तन-

$$ 2 \mathrm{MnO} _{4}^{-}+\mathrm{H} _{2} \mathrm{O}+\mathrm{I}^{-} \rightarrow 2 \mathrm{MnO} _{2}+2 \mathrm{OH}^{-}+\mathrm{IO} _{3}^{-} $$

(ख) थायोसल्फेट का सल्फेट में लगभग मात्रात्मक रूप से आक्सीकरण-

$$ 8 \mathrm{MnO} _{4}^{-}+3 \mathrm{~S} _{2} \mathrm{O} _{3}{ }^{2-}+\mathrm{H} _{2} \mathrm{O} \rightarrow 8 \mathrm{MnO} _{2}+6 \mathrm{SO} _{4}{ }^{2-}+2 \mathrm{OH}^{-} $$

(ग) मैंगनीज लवण का $\mathrm{MnO} _{2}$ में ऑक्सीकरण; ज़िक सल्फेट अथवा ज़िक ऑक्साइड की उपस्थिति अभिक्रिया को उत्प्रेरित करती है-

$$ 2 \mathrm{MnO} _{4}^{-}+3 \mathrm{Mn}^{2+}+2 \mathrm{H} _{2} \mathrm{O} \rightarrow 5 \mathrm{MnO} _{2}+4 \mathrm{H}^{+} $$

नोट- हाइड्रोक्लोरिक अम्ल की उपस्थिति में परमैंगनेट का अनुमापन असंतोषजनक है; क्योंकि हाइड्रोक्लोरिक अम्ल क्लोरीन में ऑक्सीकृत हो जाता है।

उपयोग: विश्लेषणात्मक रसायन में उपयोग के अलावा पोटैशियम परमैंगनेट का उपयोग संश्लेषण कार्बनिक रसायन में ऑक्सीकारक के रूप में किया जाता है। इसका उपयोग एक विरंजीकारक के रूप में किया जाता है। ऊनी, सूती, सिल्क वस्त्रों तथा तेलों के विरंजीकरण में इसका उपयोग भी इसकी ऑक्सीकरण क्षमता पर निर्भर करता है।

आंतर संक्रमण तत्व ( $f$-ब्लॉक )

$f$-ब्लॉक की दो श्रेणियाँ हैं, लैन्थेनॉयड (लैन्थेनम के बाद के चौदह तत्व) तथा ऐक्टिनॉयड (ऐक्टिनियम के बाद के चौदह तत्व)। चूँकि लैन्थेनम तथा लैन्थेनॉयड में सन्निकटता पाई जाती है अतः लैन्थेनॉयडों की चर्चा में लैन्थेनम भी सम्मिलित रहता है। इन तत्वों के लिए सामान्य संकेत Ln प्रयुक्त होता है। इसी प्रकार से ऐक्टिनॉयड तत्वों की चर्चा में ऐक्टिनियम भी इस श्रेणी के चौदह तत्वों के साथ सम्मिलित रहता है। संक्रमण श्रेणी की तुलना में लैन्थेनॉयड आपस में अधिक सन्निकट समानताएं प्रदर्शित करते हैं। इन तत्वों में केवल एक स्थायी ऑक्सीकरण अवस्था होती है तथा इनका रसायन इन समान गुणों वाले तत्वों के आकार तथा नाभिकीय आवेश में हुए अल्प परिवर्तन के श्रेणी में प्रभाव की समीक्षा करने का उत्तम अवसर प्रदान करता है। दूसरी ओर, एक्टिनॉयड श्रेणी का रसायन अत्यधिक जटिल है। जटिलता का एक कारण इन तत्वों की ऑक्सीकरण अवस्थाओं का विस्तृत परास तथा दूसरा कारण इन तत्वों का रेडियोधर्मीगुण है, जो इन तत्वों के अध्ययन में विशेष कठिनाइयाँ उत्पन्न करता है। यहाँ $f$-ब्लॉक की दोनों श्रेणियों का अध्ययन पृथक रूप से किया जाएगा।

4.5 लेन्थेनॉयड

लैन्थेनम तथा लैन्थेनॉयड (जिनके लिए सामान्य संकेत $\operatorname{Ln}$ का उपयोग किया गया है) के नाम, संकेत, परमाण्विक एवं कुछ आयनिक अवस्थाओं के इलेक्ट्रॉनिक विन्यास, परमाणु एवं आयनी त्रिज्याओं के मान सारणी 4.9 में दिए गए हैं।सारणी 4.9- लैन्थेनम एवं लैन्थेनॉयडों के इलेक्ट्रॉनिक विन्यास एवं त्रिज्याएं

4.5.1 इलेक्ट्रॉनिक विन्यास

यह देखा जा सकता है कि इन सभी परमाणुओं के इलेक्ट्रॉनिक विन्यास में $6 s^{2}$ एक समान है, परंतु $4 f$ स्तर पर परिवर्तनशील निवेशन है (सारणी 4.9)। यद्यपि इन सभी तत्वों के त्रिधनात्मक इलेक्ट्रॉनिक विन्यास (लैन्थेनॉयडों की अति स्थायी ऑक्सीकरण अवस्था) का स्वरूप $4 f^{\mathrm{n}}$ है (बढ़ते हुए परमाणु क्रमांक के साथ $\mathrm{n}=1$ से 14 तक)।

4.5.2 परमाणु एवं आयनिक आकार

चित्र 4.6- लैन्थेनॉयडों की आयनिक त्रिज्याओं में प्रवृत्तियाँ

लैन्थेनम से ल्युटीशियम तक के तत्वों की परमाणु एवं आयनिक त्रिज्याओं में समग्र ह्रास ( लैन्थेनॉयड आकुंचन) लैन्थेनॉयड तत्वों के रसायन का एक विशिष्ट लक्षण है। इसका तृतीय संक्रमण श्रेणी के तत्वों के रसायन पर दूरगामी प्रभाव होता है। परमाणु त्रिज्याओं के मानों (धातुओं की संरचनाओं से व्युत्पन्न) में पाई गई कमी नियमित नहीं है जैसा कि $\mathrm{M}^{3+}$ आयनों में नियमित रूप से देखने को मिलता है, (चित्र 4.6)। यह आकुंचन ठीक वैसा ही है जैसाकि सामान्य संक्रमण श्रेणियों में पाया गया है तथा कारण भी समान है, अर्थात् एक ही उपकोश में एक इलेक्ट्रॉन का दूसरे इलेक्ट्रॉन द्वारा अपूर्ण परिरक्षण प्रभाव (imperfact shielding effect)। फिर भी श्रेणी में नाभिकीय आवेश बढ़ने के साथ एक $d$-इलेक्ट्रॉन पर दूसरे $d$-इलेक्ट्रॉन के परिरक्षण प्रभाव की तुलना में, एक $4 f$ इलेक्ट्रॉन का दूसरे $4 f$ इलेक्ट्रॉन पर परिरक्षण प्रभाव कम होता है तथा श्रेणी में बढ़ते हुए नाभिकीय आवेश के कारण बढ़ते हुए परमाणु क्रमांक के साथ परमाणु के आकार में एक नियमित ह्रास पाया जाता है।

लैन्थेनॉयड श्रेणी के आकुंचन का संचयीप्रभाव, लैन्थेनॉयड आकुंचन कहलाता है, जिसके कारण तृतीय संक्रमण श्रेणी की त्रिज्याओं के मान दूसरी संक्रमण श्रेणी के संगत तत्वों की त्रिज्याओं के मानों के लगभग समान हो जाते हैं। $\mathrm{Zr}$ $(160 \mathrm{pm})$ तथा $\mathrm{Hf}(159 \mathrm{pm})$ की त्रिज्याओं का लगभग बराबर मान लैन्थेनॉयड आकुंचन का परिणाम है। यह इन धातुओं के प्रकृति में साथ पाए जाने तथा इनके पृथक्करण में उत्पन्न कठिनाई के लिए उत्तरदायी है।

4.5.3 ऑक्सीकरण अवस्थाएं

लैन्थेनॉयड में, $\mathrm{La}(\mathrm{II})$ तथा $\mathrm{Ln}(\mathrm{III})$ यौगिक प्रमुख हैं, फिर भी प्राय: +2 तथा +4 आयन विलयन में अथवा ठोस यौगिकों में उपस्थित रहते हैं। यह अनियमितता (जैसी कि आयनन एन्थैल्पी में) रिक्त, अर्धभरित तथा पूर्णभरित $f$-कक्षकों के अतिरिक्त स्थायित्व के कारण पाई जाती है। अतः $\mathrm{Ce}^{\mathrm{IV}}$ का उत्कृष्ट गैस अभिविन्यास इसके बनने में सहायक होता है। परंतु यह एक प्रबल ऑक्सीकारक है। अतः यह पुनः सामान्य +3 अवस्था में आ जाता है। $\mathrm{Ce}^{4+} /$ $\mathrm{Ce}^{3+}$ के $\mathrm{E}^{\ominus}$ का मान $+1.74 \mathrm{~V}$ है, जो यह दर्शाता है कि यह जल को ऑक्सीकृत कर सकता है। तथापि, इस अभिक्रिया की दर अधिक धीमी है और इसीलिए $\mathrm{Ce}(\mathrm{IV})$ एक अच्छा विश्लेषणात्मक अभिकर्मक है। $\mathrm{Pr}, \mathrm{Nd}, \mathrm{Tb}$ तथा $\mathrm{Dy}$ भी +4 ऑक्सीकरण अवस्था दर्शाते हैं, परंतु केवल $\mathrm{MO} _{2}$ ऑक्साइडों में। $\mathrm{Eu}^{2+}, s$ इलेक्ट्रॉनों के परित्याग द्वारा बनता है तथा $f^{7}$ विन्यास इस आयन के बनने का कारण होता है। $\mathrm{Eu}^{2+}$ एक प्रबल अपचायक है जो सामान्य +3 अवस्था में परिवर्तित हो जाता है। इसी प्रकार से $\mathrm{Yb}^{2+}$, जिसका विन्यास $f^{14}$ है, एक अपचायक का कार्य करता है। $\mathrm{Tb}^{\mathrm{IV}}$ के $f$-कक्षक अर्धभरित है तथा यह ऑक्सीकारक का कार्य करता है। सैमेरियम का व्यवहार यूरोपियम से अत्यधिक मिलता-जुलता है, जो +2 तथा +3 दोनों आक्सीकरण अवस्थाएं प्रदर्शित करता है।

सारणी 4.9 - लैन्थेनम एवं लैन्थेनॉयडों के इलेक्ट्रॉनिक विन्यास एवं त्रिज्याएं

परमाणु क्रमांक नाम संकेत इलेक्ट्रॉनिक विन्यास* त्रिज्याएँ
$\operatorname{Ln}$ $\mathrm{Ln}^{2+}$ $\mathbf{L n}^{3+}$ $\operatorname{Ln}^{4+}$ Ln $\operatorname{Ln}^{3+}$
57 लैन्थेनम La $5 d^{1} 6 s^{2}$ $5 d^{1}$ $4 f^{0}$ 187 106
58 सीरियम $\mathrm{Ce}$ $4 f^{1} 5 d^{1} 6 s^{2}$ $4 f^{2}$ $4 f^{1}$ $4 f^{0}$ 183 103
59 प्रैजियोडिमियम $\operatorname{Pr}$ $4 f^{3} 6 s^{2}$ $4 f^{3}$ $4 f^{2}$ $4 f^{1}$ 182 101
60 नियोडिमियम $\mathrm{Nd}$ $4 f^{4} 6 s^{2}$ $4 f^{4}$ $4 f^{3}$ $4 f^{2}$ 181 99
61 प्रोमिथियम $\mathrm{Pm}$ $4 f^{5} 6 s^{2}$ $4 f^{5}$ $4 f^{4}$ 181 98
62 सैमेरियम $\mathrm{Sm}$ $4 f^{6} 6 s^{2}$ $4 f^{6}$ $4 f^{5}$ 180 96
63 यूरोपियम $\mathrm{Eu}$ $4 f^{7} 6 s^{2}$ $4 f^{7}$ $4 f^{6}$ 199 95
64 गैडोलिनियम Gd $4 f^{7} 5 d^{1} 6 s^{2}$ $4 f^{7} 5 d^{1}$ $4 f^{7}$ 180 94
65 टर्बियम $\mathrm{Tb}$ $4 f^{9} 6 s^{2}$ $4 f^{9}$ $4 f^{8}$ $4 f^{7}$ 178 92
66 डिसप्रोसियम Dy $4 f^{10} 6 s^{2}$ $4 f^{10}$ $4 f^{9}$ $4 f^{8}$ 177 91
67 होल्मियम Нo $4 f^{11} 6 s^{2}$ $4 f^{11}$ $4 f^{10}$ 176 89
68 अर्बियम $\mathrm{Er}$ $4 f^{12} 6 s^{2}$ $4 f^{12}$ $4 f^{11}$ 175 88
69 थूलियम $\mathrm{Tm}$ $4 f^{13} 6 s^{2}$ $4 f^{13}$ $4 f^{12}$ 174 87
70 इटर्बियम $\mathrm{Yb}$ $4 f^{14} 6 s^{2}$ $4 f^{14}$ $4 f^{13}$ 173 86
71 ल्यूटीशियम $\mathrm{Lu}$ $4 f^{14} 5 d^{1} 6 s^{2}$ $4 f^{14} 5 d^{1}$ $4 f^{14}$ - - -
  • केवल $[\mathrm{Xe}]$ क्रोड के बाह्य इलेक्ट्रॉन दर्शाए गए हैं।

4.5.4 सामान्य अभिलक्षण

सभी लैन्थेनॉयड चाँदी की तरह श्वेत तथा नरम धातुएं हैं और वायु में तुरंत बदरंग हो जाती हैं। परमाणु क्रमांक में वृद्धि के साथ कठोरता में वृद्धि होती है। सैमेरियम स्टील की तरह कठोर होता है। इनके गलनांक 1000 से $1200 \mathrm{~K}$ के मध्य होते हैं परंतु सैमेरियम $1623 \mathrm{~K}$ पर पिघलता है। इनकी विशिष्ट धातु संरचनाएं होती हैं तथा ये ऊष्मा एवं विद्युत् के अच्छे चालक होते हैं। केवल $\mathrm{Eu}$ तथा $\mathrm{Yb}$ और कभी-कभी $\mathrm{Sm}$ तथा $\mathrm{Tm}$ को छोड़कर घनत्व तथा अन्य गुणों में निर्बाध परिवर्तन होता है।

अनेक त्रिसंयोजी लैन्थेनॉयड आयन ठोस अवस्था तथा विलयन में रंगीन होते हैं। इन आयनों का रंग $f$ इलेक्ट्रॉनों की उपस्थिति के कारण होता है। $\mathrm{La}^{3+}$ तथा $\mathrm{Lu}^{3+}$ आयनों में से कोई भी रंगीन नहीं हैं परंतु शेष लैन्थेनॉयड आयन रंगीन होते हैं। फिर भी, संभवतः $f$ स्तर पर ही उत्तेजना के फलस्वरूप अवशोषण बैंड संकीर्ण होते हैं। $f^{0}\left(\mathrm{La}^{3+}\right.$ तथा $\left.\mathrm{Ce}^{4+}\right)$ एवं $f^{14}\left(\mathrm{Yb}^{2+}\right.$ तथा $\left.\mathrm{Lu}^{3+}\right)$ के अतिरिक्त अन्य सभी लैन्थेनॉयड आयन अनुचुंबकीय होते हैं।

लैन्थेनॉयडों की प्रथम आयनन एन्थैल्पियों का मान $600 \mathrm{~kJ} \mathrm{~mol}^{-1}$ के आसपास होता है। द्वितीय आयन एन्थैल्पी का मान लगभग $1200 \mathrm{~kJ} \mathrm{~mol}^{-1}$ है, जो कैल्सियम के समतुल्य है। तृतीय आयनन एन्थैल्पी के मानों में विचरण के विस्तृत विवेचन से यह निष्कर्ष निकलता है कि विनिमय एन्थैल्पी का महत्व (जैसा कि प्रथम संक्रमण श्रेणी के $3 d$ कक्षकों में) रिक्त, अर्धभरित तथा पूर्णभरित $f$ स्तर को कुछ सीमा तक स्थायित्व प्रदान करने में प्रतीत होता है। यह लैन्थेनम, गैडोलिनियम तथा ल्यूटीशियम की तृतीय आयनन एन्थैल्पी के असाधारण निम्न मानों से स्पष्ट है।

सामान्य रूप से श्रेणी के आरंभ वाले सदस्य अपने रासायनिक व्यवहार में कैल्सियम की तरह बहुत क्रियाशील होते हैं, परंतु बढ़ते परमाणु क्रमांक के साथ यह ऐलुमिनियम की तरह व्यवहार करते हैं।

अर्ध अभिक्रिया $\operatorname{Ln}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \operatorname{Ln}(\mathrm{s})$ के लिए $\mathrm{E}^{\ominus}$ का मान -2.2 से $-2.4 \mathrm{~V}$ के परास में है। $\mathrm{Eu}$ के लिए $\mathrm{E}^{\ominus}$ का मान $-2.0 \mathrm{~V}$ है। निस्संदेह मान में थोड़ा सा परिवर्तन है, हाइड्रोजन गैस के वातावरण में मंद गति से गर्म करने पर धातुएं हाइड्रोजन से संयोग कर लेती हैं। धातुओं को कार्बन के साथ गर्म करने पर कार्बाइड$\mathrm{Ln} _{3} \mathrm{C}, \mathrm{Ln} _{2} \mathrm{C} _{3}$ तथा $\mathrm{LnC} _{2}$ बनते हैं। यह तनु अम्लों से हाइड्रोजन गैस मुक्त करती हैं तथा हैलोजन के वातावरण में जलने पर हैलाइड बनाती हैं। ये ऑक्साइड $\mathrm{M} _{2} \mathrm{O} _{3}$ तथा हाइड्रॉक्साइड $\mathrm{M}(\mathrm{OH}) _{3}$ बनाती हैं। हाइड्रॉक्साइड निश्चित यौगिक हैं न कि केवल हाइड्रेटेड ऑक्साइड। ये क्षारीय मृदा धातुओं के ऑक्साइड तथा हाइड्रॉक्साइड की भाँति क्षारकीय होते हैं। इनकी सामान्य अभिक्रियाएं चित्र 4.7 में प्रदर्शित की गई हैं।

चित्र 4.7 - लैन्थेनॉयडों की रासायनिक अभिक्रियाएं

लैन्थेनॉयडो का सर्वोत्तम उपयोग प्लेट तथा पाइप बनाने के लिए मिश्रातु इस्पात के उत्पादन में है। एक सुप्रसिद्ध मिश्रातु मिश धातु (misch metal) है जो एक लैन्थेनॉयड धातु ( 95\%) आयरन ( 5\%) तथा लेशमात्र $\mathrm{S}$, $\mathrm{C}, \mathrm{Ca}$, व $\mathrm{Al}$ से बनी होती है। मिश धातु की अत्यधिक मात्रा, मैग्नीशियम आधारित मिश्रातु में प्रयुक्त होती है जो बंदूक की गोली, कवच या खोल तथा हल्के फ्लिंट के उत्पादन के लिए उपयोग में लाया जाता है। लैन्थेनॉयडों के मिश्रित ऑक्साइडों का उपयोग पेट्रोलियम भंजन में उत्प्रेक की तरह किया जाता है। लैन्थेनॉयडों के कुछ ऑक्साइडों का उपयोग स्फुरदीपी ( फ़ॉसफ़र ) के रूप में टेलीविज़न पर्दे में तथा इसी प्रकार की प्रतिदीप्त सतहों में किया जाता है।

4.6 ऐक्टिनॉयड

सारणी 4.10- ऐक्टिनियम तथा ऐक्टिनॉयडों के कुछ गुण

परमाणु क्रमांक नाम संकेत इलेक्ट्रॉनिक विन्यास* त्रिज्याएं/pm
$\mathbf{M}$ $\mathbf{M}^{3+}$ $\mathbf{M}^{4+}$ $\mathbf{M}^{3+}$ $\mathbf{M}^{4+}$
89 ऐक्टिनियम $\mathrm{Ac}$ $6 d^{1} 7 s^{2}$ $5 f^{0}$ v 111
90 थोरियम Th $6 d^{2} 7 s^{2}$ $5 f^{1}$ $5 f^{0}$ 99
91 प्रोटैक्टिनियम $\mathrm{Pa}$ $5 f^{2} 6 d^{1} 7 s^{2}$ $5 f^{2}$ $5 f^{1}$ 96
92 यूरेनियम U $5 f^{3} 6 d^{1} 7 s^{2}$ $5 f^{3}$ $5 f^{2}$ 103 93
93 नेप्टूनियम $\mathrm{Np}$ $5 f^{4} 6 d^{1} 7 s^{2}$ $5 f^{4}$ $5 f^{3}$ 101 92
94 प्लूटोनियम $\mathrm{Pu}$ $5 f^{6} 7 s^{2}$ $5 f^{5}$ $5 f^{4}$ 100 90
95 ऐमेरिशियम Am $5 f^{7} 7 s^{2}$ $5 f^{6}$ $5 f^{5}$ 99 89
96 क्यूरियम $\mathrm{Cm}$ $5 f^{7} 6 d^{1} 7 s^{2}$ $5 f^{7}$ $5 f^{6}$ 99 88
97 बर्केलियम $\mathrm{Bk}$ $5 f^{9} 7 s^{2}$ $5 f^{8}$ $5 f^{7}$ 98 87
98 कैलिफोर्नियम $\mathrm{Cf}$ $5 f^{10} 7 s^{2}$ $5 f^{9}$ $5 f^{8}$ 98 86
99 आइन्सटाइनियम Es $5 f^{11} 7 s^{2}$ $5 f^{10}$ $5 f^{9}$ - -
100 फर्मियम $\mathrm{Fm}$ $5 f^{12} 7 s^{2}$ $5 f^{11}$ $5 f^{10}$ - -
101 मेन्डेलीवियम Md $5 f^{13} 7 s^{2}$ $5 f^{12}$ $5 f^{11}$ - -
102 नोबेलियम No $5 f^{14} 7 s^{2}$ $5 f^{13}$ $5 f^{12}$ - -
103 लॉरेन्शियम $\mathrm{Lr}$ $5 f^{14} 6 d^{1} 7 s^{2}$ $5 f^{14}$ $5 f^{13}$ - -

ऐक्टिनॉयडों में $\mathrm{Th}$ से $\mathrm{Lr}$ तक चौदह तत्व हैं। इन तत्वों के नाम, संकेत तथा कुछ गुण सारणी 4.10 में दिए गए हैं। ऐक्टिनॉयड रेडियोसक्रिय तत्व हैं तथा प्रारंभिक सदस्यों की अर्धायु अपेक्षाकृत अधिक होती है। परंतु बाद वाले सदस्यों की अर्धायु का परास एक दिन से 3 मिनट तक है। लॉरेन्शियम $(Z=103)$ की अर्धायु 3 मिनट है। बाद वाले सदस्य केवल नैनोग्राम मात्राओं में ही बनाए जा सकते हैं। इन तथ्यों के कारण इनके अध्ययन में अधिक कठिनाइयाँ आती हैं।

4.6.1 इलेक्ट्रॉनिक विन्यास

समझा जाता है कि सभी ऐक्टिनॉयडों में $7 \mathrm{~s}^{2}$ विन्यास होता है तथा $5 f$ एवं $6 d$ उपकोशों में परिवर्तनशील निवेश होता है। चौदह इलेक्ट्रॉनों का निवेश $5 f$ उपकोश में होता है। थोरियम (Th, $Z=90$ ) तक तो नहीं परंतु $\mathrm{Pa}$ एवं इसके आगे वाले तत्वों में नियमित रूप से निवेश होते हुए परमाणु संख्या 103 तक पहुँचने पर $5 f$ कक्षक पूर्ण रूप से भर जाता है। लैन्थेनॉयडों के समान ऐक्टिॉॉडों के इलेक्ट्रॉनिक विन्यासों में अनियमितताएं, $5 f$ उपकोश में उपस्थित $f^{0}, f^{7}$ तथा $f^{14}$ विन्यासों के स्थायित्व से सबंधित हैं। इस प्रकार $\mathrm{Am}$ तथा $\mathrm{Cm}$ का इलेक्ट्रॉनिक विन्यास क्रमशः $[\mathrm{Rn}] 5 f^{7} 7 s^{2}$ तथा $[\mathrm{Rn}] 5 f^{7} 6 d^{1} 7 s^{2}$ है। यद्यपि, $5 f$ कक्षकों तथा $4 f$ कक्षकों में, उनके तरंग फलन के कोणीय भाग के संदर्भ में समानता पाई जाती है परंतु ये इतने धँसे हुए नहीं होते हैं जितने कि $4 f$ कक्षक। अतः $5 f$ कक्षक अधि क मात्रा में आबंधन में भाग ले सकते हैं।

4.6.2 आयनिक आकार

आयनिक आकार के संदर्भ में ऐक्टिनॉयडों की सामान्य प्रवृत्ति भी लैन्थेनॉयडों की ही तरह है। श्रेणी में परमाणु अथवा $\mathrm{M}^{3+}$ आयनों के आकार में धीरे-धीरे क्रमिक ह्रास होता है। इसे ऐक्टिनॉयड आकुंचन (लैन्थेनॉयड आकुंचन की तरह) के रूप में संदर्भित किया जा सकता है। यद्यपि यह आकुंचन इस श्रेणी में एक तत्व से दूसरे तत्व में उत्तरोत्तर बढ़ता जाता है जो $5 f$ इलेक्ट्रॉनों द्वारा दुर्बल परिरक्षण (shielding) के कारण है।

4.6.3 ऑक्सीकरण अवस्थाएँ

ऐक्टिनॉयड श्रेणी में ऑक्सीकरण अवस्थाओं का परास अधिक है। आंशिक रूप से इसका कारण $5 f, 6 d$ तथा $7 s$ स्तरों की समतुल्य ऊर्जा है। ऐक्टिनॉयड की ज्ञात ऑक्सीकरण अवस्थाएं सारणी 4.11 में दर्शायी गई हैं।

ऐक्टिनॉयड सामान्यतः +3 ऑक्सीकरण अवस्था दर्शाते हैं। श्रेणी के प्रारंभिक अर्ध-भाग वाले तत्व सामान्यतः उच्च ऑक्सीकरण अवस्थाएं प्रदर्शित करते हैं। उदाहरणार्थ, उच्चतम ऑक्सीकरण अवस्था $\mathrm{Th}$ में +4 है $\mathrm{Pa}, \mathrm{U}$ तथा $\mathrm{Np}$ में क्रमशः $+5,+6$ तथा +7 तक पहुँच जाती है। परंतु बाद के तत्वों में ऑक्सीकरण अवस्थाएं घटती हैं (सारणी 4.11)। ऐक्टिनॉयडों व लैन्थेनॉयडों में यह समानता है कि यह +4 ऑक्सीकरण अवस्था की अपेक्षा +3 ऑक्सीकरण अवस्था में अधिक यौगिक बनाते हैं। तथापि, +3 तथा +4 आयनों की जल अपघटित होने की प्रवृत्ति होती है। प्रारंभ एवं बाद वाले ऐक्टिनॉयडों की ऑक्सीकरण अवस्थाओं के वितरण में इतनी अधिक अनियमितता तथा विभिन्नता पाई जाती है; कि ऑक्सीकरण अवस्थाओं के संदर्भ में इन तत्वों के रसायन की समीक्षा करना संतोषजनक नहीं है।

सारणी 4.11 - ऐक्टिनियम तथा ऐक्टिनॉइडों की ऑक्सीकरण अवस्थाएँ

Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5
6 6 6 6
7 7
7

4.6.4 सामान्य अभिलक्षण तथा लैन्थेनॉयडों से तुलना

सभी ऐक्टिनॉयड धातुएं देखने में चाँदी की तरह लगती हैं परंतु विभिन्न प्रकार की संरचनाएं दर्शाती हैं। संरचनाओं में भिन्नता का कारण धात्विक त्रिज्याओं में अनियमितताएं हैं, जो लैन्थेनॉयडों से कहीं अधिक हैं।

ऐक्टिनॉयड अत्यधिक अभिक्रियाशील धातुएँ हैं, विशेषकर जब वे सूक्ष्म विभाजित हों। इन पर उबलते हुए जल की क्रिया से ऑक्साइड तथा हाइड्राइड का मिश्रण प्राप्त होता है और अधिकांश अधातुओं से संयोजन, सामान्य ताप पर होता है। हाइड्रोक्लोरिक अम्ल सभी धातुओं को प्रभावित करता है, परंतु अधिकतर धातुएं नाइट्रिक अम्ल द्वारा, अल्प प्रभावित होती हैं, कारण कि इन धातुओं पर ऑक्साइड की संरक्षी सतह बन जाती है। क्षारों का इन धातुओं पर कोई प्रभाव नहीं पड़ता।

ऐक्टिनॉयडों के चुंबकीय गुण लैन्थेनॉयडों की तुलना में अधिक जटिल हैं। यद्यपि $5 f$ के अयुगलित इलेक्ट्रॉनों की संख्या के साथ ऐक्टिनॉयडों की चुंबकीय प्रवृत्ति में परिवर्तन लगभग वैसा ही है जैसा लैन्थेनॉयडों के लिए संगत परिणामों में है, हालाँकि ये मान लैन्थेनॉयडों में कुछ अधिक होते हैं।

ऐक्टिनॉयडों के व्यवहार से यह स्पष्ट है कि प्रारंभिक ऐक्टिनॉयडों की आयनन एन्थैल्पी (यद्यपि सही रूप से ज्ञात नहीं है), प्रारंभिक लैन्थेनायडों से कम हैं। यह उचित भी प्रतीत होता है क्योंकि जब $5 f$ कक्षक भरना प्रारंभ होंगे तो वे इलेक्ट्रॉनों के आंतरिक क्रोड में कम भेदन करेंगे। इसीलिए $5 f$ इलेक्ट्रॉन नाभिकीय आवेश संगत लैन्थेनॉयडों के $4 f$ इलेक्ट्रॉनों की तुलना में अधिक प्रभावी रूप से परिरक्षित होंगे। ऐक्टिनॉइड में बाह्य इलेक्ट्रॉन कम दृढ़ता से जकडे आबंधन के लिए उपलब्ध होते हैं।

विभिन्न लक्षणों के संदर्भ में जिनका विवेचन ऊपर किया जा चुका है, ऐक्टिनॉयडों की लैन्थेनॉयडों से तुलना करने पर हम पाते हैं कि ऐक्टिनॉयडों में लैन्थेनॉयडों की तरह का व्यवहार, श्रेणी के दूसरे भाग तक पहुँचने तक सुस्पष्ट नहीं होता है। फिर भी प्रारंभिक ऐक्टिनॉयड भी लैन्थेनॉयडों की तरह आपस में सन्निकट समानताएं दर्शाने में तथा गुणों के क्रमिक परिवर्तन प्रदर्शित करने में मिलते-जुलते हैं, जिनमें ऑक्सीकरण अवस्था का परिवर्तित होना सम्मिलित नहीं है। लैन्थेनॉयड तथा ऐक्टिनॉयड आकुंचन का तत्वों के आकार पर विस्तृत प्रभाव पड़ता है और इसीलिए संगत आवर्त में उनके आगे आने वाले तत्वों के गुणों पर भी प्रभाव पड़ता है। लैन्थेनॉयड आकुंचन अधिक महत्वपूर्ण है; क्योंकि एक्टिनॉयडों के पश्चात् आने वाले तत्वों का रसायन अभी तक कम ज्ञात है।

पाठ्यनिहित प्रश्न

4.10 लैन्थेनॉयड आकुंचन की तुलना में एक तत्व से दूसरे तत्व के बीच ऐक्टिनॉयड आकुंचन अधिक होता है। क्यों?

Show Answer #missing

4.7 $d$ - एवं $f$-ब्लॉक तत्वों के कुछ्छ अनुप्रयोग

लोहा तथा इस्पात अत्यंत महत्वपूर्ण निर्माण सामग्री हैं। इनका उत्पादन आयरन ऑक्साइड के अपचयन, अशुद्धियों के निष्कासन तथा कार्बन व मिश्रात्वन धातुओं, जैसे $\mathrm{Cr}, \mathrm{Mn}$ और $\mathrm{Ni}$ के समिश्रण पर आधारित है। कुछ यौगिकों का उत्पादन कुछ विशेष उद्देश्य के लिए होता है, जैसे $\mathrm{TiO}$ का वर्णक उद्योग में और $\mathrm{MnO} _{2}$ का शुष्क बैटरी सेलों में। बैटरी उद्योग में $\mathrm{Zn}$ तथा $\mathrm{Ni} / \mathrm{Cd}$ की भी आवश्यकता पड़ती है। वर्ग- 11 के तत्वों को मुद्राधातु कहना उचित होगा। यद्यपि सिल्वर व गोल्ड की वस्तुओं का महत्व केवल संग्रहण तक ही सीमित हो गया है तथा समकालीन UK ‘कॉपर’ सिक्के वास्तव में कॉपर अवर्णित स्टील हैं और ‘सिल्वर’ UK सिक्के $\mathrm{Cu} / \mathrm{Ni}$ मिश्रातु हैं। बहुत सी धातुएं और/या उनके यौगिक रसायन उद्योग में महत्वपूर्ण उत्प्रेरक हैं। सल्फ्यूरिक अम्ल के उत्पादन में $\mathrm{V} _{2} \mathrm{O} _{5}, \mathrm{SO} _{2}$ के ऑक्सीकरण को उत्प्रेरित करता है। $\mathrm{Al}\left(\mathrm{CH} _{3}\right) _{3}$ युक्त $\mathrm{TiCl} _{4}$ त्सीग्लर उत्प्रेरकों का आधार है, जिसका उपयोग पॉलिएथिलीन (पॉलिएथीन) के उत्पादन में होता है। हाबर विधि में $\mathrm{N} _{2} / \mathrm{H} _{2}$ मिश्रण से अमोनिया प्राप्त करने के लिए आयरन उत्प्रेरक के रूप में प्रयुक्त होता है। तेल/वसा के हाइड्रोजनन में निकैल उत्प्रेरक के रूप में प्रयुक्त होता है। एथाइन के ऑक्सीकरण से एथेनल बनाने के ‘वाकर प्रक्रम’ में $\mathrm{PdCl} _{2}$ उत्प्रेरक के रूप में प्रयुक्त होता है। निकैल के संकुलों ऐल्काइनों तथा अन्य कार्बनिक यौगिकों जैसे बेन्जीन के बहुलकीकरण में उपयोगी हैं। फोटोग्राफी उद्योग $\mathrm{AgBr}$ के विशिष्ट प्रकाश संवेदनशीलता के गुणों पर आधारित है।

शारांश

3 से 12 वर्गों वाला $d$-ब्लॉक अधिकांशतः आवर्त सारणी के मध्य भाग में स्थित है। इन तत्वों में आंतरिक $d$ कक्षकों की इलेक्ट्रॉनों द्वारा उत्तरोत्तर पूर्ति होती है। $\boldsymbol{f}$-ब्लाक को आवर्त सारणी के बाहर नीचे की ओर रखा गया है। इस ब्लॉक में $4 f$ तथा $5 f$ कक्षक उत्तरोत्तर भरे जाते हैं।

$3 d, 4 d$ तथा $5 d$ कक्षकों में इलेक्ट्रॉनों द्वारा आपूर्ति के संगत संक्रमण तत्वों की तीन श्रेणियाँ ज्ञात हैं। सभी संक्रमण धातुएं अभिलक्षक धात्विक गुण प्रदर्शित करती हैं, जैसे उच्च तनन क्षमता, तन्यता, वर्धनीयता, तापीय तथा विद्युत चालकता तथा धात्विक गुण। इन धातुओं के गलनांक एवं क्वथनांक उच्च होते हैं, जिसका कारण $(\mathrm{n}-1) d$ इलेक्ट्रॉनों की आबंधों में भागीदारी है, जिसमें प्रबल अंतरापरमाणुक आबंध बनते हैं। इनमें बहुत से गुणों के लिए उच्चिष्ठ प्रत्येक श्रेणी के मध्य में पाया जाता है जो यह संकेत देता है कि प्रबल अंतरापरमाणुक अन्योन्य क्रिया के लिए प्रति $d$ कक्षक एक अयुगलित इलेक्ट्रॉन का होना विशेषकर अनुकूल विन्यास है।

मुख्य वर्गों के तत्वों की तुलना में, बढ़ते हुए परमाणु क्रमांक के साथ संक्रमण तत्वों की आयनन एन्थैल्पी में अत्यधिक वृद्धि नहीं पाई जाती। अतः $(\mathrm{n}-1) d$ कक्षक से इलेक्ट्रॉन की परिवर्तनीय संख्या में ह्रास, ऊर्जा की दृष्टि से बाधक नहीं होता। परिणामस्वरूप, स्कैंडियम तथा ज़िंक के अतिरिक्त सभी संक्रमण धातुएं परिवर्ती ऑक्सीकरण अवस्थाएं प्रदर्शित करती हैं। संक्रमण धातुओं के स्वभाव के संदर्भ में $(\mathrm{n}-1) d$ इलेक्ट्रॉनों की भागीदारी इन तत्वों को कुछ विशिष्ट गुण प्रदान करती है। अतः परिवर्ती ऑक्सीकरण अवस्थाओं के अतिरिक्त संक्रमण धातुएं अनुचुंबकीय गुण और उत्प्रेरक गुण दर्शाती हैं तथा इन धातुओं में रंगीन आयन, संकुल यौगिक एवं अंतराकाशी यौगिक बनाने की प्रवृत्ति पाई जाती है।

संक्रमण धातुओं के रासायनिक व्यवहार में अत्यधिक विभिन्नता पाई जाती है। इनमें से बहुत सी धातुएं खनिज अम्लों में घुल सकने के लिए पर्याप्त विद्युत धनात्मक होती हैं। यद्यपि इनमें से कुछ ‘उत्कृष्ट’ हैं। प्रथम संक्रमण श्रेणी में कॉपर के अतिरिक्त सभी धातुएं अपेक्षाकृत अभिक्रियाशील हैं।

संक्रमण धातुएं बहुत सी अधातुओं; जैसे— ऑक्सीजन, नाइट्रोजन, सल्फर तथा हैलोजन से अभिक्रिया करके द्विअंगी यौगिकों की रचना करती हैं। प्रथम संक्रमण श्रेणी की धातुओं के ऑक्साइड प्राप्त करने के लिए ऑक्सीजन से उच्च ताप पर अभिक्रिया कराई जाती है। ऑक्साइड, अम्लों तथा क्षारों में विलेय होकर ऑक्सोधात्विक लवण बनाते हैं। पोटैशियम डाइक्रोमेट तथा पोटैशियम परमैंगनेट इनके उदाहरण हैं। पोटैशियम डाइक्रोमेट बनाने के लिए क्रोमाइट अयस्क को वायु की उपस्थिति में क्षार के साथ संगलित करने के पश्चात् सत्व को अम्लीकृत किया जाता है। पोटैशियम परमैंगनेट के विरचन में पाइरोलुसाइट अयस्क $\left(\mathrm{MnO} _{2}\right)$ का उपयोग किया जाता है। डाइक्रोमेट तथा परमैंगनेट दोनों ही प्रबल ऑक्सीकारक आयन हैं।

आंतरिक संक्रमण तत्वों की दो श्रेणियाँ लैन्थेनॉयड तथा एक्टिनॉयड आवर्त सारणी के $\boldsymbol{f}$-ब्लॉक की रचना करती हैं। $4 f$ आंतरिक कक्षकों में उत्तरोत्तर पूर्ति होने के साथ श्रेणी की धातुओं की परमाणु और आयनिक त्रिज्याओं में क्रमिक ह्रास ( लैन्थेनॉयड आकुंचन) होता है, जिसका प्रभाव आगे वाले तत्वों के रसायन पर प्रमुख रूप से पड़ता है। लैन्थेनम तथा लैन्थेनॉयड श्रेणी की धातुएं श्वेत तथा मृदु होती हैं। जल से आसानी से अभिक्रिया करके विलयन में +3 आयन बना लेती हैं। प्रमुख ऑक्सीकरण अवस्था +3 है यद्यपि प्राय: +4 तथा +2 ऑक्सीकरण अवस्थाएं भी कुछ धातुओं द्वारा दर्शायी जाती हैं। विभिन्न ऑक्सीकरण अवस्थाओं में स्थित रहने के कारण ऐक्टिनॉयडों का रसायन अधिक जटिल है। पुनश्चः बहुत सी एक्टिनॉइड धातुएं रेडियोधर्मी हैं जो इन धातुओं के अध्ययन को कठिन बना देती हैं।

$d$ तथा $f$ - ब्लॉक के तत्व तथा उनके यौगिकों के बहुत उपयोगी अनुप्रयोग हैं। इनमें से प्रमुख हैं विभिन्न प्रकार के स्टील बनाने में, उत्प्रेरक, संकुल तथा कार्बनिक संश्लेषण इत्यादि में।

अभ्यास

4.1 निम्नलिखित के इलेक्ट्रॉनिक विन्यास लिखिए-

(i) $\mathrm{Cr}^{3+}$

(iii) $\mathrm{Cu}^{+}$

(ii) $\mathrm{Pm}^{3+}$

(iv) $\mathrm{Ce}^{4+}$

(v) $\mathrm{Co}^{2+}$

(vi) $\mathrm{Lu}^{2+}$

(vii) $\mathrm{Mn}^{2+}$

(viii) $\mathrm{Th}^{4+}$

Show Answer #missing

4.2 $+3$ ऑक्सीकरण अवस्था में ऑक्सीकृत होने के संदर्भ में $\mathrm{Mn}^{2+}$ के यौगिक $\mathrm{Fe}^{2+}$ के यौगिकों की तुलना में अधिक स्थायी क्यों हैं?

Show Answer #missing

4.3 संक्षेप में स्पष्ट कीजिए कि प्रथम संक्रमण श्रेणी के प्रथम अर्धभाग में बढ़ते हुए परमाणु क्रमांक के साथ +2 ऑक्सीकरण अवस्था कैसे अधिक स्थायी होती जाती है?

Show Answer #missing

4.4 प्रथम संक्रमण श्रेणी के तत्वों के इलेक्ट्रॉनिक विन्यास किस सीमा तक ऑक्सीकरण अवस्थाओं को निर्धारित करते हैं? उत्तर को उदाहरण देते हुए स्पष्ट कीजिए।

Show Answer #missing

4.5 संक्रमण तत्वों की मूल अवस्था में नीचे दिए गए $d$ इलेक्ट्रॉनिक विन्यासों में कौन-सी ऑक्सीकरण अवस्था स्थायी होगी? $3 \mathrm{~d}^{3}, 3 \mathrm{~d}^{5}, 3 \mathrm{~d}^{8}$ तथा $3 \mathrm{~d}^{4}$

Show Answer #missing

4.6 प्रथम संक्रमण श्रेणी के ऑक्सो-धातुऋणायनों का नाम लिखिए; जिसमें धातु संक्रमण श्रेणी की वर्ग संख्या के बराबर ऑक्सीकरण अवस्था प्रदर्शित करती है।

Show Answer #missing

4.7 लैन्थेनॉयड आकुंचन क्या है? लैन्थेनॉयड आकुंचन के परिणाम क्या हैं?

Show Answer #missing

4.8 संक्रमण धातुओं के अभिलक्षण क्या हैं? ये संक्रमण धातु क्यों कहलाती हैं? $d$-ब्लॉक के तत्वों में कौन से तत्व संक्रमण श्रेणी के तत्व नहीं कहे जा सकते?

Show Answer #missing

4.9 संक्रमण धातुओं के इलेक्ट्रॉनिक विन्यास किस प्रकार असंक्रमण तत्वों के इलेक्ट्रॉनिक विन्यास से भिन्न हैं?

Show Answer #missing

4.10 लैन्थेनॉयडों द्वारा कौन-कौन सी ऑक्सीकरण अवस्थाएं प्रदर्शित की जाती हैं?

Show Answer #missing

4.11 कारण देते हुए स्पष्ट कीजिए-

(i) संक्रमण धातुएं तथा उनके अधिकांश यौगिक अनुचुंबकीय हैं।

(ii) संक्रमण धातुओं की कणन एन्थैल्पी के मान उच्च होते हैं।

(iii) संक्रमण धातुएं सामान्यतः रंगीन यौगिक बनाती हैं।

(iv) संक्रमण धातुएं तथा इनके अनेक यौगिक उत्तम उत्प्रेरक का कार्य करते हैं।

Show Answer #missing

4.12 अंतराकाशी यौगिक क्या हैं? इस प्रकार के यौगिक संक्रमण धातुओं के लिए भली प्रकार से ज्ञात क्यों हैं?

Show Answer #missing

4.13 संक्रमण धातुओं की ऑक्सीकरण अवस्थाओं में परिवर्तनशीलता असंक्रमण धातुओं में ऑक्सीकरण अवस्थाओं में परिवर्तनशीलता से किस प्रकार भिन्न है? उदाहरण देकर स्पष्ट कीजिए।

Show Answer #missing

4.14 आयरनक्रोमाइट अयस्क से पोटैशियम डाइक्रोमेट बनाने की विधि का वर्णन कीजिए। पोटैशियम डाइक्रोमेट विलयन पर $\mathrm{pH}$ बढ़ाने से क्या प्रभाव पड़ेगा?

Show Answer #missing

4.15 पोटैशियम डाइक्रोमेट की ऑक्सीकरण क्रिया का उल्लेख कीजिए तथा निम्नलिखित के साथ आयनिक समीकरण लिखिए-

(i) आयोडाइड आयन

(ii) आयरन (II) विलयन

(iii) $\mathrm{H} _{2} \mathrm{~S}$

Show Answer #missing

4.16 पोटैशियम परमैंगनेट को बनाने की विधि का वर्णन कीजिए। अम्लीय पोटैशियम परमैंगनेट किस प्रकार- (i) आयरन (II) आयन (ii) $\mathrm{SO} _{2}$ तथा (iii) ऑक्सैलिक अम्ल से अभिक्रिया करता है? अभिक्रियाओं के लिए आयनिक समीकरण लिखिए।

Show Answer #missing

4.17 $\mathrm{M}^{2+} / \mathrm{M}$ तथा $\mathrm{M}^{3+} / \mathrm{M}^{2+}$ निकाय के संदर्भ में कुछ धातुओं के $\mathrm{E}^{\ominus}$ के मान नीचे दिए गए हैं।

$\mathrm{Cr}^{2+} / \mathrm{Cr}$ $-0.9 \mathrm{~V}$ $\mathrm{Cr}^{3} / \mathrm{Cr}^{2+}$ $-0.4 \mathrm{~V}$
$\mathrm{Mn}^{2+} / \mathrm{Mn}$ $-1.2 \mathrm{~V}$ $\mathrm{Mn}^{3+} / \mathrm{Mn}^{2+}$ $+1.5 \mathrm{~V}$
$\mathrm{Fe}^{2+} / \mathrm{Fe}$ $-0.4 \mathrm{~V}$ $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ $+0.8 \mathrm{~V}$

उपरोक्त आँकड़ों के आधार पर निम्नलिखित पर टिप्पणी कीजिए-

(i) अम्लीय माध्यम में $\mathrm{Cr}^{3+}$ या $\mathrm{Mn}^{3+}$ की तुलना में $\mathrm{Fe}^{3+}$ का स्थायित्व।

(ii) समान प्रक्रिया के लिए क्रोमियम अथवा मैंगनीज़ धातुओं की तुलना में आयरन के ऑक्सीकरण में सुगमता।

Show Answer #missing

4.18 निम्नलिखित में कौन से आयन जलीय विलयन में रंगीन होंगे? $\mathrm{Ti}^{3+}, \mathrm{V}^{3+}, \mathrm{Cu}^{+}, \mathrm{Sc}^{3+} \mathrm{Mn}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Co}^{2+}$, प्रत्येक के लिए कारण बताइए।

Show Answer #missing

4.19 प्रथम संक्रमण श्रेणी की धातुओं की +2 ऑक्सीकरण अवस्थाओं के स्थायित्व की तुलना कीजिए।

Show Answer #missing

4.20 निम्नलिखित के संदर्भ में, लैन्थेनॉयड एवं ऐक्टिनॉयड के रसायन की तुलना कीजिए।

(i) इलेक्ट्रॉनिक विन्यास

(ii) परमाण्वीय एवं आयनिक आकार

(iii) ऑक्सीकरण अवस्था

(iv) रासायनिक अभिक्रियाशीलता।

Show Answer #missing

4.21 आप निम्नलिखित को किस प्रकार से स्पष्ट करेंगे-

(i) $\mathrm{d}^{4}$ स्पीशीज़ में से $\mathrm{Cr}^{2+}$ प्रबल अपचायक है जबकि मैंगनीज़ (III) प्रबल ऑक्सीकरक है।

(ii) जलीय विलयन में कोबाल्ट (II) स्थायी है परंतु संकुलनकारी अभिकर्मकों की उपस्थिति में यह सरलतापूर्वक ऑक्सीकृत हो जाता है।

(iii) आयनों का $d^{1}$ विन्यास अत्यंत अस्थायी है।

Show Answer #missing

4.22 असमानुपातन से आप क्या समझते हैं? जलीय विलयन में असमानुपातन अभिक्रियाओं के दो उदाहरण दीजिए।

Show Answer #missing

4.23 प्रथम संक्रमण श्रेणी में कौन सी धातु बहुधा तथा क्यों +1 ऑक्सीकरण अवस्था दर्शाती है?

Show Answer #missing

4.24 निम्नलिखित गैसीय आयनों में अयुगलित इलेक्ट्रॉनों की गणना कीजिए। $\mathrm{Mn}^{3+}, \mathrm{Cr}^{3+}, \mathrm{V}^{3+}$ तथा $\mathrm{Ti}^{3+}$ इनमें से कौन सा जलीय विलयन में अतिस्थायी है?

Show Answer #missing

4.25 उदाहरण देते हुए संक्रमण धातुओं के रसायन के निम्नलिखित अभिलक्षणों का कारण बताइए-

(i) संक्रमण धातु का निम्नतम ऑक्साइड क्षारकीय है, जबकि उच्चतम ऑक्साइड उभयधर्मी अम्लीय है।

(ii) संक्रमण धातु की उच्चतम ऑक्सीकरण अवस्था ऑक्साइडों तथा फ्लुओराइडों में प्रदर्शित होती है।

(iii) धातु के ऑक्सोऋणायनों में उच्चतम ऑक्सीकरण अवस्था प्रदर्शित होती है।

Show Answer #missing

4.26 निम्नलिखित को बनाने के लिए विभिन्न पदों का उल्लेख कीजिए -

(i) क्रोमाइट अयस्क से $\mathrm{K} _{2} \mathrm{Cr} _{2} \mathrm{O} _{7}$

(ii) पाइरोलुसाइट से $\mathrm{KMnO} _{4}$

Show Answer #missing

4.27 मिश्रातुएं क्या हैं? लैन्थेनॉयड धातुओं से युक्त एक प्रमुख मिश्रातु का उल्लेख कीजिए। इसके उपयोग भी बताइए।

Show Answer #missing

4.28 आंतरिक संक्रमण तत्व क्या हैं? बताइए कि निम्नलिखित में कौन से परमाणु क्रमांक आंतरिक संक्रमण तत्वों के हैं $29,59,74,95,102,104$

Show Answer #missing

4.29 ऐक्टिनॉयड तत्वों का रसायन उतना नियमित नहीं है जितना कि लैन्थेनॉयड तत्वों का रसायन। इन तत्वों की ऑक्सीकरण अवस्थाओं के आधार पर इस कथन का आधार प्रस्तुत कीजिए।

Show Answer #missing

4.30 एक्टिनॉयड श्रेणी का अंतिम तत्व कौन सा है? इस तत्व का इलेक्ट्रॉनिक विन्यास लिखिए। इस तत्व की संभावित ऑक्सीकरण अवस्थाओं पर टिप्पणी कीजिए।

Show Answer #missing

4.31 हुंड-नियम के आधार पर $\mathrm{Ce}^{3+}$ आयन के इलेक्ट्रॉनिक विन्यास को व्युत्पन्न कीजिए तथा ‘प्रचक्रण मात्र सूत्र’ के आधार पर इसके चुंबकीय आघूर्ण की गणना कीजिए।

Show Answer #missing

4.32 लैन्थेनॉयड श्रेणी के उन सभी तत्वों का उल्लेख कीजिए जो +4 तथा जो +2 ऑक्सीकरण अवस्थाएं दर्शाते हैं। इस प्रकार के व्यवहार तथा उनके इलेक्ट्रॉनिक विन्यास के बीच संबंध स्थापित कीजिए।

Show Answer #missing

4.33 निम्नलिखित के संदर्भ में ऐक्टिनॉयड श्रेणी के तत्वों तथा लैन्थेनॉयड श्रेणी के तत्वों के रसायन की तुलना कीजिए।

(i) इलेक्ट्रॉनिक विन्यास

(ii) ऑक्सीकरण अवस्थाएं

(iii) रासायनिक अभिक्रियाशीलता।

Show Answer #missing

4.34 $61,91,101$ तथा 109 परमाणु क्रमांक वाले तत्वों का इलेक्ट्रॉनिक विन्यास लिखिए।

Show Answer #missing

4.35 प्रथम श्रेणी के संक्रमण तत्वों के अभिलक्षणों की द्वितीय एवं तृतीय श्रेणी के वर्गों के संगत तत्वों से क्षैतिज वर्गों में तुलना कीजिए। निम्नलिखित बिंदुओं पर विशेष महत्व दीजिए-

(i) इलेक्ट्रॉनिक विन्यास

(ii) ऑक्सीकरण अवस्थाएं

(iii) आयनन एन्थैल्पी तथा

(iv) परमाण्वीय आकार

Show Answer #missing

4.36 निम्नलिखित आयनों में प्रत्येक के लिए $3 d$ इलेक्ट्रॉनों की संख्या लिखिए-

$ \mathrm{Ti}^{2+}, \mathrm{V}^{2+}, \mathrm{Cr}^{3+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+} $

आप इन जलयोजित आयनों (अष्टफलकीय) में पाँच $3 d$ कक्षकों को किस प्रकार अधिग्रहीत करेंगे? दर्शाइए।

Show Answer #missing

4.37 प्रथम संक्रमण श्रेणी के तत्व भारी संक्रमण तत्वों के अनेक गुणों से भिन्नता प्रदर्शित करते हैं। टिप्पणी कीजिए।

Show Answer #missing

4.38 निम्नलिखित संकुल स्पीशीज़ के चुंबकीय आघूर्णों के मान से आप क्या निष्कर्ष निकालेंगे?

उदाहरण चुंबकीय आघूर्ण $(\mathrm{BM})$
$\mathrm{K}_4\left[\mathrm{Mn}(\mathrm{CN})_6\right)$ 2.2
$\left[\mathrm{Fe}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{2+}$ 5.3
$\mathrm{~K}_2\left[\mathrm{MnCl}_4\right]$ 5.9
Show Answer #missing


Table of Contents