Chapter-03 Electrochemistry

Chemical reactions can be used to produce electrical energy, conversely, electrical energy can be used to carry out chemical reactions that do not proceed spontaneously.

Electrochemistry is the study of production of electricity from energy released during spontaneous chemical reactions and the use of electrical energy to bring about non-spontaneous chemical transformations. The subject is of importance both for theoretical and practical considerations. A large number of metals, sodium hydroxide, chlorine, fluorine and many other chemicals are produced by electrochemical methods. Batteries and fuel cells convert chemical energy into electrical energy and are used on a large scale in various instruments and devices. The reactions carried out electrochemically can be energy efficient and less polluting. Therefore, study of electrochemistry is important for creating new technologies that are ecofriendly. The transmission of sensory signals through cells to brain and vice versa and communication between the cells are known to have electrochemical origin. Electrochemistry, is therefore, a very vast and interdisciplinary subject. In this Unit, we will cover only some of its important elementary aspects.

3.1 Electrochemical Cells

In Class XI, Unit 8, we had studied the construction and functioning of Daniell cell (Fig. 3.1). This cell converts the chemical energy liberated during the redox reaction Zn

Fig. 3.1: Daniell cell having electrodes of zinc and copper dipping in the solutions of their respective salts.

$$ \begin{equation*} \mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) \tag{3.1} \end{equation*} $$

to electrical energy and has an electrical potential equal to $1.1 \mathrm{~V}$ when concentration of $\mathrm{Zn}^{2+}$ and $\mathrm{Cu}^{2+}$ ions is unity $\left(1 \mathrm{~mol} \mathrm{dm}^{-3}\right)^{*}$. Such a device is called a galvanic or a voltaic cell.

If an external opposite potential is applied in the galvanic cell [Fig. 3.2(a)] and increased slowly, we find that the reaction continues to take place till the opposing voltage reaches the value 1.1 V [Fig. 3.2(b)] when, the reaction stops altogether and no current flows through the cell. Any further increase in the external potential again starts the reaction but in the opposite direction [Fig. 3.2(c)]. It now functions as an electrolytic cell, a device for using electrical energy to carry non-spontaneous chemical reactions. Both types of cells are quite important and we shall study some of their salient features in the following pages.

(a) When $E _{\text { ext }}$ < 1.1 V

(i) Electrons flow from Zn rod to Cu rod hence current flows from Cu to Zn.

(ii) Zn dissolves at anode and copper deposits at cathode.

(b) When $E _{\text { ext }}$ = 1.1 V

(i) No flow of electrons or current.

(ii) No chemical reaction.

(c) When Eext > 1.1 V

(i) Electrons flow from Cu to Zn and current flows from Zn to Cu.

(ii) Zinc is deposited at the zinc electrode and copper dissolves at copper electrode.

Fig. 3.2 Functioning of Daniell cell when external voltage $E _{\text { ext }}$ opposing the cell potential is applied

3.2 Galvanic Cells

As mentioned earlier (Class XI, Unit 8) a galvanic cell is an electrochemical cell that converts the chemical energy of a spontaneous redox reaction into electrical energy. In this device the Gibbs energy of the spontaneous redox reaction is converted into electrical work which may be used for running a motor or other electrical gadgets like heater, fan, geyser, etc.

Daniell cell discussed earlier is one such cell in which the following redox reaction occurs.

$$ \mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) $$

This reaction is a combination of two half reactions whose addition gives the overall cell reaction:

(i) $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s}) \quad$ (reduction half reaction)

(ii) $\mathrm{Zn}$ (s) $\rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \quad$ (oxidation half reaction)

These reactions occur in two different portions of the Daniell cell. The reduction half reaction occurs on the copper electrode while the oxidation half reaction occurs on the zinc electrode. These two portions of the cell are also called half-cells or redox couples. The copper electrode may be called the reduction half cell and the zinc electrode, the oxidation half-cell.

We can construct innumerable number of galvanic cells on the pattern of Daniell cell by taking combinations of different half-cells. Each halfcell consists of a metallic electrode dipped into an electrolyte. The two half-cells are connected by a metallic wire through a voltmeter and a switch externally. The electrolytes of the two half-cells are connected internally through a salt bridge as shown in Fig. 3.1. Sometimes, both the electrodes dip in the same electrolyte solution and in such cases we do not require a salt bridge.

At each electrode-electrolyte interface there is a tendency of metal ions from the solution to deposit on the metal electrode trying to make it positively charged. At the same time, metal atoms of the electrode have a tendency to go into the solution as ions and leave behind the electrons at the electrode trying to make it negatively charged. At equilibrium, there is a separation of charges and depending on the tendencies of the two opposing reactions, the electrode may be positively or negatively charged with respect to the solution. A potential difference develops between the electrode and the electrolyte which is called electrode potential. When the concentrations of all the species involved in a half-cell is unity then the electrode potential is known as standard electrode potential. According to IUPAC convention, standard reduction potentials are now called standard electrode potentials. In a galvanic cell, the half-cell in which oxidation takes place is called anode and it has a negative potential with respect to the solution. The other half-cell in which reduction takes place is called cathode and it has a positive potential with respect to the solution. Thus, there exists a potential difference between the two electrodes and as soon as the switch is in the on position the electrons flow from negative electrode to positive electrode. The direction of current flow is opposite to that of electron flow.

The potential difference between the two electrodes of a galvanic cell is called the cell potential and is measured in volts. The cell potential is the difference between the electrode potentials (reduction potentials) of the cathode and anode. It is called the cell electromotive force (emf) of the cell when no current is drawn through the cell. It is now an accepted convention that we keep the anode on the left and the cathode on the right while representing the galvanic cell. A galvanic cell is generally represented by putting a vertical line between metal and electrolyte solution and putting a double vertical line between the two electrolytes connected by a salt bridge. Under this convention the emf of the cell is positive and is given by the potential of the halfcell on the right hand side minus the potential of the half-cell on the left hand side i.e.,

$$ E_{\text {cell }}=E_{\text {right }}-E_{\text {left }} $$

This is illustrated by the following example:

Cell reaction:

$$ \begin{equation*} \mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s}) \tag{3.4} \end{equation*} $$

Half-cell reactions: Cathode (reduction): $\quad 2 \mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ag}(\mathrm{s})$

Anode (oxidation): $\quad \mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$

It can be seen that the sum of (3.5) and (3.6) leads to overall reaction (3.4) in the cell and that silver electrode acts as a cathode and copper electrode acts as an anode. The cell can be represented as:

$$ \begin{align*} & \mathrm{Cu}(\mathrm{s})\left|\mathrm{Cu}^{2+}(\mathrm{aq}) \| \mathrm{Ag}^{+}(\mathrm{aq})\right| \mathrm{Ag}(\mathrm{s}) \\ & \text { and we have } E_{\text {cell }}=E_{\text {right }}-E_{\text {left }}=E_{\mathrm{Ag}^{+} \mid \mathrm{Ag}}-E_{\mathrm{Cu}^{2+} \mid \mathrm{Cu}} \tag{3.7} \end{align*} $$

3.2.1 Measurement of Electrode Potential

The potential of individual half-cell cannot be measured. We can measure only the difference between the two half-cell potentials that gives the emf of the cell. If we arbitrarily choose the potential of one electrode (half-cell) then that of the other can be determined with respect to this. According to convention, a half-cell called standard hydrogen electrode (Fig.3.3) represented by $\mathrm{Pt}(\mathrm{s})\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{H}^{+}(\mathrm{aq})$, is assigned a zero potential at all temperatures corresponding to the reaction

Fig. 3.3: Standard Hydrogen Electrode (SHE).

$$ \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g}) $$

The standard hydrogen electrode consists of a platinum electrode coated with platinum black. The electrode is dipped in an acidic solution and pure hydrogen gas is bubbled through it. The concentration of both the reduced and oxidised forms of hydrogen is maintained at unity (Fig. 3.3). This implies that the pressure of hydrogen gas is one bar and the concentration of hydrogen ion in the solution is one molar.

At $298 \mathrm{~K}$ the emf of the cell, standard hydrogen electrode $\mid$ second half-cell constructed by taking standard hydrogen electrode as anode (reference half-cell) and the other half-cell as cathode, gives the reduction potential of the other half-cell. If the concentrations of the oxidised and the reduced forms of the species in the right hand half-cell are unity, then the cell potential is equal to standard electrode potential, $E^{o}{ }_{\mathrm{R}}$ of the given half-cell.

$$ E^{\mathrm{\ominus}}=E_{\mathrm{R}}^{\mathrm{\ominus}}-E_{\mathrm{L}}^{\mathrm{\ominus}} $$

As $E^{0}{ }_{\mathrm{L}}$ for standard hydrogen electrode is zero.

$$ E^{\ominus}=E_{R}^{\ominus}-0=E_{R}^{\ominus} $$

The measured emf of the cell:

$$ \operatorname{Pt}(\mathrm{s}) \mid \mathrm{H}_{2}(\mathrm{~g}, 1 \text { bar })\left|\mathrm{H}^{+}(\mathrm{aq}, 1 \mathrm{M}) \| \mathrm{Cu}^{2+}(\mathrm{aq}, 1 \mathrm{M})\right| \mathrm{Cu} $$

is $0.34 \mathrm{~V}$ and it is also the value for the standard electrode potential of the half-cell corresponding to the reaction:

$$ \mathrm{Cu}^{2+}(\mathrm{aq}, 1 \mathrm{M})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s}) $$

Similarly, the measured emf of the cell:

$$ \operatorname{Pt}(\mathrm{s}) \mid \mathrm{H}_{2}\left(\mathrm{~g}, 1 \text { bar })\left|\mathrm{H}^{+}(\mathrm{aq}, 1 \mathrm{M}) \| \mathrm{Zn}^{2+}(\mathrm{aq}, 1 \mathrm{M})\right| \mathrm{Zn}\right. $$

is $-0.76 \mathrm{~V}$ corresponding to the standard electrode potential of the half-cell reaction:

$$ \mathrm{Zn}^{2+}(\mathrm{aq}, 1 \mathrm{M})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s}) $$

The positive value of the standard electrode potential in the first case indicates that $\mathrm{Cu}^{2+}$ ions get reduced more easily than $\mathrm{H}^{+}$ions. The reverse process cannot occur, that is, hydrogen ions cannot oxidise $\mathrm{Cu}$ (or alternatively we can say that hydrogen gas can reduce copper ion) under the standard conditions described above. Thus, $\mathrm{Cu}$ does not dissolve in $\mathrm{HCl}$. In nitric acid it is oxidised by nitrate ion and not by hydrogen ion. The negative value of the standard electrode potential in the second case indicates that hydrogen ions can oxidise zinc (or zinc can reduce hydrogen ions).

Left electrode: $\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq}, 1 \mathrm{M})+2 \mathrm{e}^{-}$

Right electrode: $\mathrm{Cu}^{2+}$ aq, $(\left.1 \mathrm{M}\right)+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$

The overall reaction of the cell is the sum of above two reactions and we obtain the equation:

$$ \begin{aligned} & \mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) \end{aligned} $$ $$ \begin{aligned} & \text { emf of the cell }=E^{o}{ }_{\text {cell }}=E_R^o-E^o{ }_L \end{aligned} $$ $$ \begin{aligned} & =0.34 \mathrm{~V}-(-0.76) \mathrm{V}=1.10 \mathrm{~V} \end{aligned} $$

Sometimes metals like platinum or gold are used as inert electrodes. They do not participate in the reaction but provide their surface for oxidation or reduction reactions and for the conduction of electrons. For example, Pt is used in the following half-cells:

Hydrogen electrode: $\quad \mathrm{Pt}(\mathrm{s})\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{H}^{+}(\mathrm{aq})$

With half-cell reaction: $\quad \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow 1 / 2 \mathrm{H}_{2}(\mathrm{~g})$

Bromine electrode: $\quad \mathrm{Pt}(\mathrm{s})\left|\mathrm{Br}_{2}(\mathrm{aq})\right| \mathrm{Br}^{-}(\mathrm{aq})$

With half-cell reaction: $\quad 1 / 2 \mathrm{Br}_{2}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Br}^{-}(\mathrm{aq})$

The standard electrode potentials are very important and we can extract a lot of useful information from them. The values of standard electrode potentials for some selected half-cell reduction reactions are given in Table 3.1. If the standard electrode potential of an electrode is greater than zero then its reduced form is more stable compared to hydrogen gas. Similarly, if the standard electrode potential is negative then hydrogen gas is more stable than the reduced form of the species. It can be seen that the standard electrode potential for fluorine is the highest in the Table indicating that fluorine gas $\left(\mathrm{F}_{2}\right)$ has the maximum tendency to get reduced to fluoride ions $\left(\mathrm{F}^{-}\right)$and therefore fluorine gas is the strongest oxidising agent and fluoride ion is the weakest reducing agent. Lithium has the lowest electrode potential indicating that lithium ion is the weakest oxidising agent while lithium metal is the most powerful reducing agent in an aqueous solution. It may be seen that as we go from top to bottom in Table 3.1 the standard electrode potential decreases and with this, decreases the oxidising power of the species on the left and increases the reducing power of the species on the right hand side of the reaction. Electrochemical cells are extensively used for determining the $\mathrm{pH}$ of solutions, solubility product, equilibrium constant and other thermodynamic properties and for potentiometric titrations.

Table 3.1: Standard Electrode Potentials at 298 K

Intext Questions

3.1 How would you determine the standard electrode potential of the system $\mathrm{Mg}^{2+} \mid \mathrm{Mg}$ ?

Show Answer

Answer

The standard electrode potential of $\mathrm{Mg}^{2+} \mid \mathrm{Mg}$ can be measured with respect to the standard hydrogen electrode, represented by $\mathrm{Pt_(s)}, \mathrm{H_2(g)}(1 \mathrm{~atm}) \mid \mathrm{H_(a q)}^{+}(1 \mathrm{M})$.

A cell, consisting of $\mathrm{Mg} \mid \mathrm{MgSO_4}(\mathrm{aq} 1 \mathrm{M})$ as the anode and the standard hydrogen electrode as the cathode, is set up.

$$ \mathrm{Mg}\left|\mathrm{Mg}^{2+}(\mathrm{aq}, 1 \mathrm{M}) \| \mathrm{H}^{+}(\mathrm{aq}, 1 \mathrm{M})\right| \mathrm{H_2}(\mathrm{~g}, 1 \text { bar }), \mathrm{Pt_{(s)}} $$

Then, the emf of the cell is measured and this measured emf is the standard electrode potential of the magnesium electrode.

$E^{\ominus}=E_{R}^{\ominus}-E_{L}^{\ominus}$

Here, $E_{R}^{\ominus}$ for the standard hydrogen electrode is zero.

$$ \begin{aligned} & \therefore E^{\ominus}=0-E_{L}^{\ominus} \\ & =-E_{L}^{\ominus} \end{aligned} $$

3.2 Can you store copper sulphate solutions in a zinc pot?

Show Answer

Answer

Zinc is more reactive than copper. Therefore, zinc can displace copper from its salt solution. If copper sulphate solution is stored in a zinc pot, then zinc will displace copper from the copper sulphate solution.

$\mathrm{Zn}+\mathrm{CuSO_4} \longrightarrow \mathrm{ZnSO_4}+\mathrm{Cu}$

Hence, copper sulphate solution cannot be stored in a zinc pot.

3.3 Consult the table of standard electrode potentials and suggest three substances that can oxidise ferrous ions under suitable conditions.

Show Answer

Answer

Substances that are stronger oxidising agents than ferrous ions can oxidise ferrous ions.

$\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-1} ; E^{\ominus}=-0.77 \mathrm{~V}$

This implies that the substances having higher reduction potentials than

$+0.77 \mathrm{~V}$ can oxidise ferrous ions to ferric ions. Three substances that can do so are $\mathrm{F_2}, \mathrm{Cl_2}$, and $\mathrm{O_2}$.

3.3 Nernst Equation

We have assumed in the previous section that the concentration of all the species involved in the electrode reaction is unity. This need not be always true. Nernst showed that for the electrode reaction:

$$ \mathrm{M}^{\mathrm{n}+}(\mathrm{aq})+\mathrm{ne}^{-} \rightarrow \mathrm{M}(\mathrm{s}) $$

the electrode potential at any concentration measured with respect to standard hydrogen electrode can be represented by:

$$ E_{\left(\mathrm{M}^{\mathrm{n}+} / \mathrm{M}\right)}=E_{\left(\mathrm{M}^{\mathrm{n}+} / \mathrm{M}\right)}^{\mathrm{o}}-\frac{R T}{n F} \ln \frac{[\mathrm{M}]}{\left[\mathrm{M}^{\mathrm{n}+}\right]} $$

but concentration of solid $\mathrm{M}$ is taken as unity and we have

$$ \begin{equation*} E_{\left(\mathrm{M}^{\mathrm{n}+} / \mathrm{M}\right)}=E_{\left(\mathrm{M}^{\mathrm{n}+} / \mathrm{M}\right)}^{\mathrm{o}}-\frac{R T}{n F} \ln \frac{1}{\left[\mathrm{M}^{\mathrm{n}+}\right]} \tag{3.8} \end{equation*} $$

$\left(.E_{\left(\mathrm{M}^{\mathrm{n}} / \mathrm{M}\right).}^{0}\right)$ has already been defined, $R$ is gas constant $\left(8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$,

$F$ is Faraday constant ( $96487 \mathrm{C} \mathrm{mol}^{-1}$ ), $T$ is temperature in kelvin and $\left[\mathrm{M}^{\mathrm{n}+}\right]$ is the concentration of the species, $\mathrm{M}^{\mathrm{n}+}$.

In Daniell cell, the electrode potential for any given concentration of $\mathrm{Cu}^{2+}$ and $\mathrm{Zn}^{2+}$ ions, we write

For Cathode: $$ \begin{equation*} E_{\left(\mathrm{Cu}^{2+} / \mathrm{Cu}\right)}=E_{\left(\mathrm{Cu}^{2+} / \mathrm{Cu}\right)}^{\mathrm{o}}-\frac{R T}{2 F} \ln \frac{1}{\left[\mathrm{Cu}^{2+}(\mathrm{aq})\right]} \tag{3.9} \end{equation*} $$

For Anode:

$$ \begin{equation*} E_{\left(\mathrm{Zn}^{2+} / \mathrm{Zn}\right)}=E_{\left(\mathrm{Zn}^{2+} / \mathrm{Zn}\right)}^{\mathrm{o}}-\frac{R T}{2 F} \ln \frac{1}{\left[\mathrm{Zn}^{2+}(\mathrm{aq})\right]} \tag{3.10} \end{equation*} $$

The cell potential,

$$ \begin{align*} E _{(\text {cell) })} & =\mathrm{E} _{\left(\mathrm{Cu}^{2+} / \mathrm{Cu}\right)}-\mathrm{E} _{\left(\mathrm{Zn}^{2+} / \mathrm{Zn}\right)} \\ & =\mathrm{E} _{\left(\mathrm{Cu}^{2+} / \mathrm{Cu}\right)}^{\ominus}-\frac{R T}{2 F} \ln \frac{1}{\mathrm{Cu}^{2+}(\mathrm{aq})}-\mathrm{E} _{\left(\mathrm{Zn}^{2+} / \mathrm{Zn}\right)}^{\ominus}+\frac{R T}{2 F} \ln \frac{1}{\mathrm{Zn}^{2+}(\mathrm{aq})} \\ & =\mathrm{E} _{\left(\mathrm{Cu}^{2+} / \mathrm{Cu}\right)}^{\ominus}-\mathrm{E} _{\left(\mathrm{Zn}^{2+} / \mathrm{Zn}\right)}^{\ominus}-\frac{R T}{2 F} \ln \frac{1}{\mathrm{Cu}^{2+}(\mathrm{aq})}-\ln \frac{1}{\mathrm{Zn}^{2+}(\mathrm{aq})} \\ E _{(\text {cell) }} & =E _{(\text {cell) }}^{\ominus}-\frac{R T}{2 F} \ln \frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]} \tag{2.11} \end{align*} $$

It can be seen that $E_{\text {(cell) }}$ depends on the concentration of both $\mathrm{Cu}^{2+}$ and $\mathrm{Zn}^{2+}$ ions. It increases with increase in the concentration of $\mathrm{Cu}^{2+}$ ions and decrease in the concentration of $\mathrm{Zn}^{2+}$ ions.

By converting the natural logarithm in Eq. (2.11) to the base 10 and substituting the values of $R, F$ and $T=298 \mathrm{~K}$, it reduces to

$$ \begin{equation*} E_{\text {(cell) }}=E_{\text {(cell) }}^{o}-\frac{0.059}{2} \log \frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]} \tag{3.12} \end{equation*} $$

We should use the same number of electrons ( $n$ ) for both the electrodes and thus for the following cell

$$ \mathrm{Ni}(\mathrm{s})\left|\mathrm{Ni}^{2+}(\mathrm{aq}) \| \mathrm{Ag}^{+}(\mathrm{aq})\right| \mathrm{Ag} $$

The cell reaction is $\mathrm{Ni}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$

The Nernst equation can be written as $$ E_{\text {(cell) }}=E_{\text {(cell) }}^{o}-\frac{R T}{2 F} \ln \frac{\left[\mathrm{Ni}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}} $$

and for a general electrochemical reaction of the type:

$$ \mathrm{a} \mathrm{A}+\mathrm{bB} \xrightarrow{n e^{-}} \mathrm{cC}+\mathrm{dD} $$

Nernst equation can be written as:

$$ \begin{align*} E_{\text {(cell) }} & =E_{\text {(cell) }}^{o}-\frac{R T}{n F} \ln Q \\ & =E_{\text {(cell) }}^{o}-\frac{R T}{n F} \ln \frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}} \tag{3.13} \end{align*} $$

Example 3.1 Represent the cell in which the following reaction takes place

$$\mathrm{Mg}(\mathrm{s})+2 \mathrm{Ag}^{+}(0.0001 \mathrm{M}) \rightarrow \mathrm{Mg}^{2+}(0.130 \mathrm{M})+2 \mathrm{Ag}(\mathrm{s})$$

Calculate its $E_{(\text {cell })}$ if $E_{\text {(cell) }}^{o}=3.17 \mathrm{~V}$.

Solution

The cell can be written as

$\mathrm{Mg}\left|\mathrm{Mg}^{2+}(0.130 \mathrm{M})\right|\left|\mathrm{Ag}^{+}(0.0001 \mathrm{M})\right| \mathrm{Ag}$ $$ \begin{aligned} E_{(\text {cell })} & =E_{\text {(cell) }}^{\mathrm{o}}-\frac{\mathrm{RT}}{2 \mathrm{~F}} \ln \frac{\mathrm{Mg}^{2+}}{\mathrm{Ag}^{+2}} \\ & =3.17 \mathrm{~V}-\frac{0.059 \mathrm{~V}}{2} \log \frac{0.130}{(0.0001)^{2}}=3.17 \mathrm{~V}-0.21 \mathrm{~V}=2.96 \mathrm{~V} \end{aligned} $$

3.3.1 Equilibrium Constant from Nernst Equation

If the circuit in Daniell cell (Fig. 3.1) is closed then we note that the reaction

$$ \begin{equation*} \mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) \tag{3.1} \end{equation*} $$

takes place and as time passes, the concentration of $\mathrm{Zn}^{2+}$ keeps on increasing while the concentration of $\mathrm{Cu}^{2+}$ keeps on decreasing. At the same time voltage of the cell as read on the voltmeter keeps on decreasing. After some time, we shall note that there is no change in the concentration of $\mathrm{Cu}^{2+}$ and $\mathrm{Zn}^{2+}$ ions and at the same time, voltmeter gives zero reading. This indicates that equilibrium has been attained. In this situation the Nernst equation may be written as:

$$ \begin{aligned} & E_{\text {(cell) }}=0=E_{\text {(cell) }}^{\mathrm{o}}-\frac{2.303 R T}{2 F} \log \frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]} \\ & \text { or } E_{\text {(cell) }}^{o}=\frac{2.303 R T}{2 F} \log \frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]} \end{aligned} $$

But at equilibrium,

$$ \frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]}=K_{c} \text { for the reaction } 3.1 $$

and at $\mathrm{T}=298 \mathrm{~K}$ the above equation can be written as

$$ \begin{aligned} & E_{\text {(cell) }}^{o}=\frac{0.059 \mathrm{~V}}{2} \log K_{C}=1.1 \mathrm{~V} \quad\left(E_{\text {(cell) }}^{o}=1.1 \mathrm{~V}\right) \\ & \log K_{C}=\frac{(1.1 \mathrm{~V} \times 2)}{0.059 \mathrm{~V}}=37.288 \\ & K_{C}=2 \times 10^{37} \text { at } 298 \mathrm{~K} \end{aligned} $$

In general,

$$ \begin{equation*} E_{(\mathrm{cell})}^{\mathrm{o}}=\frac{2.303 R T}{n F} \log K_{C} \tag{3.14} \end{equation*} $$

Thus, Eq. (3.14) gives a relationship between equilibrium constant of the reaction and standard potential of the cell in which that reaction takes place. Thus, equilibrium constants of the reaction, difficult to measure otherwise, can be calculated from the corresponding $E^{\circ}$ value of the cell.

Example 3.2 Calculate the equilibrium constant of the reaction:

$$ \begin{aligned} \mathrm{Cu}(\mathrm{s}) & +2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s}) \\ \mathrm{E}_{\text {(cell) }}^{o} & =0.46 \mathrm{~V} \end{aligned} $$

Solution

$$ \begin{aligned} E _{(\text {cell) }}^{\ominus} & =\frac{0.059 \mathrm{~V}}{2} \log K _{C}=0.46 \mathrm{~V} \\ \text { or } \log K _{C} & =\frac{0.46 \mathrm{~V} \times 2}{0.059 \mathrm{~V}}=15.6 \\ K _{C} & =3.92 \times 10^{15} \end{aligned} $$

3.3.2 Electrochemical Cell and Gibbs Energy of the Reaction

Electrical work done in one second is equal to electrical potential multiplied by total charge passed. If we want to obtain maximum work from a galvanic cell then charge has to be passed reversibly. The reversible work done by a galvanic cell is equal to decrease in its Gibbs energy and therefore, if the emf of the cell is $E$ and $n F$ is the amount of charge passed and $\Delta_{\mathrm{r}} G$ is the Gibbs energy of the reaction, then

$$ \begin{equation*} \Delta_{r} G=-n F E_{\text {(cell) }} \tag{3.15} \end{equation*} $$

It may be remembered that $E_{\text {(cell) }}$ is an intensive parameter but $\Delta_{\mathrm{r}} G$ is an extensive thermodynamic property and the value depends on $n$. Thus, if we write the reaction

$$ \begin{align*} & \mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \longrightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) \tag{3.1}\\ & \Delta_{\mathrm{r}} G=-2 \mathrm{FE}_{\text {(cell) }} \end{align*} $$

but when we write the reaction

$$ \begin{aligned} & 2 \mathrm{Zn}(\mathrm{s})+2 \mathrm{Cu}^{2+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{Cu}(\mathrm{s}) \\ & \Delta_{\mathrm{r}} G=-4 F \mathrm{E}_{\text {(cell) }} \end{aligned} $$

If the concentration of all the reacting species is unity, then $E_{\text {(cell) }}=E_{\text {(cell) }}^{\text {o }}$ and we have

$$ \begin{equation*} \Delta_{\mathrm{r}} G^{\mathrm{o}}=-n F E_{\text {(cell) }}^{\mathrm{o}} \tag{3.16} \end{equation*} $$

Thus, from the measurement of $E_{\text {(cell) }}^{\circ}$ we can obtain an important thermodynamic quantity, $\Delta_{\mathrm{r}} G^{0}$, standard Gibbs energy of the reaction.From the latter we can calculate equilibrium constant by the equation: $$ \Delta_{\mathrm{r}} G^{\mathrm{o}}=-R T \ln K $$

Example 3.3 The standard electrode potential for Daniell cell is 1.1V. Calculate the standard Gibbs energy for the reaction:

$$ \mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \longrightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) $$

Solution

$$\Delta_{\mathrm{r}} G^{0}=-n F \mathrm{E}_{(\text {cell })}^{0}$$

$n$ in the above equation is $2, \mathrm{~F}=96487 \mathrm{C} \mathrm{mol}^{-1}$ and $\mathrm{E}_{\text {(cell) }}^{\circ}=1.1 \mathrm{~V}$

Therefore, $\Delta_{\mathrm{r}} G^{0}=-2 \times 1.1 \mathrm{~V} \times 96487 \mathrm{C} \mathrm{mol}^{-1}$ $=-21227 \mathrm{~J} \mathrm{~mol}^{-1}$ $=-212.27 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Intext Questions

3.4 Calculate the potential of hydrogen electrode in contact with a solution whose $\mathrm{pH}$ is 10 .

Show Answer

Answer

For hydrogen electrode,$\mathrm{H}^{+}+\mathrm{e}^{-} \longrightarrow \frac{1}{2} \mathrm{H_2} \text {, it is given that } \mathrm{pH}=10$

$\therefore\left[\mathrm{H}^{+}\right]=10^{-10} \mathrm{M}$

Now, using Nernst equation:

$ \mathrm{H_{(\mathrm{H}^{+} / \frac{1}{2} \mathrm{H_2} )}}=E_{(\mathrm{H}^{+} / \frac{1}{2} \mathrm{H_2} )}^{\ominus}-\frac{\mathrm{R} T}{n \mathrm{~F}} \ln \frac{1}{ [\mathrm{H}^{+} ]}$

$ \begin{aligned} =E_{(\mathrm{H}^{+} / \frac{1}{2} \mathrm{H_2})}^{\ominus}-\frac{0.0591}{1} \log \frac{1}{[\mathrm{H}^{+}]} \\ =0-\frac{0.0591}{1} \log \frac{1}{[10^{-10}]} \\ =-0.0591 \log 10^{10} \\ =-0.591 \mathrm{~V} \end{aligned} $

3.5 Calculate the emf of the cell in which the following reaction takes place: $\mathrm{Ni}(\mathrm{s})+2 \mathrm{Ag}^{+}(0.002 \mathrm{M}) \rightarrow \mathrm{Ni}^{2+}(0.160 \mathrm{M})+2 \mathrm{Ag}(\mathrm{s})$ Given that $E_{\text {cell }}^{o}=1.05 \mathrm{~V}$

Show Answer

Answer

Applying Nernst equation we have:

$$ \begin{aligned} & E_{\text {(cell) }}=E_{\text {(cell) }}^{\ominus}-\frac{0.0591}{n} \log \frac{\left[\mathrm{Ni}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}} \\ \\ & =1.05-\frac{0.0591}{2} \log \frac{(0.160)}{(0.002)^{2}} \\ \\ & =1.05-0.02955 \log \frac{0.16}{0.000004} \\ \\ & =1.05-0.02955 \log 4 \times 10^{4} \\ \\ & =1.05-0.02955(\log 10000+\log 4) \\ \\ & =1.05-0.02955(4+0.6021) \\ \\ & =0.914 \mathrm{~V} \end{aligned} $$

3.6 The cell in which the following reaction occurs: $ 2 \mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{I_2}(\mathrm{~s})$ has $E_{\text {cell }}^{\mathrm{o}}=0.236 \mathrm{~V}$ at $298 \mathrm{~K}$. Calculate the standard Gibbs energy and the equilibrium constant of the cell reaction.

Show Answer

Answer

Here, $n=2, E_{\text {cell }}^{\ominus}=0.236 \mathrm{~V},{ _\mathrm{T}}=298 \mathrm{~K}$

We know that:

$\Delta_{r} \mathrm{G}^{\ominus}=-n \mathrm{FE_\text {cell }}^{\ominus}$

$=-2 \times 96487 \times 0.236$

$=-45541.864 \mathrm{~J} \mathrm{~mol}^{-1}$

$=-45.54 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Again, $\Delta_r G^{\ominus}= -2.303 R T \log K_\mathrm{c}$

$\Rightarrow \log K_{\mathrm{c}}=-\frac{\Delta_{r} G^{\ominus}}{2.303 \mathrm{R} T}$

$ =-\frac{-45.54 \times 10^{3}}{2.303 \times 8.314 \times 298} $

$=7.981$

$\therefore K_{\mathrm{c}}=$ Antilog (7.981)

$=9.57 \times 10^{7}$

3.4 Conductance of Electrolytic Solutions

It is necessary to define a few terms before we consider the subject of conductance of electricity through electrolytic solutions. The electrical resistance is represented by the symbol ’ $R$ ’ and it is measured in ohm $(\Omega)$ which in terms of SI base units is equal to $\left(\mathrm{kg} \mathrm{m}^{2}\right) /\left(S^{3} A^{2}\right)$. It can be measured with the help of a Wheatstone bridge with which you are familiar from your study of physics. The electrical resistance of any object is directly proportional to its length, $l$, and inversely proportional to its area of cross section, $A$. That is,

$$ \begin{equation*} R \propto \frac{l}{A} \text { or } R=\rho \frac{l}{A} \tag{3.17} \end{equation*} $$

The constant of proportionality, $\rho$ (Greek, rho), is called resistivity (specific resistance). Its SI units are ohm metre $(\Omega \mathrm{m})$ and quite often its submultiple, ohm centimetre $(\Omega \mathrm{cm})$ is also used. IUPAC recommends the use of the term resistivity over specific resistance and hence in the rest of the book we shall use the term resistivity. Physically, the resistivity for a substance is its resistance when it is one metre long and its area of cross section is one $\mathrm{m}^{2}$. It can be seen that:

$$ 1 \Omega \mathrm{m}=100 \Omega \mathrm{cm} \text { or } 1 \Omega \mathrm{cm}=0.01 \Omega \mathrm{m} $$ The inverse of resistance, R, is called conductance, G, and we have the relation:

$$ \begin{equation*} G=\frac{1}{R}=\frac{\mathrm{A}}{\rho l}=K \frac{\mathrm{A}}{l} \tag{3.18} \end{equation*} $$

The SI unit of conductance is siemens, represented by the symbol ’ $\mathrm{S}$ ’ and is equal to $\mathrm{ohm}^{-1}$ (also known as mho) or $\Omega^{-1}$. The inverse of resistivity, called conductivity (specific conductance) is represented by the symbol, $\kappa$ (Greek, kappa). IUPAC has recommended the use of term conductivity over specific conductance and hence we shall use the term conductivity in the rest of the book. The SI units of conductivity are $\mathrm{S} \mathrm{m}^{-1}$ but quite often, $\kappa$ is expressed in $\mathrm{S} \mathrm{cm}^{-1}$. Conductivity of a material in $\mathrm{S} \mathrm{m}^{-1}$ is its conductance when it is $1 \mathrm{~m}$ long and its area of cross section is $1 \mathrm{~m}^{2}$. It may be noted that $1 \mathrm{~S} \mathrm{~cm}^{-1}=100 \mathrm{~S} \mathrm{~m}^{-1}$.

Table 3.2: The values of Conductivity of some Selected Materials at 298.15 K

It can be seen from Table 3.2 that the magnitude of conductivity varies a great deal and depends on the nature of the material. It also depends on the temperature and pressure at which the measurements are made. Materials are classified into conductors, insulators and semiconductors depending on the magnitude of their conductivity. Metals and their alloys have very large conductivity and are known as conductors. Certain non-metals like carbon-black, graphite and some organic polymers* are also electronically conducting. Substances like glass, ceramics, etc., having very low conductivity are known as insulators. Substances like silicon, doped silicon and gallium arsenide having conductivity between conductors and insulators are called semiconductors and are important electronic materials. Certain materials called superconductors by definition have zero resistivity or infinite conductivity. Earlier, only metals and their alloys at very low temperatures (0 to 15 K) were known to behave as superconductors, but nowadays a number of ceramic materials and mixed oxides are also known to show superconductivity at temperatures as high as 150 K.

Electrical conductance through metals is called metallic or electronic conductance and is due to the movement of electrons. The electronic conductance depends on

(i) the nature and structure of the metal

(ii) the number of valence electrons per atom

(iii) temperature (it decreases with increase of temperature).

As the electrons enter at one end and go out through the other end, the composition of the metallic conductor remains unchanged. The mechanism of conductance through semiconductors is more complex.

We already know that even very pure water has small amounts of hydrogen and hydroxyl ions $\left(\sim 10^{-7} \mathrm{M}\right)$ which lend it very low conductivity $\left(3.5 \times 10^{-5} \mathrm{~S} \mathrm{~m}^{-1}\right)$. When electrolytes are dissolved in water, they furnish their own ions in the solution hence its conductivity also increases. The conductance of electricity by ions present in the solutions is called electrolytic or ionic conductance. The conductivity of electrolytic (ionic) solutions depends on:

(i) the nature of the electrolyte added

(ii) size of the ions produced and their solvation

(iii) the nature of the solvent and its viscosity

(iv) concentration of the electrolyte

(v) temperature (it increases with the increase of temperature).

Passage of direct current through ionic solution over a prolonged period can lead to change in its composition due to electrochemical reactions (Section 3.4.1).

3.4.1 Measurement of the Conductivity of Ionic Solutions

We know that accurate measurement of an unknown resistance can be performed on a Wheatstone bridge. However, for measuring the resistance of an ionic solution we face two problems. Firstly, passing direct current (DC) changes the composition of the solution. Secondly, a solution cannot be connected to the bridge like a metallic wire or other solid conductor. The first difficulty is resolved by using an alternating current (AC) source of power. The second problem is solved by using a specially designed vessel called conductivity cell. It is available in several designs and two simple ones are shown in Fig. 3.4.

Fig. 3.4 Two different types of conductivity cells.

Basically it consists of two platinum electrodes coated with platinum black (finely divided metallic Pt is deposited on the electrodes electrochemically). These have area of cross section equal to ‘A’ and are separated by distance ‘l’. Therefore, solution confined between these electrodes is a column of length l and area of cross section A. The resistance of such a column of solution is then given by the equation:

$$ \begin{equation*} R=\rho \frac{l}{A}=\frac{l}{\kappa A} \tag{3.17} \end{equation*} $$

The quantity l/A is called cell constant denoted by the symbol, G*. It depends on the distance between the electrodes and their area of cross-section and has the dimension of length–1 and can be calculated if we know l and A. Measurement of l and A is not only inconvenient but also unreliable. The cell constant is usually determined by measuring the resistance of the cell containing a solution whose conductivity is already known. For this purpose, we generally use KCl solutions whose conductivity is known accurately at various concentrations (Table 3.3) and at different temperatures. The cell constant, G*, is then given by the equation:

$$ \begin{equation*} \text{G*}=\frac{l}{A}=\mathrm{R} \kappa \tag{3.18} \end{equation*} $$

Table 3.3: Conductivity and Molar conductivity of KCl solutions at 298.15K

Once the cell constant is determined, we can use it for measuring the resistance or conductivity of any solution. The set up for the measurement of the resistance is shown in Fig. 3.5.

Fig. 3.5: Arrangement for measurement of resistance of a solution of an electrolyte.

It consists of two resistances $R_{3}$ and $R_{4}$, a variable resistance $R_{1}$ and the conductivity cell having the unknown resistance $R_{2}$. The Wheatstone bridge is fed by an oscillator $O$ (a source of a.c. power in the audio frequency range 550 to 5000 cycles per second). $\mathrm{P}$ is a suitable detector (a headphone or other electronic device) and the bridge is balanced when no current passes through the detector. Under these conditions:

$$ \begin{equation*} \text { Unknown resistance } R _{2}=\frac{R _{1} R _{4}}{R _{3}} \tag{3.19} \end{equation*} $$

These days, inexpensive conductivity meters are available which can directly read the conductance or resistance of the solution in the conductivity cell. Once the cell constant and the resistance of the solution in the cell is determined, the conductivity of the solution is given by the equation:

$$ \begin{equation*} \kappa=\frac{\text { cell constant }}{\mathrm{R}}=\frac{\text{G*}}{\mathrm{R}} \tag{3.20} \end{equation*} $$

The conductivity of solutions of different electrolytes in the same solvent and at a given temperature differs due to charge and size of the ions in which they dissociate, the concentration of ions or ease with which the ions move under a potential gradient. It, therefore, becomes necessary to define a physically more meaningful quantity called molar conductivity denoted by the symbol $\Lambda_{m}$ (Greek, lambda). It is related to the conductivity of the solution by the equation:

$$ \begin{equation*} \text { Molar conductivity }=\Lambda _{m}=\frac{\kappa}{\mathrm{c}} \tag{3.21} \end{equation*} $$

In the above equation, if $\kappa$ is expressed in $\mathrm{S} \mathrm{m}^{-1}$ and the concentration, $\mathrm{c}$ in $\mathrm{mol} \mathrm{m}{ }^{-3}$ then the units of $\Lambda_{m}$ are in $\mathrm{S} \mathrm{m}^{2} \mathrm{~mol}^{-1}$. It may be noted that:

$1 \mathrm{~mol} \mathrm{~m}^{-3}=1000\left(\mathrm{~L} / \mathrm{m}^{3}\right) \times$ molarity $(\mathrm{mol} / \mathrm{L})$, and hence

$$ \Lambda_{m}\left(\mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right)=\frac{\kappa\left(\mathrm{S} \mathrm{cm}^{-1}\right)}{1000 \mathrm{~L} \mathrm{~m}^{-3} \times \text { molarity }\left(\mathrm{mol} \mathrm{L}^{-1}\right)} $$

If we use $\mathrm{S} \mathrm{cm}^{-1}$ as the units for $\kappa$ and $\mathrm{mol} \mathrm{cm}^{-3}$, the units of concentration, then the units for $\Lambda_{m}$ are $\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$. It can be calculated by using the equation:

$$ \Lambda_{m}\left(\mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right)=\frac{\kappa\left(\mathrm{S} \mathrm{cm}^{-1}\right) \times 1000\left(\mathrm{~cm}^{3} / \mathrm{L}\right)}{\text { molarity }(\mathrm{mol} / \mathrm{L})} $$

Both type of units are used in literature and are related to each other by the equations:

$$ \begin{aligned} & 1 \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}=10^{4} \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \text { or } \\ & 1 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}=10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1} \text {. } \end{aligned} $$

Example 2.4

Resistance of a conductivity cell filled with $0.1 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{KCl}$ solution is $100 \Omega$. If the resistance of the same cell when filled with $0.02 \mathrm{~mol} \mathrm{~L}^{-1}$ $\mathrm{KCl}$ solution is $520 \Omega$, calculate the conductivity and molar conductivity of $0.02 \mathrm{~mol} \mathrm{~L}{ }^{-1} \mathrm{KCl}$ solution. The conductivity of $0.1 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{KCl}$ solution is $1.29 \mathrm{~S} / \mathrm{m}$.

Solution

The cell constant is given by the equation: Cell constant $=G^*=$ conductivity $\times$ resistance $$ =1.29 \mathrm{~S} / \mathrm{m} \times 100 \Omega=129 \mathrm{~m}^{-1}=1.29 \mathrm{~cm}^{-1} $$

Conductivity of $0.02 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{KCl}$ solution = cell constant / resistance

$$ \begin{aligned} & =\frac{G^*}{R}=\frac{129 \mathrm{~m}^{-1}}{520 \Omega}=0.248 \mathrm{~S} \mathrm{~m}^{-1} \\ & \text { Concentration } \quad=0.02 \mathrm{~mol} \mathrm{~L}^{-1} \\ & =1000 \times 0.02 \mathrm{~mol} \mathrm{~m}^{-3}=20 \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-3} \\ & \text { Molar conductivity }=\Lambda_m=\frac{\kappa}{c} \\ & =\frac{248 \times 10^{-3} \mathrm{~S} \mathrm{~m}^{-1}}{20 \mathrm{~mol} \mathrm{~m}^{-3}}=124 \times 10^{-4} \mathrm{~S} \mathrm{~m}^2 \mathrm{~mol}^{-1} \\ & \text { Alternatively, } \quad \kappa=\frac{1.29 \mathrm{~cm}^{-1}}{520 \Omega}=0.248 \times 10^{-2} \mathrm{~S} \mathrm{~cm}^{-1} \\ & \end{aligned} $$

and

$$ \begin{aligned} \Lambda_m & =\kappa \times 1000 \mathrm{~cm}^3 \mathrm{~L}^{-1} \text { molarity }^{-1} \\ & =\frac{0.248 \times 10^{-2} \mathrm{~S} \mathrm{~cm}^{-1} \times 1000 \mathrm{~cm}^3 \mathrm{~L}^{-1}}{0.02 \mathrm{~mol} \mathrm{~L}^{-1}} \\ & =124 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1} \end{aligned} $$

Example 2.5 The electrical resistance of a column of $0.05 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}$ solution of diameter $1 \mathrm{~cm}$ and length $50 \mathrm{~cm}$ is $5.55 \times 10^3 \mathrm{ohm}$. Calculate its resistivity, conductivity and molar conductivity.

Solution

$$ \begin{aligned} & \begin{array}{l} A=\pi r^2=3.14 \times 0.5^2 \mathrm{~cm}^2=0.785 \mathrm{~cm}^2=0.785 \times 10^{-4} \mathrm{~m}^2 \\ l=50 \mathrm{~cm}=0.5 \mathrm{~m} \end{array} \\ & \begin{aligned} & R=\frac{\rho l}{A} \quad \text { or } \quad \rho=\frac{R A}{l}=\frac{5.55 \times 10^3 \Omega \times 0.785 \mathrm{~cm}^2}{50 \mathrm{~cm}} \\ & =87.135 \Omega \mathrm{cm} \\ & \text { Conductivity }=\kappa=\frac{1}{\rho}=\left(\frac{1}{87.135}\right) \mathrm{S} \mathrm{cm}^{-1} \\ &=0.01148 \mathrm{~S} \mathrm{~cm}^{-1} \end{aligned} \end{aligned} $$

Molar conductivity, $A_m=\frac{\kappa \times 1000}{c} \mathrm{~cm}^3 \mathrm{~L}^{-1}$ $$ \begin{aligned} & =\frac{0.01148 \mathrm{~S} \mathrm{~cm}^{-1} \times 1000 \mathrm{~cm}^3 \mathrm{~L}^{-1}}{0.05 \mathrm{~mol} \mathrm{~L}^{-1}} \\ & =229.6 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1} \end{aligned} $$

If we want to calculate the values of different quantities in terms of ’ $\mathrm{m}$ ’ instead of ‘cm’,

$$ \begin{aligned} & \rho=\frac{R A}{l}=\frac{5.55 \times 10^{3} \Omega \times 0.785 \times 10^{-4} \mathrm{~m}^{2}}{0.5 \mathrm{~m}} \\ & =87.135 \times 10^{-2} \Omega \mathrm{m} \\ & \kappa=\frac{1}{\rho}=\frac{100}{87.135} \Omega \mathrm{m} \\ & =1.148 \mathrm{~S} \mathrm{~m}^{-1} \\ & \text { and } \Lambda _{m}=\frac{\kappa}{c}=\frac{1.148 \mathrm{~S} \mathrm{~m}^{-1}}{50 \mathrm{~mol} \mathrm{~m}^{-3}} \\ & =229.6 \times 10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1} \end{aligned} $$

3.4.2 Variation of Conductivity and Molar Conductivity with Concentration

Both conductivity and molar conductivity change with the concentration of the electrolyte. Conductivity always decreases with decrease in concentration both, for weak and strong electrolytes. This can be explained by the fact that the number of ions per unit volume that carry the current in a solution decreases on dilution. The conductivity of a solution at any given concentration is the conductance of one unit volume of solution kept between two platinum electrodes with unit area of cross section and at a distance of unit length. This is clear from the equation:

$G=\frac{\kappa A}{l}=\kappa$ (both $A$ and $l$ are unity in their appropriate units in $\mathrm{m}$ or $\mathrm{cm}$ )

Molar conductivity of a solution at a given concentration is the conductance of the volume V of solution containing one mole of electrolyte kept between two electrodes with area of cross section A and distance of unit length. Therefore,

$$ \Lambda_{m}=\frac{K A}{l}=K $$

Since $l=1$ and $A=V$ (volume containing 1 mole of electrolyte)

Fig. 3.6: Molar conductivity versus c½ for acetic acid (weak electrolyte) and otassium chloride (strong electrolyte) in aqueous solutions.

Molar conductivity increases with decrease in concentration. This is because the total volume, V, of solution containing one mole of electrolyte also increases. It has been found that decrease in k on dilution of a solution is more than compensated by increase in its volume. Physically, it means that at a given concentration, Lm can be defined as the conductance of the electrolytic solution kept between the electrodes of a conductivity cell at unit distance but having area of cross section large enough to accommodate sufficient volume of solution that contains one mole of the electrolyte. When concentration approaches zero, the molar conductivity is known as limiting molar conductivity and is represented by the symbol L° m . The variation in Lm with concentration is different (Fig. 3.6) for strong and weak electrolytes.

Strong Electrolytes

For strong electrolytes, $\Lambda_{m}$ increases slowly with dilution and can be represented by the equation:

$$ \begin{equation*} \Lambda_{m}=\Lambda_{m}^{\circ}-A c^{1 / 2} \tag{3.23} \end{equation*} $$

It can be seen that if we plot (Fig. 3.6) $\Lambda_{m}$ against $c^{1 / 2}$, we obtain a straight line with intercept equal to $\Lambda_{m}^{\circ}$ and slope equal to ’ $-A$ ‘. The value of the constant ’ $A$ ’ for a given solvent and temperature depends on the type of electrolyte i.e., the charges on the cation and anion produced on the dissociation of the electrolyte in the solution. Thus, $\mathrm{NaCl}, \mathrm{CaCl_2}, \mathrm{MgSO_4}$ are known as $1-1,2-1$ and 2-2 electrolytes respectively. All electrolytes of a particular type have the same value for ’ $A$ ‘.

Example 2.6

The molar conductivity of $\mathrm{KCl}$ solutions at different concentrations at $298 \mathrm{~K}$ are given below:

$\mathbf{c} / \mathbf{m o l ~ L}^{-1}$ $\Lambda _{m} / \mathrm{S} \mathrm{cm}{ }^{2} \mathrm{~mol}^{-1}$
0.000198 148.61
0.000309 148.29
0.000521 147.81
0.000989 147.09

Show that a plot between $\Lambda_m$ and $c^{1 / 2}$ is a straight line. Determine the values of $\Lambda_m^{\circ}$ and $\mathrm{A}$ for $\mathrm{KCl}$.

Solution

Taking the square root of concentration we obtain:

$c^{1 / 2} /\left(\operatorname{mol~L}^{-1}\right)^{1 / 2}$ $\Lambda _{m} / \mathrm{S} \mathrm{cm}{ }^{2} \mathrm{~mol}^{-1}$
0.01407 148.61
0.01758 148.29
0.02283 147.81
0.03145 147.09

A plot of $\Lambda_m$ ( $y$-axis) and $\mathrm{c}^{1 / 2}$ ( $x$-axis) is shown in (Fig. 3.7). It can be seen that it is nearly a straight line. From the intercept $\left(c^{1 / 2}=0\right)$, we find that $$ \begin{aligned} & \Lambda_m^{\circ}=150.0 \mathrm{~S} \mathrm{~cm} \mathrm{cmol}^{-1} \text { and } \ & A=- \text { slope }=87.46 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1} /\left(\mathrm{mol} / \mathrm{L}^{-1}\right)^{1 / 2} . \end{aligned} $$

Fig. 3.7: Variation of $\Lambda_m$ against $c^{1 / 2}$.

Kohlrausch examined $\Lambda_{m}^{\circ}$ values for a number of strong electrolytes and observed certain regularities. He noted that the difference in $\Lambda_{m}^{\circ}$ of the electrolytes $\mathrm{NaX}$ and $\mathrm{KX}$ for any $\mathrm{X}$ is nearly constant. For example at $298 \mathrm{~K}$ :

$$ \begin{aligned} & \Lambda_{m(\mathrm{KCl})}^{\circ}-\Lambda_{m(\mathrm{NaCl})}^{\circ}=\Lambda_{m(\mathrm{KBr})}^{\circ}-\Lambda_{m(\mathrm{NaBr})}^{\circ} \\ & =\Lambda_{m(\mathrm{KI})}^{\circ}-\Lambda_{m(\mathrm{NaI})}^{\circ} \simeq 23.4 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \end{aligned} $$

and similarly it was found that

$$ \Lambda_{m(\mathrm{NaBr})}^{\circ}-\Lambda_{m(\mathrm{NaCl})}^{\circ}=\Lambda_{m(\mathrm{KBr})}^{\circ}-\Lambda_{m(\mathrm{KCl})}^{\circ} \simeq 1.8 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} $$

On the basis of the above observations he enunciated Kohlrausch law of independent migration of ions. The law states that limiting molar conductivity of an electrolyte can be represented as the sum of the individual contributions of the anion and cation of the electrolyte. Thus, if $\lambda_{\mathrm{Na}}^{\circ}+$ and $\lambda_{\mathrm{Cl}}^{\circ}$ - are limiting molar conductivity of the sodium and chloride ions respectively, then the limiting molar conductivity for sodium chloride is given by the equation:

$$ \begin{equation*} \Lambda_{m(\mathrm{NaCl})}^{\circ}=\lambda_{\mathrm{Na}}^{\circ}+\lambda_{\mathrm{Cl}}^{\circ} \tag{3.24} \end{equation*} $$

In general, if an electrolyte on dissociation gives $v_{+}$cations and $v_{-}$ anions then its limiting molar conductivity is given by:

$$ \begin{equation*} \Lambda_{m}^{\circ}=v_{+} \lambda_{+}^{\circ}+v_{-} \lambda_{-}^{\circ} \tag{3.25} \end{equation*} $$

Here, $\lambda_{+}^{\circ}$ and $\lambda_{-}^{0}$ are the limiting molar conductivities of the cation and anion respectively. The values of $\lambda^{\circ}$ for some cations and anions at $298 \mathrm{~K}$ are given in Table 3.4.

Table 3.4: Limiting Molar Conductivity for some Ions in Water at 298 K

Weak Electrolytes

Weak electrolytes like acetic acid have lower degree of dissociation at higher concentrations and hence for such electrolytes, the change in $\Lambda_{m}$ with dilution is due to increase in the degree of dissociation and consequently the number of ions in total volume of solution that contains 1 mol of electrolyte. In such cases $\Lambda_{m}$ increases steeply (Fig. 3.6) on dilution, especially near lower concentrations. Therefore, $\Lambda_{m}^{\circ}$ cannot be obtained by extrapolation of $\Lambda_{m}$ to zero concentration. At infinite dilution (i.e., concentration $c \rightarrow$ zero) electrolyte dissociates completely $(\alpha=1)$, but at such low concentration the conductivity of the solution is so low that it cannot be measured accurately. Therefore, $\Lambda_{m}^{\circ}$ for weak electrolytes is obtained by using Kohlrausch law of independent migration of ions (Example 3.8). At any concentration $c$, if $\alpha$ is the degree of dissociation then it can be approximated to the ratio of molar conductivity $\Lambda_{m}$ at the concentration c to limiting molar conductivity, $\Lambda_{m}^{0}$. Thus we have:

$$ \begin{equation*} \alpha=\frac{\Lambda_{m}}{\Lambda_{m}^{\circ}} \tag{3.26} \end{equation*} $$

But we know that for a weak electrolyte like acetic acid (Class XI, Unit 7),

$$ \begin{equation*} K_{\mathrm{a}}=\frac{c \alpha^{2}}{(1-\alpha)}=\frac{c \Lambda_{m}^{2}}{\Lambda_{m}^{\mathrm{o}^{2}}\left(1-\frac{\Lambda_{m}}{\Lambda_{m}^{\mathrm{o}}}\right)}=\frac{c \Lambda_{m}^{2}}{\Lambda_{m}^{\mathrm{o}}\left(\Lambda_{m}^{\mathrm{o}}-\Lambda_{m}\right)} \tag{3.27} \end{equation*} $$

Applications of Kohlrausch law

Using Kohlrausch law of independent migration of ions, it is possible to calculate $\Lambda_{m}^{0}$ for any electrolyte from the $\lambda^{0}$ of individual ions. Moreover, for weak electrolytes like acetic acid it is possible to determine the value of its dissociation constant once we know the $\Lambda_{m}^{0}$ and $\Lambda_{m}$ at a given concentration $c$.

Example 3.4 Calculate $\Lambda _{m}^{0}$ for $\mathrm{CaCl} _{2}$ and $\mathrm{MgSO} _{4}$ from the data given in Table 3.4.

Solution

We know from Kohlrausch law that

$$ \begin{aligned} \Lambda_{m\left(\mathrm{CaCl_2}\right)}^{\mathrm{o}} & =\lambda_{\mathrm{Ca}^{2+}}^{\mathrm{o}}+2 \lambda_{\mathrm{Cl}^{-}}^{\mathrm{o}}=119.0 \mathrm{~S} \mathrm{~cm} \mathrm{~mol}^{-1}+2(76.3) \mathrm{S} \mathrm{cm} \mathrm{mol}^{-1} \\ & =(119.0+152.6) \mathrm{S} \mathrm{cm} \mathrm{mol}^{-1} \\ & =271.6 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \\ \Lambda_{m\left(\mathrm{MgSO_4}\right)}^{\mathrm{o}} & =\lambda_{\mathrm{Mg}^{2+}}^{\mathrm{o}}+\lambda_{\mathrm{SO}_{4}^{2-}}^{\mathrm{o}}=106.0 \mathrm{~S} \mathrm{~cm} \mathrm{~mol}^{-1}+160.0 \mathrm{~S} \mathrm{~cm} \mathrm{~mol}^{-1} \\ & =266 \mathrm{~S} \mathrm{~cm} \mathrm{~mol}^{-1} . \end{aligned} $$

Example 3.5 $\Lambda_{m}^{0}$ for $\mathrm{NaCl}, \mathrm{HCl}$ and $\mathrm{NaAc}$ are $126.4,425.9$ and $91.0 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively. Calculate $\Lambda^{0}$ for HAc.

Solution $$ \begin{aligned} \Lambda_{m(\mathrm{HAc})}^{\mathrm{o}} & =\lambda_{\mathrm{H}^{+}}^{\mathrm{o}}+\lambda_{\mathrm{Ac}^{-}}^{\mathrm{o}}=\lambda_{\mathrm{H}^{+}}^{\mathrm{o}}+\lambda_{\mathrm{Cl}^{-}}^{\mathrm{o}}+\lambda_{\mathrm{Ac}^{-}}^{\mathrm{o}}+\lambda_{\mathrm{Na}^{+}}^{\mathrm{o}}-\lambda_{\mathrm{Cl}^{-}}^{\mathrm{o}}-\lambda_{\mathrm{Na}^{+}}^{\mathrm{o}} \\ & =\Lambda_{m(\mathrm{HCl})}^{\mathrm{o}}+\Lambda_{m(\mathrm{NaAc})}^{\mathrm{o}}-\Lambda_{m(\mathrm{NaCl})}^{\mathrm{o}} \\ & =(425.9+91.0-126.4) \mathrm{Scm}^{2} \mathrm{~mol}^{-1} \\ & =390.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} . \end{aligned} $$

Example 3.6 The conductivity of $0.001028 \mathrm{~mol} \mathrm{~L}^{-1}$ acetic acid is $4.95 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}$. Calculate its dissociation constant if $\Lambda_{m}^{0}$ for acetic acid is $390.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.

Solution $$ \begin{aligned} \Lambda_{m} & =\frac{\kappa}{c}=\frac{4.95 \times 10^{-5} \mathrm{Scm}^{-1}}{0.001028 \mathrm{~mol} \mathrm{~L}^{-1}} \times \frac{1000 \mathrm{~cm}^{3}}{\mathrm{~L}}=48.15 \mathrm{~S} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \\ \alpha & =\frac{\Lambda_{m}}{\Lambda_{m}^{\circ}}=\frac{48.15 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}}{390.5 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}}=0.1233 \\ \mathrm{k} & =\frac{\mathrm{c} \alpha^{2}}{(1-\alpha)}=\frac{0.001028 \mathrm{molL}^{-1} \times(0.1233)^{2}}{1-0.1233}=1.78 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \end{aligned} $$

Intext Questions

3.7 Why does the conductivity of a solution decrease with dilution?

Show Answer

Answer

The conductivity of a solution is the conductance of ions present in a unit volume of the solution. The number of ions (responsible for carrying current) decreases when the solution is diluted. As a result, the conductivity of a solution decreases with dilution.

3.8 Suggest a way to determine the $\Lambda_{m}^{\circ}$ value of water.

Show Answer

Answer

Applying Kohlrausch’s law of independent migration of ions, the $\Lambda_{m}^{0}$ value of water can be determined as follows:

$$ \begin{aligned} \Lambda_{m\left(\mathrm{H_2} \mathrm{O}\right)}^{0} & =\lambda_{\mathrm{H}^{+}}^{0}+\lambda_{\mathrm{OH}^{-}}^{0} \\ & =\left(\lambda_{\mathrm{H}^{+}}^{0}+\lambda_{\mathrm{Cl}^{-}}^{0}\right)+\left(\lambda_{\mathrm{Na}^{+}}^{0}+\lambda_{\mathrm{OH}^{-}}^{0}\right)-\left(\lambda_{\mathrm{Na}^{+}}^{0}+\lambda_{\mathrm{Cl}^{-}}^{0}\right) \\ \Lambda_{m(\mathrm{HCl})}^{0} & +\Lambda_{m(\mathrm{NaOH})}^{0}-\Lambda_{m(\mathrm{NaCl})}^{0} \end{aligned} $$

Hence, by knowing the $\Lambda_{m}^{0}$ values of $\mathrm{HCl}, \mathrm{NaOH}$, and $\mathrm{NaCl}$, the $\Lambda_{m}^{0}$ value of water can be determined.

3.9 The molar conductivity of $0.025 \mathrm{~mol} \mathrm{~L}^{-1}$ methanoic acid is $46.1 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. Calculate its degree of dissociation and dissociation constant. Given $\lambda^{0}\left(\mathrm{H}^{+}\right)$ $=349.6 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ and $\lambda^{0}\left(\mathrm{HCOO}^{-}\right)=54.6 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.

Show Answer

Answer

$C=0.025 \mathrm{~mol} \mathrm{~L}^{-1}$

$\Lambda_{m}=46.1 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$

$\lambda^{0}\left(\mathrm{H}^{+}\right)=349.6 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$

$\lambda^{0}\left(\mathrm{HCOO}^{-}\right)=54.6 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$

$\Lambda_{m}^{0}(\mathrm{HCOOH})=\lambda^{0}\left(\mathrm{H}^{+}\right)+\lambda^{0}\left(\mathrm{HCOO}^{-}\right)$

$=349.6+54.6$

$=404.2 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$

Now, degree of dissociation:

$ \begin{aligned} \alpha & =\frac{\Lambda_{m}(\mathrm{HCOOH})}{\Lambda_{m}^{0}(\mathrm{HCOOH})} \\ \\ & =\frac{46.1}{404.2} \\ \\ & =0.114 \text { (approximately) } \end{aligned} $

Thus, dissociation constant:

$ \begin{aligned} K & =\frac{c \propto^{2}}{(1-\propto)} \\ \\ & =\frac{\left(0.025 \mathrm{~mol} \mathrm{~L}^{-1}\right)(0.114)^{2}}{(1-0.114)} \\ \\ & =3.67 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \end{aligned} $

3.5 Electrolytic Cells and Electrolysis

In an electrolytic cell external source of voltage is used to bring about a chemical reaction. The electrochemical processes are of great importance in the laboratory and the chemical industry. One of the simplest electrolytic cell consists of two copper strips dipping in an aqueous solution of copper sulphate. If a DC voltage is applied to the two electrodes, then $\mathrm{Cu}^{2+}$ ions discharge at the cathode (negatively charged) and the following reaction takes place:

$$ \begin{equation*} \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s}) \tag{3.28} \end{equation*} $$

Copper metal is deposited on the cathode. At the anode, copper is converted into $\mathrm{Cu}^{2+}$ ions by the reaction:

$$ \begin{equation*} \mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{s})+2 \mathrm{e}^{-} \tag{3.29} \end{equation*} $$

Thus copper is dissolved (oxidised) at anode and deposited (reduced) at cathode. This is the basis for an industrial process in which impure copper is converted into copper of high purity. The impure copper is made an anode that dissolves on passing current and pure copper is deposited at the cathode. Many metals like Na, Mg, $\mathrm{Al}$, etc. are produced on large scale by electrochemical reduction of their respective cations where no suitable chemical reducing agents are available for this purpose.

Sodium and magnesium metals are produced by the electrolysis of their fused chlorides and aluminium is produced by electrolysis of aluminium oxide in presence of cryolite.

Quantitative Aspects of Electrolysis

Michael Faraday was the first scientist who described the quantitative aspects of electrolysis. Now Faraday’s laws also flow from what has been discussed earlier.

Faraday’s Laws of Electrolysis After his extensive investigations on electrolysis of solutions and melts of electrolytes, Faraday published his results during 1833-34 in the form of the following well known Faraday’s two laws of electrolysis:

(i) First Law: The amount of chemical reaction which occurs at any electrode during electrolysis by a current is proportional to the quantity of electricity passed through the electrolyte (solution or melt).

(ii) Second Law: The amounts of different substances liberated by the same quantity of electricity passing through the electrolytic solution are proportional to their chemical equivalent weights (Atomic Mass of Metal $\div$ Number of electrons required to reduce the cation). There were no constant current sources available during Faraday’s times. The general practice was to put a coulometer (a standard electrolytic cell) for determining the quantity of electricity passed from the amount of metal (generally silver or copper) deposited or consumed. However, coulometers are now obsolete and we now have constant current (I) sources available and the quantity of electricity $Q$, passed is given by

$$ Q=I t $$

$Q$ is in coloumbs when $I$ is in ampere and $t$ is in second.

The amount of electricity (or charge) required for oxidation or reduction depends on the stoichiometry of the electrode reaction. For example, in the reaction:

$$ \begin{equation*} \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s}) \tag{3.30} \end{equation*} $$

One mole of the electron is required for the reduction of one mole of silver ions.

We know that charge on one electron is equal to $1.6021 \times 10^{-19} \mathrm{C}$.

Therefore, the charge on one mole of electrons is equal to:

$$ \begin{array}{rl} N_{A} \times 1.6021 \times 10^{-19} & \mathrm{C}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \times 1.6021 \times 10^{-19} \\ & \mathrm{C}=96487 \mathrm{C} \mathrm{mol}^{-1} \end{array} $$

This quantity of electricity is called Faraday and is represented by the symbol $\mathbf{F}$.

For approximate calculations we use $1 \mathrm{~F} \simeq 96500 \mathrm{C} \mathrm{mol}^{-1}$.

For the electrode reactions:

$$ \begin{align*} & \mathrm{Mg}^{2+}(\mathrm{l})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Mg}(\mathrm{s}) \tag{3.31}\\ & \mathrm{Al}^{3+}(\mathrm{l})+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}(\mathrm{s}) \tag{3.32} \end{align*} $$

It is obvious that one mole of $\mathrm{Mg}^{2+}$ and $\mathrm{Al}^{3+}$ require $2 \mathrm{~mol}$ of electrons $(2 \mathrm{~F})$ and $3 \mathrm{~mol}$ of electrons (3F) respectively. The charge passed through the electrolytic cell during electrolysis is equal to the product of current in amperes and time in seconds. In commercial production of metals, current as high as 50,000 amperes are used that amounts to about $0.518 \mathrm{~F}$ per second.

Example 3.8

A solution of $\mathrm{CuSO}_{4}$ is electrolysed for 10 minutes with a current of 1.5 amperes. What is the mass of copper deposited at the cathode?

Solution $ t=600 \mathrm{~s} \text { charge }=\text { current } \times \text { time }=1.5 \mathrm{~A} \times 600 \mathrm{~s}=900 \mathrm{C} $

According to the reaction:

$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}=\mathrm{Cu}(\mathrm{s})$

We require $2 \mathrm{~F}$ or $2 \times 96487 \mathrm{C}$ to deposit $1 \mathrm{~mol}$ or $63 \mathrm{~g}$ of $\mathrm{Cu}$. For $900 \mathrm{C}$, the mass of $\mathrm{Cu}$ deposited $$ =\left(63 \mathrm{~g} \mathrm{~mol}^{-1} \times 900 \mathrm{C}\right) /\left(2 \times 96487 \mathrm{C} \mathrm{mol}^{-1}\right)=0.2938 \mathrm{~g} $$

3.5.1 Products of Electrolysis

Products of electrolysis depend on the nature of material being electrolysed and the type of electrodes being used. If the electrode is inert (e.g., platinum or gold), it does not participate in the chemical reaction and acts only as source or sink for electrons. On the other hand, if the electrode is reactive, it participates in the electrode reaction. Thus, the products of electrolysis may be different for reactive and inert electrodes.The products of electrolysis depend on the different oxidising and reducing species present in the electrolytic cell and their standard electrode potentials. Moreover, some of the electrochemical processes although feasible, are so slow kinetically that at lower voltages these do not seem to take place and extra potential (called overpotential) has to be applied, which makes such process more difficult to occur.

For example, if we use molten $\mathrm{NaCl}$, the products of electrolysis are sodium metal and $\mathrm{Cl_2}$ gas. Here we have only one cation $\left(\mathrm{Na}^{+}\right)$ which is reduced at the cathode $\left(\mathrm{Na}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Na}\right)$ and one anion $\left(\mathrm{Cl}^{-}\right)$ which is oxidised at the anode $\left(\mathrm{Cl}^{-} \rightarrow 1 / 2 \mathrm{Cl_2}+\mathrm{e}^{-}\right)$. During the electrolysis of aqueous sodium chloride solution, the products are $\mathrm{NaOH}, \mathrm{Cl_2}$ and $\mathrm{H_2}$. In this case besides $\mathrm{Na}^{+}$ and $\mathrm{Cl}^{-}$ ions we also have $\mathrm{H}^{+}$ and $\mathrm{OH}^{-}$ ions along with the solvent molecules, $\mathrm{H}_{2} \mathrm{O}$.

At the cathode there is competition between the following reduction reactions:

$$ \begin{array}{ll} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s}) & E_{\text {(cell) }}^{\mathrm{o}}=-2.71 \mathrm{~V} \\ \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow 1 / 2 \mathrm{H_2}(\mathrm{~g}) & E_{\text {(cell) }}^{\mathrm{o}}=0.00 \mathrm{~V} \end{array} $$

The reaction with higher value of EJ is preferred and therefore, the reaction at the cathode during electrolysis is: $$ \begin{equation*} \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow 1 / 2 \mathrm{H_2}(\mathrm{~g}) \tag{3.33} \end{equation*} $$

but $\mathrm{H}^{+}$(aq) is produced by the dissociation of $\mathrm{H_2} \mathrm{O}$, i.e.,

$$ \begin{equation*} \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \tag{3.34} \end{equation*} $$

Therefore, the net reaction at the cathode may be written as the sum of (3.33) and (3.34) and we have

$$ \begin{equation*} \mathrm{H_2} \mathrm{O}(l)+\mathrm{e}^{-} \rightarrow 1 / 2 \mathrm{H_2}(\mathrm{~g})+\mathrm{OH}^{-} \tag{3.35} \end{equation*} $$

At the anode the following oxidation reactions are possible:

$$ \begin{array}{ll} \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow 1 / 2 \mathrm{Cl_2}(\mathrm{~g})+\mathrm{e}^{-} & E_{\text {(cell) }}^{\mathrm{o}}=1.36 \mathrm{~V} \\ 2 \mathrm{H_2} \mathrm{O}(l) \rightarrow \mathrm{O_2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} & E_{\text {(cell) }}^{\mathrm{o}}=1.23 \mathrm{~V} \tag{3.37} \end{array} $$

The reaction at anode with lower value of $E^{\circ}$ is preferred and therefore, water should get oxidised in preference to $\mathrm{Cl}^{-}$(aq). However, on account of overpotential of oxygen, reaction (2.36) is preferred. Thus, the net reactions may be summarised as:

$\mathrm{NaCl}(\mathrm{aq})$

Cathode: $\quad \mathrm{H} _{2} \mathrm{O}(l)+\mathrm{e}^{-} \rightarrow 1 / 2 \mathrm{H} _{2}(\mathrm{~g})+\mathrm{OH}^{-}(\mathrm{aq})$

Anode: $\quad \mathrm{Cl}^{-}$(aq) $\rightarrow 1 / 2 \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{e}^{-}$

Net reaction: $\mathrm{NaCl}(\mathrm{aq})+\mathrm{H} _{2} \mathrm{O}(l) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})+\frac{1}{2} \mathrm{H} _{2}(\mathrm{~g})+\frac{1}{2} \mathrm{Cl} _{2}(\mathrm{~g})$

The standard electrode potentials are replaced by electrode potentials given by Nernst equation (Eq. 3.8) to take into account the concentration effects. During the electrolysis of sulphuric acid, the following processes are possible at the anode:

$$ \begin{equation*} 2 \mathrm{H_2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{O_2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \quad E_{\text {(cell) }}^{\mathrm{o}}=+1.23 \mathrm{~V} \tag{3.38} \end{equation*} $$ $$ \begin{equation*} 2 \mathrm{SO_4} ^{2-}(\mathrm{aq}) \rightarrow \mathrm{S_2} \mathrm{O_8} ^{2-}(\mathrm{aq})+2 \mathrm{e}^{-} \quad E_{(\mathrm{cell})}^{\mathrm{o}}=1.96 \mathrm{~V} \tag{3.39} \end{equation*} $$

For dilute sulphuric acid, reaction (3.38) is preferred but at higher concentrations of $\mathrm{H_2} \mathrm{SO_4}$, reaction (3.39) is preferred.

Intext Questions

3.10 If a current of 0.5 ampere flows through a metallic wire for 2 hours, then how many electrons would flow through the wire?

Show Answer

Answer

$I=0.5 \mathrm{~A}$

$t=2$ hours $=2 \times 60 \times 60 \mathrm{~s}=7200 \mathrm{~s}$

Thus, $Q=I t$

$=0.5 \mathrm{~A} \times 7200 \mathrm{~s}$

$=3600 \mathrm{C}$

We know that $96487 \mathrm{C}=6.023 \times 10^{23}$ number of electrons.

Then,

$3600 \mathrm{C}=\frac{6.023 \times 10^{23} \times 3600}{96487}$ number of electrons

$=2.25 \times 10^{22}$ number of electrons

Hence, $2.25 \times 10^{22}$ number of electrons will flow through the wire.

3.11 Suggest a list of metals that are extracted electrolytically.

Show Answer

Answer

Metals that are on the top of the reactivity series such as sodium, potassium, calcium, lithium, magnesium, aluminium are extracted electrolytically.

3.12 What is the quantity of electricity in coulombs needed to reduce $1 \mathrm{~mol}$ of $\mathrm{Cr_2} \mathrm{O_7}^{2-} $ Consider the reaction: $\mathrm{Cr_2} \mathrm{O_7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H_2} \mathrm{O}$

Show Answer

Answer

The given reaction is as follows:

$\mathrm{Cr_2} \mathrm{O_7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H_2} \mathrm{O}$

Therefore, to reduce 1 mole of $\mathrm{Cr_2} \mathrm{O_7}^{2-}$, the required quantity of electricity will be:

$=6 \mathrm{~F}$

$=6 \times 96487 \mathrm{C}$

$=578922 \mathrm{C}$

3.6 Batteries

Any battery (actually it may have one or more than one cell connected in series) or cell that we use as a source of electrical energy is basically a galvanic cell where the chemical energy of the redox reaction is converted into electrical energy. However, for a battery to be of practical use it should be reasonably light, compact and its voltage should not vary appreciably during its use. There are mainly two types of batteries.

3.6.1 Primary Batteries

In the primary batteries, the reaction occurs only once and after use over a period of time battery becomes dead and cannot be reused again. The most familiar example of this type is the dry cell (known as Leclanche cell after its discoverer) which is used commonly in our transistors and clocks. The cell consists of a zinc container that also acts as anode and the cathode is a carbon (graphite) rod surrounded by powdered manganese dioxide and carbon (Fig.3.8).

Fig. 3.8: A commercial dry cell consists of a graphite (carbon) cathode in a zinc container; the latter acts as the anode.

The space between the electrodes is filled by a moist paste of ammonium chloride $\left(\mathrm{NH_4} \mathrm{Cl}\right)$ and zinc chloride $\left(\mathrm{ZnCl_2}\right)$. The electrode reactions are complex, but they can be written approximately as follows :

Anode: $\quad \mathrm{Zn}(\mathrm{s}) \longrightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$
Cathode: $\quad \mathrm{MnO_2}+\mathrm{NH_4}{ }^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{MnO}(\mathrm{OH})+\mathrm{NH_3}$

In the reaction at cathode, manganese is reduced from the +4 oxidation state to the +3 state. Ammonia produced in the reaction forms a complex with $\mathrm{Zn}^{2+}$ to give $\left[\mathrm{Zn}\left(\mathrm{NH_3}\right)_{4}\right]^{2+}$. The cell has a potential of nearly $1.5 \mathrm{~V}$.

Mercury cell, (Fig. 3.9) suitable for low current devices like hearing aids, watches, etc. consists of zinc - mercury amalgam as anode and a paste of $\mathrm{HgO}$ and carbon as the cathode. The electrolyte is a paste of $\mathrm{KOH}$ and $\mathrm{ZnO}$. The electrode reactions for the cell are given below:

Anode: $\quad \mathrm{Zn}(\mathrm{Hg})+2 \mathrm{OH}^{-} \longrightarrow \mathrm{ZnO}(\mathrm{s})+\mathrm{H_2} \mathrm{O}+2 \mathrm{e}^{-}$

Cathode: $\quad \mathrm{HgO}+\mathrm{H_2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Hg}(1)+2 \mathrm{OH}^{-}$

Fig. 3.9 Commonly used mercury cell. The reducing agent is zinc and the oxidising agent is mercury (II) oxide.

The overall reaction is represented by $\mathrm{Zn}(\mathrm{Hg})+\mathrm{HgO}(\mathrm{s}) \longrightarrow \mathrm{ZnO}(\mathrm{s})+\mathrm{Hg}(\mathrm{l})$ The cell potential is approximately 1.35 V and remains constant during its life as the overall reaction does not involve any ion in solution whose concentration can change during its life time.

3.6.2 Secondary Batteries

A secondary cell after use can be recharged by passing current through it in the opposite direction so that it can be used again. A good secondary cell can undergo a large number of discharging and charging cycles. The most important secondary cell is the lead storage battery (Fig. 3.10) commonly used in automobiles and invertors. It consists of a lead anode and a grid of lead packed with lead dioxide $\left(\mathrm{PbO_2}\right)$ as cathode. A $38 \%$ solution of sulphuric acid is used as an electrolyte.

The cell reactions when the battery is in use are given below:

Anode: $\quad \mathrm{Pb}(\mathrm{s})+\mathrm{SO_4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{PbSO_4}(\mathrm{~s})+2 \mathrm{e}^{-}$

Cathode: $\mathrm{PbO_2}(\mathrm{~s})+\mathrm{SO_4}{ }^{2-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{PbSO_4}(\mathrm{~s})+2 \mathrm{H_2} \mathrm{O}(\mathrm{l})$

i.e., overall cell reaction consisting of cathode and anode reactions is: $$ \mathrm{Pb}(\mathrm{s})+\mathrm{PbO_2}(\mathrm{~s})+2 \mathrm{H_2} \mathrm{SO_4}(\mathrm{aq}) \rightarrow 2 \mathrm{PbSO_4}(\mathrm{~s})+2 \mathrm{H_2} \mathrm{O}(\mathrm{l}) $$

Fig. 3.10: The Lead storage battery.

$$ \mathrm{Cd}(\mathrm{s})+2 \mathrm{Ni}(\mathrm{OH}) _{3}(\mathrm{~s}) \rightarrow \mathrm{CdO}(\mathrm{s})+2 \mathrm{Ni}(\mathrm{OH}) _{2}(\mathrm{~s})+\mathrm{H} _{2} \mathrm{O}(l) $$

On charging the battery the reaction is reversed and $\mathrm{PbSO_4}(\mathrm{~s})$ on anode and cathode is converted into $\mathrm{Pb}$ and $\mathrm{PbO_2}$, respectively.

Another important secondary cell is the nickel-cadmium cell (Fig. 3.11) which has longer life than the lead storage cell but more expensive to manufacture. We shall not go into details of working of the cell and the electrode reactions during charging and discharging. The overall reaction during discharge is:

Fig. 3.11 A rechargeable nickel-cadmium cell in a jelly roll arrangement and separated by a layer soaked in moist sodium or potassium hydroxide.

3.7 Fuel Cells

Production of electricity by thermal plants is not a very efficient method and is a major source of pollution. In such plants, the chemical energy (heat of combustion) of fossil fuels (coal, gas or oil) is first used for converting water into high pressure steam. This is then used to run a turbine to produce electricity. We know that a galvanic cell directly converts chemical energy into electricity and is highly efficient. It is now possible to make such cells in which reactants are fed continuously to the electrodes and products are removed continuously from the electrolyte compartment. Galvanic cells that are designed to convert the energy of combustion of fuels like hydrogen, methane, methanol, etc. directly into electrical energy are called fuel cells.

Fig. 3.12: Fuel cell using H2 and O2 produces electricity.

One of the most successful fuel cells uses the reaction of hydrogen with oxygen to form water (Fig. 3.12). The cell was used for providing electrical power in the Apollo space programme. The water vapours produced during the reaction were condensed and added to the drinking water supply for the astronauts. In the cell, hydrogen and oxygen are bubbled through porous carbon electrodes into concentrated aqueous sodium hydroxide solution. Catalysts like finely divided platinum or palladium metal are incorporated into the electrodes for increasing the rate of electrode reactions. The electrode reactions are given below:

Cathode: $\mathrm{O_2}(\mathrm{~g})+2 \mathrm{H_2} \mathrm{O}(\mathrm{l})+4 \mathrm{e}^{-} \longrightarrow 4 \mathrm{OH}^{-}(\mathrm{aq})$

Anode: $\quad 2 \mathrm{H_2}(\mathrm{~g})+4 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow 4 \mathrm{H_2} \mathrm{O}(\mathrm{l})+4 \mathrm{e}^{-}$

Overall reaction being: $$ 2 \mathrm{H_2}(\mathrm{~g})+\mathrm{O_2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H_2} \mathrm{O}(1) $$

The cell runs continuously as long as the reactants are supplied. Fuel cells produce electricity with an efficiency of about $70 %$ compared to thermal plants whose efficiency is about $40 %$. There has been tremendous progress in the development of new electrode materials, better catalysts and electrolytes for increasing the efficiency of fuel cells. These have been used in automobiles on an experimental basis. Fuel cells are pollution free and in view of their future importance, a variety of fuel cells have been fabricated and tried.

3.8 Corrosion

Fig. 3.13: Corrosion of iron in atmosphere

Corrosion slowly coats the surfaces of metallic objects with oxides or other salts of the metal. The rusting of iron, tarnishing of silver, development of green coating on copper and bronze are some of the examples of corrosion. It causes enormous damage to buildings, bridges, ships and to all objects made of metals especially that of iron. We lose crores of rupees every year on account of corrosion.

In corrosion, a metal is oxidised by loss of electrons to oxygen and formation of oxides. Corrosion of iron (commonly known as rusting) occurs in presence of water and air. The chemistry of corrosion is quite complex but it may be considered essentially as an electrochemical phenomenon. At a particular spot (Fig. 3.13) of an object made of iron, oxidation takes place and that spot behaves as anode and we can write the reaction

Anode: $2 \mathrm{Fe}(\mathrm{s}) \longrightarrow 2 \mathrm{Fe}^{2+}+4 \mathrm{e}^{-} \quad E_{\left(\mathrm{Fe}^{2+} / \mathrm{Fe}\right)}^{\mathrm{o}}=-0.44 \mathrm{~V}$

Electrons released at anodic spot move through the metal and go to another spot on the metal and reduce oxygen in the presence of $\mathrm{H}^{+}$ (which is believed to be available from $\mathrm{H_2} \mathrm{CO_3}$ formed due to dissolution of carbon dioxide from air into water. Hydrogen ion in water may also be available due to dissolution of other acidic oxides from the atmosphere). This spot behaves as cathode with the reaction

Cathode: $\mathrm{O_2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H_2} \mathrm{O}$ (l) $E_{\mathrm{H}^{+}\left|\mathrm{O_2}\right| \mathrm{H_2} \mathrm{O}}^{\mathrm{o}}=1.23 \mathrm{~V}$

The overall reaction being:

$2 \mathrm{Fe}(\mathrm{s})+\mathrm{O_2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{H_2} \mathrm{O}$ (l) $\quad E_{\text {(cell) }}^{\mathrm{o}}=1.67 \mathrm{~V}$

The ferrous ions are further oxidised by atmospheric oxygen to ferric ions which come out as rust in the form of hydrated ferric oxide $\left(\mathrm{Fe_2} \mathrm{O_3}, x \mathrm{H_2} \mathrm{O}\right)$ and with further production of hydrogen ions.

Prevention of corrosion is of prime importance. It not only saves money but also helps in preventing accidents such as a bridge collapse or failure of a key component due to corrosion. One of the simplest methods of preventing corrosion is to prevent the surface of the metallic object to come in contact with atmosphere. This can be done by covering the surface with paint or by some chemicals (e.g. bisphenol). Another simple method is to cover the surface by other metals ( $\mathrm{Sn}, \mathrm{Zn}$, etc.) that are inert or react to save the object. An electrochemical method is to provide a sacrificial electrode of another metal (like $\mathrm{Mg}, \mathrm{Zn}$, etc.) which corrodes itself but saves the object.

$$ \begin{aligned} & \text { Oxidation: } \mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \\ & \text {Reduction: } \mathrm{O} _{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H} _{2} \mathrm{O}(l) \\ & \text { Atomospheric oxidation: } \\ & 2 \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{H} _{2} \mathrm{O}(\mathrm{l})+\frac{1}{2} \mathrm{O} _{2}(\mathrm{~g}) \rightarrow \mathrm{Fe} _{2} \mathrm{O} _{3}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq}) \end{aligned} $$

Intext Questions

3.13 Write the chemistry of recharging the lead storage battery, highlighting all the materials that are involved during recharging.

Show Answer

Answer

A lead storage battery consists of a lead anode, a grid of lead packed with lead oxide $\left(\mathrm{PbO_2}\right)$ as the cathode, and a $38 \%$ solution of sulphuric acid $\left(\mathrm{H_2} \mathrm{SO_4}\right)$ as an electrolyte.

When the battery is in use, the following cell reactions take place:

At anode: $\mathrm{Pb_{(s)}}+\mathrm{SO_{4(a q)}}^{2-} \longrightarrow \mathrm{PbSO_{4(s)}}+2 \mathrm{e}^{-}$

At cathode: $\mathrm{PbO_{2(s)}}+\mathrm{SO_{4(a q)}}^{2-}+4 \mathrm{H_{(a q)}}^{+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{PbSO_{4(s)}}+2 \mathrm{H_2} \mathrm{O_(f)}$

The overall cell reaction is given by,

$$ \mathrm{Pb_{(s)}}+\mathrm{PbO_{2(s)}}+2 \mathrm{H_2} \mathrm{SO_{4(a q)}} \longrightarrow 2 \mathrm{PbSO_{4(s)}}+2 \mathrm{H_2} \mathrm{O_{(l)}} $$

When a battery is charged, the reverse of all these reactions takes place.

Hence, on charging,

$$ \mathrm{PbSO_{4(s)}} \text { present at the anode and cathode is converted into } \mathrm{Pb_{(s)}} \mathrm{PbO_{2(s)}} $$

respectively.

3.14 Suggest two materials other than hydrogen that can be used as fuels in fuel cells.

Show Answer

Answer

Methane and methanol can be used as fuels in fuel cells.

3.15 Explain how rusting of iron is envisaged as setting up of an electrochemical cell.

Show Answer

Answer

In the process of corrosion, due to the presence of air and moisture, oxidation takes place at a particular spot of an object made of iron. That spot behaves as the anode. The reaction at the anode is given by,

$$ \mathrm{Fe_{(s)}} \longrightarrow \mathrm{Fe}^{2+}{ _{(a q)}}+2 \mathrm{e}^{-} $$

Electrons released at the anodic spot move through the metallic object and go to another spot of the object.

There, in the presence of $\mathrm{H}^{+}$ions, the electrons reduce oxygen. This spot behaves as the cathode. These $\mathrm{H}^{+}$ions come either from $\mathrm{H_2} \mathrm{CO_3}$, which are formed due to the dissolution of carbon dioxide from air into water or from the dissolution of other acidic oxides from the atmosphere in water.

The reaction corresponding at the cathode is given by,

$\mathrm{O_{2(\mathrm{~g})}}+4 \mathrm{H_{(a q)}^{+}}+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H_2} \mathrm{O_{(l)}}$

The overall reaction is:

$ 2 \mathrm{Fe_{(s)}}+\mathrm{O_{2(g)}}+4 \mathrm{H_{(a q)}^{+}} \longrightarrow 2 \mathrm{Fe_{(a q)}^{2+}} +2 \mathrm{H_2} \mathrm{O_{(l)}}$

Also, ferrous ions are further oxidized by atmospheric oxygen to ferric ions. These ferric ions combine with moisture, present in the surroundings, to form hydrated ferric oxide $\left(\mathrm{Fe_2} \mathrm{O_3}, x \mathrm{H_2} \mathrm{O}\right)_{\text {i.e., rust. }}$

Hence, the rusting of iron is envisaged as the setting up of an electrochemical cell.

The Hydrogen Economy

At present the main source of energy that is driving our economy is fossil fuels such as coal, oil and gas. As more people on the planet aspire to improve their standard of living, their energy requirement will increase. In fact, the per capita consumption of energy used is a measure of development. Of course, it is assumed that energy is used for productive purpose and not merely wasted. We are already aware that carbon dioxide produced by the combustion of fossil fuels is resulting in the ‘Greenhouse Effect’. This is leading to a rise in the temperature of the Earth’s surface, causing polar ice to melt and ocean levels to rise. This will flood low-lying areas along the coast and some island nations such as Maldives face total submergence. In order to avoid such a catastrope, we need to limit our use of carbonaceous fuels. Hydrogen provides an ideal alternative as its combustion results in water only. Hydrogen production must come from splitting water using solar energy. Therefore, hydrogen can be used as a renewable and non polluting source of energy. This is the vision of the Hydrogen Economy. Both the production of hydrogen by electrolysis of water and hydrogen combustion in a fuel cell will be important in the future. And both these technologies are based on electrochemical principles.

Summary

An electrochemical cell consists of two metallic electrodes dipping in electrolytic solution(s). Thus an important component of the electrochemical cell is the ionic conductor or electrolyte. Electrochemical cells are of two types. In galvanic cell, the chemical energy of a spontaneous redox reaction is converted into electrical work, whereas in an electrolytic cell, electrical energy is used to carry out a nonspontaneous redox reaction. The standard electrode potential for any electrode dipping in an appropriate solution is defined with respect to standard electrode potential of hydrogen electrode taken as zero. The standard potential of the cell can be obtained by taking the difference of the standard potentials of cathode and anode $\left(E_{\text {(cell) }}^{o}=E_{\text {cathode }}^{\text {o }}-E_{\text {anode }}^{\text {o }}\right).$. The standard potential of the cells are related to standard Gibbs energy $\left(\Delta_{r} G^{0}=-n F E_{(\text {cell })}^{o}\right)$ and equilibrium constant $\left(\Delta_{r} G^{0}=-R T \ln K\right)$ of the reaction taking place in the cell. Concentration dependence of the potentials of the electrodes and the cells are given by Nernst equation.

The conductivity, $\kappa$, of an electrolytic solution depends on the concentration of the electrolyte, nature of solvent and temperature. Molar conductivity, $\Lambda_{m}$, is defined by $=\kappa / c$ where $c$ is the concentration. Conductivity decreases but molar conductivity increases with decrease in concentration. It increases slowly with decrease in concentration for strong electrolytes while the increase is very steep for weak electrolytes in very dilute solutions. Kohlrausch found that molar conductivity at infinite dilution, for an electrolyte is sum of the contribution of the molar conductivity of the ions in which it dissociates. It is known as law of independent migration of ions and has many applications. Ions conduct electricity through the solution but oxidation and reduction of the ions take place at the electrodes in an electrochemical cell. Batteries and fuel cells are very useful forms of galvanic cell. Corrosion of metals is essentially an electrochemical phenomenon. Electrochemical principles are relevant to the Hydrogen Economy.

Exercises

3.1 Arrange the following metals in the order in which they displace each other from the solution of their salts.

$\mathrm{Al}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mg}$ and $\mathrm{Zn}$.

Show Answer

Answer

The following is the order in which the given metals displace each other from the solution of their salts.

$\mathrm{Mg}, \mathrm{Al}, \mathrm{Zn}, \mathrm{Fe}, \mathrm{Cu}$

3.2 Given the standard electrode potentials,

$\mathrm{K}^{+} / \mathrm{K}=-2.93 \mathrm{~V}, \mathrm{Ag}^{+} / \mathrm{Ag}=0.80 \mathrm{~V}$,

$\mathrm{Hg}^{2+} / \mathrm{Hg}=0.79 \mathrm{~V}$

$\mathrm{Mg}^{2+} / \mathrm{Mg}=-2.37 \mathrm{~V}, \mathrm{Cr}^{3+} / \mathrm{Cr}=-0.74 \mathrm{~V}$

Arrange these metals in their increasing order of reducing power.

Show Answer

Answer

The lower the reduction potential, the higher is the reducing power. The given standard electrode potentials increase in the order of $\mathrm{K}^{+} / \mathrm{K}^{2} \mathrm{Mg}^{2+} / \mathrm{Mg}<\mathrm{Cr}^{3+} / \mathrm{Cr}<\mathrm{Hg}^{2+} / \mathrm{Hg}<\mathrm{Ag}^{+} / \mathrm{Ag}$.

Hence, the reducing power of the given metals increases in the following order:

$\mathrm{Ag}<\mathrm{Hg}<\mathrm{Cr}<\mathrm{Mg}<\mathrm{K}$

3.3 Depict the galvanic cell in which the reaction

$\mathrm{Zn}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$ takes place. Further show:

(i) Which of the electrode is negatively charged?

(ii) The carriers of the current in the cell.

(iii) Individual reaction at each electrode.

Show Answer

Answer

The galvanic cell in which the given reaction takes place is depicted as:

$\mathrm{Zn_{(s)}} |\mathrm{Zn_{(a q)}^{2+}} \|\mathrm{Ag_{(a q)}^{+}} | \mathrm{Ag_{(s)}}$

(i) Zn electrode (anode) is negatively charged.

(ii) Ions are carriers of current in the cell and in the external circuit, current will flow from silver to zinc.

(iii) The reaction taking place at the anode is given by,

$\mathrm{Zn_{(s)}} \longrightarrow \mathrm{Zn_{(a q)}^{2+}}+2 \mathrm{e}^{-}$

The reaction taking place at the cathode is given by,

$\mathrm{Ag_{(a q)}^{+}}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag_{(s)}}$

3.4 Calculate the standard cell potentials of galvanic cell in which the following reactions take place:

(i) $2 \mathrm{Cr}(\mathrm{s})+3 \mathrm{Cd}^{2+}(\mathrm{aq}) \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{Cd}$

(ii) $\mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Ag}(\mathrm{s})$

Calculate the $\Delta_{\mathrm{r}} G^{\circ}$ and equilibrium constant of the reactions.

Show Answer

Answer

(i) $E_{\mathrm{Cr}^{3+} / \mathrm{Cr}}^{\ominus}=0.74 \mathrm{~V}$

$E^{\ominus}{ _\mathrm{Cd}^{2+} / \mathrm{Cd}}=-0.40 \mathrm{~V}$

The galvanic cell of the given reaction is depicted as:

$\mathrm{Cr_{(s)}} |\mathrm{Cr_{(a q)}^{3+}}||\mathrm{Cd_{(a q)}^{2+}}| \mathrm{Cd_{(s)}}$

Now, the standard cell potential is

$$ \begin{aligned} E_{\text {cell }}^{\ominus} & =E_{\mathrm{R}}^{\ominus}-E_{\mathrm{L}}^{\ominus} \\ & =-0.40-(-0.74) \\ & =+0.34 \mathrm{~V} \\ \Delta_{\mathrm{r}} G^{\ominus} & =-n \mathrm{~F} E_{\text {cell }}^{\ominus} \end{aligned} $$

In the given equation, $n=6$

$\mathrm{F}=96487 \mathrm{C} \mathrm{mol}^{-1}$

$E_{\text {cell }}^{\ominus}=+0.34 \mathrm{~V}$

Then, $\Delta_{\mathrm{r}} G^{\ominus}=-6 \times 96487 \mathrm{C} \mathrm{mol}^{-1} \times 0.34 \mathrm{~V}$

$=-196833.48 \mathrm{CV} \mathrm{mol}^{-1}$

$=-196833.48 \mathrm{~J} \mathrm{~mol}^{-1}$

$=-196.83 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Again,

$\Delta_{\mathrm{r}} G^{\ominus}=-\mathrm{R} T \ln K$

$\Rightarrow \Delta_{\mathrm{r}} G^{\ominus}=-2.303 \mathrm{R} T \ln K$

$\Rightarrow \log K=-\frac{\Delta_{\mathrm{r}} G}{2.303 \mathrm{R} T}$

$$ =\frac{-196.83 \times 10^{3}}{2.303 \times 8.314 \times 298} $$

$=34.496$

$\therefore \mathrm{K}=$ antilog (34.496)

$=3.13 \times 10^{34}$

(ii) $E_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{\ominus}=0.77 \mathrm{~V}$

$E_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\ominus}=0.80 \mathrm{~V}$

The galvanic cell of the given reaction is depicted as:

$$ \mathrm{Fe_{(a q)}^{2+}} \left|\mathrm{Fe_{(a q)}^{3+}}\right|\left|\mathrm{Ag_{(a q)}^{+}}\right| \mathrm{Ag_{(s)}} $$

Now, the standard cell potential is

$$ \begin{aligned} E_{\text {cell }}^{\ominus} & =E_{\mathrm{R}}^{\ominus}-E_{\mathrm{L}}^{\ominus} \\ & =0.80-0.77 \\ & =0.03 \mathrm{~V} \end{aligned} $$

Here, $n=1$.

Then, $\Delta_{\mathrm{r}} G^{\ominus}=-n \mathrm{~F} E_{\text {cell }}^{\ominus}$

$=-1 \times 96487 \mathrm{C} \mathrm{mol}^{-1} \times 0.03 \mathrm{~V}$

$=-2894.61 \mathrm{~J} \mathrm{~mol}^{-1}$

$=-2.89 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$ \begin{aligned} & \text { Again, } \Delta_{\mathrm{r}} G^{\ominus}=-2.303 \mathrm{R} T \ln K \\ & \Rightarrow \log K=-\frac{\Delta_{\mathrm{r}} G}{2.303 \mathrm{R} T} \\ & \quad=\frac{-2894.61}{2.303 \times 8.314 \times 298} \\ & =0.5073 \\ & \therefore \mathrm{K}=\text { antilog (0.5073) } \\ & =3.2 \text { (approximately) } \end{aligned} $$

3.5 Write the Nernst equation and emf of the following cells at $298 \mathrm{~K}$ :

(i) $\mathrm{Mg}(\mathrm{s})\left|\mathrm{Mg}^{2+}(0.001 \mathrm{M}) \| \mathrm{Cu}^{2+}(0.0001 \mathrm{M})\right| \mathrm{Cu}(\mathrm{s})$

(ii) $\mathrm{Fe}$ (s) $\left|\mathrm{Fe}^{2+}(0.001 \mathrm{M}) \| \mathrm{H}^{+}(1 \mathrm{M})\right| \mathrm{H_2}$ (g) ($1$ bar) $\mid \mathrm{Pt}(\mathrm{s})$

(iii) $\mathrm{Sn}$ (s) $\left|\mathrm{Sn}^{2+}(0.050 \mathrm{M}) \| \mathrm{H}^{+}(0.020 \mathrm{M})\right| \mathrm{H_2}$ (g) (1 bar) $\mid \mathrm{Pt}(\mathrm{s})$

(iv) $\operatorname{Pt}(\mathrm{s})\left|\operatorname{Br}^{-}(0.010 \mathrm{M})\right| \mathrm{Br_2}(1) \| \mathrm{H}^{+}(0.030 \mathrm{M}) \mid \mathrm{H_2}$ (g) (1 bar) $\mid \mathrm{Pt}(\mathrm{s})$.

Show Answer

Answer

(i) For the given reaction, the Nernst equation can be given as:

$$ \begin{aligned} E_{\text {cell }} & =E_{\text {cell }}^{\ominus}-\frac{0.0591}{n} \log \frac{\left[\mathrm{Mg}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]} \\ & ={0.34-(-2.36)}-\frac{0.0591}{2} \log \frac{.001}{.0001} \\ & =2.7-\frac{0.0591}{2} \log 10 \end{aligned} $$

$=2.7-0.02955$

$=2.67 \mathrm{~V}$ (approximately)

(ii) For the given reaction, the Nernst equation can be given as:

$$ \begin{aligned} & E_{\text {cell }}=E_{\text {cell }}^{\ominus}-\frac{0.0591}{n} \log \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{H}^{+}\right]^{2}} \\ & \quad={0-(-0.44)}-\frac{0.0591}{2} \log \frac{0.001}{1^{2}} \\ & \quad=0.44-0.02955(-3) \\ & =0.52865 \mathrm{~V} \end{aligned} $$

$=0.53 \mathrm{~V}$ (approximately)

(iii) For the given reaction, the Nernst equation can be given as:

$$ \begin{aligned} E_{\text {cell }} & =E_{\text {cell }}^{\ominus}-\frac{0.0591}{n} \log \frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{H}^{+}\right]^{2}} \\ & ={0-(-0.14)}-\frac{0.0591}{2} \log \frac{0.050}{(0.020)^{2}} \end{aligned} $$

$=0.14-0.0295 \times \log 125$

$=0.14-0.062$

$=0.078 \mathrm{~V}$

$=0.08 \mathrm{~V}$ (approximately)

(iv) For the given reaction, the Nernst equation can be given as:

$$ \begin{aligned} E_{\text {cell }} & =E_{\text {cell }}^{\ominus}-\frac{0.0591}{n} \log \frac{1}{\left[\mathrm{Br}^{-}\right]^{2}\left[\mathrm{H}^{+}\right]^{2}} \\ & =(0-1.09)-\frac{0.0591}{2} \log \frac{1}{(0.010)^{2}(0.030)^{2}} \\ & =-1.09-0.02955 \times \log \frac{1}{0.00000009} \\ & =-1.09-0.02955 \times \log \frac{1}{9 \times 10^{-8}} \\ & =-1.09-0.02955 \times \log \left(1.11 \times 10^{7}\right) \\ & =-1.09-0.02955(0.0453+7) \\ & =-1.09-0.208 \\ & =-1.298 \mathrm{~V} \end{aligned} $$

3.6 In the button cells widely used in watches and other devices the following reaction takes place:

$\mathrm{Zn}(\mathrm{s})+\mathrm{Ag_2} \mathrm{O}(\mathrm{s})+\mathrm{H_2} \mathrm{O}(l) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{OH}^{-}(\mathrm{aq})$

Determine $\Delta_{r} G^{0}$ and $E^{0}$ for the reaction.

Show Answer

Answer

$$ \begin{array}{rl} \mathrm{Zn_{(s)}}& \longrightarrow \mathrm{Zn_{(a q)}^{2+}}+2 \mathrm{e}^{-} ; E^{\ominus}=0.76 \mathrm{~V} \\ \mathrm{Ag_2} \mathrm{O_{(s)}}+\mathrm{H_2} \mathrm{O_{(b)}}+2 \mathrm{e}^{-}&\longrightarrow 2 \mathrm{Ag_{(s)}}+2 \mathrm{OH_{(a q)}^{-}} ; E^{\ominus}=0.344 \mathrm{~V}\\ \hline \mathrm{Zn_{(s)}}+\mathrm{Ag_2} \mathrm{O_{(s)}}+\mathrm{H_2} \mathrm{O_{(b)}}& \longrightarrow \mathrm{Zn_{(a q)}^{2+}}+2 \mathrm{Ag_{(s)}}+2 \mathrm{OH_{(a q)}^{-}} ; E^{\ominus}=1.104 \mathrm{~V} \end{array} $$

$\therefore E^{\ominus}=1.104 \mathrm{~V}$

We know that,

$ \begin{aligned} & \Delta_{r} G^{\ominus}=-n \mathrm{~F} E^{\ominus} \\ = & -2 \times 96487 \times 1.04 \\ = & -213043.296 \mathrm{~J} \\ = & -213.04 \mathrm{~kJ} \end{aligned} $

3.7 Define conductivity and molar conductivity for the solution of an electrolyte. Discuss their variation with concentration.

Show Answer

Answer

Conductivity of a solution is defined as the conductance of a solution of $1 \mathrm{~cm}$ in length and area of cross-section $1 \mathrm{sq}$. $\mathrm{cm}$. The inverse of resistivity is called conductivity or specific conductance. It is represented by the symbol $\mathring{A}$. If $\mathring{A}$ is resistivity, then we can write:

$$ \kappa=\frac{1}{\rho} $$

The conductivity of a solution at any given concentration is the conductance $(G)$ of one unit volume of solution kept between two platinum electrodes with the unit area of cross-section and at a distance of unit length.

i.e.,

$$ G=\kappa \frac{a}{l}=\kappa \cdot 1=\kappa $$

(Since $a=1, I=1$ )

Conductivity always decreases with a decrease in concentration, both for weak and strong electrolytes. This is because the number of ions per unit volume that carry the current in a solution decreases with a decrease in concentration.

Molar conductivity:

Molar conductivity of a solution at a given concentration is the conductance of volume $\mathrm{V}$ of a solution containing 1 mole of the electrolyte kept between two electrodes with the area of cross-section $A$ and distance of unit length.

$$ \Lambda_{m}=\kappa \frac{A}{l} $$

Now, $I=1$ and $A=V$ (volume containing 1 mole of the electrolyte).

$$ \therefore \Lambda_{m}=\kappa \mathrm{V} $$

Molar conductivity increases with a decrease in concentration. This is because the total volume $V$ of the solution containing one mole of the electrolyte increases on dilution.

The variation of $\Lambda_{m}$ with $\sqrt{c}$ for strong and weak electrolytes is shown in the following plot:

3.8 The conductivity of $0.20 \mathrm{M}$ solution of $\mathrm{KCl}$ at $298 \mathrm{~K}$ is $0.0248 \mathrm{~S} \mathrm{~cm}^{-1}$. Calculate its molar conductivity.

Show Answer

Answer

Given,

$\mathring{A}=0.0248 \mathrm{~S} \mathrm{~cm}^{-1}$

$\mathrm{C}=0.20 \mathrm{M}$

$\therefore$ Molar conductivity,

$$ \Lambda_{m}=\frac{\kappa \times 1000}{\mathrm{c}} $$

$=\frac{0.0248 \times 1000}{0.2}$

$=124 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$

3.9 The resistance of a conductivity cell containing $0.001 \mathrm{M} \mathrm{KCl}$ solution at 298 $\mathrm{K}$ is $1500 \Omega$. What is the cell constant if conductivity of $0.001 \mathrm{M} \mathrm{KCl}$ solution at $298 \mathrm{~K}$ is $0.146 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$.

Show Answer

Answer

Given,

Conductivity, $\mathring{A}=0.146 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$

Resistance, $R=1500 \mathring{A}$

$\therefore$ Cell constant $=\mathring{A} \times R$

$=0.146 \times 10^{-3} \times 1500$

$=0.219 \mathrm{~cm}^{-1}$

3.10 The conductivity of sodium chloride at $298 \mathrm{~K}$ has been determined at different concentrations and the results are given below:

$\begin{array}{llllll}\text { Concentration/M } & 0.001 & 0.010 & 0.020 & 0.050 & 0.100 \\ 10^{2} \times \mathring{A} / \mathrm{S} \mathrm{m}^{-1} & 1.237 & 11.85 & 23.15 & 55.53 & 106.74\end{array}$

Calculate $\Lambda_{m}$ for all concentrations and draw a plot between $\Lambda_{m}$ and $\mathrm{c}^{1 / 2}$. Find the value of $\Lambda_{m}^{0}$.

Show Answer

Answer

Given,

$\mathring{A}=1.237 \times 10^{-2} \mathrm{~S} \mathrm{~m}^{-1}, \mathrm{c}=0.001 \mathrm{M}$

Then, $\mathring{A}=1.237 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1}, \mathrm{c} 1 / 2=0.0316 \mathrm{M}^{1 / 2}$

$\therefore \Lambda_{m}=\frac{\kappa}{c}$

$=\frac{1.237 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1}}{0.001 \mathrm{~mol} \mathrm{~L}^{-1}} \times \frac{1000 \mathrm{~cm}^{3}}{\mathrm{~L}}$

$=123.7 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

Given,

$\mathring{A}=11.85 \times 10^{-2} \mathrm{~S} \mathrm{~m}^{-1}, \mathrm{c}=0.010 \mathrm{M}$

Then, $\mathring{A}=11.85 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1}, \mathrm{c}^{1 / 2}=0.1 \mathrm{M}^{1 / 2}$

$\therefore \Lambda_{m}=\frac{\kappa}{c}$

$=\frac{11.85 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1}}{0.010 \mathrm{~mol} \mathrm{~L}^{-1}} \times \frac{1000 \mathrm{~cm}^{3}}{\mathrm{~L}}$

$=118.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

Given,

$\mathring{A}=23.15 \times 10^{-2} \mathrm{~S} \mathrm{~m}^{-1}, \mathrm{c}=0.020 \mathrm{M}$

Then, $\mathring{A}=23.15 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1}, \mathrm{c}^{1 / 2}=0.1414 \mathrm{M}^{1 / 2}$

$\therefore \Lambda_{m}=\frac{\kappa}{c}$ $=\frac{23.15 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1}}{0.020 \mathrm{~mol} \mathrm{~L}^{-1}} \times \frac{1000 \mathrm{~cm}^{3}}{\mathrm{~L}}$

$=115.8 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

Given,

$\mathring{A}=55.53 \times 10^{-2} \mathrm{~S} \mathrm{~m}^{-1}, \mathrm{c}=0.050 \mathrm{M}$

Then, $\mathring{A} = 55.53 \times 10^{-4} \mathrm{S cm^{-1}}, \mathrm{c^{\frac{1}{2}}} = 0.2236 \mathrm{ M^{\frac{1}{2}}}$

$\therefore \kappa=\frac{\kappa}{c}$

$=\frac{55.53 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1}}{0.050 \mathrm{~mol} \mathrm{~L}^{-1}} \times \frac{1000 \mathrm{~cm}^{3}}{\mathrm{~L}}$

$=111.11 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

Given,

$\mathring{A}=106.74 \times 10^{-2} \mathrm{~S} \mathrm{~m}^{-1}, \mathrm{c}=0.100 \mathrm{M}$

Then, $\mathring{A}=106.74 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1}, \mathrm{c}^{1 / 2}=0.3162 \mathrm{M}^{1 / 2}$

$\therefore \Lambda_{m}=\frac{\kappa}{c}$

$=\frac{106.74 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1}}{0.100 \mathrm{~mol} \mathrm{~L}^{-1}} \times \frac{1000 \mathrm{~cm}^{3}}{\mathrm{~L}}$

$=106.74 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

Now, we have the following data:

$\mathrm{C}^{1 / 2} / \mathrm{M}^{1 / 2}$ 0.0316 0.1 0.1414 0.2236 0.3162
$\Lambda_{m}\left(\mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right)$ 123.7

3.11 Conductivity of $0.00241 \mathrm{M}$ acetic acid is $7.896 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}$. Calculate its molar conductivity. If $\Lambda_{m}^{0}$ for acetic acid is $390.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, what is its dissociation constant?

Show Answer

Answer

Given, $\mathring{A}=7.896 \times 10^{-5} \mathrm{~S} \mathrm{~m}^{-1}$

$\mathrm{C}=0.00241 \mathrm{~mol} \mathrm{~L}^{-1}$

Then, molar conductivity, $\Lambda_{m}=\frac{\kappa}{\mathrm{c}}$

$=\frac{7.896 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}}{0.00241 \mathrm{~mol} \mathrm{~L}^{-1}} \times \frac{1000 \mathrm{~cm}^{3}}{\mathrm{~L}}$

$=32.76 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$

Again, $\Lambda_{m}^{0}=390.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

Now, $\alpha=\frac{\Lambda_{m}}{\Lambda_{m}^{0}}=\frac{32.76 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}}{390.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}}$

$=0.084$

$\therefore$ Dissociation constant, $K_{a}=\frac{\mathrm{c} \alpha^{2}}{(1-\alpha)}$

$=\frac{\left(0.00241 \mathrm{~mol} \mathrm{~L}^{-1}\right)(0.084)^{2}}{(1-0.084)}$

$=1.86 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$

3.12 How much charge is required for the following reductions:

(i) $1 \mathrm{~mol}$ of $\mathrm{Al}^{3+}$ to $\mathrm{Al}$ ?

(ii) $1 \mathrm{~mol}$ of $\mathrm{Cu}^{2+}$ to $\mathrm{Cu}$ ?

(iii) $1 \mathrm{~mol}$ of $\mathrm{MnO_4}^{-}$to $\mathrm{Mn}^{2+}$ ?

Show Answer

Answer

(i) $\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}$

$\therefore$ Required charge $=3 \mathrm{~F}$

$=3 \times 96487 \mathrm{C}$

$=289461 \mathrm{C}$

(ii) $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}$

$\therefore$ Required charge $=2 \mathrm{~F}$

$=2 \times 96487 \mathrm{C}$

$=192974 \mathrm{C}$

(iii) $\mathrm{MnO_4}^{-} \longrightarrow \mathrm{Mn}^{2+}$

i.e., $\mathrm{Mn}^{7+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}$ $\therefore$ Required charge $=5 \mathrm{~F}$

$=5 \times 96487 \mathrm{C}$

$=482435 \mathrm{C}$

3.13 How much electricity in terms of Faraday is required to produce

(i) $20.0 \mathrm{~g}$ of $\mathrm{Ca}$ from molten $\mathrm{CaCl_2}$ ?

(ii) $40.0 \mathrm{~g}$ of $\mathrm{Al}$ from molten $\mathrm{Al_2} \mathrm{O_3}$ ?

Show Answer

Answer

(i) According to the question,

$$ \mathrm{Ca}^{2+}+2 \mathrm{e}^{-1} \longrightarrow \underset{40 \mathrm{~g}}{\mathrm{Ca}} $$

Electricity required to produce $40 \mathrm{~g}$ of calcium $=2 \mathrm{~F}$

Therefore, electricity required to produce $20 \mathrm{~g}$ of calcium $=\frac{2 \times 20}{40} \mathrm{~F}$

$=1 \mathrm{~F}$

(ii) According to the question,

$$ \mathrm{Al}^{3+}+3 \mathrm{e}^{-} \longrightarrow \underset{27 \mathrm{~g}}{\mathrm{Al}} $$

Electricity required to produce $27 \mathrm{~g}$ of $\mathrm{Al}=3 \mathrm{~F}$

Therefore, electricity required to produce $40 \mathrm{~g}$ of $\mathrm{Al}=\frac{3 \times 40}{27} \mathrm{~F}$

$=4.44 \mathrm{~F}$

3.14 How much electricity is required in coulomb for the oxidation of

(i) $1 \mathrm{~mol}$ of $\mathrm{H_2} \mathrm{O}$ to $\mathrm{O_2}$ ?

(ii) $1 \mathrm{~mol}$ of $\mathrm{FeO}$ to $\mathrm{Fe_2} \mathrm{O_3}$ ?

Show Answer

Answer

(i) According to the question,

$\mathrm{H_2} \mathrm{O} \longrightarrow \mathrm{H_2}+\frac{1}{2} \mathrm{O_2}$

Now, we can write:

$\mathrm{O}^{2-} \longrightarrow \frac{1}{2} \mathrm{O_2}+2 \mathrm{e}^{-}$

Electricity required for the oxidation of $1 \mathrm{~mol}$ of $\mathrm{H_2} \mathrm{O}$ to $\mathrm{O_2}=2 \mathrm{~F}$

$=2 \times 96487 \mathrm{C}$

$=192974 \mathrm{C}$

(ii) According to the question,

$\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-1}$

Electricity required for the oxidation of $1 \mathrm{~mol}$ of $\mathrm{FeO}$ to $\mathrm{Fe_2} \mathrm{O_3}=1 \mathrm{~F}$

$=96487 \mathrm{C}$

3.15 A solution of $\mathrm{Ni}\left(\mathrm{NO_3}\right)_{2}$ is electrolysed between platinum electrodes using a current of 5 amperes for 20 minutes. What mass of $\mathrm{Ni}$ is deposited at the cathode?

Show Answer

Answer

Given,

Current $=5 \mathrm{~A}$

Time $=20 \times 60=1200 \mathrm{~s}$

$\therefore$ Charge $=$ current $\times$ time

$=5 \times 1200$

$=6000 \mathrm{C}$

According to the reaction,

$\mathrm{Ni_{(a q)}^{2+}}+2 \mathrm{e}^{-} \longrightarrow \underset{58.7 \mathrm{~g}}{\mathrm{Ni_{(s)}}}$

Nickel deposited by $2 \times 96487 \mathrm{C}=58.71 \mathrm{~g}$

Therefore, nickel deposited by $6000 \mathrm{C}=\frac{58.71 \times 6000}{2 \times 96487} \mathrm{~g}$

$=1.825 \mathrm{~g}$

Hence, $1.825 \mathrm{~g}$ of nickel will be deposited at the cathode.

3.16 Three electrolytic cells $\mathrm{A}, \mathrm{B}, \mathrm{C}$ containing solutions of $\mathrm{ZnSO_4}, \mathrm{AgNO_3}$ and $\mathrm{CuSO_4}$, respectively are connected in series. A steady current of 1.5 amperes was passed through them until $1.45 \mathrm{~g}$ of silver deposited at the cathode of cell B. How long did the current flow? What mass of copper and zinc were deposited?

Show Answer

Answer

According to the reaction:

$\mathrm{Ag_{(a q)}^{+}}+\mathrm{e}^{-} \longrightarrow \underset{108 \mathrm{~g}}{\mathrm{Ag_{(s)}}}$

i.e., $108 \mathrm{~g}$ of $\mathrm{Ag}$ is deposited by $96487 \mathrm{C}$.

Therefore, $1.45 \mathrm{~g}$ of $\mathrm{Ag}$ is deposited by $=\frac{96487 \times 1.45}{108} \mathrm{C}$

$=1295.43 \mathrm{C}$

Given,

Current $=1.5 \mathrm{~A}$

$\therefore$ Time $=\frac{1295.43}{1.5} \mathrm{~s}$

$=863.6 \mathrm{~s}$

$=864 \mathrm{~s}$

$=14.40 \mathrm{~min}$

Again,

$$ \mathrm{Cu_{(\alpha q)}^{2+}}+2 \mathrm{e}^{-} \longrightarrow \underset{63.5 \mathrm{~g}}{\mathrm{Cu_{(s)}}} $$

i.e., $2 \times 96487 \mathrm{C}$ of charge deposit $=63.5 \mathrm{~g}$ of $\mathrm{Cu}$

Therefore, 1295.43 C of charge will deposit

$$ =\frac{63.5 \times 1295.43}{2 \times 96487} \mathrm{~g} $$

$=0.426 \mathrm{~g}$ of $\mathrm{Cu}$

$$ \begin{array}{r} \mathrm{Zn_{(a q)}^{2+}}+2 \mathrm{e}^{-} \longrightarrow \underset{65.4 \mathrm{~g}}{\mathrm{Zn_{(s)}}} \\ \end{array} $$

i.e., $2 \times 96487 \mathrm{C}$ of charge deposit $=65.4 \mathrm{~g}$ of $\mathrm{Zn}$

Therefore, $1295.43 \mathrm{C}$ of charge will deposit $=\frac{65.4 \times 1295.43}{2 \times 96487} \mathrm{~g}$

$=0.439 \mathrm{~g}$ of $\mathrm{Zn}$

3.17 Using the standard electrode potentials given in Table 3.1, predict if the reaction between the following is feasible:

(i) $\mathrm{Fe}^{3+}$ (aq) and $\mathrm{I}^{-}(\mathrm{aq})$

(ii) $\mathrm{Ag}^{+}$(aq) and $\mathrm{Cu}$ (s)

(iii) $\mathrm{Fe}^{3+}$ (aq) and $\mathrm{Br}^{-}$(aq)

(iv) $\mathrm{Ag}$ (s) and $\mathrm{Fe}^{3+}$ (aq)

(v) $\mathrm{Br_2}$ (aq) and $\mathrm{Fe}^{2+}$ (aq).

Show Answer

Answer

(i)

$$ \begin{array}{clr} [\mathrm{Fe _{(\mathrm{aq})}^{3+}}+\mathrm{e}^{-} \longrightarrow \mathrm{Fe _{(\mathrm{aq})}^{2+}}] \times 2 ; & E^{0}=+0.77 \mathrm{~V} \\ 2 \mathrm{I _{(\mathrm{aq})}^{-}} \longrightarrow \mathrm{I _{2(\mathrm{~s})}}+2 \mathrm{e}^{-} ; & E^{0}=-0.54 \mathrm{~V} \\ \hline 2 \mathrm{Fe _{(\mathrm{aq})}^{3+}}+2 \mathrm{I _{(\mathrm{aq})}^{-}} \longrightarrow 2 \mathrm{Fe _{(\mathrm{aq})}^{2+}}+\mathrm{I _{2(\mathrm{~s})}} ; & E^{0}=+0.23 \mathrm{~V} \end{array} $$

Since $E^{\circ}$ for the overall reaction is positive, the reaction between $\mathrm{Fe_{(a q)}^{3+}} $ and $\mathrm{I_{(a)}^{-}}$ is feasible.

(ii)

$$ \begin{array}{lcl} \mathrm{Ag_{(a q)}^{+}}+\mathrm{e}^{-}& \longrightarrow \left. \mathrm{Ag_{(s)}}\right] \times 2 ; & E^{\circ}=+0.80 \mathrm{~V} \\ \mathrm{Cu_{(s)}}& \longrightarrow \mathrm{Cu_{(a q)}^{2+}}+2 \mathrm{e}^{-} ; & E^{\circ}=-0.34 \mathrm{~V} \\ \hline 2 \mathrm{Ag_{(a q)}^{+}}+\mathrm{Cu_{(s)}}& \longrightarrow 2 \mathrm{Ag_{(s)}}+\mathrm{Cu_{(a q)}^{2+}} ; & E^{\circ}=+0.46 \mathrm{~V} \end{array} $$

Since $E^{\text {o }}$ for the overall reaction is positive, the reaction between $\mathrm{Ag_{(a q)}^{+}}$ and $\mathrm{Cu_{(s)}}$ is feasible.

(iii) $$ \begin{array}{lcl} \mathrm{Fe_{(a q)}^{3+}}+\mathrm{e}^{-} & \longrightarrow \left. \mathrm{Fe_{(a q)}^{2+}}\right] \times 2 ; & E^{0}=+0.77 \mathrm{~V}\\ 2 \mathrm{Br_{(aq)}^{-}} & \longrightarrow \mathrm{Br_{2(l)}}+2 \mathrm{e}^{-} ; & E^{0}=-1.09 \mathrm{~V} \\ \hline 2 \mathrm{Fe_{(\mathrm{aq})}^{3+}}+2 \mathrm{Br_{(\mathrm{aq})}^{-}} & \longrightarrow 2 \mathrm{Fe_{(\mathrm{aq})}^{2+}} \text { and } \mathrm{Br_{2(l)}} ; & E^{\circ}=-0.32 \mathrm{~V} \end{array} $$

Since $E^{0}$ for the overall reaction is negative, the reaction between $\mathrm{Fe_{(a q)}^{3+}}$ and $\mathrm{Br_{(a q)}^{-}}$ is not feasible.

(iv)

$$ \begin{array}{lll} \mathrm{Ag_{(s)}} &\longrightarrow \mathrm{Ag_{(a q)}^{+}}+\mathrm{e}^{-} \quad ; & E^{0}=-0.80 \mathrm{~V} \\ \mathrm{Fe_{(a q)}^{3+}}+\mathrm{e}^{-}& \longrightarrow \mathrm{Fe_{(a q)}^{2+}} \quad ; & E^{0}=+0.77 \mathrm{~V} \\ \hline \mathrm{Ag_{(s)}}+\mathrm{Fe_{(a q)}^{3+}} & \longrightarrow \mathrm{Ag_{(a q)}^{+}}+\mathrm{Fe_{(a q)}^{2+}} \quad ; & E^{0}=-0.03 \mathrm{~V} \end{array} $$

Since $E^{\mathrm{o}} \mathrm{E}$ for the overall reaction is negative, the reaction between $\mathrm{Ag_{(s)}}$ and $\mathrm{Fe_{(a q)}^{3+}}$ is not feasible.

(iv) $$ \begin{array}{lll} \mathrm{Br_{2(a q)}}+2 \mathrm{e}^{-} &\longrightarrow 2 \mathrm{Br_{(aq)}^{-}} \quad ; & E^{0}=+1.09 \mathrm{~V}\\ \mathrm{Fe_{(\mathrm{aq})}^{2+}} &\longrightarrow \left. \mathrm{Fe_{(\mathrm{aq})}^{3+}}+\mathrm{e}^{-}\right] \times 2 ; &E^{0}=-0.77 \mathrm{~V} \\ \hline \mathrm{Br_{2(\mathrm{aq})}}+2 \mathrm{Fe_{(\mathrm{aq})}^{2+}} &\longrightarrow 2 \mathrm{Br_{(\mathrm{aq})}^{-}}+2 \mathrm{Fe_{(\mathrm{aq})}^{3+}} \quad ; & E^{0}=+0.32 \mathrm{~V} \end{array} $$

Since $E^{0}$ for the overall reaction is positive, the reaction between $\mathrm{Br_2(a q)}$ and $\mathrm{Fe}^{2+}{ _(a q)}$ is feasible.

3.18 Predict the products of electrolysis in each of the following:

(i) An aqueous solution of $\mathrm{AgNO_3}$ with silver electrodes.

(ii) An aqueous solution of $\mathrm{AgNO_3}$ with platinum electrodes.

(iii) A dilute solution of $\mathrm{H_2} \mathrm{SO_4}$ with platinum electrodes.

(iv) An aqueous solution of $\mathrm{CuCl_2}$ with platinum electrodes.

Show Answer

Answer

(i) At cathode:

The following reduction reactions compete to take place at the cathode.

$$ \begin{aligned} & \mathrm{Ag_{(a q)}^{+}}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag_{(s)}} ; E^{0}=0.80 \mathrm{~V} \\ & \mathrm{H_{(a q)}^{+}}+\mathrm{e}^{-} \longrightarrow \frac{1}{2} \mathrm{H_{2(g)}} ; E^{0}=0.00 \mathrm{~V} \end{aligned} $$

The reaction with a higher value of $E^{0}$ takes place at the cathode. Therefore, deposition of silver will take place at the cathode.

At anode:

The $\mathrm{Ag}$ anode is attacked by $\mathrm{NO_3}^{-}$ions. Therefore, the silver electrode at the anode dissolves in the solution to form $\mathrm{Ag}^{+}$.

(ii) At cathode:

The following reduction reactions compete to take place at the cathode.

$$ \begin{aligned} & \mathrm{Ag_{(a q)}^{+}}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag_{(s)}} ; E^{0}=0.80 \mathrm{~V} \\ & \mathrm{H_{(a q)}^{+}}+\mathrm{e}^{-} \longrightarrow \frac{1}{2} \mathrm{H_{2(g)}} ; E^{\circ}=0.00 \mathrm{~V} \end{aligned} $$

The reaction with a higher value of $E^{\circ}$ takes place at the cathode. Therefore, deposition of silver will take place at the cathode.

At anode:

Since Pt electrodes are inert, the anode is not attacked by $\mathrm{NO_3}^{-}$ions. Therefore, $\mathrm{OH}^{-}$or $\mathrm{NO_3}^{-}$ions can be oxidized at the anode. But $\mathrm{OH}$ ’ ions having a lower discharge potential and get preference and decompose to liberate $\mathrm{O_2}$.

$\mathrm{OH}^{-} \longrightarrow \mathrm{OH}+\mathrm{e}^{-}$

$4 \mathrm{OH}^{-} \longrightarrow 2 \mathrm{H_2} \mathrm{O}+\mathrm{O_2}$

(iii) At the cathode, the following reduction reaction occurs to produce $\mathrm{H_2}$ gas.

$\mathrm{H_{(a q)}^{+}}+\mathrm{e}^{-} \longrightarrow \frac{1}{2} \mathrm{H_{2(g)}}$

At the anode, the following processes are possible.

$$ \begin{align*} & 2 \mathrm{H_2} \mathrm{O_{(l)}} \longrightarrow \mathrm{O_{2(g)}}+4 \mathrm{H_{(a q)}^{+}}+4 \mathrm{e}^{-} ; E^{\circ}=+1.23 \mathrm{~V} \tag{i}\\ & 2 \mathrm{SO_{4(a q)}^{2-}} \longrightarrow \mathrm{S_2} \mathrm{O_{6(a q)}^{2-}}+2 \mathrm{e}^{-} ; E^{\circ}=+1.96 \mathrm{~V} \tag{ii} \end{align*} $$

For dilute sulphuric acid, reaction (i) is preferred to produce $\mathrm{O_2}$ gas. But for concentrated sulphuric acid, reaction (ii) occurs.

(iv) At cathode:

The following reduction reactions compete to take place at the cathode.

$$ \begin{aligned} & \mathrm{Cu_{(a q)}^{2+}}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu_{(s)}} ; E^{0}=0.34 \mathrm{~V} \\ & \mathrm{H_{(a q)}^{+}}+\mathrm{e}^{-} \longrightarrow 1 / 2 \mathrm{H_{2(g)}} ; E^{0}=0.00 \mathrm{~V} \end{aligned} $$

The reaction with a higher value of $E^{0}$ takes place at the cathode. Therefore, deposition of copper will take place at the cathode.

At anode:

The following oxidation reactions are possible at the anode.

$$ \begin{aligned} & \mathrm{Cl_{(a q)}^{-}} \longrightarrow 1 / 2 \mathrm{Cl_{2(g)}}+\mathrm{e}^{-1} ; E^{\circ}=1.36 \mathrm{~V} \\ & 2 \mathrm{H_2} \mathrm{O_{(l)}} \longrightarrow \mathrm{O_{2(g)}}+4 \mathrm{H_{(a q)}^{+}}+4 \mathrm{e}^{-} ; E^{\circ}=+1.23 \mathrm{~V} \end{aligned} $$

At the anode, the reaction with a lower value of $E^{0}$ is preferred. But due to the over-potential of oxygen, $\mathrm{Cl}^{-}$ gets oxidized at the anode to produce $\mathrm{Cl_2}$ gas.

“रासायनिक अभिक्रियाएं विद्युत ऊर्जा उत्पन्न करने के लिए प्रयुक्त की जा सकती हैं। विलोमतः विद्युत ऊर्जा का प्रयोग उन रासायनिक अभिक्रियाओं को क्रियान्वित करने के लिए किया जा सकता है जो स्वतः अग्रसारित नहीं होतीं।”

वैद्युतरसायन स्वतः प्रवर्तित रासायनिक अभिक्रियाओं में निर्गमित ऊर्जा से विद्युत उत्पादन एवं विद्युतीय ऊर्जा के स्वतः अप्रवर्तित रासायनिक परिवर्तनों में उपयोग का अध्ययन है। यह विषय सैद्धांतिक एवं प्रायोगिक दोनों ही विचारों से उपयोगी है। बहुत सारी धातुएं, सोडियम हाइड्रॉक्साइड, क्लोरीन, फ्लुओरीन एवं अन्य बहुत सारे रसायन, वैद्युतरासायनिक विधियों द्वारा बनाए जाते हैं। बैटरियाँ एवं ईंधन सेल रासायनिक ऊर्जा को वैद्युत ऊर्जा में परिवर्तित करते हैं एवं विभिन्न उपकरणों एवं युक्तियों में व्यापक रूप से उपयोग में लाए जाते हैं। वैद्युतरासायनिक अभिक्रियाएं ऊर्जा प्रगुण (efficent) तथा अल्प प्रदूषक होती हैं, अतः वैद्युतरसायन का अध्ययन कई नई तकनीकों के आविष्कार, जो कि पर्यावरण के लिए सुरक्षित हों, के लिए महत्वपूर्ण है। संवेदी संकेतों का कोशिका से मस्तिष्क या इसके विपरीत दिशा में संचरण एवं कोशिकाओं के मध्य संचार का मूल आधार वैद्युतरासायनिक ही है, अतः वैद्युतरसायन एक अतिविस्तृत एवं अंतरविषयी विषय है। इस एकक में हम केवल इसके कुछ महत्वपूर्ण प्रारंभिक पहलुओं पर विचार करेंगे।

2.1 वैद्युत रासायनिक सेल

डेन्यल सेल की संरचना एवं कार्यविधि के बारे में हम चित्र 2.1 से समझ सकते हैं। यह सेल निम्नलिखित रेडॉक्स अभिक्रिया में उत्सर्जित रासायनिक ऊर्जा को वैद्युत ऊर्जा में परिवर्तित करती है।

चित्र 2.1- डेन्यल सेल जिसमें जिंक एवं कॉपर इलैक्ट्रोड अपने-अपने लवणों के विलयनों में निमज्ज हैं।

$$ \begin{equation*} \mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) \tag{2.1} \end{equation*} $$

जब $\mathrm{Zn}^{2+}$ तथा $\mathrm{Cu}^{2+}$ आयनों की सांद्रता एक इकाई $\left(1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ होती है, तो इसका विद्युतीय विभव $1.1 \mathrm{~V}$ होता है। इस प्रकार की युक्ति को गैल्वैनी या वोल्टीय सेल कहते हैं।

यदि गैल्वैनी सेल में एक विपरीत बाह्य विभव लगाया जाए (चित्र 2.2 क) एवं इसे धीरे-धीरे बढ़ाया जाए, तो हम देखते हैं कि अभिक्रिया तब तक चलती रहती है जब तक कि बाह्य विभव $1.1 \mathrm{~V}$ नहीं हो जाता, इस स्थिति में अभिक्रिया पूर्णतः रुक जाती है एवं सेल में विद्युत धारा प्रवाहित नहीं होती। बाह्य विभव में कोई भी अतिरिक्त वृद्धि अभिक्रिया को पुनः परंतु विपरीत दिशा में प्रारंभ कर देती है (चित्र 2.2 ग)। अब यह एक वैद्युतअपघटनी सेल के समान कार्य करती है जो कि एक स्वतः अप्रवर्तित रासायनिक अभिक्रिया को विद्युतीय ऊर्जा के उपयोग से प्रारंभ करने की युक्ति है। दोनों ही सेल बहुत महत्वपूर्ण होते हैं। इनकी कुछ प्रमुख विशेषताओं का अध्ययन आगे के पृष्ठों में करेंगे।

(क) जब $\mathrm{E} _{\text {बाह्य }}<1.1 \mathrm{~V}$

(i) इलेक्ट्रॉनों का प्रवाह ज़िंक छड़ से कॉपर छड़ की ओर होता है अतः विद्युत धारा कॉपर से जिंक की ओर प्रवाहित होती है।

(ii) ज़िंक ऐनोड पर से घुलता है तथा कॉपर कैथोड पर निक्षेपित होता है।

(ख) जब $\mathrm{E} _{\text {बाह्ध }}=1.1 \mathrm{~V}$

(i) इलेक्ट्रॉनों अथवा विद्युतधारा का कोई प्रवाह नहीं होता।

(ii) कोई रासायनिक अभिक्रिया नहीं होती।

(ग) जब $\mathrm{E} _{\text {बाह् }}>1.1 \mathrm{~V}$

(i) इलेक्ट्रॉनों का प्रवाह कॉपर से जिंक की ओर तथा विद्युतधारा का प्रवाह ज़िंक से कॉपर की ओर।

(ii) ज़िंक, ज़िंक इलैक्ट्रोड पर निक्षेपित होता है तथा कॉपर, कॉपर इलैक्ट्रोड से घुलता है।

चित्र 2.2 - बाह्य विभव, $E _{\text {बाह्य }}$, सेल विभव के विपरीत लगाने पर डेन्यल सेल की कार्य प्रणाली।

2.2 गैल्वैनी सेल

गैल्वैनी सेल एक वैद्युतरासायनिक सेल है जो कि एक स्वतः रेडॉक्स अभिक्रिया की रासायनिक ऊर्जा को विद्युतीय ऊर्जा में रूपांतरित करती है। इस युक्ति में स्वतः रेडॉक्स अभिक्रिया की गिब्ज़ ऊर्जा वैद्युत कार्य में रूपांतरित होती है, जिसको मोटर या अन्य विद्युतीय जुगतों; जैसे-हीटर, पंखा, गीज़र इत्यादि में उपयोग किया जाता है।

डेन्यल सेल, जिसका वर्णन पहले किया जा चुका है, एक ऐसी ही सेल है, जिसमें निम्नलिखित रेडॉक्स अभिक्रिया होती है।

$$ \mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) $$

यह अभिक्रिया दो अर्ध सेल अभिक्रियाओं का संयोजन है जिनका योग समग्र सेल अभिक्रिया देता है।

(i) $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})(अपचयन अर्ध अभिक्रिया) \tag{2.2}$

(ii) $\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}(ऑक्सीकरण अर्ध अभिक्रिया) \tag{2.2}$

ये अभिक्रियाएं डेन्यल सेल के दो भिन्न भागों में होती हैं। अपचयन अर्ध अभिक्रिया कॉपर इलैक्ट्रोड पर होती है जबकि ऑक्सीकरण अर्ध अभिक्रिया ज़िंक इलैक्ट्रोड पर होती है। सेल के ये दो भाग, अर्ध सेल या रेडॉक्स युग्म भी कहलाते हैं। कॉपर इलैक्ट्रोड को अपचयन अर्ध सेल एवं ज़िंक इलैक्ट्रोड को ऑक्सीकरण अर्ध सेल भी कहा जा सकता है।

हम विभिन्न अर्ध सेलों के संयोजन से डेन्यल सेल जैसी असंख्य गैल्वैनी सेलों की रचना कर सकते हैं। प्रत्येक अर्ध सेल में धात्विक इलैक्ट्रोड वैद्युतअपघट्य में निमज्ज (डूबा) रहता है। दोनों अर्ध सेल बाहर से एक वोल्टमीटर एवं एक स्विच के माध्यम से धात्विक तार द्वारा जुड़े रहते हैं। दोनों अर्ध सेलों के वैद्युतअपघट्य चित्र 2.1 में दिखाए गए लवण सेतु द्वारा जुड़े रहते हैं। कभी-कभी दोनों ही इलैक्ट्रोड एक ही वैद्युतअपघट्य में निमज्ज रहते हैं एवं ऐसी स्थितियों में लवण सेतु की आवश्यकता नहीं होती।

प्रत्येक इलैक्ट्रोड-वैद्युतअपघट्य अंतरापृष्ठ पर धात्विक आयनों की प्रवृत्ति विलयन से निकलकर धात्विक इलैक्ट्रोड पर जमा होने की होती है जिससे कि यह धनावेशित हो सके। उसी समय इलैक्ट्रोड की धातु के परमाणुओं की विलयन में आयनों के रूप में जाने एवं इलैक्ट्रोड पर इलैक्ट्रॉन छोड़ने की प्रवृत्ति होती है जिससे कि यह ऋणावेशित हो सके। साम्यावस्था पर आवेशों का पृथक्करण हो जाता है एवं दोनों विपरीत अभिक्रियाओं की प्रकृति के अनुसार इलैक्ट्रोड विलयन के सापेक्ष धनात्मक या ऋणात्मक आवेशित हो जाता है। इलैक्ट्रोड एवं वैद्युतअपघट्य के मध्य विभवांतर उत्पन्न हो जाता है जिसे इलैक्ट्रोड विभव कहते हैं। जब अर्ध सेल अभिक्रिया में प्रयुक्त सभी स्पीशीज़ की सांद्रता केवल एक इकाई होती है तो इलैक्ट्रोड विभव को मानक इलैक्ट्रोड विभव कहते हैं। IUPAC के नियमानुसार मानक अपचयन विभव को अब मानक इलैक्ट्रोड विभव कहा जाता है। गैल्वैनी सेल की वह अर्ध सेल, जिसमें ऑक्सीकरण होता है, ऐनोड कहलाती है एवं विलयन के सापेक्ष इसका विभव ऋणात्मक होता है। दूसरी अर्ध सेल जिसमें अपचयन होता है, कैथोड कहलाती है एवं इसका विभव विलयन के सापेक्ष धनात्मक होता है। इस प्रकार दोनों इलैक्ट्रोडों के मध्य एक विभवांतर होता है एवं जैसे ही स्विच चालू (ऑन) स्थिति में होता है, इलेक्ट्रॉन ऋणात्मक इलैक्ट्रोड से धनात्मक इलैक्ट्रोड की ओर प्रवाहित होने लगते हैं। विद्युतधारा के प्रवाह की दिशा इलेक्ट्रॉनों के प्रवाह की दिशा के विपरीत होती है।

गैल्वैनी सेल के दोनों इलैक्ट्रोडों के बीच विभवांतर सेल विभव कहलाता है एवं इसे वोल्ट में मापते हैं। सेल विभव कैथोड एवं ऐनोड के इलैक्ट्रोड विभवों (अपचयन विभव) का अंतर होता है। इसे सेल वैद्युत वाहक बल (emf) कहा जाता है। इस समय सेल में से कोई धारा प्रवाहित नहीं हो रही होती। अब यह स्वीकृत परिपाटी है कि गैल्वैनी सेल को लिखते समय हम ऐनोड को बायीं ओर एवं कैथोड को दायीं ओर लिखते हैं। गैल्वैनी सेल को लिखने के लिए साधारणतया धातु एवं वैद्युतअपघट्य के मध्य एक ऊर्ध्वाधर रेखा खींचकर एवं दो वैद्युतअपघट्यों को, यदि वह लवण सेतु द्वारा जुड़े हुए हों तो उनके मध्य दो ऊर्ध्वाधर रेखाएं खींचकर, लिखा जाता है। इस परिपाटी के अनुसार लिखे सेल का emf धनात्मक होता है एवं दायों ओर के अर्ध सेल के विभव से बायीं ओर के अर्ध सेल के विभव को घटाकर दिया जाता है जैसे कि-

$$\mathrm{E} _{\text {सेल }}=\mathrm{E} _{\text {दायाँ }}-\mathrm{E} _{\text {बायाँ }}$$

इसे निम्नलिखित उदाहरण द्वारा समझाया गया है-

सेल अभिक्रिया -

$$\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s}) \tag {2.4} $$

अर्ध सेल अभिक्रियाएं - कैथोड ( अपचयन) $\quad 2 \mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ag}(\mathrm{s})$

ऐनोड (ऑक्सीकरण) $\quad \mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$

यह देखा जा सकता है कि अभिक्रिया समीकरण (2.5) एवं अभिक्रिया समीकरण (2.6) का योग समीकरण (2.4) देता है एवं सिल्वर इलैक्ट्रोड कैथोड की तरह तथा कॉपर इलैक्ट्रोड ऐनोड की तरह कार्य करता है। सेल को निम्न प्रकार से निरूपित किया जा सकता है-

$$ \begin{align*} & \mathrm{Cu}(\mathrm{s})\left|\mathrm{Cu}^{2+}(\mathrm{aq}) \| \mathrm{Ag}^{+}(\mathrm{aq})\right| \mathrm{Ag}(\mathrm{s}) \\ & \text { एवं हम पाते हैं कि } E_{\text { सेल }}=E_{\text { दायाँ }}-E_{\text { बायाँ }}=E_{\mathrm{Ag}^{+} \mid \mathrm{Ag}}-E_{\mathrm{Cu}^{2+} \mid \mathrm{Cu}} \tag{3.7} \end{align*} $$

2.2.1 इलैक्ट्रोड विभव का मापन

अकेले अर्ध सेल के विभव का मापन नहीं किया जा सकता। हम केवल दो अर्ध सेलों के विभवों में अंतर को माप सकते हैं इससे सेल का emf प्राप्त होता है। यदि हम स्वेच्छा से एक इलैक्ट्रोड (अर्ध सेल) का विभव चयनित कर लें तो इसके सापेक्ष दूसरे अर्ध सेल का विभव ज्ञात किया जा सकता है। परिपाटी के अनुसार मानक हाइड्रोजन इलैक्ट्रोड नामक अर्ध सेल को (चित्र 2.3) $\mathrm{Pt}(\mathrm{s})\left|\mathrm{H} _{2}(\mathrm{~g})\right| \mathrm{H}^{+}(\mathrm{aq})$ द्वारा निरूपित किया जाता है, इसका विभव निम्नलिखित अभिक्रिया के संगत समस्त तापों पर, शून्य निर्दिष्ट किया गया है-

चित्र 2.3-मानक हाइड्रोजन इलैक्ट्रोड (SHE)

$$ \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \frac{1}{2} \mathrm{H} _{2}(\mathrm{~g}) $$

मानक हाइड्रोजन इलैक्ट्रोड में प्लैटिनम ब्लैक से लेपित प्लैटिनम इलैक्ट्रोड होता है। इलैक्ट्रोड अम्लीय विलयन में निमज्जित होता है एवं इस पर शुद्ध हाइड्रोजन गैस बुद-बुद की जाती है। हाइड्रोजन की अपचित एवं आक्सीकृत दोनों अवस्थाओं की सांद्रता, इकाई मान पर स्थिर रखी जाती है (चित्र 2.3)। इसका अर्थ है कि विलयन में हाइड्रोजन गैस का दाब 1 bar एवं हाइड्रोजन आयन की सांद्रता एक मोलर होती है।

हाइड्रोजन इलैक्ट्रोड को ऐनोड (संदर्भ अर्ध सेल) तथा किसी दूसरी सेल को कैथोड के स्थान पर लेकर बनाई गई एक सेल जिसे- मानक हाइड्रोजन इलेक्ट्रोड $\|$ दूसरीअर्ध सेल लिखा जा सकता है, का $298 \mathrm{~K}$ पर emf, दूसरी अर्ध सेल के अपचयन विभव का मान देता है। यदि दाहिनी ओर वाले अर्ध सेल की अपचित एवं ऑक्सीकृत स्पीशीज़ की सांद्रताएं इकाई हों तो उपरोक्त सेल का विभव, दाहिनी ओर के अर्ध सेल के मानक विभव, $E _{(R)}^{\ominus}$, के बराबर होता है।

$$ E _{(\text {सेल })}^{\ominus}=E _{(R)}^{\ominus}-E _{(L)}^{\ominus} $$

जहाँ $E _{(\text {सेल) }}^{\ominus}$ सेल का मानक विभव एवं $E _{(R)}^{\ominus}$ तथा $E _{(L)}^{\ominus}$ क्रमशः दाहिनी एवं बाईं ओर की अर्ध सेलों के मानक इलैक्ट्रोड विभव हैं।

$$ E _{(\text {सेल) }}^{\ominus}=E _{(R)}^{\ominus}-0=E _{(R)}^{\ominus} $$

चूँकि मानक हाइड्रोजन इलैक्ट्रोड का विभव $E _{(L)}^{\ominus}$ शून्य होता है अतः

$\operatorname{Pt}(\mathrm{s}) \mid \mathrm{H} _{2}$ (g, 1 bar) $\mid \mathrm{H}^{+}$(aq, $\left.1 \mathrm{M}\right) \| \mathrm{Cu}^{2+}$ (aq, $\left.1 \mathrm{M}\right) \mid \mathrm{Cu}$ अर्ध सेल अभिक्रिया-

निम्नलिखित सेल का मापित $\mathrm{emf} 0.34 \mathrm{~V}$ है जो कि निम्नलिखित अर्ध सेल अभिक्रिया का मानक इलैक्ट्रोड विभव भी है। सेल-

$$ \mathrm{Cu}^{2+}(\mathrm{aq}, 1 \mathrm{M})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s}) $$

इसी प्रकार, निम्नलिखित सेल का मापित emf $-0.76 \mathrm{~V}$ है जो कि निम्नलिखित अर्ध सेल अभिक्रिया के मानक इलैक्ट्रोड विभव के संगत हैं। सेल-

$\operatorname{Pt}$ (s) $\mid \mathrm{H} _{2}$ (g, 1 bar) $\mid \mathrm{H}^{+}$(aq, 1 M) $\| \mathrm{Zn}^{2+}$ (aq, 1M) $\mid \mathrm{Zn}$

अर्ध सेल अभिक्रिया-

$$ \mathrm{Zn}^{2+}(\mathrm{aq}, 1 \mathrm{M})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s}) $$

प्रथम स्थिति में मानक इलैक्ट्रोड विभव का धनात्मक मान इंगित करता है कि $\mathrm{Cu}^{2+}$ आयन $\mathrm{H}^{+}$आयनों की तुलना में आसानी से अपचित हो जाते हैं। इसका विपरीत प्रक्रम संभव नहीं होता अर्थात् उपरोक्त वर्णित मानक परिस्थितियों में हाइड्रोजन आयन $\mathrm{Cu}$ को ऑक्सीकृत नहीं कर सकते (अथवा हम यह भी कह सकते हैं कि हाइड्रोजन गैस कॉपर आयनों को अपचित कर सकती है) इसलिए $\mathrm{Cu}(\mathrm{s}), \mathrm{HCl}$ में नहीं घुलता है। नाइट्रिक अम्ल में यह नाइट्रेट आयनों से ऑक्सीकृत होता है न कि हाइड्रोजन आयनों से। दूसरी स्थिति में मानक इलैक्ट्रोड विभव का ऋणात्मक मान इंगित करता है कि हाइड्रोजन आयन ज़िंक को ऑक्सीकृत कर सकते हैं (या ज़िंक हाइड्रोजन आयनों को अपचित कर सकता है)। इस परिपाटी के परिप्रेक्ष्य में चित्र 2.1 में प्रस्तुत डेन्यल सेल की अर्ध अभिक्रियाओं को निम्न प्रकार से लिखा जा सकता है-

बायाँ इलैक्ट्रोड- $\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq}, 1 \mathrm{M})+2 \mathrm{e}^{-}$

दायाँ इलैक्ट्रोड- $\mathrm{Cu}^{2+}$ aq, $(\left.1 \mathrm{M}\right)+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$

सेल की समग्र अभिक्रिया उपरोक्त अभिक्रियाओं का योग होती है। अर्थात्

$$ \begin{aligned} & \mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) \\ & \text { सेल का } \mathrm{emf}=E _{\text {(सेल) }}^{\ominus}=E _{(R)}^{\ominus}-E _{(L)}^{\ominus} \\ & E _{\text {(सेल) }}^{\ominus}=0.34 \mathrm{~V}-(-0.76) \mathrm{V}=1.10 \mathrm{~V} \end{aligned} $$

कभी-कभी प्लैटिनम एवं स्वर्ण जैसी धातुएं अक्रिय इलैक्ट्रोड के रूप में प्रयुक्त होती हैं। वे अभिक्रिया में भाग नहीं लेतीं, परंतु ऑक्सीकरण एवं अपचयन अभिक्रियाओं के लिए एवं इलैक्ट्रॉनों के चालन के लिए अपनी सतह प्रदान करती हैं। उदाहरण के लिए निम्नलिखित अर्ध सेलों में $\mathrm{Pt}$ का उपयोग होता है-

हाइड्रोजन इलैक्ट्रोड- $\quad \mathrm{Pt}(\mathrm{s})\left|\mathrm{H} _{2}(\mathrm{~g})\right| \mathrm{H}^{+}(\mathrm{aq})$

जिसकी अर्ध अभिक्रिया है- $\quad \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \frac{1}{2} \mathrm{H} _{2}(\mathrm{~g})$

ब्रोमीन इलैक्ट्रोड- $\quad \mathrm{Pt}(\mathrm{s})\left|\mathrm{Br} _{2}(\mathrm{aq})\right| \mathrm{Br}^{-}(\mathrm{aq})$

जिसकी अर्ध अभिक्रिया है- $\quad \frac{1}{2} \mathrm{Br} _{2}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Br}^{-}(\mathrm{aq})$

मानक इलैक्ट्रोड विभव बहुत महत्वपूर्ण है एवं हम इनसे कई महत्वपूर्ण सूचनाएं प्राप्त कर सकते हैं। कुछ चयनित अर्ध सेल अपचयन अभिक्रियाओं के लिए मानक इलैक्ट्रोड विभव के मान सारणी 2.1 में दिए गए हैं। यदि किसी इलैक्ट्रोड का मानक इलैक्ट्रोड विभव शून्य से अधिक होता है तो इसकी अपचित अवस्था हाइड्रोजन गैस से अधिक स्थायी होती है। इसी प्रकार से, यदि मानक इलैक्ट्रोड विभव ऋणात्मक होता है तो हाइड्रोजन गैस उस स्पीशीज़ की अपचित अवस्था से अधिक स्थायी होती है। यह देखा जा सकता है कि सारणी में फ्लुओरीन का मानक इलैक्ट्रोड विभव उच्चतम है। यह इंगित करता है कि फ्लुओरीन गैस $\left(\mathrm{F} _{2}\right)$ की फ्लुओराइड आयन $(\mathrm{F})$ में अपचित होने की प्रवृत्ति अधिकतम है। अतः फ्लुओरीन गैस प्रबलतम ऑक्सीकारक है एवं फ्लुओराइड आयन दुर्बलतम अपचायक है। लीथियम का इलैक्ट्रोड विभव न्यूनतम है, यह इंगित करता है कि लीथियम आयन दुर्बलतम ऑक्सीकारक है जबकि लीथियम धातु जलीय विलयनों में प्रबलतम अपचायक है। यह देखा जा सकता है कि सारणी 2.1 में जब हम ऊपर से नीचे की ओर जाते हैं तो मानक इलैक्ट्रोड विभव कम होता जाता है एवं इसी के साथ अभिक्रिया के बायीं ओर की स्पीशीज़ की ऑक्सीकारक क्षमता बढ़ती है तथा दायीं ओर के स्पीशीज़ की अपचयन क्षमता बढ़ती है। वैद्युत रासायनिक सेलों का व्यापक उपयोग विलयनों की $\mathrm{pH}$ ज्ञात करने में, विलेयता गुणनफल, साम्यावस्था स्थिरांक तथा अन्य ऊष्मागतिकीय गुणों एवं विभवमितीय अनुमापनों में होता है।

सारणी $2.1-298 \mathrm{~K}$ पर मानक इलैक्ट्रोड विभव

पाठ्यनिहित प्रश्न

2.1 निकाय $\mathrm{Mg}^{2+} \mid \mathrm{Mg}$ का मानक इलैक्ट्रोड विभव आप किस प्रकार ज्ञात करेंगे?

Show Answer #missing

2.2 क्या आप एक ज़िंक के पात्र में कॉपर सल्फेट का विलयन रख सकते हैं?

Show Answer #missing

2.3 मानक इलैक्ट्रोड विभव की तालिका का निरीक्षण कर तीन ऐसे पदार्थ बताइए जो अनुकूल परिस्थितियों में फेरस आयनों को ऑक्सीकृत कर सकते हैं।

Show Answer #missing

2.3 नेर्नस्ट समीकरण

पूर्व खंड में हमने माना है कि इलैक्ट्रोड अभिक्रिया में प्रयुक्त समस्त स्पीशीज़ की मोलर सांद्रता एक इकाई है। आवश्यक नहीं कि यह हमेशा सत्य हो। नेर्न्स्ट ने दर्शाया कि इलैक्ट्रोड अभिक्रिया-

$$ \mathrm{M}^{\mathrm{n}+}(\mathrm{aq})+\mathrm{ne}^{-} \rightarrow \mathrm{M}(\mathrm{s}) $$

के लिए किसी भी सांद्रता पर मानक हाइड्रोजन इलैक्ट्रोड के सापेक्ष मापा गया इलैक्ट्रोड विभव निम्न प्रकार निरूपित किया जा सकता है-

$$ \mathrm{E} _{\left(\mathrm{M}^{\mathrm{n}+} / \mathrm{M}\right)}=\mathrm{E} _{\left(\mathrm{M}^{\mathrm{n}+} / \mathrm{M}\right)}^{\ominus}-\frac{R T}{n F} \ln \frac{[\mathrm{M}(\mathrm{s})]}{\left[\mathrm{M}^{\mathrm{n}+}(a q)\right]} $$

चूँकि $\mathrm{M}(\mathrm{s})$ की सांद्रता, इकाई मानी जाती है, इसलिए-

$$ \begin{equation*} \mathrm{E} _{\left(\mathrm{M}^{\mathrm{n}+} / \mathrm{M}\right)}=\mathrm{E} _{\left(\mathrm{M}^{\mathrm{n}+} / \mathrm{M}\right)}^{\ominus}-\frac{R T}{n F} \ln \frac{1}{\left[\mathrm{M}^{\mathrm{n}+}(a q)\right]} \tag{2.8} \end{equation*} $$

$E _{\left(\mathrm{M}^{\mathrm{n}+} / \mathrm{M}\right)}^{\ominus}$ को पहले ही परिभाषित किया जा चुका है, $\mathrm{R}$ गैस स्थिरांक $\left(8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$ है, $\mathrm{F}$ फैराडे स्थिरांक $\left(96487 \mathrm{C} \mathrm{mol}^{-1}\right)$ है, $T$ केल्विन में ताप क्रम है एवं $\left[\mathrm{M}^{\mathrm{n}}(\mathrm{aq})\right],\left[\mathrm{M}^{\mathrm{n}+}(\mathrm{aq})^{+}\right]$स्पीसीज़ की मोलर सांद्रता है-

$\mathrm{F}$ फैराडे स्थिरांक $\left(96487 \mathrm{C} \mathrm{mol}^{-1}\right)$ है, $T$ केल्विन में ताप क्रम है एवं $\left[\mathrm{M}^{\mathrm{n}}(\mathrm{aq})\right],\left[\mathrm{M}^{\mathrm{n}+}(\mathrm{aq})^{+}\right]$स्पीसीज़ की मोलर सांद्रता है-

डेन्यल सेल में $\mathrm{Cu}^{2+}$ एवं $\mathrm{Zn}^{2+}$ आयनों की किसी भी सांद्रता के लिए हम लिखते हैं-

कैथोड के लिए- $$ \begin{equation*} \mathrm{E} _{\left(\mathrm{Cu}^{2+} / \mathrm{Cu}\right)}=\mathrm{E} _{\left(\mathrm{Cu}^{2+} / \mathrm{Cu}\right)}^{\ominus}-\frac{R T}{2 F} \ln \frac{1}{\left[\mathrm{Cu}^{2+}(\mathrm{aq})\right]} \tag{2.9} \end{equation*} $$

ऐनोड के लिए-

$$ \begin{equation*} \mathrm{E} _{\left(\mathrm{Zn}^{2+} / \mathrm{Zn}\right)}=\mathrm{E} _{\left(\mathrm{Zn}^{2+} / \mathrm{Zn}\right)}^{\ominus}-\frac{R T}{2 F} \ln \frac{1}{\mathrm{Zn}^{2+}(\mathrm{aq})} \tag{2.10} \end{equation*} $$

सेल विभव-

$$ \begin{align*} E _{(\text {सेल) })} & =\mathrm{E} _{\left(\mathrm{Cu}^{2+} / \mathrm{Cu}\right)}-\mathrm{E} _{\left(\mathrm{Zn}^{2+} / \mathrm{Zn}\right)} \\ & =\mathrm{E} _{\left(\mathrm{Cu}^{2+} / \mathrm{Cu}\right)}^{\ominus}-\frac{R T}{2 F} \ln \frac{1}{\mathrm{Cu}^{2+}(\mathrm{aq})}-\mathrm{E} _{\left(\mathrm{Zn}^{2+} / \mathrm{Zn}\right)}^{\ominus}+\frac{R T}{2 F} \ln \frac{1}{\mathrm{Zn}^{2+}(\mathrm{aq})} \\ & =\mathrm{E} _{\left(\mathrm{Cu}^{2+} / \mathrm{Cu}\right)}^{\ominus}-\mathrm{E} _{\left(\mathrm{Zn}^{2+} / \mathrm{Zn}\right)}^{\ominus}-\frac{R T}{2 F} \ln \frac{1}{\mathrm{Cu}^{2+}(\mathrm{aq})}-\ln \frac{1}{\mathrm{Zn}^{2+}(\mathrm{aq})} \\ E _{(\text {सेल) }} & =E _{(\text {सेल) }}^{\ominus}-\frac{R T}{2 F} \ln \frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]} \tag{2.11} \end{align*} $$

यह देखा जा सकता है कि $\mathrm{E} _{\text {(सेल) }}$ दोनों आयनों, $\mathrm{Cu}^{2+}$ एवं $\mathrm{Zn}^{2+}$ की सांद्रता पर निर्भर करता है। यह $\mathrm{Cu}^{2+}$ आयनों की सांद्रता बढ़ाने पर बढ़ता है एवं $\mathrm{Zn}^{2+}$ आयनों की सांद्रता बढ़ाने पर घटता है।

समीकरण 2.11 में प्राकृतिक लघुगणक के आधार को 10 में रूपांतरित करने पर एवं $R, F$ के मान रखने पर, एवं $T=298 \mathrm{~K}$ पर यह निम्न प्रकार से बदल जाती है-

$$ \begin{equation*} E _{(\text {सेल) }}=E _{(\text {सेल) }}^{\ominus}-\frac{0.059}{2} \log \frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]} \tag{2.12} \end{equation*} $$

दोनों इलैक्ट्रोडों के लिए इलैक्ट्रॉनों की संख्या $(n)$ समान होनी चाहिए, अतः निम्नलिखित सेल-

$$\mathrm{Ni}(\mathrm{s})\left|\mathrm{Ni}^{2+}(\mathrm{aq})\right|\left|\mathrm{Ag}^{+}(\mathrm{aq})\right| \mathrm{Ag}$$

कोशिका की अभिक्रिया है- $\mathrm{Ni}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$

के लिए नेर्न्स्ट समीकरण निम्न प्रकार से लिखी जा सकती है- $$ E _{(\text {सेल) }}=E _{(\text {सेल) }}^{\ominus}-\frac{R T}{2 F} \ln \frac{\left[\mathrm{Ni}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}} $$

एवं एक सामान्य वैद्युतरासायनिक अभिक्रिया-

$$ \mathrm{a} \mathrm{A}+\mathrm{bB} \xrightarrow{n e^{-}} \mathrm{cC}+\mathrm{dD} $$

के लिए नेर्न्स्ट समीकरण निम्न प्रकार से लिखी जा सकती है-

$$ \begin{align*} E_{\text {(सेल) }} & =E_{\text {(सेल) }}^{o}-\frac{R T}{n F} \ln Q \\ & =E_{\text {(सेल) }}^{o}-\frac{R T}{n F} \ln \frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}} \tag{2.13} \end{align*} $$

उदाहरण 2.1 निम्नलिखित अभिक्रिया वाले सेल को निरूपित कीजिए।

$$ \mathrm{Mg}(\mathrm{s})+2 \mathrm{Ag}^{+}(0.0001 \mathrm{M}) \rightarrow \mathrm{Mg}^{2+}(0.130 \mathrm{M})+2 \mathrm{Ag}(\mathrm{s}) $$

इसके $E _{\text {(सेल) }}$ का परिकलन कीजिए यदि $E _{\text {(सेल) }}^{\ominus}=3.17 \mathrm{~V}$ हो।

हल

दी गई अभिक्रिया वाले सेल को निम्न प्रकार से लिखा जा सकता है-

$$ \begin{aligned} \mathrm{Mg} \mid & \mathrm{Mg}^{2+}(0.130 \mathrm{M})|| \mathrm{Ag}^{+}(0.0001 \mathrm{M}) \mid \mathrm{Ag} \\ E _{\text {(सेल) }} & =E _{\text {(सेल) }}^{\ominus}-\frac{\mathrm{RT}}{2 \mathrm{~F}} \ln \frac{\mathrm{Mg}^{2+}}{\mathrm{Ag}^{+2}} \\ & =3.17 \mathrm{~V}-\frac{0.059 \mathrm{~V}}{2} \log \frac{0.130}{(0.0001)^{2}}=3.17 \mathrm{~V}-0.21 \mathrm{~V}=2.96 \mathrm{~V} \end{aligned} $$

2.3.1 नेर्नस्ट समीकरण से साम्य स्थिरांक

यदि डेन्यल सेल (चित्र 2.1) में परिपथ को बंद कर दिया जाए तो निम्न अभिक्रिया होती है-

$$ \begin{equation*} \mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) \tag{2.1} \end{equation*} $$

जैसे-जैसे समय गुजरता है $\mathrm{Zn}^{2+}$ आयनों की सांद्रता बढ़ती जाती है जबकि $\mathrm{Cu}^{2+}$ आयनों की सांद्रता घटती जाती है। इसी समय सेल की वोल्टता, जिसे वोल्टमीटर द्वारा पढ़ा जा सकता है, घटती जाती है। कुछ समय पश्चात् $\mathrm{Cu}^{2+}$ एवं $\mathrm{Zn}^{2+}$ आयनों की सांद्रता स्थिर हो जाती है एवं वोल्टमीटर शून्य पठनांक दर्शाता है। यह इंगित करता है कि अभिक्रिया में साम्य स्थापित हो चुका है। इस अवस्था में नेर्न्स्ट समीकरण को निम्न प्रकार से लिखा जा सकता है-

$$ \begin{aligned} & E_{\text {(सेल) }}=0=E_{\text {(सेल) }}^{\mathrm{o}}-\frac{2.303 R T}{2 F} \log \frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]} \\ & \text { या } E_{\text {(सेल) }}^{o}=\frac{2.303 R T}{2 F} \log \frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]} \end{aligned} $$

परंतु साम्यावस्था पर,

$$ \frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]}=K_{c} \text { अभिक्रिया के लिए } 2.1 $$

अतः $\mathrm{T}=298 \mathrm{~K}$ पर उपरोक्त समीकरण को निम्न प्रकार से लिखा जा सकता है-

$$ \begin{aligned} & E_{\text {(सेल) }}^{o}=\frac{0.059 \mathrm{~V}}{2} \log K_{C}=1.1 \mathrm{~V} \quad\left(E_{\text {(सेल) }}^{o}=1.1 \mathrm{~V}\right) \\ & \log K_{C}=\frac{(1.1 \mathrm{~V} \times 2)}{0.059 \mathrm{~V}}=37.288 \\ & K_{C}=2 \times 10^{37} \text { पर } 298 \mathrm{~K} \end{aligned} $$

सामान्य रूप में,

$$ \begin{equation*} E_{(\mathrm{सेल})}^{\mathrm{o}}=\frac{2.303 R T}{n F} \log K_{C} \tag{3.14} \end{equation*} $$

समीकरण, (2.14) सेल के मानक विभव एवं साम्य स्थिरांक के बीच संबंध दर्शाती है। इस प्रकार अभिक्रिया के लिए साम्य स्थिरांक, जिसे अन्य प्रकार मापना संभव नहीं है, सेल के संगत $E^{\ominus}$ मान से परिकलित किया जा सकता है।

उदाहरण 2.2 निम्नलिखित अभिक्रिया का साम्य स्थिरांक परिकलित कीजिए-

$$ \begin{aligned} \mathrm{Cu}(\mathrm{s}) & +2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s}) \\ \mathrm{E}_{\text {(सेल) }}^{o} & =0.46 \mathrm{~V} \end{aligned} $$

हल

$$ \begin{aligned} E _{(\text {सेल) }}^{\ominus} & =\frac{0.059 \mathrm{~V}}{2} \log K _{C}=0.46 \mathrm{~V} \\ \text { या } \log K _{C} & =\frac{0.46 \mathrm{~V} \times 2}{0.059 \mathrm{~V}}=15.6 \\ K _{C} & =3.92 \times 10^{15} \end{aligned} $$

2.3.2वैद्युतरासायनिक सेल अभिक्रिया की गिब्ज़ ऊर्जा

एक सेकंड में किया गया विद्युतीय कार्य कुल प्रवाहित आवेश एवं विद्युतीय विभव के गुणनफल के बराबर होता है। यदि हम गैल्वैनी सेल से अधिकतम कार्य लेना चाहते हैं तो आवेश का प्रवाह उत्क्रमणीय करना होगा। गैल्वैनी सेल के द्वारा किया गया उत्क्रमणीय कार्य गिब्ज़ ऊर्जा में कमी के बराबर होता है। अतः यदि सेल का emf, $E$ प्रवाहित आवेश $n F$ एवं अभिक्रिया की गिब्ज़ ऊर्जा, $\Delta _{r} G$ हो, तब

$$ \begin{equation*} \Delta _{r} G=-n F E _{(\text {सेल) }} \tag{2.15} \end{equation*} $$

यह स्मरण रहे कि $E _{\text {(सेल) }}$ एक स्वतंत्र प्राचल है, लेकिन $\Delta _{r} G$ एक मात्रात्मक ऊष्मागतिकीय गुणधर्म है जिसका मान ’ $n$ ’ पर निर्भर करता है। इस प्रकार निम्नलिखित अभिक्रिया-

$$ \begin{align*} & \mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \longrightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) \text {के लिए} \tag{2.1}\\ & \Delta_{\mathrm{r}} G=-2 \mathrm{FE}_{\text {(सेल) }} \end{align*} $$

तथा अभिक्रिया

$$ \begin{aligned} & 2 \mathrm{Zn}(\mathrm{s})+2 \mathrm{Cu}^{2+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{Cu}(\mathrm{s}) \text{ के लिए } \\ & \Delta_{\mathrm{r}} G=-4 F \mathrm{E}_{\text {(सेल) }} \end{aligned} $$

यदि समस्त अभिक्रियाकारी स्पीशीज़ की सांद्रता एक इकाई हो, तब $E _{\text {(सेल) }}=E _{\text {(सेल) }}^{\ominus}$ अत:

$$ \begin{equation*} \Delta_{\mathrm{r}} G^{\mathrm{o}}=-n F E_{\text {(सेल) }}^{\mathrm{o}} \tag{2.16} \end{equation*} $$

इस प्रकार $E _{(\text {सेल) }}^{\ominus}$ के मापन से हम एक महत्वपूर्ण ऊष्मागतिकीय राशि, अभिक्रिया की मानक गिब्ज़ ऊर्जा $\Delta _{r} G^{\ominus}$, प्राप्त कर सकते हैं। $\Delta _{r} G^{\ominus}$ से हम निम्न समीकरण द्वारा साम्य स्थिरांक का परिकलन कर सकते हैं। $$ \Delta _{r} G^{\ominus}=-R T \ln K $$

उदाहरण 2.3 डेन्यल सेल के लिए मानक सेल विभव $1.1 \mathrm{~V}$ है। निम्नलिखित अभिक्रिया के लिए मानक गिब्ज़ ऊर्जा का परिकलन कीजिए।

$$ \mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \longrightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) $$

हल

$$ \Delta _{r} G^{\ominus}=-n F E _{(\text {सेल) }}^{\ominus} $$

उपरोक्त समीकरण में $n$ का मान 2 है। $\mathrm{F}=96487 \mathrm{C} \mathrm{mol}^{-1}$ एवं $E _{\text {(सेल) }}^{\ominus}=1.1 \mathrm{~V}$

अतः $\Delta _{r} G^{\ominus}=-2 \times 1.1 \mathrm{~V} \times 96487 \mathrm{C} \mathrm{mol}^{-1}$ $=-21227 \mathrm{~J} \mathrm{~mol}^{-1}$ $=-212.27 \mathrm{~kJ} \mathrm{~mol}^{-1}$

पाठ्यनिहित प्रश्न

2.4 $\mathrm{pH}=10$ के विलयन के संपर्क वाले हाइड्रोजन इलैक्ट्रोड के विभव का परिकलन कीजिए।

Show Answer #missing

2.5 एक सेल के $\mathrm{emf}$ का परिकलन कीजिए, जिसमें निम्नलिखित अभिक्रिया होती है। दिया गया है $E _{\text {(सेल) }}^{\ominus}=1.05 \mathrm{~V}$ $\mathrm{Ni}(\mathrm{s})+2 \mathrm{Ag}^{+}(0.002 \mathrm{M}) \rightarrow \mathrm{Ni}^{2+}(0.160 \mathrm{M})+2 \mathrm{Ag}(\mathrm{s})$

Show Answer #missing

2.6 एक सेल जिसमें निम्नलिखित अभिक्रिया होती है- $2 \mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{I} _{2}(\mathrm{~s})$ का $298 \mathrm{~K}$ ताप पर $E _{\text {(सेल) }}^{\ominus}=0.236 \mathrm{~V}$ है। सेल अभिक्रिया की मानक गिब्ज़ ऊर्जा एवं साम्य स्थिरांक का परिकलन कीजिए।

Show Answer #missing

2.4 वैद्युतआपघटनी विलयनों का चालकत्व

विद्युत के वैद्युतअपघटनी विलयनों में चालकत्व पर विचार करने से पूर्व कुछ पदों को परिभाषित करना आवश्यक है। विद्युतीय प्रतिरोध को प्रतीक ’ $R$ ’ से निरूपित किया जाता है एवं इसे ओम $[\mathrm{ohm}(\Omega)]$ में मापा जाता है जो कि SI इकाइयों में $\left(\mathrm{kg} \mathrm{m}^{2}\right) /\left(\mathrm{S}^{3} \mathrm{~A}^{2}\right)$ के तुल्य है। इसे ह्वीटस्टोन सेतु की सहायता से मापा जा सकता है जिससे आप भौतिक विज्ञान के अध्ययन में परिचित हो चुके हैं। किसी भी वस्तु का विद्युतीय प्रतिरोध उसकी लंबाई $l$ के अनुक्रमानुपाती एवं अनुप्रस्थ काट क्षेत्रफल $A$ के प्रतिलोमानुपाती होता है। अर्थात्

$$ \begin{equation*} R \propto \frac{l}{A} \text { or } R=\rho \frac{l}{A} \tag{2.17} \end{equation*} $$

समानुपाती स्थिरांक $\rho$ (ग्रीक, रो, rho) को प्रतिरोधकता (विशिष्ट प्रतिरोध) कहते हैं। इसकी SI इकाई ओम मीटर $(\Omega \mathrm{m})$ है तथा अधिकांशतः इसका अपवर्तक ओम सेंटीमीटर $(\Omega \mathrm{cm})$ भी उपयोग में लिया जाता है। चूँकि IUPAC ने विशिष्ट प्रतिरोध के स्थान पर प्रतिरोधकता पद की अनुशंसा की है, अतः पुस्तक के आगे के पृष्ठों में हम प्रतिरोधकता पद का ही उपयोग करेंगे। भौतिक रूप में किसी पदार्थ की प्रतिरोधकता उसका वह प्रतिरोध है जब यह एक मीटर लंबा हो एवं इसका अनुप्रस्थ काट का क्षेत्रफल $1 \mathrm{~m}^{2}$ हो। यह देखा जा सकता है कि-

$1 \Omega \mathrm{m}=100 \Omega \mathrm{cm}$ या $1 \Omega \mathrm{cm}=0.01 \Omega \mathrm{m}$ प्रतिरोध $R$ का व्युत्क्रम, चालकत्व (conductance), $G$ कहलाता है एवं हम निम्न संबंध प्राप्त करते हैं-

$$ \begin{equation*} G=\frac{1}{R}=\frac{A}{\rho l}=\kappa \frac{A}{l} \tag{2.18} \end{equation*} $$

चालकत्व का SI मात्रक सीमेन्ज़ है जिसे प्रतीक ‘S’ से निरूपित किया जाता है एवं यह $\mathrm{ohm}^{-1}$ (या $\mathrm{mho}$ ) या $\Omega^{-1}$ के तुल्य है। प्रतिरोधकता का प्रतिलोम, चालकता (विशिष्ट चालकत्व) कहलाता है जिसे प्रतीक $\kappa$ (ग्रीक शब्द कॉपा) से प्रदर्शित करते हैं। IUPAC ने विशिष्ट चालकत्व के स्थान पर चालकता शब्द की अनुशंसा की है, अतः आगे पुस्तक में हम चालकता शब्द का ही उपयोग करेंगे। चालकता के $\mathrm{SI}$ मात्रक $\mathrm{S} \mathrm{m}^{-1}$ है परंतु प्रायः $\kappa$, को $\mathrm{S} \mathrm{cm}^{-1}$ में व्यक्त किया जाता है। किसी पदार्थ की $\mathrm{S} \mathrm{m}^{-1}$ में चालकता इसका वह चालकत्व है, जब यह $1 \mathrm{~m}$ लंबा हो एवं इसका अनुप्रस्थ काट क्षेत्रफल $1 \mathrm{~m}^{2}$ हो। यह ध्यान रहे कि $1 \mathrm{~S} \mathrm{~cm}^{-1}=100 \mathrm{~S} \mathrm{~m}^{-1}$ ।

सारणी 2.2- कुछ चयनित पदार्थों के $298.15 \mathrm{~K}$ पर चालकता के मान

सारणी 2.2 से यह देखा जा सकता है कि चालकता के मान में काफी भिन्नता होती है एवं यह पदार्थ की प्रकृति पर निर्भर करती है। यह उस ताप व दाब पर भी निर्भर करती है जिस पर इसका मापन किया जाता है। चालकता के आधार पर पदार्थों को चालकों, विद्युतरोधियों एवं अर्धचालकों में वर्गीकृत किया गया है। धातुओं एवं मिश्रधातुओं की चालकता बहुत अधिक होने के कारण इन्हें चालक कहा जाता है। कुछ अधातुएं जैसे कार्बन-ब्लैक (कार्बन-कज्जल), ग्रैफाइट एवं कुछ कार्बनिक बहुलक ${ }^{*}$ भी इलेक्ट्रॉनिक चालक होते हैं। काँच, चीनी मिट्टी (सिरेमिक्स) आदि जैसे पदार्थ जिनकी चालकता बहुत कम होती है, विद्युतरोधी कहलाते हैं। कुछ पदार्थ जैसे सिलिकन, डोपित सिलिकन, गैलियम आर्सेनाइड जिनकी चालकता, चालकों एवं विद्युतरोधियों के मध्य होती है, अर्धचालक कहलाते हैं एवं ये महत्वपूर्ण इलेक्ट्रॉनिक पदार्थ हैं। कुछ पदार्थ, जिन्हें पारिभाषिक रूप से अतिचालक कहते हैं, शून्य प्रतिरोधकता या अनंत चालकता वाले होते हैं। पहले समझा जाता था कि केवल धातुएं एवं मिश्रधातुएं ही बहुत कम तापों $(0$ to $15 \mathrm{~K})$ पर अतिचालक होती हैं, परंतु आजकल बहुत से सिरेमिक पदार्थ एवं मिश्रित ऑक्साइड भी ज्ञात हैं जो $150 \mathrm{~K}$ जैसे उच्च तापों पर भी अतिचालकता दर्शाते हैं।

धातुओं में विद्युतीय चालकत्व को धात्विक या इलैक्ट्रॉनिक चालकत्व कहते हैं तथा यह इलेक्ट्रॉनों की गति के कारण होता है इलेक्ट्रॉनिक चालकत्व निम्न पर निर्भर करता है-

(i) धातु की प्रकृति एवं संरचना

(ii) प्रति परमाणु संयोजी इलेक्ट्रॉनों की संख्या

(iii) ताप (यह ताप बढ़ाने पर कम होता है)

इलेक्ट्रॉन एक सिरे से प्रवेश करते हैं एवं दूसरे सिरे से निकल जाते हैं, इसलिए धात्विक चालक का संघटन अपरिवर्तित रहता है। अर्धचालकों के चालकत्व की क्रियाविधि अधिक जटिल है।

अत्यधिक शुद्ध जल में भी थोड़ी मात्रा में हाइड्रोजन एवं हाइड्रॉक्सिल आयन $\left(\sim 10^{-7} \mathrm{M}\right)$ अवश्य होते हैं जो कि इसे बहुत अल्प चालकता $\left(3.5 \times 10^{-5} \mathrm{~S} \mathrm{~m}^{-1}\right)$ प्रदान करते हैं। वैद्युतअपघट्य जल में घोले जाने पर अपने आयन विलयन को प्रदान करते हैं जिससे विलयन की चालकता बढ़ जाती है। विलयन में उपस्थित आयनों के कारण विद्युत के चालकत्व को वैद्युतअपघटनी या आयनिक चालकत्व कहते हैं। वैद्युतअपघटनी (आयनिक) विलयनों की चालकता निम्नलिखित पर निर्भर करती है-

(i) मिलाए गए वैद्युतअपघट्य की प्रकृति

(ii) उत्पन्न आयनों का आमाप एवं उनका विलायक योजन

(iii) विलायक की प्रकृति एवं इसकी श्यानता

(iv) वैद्युतअपघट्य की सांद्रता

(v) ताप (ताप बढ़ाने पर यह बढ़ती है)

लंबे समय तक आयनिक विलयन में दिष्ट धारा (DC) प्रवाहित करने पर वैद्युतरासायनिक अभिक्रियाओं के कारण इसका संघटन परिवर्तित हो सकता है (खंड 2.4.1)।

2.4.1 आयनिक विलयनों की चालकता का मापन

हम जानते हैं कि एक ह्वीटस्टोन ब्रिज (सेतु) के द्वारा किसी अज्ञात प्रतिरोध का सही मापन किया जा सकता है। किंतु किसी आयनिक विलयन के प्रतिरोध मापन में हमें दो समस्यायों का सामना करना पड़ता है। प्रथम यह कि दिष्ट धारा (DC) प्रवाहित करने पर विलयन का संघटन बदल जाता है। दूसरा यह कि विलयन को धात्विक तार या अन्य ठोस चालक की तरह ब्रिज से जोड़ा नहीं जा सकता। पहली समस्या का समाधान प्रत्यावर्ती धारा (AC) का प्रयोग करके हल किया जाता है। दूसरी समस्या एक विशेष प्रकार के डिज़ाइन किए हुए पात्र का उपयोग करके हल की जाती है। इस पात्र को चालकता सेल कहते हैं। चालकता सेल कई डिज़ाइनों में उपलब्ध हैं एवं दो सरल डिज़ाइन चित्र 2.4 में दर्शाए गए हैं।

चित्र 2.4- दो अलग-अलग प्रकार के चालकता सेल

मूलतः इसमें प्लैटिनम ब्लैक (प्लैटिनम कज्जल) से विलेपित (सूक्ष्म विभाजित धात्विक $\mathrm{Pt}$ को वैद्युतरासायनिक विधि द्वारा इलैक्ट्रोडों पर निक्षेपित किया जाता है) दो इलैक्ट्रोड होते हैं। इनके अनुप्रस्थ काट का क्षेत्रफल ’ $A$ ’ होता है और ये ’ $l$ ’ दूरी से पृथक होते हैं। इस प्रकार इनके बीच का विलयन ’ $l$ ’ लंबाई एवं ’ $A$ ’ अनुप्रस्थ काट के क्षेत्रफल का कॉलम होता है। विलयन के इस कॉलम का प्रतिरोध निम्नलिखित समीकरण द्वारा दिया जाता है-

$$ \begin{equation*} R=\rho \frac{l}{A}=\frac{l}{\kappa A} \tag{2.17} \end{equation*} $$

राशि $l / A$ को सेल स्थिरांक कहा जाता है जिसे प्रतीक $G^{\ast}$ से व्यक्त किया जाता है। यह इलैक्ट्रोड के बीच की दूरी एवं उनके अनुप्रस्थ काट के क्षेत्रफल पर निर्भर करता है एवं इसकी विमा लंबाई ${ }^{-1}$ होती है। इसे $l$ तथा $A$ का मान ज्ञात होने पर परिकलित किया जा सकता है। $l$ एवं $A$ का मापन न सिर्फ असुविधाजनक है; बल्कि प्राप्त मान अविश्वसनीय भी होता है। सेल स्थिरांक को साधारणतया पहले से ज्ञात चालकता वाले विलयन को चालकता सेल में लेकर व उसका प्रतिरोध माप कर ज्ञात किया जाता है। इस उद्देश्य के लिए हम सामान्यतः $\mathrm{KCl}$ विलयन का उपयोग करते हैं जिसकी चालकता विभिन्न सांद्रताओं एवं ताप पर परिशुद्धता से ज्ञात होती है (सारणी 2.3)। सेल स्थिरांक $G^{\ast}$ को तब निम्नलिखित समीकरण से दर्शाया जा सकता है।

$$ \begin{equation*} G^{\ast}=\frac{l}{A}=R \kappa \tag{2.18} \end{equation*} $$

सारणी 2.3- $298.15 \mathrm{~K}$ पर $\mathrm{KCl}$ की चालकता एवं मोलर चालकता

एक बार सेल स्थिरांक का मान ज्ञात हो जाने पर हम इसका उपयोग किसी भी विलयन का प्रतिरोध या चालकता मापने में कर सकते हैं। प्रतिरोध मापन की व्यवस्था चित्र 2.5 में दर्शाई गई है।

चित्र 2.5 - वैद्युतअपघट्य के विलयन के प्रतिरोध मापन की व्यवस्था

इसमें दो प्रतिरोध $R _{3}$ एवं $R _{4}$, एक परिवर्तनीय प्रतिरोध $R _{1}$ एवं अज्ञात प्रतिरोध $R _{2}$ वाली चालकता सेल होती है। ह्वीटस्टोन ब्रिज एक दोलित्र, $\mathrm{O}$ (oscillator), (श्रव्य आवृत्ति सीमा 550 से 5000 चक्रण प्रति सैकण्ड वाली प्रत्यावर्ती धारा (AC) का स्रोत) से जुड़ा रहता है। $\mathrm{P}$ एक उपयुक्त संसूचक है (एक हेडफोन या अन्य विद्युत युक्ति) तथा जब संसूचक में कोई विद्युत धारा प्रवाहित नहीं होती तो ब्रिज संतुलित होता है। इन परिस्थितियों में-

$$ \begin{equation*} \text { अज्ञात प्रतिरोध, } R _{2}=\frac{R _{1} R _{4}}{R _{3}} \tag{2.19} \end{equation*} $$

आजकल सस्ते चालकता मीटर उपलब्ध हैं जिनसे चालकता सेल में उपस्थित विलयन का चालकत्व या प्रतिरोध सीधे ही पढ़ा जा सकता है। एक बार सेल में उपस्थित विलयन का सेल स्थिरांक एवं प्रतिरोध ज्ञात होने पर विलयन की चालकता निम्नलिखित समीकरण से दी जा सकती है-

$$ \begin{equation*} \kappa=\frac{\text { सेल स्थिरांक }}{R}=\frac{\mathrm{G}^{\ast}}{R} \tag{2.20} \end{equation*} $$

एक ही विलायक में और समान ताप पर, विभिन्न वैद्युतअपघट्यों के विलयनों की चालकता में अंतर विघटन के फलस्वरूप बनने वाले आयनों के आवेश एवं आमाप तथा उनकी सांद्रता या विभव प्रवणता (Potential gradient) के अंतर्गत आयन के संचलन की सुविधा में भिन्नता के कारण होता है। अतः भौतिक रूप से एक अधिक अर्थपूर्ण राशि को परिभाषित करना आवश्यक है, जिसे मोलर चालकता (ग्राम अणुक चालकता) कहा जाता है। इसे $\Lambda _{m}$ (ग्रीक शब्द लैम्डा) से निरूपित करते हैं। यह विलयन की चालकता से निम्नलिखित समीकरण के द्वारा संबद्ध है-

$$ \begin{equation*} \text { मोलर चालकता }=\Lambda _{m}=\frac{\kappa}{\mathrm{c}} \tag{2.21} \end{equation*} $$

उपरोक्त समीकरण में यदि $\kappa$ को $\mathrm{S} \mathrm{m}^{-1}$ में एवं सांद्रता, $\mathrm{c}$, को $\mathrm{mol} \mathrm{m}^{-3}$ में व्यक्त किया जाए तो $\Lambda _{m}$ का मात्रक $\mathrm{S} \mathrm{m}^{2} \mathrm{~mol}^{-1}$ होगा। यह ध्यान देने योग्य है कि

$1 \mathrm{~mol} \mathrm{~m}^{-3}=1000\left(\mathrm{~L} / \mathrm{m}^{3}\right) \times$ मोलरता $(\mathrm{mol} / \mathrm{L})$अतः

$\Lambda _{m}\left(\mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}\right)=\frac{\kappa\left(\mathrm{S} \mathrm{m}^{-1}\right)}{1000\left(\mathrm{~L} \mathrm{~m}^{-3}\right) \times \text { मोलरता }\left(\mathrm{mol} \mathrm{L}^{-1}\right)}$

यदि हम $\kappa$ का मात्रक $\mathrm{S} \mathrm{cm}^{-1}$ एवं सांद्रता का मात्रक $\mathrm{mol} \mathrm{cm}^{-3}$ लें तब $\ddot{E} _{m}$ का मात्रक $\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$ होगा। इसे निम्नलिखित समीकरण का उपयोग कर परिकलित किया जा सकता है-

$$ \Lambda _{m}\left(\mathrm{Scm}^{2} \mathrm{~mol}^{-1}\right)=\frac{\kappa\left(\mathrm{S} \mathrm{cm}^{-1}\right) \times 1000\left(\mathrm{~cm}^{3} / \mathrm{L}\right)}{\text { मोलरता }(\mathrm{mol} / \mathrm{L})} $$

सामान्यतः दोनों प्रकार के मात्रक प्रयुक्त किए जाते हैं। जो परस्पर निम्नलिखित समीकरण द्वारा संबद्ध हैं-

$$ \begin{aligned} & 1 \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}=10^{4} \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \text { या } \\ & 1 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}=10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1} \text {. } \end{aligned} $$

उदाहरण 2.4

$0 .1 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{KCl}$ विलयन से भरे हुए एक चालकता सेल का प्रतिरोध $100 \Omega$ है। यदि उसी सेल का प्रतिरोध $0.02 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{KCl}$ विलयन भरने पर $520 \Omega$ हो तो $0.02 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{KCl}$ विलयन की चालकता एवं मोलर चालकता परिकलित कीजिए। $0.1 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{KCl}$ विलयन की चालकता $1.29 \mathrm{~S} / \mathrm{m}$ है। सेल स्थिरांक निम्नलिखित समीकरण द्वारा दिया जाता है-

हल

सेल स्थिरांक निम्नलिखित समीकरण द्वारा दिया जाता है- सेल स्थिरांक $=G^*=$ चालकता $\times$ प्रतिरोध $$ =1.29 \mathrm{~S} / \mathrm{m} \times 100 \Omega=129 \mathrm{~m}^{-1}=1.29 \mathrm{~cm}^{-1} $$

विलयन की $0.02 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{KCl}$ चालकता = सेल स्थिरांक / प्रतिरोध

$$ \begin{aligned} & =\frac{G^*}{R}=\frac{129 \mathrm{~m}^{-1}}{520 \Omega}=0.248 \mathrm{~S} \mathrm{~m}^{-1} \\ & \text { सांद्रता } \quad=0.02 \mathrm{~mol} \mathrm{~L}^{-1} \\ & =1000 \times 0.02 \mathrm{~mol} \mathrm{~m}^{-3}=20 \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-3} \\ & \text { मोलर चालकता }=\Lambda_m=\frac{\kappa}{c} \\ & =\frac{248 \times 10^{-3} \mathrm{~S} \mathrm{~m}^{-1}}{20 \mathrm{~mol} \mathrm{~m}^{-3}}=124 \times 10^{-4} \mathrm{~S} \mathrm{~m}^2 \mathrm{~mol}^{-1} \\ & \text { विकल्पत, } \quad \kappa=\frac{1.29 \mathrm{~cm}^{-1}}{520 \Omega}=0.248 \times 10^{-2} \mathrm{~S} \mathrm{~cm}^{-1} \\ & \end{aligned} $$

तथा

$$ \begin{aligned} \Lambda_m & =\kappa \times 1000 \mathrm{~cm}^3 \mathrm{~L}^{-1} \text { molarity }^{-1} \\ & =\frac{0.248 \times 10^{-2} \mathrm{~S} \mathrm{~cm}^{-1} \times 1000 \mathrm{~cm}^3 \mathrm{~L}^{-1}}{0.02 \mathrm{~mol} \mathrm{~L}^{-1}} \\ & =124 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1} \end{aligned} $$

उदाहरण 2.5 $0 .05 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}$ विलयन के कॉलम का विद्युत प्रतिरोध $5.55 \times 10^{3} \mathrm{ohm}$ है। इसका व्यास $1 \mathrm{~cm}$ एवं लंबाई $50 \mathrm{~cm}$ है। इसकी प्रतिरोधकता, चालकता तथा मोलर चालकता का परिकलन कीजिए।

हल

$$ \begin{aligned} & \begin{array}{l} A=\pi r^2=3.14 \times 0.5^2 \mathrm{~cm}^2=0.785 \mathrm{~cm}^2=0.785 \times 10^{-4} \mathrm{~m}^2 \\ l=50 \mathrm{~cm}=0.5 \mathrm{~m} \end{array} \\ & \begin{aligned} & R=\frac{\rho l}{A} \quad \text { या } \quad \rho=\frac{R A}{l}=\frac{5.55 \times 10^3 \Omega \times 0.785 \mathrm{~cm}^2}{50 \mathrm{~cm}} \\ & =87.135 \Omega \mathrm{cm} \\ & \text { चालकता }=\kappa=\frac{1}{\rho}=\left(\frac{1}{87.135}\right) \mathrm{S} \mathrm{cm}^{-1} \\ &=0.01148 \mathrm{~S} \mathrm{~cm}^{-1} \end{aligned} \end{aligned} $$

मोलर चालकता, $\Lambda _{m}=\frac{\kappa \times 1000}{\mathrm{c}} \mathrm{cm}^{3} \mathrm{~L}^{-1}$ $$ \begin{aligned} & =\frac{0.01148 \mathrm{~S} \mathrm{~cm}^{-1} \times 1000 \mathrm{~cm}^{3} \mathrm{~L}^{-1}}{0.05 \mathrm{~mol} \mathrm{~L}^{-1}} \\ & =229.6 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \end{aligned} $$

यदि हम ‘cm’ के स्थान पर ’m’ के पदों में विभिन्न राशियों का परिकलन करना चाहें तो

$$ \begin{aligned} & \rho=\frac{R A}{l}=\frac{5.55 \times 10^{3} \Omega \times 0.785 \times 10^{-4} \mathrm{~m}^{2}}{0.5 \mathrm{~m}} \\ & =87.135 \times 10^{-2} \Omega \mathrm{m} \\ & \kappa=\frac{1}{\rho}=\frac{100}{87.135} \Omega \mathrm{m} \\ & =1.148 \mathrm{~S} \mathrm{~m}^{-1} \\ & \text { तथा } \Lambda _{m}=\frac{\kappa}{c}=\frac{1.148 \mathrm{~S} \mathrm{~m}^{-1}}{50 \mathrm{~mol} \mathrm{~m}^{-3}} \\ & =229.6 \times 10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1} \end{aligned} $$

2.4.2 सांद्रता के साथ चालकता एवं मोलर चालकता में परिवर्तन

वैद्युतअपघट्य की सांद्रता में परिवर्तन के साथ-साथ चालकता एवं मोलर चालकता दोनों में परिवर्तन होता है। दुर्बल एवं प्रबल दोनों प्रकार के वैद्युतअपघट्यों की सांद्रता घटाने पर चालकता हमेशा घटती है। इसकी इस तथ्य से व्याख्या की जा सकती है कि तनुकरण करने पर प्रति इकाई आयतन में विद्युतधारा ले जाने वाले आयनों की संख्या घट जाती है। किसी भी सांद्रता पर विलयन की चालकता उस विलयन के इकाई आयतन का चालकत्व होता है, जिसे परस्पर इकाई दूरी पर स्थित एवं इकाई अनुप्रस्थ काट क्षेत्रफल वाले दो प्लेटिनम इलेक्ट्रोडों के मध्य रखा गया हो।

$$ G=\frac{\kappa A}{l}=\kappa(A \text { एवं } l \text { दोनों ही उपयुक्त इकाइयों } \mathrm{m} \text { या } \mathrm{cm} \text { में हैं)। } $$

किसी दी गई सांद्रता पर एक विलयन की मोलर चालकता उस विलयन के $\mathrm{V}$ आयतन का चालकत्व है, जिसमें वैद्युतअपघट्य का एक मोल घुला हो तथा जो एक-दूसरे से इकाई दूरी पर स्थित, $\mathrm{A}$ अनुप्रस्थ काट क्षेत्रफल वाले दो इलेक्ट्रोडों के मध्य रखा गया हो। अतः

$$ \Lambda _{m}=\frac{\kappa A}{l}=\kappa $$

चूँकि $l=1$ एवं $A=V$ (आयतन, जिसमें वैद्युतअपघट्य का एक मोल घुला है।)

चित्र 2.6- जलीय विलयन में ऐसीटिक अम्ल (दुर्बल वैद्युतअपघट्य) एवं पोटैशियम क्लोराइड (प्रबल वैद्युतअपघट्य) के लिए मोलर चालकता के विपरीत $c^{1 / 2}$ का आलेख

सांद्रता घटने के साथ मोलर चालकता बढ़ती है। ऐसा इसलिए होता है क्योंकि वह कुल आयतन $(V)$ भी बढ़ जाता है जिसमें एक मोल वैद्युतअपघट्य उपस्थित हो। यह पाया गया है कि विलयन के तनुकरण पर आयतन में वृद्धि $\kappa$ में होने वाली कमी की तुलना में कहीं अधिक होती है। भौतिक रूप से इसका अर्थ यह है कि दी हुई सांद्रता पर, $\Lambda _{m}$ को इस प्रकार परिभाषित किया जा सकता है कि यह वैद्युतअपघट्य के उस विलयन के उस आयतन का चालकत्व है जिसे चालकता सेल के परस्पर इकाई दूरी पर स्थित इलैक्ट्रोडों के मध्य रखा गया है एवं जिनका अनुप्रस्थ काट क्षेत्रफल इतना बड़ा है कि वह विलयन के उस पर्याप्त आयतन को समायोजित कर सकें जिसमें वैद्युतअपघट्य का एक मोल घुला हो। जब सांद्रता शून्य की ओर पहुँचने लगती है तब मोलर चालकता सीमांत मोलर चालकता कहलाती है एवं इसे प्रतीक $E _{m}^{\ominus}$ से निरूपित किया जाता है। सांद्रता के साथ $\Lambda _{m}$ में परिवर्तन प्रबल एवं दुर्बल वैद्युतअपघट्यों में अलग-अलग होता है (चित्र 2.6)।

प्रबल वैद्युतअपघट्य

प्रबल वैद्युतअपघट्यों के लिए, $\Lambda _{m}$ का मान तनुता के साथ धीरे-धीरे बढ़ता है एवं इसे निम्नलिखित समीकरण द्वारा निरूपित किया जा सकता है-

$$ \begin{equation*} \Lambda _{m}=\ddot{E} _{m}^{\circ}-A c^{1 / 2} \tag{2.23} \end{equation*} $$

यह देखा जा सकता है कि यदि $\Lambda _{m}$ को $c^{1 / 2}$ के विपरीत आरेखित किया जाए (चित्र 2.6) तो हमें, एक सीधी रेखा प्राप्त होती है जिसका अंतः खंड $\ddot{E} _{m}^{\circ}$ एवं ढाल -‘A’ के बराबर है। दिए गए विलायक एवं ताप पर स्थिरांक ’ $A$ ’ का मान वैद्युतअपघट्य के प्रकार, अर्थात् विलयन में वैद्युतअपघट्य के वियोजन से उत्पन्न धनायन एवं ऋणायन के आवेशों पर निर्भर करता है। अतः, $\mathrm{NaCl}, \mathrm{CaCl} _{2}, \mathrm{MgSO} _{4}$ क्रमशः $1-1,2-1$ एवं $2-2$ वैद्युतअपघट्य के रूप में जाने जाते हैं। एक प्रकार के सभी वैद्युतअपघट्यों के लिए ’ $A$ ’ का मान समान होता है।

उदाहरण 2.6

$298 \mathrm{~K}$ पर विभिन्न सांद्रताओं के $\mathrm{KCl}$ विलयनों की मोलर चालकताएं निम्नलिखित हैं।

$\mathbf{c} / \mathbf{m o l ~ L}^{-1}$ $\Lambda _{m} / \mathrm{S} \mathrm{cm}{ }^{2} \mathrm{~mol}^{-1}$
0.000198 148.61
0.000309 148.29
0.000521 147.81
0.000989 147.09

दर्शाइए कि $\ddot{E} _{m}$ एवं $c^{1 / 2}$ के मध्य आलेख एक सीधी रेखा है। $\mathrm{KCl}$ के लिए $\ddot{E} _{m}^{\circ}$ एवं $\mathrm{A}$ के मान ज्ञात कीजिए।

हल

दी गई सांद्रताओं का वर्गमूल लेने पर हम पाते हैं

$c^{1 / 2} /\left(\operatorname{mol~L}^{-1}\right)^{1 / 2}$ $\Lambda _{m} / \mathrm{S} \mathrm{cm}{ }^{2} \mathrm{~mol}^{-1}$
0.01407 148.61
0.01758 148.29
0.02283 147.81
0.03145 147.09

$\Lambda_m(\mathrm{y}$-अक्ष $)$ एवं $\mathrm{c}^{1 / 2}(\mathrm{x}$-अक्ष $)$ का आलेख चित्र 2.7 में दर्शाया गया है। यह देखा जा सकता है कि यह लगभग एक सीधी रेखा है। अंतःखंड $\left(c^{1 / 2}=0\right)$ से हम पाते हैं कि $\Lambda_m^{\circ}=150.0 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}$ एवं $$ A=- \text { ढाल }=87.46 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1} /\left(\mathrm{mol} / \mathrm{L}^{-1}\right)^{1 / 2} \text {. } $$

चित्र $2.7-c^{1 / 2}$ के विरुद्ध $\Lambda _{m}$ में परिवर्तन

कोलराउश (Kohlraush) ने कई प्रबल वैद्युतअपघट्यों के लिए $\Lambda _{m}^{\circ}$ के मान के परीक्षण किए एवं कुछ नियमितताओं का अवलोकन किया। उन्होंने पाया कि वैद्युतअपघट्यों $\mathrm{NaX}$ एवं $\mathrm{KX}$ के $\Lambda _{m}^{\circ}$ के मानों का अंतर किसी भी ’ $\mathrm{X}$ ’ के लिए लगभग स्थिर रहता है। उदाहरण के लिए $298 \mathrm{~K}$ पर-

$$ \begin{aligned} & \Lambda _{m(\mathrm{KCl})}^{\circ}-\Lambda _{m(\mathrm{NaCl})}^{\circ}=\Lambda _{m(\mathrm{KBr})}^{\circ}-\Lambda _{m(\mathrm{NaBr})}^{\circ} \\ & =\Lambda _{m(\mathrm{KI})}^{\circ}-\Lambda _{m(\mathrm{NaI})}^{\circ} \simeq 23.4 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \end{aligned} $$

तथा इसी प्रकार पाया गया कि-

$$ \Lambda _{m(\mathrm{NaBr})}^{\circ}-\Lambda _{m(\mathrm{NaCl})}^{\circ}=\Lambda _{m(\mathrm{KBr})}^{\circ}-\Lambda _{m(\mathrm{KCl})}^{\circ} \simeq 1.8 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} $$

उपरोक्त प्रेक्षणों के आधार पर उन्होंने आयनों के स्वतंत्र अभिगमन का कोलराउश नियम दिया। कोलराउश के इस नियम के अनुसार एक वैद्युतअपघट्य की सीमांत मोलर चालकता को उसके धनायन एवं ऋणायन के अलग-अलग योगदान के योग के बराबर निरूपित किया जा सकता है। इस प्रकार, यदि $\lambda^{\circ}{ } _{\mathrm{Na}}+$ एवं $\lambda^{\circ} \mathrm{Cl}^{-}$क्रमशः सोडियम एवं क्लोराइड आयनों की सीमांत मोलर चालकताएं हों तो सोडियम क्लोराइड की सीमांत मोलर चालकता निम्नलिखित समीकरण द्वारा दी जा सकती है-

$$ \begin{equation*} \Lambda _{m(\mathrm{NaCl})}^{\circ}=\lambda _{\mathrm{Na}^{+}}^{0}+\lambda _{\mathrm{Cl}^{-}}^{0} \tag{2.24} \end{equation*} $$

व्यापक रूप में यदि एक वैद्युतअपघट्य वियोजन पर $v _{+}$धनायन एवं $v _{-}$ॠणायन देता है तब इसकी सीमान्त मोलर चालकता को निम्नलिखित समीकरण द्वारा दिया जा सकता है-

$$ \begin{equation*} \Lambda _{m}^{\circ}=v _{+} \lambda _{+}^{0}+v _{-} \lambda^{0} \tag{2.25} \end{equation*} $$

यहाँ $\lambda _{+}^{0}$ एवं $\lambda _{-}^{0}$ क्रमशः धनायन एवं ऋणायन की सीमान्त मोलर चालकताएं हैं। $298 \mathrm{~K}$ पर कुछ धनायनों एवं ऋणायनों के $\lambda^{0}$ के मान सारणी 2.4 में दिए गए हैं।

सारणी 2.4- $298 \mathrm{~K}$ पर कुछ आयनों की जल में सीमान्त मोलर चालकताएं

दुर्बल वैद्युतअपघट्य

ऐसीटिक अम्ल जैसे दुर्बल वैद्युतअपघट्य उच्च सांद्रता पर अल्प वियोजित होते हैं, अतः ऐसे वैद्युतअपघट्यों के $\Lambda _{m}$ में तनुता के साथ परिवर्तन, वियोजन मात्रा में वृद्धि के कारण होता है परिणामस्वरूप एक मोल वैद्युतअपघट्य वाले विलयन के कुल आयतन में आयनों की संख्या बढ़ती है। इन प्रकरणों में, विशेषतया अल्प सांद्रता के समीप तनुकरण पर $\Lambda _{m}$ तेज़ी से बढ़ता है (चित्र 2.6)। अतः $\Lambda _{m}^{\circ}$ का मान $\Lambda _{m}$ के शून्य सांद्रता तक बहिर्वेशन (extrapolation) द्वारा प्राप्त नहीं किया जा सकता। अनंत तनुता पर (अर्थात् सांद्रता $c \rightarrow 0$ ) वैद्युतअपघट्य पूर्णतया वियोजित हो जाता है $(\alpha=1)$ परंतु इतनी कम सांद्रता पर विलयन की चालकता इतनी कम हो जाती है कि इसके वास्तविक मान को नहीं मापा जा सकता। अतः दुर्बल वैद्युतअपघट्यों के लिए $\Lambda _{m}^{\circ}$ कोलराउश का आयनों के लिए स्वतंत्र अभिगमन नियम का उपयोग कर प्राप्त किया जा सकता है (उदाहरण 2.8)। किसी भी सांद्रता $c$ पर यदि वियोजन की मात्रा $\alpha$ हो तो इसे सांद्रता $c$ पर मोलर चालकता $\Lambda _{m}$ एवं सीमांत मोलर चालकता $\Lambda _{m}^{\circ}$ के अनुपात के सन्निकट माना जा सकता है। इस प्रकार-

$$ \begin{equation*} \alpha=\frac{\Lambda _{m}}{\Lambda _{m}} \tag{2.26} \end{equation*} $$

ऐसीटिक अम्ल जैसे दुर्बल वैद्युतअपघट्य के लिए

$$ \begin{equation*} K _{\mathrm{a}}=\frac{c \alpha^{2}}{(1-\alpha)}=\frac{c \Lambda _{m}^{2}}{\Lambda _{m}^{\mathrm{o}^{2}} 1-\frac{\Lambda _{m}}{\Lambda _{m}^{\circ}}}=\frac{c \Lambda _{m}^{2}}{\Lambda _{m}^{\circ}\left(\Lambda _{m}^{\circ}-\Lambda _{m}\right)} \tag{2.27} \end{equation*} $$

कोलराउश नियम के अनुप्रयोग

आयनों के स्वतंत्र अभिगमन के कोलराउश नियम का उपयोग कर, किसी भी वैद्युतअपघट्य के आयनों के $\lambda^{0}$ मानों से $\Lambda _{m}^{\circ}$ का परिकलन करना संभव है। इसके अतिरिक्त यदि हमे दी गई सांद्रता $c$ पर $\Lambda _{m}$ एवं $\Lambda _{m}^{\circ}$ के मान ज्ञात हों तो ऐसीटिक अम्ल जैसे दुर्बल वैद्युतअपघट्यों के लिए इसका वियोजन स्थिरांक ज्ञात करना भी संभव है।

उदाहरण 2.7 सारणी 2.4 में दिए गए आँकड़ों की सहायता से $\mathrm{CaCl} _{2}$ एव $\mathrm{MgSO} _{4}$ के $\Lambda _{m}^{\circ}$ का परिकलन कीजिए।

हल

कोलराउश नियम से हम जानते हैं कि-

$$ \begin{aligned} \Lambda_{m\left(\mathrm{CaCl_2}\right)}^{\mathrm{o}} & =\lambda_{\mathrm{Ca}^{2+}}^{\mathrm{o}}+2 \lambda_{\mathrm{Cl}^{-}}^{\mathrm{o}}=119.0 \mathrm{~S} \mathrm{~cm} \mathrm{~mol}^{-1}+2(76.3) \mathrm{S} \mathrm{cm} \mathrm{mol}^{-1} \\ & =(119.0+152.6) \mathrm{S} \mathrm{cm} \mathrm{mol}^{-1} \\ & =271.6 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \\ \Lambda_{m\left(\mathrm{MgSO_4}\right)}^{\mathrm{o}} & =\lambda_{\mathrm{Mg}^{2+}}^{\mathrm{o}}+\lambda_{\mathrm{SO}_{4}^{2-}}^{\mathrm{o}}=106.0 \mathrm{~S} \mathrm{~cm} \mathrm{~mol}^{-1}+160.0 \mathrm{~S} \mathrm{~cm} \mathrm{~mol}^{-1} \\ & =266 \mathrm{~S} \mathrm{~cm} \mathrm{~mol}^{-1} . \end{aligned} $$

उदाहरण 2.8 $\mathrm{NaCl}, \mathrm{HCl}$ एवं $\mathrm{NaAc}$ के लिए $\Lambda _{m}^{\circ}$ क्रमशः $126.4,425.9$ एवं $91.0 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ हैं। $\mathrm{HAc}$ के लिए $\Lambda^{\circ}$ का परिकलन कीजिए।

हल $$ \begin{aligned} \Lambda_{m(\mathrm{HAc})}^{\mathrm{o}} & =\lambda_{\mathrm{H}^{+}}^{\mathrm{o}}+\lambda_{\mathrm{Ac}^{-}}^{\mathrm{o}}=\lambda_{\mathrm{H}^{+}}^{\mathrm{o}}+\lambda_{\mathrm{Cl}^{-}}^{\mathrm{o}}+\lambda_{\mathrm{Ac}^{-}}^{\mathrm{o}}+\lambda_{\mathrm{Na}^{+}}^{\mathrm{o}}-\lambda_{\mathrm{Cl}^{-}}^{\mathrm{o}}-\lambda_{\mathrm{Na}^{+}}^{\mathrm{o}} \\ & =\Lambda_{m(\mathrm{HCl})}^{\mathrm{o}}+\Lambda_{m(\mathrm{NaAc})}^{\mathrm{o}}-\Lambda_{m(\mathrm{NaCl})}^{\mathrm{o}} \\ & =(425.9+91.0-126.4) \mathrm{Scm}^{2} \mathrm{~mol}^{-1} \\ & =390.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} . \end{aligned} $$

उदाहरण 2.9 $0 .001028 \mathrm{~mol} \mathrm{~L}^{-1}$ ऐसीटिक अम्ल की चालकता $4.95 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}$ है। यदि ऐसीटिक अम्ल के लिए $\ddot{E} _{m}^{\circ}$ का मान $390.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ है तो इसके वियोजन स्थिरांक का परिकलन कीजिए।

हल $$ \begin{aligned} & \Lambda _{m}=\frac{\kappa}{c}=\frac{4.95 \times 10^{-5} \mathrm{Scm}^{-1}}{0.001028 \mathrm{~mol} \mathrm{~L}^{-1}} \times \frac{1000 \mathrm{~cm}^{3}}{\mathrm{~L}}=48.15 \mathrm{Scm}^{2} \mathrm{~mol}^{-1} \\ & \alpha=\frac{\Lambda _{m}}{\Lambda _{m}^{\circ}}=\frac{48.15 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}}{390.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}}=0.1233 \\ & K=\frac{\mathrm{c} \alpha^{2}}{(1-\alpha)}=\frac{0.001028 \mathrm{~mol} \mathrm{~L}^{-1} \times(0.1233)^{2}}{1-0.1233}=1.78 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \end{aligned} $$

पाव्यनिहित प्रश्न

2.7 किसी विलयन की चालकता तनुता के साथ क्यों घटती है?

Show Answer #missing

2.8 जल की $\Lambda _{m}^{\circ}$ ज्ञात करने का एक तरीका बताइए।

Show Answer #missing

2.9 $0 .025 \mathrm{~mol} \mathrm{~L}^{-1}$ मेथेनॉइक अम्ल की चालकता $46.1 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ है। इसकी वियोजन मात्रा एवं वियोजन स्थिरांक का परिकलन कीजिए। दिया गया है कि $\lambda^{0}\left(\mathrm{H}^{+}\right)=349.6 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ एवं $\lambda^{0}\left(\mathrm{HCOO}^{-}\right)=54.6$ $\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$ ।

Show Answer #missing

2.5 वैद्युतआपयटनी सेल डवं वैद्युतआपयटन

वैद्युतअपघटनी सेल में रासायनिक अभिक्रिया करने के लिए विभव का बाह्य स्रोत प्रयुक्त किया जाता है। वैद्युतरासायनिक प्रक्रम प्रयोगशालाओं एवं रासायनिक उद्योगों में बहुत महत्वपूर्ण होते हैं। सरलतम वैद्युतअपघटनी सेलों में से एक में कॉपर सल्फेट के जलीय विलयन में दो कॉपर इलैक्ट्रोड निमज्जित होते हैं। यदि दोनों इलैक्ट्रोडों पर DC विभव लगाया जाए, तो $\mathrm{Cu}^{2+}$ आयन कैथोड (ऋण आवेशित) पर विसर्जित होते हैं एवं निम्नलिखित अभिक्रिया घटित होती है-

$$ \begin{equation*} \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s}) \tag{2.28} \end{equation*} $$

कॉपर धातु कैथोड पर निक्षेपित होती है। ऐनोड पर कॉपर $\mathrm{Cu}^{2+}$ आयनों में, निम्नलिखित अभिक्रिया द्वारा परिवर्तित होता है-

$$ \begin{equation*} \mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{s})+2 \mathrm{e}^{-} \tag{2.29} \end{equation*} $$

इस प्रकार कॉपर (ताँबा) ऐनोड से विलीन (ऑक्सीकृत) होता है एवं कैथोड पर निक्षेपित (अपचित) होता है। यह उस औद्योगिक प्रक्रम का आधार है जिसमें अशुद्ध कॉपर को उच्च शुद्धता के कॉपर में बदला जाता है। अशुद्ध कॉपर को ऐनोड बनाया जाता है जो कि धारा प्रवाहित करने पर विलीन होता है एवं शुद्ध कॉपर कैथोड पर निक्षेपित होता है। बहुत-सी धातुएं जैसे $\mathrm{Na}, \mathrm{Mg}, \mathrm{Al}$ आदि जिनके लिए उपयुक्त रासायनिक अपचायक उपलब्ध नहीं होता, वृहद स्तर पर संगत धनायनों के वैद्युतरासायनिक अपचयन द्वारा उत्पादित की जाती हैं।

सोडियम एवं मैग्नीशियम धातुओं को उनके संगलित क्लोराइडों के वैद्युतअपघटन द्वारा उत्पादित किया जाता है एवं एलुमिनियम को क्रायोलाइट की उपस्थिति में ऐलुमिनियम ऑक्साइड के वैद्युतअपघटन द्वारा उत्पादित किया जाता है।

वैद्युतअपघटन के मात्रात्मक पक्ष

माइकल फैराडे प्रथम वैज्ञानिक थे जिन्होंने वैद्युतअपघटन के मात्रात्मक पक्षों का वर्णन किया। इन्हें अब उपरोक्त चर्चा के आधार पर भी समझा जा सकता है।

फैराडे के वैद्युतअपघटन के नियम- विलयनों एवं वैद्युतअपघट्यों के गलितों के वैद्युतअपघटन पर विस्तीर्ण अन्वेषणों के पश्चात् फैराडे ने 1833-34 में अपने परिणामों को निम्नलिखित, सर्वज्ञात फैराडे के वैद्युतअपघटन के दो नियमों के रूप में प्रकाशित किया।

(i) प्रथम नियम- विद्युत धारा द्वारा वैद्युतअपघटन में रासायनिक विघटन की मात्रा वैद्युतअपघट्य (विलयन या गलित) में प्रवाहित विद्युत धारा की मात्रा के समानुपाती होती है।

(ii) द्वितीय नियम- विभिन्न वैद्युतअपघटनी विलयनों में विद्युत की समान मात्रा प्रवाहित करने पर मुक्त विभिन्न पदार्थों की मात्राएं उनके रासायनिक तुल्यांकी द्रव्यमान (धातु का परमाण्विक द्रव्यमान $\div$ धनायन को अपचयित करने में प्रयुक्त इलेक्ट्रॉनों की संख्या) के समानुपाती होती है। फैराडे के समय में स्थिर वैद्युत धारा के स्रोत उपलब्ध नहीं थे। एक सामान्य प्रचलित पद्धति यह थी कि एक कूलॉममापी (एक मानक वैद्युतअपघटती सेल) का प्रयोग कर निक्षेपित या उपमुक्त धातु (सामान्यतः सिल्वर या कॉपर) की मात्रा से विद्युत की मात्रा पता लगाई जाती थी परंतु कूलॉममापी आजकल अप्रचलित हो गये हैं तथा हमारे पास अब स्थिर धारा (I) के स्रोत उपलब्ध हैं, एवं प्रवाहित विद्युत् की मात्रा की गणना निम्नलिखित संबंध से की जा सकती है-

$$ Q=I t $$

जहाँ $Q$ कूलॉम में है, जबकि $I$ ऐम्पियर में एवं $t$ सेकंड में है।

ऑक्सीकरण या अपचयन के लिए आवश्यक विद्युत (या आवेश) की मात्रा इलैक्ट्रोड अभिक्रिया की स्टॉइकियोमीट्री पर निर्भर करती है। उदाहरणार्थ निम्न अभिक्रिया में-

$$ \begin{equation*} \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s}) \tag{2.30} \end{equation*} $$

सिल्वर आयनों के एक मोल के अपचयन के लिए एक मोल इलेक्ट्रॉनों की आवश्यकता होती है।

हम जानते हैं कि एक इलेक्ट्रॉन पर आवेश $1.6021 \times 10^{-19} \mathrm{C}$ के बराबर होता है।

अत: एक मोल इलेक्ट्रॉनों पर आवेश होगा-

$$ \begin{aligned} N _{A} \times 1.6021 \times 10^{-19} \mathrm{C} & =6.02 \times 10^{23} \mathrm{~mol}^{-1} \times 1.6021 \times 10^{-19} \\ & \mathrm{C} =96487 \mathrm{C} \mathrm{mol}^{-1} \end{aligned} $$

विद्युत की इस मात्रा को फैराडे कहते हैं एवं इसे प्रतीक $\mathbf{F}$ से निरूपित करते हैं।

सन्निकट गणना के लिए हम $1 \mathrm{~F}$ को $96500 \mathrm{Cmol}^{-1}$ के बराबर लेते हैं।

निम्नलिखित इलैक्ट्रोड अभिक्रियाओं-

$$ \begin{align*} & \mathrm{Mg}^{2+}(\mathrm{l})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Mg}(\mathrm{s}) \tag{3.31}\\ & \mathrm{Al}^{3+}(\mathrm{l})+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}(\mathrm{s}) \tag{3.32} \end{align*} $$

के लिए यह स्पष्ट है कि एक मोल $\mathrm{Mg}^{2+}$ एवं $\mathrm{Al}^{3+}$ के लिए हमें क्रमशः 2 मोल इलेक्ट्रॉन $(2 \mathrm{~F})$ व 3 मोल इलेक्ट्रॉन $(3 \mathrm{~F})$ की आवश्यकता होगी। वैद्युतअपघटनी सेल में प्रवाहित आवेश विद्युत धारा (ऐम्पियर) एवं समय (सेकंड) के गुणनफल के बराबर होता है। धातुओं के व्यावसायिक उत्पादन में लगभग 50,000 ऐम्पियर तक की उच्च धारा प्रयोग में लाई जाती है जो लगभग $0.518 \mathrm{~F}$ प्रति सेकंड के बराबर होती है।

उदाहरण 2.10

$\mathrm{CuSO} _{4}$ के विलयन को 1.5 ऐम्पियर की धारा से 10 मिनट तक वैद्युतअपघटित किया गया। कैथोड पर निक्षेपित कॉपर का द्रव्यमान क्या होगा?

हल $ t=600 \mathrm{~s} \text { आवेश }=\text { धारा } \times \text { समय }=1.5 \mathrm{~A} \times 600 \mathrm{~s}=900 \mathrm{C} $

अभिक्रिया-

$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(\mathrm{s})$ के अनुसार,

एक मोल या $63 \mathrm{~g} \mathrm{Cu}$ को निक्षेपित करने के लिए हमें $2 \mathrm{~F}$ या $2 \times 96487 \mathrm{C}$ आवेश की आवश्यकता होगी। अतः $900 \mathrm{C}$ द्वारा निक्षेपित $\mathrm{Cu}$ का द्रव्यमान $$ =\left(63 \mathrm{~g} \mathrm{~mol}^{-1} \times 900 \mathrm{C}\right) /\left(2 \times 96487 \mathrm{C} \mathrm{mol}^{-1}\right)=0.2938 \mathrm{~g} $$

2.5.1 वैद्युतअपघटन के उत्पाद

वैद्युतअपघटन के उत्पाद अपघटित होने वाले पदार्थों की अवस्था तथा प्रयुक्त इलैक्ट्रोडों के प्रकार पर निर्भर करते हैं। यदि इलैक्ट्रोड अक्रिय हो (उदाहरण के लिए Pt अथवा $\mathrm{Au}$ ) तो यह अभिक्रिया में हिस्सा नहीं लेता एवं यह केवल इलेक्ट्रॉनों के स्रोत अथवा सिंक का कार्य करता है। दूसरी ओर यदि इलैक्ट्रोड अभिक्रियाशील हो तो यह इलैक्ट्रोड अभिक्रिया में हिस्सा लेता है। इस प्रकार अभिक्रियाशील एवं अक्रिय इलैक्ट्रोडों के लिए वैद्युतअपघटन के उत्पाद अलग-अलग हो सकते हैं। वैद्युतअपघटन के उत्पाद वैद्युतअपघटनी सेल में उपस्थित विभिन्न ऑक्सीकारक एवं अपचायक स्पीशीज़ एवं उनके मानक इलैक्ट्रोड विभवों पर निर्भर करते हैं। इसके अतिरिक्त कुछ वैद्युत रासायनिक प्रक्रम यद्यपि संभव होते हैं, परंतु गतिकीय रूप में इतने धीमे होते हैं कि ये निम्न विभव पर घटित होते प्रतीत नहीं होते एवं ऐसी परिस्थिति में अतिरिक्त विभव (जिसे अधिविभव कहते हैं) लगाना पड़ता है; जो कि इन प्रक्रमों को और कठिन बना देता है।

उदाहरणार्थ यदि हम गलित $\mathrm{NaCl}$ का प्रयोग करें तो वैद्युतअपघटन के उत्पाद सोडियम धातु एवं क्लोरीन गैस होंगे। यहाँ हमारे पास केवल एक धनायन $\left(\mathrm{Na}^{+}\right)$है जो कैथोड पर अपचित $\left(\mathrm{Na}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Na}\right)$ होता है एवं एक ऋणायन $\left(\mathrm{Cl}^{-}\right)$है जो ऐनोड पर ऑक्सीकृत $\left(\mathrm{Cl}^{-} \rightarrow \frac{1}{2} \mathrm{Cl} _{2}+\mathrm{e}^{-}\right)$होता है। सोडियम क्लोराइड के जलीय विलयन के वैद्युतअपघटन के दौरान $\mathrm{NaOH}, \mathrm{Cl} _{2}$ एवं $\mathrm{H} _{2}$ उत्पाद बनते हैं। इसमें $\mathrm{Na}^{+}$एवं $\mathrm{Cl}^{-}$के अतिरिक्त $\mathrm{H}^{+}$एवं $\mathrm{OH}^{-}$आयन एवं विलायक अणु $\mathrm{H} _{2} \mathrm{O}$ भी उपस्थित होते हैं।

कैथोड पर निम्नलिखित अभिक्रियाओं के मध्य अपचयन के लिए स्पर्धा होती है-

$$ \begin{array}{ll} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s}) & E_{\text {(सेल) }}^{\mathrm{o}}=-2.71 \mathrm{~V} \\ \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow 1 / 2 \mathrm{H_2}(\mathrm{~g}) & E_{\text {(सेल) }}^{\mathrm{o}}=0.00 \mathrm{~V} \end{array} $$

कैथोड पर अधिक $E^{\ominus}$ मान वाली अभिक्रिया को वरीयता प्राप्त होती है, अतः कैथोड पर निम्नलिखित अभिक्रिया होती है- $$ \begin{equation*} \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow 1 / 2 \mathrm{H_2}(\mathrm{~g}) \tag{3.33} \end{equation*} $$

परंतु $\mathrm{H} _{2} \mathrm{O}$ के वियोजन द्वारा $\mathrm{H}^{+}(\mathrm{aq})$ उत्पन्न होता है, यानी कि-

$$ \begin{equation*} \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \tag{3.34} \end{equation*} $$

अतः कैथोड पर नेट अभिक्रिया (2.33) एवं (2.34) के योग के रूप में लिखी जा सकती है। इसलिए-

$$ \begin{equation*} \mathrm{H_2} \mathrm{O}(l)+\mathrm{e}^{-} \rightarrow 1 / 2 \mathrm{H_2}(\mathrm{~g})+\mathrm{OH}^{-} \tag{3.35} \end{equation*} $$

ऐनोड पर निम्नलिखित ऑक्सीकरण अभिक्रियाएं संभव हैं-

$$ \begin{array}{ll} \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow 1 / 2 \mathrm{Cl_2}(\mathrm{~g})+\mathrm{e}^{-} & E_{\text {(सेल) }}^{\mathrm{o}}=1.36 \mathrm{~V} \\ 2 \mathrm{H_2} \mathrm{O}(l) \rightarrow \mathrm{O_2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} & E_{\text {(सेल) }}^{\mathrm{o}}=1.23 \mathrm{~V} \tag{3.37} \end{array} $$

ऐनोड पर कम $E^{\ominus}$ वाली अभिक्रिया को वरीयता प्राप्त होती है इसलिए जल के ऑक्सीकरण को $\mathrm{Cl}^{-}(\mathrm{aq})$ के ऑक्सीकरण की तुलना में वरीयता मिलनी चाहिए। परंतु ऑक्सीजन की अधिविभव के कारण अभिक्रिया (2.36) को वरीयता प्राप्त होती है। अत: समग्र अभिक्रिया निम्न प्रकार से संक्षेपित की जा सकती है-

$\mathrm{NaCl}(\mathrm{aq})$

कैथोड पर- $\quad \mathrm{H} _{2} \mathrm{O}(l)+\mathrm{e}^{-} \rightarrow \frac{1}{2} \mathrm{H} _{2}(\mathrm{~g})+\mathrm{OH}^{-}(\mathrm{aq})$

ऐनोड पर- $\quad \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \frac{1}{2} \mathrm{Cl} _{2}(\mathrm{~g})+\mathrm{e}^{-}$

समग्र अभिक्रिया- $\mathrm{NaCl}(\mathrm{aq})+\mathrm{H} _{2} \mathrm{O}(l) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})+\frac{1}{2} \mathrm{H} _{2}(\mathrm{~g})+\frac{1}{2} \mathrm{Cl} _{2}(\mathrm{~g})$

सांद्रता प्रभावों को समाहित करने के लिए मानक इलैक्ट्रोड विभवों के स्थान पर नेर्न्स्ट समीकरण (समीकरण 2.8) में दिए गए इलैक्ट्रोड विभव प्रतिस्थापित किए जाते हैं। सल्फ्यूरिक अम्ल के वैद्युतअपघटन में ऐनोड पर निम्नलिखित अभिक्रियाएं संभावित हैं।

$$ \begin{array}{ll} 2 \mathrm{H} _{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{O} _{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} & E _{\text {(सेल) }}^{\ominus}=+1.23 \mathrm{~V} \\ 2 \mathrm{SO} _{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{S} _{2} \mathrm{O} _{8}{ }^{2-}(\mathrm{aq})+2 \mathrm{e}^{-} & E _{\text {(सेल) }}^{\ominus}=1.96 \mathrm{~V} \tag{2.39} \end{array} $$

तनु सल्फ्यूरिक अम्ल में अभिक्रिया (2.38) को वरीयता प्राप्त होती है परंतु $\mathrm{H} _{2} \mathrm{SO} _{4}$ की उच्च सांद्रता पर अभिक्रिया (2.39) को वरीयता प्राप्त होती है।

पाव्यनिहित प्रश्न

2.10 यदि एक धात्विक तार में 0.5 ऐम्पियर की धारा 2 घंटों के लिए प्रवाहित होती है तो तार में से कितने इलेक्ट्रॉन प्रवाहित होंगे?

Show Answer #missing

2.11 उन धातुओं की एक सूची बनाइए जिनका वैद्युतअपघटनी निष्कर्षण होता है।

Show Answer #missing

2.12 निम्नलिखित अभिक्रिया में $\mathrm{Cr} _{2} \mathrm{O} _{7}^{2-}$ आयनों के एक मोल के अपचयन के लिए कूलॉम में विद्युत् की कितनी मात्रा की आवश्यकता होगी? $\mathrm{Cr_2} \mathrm{O_7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H_2} \mathrm{O}$

Show Answer #missing

2.6 बेटरियाँ

कोई भी बैटरी (वास्तव में इसमें एक या एक से अधिक सेल श्रेणीबद्ध रहते हैं) या सेल जिसे हम विद्युत के स्रोत के रूप में प्रयोग में लाते हैं, मूलतः एक गैल्वेनी सेल है जो रेडॉक्स अभिक्रिया की रासायनिक ऊर्जा को विद्युत ऊर्जा में बदल देती है। किंतु बैटरी के प्रायोगिक उपयोग के लिए इसे हल्की तथा सुसंबद्ध होना चाहिए एवं प्रयोग में लाते समय इसकी वोल्टता में अधिक परिवर्तन नहीं होना चाहिए। बैटरियाँ मुख्यतः दो प्रकार की होती हैं- प्राथमिक बैटरियाँ एवं संचायक बैटरियाँ।

2.6.1 प्राथमिक बैटरियाँ

प्राथमिक बैटरियों में अभिक्रिया केवल एक बार होती है तथा कुछ समय तक प्रयोग के बाद बैटरी निष्क्रिय हो जाती है एवं पुनः प्रयोग में नहीं लाई जा सकती। इसका सबसे चिर-परिचित उदाहरण शुष्क सेल है जिसे इसके आविष्कारक के नाम पर लैक्लांशे सेल के नाम से जाना जाता है। ये सामान्य रूप में ट्रांजिस्टरों एवं घड़ियों में प्रयोग में लाई जाती हैं। इस सेल में ज़िंक का एक पात्र होता है जो ऐनोड का कार्य भी करता है तथा कार्बन (ग्रैफाइट) की छड़ जो चारों ओर से चूर्णित मैंगनीजडाईऑक्साइड तथा कार्बन से घिरी रहती है, कैथोड का कार्य करती है (चित्र 2.8)।

चित्र 2.8-एक व्यावसायिक शुष्क सेल ज़िंक के पात्र में ग्रैफाइट कैथोड के साथ, जिसमें ज़िंक पात्र ऐनोड का कार्य करता है।

इलैक्ट्रोडों के बीच का स्थान अमोनियम क्लोराइड $\left(\mathrm{NH} _{4} \mathrm{Cl}\right)$ एवं ज़िंक क्लोराइड $\left(\mathrm{ZnCl} _{2}\right)$ के नम पेस्ट से भरा रहता है। इलैक्ट्रोड अभिक्रियाएं जटिल हैं परंतु इन्हें सन्निकट रूप से निम्न प्रकार से लिखा जा सकता है-

$ \begin{aligned} & \text { ऐनोड- } \mathrm{Zn}(\mathrm{s}) \longrightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \\ & \text {कैथोड- } \quad \mathrm{MnO} _{2}+\mathrm{NH} _{4}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{MnO}(\mathrm{OH})+\mathrm{NH} _{3} \end{aligned} $

कैथोड की अभिक्रिया में मैंगनीज +4 से +3 ऑक्सीकरण अवस्था में अपचित हो जाता है। अभिक्रिया में उत्पन्न अमोनिया $\mathrm{Zn}^{2+}$ के साथ संकुल $\left[\mathrm{Zn}\left(\mathrm{NH} _{3}\right) _{4}\right]^{2+}$ बनाती है। सेल का विभव लगभग $1.5 \mathrm{~V}$ होता है।

मर्क्यूरी सेल श्रवण यंत्र, घड़ियों आदि जैसी विद्युत् की कम मात्रा की आवश्यकता वाली युक्तियों के लिए उपयुक्त होती है (चित्र 2.9)। इसमें जिंक-मर्क्यूरी अमलगम ऐनोड का तथा $\mathrm{HgO}$ एवं कार्बन का पेस्ट कैथोड का कार्य करता है। $\mathrm{KOH}$ एवं $\mathrm{ZnO}$ का पेस्ट वैद्युतअपघट्य होता है। सेल की इलैक्ट्रोड अभिक्रियाएं नीचे दी गई हैं-

ऐनोड- $\quad \mathrm{Zn}(\mathrm{Hg})+2 \mathrm{OH}^{-} \longrightarrow \mathrm{ZnO}(\mathrm{s})+\mathrm{H} _{2} \mathrm{O}+2 \mathrm{e}^{-}$

कैथोड- $\quad \mathrm{HgO}+\mathrm{H} _{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Hg}(l)+2 \mathrm{OH}^{-}$

चित्र 2.9-सामान्यतः प्रयुक्त मर्क्यूरी सेल, जिंक अपचायक तथा मर्क्यूरी (II) ऑक्साइड ऑक्सीकारक हैं।

समग्र सेल अभिक्रिया निम्न प्रकार से निरूपित की जाती है- $\mathrm{Zn}(\mathrm{Hg})+\mathrm{HgO}(\mathrm{s}) \longrightarrow \mathrm{ZnO}(\mathrm{s})+\mathrm{Hg}(\mathrm{l})$ सेल विभव लगभग $1.35 \mathrm{~V}$ होता है तथा संपूर्ण कार्य अवधि में स्थिर रहता है; क्योंकि समग्र सेल अभिक्रिया में कोई भी ऐसा आयन नहीं है जिसकी सांद्रता विलयन में होने के कारण, सेल की संपूर्ण कार्य अवधि में बदल सकती हो।

2.6.2 संचायक बैटरियाँ ( Secondary Batteries )

एक संचायक सेल को उपयोग के बाद विपरीत दिशा में विद्युत धारा के प्रवाह द्वारा पुन: आवेशित कर फिर से प्रयोग में लाया जा सकता है। एक अच्छी संचायक सेल अनेक बार डिस्चार्ज एवं चार्ज के चक्रण से गुजर सकती है। सबसे महत्वपूर्ण संचायक सेल लेड संचायक बैटरी है (चित्र 2.10), जिसे सामान्यतः वाहनों एवं इन्वर्टरों में प्रयोग किया जाता है। इसमें ऐनोड लेड का बना होता है तथा कैथोड लेड डाइऑक्साइड $\left(\mathrm{PbO} _{2}\right)$ से भरे हुए लेड का ग्रिड होता है। $38 \%$ सल्फ्यूरिक अम्ल का विलयन वैद्युतअपघट्य का कार्य करता है।

जब बैटरी उपयोग में होती है तो निम्नलिखित सेल अभिक्रियाएं होती हैं-

ऐनोड- $\quad \mathrm{Pb}(\mathrm{s})+\mathrm{SO} _{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{PbSO} _{4}(\mathrm{~s})+2 \mathrm{e}^{-}$

कैथोड $-\mathrm{PbO} _{2}(\mathrm{~s})+\mathrm{SO} _{4}{ }^{2-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{PbSO} _{4}(\mathrm{~s})+2 \mathrm{H} _{2} \mathrm{O}(l)$

इस प्रकार कैथोड एवं ऐनोड अभिक्रियाओं को मिलाकर समग्र सेल अभिक्रिया निम्नलिखित है- $$ \mathrm{Pb}(\mathrm{s})+\mathrm{PbO_2}(\mathrm{~s})+2 \mathrm{H_2} \mathrm{SO_4}(\mathrm{aq}) \rightarrow 2 \mathrm{PbSO_4}(\mathrm{~s})+2 \mathrm{H_2} \mathrm{O}(\mathrm{l}) $$

चित्र 2.10 - लेड संचायक सेल

$$ \mathrm{Cd}(\mathrm{s})+2 \mathrm{Ni}(\mathrm{OH}) _{3}(\mathrm{~s}) \rightarrow \mathrm{CdO}(\mathrm{s})+2 \mathrm{Ni}(\mathrm{OH}) _{2}(\mathrm{~s})+\mathrm{H} _{2} \mathrm{O}(l) $$

बैटरी को आवेशित करने पर अभिक्रिया उत्क्रमित हो जाती है तथा ऐनोड एवं कैथोड भी क्रमशः $\mathrm{PbSO}_4$ (s) $\mathrm{Pb}$ एवं $\mathrm{PbO}_2$ में बदल जाते हैं।

दूसरा महत्वपूर्ण संचायक सेल निकैल कैडमियम सेल (चित्र 2.11) है जिसकी कार्य अवधि लेड संचायक बैटरी से अधिक है किंतु इसकी निर्माण लागत अधिक है। हम इस सेल की क्रियाविधि तथा चार्ज एवं डिस्चार्ज की प्रक्रिया में होने वाली इलैक्ट्रोड अभिक्रियाओं का विस्तृत वर्णन नहीं करेंगे। डिस्चार्ज की प्रक्रिया में होने वाली समग्र अभिक्रिया निम्नलिखित है-

चित्र 2.11- एक पुन: आवेशन योग्य बेलनाकार जेली व्यवस्था में, नम सोडियम या पोटैशियम हाइड्रॉक्साइड से निमज्जित परत से पृथक्कृत निकैल कैडमियम सेल।

2.7 ईंधन सेल

ऊष्मीय संयंत्रों से विद्युत उत्पादन बहुत अधिक उपयोगी विधि नहीं है तथा यह प्रदूषण का एक बड़ा स्रोत है। ऐसे संयंत्रों में जीवाश्मी ईंधनों (कोयला, गैस या तेल) की रासायनिक ऊर्जा (दहन ऊष्मा) का उपयोग पहले जल को उच्च दाब की वाष्प में बदलने में किया जाता है जिसका उपयोग टरबाइन को चलाकर विद्युत उत्पादन में किया जाता है। हम जानते हैं कि गैल्वैनी सेल रासायनिक ऊर्जा को सीधे ही विद्युत ऊर्जा में बदल देती है एवं इसकी दक्षता भी अधिक है। अब ऐसे सेलों का निर्माण संभव है जिनमें अभिकर्मकों को लगातार इलैक्ट्रोडों पर उपलब्ध कराया जा सकता है तथा उत्पादों को वैद्युतअपघट्य कक्ष से लगातार हटाया जा सकता है। ऐसी गैल्वैनी सेलों को जिनमें हाइड्रोजन, मेथेन एवं मेथेनॉल आदि जैसे ईंधनों की दहन ऊर्जा को सीधे ही विद्युत ऊर्जा में परिवर्तित किया जाता है, ईंधन सेल कहते हैं।

चित्र 2.12- ईंधन सेल जो $\mathrm{H} _{2}$ और $\mathrm{O} _{2}$ का उपयोग कर विद्युत उत्पादन करती है।

सबसे अधिक सफल ईंधन सेल में हाइड्रोजन एवं ऑक्सीजन के संयोग से जल बनने की अभिक्रिया का उपयोग किया जाता है (चित्र 2.12)। इस सेल को अपोलो अंतरिक्ष कार्यक्रम में विद्युत ऊर्जा प्रदान करने के लिए प्रयोग में लाया गया था। इस अभिक्रिया से प्राप्त जल वाष्प को संघनित कर उसका उपयोग अंतरिक्ष यात्रियों के लिए पेयजल के रूप में किया गया था। सेल में हाइड्रोजन एवं ऑक्सीजन गैसों के बुलबुलों को सरंध्र कार्बन इलैक्ट्रोडों के माध्यम से सांद्र जलीय सोडियम हाइड्रॉक्साइड विलयन में प्रवाहित किया जाता है। इलैक्ट्रोड अभिक्रिया की दर बढ़ाने के लिए सूक्ष्म विभाजित प्लैटिनम या पैलेडियम धातु, जैसे उत्प्रेरकों को इलैक्ट्रोडों में समावेशित किया जाता है। इलैक्ट्रोड अभिक्रियाएं नीचे दी गई हैं-

कैथोड- $\mathrm{O}_2(\mathrm{~g})+2 \mathrm{H}_2 \mathrm{O}(\mathrm{l})+4 \mathrm{e}^{-} \longrightarrow 4 \mathrm{OH}^{-}$(aq)

ऐनोड- $\quad 2 \mathrm{H}_2(\mathrm{~g})+4 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow 4 \mathrm{H}_2 \mathrm{O}(\mathrm{l})+4 \mathrm{e}^{-}$

समग्र अभिक्रिया इस प्रकार है- $$ 2 \mathrm{H}_2(\mathrm{~g})+\mathrm{O}_2(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_2 \mathrm{O}(l) $$

जब तक अभिक्रियकों की आपूर्ति होती है, सेल लगातार कार्य करती है। ऊष्मीय संयंत्रों की तुलना में जिनकी दक्षता $40 \%$ होती है, ईंधन सेल $70 \%$ दक्षता के साथ विद्युत उत्पादित करती हैं। ईंधन सेलों की दक्षता बढ़ाने के लिए नए इलैक्ट्रोड पदार्थ उन्नत उत्प्रेरक एवं वैद्युतअपघट्यों के विकास में बहुत अधिक उन्नति हुई है। इनका उपयोग वाहनों में प्रयोग के तौर पर किया गया है। ईंधन सेल प्रदूषण मुक्त होते हैं एवं भविष्य में इनके महत्व को देखते हुए अनेक प्रकार के ईंधन सेलों को निर्मित कर उनका परीक्षण किया गया है।

2.8 संक्षारण

चित्र 2.13- लोहे का

संक्षारण धातुओं की सतह को ऑक्साइड या धातु के अन्य लवणों से मंद गति से आव्रणित कर देता है। लोहे में जंग लगना, चाँदी का बदरंग होना, कॉपर एवं पीतल पर हरे रंग का लेप होना, संक्षारण के कुछ उदाहरण हैं। यह भवनों, पुलों, जहाज़ों तथा धातुओं से बनी सभी वस्तुओं, विशेषकर लोहे से बनी वस्तुओं को अत्यधिक क्षति पहुँचाता है। संक्षारण के कारण हमें प्रतिवर्ष करोड़ों रुपयों की हानि होती है।

संक्षारण में, धातु ऑक्सीजन को इलेक्ट्रॉन देकर ऑक्सीकृत हो जाती है एवं उसका ऑक्साइड बन जाता है। लोहे का संक्षारण (सामान्यतः जिसे जंग लगना कहते हैं) जल एवं वायु की उपस्थिति में होता है। संक्षारण का रसायन बहुत जटिल है परंतु इसे मुख्यतः वैद्युतरासायनिक परिघटना माना जा सकता है। लोहे से बनी किसी वस्तु के विशेष स्थल पर जब ऑक्सीकरण होता है तो वह स्थान ऐनोड का कार्य करता है (चित्र 2.13) तथा इसे हम निम्नलिखित अभिक्रिया से व्यक्त कर सकते हैं-

$ \text { ऐनोड- } 2 \mathrm{Fe}(\mathrm{s}) \longrightarrow 2 \mathrm{Fe}^{2+}+4 \mathrm{e}^{-} \quad E _{\left(\mathrm{Fe}^{2+} / \mathrm{Fe}\right)}^{\ominus}=-0.44 \mathrm{~V} $

ऐनोडी स्थल पर मुक्त इलेक्ट्रॉन, धातु के माध्यम से संचालन कर धातु के दूसरे स्थल पर पहुँचते हैं तथा वहाँ $\mathrm{H}^{+}$आयन की उपस्थिति में ऑक्सीजन का अपचयन करते हैं। (समझा जाता है कि $\mathrm{H}^{+}$आयन $\mathrm{CO} _{2}$ के जल में घुलने से बने $\mathrm{H} _{2} \mathrm{CO} _{3}$ से प्राप्त होते हैं। हाइड्रोजन आयन वायुमंडल में उपस्थित अन्य अम्लीय ऑक्साइडों के जल में घुलने से भी उपलब्ध हो सकते हैं)। यह स्थल निम्नलिखित अभिक्रिया के कारण कैथोड की तरह व्यवहार करता है-

कैथोड- $\mathrm{O_2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H_2} \mathrm{O}$ (l) $E_{\mathrm{H}^{+}\left|\mathrm{O_2}\right| \mathrm{H_2} \mathrm{O}}^{\mathrm{o}}=1.23 \mathrm{~V}$

समग्र अभिक्रिया-

$2 \mathrm{Fe}(\mathrm{s})+\mathrm{O} _2(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{H} _2 \mathrm{O}$ (l) $\quad E _{(\text {सेल) }}^{\ominus}=1.67 \mathrm{~V}$

इसके उपरांत वायुमंडलीय ऑक्सीजन द्वारा फेरस आयन और अधिक आक्सीकृत होकर फेरिक आयनों में बदल जाते हैं जो जलयोजित फेरिक ऑक्साइड $\left(\mathrm{Fe} _{2} \mathrm{O} _{3} \times \mathrm{H} _{2} \mathrm{O}\right)$ बनाकर जंग के रूप में दिखाई देते हैं एवं इसके साथ ही हाइड्रोजन आयन पुनः उत्पन्न हो जाते हैं।

संक्षारण की रोकथाम अत्यधिक महत्वपूर्ण है। इससे न केवल धन की बचत होती है अपितु पुलों के टूटने या संक्षारण के कारण किसी महत्वपूर्ण घटक के निष्क्रिय होने जैसी दुर्घटनाओं को रोकने में मदद मिलती है। संक्षारक निरोध की सबसे सरल विधि है, धात्विक सतह को वायुमंडल के संपर्क में न आने देना। यह सतह को पेंट या अन्य रसायनों (उदाहरण, बिसफीनॉल) से लेपित करके किया जा सकता है। एक अन्य सरल विधि है, सतह को किसी अन्य ऐसी धातु ( $\mathrm{Sn}, \mathrm{Zn}$ आदि) से आच्छादित करना जो अक्रिय हो या वस्तु की रक्षा के लिए क्रिया में भाग ले। एक वैद्युतरासायनिक विधि है, किसी अन्य ऐसी धातु (जैसे- $\mathrm{Mg}$, $\mathrm{Zn}$ आदि) का उत्सर्ग इलैक्ट्रोड उपलब्ध कराना, जो स्वयं संक्षारित होकर वस्तु की रक्षा करती है।

$$ \begin{aligned} & \text { ऑक्सीकरण- } \mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \\ & \text {अपचयन- } \mathrm{O} _{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H} _{2} \mathrm{O}(l) \\ & \text { वायुमंडलीय ऑक्सीकरण- } \\ & 2 \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{H} _{2} \mathrm{O}(\mathrm{l})+\frac{1}{2} \mathrm{O} _{2}(\mathrm{~g}) \rightarrow \mathrm{Fe} _{2} \mathrm{O} _{3}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq}) \end{aligned} $$

पाठ्यनिहित प्रश्न

2.13 चार्जिंग के दौरान प्रयुक्त पदार्थों का विशेष उल्लेख करते हुए लेड संचायक सेल की चार्जिंग क्रियाविधि का वर्णन रासायनिक अभिक्रियाओं की सहायता से कीजिए।

Show Answer #missing

2.14 हाइड्रोजन को छोड़कर ईंधन सेलों में प्रयुक्त किये जा सकने वाले दो अन्य पदार्थ सुझाइए।

Show Answer #missing

2.15 समझाइए कि कैसे लोहे पर जंग लगने का कारण एक वैद्युतरासायनिक सेल बनना माना जाता है।

Show Answer #missing

हाइड्रोजन का अर्थशास्त्र

वर्तमान में हमारी अर्थव्यवस्था को चलाने वाले ऊर्जा के मुख्य स्रोत जीवाश्म ईंधन जैसे कोयला, तेल और गैस हैं। जैसे-जैसे धरती पर लोग अपना जीवन स्तर सुधारना चाहते हैं, तदनुसार उनकी ऊर्जा की आवश्यकता भी बढ़ेगी। वास्तव में, ऊर्जा का प्रति व्यक्ति उपभोग विकास का पैमाना माना जाता है। बेशक इसमें यह माना गया है कि ऊर्जा उत्पादन कार्यों में प्रयुक्त होती है न कि व्यर्थ ही गँवाई जाती है। हम पहले से ही जानते हैं कि ‘ग्रीन हाउस प्रभाव’ जीवाश्म ईंधनों के दहन से उत्पन्न कार्बन डाइऑक्साइड का ही परिणाम है। इससे पृथ्वी की सतह का ताप बढ़ रहा है तथा इससे ध्रुवीय बर्फ़ पिघलने लगी है एवं महासागरों का स्तर बढ़ने लगा है। इससे समुद्रों के किनारे के निम्नस्तरीय क्षेत्रों में बाढ़ आ जाएगी एवं कुछ राष्ट्र जो कि द्वीप हैं, जैसे मालदीव, के पूर्णतः डूब जाने का खतरा है। इस प्रकार के प्रलय से बचने के लिए हमें कार्बन युक्त ईंधनों के प्रयोग को सीमित करने की आवश्यकता है। हाइड्रोजन इसका आदर्श विकल्प है; क्योंकि इसके दहन से केवल जल बनता है। यह हाइड्रोजन सौर ऊर्जा द्वारा जल के वियोजन से प्राप्त होनी चाहिए। इस प्रकार हाइड्रोजन ऊर्जा के एक नवीकरणीय एवं अप्रदूषक स्रोत के रूप में प्रयोग की जा सकती है। यही हाइड्रोजन अर्थशास्त्र की परिकल्पना है। जल के वैद्युतअपघटन से हाइड्रोजन का उत्पादन एवं इंधन सेल में हाइड्रोजन का दहन दोनों ही भविष्य में महत्वपूर्ण होंगे। ये दोनों ही तकनीकें वैद्युतरासायनिक सिद्धांतों पर आधारित हैं।

सारांश

एक वैद्युतरासायनिक सेल में दो धात्विक इलैक्ट्रोड वैद्युतअपघटनी विलयन (विलयनों) में निमज्जित रहते हैं। इस प्रकार वैद्युतरासायनिक सेल का एक महत्वपूर्ण घटक आयनिक चालक या वैद्युतअपघट्य है। वैद्युतरासायनिक सेल दो प्रकार के होती हैं। गैल्वेनी सेल में एक स्वतः रेडॉक्स अभिक्रिया की रासायनिक ऊर्जा विद्युत ऊर्जा में रूपान्तरित होती है, जबकि वैद्युतअपघटनी सेल में विद्युत ऊर्जा का उपयोग एक अस्वतः रेडॉक्स अभिक्रिया को कराने में होता है। एक उपयुक्त विलयन में निमज्जित इलैक्ट्रोड का मानक इलैक्ट्रोड विभव हाइड्रोजन इलैक्ट्रोड के सापेक्ष में परिभाषित किया जाता है, जिसका मानक विभव शून्य माना जाता है। सेल का मानक विभव कैथोड एवं ऐनोड के मानक विभवों के अंतर से प्राप्त किया जाता है ( $E _{\text {(सेल) }}^{\ominus}=E _{\text {कैथोड }}^{\ominus}-E _{\text {ऐनोड }}^{\ominus}$ ) सेलों के मानक विभव, सेल में होने वाली अभिक्रिया की मानक गिब्ज़ ऊर्जा $\left(\ddot{A} _{r} G^{\ominus}=-n F E _{(\text {सेल) }}^{\ominus}\right.$ ) एवं समम्यावस्था स्थिरांक ( $\left.\ddot{A} _{r} G^{\ominus}=-R T \ln K\right)$ से संबंधित होते हैं। इलैक्ट्रोडों एवं सेलों के विभवों की सांद्रता पर निर्भरता नेन्न्स्ट समीकरण द्वारा दी जाती है।

एक वैद्युतअपघटनी विलयन की चालकता, $\kappa$, वैद्युतअपघट्य की सांद्रता, विलायक की प्रकृति एवं ताप पर निर्भर करती है। मोलर चालकता, $\ddot{E} _{m}$, को $\ddot{E} _{m}=\kappa / c$ द्वारा परिभाषित किया जाता है जहाँ $c$ मोलर सांद्रता है। सांद्रता घटने के साथ चालकता घटती है जबकि मोलर चालकता बढ़ती है। प्रबल वैद्युतअपघट्यों के लिए यह सांद्रता घटने के साथ धीमे-धीमे बढ़ती है जबकि तनु विलयनों में दुर्बल वैद्युतअपघट्यों के लिए यह वृद्धि बहुत तेज़ी से होती है। कोलराउश ने पाया कि किसी वैद्युतअपघट्य की अनंत तनुता पर मोलर चालकता उन आयनों की मोलर चालकताओं के योगदान के तुल्य होती है जिनमें यह वियोजित होता है। इसे आयनों के स्वतंत्र अभिगमन का नियम कहते हैं एवं इसके कई अनुप्रयोग हैं। वैद्युतरासायनिक सेल में उपस्थित विलयन में विद्युत का संचालन आयनों द्वारा होता है परंतु ऑक्सीकरण एवं अपचयन की प्रक्रिया इलैक्ट्रोडों पर होती है। बैटरियाँ एवं ईंधन सेल गैल्वेनी सेलों के बहुत उपयोगी रूप हैं। धातुओं का संक्षारण आवश्यक रूप से एक वैद्युतरासायनिक परिघटना है। वैद्युतरासायनिक सिद्धांत हाइड्रोजन-अर्थशास्त्र के संगत हैं।

अभ्यास

2.1 निम्नलिखित धातुओं को उस क्रम में व्यवस्थित कीजिए जिसमें वे एक दूसरे को उनके लवणों के विलयनों में से प्रतिस्थापित करती हैं।

$\mathrm{Al}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mg}$ एवं $\mathrm{Zn}$.

Show Answer #missing

2.2 नीचे दिए गए मानक इलैक्ट्रोड विभवों के आधार पर धातुओं को

$\mathrm{K}^{+} / \mathrm{K}=-2.93 \mathrm{~V}, \mathrm{Ag}^{+} / \mathrm{Ag}=0.80 \mathrm{~V}$,

$\mathrm{Hg}^{2+} / \mathrm{Hg}=0.79 \mathrm{~V}$

$\mathrm{Mg}^{2+} / \mathrm{Mg}=-2.37 \mathrm{~V}, \mathrm{Cr}^{3+} / \mathrm{Cr}=-0.74 \mathrm{~V}$

उनकी बढ़ती हुई अपचायक क्षमता के क्रम में व्यवस्थित कीजिए।

Show Answer #missing

2.3 उस गैल्वैनी सेल को दर्शाइए जिसमें निम्नलिखित अभिक्रिया होती है-

$\mathrm{Zn}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$, अब बताइए-

(i) कौन-सा इलैक्ट्रोड ॠणात्मक आवेशित है?

(ii) सेल में विद्युत-धारा के वाहक कौन से हैं?

(iii) प्रत्येक इलैक्ट्रोड पर होने वाली अभिक्रिया क्या है?

Show Answer #missing

2.4 निम्नलिखित अभिक्रियाओं वाले गैल्वैनी सेल का मानक सेल-विभव परिकलित कीजिए।

(i) $2 \mathrm{Cr}(\mathrm{s})+3 \mathrm{Cd}^{2+}(\mathrm{aq}) \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{Cd}$

(ii) $\mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Ag}(\mathrm{s})$

उपरोक्त अभिक्रियाओं के लिए $\Delta _{r} G^{\ominus}$ एवं साम्य स्थिरांकों की भी गणना कीजिए।

Show Answer #missing

2.5 निम्नलिखित सेलों की $298 \mathrm{~K}$ पर नेर्न्स्ट समीकरण एवं $\mathrm{emf}$ लिखिए।

(i) $\mathrm{Mg}(\mathrm{s})\left|\mathrm{Mg}^{2+}(0.001 \mathrm{M}) \| \mathrm{Cu}^{2+}(0.0001 \mathrm{M})\right| \mathrm{Cu}(\mathrm{s})$

(ii) $\mathrm{Fe}(\mathrm{s})\left|\mathrm{Fe}^{2+}(0.001 \mathrm{M}) \| \mathrm{H}^{+}(1 \mathrm{M})\right| \mathrm{H} _{2}$ (g) (1bar) $\mid \mathrm{Pt}(\mathrm{s})$

(iii) $\mathrm{Sn}(\mathrm{s})\left|\mathrm{Sn}^{2+}(0.050 \mathrm{M}) \| \mathrm{H}^{+}(0.020 \mathrm{M})\right| \mathrm{H} _{2}$ (g) (1 bar) $\mid \mathrm{Pt}(\mathrm{s})$

(iv) $\mathrm{Pt}(\mathrm{s})\left|\mathrm{Br}^{-}(0.010 \mathrm{M})\right| \mathrm{Br} _{2}(l) \| \mathrm{H}^{+}(0.030 \mathrm{M}) \mid \mathrm{H} _{2}$ (g) (1 bar) $\mid \mathrm{Pt}(\mathrm{s})$.

Show Answer #missing

2.6 घड़ियों एवं अन्य युक्तियों में अत्यधिक उपयोग में आने वाली बटन सेलों में निम्नलिखित अभिक्रिया होती है-

$\mathrm{Zn}(\mathrm{s})+\mathrm{Ag} _{2} \mathrm{O}(\mathrm{s})+\mathrm{H} _{2} \mathrm{O}(l) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{OH}^{-}(\mathrm{aq})$

अभिक्रिया के लिए $\Delta _{r} G^{\ominus}$ एवं $E^{\ominus}$ ज्ञात कीजिए।

Show Answer #missing

2.7 किसी वैद्युतअपघट्य के विलयन की चालकता एवं मोलर चालकता की परिभाषा दीजिये। सांद्रता के साथ इनके परिवर्तन की विवेचना कीजिए।

Show Answer #missing

2.8 $298 \mathrm{~K}$ पर $0.20 \mathrm{M} \mathrm{KCl}$ विलयन की चालकता $0.0248 \mathrm{~S} \mathrm{~cm}^{-1}$ है। इसकी मोलर चालकता का परिकलन कीजिए।

Show Answer #missing

2.9 $298 \mathrm{~K}$ पर एक चालकता सेल जिसमें $0.001 \mathrm{M} \mathrm{KCl}$ विलयन है, का प्रतिरोध $1500 \Omega$ है। यदि $0.001 \mathrm{M} \mathrm{KCl}$ विलयन की चालकता $298 \mathrm{~K}$ पर $0.146 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$ हो तो सेल स्थिरांक क्या है?

Show Answer #missing

2.10 $298 \mathrm{~K}$ पर सोडियम क्लोराइड की विभिन्न सांद्रताओं पर चालकता का मापन किया गया जिसके आँकड़े निम्नलिखित हैं-

$\begin{array}{llllll}\text { सांद्रता/M } & 0.001 & 0.010 & 0.020 & 0.050 & 0.100 \\ 10^{2} \times \kappa / \mathrm{S} \mathrm{m}^{-1} & 1.237 & 11.85 & 23.15 & 55.53 & 106.74\end{array}$

सभी सांद्रताओं के लिए $\Lambda _{m}$ का परिकलन कीजिए एवं $\Lambda _{m}$ तथा $\mathrm{c}^{1 / 2}$ के मध्य एक आलेख खींचिए। $\Lambda _{m}^{\circ}$ का मान ज्ञात कीजिए।

Show Answer #missing

2.11 $0 .00241 \mathrm{M}$ ऐसीटिक अम्ल की चालकता $7.896 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}$ है। इसकी मोलर चालकता को परिकलित कीजिए। यदि ऐसीटिक अम्ल के लिए $\Lambda _{m}^{0}$ का मान $390.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ हो तो इसका वियोजन स्थिरांक क्या है?

Show Answer #missing

2.12 निम्नलिखित के अपचयन के लिए कितने आवेश की आवश्यकता होगी?

(i) 1 मोल $\mathrm{Al}^{3+}$ को $\mathrm{Al}$ में

(ii) 1 मोल $\mathrm{Cu}^{2+}$ को $\mathrm{Cu}$ में

(iii) 1 मोल $\mathrm{MnO} _{4}^{-}$को $\mathrm{Mn}^{2+}$ में

Show Answer #missing

2.13 निम्नलिखित को प्राप्त करने में कितने फैराडे विद्युत की आवश्यकता होगी?

(i) गलित $\mathrm{CaCl} _{2}$ से $20.0 \mathrm{~g} \mathrm{Ca}$

(ii) गलित $\mathrm{Al} _{2} \mathrm{O} _{3}$ से $40.0 \mathrm{~g} \mathrm{Al}$

Show Answer #missing

2.14 निम्नलिखित को ऑक्सीकृत करने के लिए कितने कूलॉम विद्युत आवश्यक है?

(i) 1 मोल $\mathrm{H} _{2} \mathrm{O}$ को $\mathrm{O} _{2}$ में।

(ii) 1 मोल $\mathrm{FeO}$ को $\mathrm{Fe} _{2} \mathrm{O} _{3}$ में।

Show Answer #missing

2.15 $\mathrm{Ni}\left(\mathrm{NO} _{3}\right) _{2}$ के एक विलयन का प्लैटिनम इलैक्ट्रोडों के बीच 5 ऐम्पियर की धारा प्रवाहित करते हुए 20 मिनट तक विद्युत अपघटन किया गया। $\mathrm{Ni}$ की कितनी मात्रा कैथोड पर निक्षेपित होगी?

Show Answer #missing

2.16 $\mathrm{ZnSO} _{4}, \mathrm{AgNO} _{3}$ एवं $\mathrm{CuSO} _{4}$ विलयन वाले तीन वैद्युतअपघटनी सेलों $\mathrm{A}, \mathrm{B}, \mathrm{C}$ को श्रेणीबद्ध किया गया एवं 1.5 ऐम्पियर की विद्युतधारा, सेल $\mathrm{B}$ के कैथोड पर $1.45 \mathrm{~g}$ सिल्वर निक्षेपित होने तक लगातार प्रवाहित की गई। विद्युतधारा कितने समय तक प्रवाहित हुई? निक्षेपित कॉपर एवं जिंक का द्रव्यमान क्या होगा?

Show Answer #missing

2.17 तालिका 2.1 में दिए गए मानक इलैक्ट्रोड विभवों की सहायता से अनुमान लगाइए कि क्या निम्नलिखित अभिकर्मकों के बीच अभिक्रिया संभव है?

(i) $\mathrm{Fe}^{3+}(\mathrm{aq})$ और $\mathrm{I}^{-}(\mathrm{aq})$

(ii) $\mathrm{Ag}^{+}(\mathrm{aq})$ और $\mathrm{Cu}(\mathrm{s})$

(iii) $\mathrm{Fe}^{3+}$ (aq) और $\mathrm{Br}^{-}(\mathrm{aq})$

(iv) $\mathrm{Ag}(\mathrm{s})$ और $\mathrm{Fe}^{3+}(\mathrm{aq})$

(v) $\mathrm{Br} _{2}(\mathrm{aq})$ और $\mathrm{Fe}^{2+}(\mathrm{aq})$.

Show Answer #missing

2.18 निम्नलिखित में से प्रत्येक के लिए वैद्युतअपघटन से प्राप्त उत्पाद बताइए।

(i) सिल्वर इलैक्ट्रोडों के साथ $\mathrm{AgNO} _{3}$ का जलीय विलयन

(ii) प्लैटिनम इलैक्ट्रोडों के साथ $\mathrm{AgNO} _{3}$ का जलीय विलयन

(iii) प्लैटिनम इलैक्ट्रोडों के साथ $\mathrm{H} _{2} \mathrm{SO} _{4}$ का तनु विलयन

(iv) प्लैटिनम इलैक्ट्रोडों के साथ $\mathrm{CuCl} _{2}$ का जलीय विलयन

Show Answer #missing


Table of Contents