Chapter-08 Cell: The Unit of Life
When you look around, you see both living and non-living things. You must have wondered and asked yourself - ‘what is it that makes an organism living, or what is it that an inanimate thing does not have which a living thing has’ ? The answer to this is the presence of the basic unit of life - the cell in all living organisms.
All organisms are composed of cells. Some are composed of a single cell and are called unicellular organisms while others, like us, composed of many cells, are called multicellular organisms.
8.1 WHAT IS A CELL?
Unicellular organisms are capable of (i) independent existence and (ii) performing the essential functions of life. Anything less than a complete structure of a cell does not ensure independent living. Hence, cell is the fundamental structural and functional unit of all living organisms.
Anton Von Leeuwenhoek first saw and described a live cell. Robert Brown later discovered the nucleus. The invention of the microscope and its improvement leading to the electron microscope revealed all the structural details of the cell.
8.2 CELL THEORY
In 1838, Matthias Schleiden, a German botanist, examined a large number of plants and observed that all plants are composed of different kinds of cells which form the tissues of the plant. At about the same time, Theodore Schwann (1839), a British Zoologist, studied different types of animal cells and reported that cells had a thin outer layer which is today known as the ‘plasma membrane’. He also concluded, based on his studies on plant tissues, that the presence of cell wall is a unique character of the plant cells. On the basis of this, Schwann proposed the hypothesis that the bodies of animals and plants are composed of cells and products of cells.
Schleiden and Schwann together formulated the cell theory. This theory however, did not explain as to how new cells were formed. Rudolf Virchow (1855) first explained that cells divided and new cells are formed from pre-existing cells (Omnis cellula-e cellula). He modified the hypothesis of Schleiden and Schwann to give the cell theory a final shape. Cell theory as understood today is:
(i) all living organisms are composed of cells and products of cells.
(ii) all cells arise from pre-existing cells.
8.3 AN OVERVIEW OF CELL
You have earlier observed cells in an onion peel and/or human cheek cells under the microscope. Let us recollect their structure. The onion cell which is a typical plant cell, has a distinct cell wall as its outer boundary and just within it is the cell membrane. The cells of the human cheek have an outer membrane as the delimiting structure of the cell. Inside each cell is a dense membrane bound structure called nucleus. This nucleus contains the chromosomes which in turn contain the genetic material, DNA. Cells that have membrane bound nuclei are called eukaryotic whereas cells that lack a membrane bound nucleus are prokaryotic. In both prokaryotic and eukaryotic cells, a semi-fluid matrix called cytoplasm occupies the volume of the cell. The cytoplasm is the main arena of cellular activities in both the plant and animal cells. Various chemical reactions occur in it to keep the cell in the ‘living state’.
Besides the nucleus, the eukaryotic cells have other membrane bound distinct structures called organelles like the endoplasmic reticulum (ER), the golgi complex, lysosomes, mitochondria, microbodies and vacuoles. The prokaryotic cells lack such membrane bound organelles.
Ribosomes are non-membrane bound organelles found in all cells - both eukaryotic as well as prokaryotic. Within the cell, ribosomes are found not only in the cytoplasm but also within the two organelles - chloroplasts (in plants) and mitochondria and on rough ER.
Animal cells contain another non-membrane bound organelle called centrosome which helps in cell division.
Figure 8.1 Diagram showing different shapes of the cells
Cells differ greatly in size, shape and activities (Figure 8.1). For example, Mycoplasmas, the smallest cells, are only 0.3 µm in length while bacteria could be 3 to 5 µm. The largest isolated single cell is the egg of an ostrich. Among multicellular organisms, human red blood cells are about 7.0 µm in diameter. Nerve cells are some of the longest cells. Cells also vary greatly in their shape. They may be disc-like, polygonal, columnar, cuboid, thread like, or even irregular. The shape of the cell may vary with the function they perform.
8.4 PROKARYOTIC CELLS
The prokaryotic cells are represented by bacteria, blue-green algae, mycoplasma and PPLO (Pleuro Pneumonia Like Organisms). They are generally smaller and multiply more rapidly than the eukaryotic cells (Figure 8.2). They may vary greatly in shape and size. The four basic shapes of bacteria are bacillus (rod like), coccus (spherical), vibrio (comma shaped) and spirillum (spiral).
Figure 8.2 Diagram showing comparison of eukaryotic cell with other organisms
The organisation of the prokaryotic cell is fundamentally similar even though prokaryotes exhibit a wide variety of shapes and functions. All prokaryotes have a cell wall surrounding the cell membrane except in mycoplasma. The fluid matrix filling the cell is the cytoplasm. There is no well-defined nucleus. The genetic material is Typical bacteria basically naked, not enveloped by a nuclear (1-2 mm) membrane. In addition to the genomic DNA (the single chromosome/circular DNA), many bacteria have small circular DNA outside the genomic DNA. These smaller DNA are called PPLO plasmids. The plasmid DNA confers certain (about 0.1 mm) unique phenotypic characters to such bacteria. One such character is resistance to antibiotics. In higher classes you will learn that this plasmid Viruses A typical eukaryotic cell DNA is used to monitor bacterial transformation (0.02-0.2 mm) (10-20 mm) with foreign DNA. Nuclear membrane is found in eukaryotes. No organelles, like the ones in for ribosomes. Prokaryotes have something unique in the form of inclusions. A specialised differentiated form of cell membrane called mesosome is the characteristic of prokaryotes. They are essentially infoldings of cell membrane.
8.4.1 Cell Envelope and its Modifications
Most prokaryotic cells, particularly the bacterial cells, have a chemically complex cell envelope. The cell envelope consists of a tightly bound three layered structure i.e., the outermost glycocalyx followed by the cell wall and then the plasma membrane. Although each layer of the envelope performs distinct function, they act together as a single protective unit. Bacteria can be classified into two groups on the basis of the differences in the cell envelopes and the manner in which they respond to the staining procedure developed by Gram viz., those that take up the gram stain are Gram positive and the others that do not are called Gram negative bacteria.
Glycocalyx differs in composition and thickness among different bacteria. It could be a loose sheath called the slime layer in some, while in others it may be thick and tough, called the capsule. The cell wall determines the shape of the cell and provides a strong structural support to prevent the bacterium from bursting or collapsing.
The plasma membrane is selectively permeable in nature and interacts with the outside world. This membrane is similar structurally to that of the eukaryotes.
A special membranous structure is the mesosome which is formed by the extensions of plasma membrane into the cell. These extensions are in the form of vesicles, tubules and lamellae. They help in cell wall formation, DNA replication and distribution to daughter cells. They also help in respiration, secretion processes, to increase the surface area of the plasma membrane and enzymatic content. In some prokaryotes like cyanobacteria, there are other membranous extensions into the cytoplasm called chromatophores which contain pigments.
Bacterial cells may be motile or non-motile. If motile, they have thin filamentous extensions from their cell wall called flagella. Bacteria show a range in the number and arrangement of flagella. Bacterial flagellum is composed of three parts - filament, hook and basal body. The filament is the longest portion and extends from the cell surface to the outside.
Besides flagella, Pili and Fimbriae are also surface structures of the bacteria but do not play a role in motility. The pili are elongated tubular structures made of a special protein. The fimbriae are small bristle like fibres sprouting out of the cell. In some bacteria, they are known to help attach the bacteria to rocks in streams and also to the host tissues.
8.4.2 Ribosomes and Inclusion Bodies
In prokaryotes, ribosomes are associated with the plasma membrane of the cell. They are about 15 nm by 20 nm in size and are made of two subunits - 50S and 30S units which when present together form 70S prokaryotic ribosomes. Ribosomes are the site of protein synthesis. Several ribosomes may attach to a single mRNA and form a chain called polyribosomes or polysome. The ribosomes of a polysome translate the mRNA into proteins.
Inclusion bodies: Reserve material in prokaryotic cells are stored in the cytoplasm in the form of inclusion bodies. These are not bound by any membrane system and lie free in the cytoplasm, e.g., phosphate granules, cyanophycean granules and glycogen granules. Gas vacuoles are found in blue green and purple and green photosynthetic bacteria.
8.5 EUKARYOTIC CELLS
The eukaryotes include all the protists, plants, animals and fungi. In eukaryotic cells there is an extensive compartmentalisation of cytoplasm through the presence of membrane bound organelles. Eukaryotic cells possess an organised nucleus with a nuclear envelope. In addition, eukaryotic cells have a variety of complex locomotory and cytoskeletal structures. Their genetic material is organised into chromosomes.
All eukaryotic cells are not identical. Plant and animal cells are different as the former possess cell walls, plastids and a large central vacuole which are absent in animal cells. On the other hand, animal cells have centrioles which are absent in almost all plant cells (Figure 8.3).Let us now look at individual cell organelles to understand their structure and functions.
Figure 8.3 Diagram showing : (a) Plant cell (b) Animal cell
8.5.1 Cell Membrane
The detailed structure of the membrane was studied only after the advent of the electron microscope in the 1950s. Meanwhile, chemical studies on the cell membrane, especially in human red blood cells (RBCs), enabled the scientists to deduce the possible structure of plasma membrane.
These studies showed that the cell membrane is mainly composed of lipids and proteins. The major lipids are phospholipids that are arranged in a bilayer. Also, the lipids are arranged within the membrane with the polar head towards the outer sides and the hydrophobic tails towards the inner part.This ensures that the nonpolar tail of saturated hydrocarbons is protected from the aqueous environment (Figure 8.4). In addition to phospholipids membrane also contains cholesterol.
Later, biochemical investigation clearly revealed that the cell membranes also possess protein and carbohydrate. The ratio of protein and lipid varies considerably in different cell types. In human beings, the membrane of the erythrocyte has approximately 52 per cent protein and 40 per cent lipids.
Depending on the ease of extraction, membrane proteins can be classified as integral and peripheral. Peripheral proteins lie on the surface of membrane while the integral proteins are partially or totally buried in the membrane.
Figure 8.4 Fluid mosaic model of plasma membrane
An improved model of the structure of cell membrane was proposed by Singer and Nicolson (1972) widely accepted as fluid mosaic model (Figure 8.4). According to this, the quasi-fluid nature of lipid enables lateral movement of proteins within the overall bilayer. This ability to move within the membrane is measured as its fluidity.
The fluid nature of the membrane is also important from the point of view of functions like cell growth, formation of intercellular junctions, secretion, endocytosis, cell division etc.
One of the most important functions of the plasma membrane is the transport of the molecules across it. The membrane is selectively permeable to some molecules present on either side of it. Many molecules can move briefly across the membrane without any requirement of energy and this is called the passive transport. Neutral solutes may move across the membrane by the process of simple diffusion along the concentration gradient, i.e., from higher concentration to the lower. Water may also move across this membrane from higher to lower concentration. Movement of water by diffusion is called osmosis. As the polar molecules cannot pass through the nonpolar lipid bilayer, they require a carrier protein of the membrane to facilitate their transport across the membrane. A few ions or molecules are transported across the membrane against their concentration gradient, i.e., from lower to the higher concentration. Such a transport is an energy dependent process, in which ATP is utilised and is called active transport, e.g., Na+/K+ Pump.
8.5.2 Cell Wall
As you may recall, a non-living rigid structure called the cell wall forms an outer covering for the plasma membrane of fungi and plants. Cell wall not only gives shape to the cell and protects the cell from mechanical damage and infection, it also helps in cell-to-cell interaction and provides barrier to undesirable macromolecules. Algae have cell wall, made of cellulose, galactans, mannans and minerals like calcium carbonate, while in other plants it consists of cellulose, hemicellulose, pectins and proteins. The cell wall of a young plant cell, the primary wall is capable of growth, which gradually diminishes as the cell matures and the secondary wall is formed on the inner (towards membrane) side of the cell.
The middle lamella is a layer mainly of calcium pectate which holds or glues the different neighbouring cells together. The cell wall and middle lamellae may be traversed by plasmodesmata which connect the cytoplasm of neighbouring cells.
8.5.3 Endomembrane System
While each of the membranous organelles is distinct in terms of its structure and function, many of these are considered together as an endomembrane system because their functions are coordinated. The endomembrane system include endoplasmic reticulum (ER), golgi complex, lysosomes and vacuoles. Since the functions of the mitochondria, chloroplast and peroxisomes are not coordinated with the above components, these are not considered as part of the endomembrane system.
8.5.3.1 The Endoplasmic Reticulum (ER)
Electron microscopic studies of eukaryotic cells reveal the presence of a network or reticulum of tiny tubular structures scattered in the cytoplasm that is called the endoplasmic reticulum (ER) (Figure 8.5). Hence, ER divides the intracellular space into two distinct compartments, i.e., luminal (inside ER) and extra luminal (cytoplasm) compartments.
The ER often shows ribosomes attached to their outer surface. The endoplasmic reticulun bearing ribosomes on their surface is called rough endoplasmic reticulum (RER). In the absence of ribosomes they appear smooth and are called smooth endoplasmic reticulum (SER).
RER is frequently observed in the cells actively involved in protein synthesis and secretion. They are extensive and continuous with the outer membrane of the nucleus.
The smooth endoplasmic reticulum is the major site for synthesis of lipid. In animal cells lipid-like steroidal hormones are synthesised in SER.
Figure 8.5 Endoplasmic reticulum
8.5.3.2 Golgi apparatus
Camillo Golgi (1898) first observed densely stained reticular structures near the nucleus. These were later named Golgi bodies after him. They consist of many flat, disc-shaped sacs or cisternae of 0.5µm to 1.0µm diameter (Figure 8.6). These are stacked parallel to each other. Varied number of cisternae are present in a Golgi complex. The Golgi cisternae are concentrically arranged near the nucleus with distinct convex cis or the forming face and concave trans or the maturing face. The cis and the trans faces of the organelle are entirely different, but interconnected.
The golgi apparatus principally performs the function of packaging materials, to be delivered either to the intra-cellular targets or secreted outside the cell. Materials to be packaged in the form of vesicles from the ER fuse with the cis face of the golgi apparatus and move towards the maturing face. This explains, why the golgi apparatus remains in close association with the endoplasmic reticulum. A number of proteins synthesised by ribosomes on the endoplasmic reticulum are modified in the cisternae of the golgi apparatus before they are released from its trans face. Golgi apparatus is the important site of formation of glycoproteins and glycolipids.
Figure 8.6 Golgi apparatus
8.5.3.3 Lysosomes
These are membrane bound vesicular structures formed by the process of packaging in the golgi apparatus. The isolated lysosomal vesicles have been found to be very rich in almost all types of hydrolytic enzymes (hydrolases - lipases, proteases, carbohydrases) optimally active at the acidic pH. These enzymes are capable of digesting carbohydrates, proteins, lipids and nucleic acids.
8.5.3.4 Vacuoles
The vacuole is the membrane-bound space found in the cytoplasm. It contains water, sap, excretory product and other materials not useful for the cell. The vacuole is bound by a single membrane called tonoplast. In plant cells the vacuoles can occupy up to 90 per cent of the volume of the cell.
In plants, the tonoplast facilitates the transport of a number of ions and other materials against concentration gradients into the vacuole, hence their concentration is significantly higher in the vacuole than in the cytoplasm.
In Amoeba the contractile vacuole is important for osmoregulation and excretion. In many cells, as in protists, food vacuoles are formed by engulfing the food particles.
8.5.4 Mitochondria
Mitochondria (sing.: mitochondrion), unless specifically stained, are not easily visible under the microscope. The number of mitochondria per cell is variable depending on the physiological activity of the cells. In terms of shape and size also, considerable degree of variability is observed. Typically it is sausage-shaped or cylindrical having a diameter of 0.2-1.0µm (average 0.5µm) and length 1.0-4.1µm. Each mitochondrion is a double membrane-bound structure with the outer membrane and the inner membrane dividing its lumen distinctly into two aqueous compartments, i.e., the outer compartment and the inner compartment. The inner compartment is filled with a dense homogeneous substance called the matrix. The outer membrane forms the continuous limiting boundary of the organelle. The inner membrane forms a number of infoldings called the cristae (sing.: crista) towards the matrix (Figure 8.7). The cristae increase the surface area. The two membranes have their own specific enzymes associated with the mitochondrial function. Mitochondria are the sites of aerobic respiration. They produce cellular energy in the form of ATP, hence they are called ‘power houses’ of the cell. The matrix also possesses single circular DNA molecule, a few RNA molecules, ribosomes (70S) and the components required for the synthesis of proteins. The mitochondria divide by fission.
Figure 8.7 Structure of mitochondrion (Longitudinal section)
8.5.5 Plastids
Plastids are found in all plant cells and in euglenoides. These are easily observed under the microscope as they are large. They bear some specific pigments, thus imparting specific colours to the plants. Based on the type of pigments plastids can be classified into chloroplasts, chromoplasts and leucoplasts.
The chloroplasts contain chlorophyll and carotenoid pigments which are responsible for trapping light energy essential for photosynthesis. In the chromoplasts fat soluble carotenoid pigments like carotene, xanthophylls and others are present. This gives the part of the plant a yellow, orange or red colour. The leucoplasts are the colourless plastids of varied shapes and sizes with stored nutrients: Amyloplasts store carbohydrates (starch), e.g., potato; elaioplasts store oils and fats whereas the aleuroplasts store proteins.
Majority of the chloroplasts of the green plants are found in the mesophyll cells of the leaves. These are lens-shaped, oval, spherical, discoid or even ribbon-like organelles having variable length (5-10µm) and width (2-4µm). Their number varies from 1 per cell of the Chlamydomonas, a green alga to 20-40 per cell in the mesophyll. Like mitochondria, the chloroplasts are also double membrane bound. Of the two, Figure 8.8 Sectional view of chloroplast the inner chloroplast membrane is relatively less permeable. The space limited by the inner membrane of the chloroplast is called the stroma. A number of organised flattened membranous sacs called the thylakoids, are present in the stroma (Figure 8.8). Thylakoids are arranged in stacks like the piles of coins called grana (singular: granum) or the intergranal thylakoids. In addition, there are flat membranous tubules called the stroma lamellae connecting the thylakoids of the different grana. The membrane of the thylakoids enclose a space called a lumen. The stroma of the chloroplast contains enzymes required for the synthesis of carbohydrates and proteins. It also contains small, doublestranded circular DNA olecules and ribosomes. Chlorophyll pigments are present in the thylakoids. The ribosomes of the chloroplasts are smaller (70S) than the cytoplasmic ribosomes (80S).
Figure 8.8 Sectional view of chloroplast
8.5.6 Ribosomes
Ribosomes are the granular structures first observed under the electron microscope as dense particles by George Palade (1953). They are composed of ribonucleic acid (RNA) and proteins and are not surrounded by any membrane.
The eukaryotic ribosomes are 80S while the prokaryotic ribosomes are 70S. Each ribosome has two subunits, larger and smaller subunits (Fig 8.9). The two subunits of 80S ribosomes are 60S and 40S while that of 70S ribosomes are 50S and 30S. Here ‘S’ (Svedberg’s Unit) stands for the sedimentation coefficient; it is indirectly a measure of density and size. Both 70S and 80S ribosomes are composed of two subunits.
Figure 8.9 Ribosome
8.5.7 Cytoskeleton
An elaborate network of filamentous proteinaceous structures consisting of microtubules, microfilaments and intermediate filaments present in the cytoplasm is collectively referred to as the cytoskeleton. The cytoskeleton in a cell are involved in many functions such as mechanical support, motility, maintenance of the shape of the cell.
Figure 8.10 Section of cilia/flagella showing different parts : (a) Electron micrograph (b) Diagrammatic representation of internal structure
8.5.8 Cilia and Flagella
Cilia (sing.: cilium) and flagella (sing.: flagellum) are hair-like outgrowths of the cell membrane. Cilia are small structures which work like oars, causing the movement of either the cell or the surrounding fluid. Flagella are comparatively longer and responsible for cell movement. The prokaryotic bacteria also possess flagella but these are structurally different from that of the eukaryotic flagella.
The electron microscopic study of a cilium or the flagellum show that they are covered with plasma membrane. Their core called the axoneme, possesses a number of microtubules running parallel to the long axis. The axoneme usually has nine doublets of radially arranged peripheral microtubules, and a pair of centrally located microtubules. Such an arrangement of axonemal microtubules is referred to as the 9+2 array (Figure 8.10). The central tubules are connected by bridges and is also enclosed by a central sheath, which is connected to one of the tubules of each peripheral doublets by a radial spoke. Thus, there are nine radial spokes. The peripheral doublets are also interconnected by linkers. Both the cilium and flagellum emerge from centriole-like structure called the basal bodies.
8.5.9 Centrosome and Centrioles
Centrosome is an organelle usually containing two cylindrical structures called centrioles. They are surrounded by amorphous pericentriolar materials. Both the centrioles in a centrosome lie perpendicular to each other in which each has an organisation like the cartwheel. They are made up of nine evenly spaced peripheral fibrils of tubulin protein. Each of the peripheral fibril is a triplet.The adjacent triplets are also linked. The central part of the proximal region of the centriole is also proteinaceous and called the hub, which is connected with tubules of the peripheral triplets by radial spokes made of protein. The centrioles form the basal body of cilia or flagella, and spindle fibres that give rise to spindle apparatus during cell division in animal cells.
8.5.10 Nucleus
Nucleus as a cell organelle was first described by Robert Brown as early as 1831. Later the material of the nucleus stained by the basic dyes was given the name chromatin by Flemming.
Figure 8.11 Structure of nucleus
The interphase nucleus (nucleus of a cell when it is not dividing) has highly extended and elaborate nucleoprotein fibres called chromatin, nuclear matrix and one or more spherical bodies called Nucleoplasm nucleoli (sing.: nucleolus) (Figure 8.11). Electron microscopy has revealed that the Nucleolus nuclear envelope, which consists of two Nuclear pore parallel membranes with a space between (10 to 50 nm) called the perinuclear Nuclear space, forms a barrier between the membrane materials present inside the nucleus and that of the cytoplasm. The outer membrane usually remains continuous with the endoplasmic reticulum and also bears ribosomes on it. At a number of places the nuclear envelope is interrupted by minute pores, which are formed by the fusion of its two membranes. These nuclear pores are the passages through which movement of RNA and protein molecules takes place in both directions between the nucleus and the cytoplasm. Normally, there is only one nucleus per cell, variations in the number of nuclei are also frequently observed. Can you recollect names of organisms that have more than one nucleus per cell? Some mature cells even lack nucleus, e.g., erythrocytes of many mammals and sieve tube cells of vascular plants. Would you consider these cells as ‘living’?
The nuclear matrix or the nucleoplasm contains nucleolus and chromatin. The nucleoli are spherical structures present in the nucleoplasm. The content of nucleolus is continuous with the rest of the nucleoplasm as it is not a membrane bound structure. It is a site for active ribosomal RNA synthesis. Larger and more numerous nucleoli are present in cells actively carrying out protein synthesis.
You may recall that the interphase nucleus has a loose and indistinct network of nucleoprotein fibres called chromatin. But during different stages of cell division, cells show structured chromosomes in place of the nucleus. Chromatin contains DNA and some basic proteins called histones, some non-histone proteins and also RNA. A single human cell has approximately two metre long thread of DNA distributed among its forty six (twenty three pairs) chromosomes. You will study the details of DNA packaging in the form of a chromosome in class XII.
Every chromosome (visible only in dividing cells) essentially has a primary constriction or the centromere on the sides of which disc shaped structures called kinetochores are present (Figure 8.12). Centromere holds two chromatids of a chromosome. Based on the position of the centromere, the chromosomes can be classified into four types (Figure 8.13). The metacentric chromosome has middle centromere forming two equal arms of the chromosome. The sub-metacentric chromosome has centromere slightly away from the middle of the chromosome resulting into one shorter arm and one longer arm. In case of acrocentric chromosome the centromere is situated close to its end forming one extremely short and one very long arm, whereas the telocentric chromosome has a terminal centromere.Sometimes a few chromosomes have non-staining secondary constrictions at a constant location. This gives the appearance of a small fragment called the satellite.
Figure 8.12 Chromosome with kinetochore
Figure 8.13 Types of chromosomes based on the position of centromere
8.5.11 Microbodies
Many membrane bound minute vesicles called microbodies that contain various enzymes, are present in both plant and animal cells.
Summary
All organisms are made of cells or aggregates of cells. Cells vary in their shape, size and activities/functions. Based on the presence or absence of a membrane bound nucleus and other organelles, cells and hence organisms can be named as eukaryotic or prokaryotic.
A typical eukaryotic cell consists of a cell membrane, nucleus and cytoplasm. Plant cells have a cell wall outside the cell membrane. The plasma membrane is selectively permeable and facilitates transport of several molecules. The endomembrane system includes ER, golgi complex, lysosomes and vacuoles. All the cell organelles perform different but specific functions. Centrosome and centriole form the basal body of cilia and flagella that facilitate locomotion. In animal cells, centrioles also form spindle apparatus during cell division. Nucleus contains nucleoli and chromatin network. It not only controls the activities of organelles but also plays a major role in heredity.
Endoplasmic reticulum contains tubules or cisternae. They are of two types: rough and smooth. ER helps in the transport of substances, synthesis of proteins, lipoproteins and glycogen. The golgi body is a membranous organelle composed of flattened sacs. The secretions of cells are packed in them and transported from the cell. L ysosomes are single membrane structures containing enzymes for digestion of all types of macromolecules. Ribosomes are involved in protein synthesis. These occur freely in the cytoplasm or are associated with ER. Mitochondria help in oxidative phosphorylation and generation of adenosine triphosphate. They are bound by double membrane; the outer membrane is smooth and inner one folds into several cristae. Plastids are pigment containing organelles found in plant cells only. In plant cells, chloroplasts are responsible for trapping light energy essential for photosynthesis. The grana, in the plastid, is the site of light reactions and the stroma of dark reactions. The green coloured plastids are chloroplasts, which contain chlorophyll, whereas the other coloured plastids are chromoplasts, which may contain pigments like carotene and xanthophyll. The nucleus is enclosed by nuclear envelope, a double membrane structure with nuclear pores. The inner membrane encloses the nucleoplasm and the chromatin material. Thus, cell is the structural and functional unit of life.
Exercises
1. Which of the following is not correct?
(a)Robert Brown discovered the cell.
(b)Schleiden and Schwann formulated the cell theory.
(c)Virchow explained that cells are formed from pre-existing cells.
(d)A unicellular organism carries out its life activities within a single cell.
Show Answer
Answer
(a) Robert Brown did not discover the cell. The cell was discovered by Robert Hook.
2. New cells generate from
(a) bacterial fermentation
(b) regeneration of old cells
(c) pre-existing cells
(d) abiotic materials
Show Answer
Answer
(c)
According to the biogenic theory, new cells can only arise from pre-existing cells. Only complete cells, in favourable conditions, can give rise to new cells.
3. Match the following
Column I | Column II |
---|---|
(a) Cristae | (i) Flat membranous sacs in stroma |
(b) Cisternae | (ii) Infoldings in mitochondria |
(c) Thylakoids | (iii) Disc-shaped sacs in Golgi apparatus |
Show Answer
Answer
Column I | Column II |
---|---|
(a) Cristae | (ii) Infoldings in mitochondria |
(b) Cisternae | (iii) Disc-shaped sacs in Golgi apparatus |
(c) Thylakoids | (i) Flat membranous sacs in stroma |
4. Which of the following is correct:
(a) Cells of all living organisms have a nucleus.
(b) Both animal and plant cells have a well defined cell wall.
(c) In prokaryotes, there are no membrane bound organelles.
(d) Cells are formed de novo from abiotic materials.
Show Answer
Answer
(c)
Membrane-bound organelles are organelles surrounded by a double membrane. Nucleus, mitochondria, chloroplasts, etc., are examples of such organelles. These cell organelles are absent from prokaryotes.
5. What is a mesosome in a prokaryotic cell? Mention the functions that it performs.
Show Answer
Answer
Mesosome is a convoluted membranous structure formed in a prokaryotic cell by the invagination of the plasma membrane. Its functions are as follows:
(1) These extensions help in the synthesis of the cell wall, replication of DNA. They also help in the equal distribution of chromosomes into the daughter cells.
(2) It also increases the surface area of the plasma membrane to carry out various enzymatic activities.
(3) It helps in secretion processes as well as in bacterial respiration.
6. How do neutral solutes move across the plasma membrane? Can the polar molecules also move across it in the same way? If not, then how are these transported across the membrane?
Show Answer
Answer
Plasma membrane is the outermost covering of the cell that separates it from the environment. It regulates the movement of substances into the cell and out from it. It allows the entry of only some substances and prevents the movement of other materials. Hence, the membrane is selectively-permeable.
Movement of neutral solutes across the cell membrane - Neutral molecules move across the plasma membrane by simple passive diffusion. Diffusion is the movement of molecules from a region of higher concentration to a region of lower concentration.
Movement of polar molecules across the cell membrane - The cell membrane is made up of a phospholipid bilayer and proteins. The movement of polar molecules across the non-polar lipid bilayer requires carrier-proteins. Carrierproteins are integral protein particles having certain affinity for specific solutes. As a result, they facilitate the transport of molecules across the membrane.
7. Name two cell-organelles that are double membrane bound. What are the characteristics of these two organelles? State their functions and draw labelled diagrams of both.
Show Answer
Answer
Mitochondria and chloroplasts are the two organelles that are double-membrane-bound.
Characteristics of the mitochondria
Mitochondria are double- membrane-bound structures. The membrane of a mitochondrion is divided into the inner and outer membranes, distinctly divided into two aqueous compartments - outer and inner compartments. The outer membrane is very porous (containing the organelle), while the inner membrane is deeply-folded.
These folds are known as cristae. Cristae increase the surface area inside the cell. They are the sites for ATPgenerating chemical reactions. The membrane of a mitochondrion contains specific enzymes meant for specific mitochondrial functions. Hence, the mitochondria are the sites for aerobic respiration. They have their own DNA and ribosomes. Thus, they are able to make their own proteins. This is why they are considered as semi-autonomous organelles
Characteristics of chloroplasts
Chloroplasts are double-membrane-bound structures.
They are divided into outer and inner membranes, further divided into two distinct regions:
(i) Grana are stacks of flattened discs containing chlorophyll molecules. The flattened membranous sacs are called thylakoids. The thylakoids of adjacent grana are connected by membranous tubules called stroma lamellae.
(ii) Stroma is a homogenous mixture in which grana are embedded. It contains several enzymes that are used for the synthesis of carbohydrates and proteins. It also contains its own DNA and ribosomes.
Functions of the mitochondria:
(i) They are the sites for cellular respiration.
(ii) They provide energy in the form of ATP for all vital activities of living cells. (iii) They have their own DNA and ribosomes. Hence, they are regarded as semi-autonomous organelles.
(iv) They have several enzymes, intermediately required for the synthesis of various chemicals such as fatty acids, steroids, and amino acids.
Functions of chloroplasts:
(i) They trap solar energy and utilise it for manufacturing food for plants. Hence, they are involved in the process of photosynthesis.
(ii) They contain the enzymes required for the synthesis of carbohydrates and proteins.
8. What are the characteristics of prokaryotic cells?
Show Answer
Answer
Prokaryotic cell is a unicellular organism lacking membrane-bound organelles.
The characteristics of prokaryotic cells are as follows:
(i) Most of them are unicellular.
(ii) They are generally small in size. The size of a prokaryotic cell varies from 0.5 - $5 \mu m$.
(iii) The nuclear region of a prokaryotic cell is poorly-defined because of the absence of a nuclear membrane. Hence, a prokaryotic cell lacks a true nucleus.
(iv) The genetic materials of prokaryotic cells are naked. They contain single, circular chromosomes. In addition to the genomic DNA, they have a small, circular plasmid DNA. (v) They have specialised membranous structures called mesosomes. Mesosomes are formed by the invagination of the cell membrane. These extensions help in the synthesis of the cell wall, replication of DNA. They also help in the equal distribution of chromosomes into the daughter cells.
(vi) Membrane-bound cell organelles such as mitochondria, plastids, and endoplasmic reticulum are absent from a prokaryotic cell.
(vii) Most prokaryotic cells contain a three-layered structure - outermost glycocalyx, middle cell wall, and the innermost plasma membrane. This structure acts as a protective unit.
Examples of prokaryotic cells include blue green algae, bacteria, etc.
9. Multicellular organisms have division of labour. Explain.
Show Answer
Answer
Multicellular organisms are made up of millions and trillions of cells. All these cells perform specific functions. All the cells specialised for performing similar functions are grouped together as tissues in the body. Hence, a particular function is carried out by a group of cells at a definite place in the body. Similarly, different functions are carried out by different groups of cells in an organism. This is known as division of labour in multicellular organisms.
10. Cell is the basic unit of life. Discuss in brief.
Show Answer
Answer
Cells are the basic units of life capable of doing all the required biochemical processes that a normal cell has to do in order to live. The basic needs for the survival of all living organisms are the same. All living organisms need to respire, digest food for obtaining energy, and get rid of metabolic wastes.
Cells are capable of performing all the metabolic functions of the body. Hence, cells are called the functional units of life.
11. What are nuclear pores? State their function.
Show Answer
Answer
Nuclear pores are tiny holes present in the nuclear membrane of the nucleus. They are formed by the fusion of two nuclear membranes.
These holes allow specific substances to be transferred into a cell and out from it. They allow molecules such as RNA and proteins to move in both directions, between the nucleus and the cytoplasm.
12. Both lysosomes and vacuoles are endomembrane structures, yet they differ in terms of their functions. Comment.
Show Answer
Answer
Lysosomes are membrane-bound vesicular structures holding a variety of enzymes such as lipases, proteases, and carbohydrases. The purpose of lysosomes is to digest worn out cells. They are involved in the intracellular digestion of foreign food particles and microbes. Sometimes, they also act as suicidal bags. They are involved in the self digestion of cells. They are a kind of waste disposal systems of a cell. On the other hand, vacuoles are storage sacs found in cells. They might store the waste products of cells. In unicellular organisms, the food vacuole contains the consumed food particles. It also plays a role in expelling excess water and some wastes from the cell.
13. Describe the structure of the following with the help of labelled diagrams.
(i) Nucleus
(ii) Centrosome
Show Answer
Answer
(i) Nucleus
Nucleus controls all the cellular activities of the cell. It is spherical in shape. It is composed of the following structures:
Nuclear membrane: It is a double membrane separating the contents of the nucleus from the cytoplasm. The narrow space between the two membranes is called the perinuclear space. Nuclear membrane has tiny holes called nuclear pores. These holes allow specific substances to be transferred into a cell and out from it.
Nucleoplasm/Nuclear matrix: It is a homogenous granular fluid present inside the nucleus. It contains the nucleolus and chromatin. Nucleolus is a spherical structure that is not bound by any membrane. It is rich in protein and RNA molecules, and is the site for ribosome formation. Chromatin is an entangled mass of thread-like structures. It contains DNA and some basic proteins called histones.
(ii) Centrosome
Centrosome consists of two cylindrical structures called centrioles. Centrioles lie perpendicular to each other. Each has a cartwheel-like organisation.
A centriole is made up of microtubule triplets that are evenly spaced in a ring. The adjacent triplets are linked together. There is a proteinaceous hub in the central part of a centriole. The hub is connected to the triplets via radial spokes. These centrioles help in organising the spindle fibres and astral rays during cell division. They form the basal body of cilia and flagella.
14. What is a centromere? How does the position of centromere form the basis of classification of chromosomes. Support your answer with a diagram showing the position of centromere on different types of chromosomes.
Show Answer
Answer
Centromere is a constriction present on the chromosomes where the chromatids are held together.
Chromosomes are divided into four types based on the position of the centromere.
(i) Metacentric chromosome
The chromosomes in which the centromere is present in the middle and divides the chromosome into two equal arms is known as a metacentric chromosome.
Metacentric chromosome
(ii) Sub-metacentric chromosome
The chromosome in which the centromere is slightly away from the middle region is known as a sub-metacentric chromosome. In this, one arm is slightly longer than the other.
Sub-metacentric chromosome
(iii) Acrocentric chromosome
The chromosome in which the centromere is located close to one of the terminal ends is known as an acrocentric chromosome. In this, one arm is extremely long and the other is extremely short.
Acrocentric chromosome
(iv) Telocentric chromosome
The chromosome in which the centromere is located at one of the terminal ends is known as a telocentric chromosome.
Centromere
Telocentric chromosome
जब आप अपने चारों तरफ देखते हैं तो जीव व निर्जीव दोनों को आप पाते हैं। आप अवश्य आश्चर्य करते होंगे एवं अपने आप से पूछते होंगे कि ऐसा क्या है, जिस कारण जीव, जीव कहलाते हैं और निर्जीव जीव नहीं हो सकते। इस जिज्ञासा का उत्तर तो केवल यही हो सकता है कि जीवन की आधारभूत इकाई जीव कोशिका की उपस्थित एवं अनुपस्थित है।
सभी जीवधारी कोशिकाओं से बने होते हैं। इनमें से कुछ जीव एक कोशिका से बने होते हैं जिन्हें एककोशिक जीव कहते हैं, जबकि दूसरे, हमारे जैसे अनेक कोशिकाओं से मिलकर बने होते हैं बहुकोशिक जीव कहते हैं।
8.1 कोशिका क्या है?
कोशिकीय जीवधारी (1) स्वतंत्र अस्तित्व यापन व (2) जीवन के सभी आवश्यक कार्य करने में सक्षम होते हैं। कोशिका के बिना किसी का भी स्वतंत्र जीव अस्तित्व नहीं हो सकता। इस कारण जीव के लिए कोशिका ही मूलभूत से संरचनात्मक व क्रियात्मक इकाई होती है।
एन्टोनवान ल्युवेनहाक ने पहली बार कोशिका को देखा व इसका वर्णन किया था। राबर्ट ब्राउन ने बाद में केंद्रक की खोज की। सूक्ष्मदर्शी की खोज व बाद में इनके सुधार के बाद फ़ेजकन्ट्रास्ट व इलेक्ट्रॉन सूक्ष्मदर्शी द्वारा कोशिका की विस्तृत संरचना का अध्ययन संभव हो सका।
8.2 कोशिका सिद्धांत
1838 में जर्मनी के वनस्पति वैज्ञानिक मैथीयस स्लाइडेन ने बहुत सारे पौधों के अध्ययन के बाद पाया कि ये पौधे विभिन्न प्रकार की कोशिकाओं से मिलकर बने होते हैं, जो पौधों में ऊतकों का निर्माण करते हैं। लगभग इसी समय 1839 में एक ब्रिटिश प्राणि वैज्ञानिक थियोडोर श्वान ने विभिन्न जंतु कोशिकाओं के अध्ययन के बाद पाया कि कोशिकाओं के बाहर एक पतली पर्त मिलती है जिसे आजकल ‘जीवद्रव्यझिल्ली’ कहते हैं। इस वैज्ञानिक ने पादप ऊतकों के अध्ययन के बाद पाया कि पादप कोशिकाओं में कोशिका भित्ति मिलती है जो इसकी विशेषता है। उपरोक्त आधार पर श्वान ने अपनी परिकल्पना रखते हुए बताया कि प्राणियों और वनस्पतियों का शरीर कोशिकाओं और उनके उत्पाद से मिलकर बना है।
स्लाइडेन व श्वान ने संयुक्त रूप से कोशिका सिद्धांत को प्रतिपादित किया। यद्यपि इनका सिद्धांत यह बताने में असफल रहा कि नई कोशिकाओं का निर्माण कैसे होता है। पहली बार रडोल्फ बिर्चो (1855) ने स्पष्ट किया कि कोशिका विभाजित होती है और नई कोशिकाओं का निर्माण पूर्व स्थित कोशिकाओं के विभाजन से होता है (ओमनिस सेलुल-इ सेलुला)। इन्होंने स्लाइडेन व श्वान की कल्पना को रूपांतरित कर नई कोशिका सिद्धांत को प्रतिपादित किया। वर्तमान समय के परिप्रेक्ष्य में कोशिका सिद्धांत निम्नवत है:
(i) सभी जीव कोशिका व कोशिका उत्पाद से बने होते हैं।
(ii) सभी कोशिकाएं पूर्व स्थित कोशिकाओं से निर्मित होती हैं।
8.3 कोशिका का समग्र अवलोकन
आरंभ में आप प्याज के छिलके और/या मनुष्य की गाल की कोशिकाओं को सूक्ष्मदर्शी से देख चुके होंगे। उनकी संरचना का स्मरण करें। प्याज की कोशिका जो एक प्रारूपी पादप कोशिका है, जिसके बाहरी सतह पर एक स्पष्ट कोशिका भित्ति व इसके ठीक नीचे कोशिका झिल्ली होती है। मनुष्य की गाल की कोशिका के संगठन में बाहर की तरफ केवल एक झिल्ली संरचना निकलती दिखाई पड़ती है। प्रत्येक कोशिका के भीतर एक सघन झिल्लीयुक्त संरचना मिलती है, जिसे केंद्रक कहते हैं। इस केंद्रक में गुणसूत्र (क्रोमोसोम) होता है, जिसमें आनुवंशिक पदार्थ डीएनए होता है। जिस कोशिका में झिल्लीयुक्त केंद्रक होता है, उसे यूकैरियोट व जिसमें झिल्लीयुक्त केंद्रक नहीं मिलता उसे प्रोकैरियाट कहते हैं। दोनों यूकैरियाटिक व प्रोकैरियोटिक कोशिकाओं में इसके आयतन को घेरे हुए एक अर्द्धतरल आव्यूह मिलता है जिसे कोशिकाद्रव्य कहते हैं। दोनों पादप व जंतु कोशिकाओं में कोशिकीय क्रियाओं हेतु कोशिकाद्रव्य एक प्रमुख स्थल होता है। कोशिका की ‘जीव अवस्था’ संबंधी विभिन्न रासायनिक अभिक्रियाएं यहीं संपन्न होती हैं।
यूकैरियोटिक कोशिका में केंद्रक के अतिरिक्त अन्य झिल्लीयुक्त विभिन्न संरचनाएं मिलती हैं, जो कोशिकांग कहलाती हैं जैसे- अंतप्रद्रव्यी जालिका (ऐन्डोप्लाजमिक रेटीकुलम) सूत्र कणिकाएं (माइटोकॉन्ड्रिया) सूक्ष्मकाय (माइक्रोबॉडी), गाल्जीसामिश्र, लयनकाय (लायसोसोम) व रसधानी प्रोकैरियोटिक कोशिका में झिल्लीयुक्त कोशिकाओं का अभाव होता है।
यूकैरियोटिक व प्रोकैरियोटिक दोनों कोशिकाओं में झिल्ली रहित अंगक राइबोसोम मिलते हैं। कोशिका के भीतर राइबोसोम केवल कोशिका द्रव्य में ही नहीं; बल्कि दो अंगकों- हरित लवक (पौधों में) व सूत्र कणिका में व खुरदरी अंतर्द्रव्यी जालिका में भी मिलते हैं।
जंतु कोशिकाओं में झिल्ली रहित तारककाय केंद्रक जैसे अन्य अंगक मिलते हैं, जो कोशिका विभाजन में सहायता करते हैं।
चित्र 8.1 विभिन्न प्रकार के आकार की कोशिकाओं का चित्र द्वारा प्रदर्शन
कोशिकाएं माप, आकार व कार्य की दृष्टि से काफी भिन्न होती हैं (चित्र 8.1)। उदाहरणार्थ- सबसे छोटी कोशिका माइकोप्लाज्मा $0.3 \mu \mathrm{m}$ (माइक्रोमीटर) लंबाई की, जबकि जीवाणु (बैक्टीरिया)में 3 से $5 \mu \mathrm{m}$ (माइक्रोमीटर) की होती हैं। पृथक की गई सबसे बड़ी कोशिका शुतरमुर्ग के अंडे के समान है। बहुकोशिकीय जीवधारियों में मनुष्य की लाल रक्त कोशिका का व्यास लगभग $7.0 \mu \mathrm{m}$ (माइक्रोमीटर) होता है। तंत्रिका कोशिकाएं सबसे लंबी कोशिकाओं में होती हैं। ये बिंबाकार बहुभुजी, स्तंभी, घनाभ, धागे की तरह या असमाकृति प्रकार की हो सकती हैं। कोशिकाओं का रूप उनके कार्य के अनुसार भिन्न हो सकता है।
8.4 प्रोकैरियोटिक कोशिकाएं
प्रोकैरियोटिक कोशिकाएं, जीवाणु, नीलहरित शैवाल, माइकोप्लाज्मा और प्ल्यूरो निमोनिया सम जीव (PPLO) मिलते हैं। सामान्यतया ये यूकैरियोटिक कोशिकाओं से बहुत छोटी होती हैं और काफी तेजी से विभाजित होती हैं (चित्र 8.2)। माप का आकार काफी भिन्न होती हैं। जीवाणु के चार मूल आकार होते हैं- दंडाकार (बेसिलस), गोलाकार (कोकस), कोशाकार ( विब्रो) व सर्पिल (स्पाइलर)।( $0.02-0.2 \mu \mathrm{m}$ )
चित्र 8.2 ससीमकेंद्री कोशिका का अन्य सजीवों के साथ तुलनात्मकता का चित्र द्वारा प्रदर्शन
प्रोकैरियोटिक कोशिका का मूलभूत संगठन आकार व कार्य में विभिन्नता के बावजूद एक सा होता है। सभी प्रोकैरियोटिक में कोशिका भित्ति होती हैं जो कोशिका झिल्ली से घिरी होती है केवल माइकोप्लाज्मा को छोड़कर। कोशिका में साइटोप्लाज्म एक तरल मैट्रिक्स के रूप में भरा रहता है। इसमें कोई स्पष्ट विभेदित केंद्रक नहीं पाया जाता है। आनुवंशिक पदार्थ मुख्य रूप से नग्न व केंद्रक झिल्ली द्वारा परिबद्ध नहीं होता है। जिनोमिक डीएनए के अतिरिक्त (एकल गुणसूत्र / गोलाकार डीएनए) जीवाणु में सूक्ष्म डीएनए वृत्त जिनोमिक डीएनए के बाहर पाए जाते हैं। इन डीएनए वृत्तों को प्लाज्मिड कहते हैं। ये प्लाज्मिड डीएनए जीवाणुओं में विशिष्ट समलक्षणों को बताते हैं। उनमें से एक प्रतिजीवी के प्रतिरोधी होते हैं। आप उच्च कक्षाओं में पढ़ंगे कि प्लाज्मिड डीएनए वृत्त जीवाणु का बाहरी डीएनए के साथ रूपांतरण के प्रवोधन हेतु उपयोगी है। केंद्रक झिल्ली युकैरियोटिकों में पाई जाती है। राइबोसोम के अलावा प्रोकैरियोटिको में यूकैरियोटिकों अंगक नहीं पाए जाते हैं। प्रोकैरियोटिकों में कुछ विशेष प्रकार के अंतर्विष्ट मिलते हैं। प्रोकैरियोटिक की यह विशेषता कि उनमें कोशिका झिल्ली एक विशिष्ट विभेदित आकार में मिलती है जिसे मीसोसोम कहते हैं ये तत्व कोशिका झिल्ली अंतर्वलन होते हैं।
8.4.1 कोशिका आवरण और इसके रूपांतर
अधिकांश प्रोकैरियोटिक कोशिकाओं, विशेषकर जीवाणु कोशिकाओं में एक जटिल रासायनिक कोशिका आवरण मिलता है। इनमें कोशिका आवरण दृढततापूर्वक बंधकर तीन स्तरीय संरचना बनाते हैं; जैसे बाह्य परत ग्लाइकोकेलिक्स, जिसके पश्चात् क्रमशः कोशिका भित्ति एवं जीवद्रव्य झिल्ली होती है। यद्यपि आवरण के प्रत्येक परत का कार्य भिन्न है, पर यह तीनों मिलकर एक सुरक्षा इकाई बनाते हैं।
जीवाणुओं को उनकी कोशिका आवरण में विभिन्नता व ग्राम द्वारा विकसित अभिरंजनविधि के प्रति विभिन्न व्यवहार के कारण दो श्रेणियों में वर्गीकृत किया गया है, जैसे- जो ग्राम अभिरंजित होते हैं, उसे ग्राम धनात्मक एवं अन्य जो अभिरंजित नहीं हो पाते, उन्हें ग्राम ऋणात्मक कहते हैं।
ग्लाइकोकेलिक्स विभिन्न जीवाणुओं में रचना एवं मोटाई में भिन्न होती है। कुछ में यह ढीली आच्छद होती है जिसे अवपंक पर्त कहते हैं व दूसरों में यह मोटी व कठोर आवरण के रूप में हो सकती है जो संपुटिका (केपसूल) कहलाती है। कोशिकाभित्ति कोशिका के आकार को निर्धारित करती है। वह सशक्त संरचनात्मक भूमिका प्रदान करती है, जो जीवाणु को फटने तथा निपातित होने से बचाती है।
जीवद्रव्यझिल्लिका प्रकृति में वर्णात्मक होती है और इसके द्वारा कोशिका बाह्य वातावरण से संपर्क बनाए रखने में सक्षम होती है। संरचना अनुसार यह झिल्ली यूकैरियोटिक झिल्ली जैसी होती है। एक विशेष झिल्लीमय संरचना, जो जीवद्रव्यझिल्ली के कोशिका में फैलाव से बनती है, को मीसोजोम कहते हैं। यह फैलाव पुटिका, नलिका एवं पटलिका के रूप में होता है। यह कोशिका भित्ति निर्माण, डीएनए प्रतिकृति व इसके संतति कोशिका में वितरण को सहायता देता है या श्वसन, स्रावी प्रक्रिया, जीवद्रव्यझिल्ली के पृष्ठ क्षेत्र, एंजाइम मात्रा को बढ़ाने में भी सहायता करता है। कुछ प्रोकैरियोटिक जैसे नीलहरित जीवाणु के कोशिका द्रव्य में झिल्लीमय विस्तार होता है जिसे वर्णकी लवक कहते हैं। इसमें वर्णक पाए जाते हैं।
जीवाणु कोशिकाएं चलायमान अथवा अचलायमान होती हैं। यदि वह चलायमान हैं तो उनमें कोशिका भित्ति जैसी पतली संरचना मिलती हैं। जिसे कशाभिका कहते हैं जीवाणुओं में कशाभिका की संख्या व विन्यास का क्रम भिन्न होता है। जीवाणु कशाभिका (फ्लैजिलम) तीन भागों में बँटा होता है- तंतु, अंकुश व आधारीय शरीर। तंतु, कशाभिका का सबसे बड़ा भाग होता है और यह कोशिका सतह से बाहर की ओर फैला होता है।
जीवाणुओं के सतह पर पाई जाने वाली संरचना रोम व झालर इनकी गति में सहायक नहीं होती है। रोम लंबी नलिकाकार संरचना होती है, जो विशेष प्रोटीन की बनी होती है। झालर लघुशूक जैसे तंतु है जो कोशिका के बाहर प्रवर्धित होते हैं। कुछ जीवाणुओं में, यह उनको पानी की धारा में पाई जाने वाली चट्टानों व पोषक ऊतकों से चिपकने में सहायता प्रदान करती हैं।
8.4.2 राइबोसोम व अंतर्विष्ट पिंड
प्रोकैरियोटिक में राइबोसोम कोशिका की जीवद्रव्यझिल्ली से जुड़े होते हैं। ये 15 से 20 नैनोमीटर आकार की होती हैं और दो उप इकाइयों में $50 \mathrm{~S}$ व $30 \mathrm{~S}$ की बनी होती हैं, जो आपस में मिलकर $70 \mathrm{~S}$ प्रोकैरियोटिक राइबोसोम बनाते हैं। राइबोसोम के उपर प्रोटीन संश्लेषित होती है। बहुत से राइबोसोम एक संदेषवाहक आरएनए से संबद्ध होकर एक शृंखला बनाते हैं। जिसे बहुराइबोसोम अथवा बहुसूत्र कहते हैं। बहुसूत्र का राइबोसोम संदेशवाहक आरएनए से संबद्ध होकर प्रोटीन निर्माण में भाग लेता है।
अंतर्विष्ट पिंड : प्रोकैरियोटिक कोशिकाओं में बचे हुए पदार्थ कोशिकाद्रव्य में अंतर्विष्ट पिंड के रूप में संचित होते हैं। ये झिल्ली द्वारा घिरे नहीं होते एवं कोशिकाद्रव्य में स्वतंत्र रूप से पड़े रहते हैं, उदाहरणार्थ-फॉस्फेट कणिकाएं, साइनोफाइसिन कणिकाएं और ग्लाइकोजन कणिकाएं। गैस रसधानी नील हरित, बैंगनी और हरी प्रकाश-संश्लेषी जीवाणुओं में मिलती हैं।
8.5 यूकैरियोटिक कोशिकाएं ( ससीमकेंद्रकी कोशिकाएं)
सभी आद्यजीव, पादप, प्राणी व कवक में यूकैरियोटिक कोशिकाएं होती हैं। यूकैरियोटिक कोशिकाओं में झिल्लीदार अंगकों की उपस्थिति के कारण कोशिकाद्रव्य विस्तृत कक्षयुक्त प्रतीत होता है। युकैरियोटिक कोशिकाओं में झिल्लीमय केंद्रक आवरण युक्त व्यवस्थित केंद्रक मिलता है। इसके अतिरिक्त यूकैरियोटिक कोशिकाओं में विभिन्न प्रकार के जटिल गतिकीय एवं कोशिकीय कंकाल जैसी संरचना मिलती है। इनमें आनुवंशिक पदार्थ गुणसूत्रों के रूप में व्यवस्थित रहते हैं।
सभी यूकैरियोटिक कोशिकाएं एक जैसी नहीं होती हैं। पादप व जंतु कोशिकाएं भिन्न होती हैं। पादप कोशिकाओं में कोशिका भित्ति, लवक एवं एक बड़ी केंद्रीय रसधानी मिलती है, जबकि प्राणी कोशिकाओं में ये अनुपस्थित होती हैं दूसरी तरफ प्राणी कोशिकाओं में तारकाय मिलता है जो लगभग सभी पादप कोशिकाओं में अनुपस्थित होता है (चित्र 8.3)। आइए! अब प्रत्येक कोशिकीय अंगक की संरचना व कार्यविधि का अध्ययन करें।
चित्र 8.3 चित्र प्रदर्शित करता है (अ) पादप कोशिका (ब) प्राणि कोशिका
8.5.1 कोशिका झिल्ली
वर्ष 1950 के इलेक्ट्रॉन सूक्ष्मदर्शी की खोज के बाद कोशिका झिल्ली की विस्तृत संरचना का ज्ञान संभव हो सका है। इस बीच मनुष्य की लाल रक्तकणिकाओं की कोशिका झिल्ली के रासायनिक अध्ययन के बाद जीवद्रव्यझिल्ली की संभावित संरचना के बारे में जानकारी प्राप्त हो सकी।
अध्ययनों के बाद इस बात की पुष्टि हुई की कोशिकाझिल्ली मुख्यतः लिपिड व प्रोटीन की बनी होती है। इसमें प्रमुख लिपिड, फास्फोलिपिड होते हैं, जो दो सतहों में व्यवस्थित होती है। लिपिड झिल्ली के अंदर व्यवस्थित होते हैं, जिनका ध्रुवीय सिरा बाहर की ओर व जल भीरू पुच्छ सिरा अंदर की ओर होता है। इससे सुनिश्चित होता है कि संतृप्त हाइड्रोकार्बन की बनी हुई अध्रुवीय पुच्छ जलीय वातावरण से सुरक्षित रहती हैं (चित्र 8.4)। इसके अतिरिक्त फास्फोलिपिड झिल्ली में कोलेस्टेराल भी होता है।
बाद में, जैव रासायनिक अनुसंधानों से यह स्पष्ट हो गया है कि कोशिका झिल्ली में प्रोटीन व कार्बोहाइड्रेट पाया जाता है। विभन्न कोशिकाओं में प्रोटीन व लिपिड का अनुपात भिन्न-भिन्न होता है। मनुष्य की रुधिराणु (इरीश्रोसाइट) की झिल्ली में लगभग 52 प्रतिशत प्रोटीन व 40 प्रतिशत लिपिड मिलता है।
झिल्ली में पाए जाने वाले प्रोटीन को अलग करने की सुविधा के आधार पर दो अंगभूत व परिधीय प्रोटीन भागों में विभक्त कर सकते हैं। परिधीय प्रोटीन झिल्ली की सतह पर होता है, जबकि अंगभूत प्रोटीन आंशिक या पूर्णरूप से झिल्ली में धंसे होते हैं।
चित्र 8.4 जीवद्रव्य झिल्ली का तरल किर्मीर नमूना
कोशिका झिल्ली का उन्नत नमूना 1972 में सिंगर व निकोल्सन द्वारा प्रतिपादित किया गया जिसे तरल किर्मीर नमूना के रूप में व्यापक रूप से स्वीकार कर किया गया (चित्र 8.4)। इसके अनुसार लिपिड के अर्धतरलीय प्रकृति के कारण फास्फोलिपिड द्विसतह के भीतर प्रोटीन पार्शिवक गति करता है।
झिल्ली के भीतर गति करने की क्षमता उसकी तरलता पर निर्भर करती है। झिल्ली की तरलीय प्रकृति इसके कार्य जैसे- कोशिकावृद्धि, अंतरकोशिकीय संयोजन का निर्माण, स्रवण, अंतकोशिक, कोशिका विभाजन इत्यादि की दृष्टि में महत्वपूर्ण है।
जीवद्रव्यझिल्ली का सर्वाधिक महत्वपूर्ण कार्य यह है कि इससे अणुओं का परिवहन होता है। यह झिल्ली इसके दोनों तरफ मिलने वाले अणुओं के लिए चयनित पारगम्य है। कुछ अणु बिना ऊर्जा की आवश्यकता के इस झिल्ली से होकर आते हैं जिसे निष्क्रिय परिवहन कहते हैं। उदासीन विलेय सांद्रप्रवणता के अनुसार जैसे- उच्च सांद्रता से निम्न सांद्रता की ओर साधारण विसरण द्वारा इस झिल्ली से होकर जाते हैं। जल भी इस झिल्ली से उच्च सांद्रता से निम्न सांद्रता की ओर गति करता है। विसरण द्वारा जल के प्रवाह को परासरण कहते हैं। चूँकि ध्रुवीय अणु जो अध्रुवीय लिपिड द्विसतह से होकर नहीं जा सकते, उन्हें झिल्ली से होकर परिवहन के लिए झिल्ली की वाहक प्रोटीन की आवश्यकता होती है। कुछ आयन या अणुओं का झिल्ली से होकर परिवहन उनकी सांद्रता प्रवणता के विपरीत जैसे निम्न से उच्च सांद्रता की ओर होता है। इस प्रकार के परिवहन हेतु ऊर्जा आधारित प्रक्रिया होती है, जिसमें एटीपी का उपयोग होता है जिसे सक्रिय परिवहन कहते हैं। यह एक पंप के रूप में कार्य करता है जैसे- सोडियम आपन/पोटैसियम आपन पंप।
8.5.2 कोशिका भित्ति
आपको याद ही होगा कि कवक व पौधों की जीवद्रव्यझिल्ली के बाहर पाए जाने वाली दृढ़ निर्जीव आवरण को कोशिका भित्ति कहते हैं। कोशिका भित्ति कोशिका को केवल यांत्रिक हानियों और संक्रमण से ही रक्षा नहीं करता है; बल्कि यह कोशिकाओं के बीच आपसी संपर्क बनाए रखने तथा अवांछनीय वृहद अणुओं के लिए अवरोध प्रदान करता है। शैवाल की कोशिका भित्ति सेलुलोज, गैलेक्टेन्स, मैनान्स व खनिज जैसे कैल्सियम कार्बोनेट की बनी होती है, जबकि दूसरे पौधों में यह सेलुलोज, हेमीसेलुलोज, पेक्टीन व प्रोटीन की बनी होती है। नव पादप कोशिका की कोशिका भित्ति में स्थित प्राथमिक भित्ति में वृद्धि की क्षमता होती है, जो कोशिका की परिपक्वता के साथ घटती जाती है व इसके साथ कोशिका के भीतर की तरफ द्वितीय भित्ति का निर्माण होने लगता है।
मध्यपटलिका मुख्यतयः कैल्सियम पेक्टेट की बनी सतह होती है जो आस-पास की विभिन्न कोशिकाओं को आपस में चिपकाएं व पकड़े रहती है। कोशिका भित्ति एवं मध्य पटलिका में जीवद्रव्य तंतु (प्लाज्मोडैस्मेटा) आड़े-तिरछे रूप में स्थित रहते हैं। जो आस-पास की कोशिका द्रव्य को जोड़ते हैं।
8.5.3 अंतः झिल्लिका तंत्र
झिल्लीदार अंगक कार्य व संरचना के आधार पर एक दूसरे से काफी अलग होते हैं, इनमें बहुत से ऐसे होते हैं जिनके कार्य एक दूसरे से जुड़े रहते हैं उन्हें अंतः झिल्लिका तंत्र के अंतर्गत रखते हैं। इस तंत्र के अंतर्गत अंतर्द्रव्यी जालिका, गॉल्जीकाय, लयनकाय, व रसधानी अंग आते हैं। सूत्रकणिका (माइटोकॉन्ड्रिया), हरितलवक व परऑक्सीसोम के कार्य उपरोक्त अंगों से संबंधित नहीं होते, इसलिए इन्हें अंतः झिल्लिका तंत्र के अंतर्गत नहीं रखते हैं।
8.5.3.1 अंतर्दव्यी जालिका (ऐन्डोप्लाज्मिक रेटीकुलम )
इलेक्ट्रॉन सूक्ष्मदर्शी से अध्ययन के पश्चात् यह पता चला कि यूकैरियोटिक कोशिकाओं के कोशिकाद्रव्य में चपटे, आपस में जुड़े, थैली युक्त छोटी नलिकावत जालिका तंत्र बिखरा रहता है जिसे अंतर्द्रव्यी जालिका कहते हैं (चित्र 8.5)। प्रायः राइबोसोम अंतर्द्रव्यी जालिका के बाहरी सतह पर चिपके रहते हैं।
जिस अंतर्द्रव्यी जालिका के सतह पर यह राइबोसोम मिलते हैं, उसे खुरदरी अंतर्द्रव्यी जालिका कहते हैं।राइबोसोम की अनुपस्थिति पर अंतर्द्रव्यी जालिका चिकनी लगती है, अतः इसे चिकनी अंतर्द्रव्यी जालिका कहते हैं।
जो कोशिकाएं प्रोटीन संश्लेषण एवं स्रवण में सक्रिय भाग लेती हैं उनमें खुरदरी अंतप्रद्रव्यी जालिका बहुतायत से मिलती है। ये काफी फैली हुई तथा केंद्रक के बाह्य झिल्लिका तक फैली होती है।
चिकनी अंतर्द्रव्यी जालिका प्राणियों में लिपिड संश्लेषण के मुख्य स्थल होते हैं। लिपिड की भाँति स्टीरायडल हार्मोन चिकने अंतर्द्रव्यी जालिका में होते हैं।
अंतर्द्रव्यी चित्र 8.5 अंतर्द्रव्यी जालिका
8.5.3.2 गॉल्जी उपकरण
केमिलो गॉल्जी (1898) ने पहली बार केंद्रक के पास घनी रंजित जालिकावत संरचना तंत्रिका कोशिका में देखी। जिन्हें बाद में उनके नाम पर गॉल्जीकाय कहा गया (चित्र 8.6)। यह बहुत सारी चपटी डिस्क आकार की थैली या कुंड से मिलकर बनी होती है जिनका व्यास 0.5 माइक्रोमीटर से 1.0 माइक्रोमीटर होता है। ये एक दूसरे के समानांतर ढेर के रूप में मिलते हैं जिसे जालिकाय कहते हैं। गॉल्जीकाय में कुंडों की संख्या अलग-अलग होती है। गॉल्जीकुंड केंद्रक के पास सकेंद्रित व्यवस्थित होते हैं, जिनमें निर्माणकारी सतह (उन्नतोदर सिस) व परिपक्व सतह (उत्तलावतल ट्रांस) होती है। अंगक सिस व ट्रांस सतह पूर्णतया अलग होते हैं; लेकिन आपस में जुड़े रहते हैं।
गॉल्जीकाय का मुख्य कार्य द्रव्य को संवेष्टित कर अंतर-कोशिकी लक्ष्य तक पहुँचाना या कोशिका के बाहर स्रवण करना है। संवेष्टित द्रव्य अंतप्रद्रव्यी जालिका से पुटिका के रूप में गॉल्जीकाय के सिस सिरे से संगठित होकर परिपक्व सतह की ओर गति करते हैं। इससे स्पष्ट है कि गॉल्जीकाय का अंतर्द्रव्यी जालिका से निकटतम संबंध है। अंतर्द्रव्यी जालिका पर उपस्थित राइबोसोम द्वारा प्रोटीन का संश्लेषण होता है जो गॉल्जीकाय के ट्रांस सिरे से निकलने के पूर्व इसके कुंड में रूपांतरित हो जाते हैं। गॉल्जीकाय ग्लाइको प्रोटीन व ग्लाइकोलिपिड निर्माण का प्रमुख स्थल है।
चित्र 8.6 गॉल्जी उपकरण
8.5.3.3 लयनकाय ( लाइसासोम)
यह झिल्ली पुटिका संरचना होती है जो संवेष्टन विधि द्वारा गॉल्जीकाय में बनते हैं। पृथकीकृत लयनकाय पुटिकाओं में सभी प्रकार की जल-अपघटकीय एंजाइम (जैसे-हाइड्रोलेजेज लाइपेसेज, प्रोटोएसेज व कार्बोडाइड्रेजेज) मिलतें हैं जो अम्लीय परिस्थितियों में सर्वाधिक सक्रिय होते हैं। ये एंजाइम कार्बोहाइड्रेट, प्रोटीन, लिपिड, न्यूक्लिक अम्ल आदि के पाचन में सक्षम हैं।
8.5.3.4 रसधानी (वैक्यौल)
कोशिकाद्रव्य में झिल्ली द्वारा घिरी जगह को रसधानी कहते हैं। इनमें पानी, रस, उत्सर्जित पदार्थ व अन्य उत्पाद जो कोशिका के लिए उपयोगी नहीं है, भी इसमें मिलते हैं। रसधानी एकल झिल्ली से आवृत्त होती है जिसे टोनोप्लास्ट कहते हैं। पादप कोशिकाओं में यह कोशिका का 90 प्रतिशत स्थान घेरता है।
पौधों में बहुत से आयन व दूसरे पदार्थ सांद्रता प्रवणता के विपरीत टफेनोप्लास्ट से होकर रसधानी में अभिगमित होते हैं, इस कारण से इनकी सांद्रता रसधानी में कोशिकाद्रव्य की अपेक्षा काफी अधिक होती है।
अमीबा में संकुचनशील रसधानी उत्सर्जन के लिए महत्वपूर्ण है। बहुत सारी कोशिकाओं जैसे आद्यजीव में खाद्य रसधानी का निर्माण खाद्य पदार्थों को निगलने के लिए होता है।
8.5.4 सूत्रकणिका ( माइटोकोंड्रिया )
सूत्रकणिका को जब तक विशेष रूप से अभिरंजित नहीं किया जाता तब तक सूक्ष्मदर्शी द्वारा इसे आसानी से नहीं देखा जा सकता है। प्रत्येक कोशिका में सूत्रकणिका की संख्या भिन्न होती है। यह उसकी कार्यिकी सक्रियता पर निर्भर करती है। ये आकृति व आकार में भिन्न होती है। यह तश्तरीनुमा बेलनाकार आकृति की होती है जो 1.0-4.1 माइक्रोमीटर लंबी व $0.2-1$ माइक्रोमीटर (औसत 0.5 माइक्रोमीटर) व्यास की होती है। सूत्रकणिका एक दोहरी झिल्ली युक्त संरचना होती है, जिसकी बाहरी झिल्ली व भीतरी झिल्ली इसकी अवकाशिका को दो स्पष्ट जलीय कक्षों - बाह्य कक्ष व भीतरी कक्ष में विभाजित करती है। भीतरी कक्ष जो घने व समांगी पदार्थ से भरा होता है। आधात्री (मैट्रक्स) कहते हैं। बाह्यकला सूत्रकणिका की बाह्य सतत सीमा बनाती है। इसकी अंतझिल्ली कई आधात्री की तरफ अंतरवलन बनाती है जिसे क्रिस्टी (एक वचन-क्रिस्टो) कहते हैं (चित्र 8.7)। क्रिस्टी इसके क्षेत्रफल को बढ़ाते हैं। इसकी दोनों झिल्लयों में इनसे संबंधित विशेष एंजाइम मिलते हैं, जो सूत्रकणिका के कार्य से संबंधित हैं। सूत्रकणिका का वायवीय श्वसन से संबंध होता हैं। इनमें कोशिकीय ऊर्जा एटीपी के रूप में उत्पादित होती हैं। इस कारण से सूत्रकणिका को कोशिका का शक्ति गृह कहते हैं। सूत्रकणिका के आधात्री में एकल वृत्ताकार डीएनए अणु व कुछ आरएनए राइबोसोम्स (70s) तथा प्रोटीन संश्लेषण के लिए आवश्यक घटक मिलते हैं। सूत्रकणिका विखंडन द्वारा विभाजित होती है।
चित्र 8.7 सूत्रकणिका की संरचना (अनुदैर्घ्य काट)
8.5.5 लवक ( प्लास्टिड )
लवक सभी पादप कोशिकाओं एवं कुछ प्रोटोजोआ जैसे यूग्लिना में मिलते हैं। ये आकार में बड़े होने के कारण सूक्ष्मदर्शी से आसानी से दिखाई पड़ते हैं। इसमें विशिष्ट प्रकार के वर्णक मिलने के कारण पौधे भिन्न-भिन्न रंग के दिखाई पड़ते हैं। विभिन्न प्रकार के वर्णकों के आधार पर लवक कई तरह के होते हैं जैसे-हरित लवक, वर्णीलवक व अवर्णीलवक।
हरित लवकों में पर्णहरित वर्णक व केरोटिनॉइड वर्णक मिलते हैं जो प्रकाश-संश्लेषण के लिए आवश्यक प्रकाशीय ऊर्जा को संचित रखने का कार्य करते हैं। वर्णीलवकों में वसा विलेय केरोटिनॉइड वर्णक जैसे- केरोटीन, जैंथोफिल व अन्य दूसरे मिलते हैं। इनके कारण पादपों में पीले, नारंगी व लाल रंग दिखाई पड़ते हैं। अवर्णी लवक विभिन्न आकृति एवं आकार के रंगहीन लवक होते हैं जिनमें खाद्य पदार्थ संचित रहते हैं: मंडलवक में मंड के रूप में कार्बोहाइड्रेट संचित होता है; जैसे- आलू; तेल लवक में तेल व वसा तथा प्रोटीन लवक में प्रोटीन का भंडारण होता है।
हरे पौधों के अधिकतर हरितलवक पत्ती की पर्णमध्योतक कोशिकाओं में पाए जाते हैं। हरित लवक लेंस के आकार के अंडाकार, गोलाकार, चक्रिक व फीते के आकार के अंगक होते हैं जो विभिन्न लंबाई ( $5-10$ माइक्रोमीटर) व चौड़ाई ( $2-4$ माइक्रोमीटर) के होते हैं। इनकी संख्या भिन्न हो सकती है जैसे प्रत्येक कोशिका में एक(क्लेमाइडोमोनास-हरितशैवाल) से 20 से 40 प्रति कोशिका पर्णमध्योतक कोशिका हो सकती है। सूत्रकणिका की तरह हरित लवक द्विझिल्लिकायुक्त होते हैं। उपरोक्त दो में से इसकी भीतरी लवक झिल्ली अपेक्षाकृत कम पारगम्य होती है। हरितलवक के अंतःझिल्ली से घिरे हुए भीतर के स्थान को पीठिका (स्ट्रोमा) कहते हैं। पीठिका में चपटे, झिल्लीयुक्त थैली जैसी संरचना संगठित होती है जिसे थाइलेकोइड कहते हैं (चित्र 8.8)। थाइलेकोइड सिक्कों के चट्टों की भाँति ढेर के रूप में मिलते हैं जिसे ग्रेना (एकवचन-ग्रेनम) या अंतरग्रेना थाइलेकोइड कहते हैं। इसके अलावा कई चपटी झिल्लीनुमा नलिकाएं जो ग्रेना के विभिन्न थाइलेकोइड को जोड़ती है उसे पीठिका पट्टलिकाएं कहते हैं। थाइलेकोइड की झिल्ली एक रिक्त स्थान को घेरे होती है। इसे अवकाशिका कहते हैं। हरितलवक की पीठिका में बहुत एंजाइम मिलते हैं जो कार्बोहाइड्रेट व प्रोटीन संश्लेषण के लिए आवश्यक है। इनमें छोटा, द्विलड़ी, वृत्ताकार डीएनए अणु व राइबोसोम मिलते हैं। हरित लवक थाइलेकोइड में उपस्थित होते हैं। हरित लवक में पाए जाने वाला राइबोसोम (70s) कोशिकाद्रव्यी राइबोसोम (80s) से छोटा होता है।
चित्र 8.8: हरित लवक का अनुभागीय दृश्य
8.5.6 राइबोसोम
जार्ज पैलेड (1953) ने इलेक्ट्रॉन सूक्ष्मदर्शी द्वारा सघन कणिकामय संरचना राइबोसोम को सर्वप्रथम देखा था। ये राइबोन्यूक्लिक अम्ल व प्रोटीन के बने और किसी भी झिल्ली से घिरे नहीं रहते।
यूकैरियोटिक राइबोसोम $80 \mathrm{~S}$ व प्रोकैरियोटिक राइबोसोम $70 \mathrm{~S}$ प्रकार के होते हैं। प्रत्येक राइबोसोम में उपइकाइयाँ बड़ी व छोटी उपइकाई होती है। यहाँ पर ’ $\mathrm{S}$ ’ (स्वेडवर्ग इकाई) अवसादन गुणांक को प्रदर्शित करता है। यह अपरोक्ष रूप में आकार व घनत्व को व्यक्त करता है। दोनों $70 \mathrm{~S}$ व $80 \mathrm{~S}$ राइबोसोम दो उपइकाइयों से बना होता है।
चित्र 8.9: राइबोसोम की संरचना
8.5.7 साइटोपंजर ( साइटोस्केलेटन )
प्रोटीनयुक्त विस्तृत जालिकावत तंतु जो कोशिकाद्रव्य में मिलता है उसे साइटोपंजर कहते हैं। कोशिका में मिलने वाला साइटोपंजर के विभिन्न कार्य जैसेयांत्रिक सहायता, गति व कोशिका के आकार को बनाए रखने में उपयोगी है।
चित्र 8.10 पक्ष्माभ/कशाभिका का अनुभाग जो विभिन्न भागों (अ) इलेक्ट्रॉन सूक्ष्मलेखी (ब) आंतरिक संरचना का चित्रात्मक प्रदर्शन करता है
8.5.8 पक्ष्माभ व कशाभिका (सीलिया तथा फ्लैजिला )
पक्ष्माभिकाएं (एकवचन-पक्ष्माभ) व कशाभिकाएं (एक वचन-कशाभिका) रोम सदृश कोशिका झिल्ली पर मिलने वाली अपवृद्धि है। पक्ष्माभ एक छोटी संरचना चप्पू की तरह कार्य करती है, जो कोशिका को या उसके चारों तरफ मिलने वाले द्रव्य की गति में सहायक है। कशाभिका अपेक्षाकृत लंबे व कोशिका के गति में सहायक है। प्रोकैरियोटिक जीवाणु में पाई जाने वाली कशाभिका संरचनात्मक रूप में यूकैरियोटिक कशाभिका से भिन्न होती है।
इलेक्ट्रॉन सूक्ष्मदर्शी अध्ययन से पता चलता है कि पक्ष्माभ व कशाभिका जीवद्रव्यझिल्ली से ढके होते हैं। इनके कोर को अक्षसूत्र कहते हैं, जो कई सूक्ष्म नलिकाओं का बना होता है जो लंबे अक्ष के समानांतर स्थित होते हैं। अक्षसूत्र के केंद्र में एक जोड़ा सूक्ष्म नलिका मिलती है और नौ द्विक अरीय परिधि की ओर व्यवस्थित सूक्ष्मनलिकाएं होती हैं। अक्षसूत्र की सूक्ष्मनलिकाओं की इस व्यवस्था को $9+2$ प्रणाली कहते हैं (चित्र 8.10)। केंद्रीय नलिका सेतु द्वारा जुड़े हुए एवं केंद्रीय आवरण द्वारा ढके होते हैं, जो परिधीय द्विक के प्रत्येक नलिका को अरीय दंड द्वारा जोड़ते हैं। इस प्रकार नौ अरीय तान (छड़) बनती हैं। परिधीय द्विक सेतु द्वारा आपस में जुड़े होते हैं। दोनों पक्ष्माभ व कशाभिका तारक केंद्र सदृश संरचना से बाहर निकलते हैं जिसे आधारीकाय कहते हैं।
8.5.9 तारककाय व तारककेंद्र (सैन्ट्रोसोम तथा सैन्ट्रीयोल)
तारककाय वह अंगक है जो दो बेलनाकार संरचना से मिलकर बना होता है, जिसे तारककेंद्र कहते हैं। यह अक्रिस्टलीय परिकेंद्रीय द्रव्य से घिरा होता है। दोनों तारककेंद्र तारककाय में एक दूसरे के लंबवत् स्थित होते हैं, जिसमें प्रत्येक की संरचना बैलगाड़ी के पहिए जैसी होती है। तारककेंद्र सख्या में नौ समान दूरी पर स्थित परिधीय टयूब्यूलिन सूत्रों से बने होते हैं। प्रत्येक परिधीय सूत्रक एक त्रिक होते हैं। पास के त्रिक आपस में जुड़े होते हैं। तारककेंद्र का अग्र भीतरी भाग प्रोटीन का बना होता है जिसे धुरी कहते हैं, यह परिधीय त्रिक के नलिका से प्रोटीन से बने अरीय दंड से जुड़े होते हैं। तारककेंद्र पक्ष्माभ व कशाभिका का आधारीकाय बनाता है और तर्कुतंतु जंतु कोशिका विभाजन के उपरांत तर्कु उपकरण बनाता है।
8.5.10 केंद्रक ( न्यूक्लिअस )
कोशिकीय अंगक केंद्रक की खोज सर्वप्रथम रार्बट ब्राउन ने 1831 से पूर्व की थी। बाद में फ्लेमिंग ने केंद्रक में मिलने वाले पदार्थ जो क्षारीय रंग से रंजित हो जाता है उसे क्रोमोटीन का नाम दिया।
चित्र 8.11 केंद्रक की संरचना
अंतरकाल अवस्था केंद्रक (कोशिका केंद्रक जिसका विभाजन नहीं हो रहा हो) अत्याधिक फैली हुई व विस्तृत केंद्रकीय प्रोटीन तंतु की बनी होती है जिसे क्रोमोटीन कहते हैं, केंद्रकीय आधात्री में एक या अधिक गोलाकार संरचनाएं मिलती है जिसे केंद्रिक कहते हैं (चित्र 8.11)। इलेक्ट्रॉन सूक्ष्मदर्शी अध्ययन से यह स्पष्ट होता है कि केंद्रक आवरण दो समानांतर झिल्लियों से बना होता है, जिनके बीच 10 से 50 नैनोमीटर का रिक्त स्थान पाया जाता है जिसे परिकेंद्रकी अवकाश कहते हैं। यह आवरण केंद्रक में मिलने वाले द्रव्य व कोशिकाद्रव्य के बीच अवरोध का काम करता है। बाह्य झिल्ली सामान्यतया अंतर्द्रव्यी जलिका से सतत रूप से जुड़ी रहती है व इस पर राइबोसोम भी जुड़े रहते हैं। निश्चित स्थानों पर केंद्रक आवरण छिद्र बनने के कारण विच्छिन्न हो जाता है। यह छिद्र केंद्रक आवरण की दोनों झिल्लियों के संगलन से बनता है। इन छिद्रों से होकर आरएनए व प्रोटीन अणु केंद्रक में कोशिकाद्रव्य व कोशिकाद्रव्य से केंद्रक की ओर आते-जाते रहते हैं। साधारणतया एक कोशिका में एक ही केंद्रक मिलता है; लेकिन ऐसा देखा गया है कि इनकी संख्या कभी-कभी परिवर्तित होती रहती है। क्या आप कुछ जीवों का नाम बता सकते हैं जिनकी कोशिका में एक से अधिक केंद्रक मिलते हों? कुछ परिपक्व कोशिकाएं केंद्रक रहित होती हैं जैसे-स्तनधारी जीवों की रक्ताणु व संवहनी पौधों में चालनी नलिका कोशिका। क्या तुम मानते हो कि ये कोशिकाएं जीवित हैं?
केंद्रकीय आधात्री या केंद्रकद्रव्य में केंद्रिक व क्रोम्रेटिन मिलता है। गोलाकार केंद्रिक केंद्रक्रव्य में पाया जाता है। केंद्रिका झिल्ली रहित वह संरचना है जिसका द्रव्य केंद्रक से सतत संपर्क में रहता है। यह सक्रिय राइबोसोमस आरएनए संश्लेषण हेतु स्थल होते हैं। जो कोशिकाएं अधिक सक्रिय रूप से प्रोटीन संश्लेषण करती है, उनमें बड़े व अनेक केंद्रिक मिलते हैं।
आप याद करें कि अंतरावस्था केंद्रक में ढीली-ढाली अस्पष्ट न्यूक्लियो प्रोटीन तंतुओं की जालिका मिलती है जिसे क्रोमोटीन कहते हैं। अवस्थाओं व विभाजन के समय केंद्रक के स्थान पर गुणसूत्र संरचना दिखाई पड़ती है। क्रोमोटीन में डीएनए तथा कुछ क्षारीय प्रोटीन मिलता है जिसे हिस्टोन कहते हैं, इसके अतिरिक्त उनमें इतर हिस्टोन व आरएनए भी मिलता है। मनुष्य की एक कोशिका में लगभग दो मीटर लंबा डीएनए सूत्र 46 गुणसूत्रों ( 23 जोड़ों) में बिखरा होता है। आप गुणसूत्र में डीएनए का संवेष्टन (पेकेजिंग) कक्षा 12 वीं में विस्तृत रूप में अध्ययन करेंगे।
गुणसूत्र सिर्फ विभाजक कोशिकाओं में दिखाई देते हैं। प्रत्येक गुणसूत्र में एक प्राथमिक संकीर्णन मिलता है जिसे गुणसूत्रबिंदु (सेन्ट्रोमियर) भी कहते हैं। इस पर बिंब आकार की संरचना मिलती है जिसे काइनेटोकोर कहते हैं (चित्र 8.12)। तारककाय, गुणसूत्र के दोनों अद्रैगुण सूत्रों के एक बिंदु पर पकड़ कर रखना है। गुणसूत्रबिंदु की स्थिति के आधार पर गुणसूत्रों को चार प्रकारों में विभाजित किया जा सकता है (चित्र 8.13)। मध्यकेंद्री (मेट्रासैन्ट्रिक) गुणसूत्र में गुणसूत्रबिंदु गुणसूत्रों के बीचों-बीच स्थित होता है, जिससे गुणसूत्र की दोनों भुजाएं बराबर लंबाई की होती है। उपमध्यकेंद्री (सब-मेटासैन्ट्रिक) गुणसूत्र में गुणसूत्रबिंदु गुणसूत्र के मध्य से हटकर होता है जिसके परिणामस्वरूप एक भुजा छोटी व एक भुजा बड़ी होती है। अग्रबिंदु (ऐक्रो-सैन्ट्रिक) गुणसूत्र में गुणसूत्रबिंदु इसके बिल्कुल किनारे पर मिलता है। जिससे एक भुजा अत्यंत छोटी व एक भुजा बहुत बड़ी होती है, जबकि अंतकेंद्री (फीबोसैन्ट्रिक) गुणसूत्र में गुणसूत्रबिंदु गुणसूत्र के शीर्ष पर स्थित होता है।
चित्र 8.12 काइनेटोकोर सहित गुणसूत्र
चित्र 8.13 गुणसूत्र बिंदु की स्थिति के आधार पर गुणसूत्रों के प्रकार
8.5.11 सूक्ष्मकाय ( माइक्रोबॉडी )
बहुत सारी झिल्ली आवरित सूक्ष्म थैलियाँ जिसमें विभिन्न प्रकार के एंजाइम मिलते हैं, ये पौधों व जंतु कोशिकाओं में पाई जाती हैं।
सारांश
सभी जीव, कोशिका या कोशिका समूह से बने होते हैं। कोशिकाएं आकार व आकृति तथा क्रियाएंकार्य की दृष्टि से भिन्न होती हैं। झिल्लीयुक्त केंद्रक व अन्य अंगकों की उपस्थिति या अनुपस्थिति के आधार पर कोशिका या जीव को प्रोकैरियोटिक या यूकैरियोटिक नाम से जानते हैं।
एक प्रारूपी यूकैरियोटिक कोशिका, केंद्रक व कोशिकाद्रव्य से बना होता है। पादप कोशिकाओं में कोशिका झिल्ली के बाहर कोशिका भित्ति पाई जाती है। जीवर्रव्यकला चयनित पारगम्य होती है और बहुत सारे अणुओं के परिवहन में भाग लेती है। अंतःझिल्लिकातंत्र के अंतर्गत अंतर्र्रव्यी जालिका, गॉल्जीकाय, लयनकाय व रसधानी होती है। सभी कोशिकीय अंगक विभिन्न एवं विशिष्ट प्रकार के कार्य करते हैं। पादप कोशिका में हरितलवक प्रकाश संश्लेषण के लिए आवश्यक प्रकाशीय उर्जा को संचित रखने का कार्य करते हैं। तारककाय व तारककेंद्र पक्ष्माभ व कशाभिका का आधारीयकाय बनाता है जो गति में सहायक है। जंतु कोशिकाओं में तारककेंद्र कोशिका विभाजन के दौरान तर्कु उपकरण बनाते हैं। केंद्रक में केंद्रिक व क्रोमोटीन का तंत्र मिलता है। यह अंगकों के कार्य को ही नियंत्रित नहीं करता, बल्कि आनुवंशिकी में प्रमुख भूमिका अदा करता है। अत: कोशिका जीवन की संरचनात्मक व क्रियात्मक इकाई होती है।
अंतर्द्रव्यी जालिका नलिकाओं व कुंडों से बनी होती है। ये दो प्रकार की होती हैं, खुरदरी व चिकनी। अंतर्द्रव्यी जालिका पदार्थों के अभिगमन, प्रोटीन-संश्लेषण, लाइपोप्रोटीन संश्लेषण तथा ग्लाइकोजन के संश्लेषण में सहायक होते हैं। गॉल्जीकाय झिल्लियुक्त अंगक है जो चपटे थैलीनुमा संरचना से बने होते हैं। इनमें कोशिकाओं का स्रवण संविष्ट होता है जिनमें सभी प्रकार के वृहद अणुओं के पाचन हेतु एंजाइम मिलते हैं। राइबोसोम प्रोटीन-संश्लेषण में भाग लेते हैं। ये कोशिकाद्रव्य में स्वतंत्र रूप में या अंतर्द्रव्यी जालिका से संबद्ध होते हैं। सूत्रकणिका ऑक्सीकारी फॉस्फोरिलीकरण तथा एडिनोसीनट्राईफास्फेट के निर्माण में सहायक होता है। ये द्विक झिल्ली क्रिस्टी में अंतरवलित होती है। लवक वर्णकयुक्त अंगक हैं जो केवल पादप कोशिकाओं में मिलते हैं। ये द्विक झिल्लीयुक्त रचनाएं हैं। लवक के ग्रेना में प्रकाशीय अभिक्रिया तथा पीठिका में अप्रकाशीय अभिक्रिया संपन्न होती है। हरे रंगीन लवक वर्णकी वर्णक होते हैं जिनमें केरोटीन तथा जैंथोफिल जैसे वर्णक मिलते हैं। पक्ष्माभ तथा कशाभिका कोशिका के गति में सहायक हैं। कशाभिका पक्ष्माभ से लंबे होते हैं। कशाभिका तरंगी गति से चलती है, जबकि पक्ष्माभ डोलनोदन द्वारा गति करता है। केंद्रक द्विक झिल्ली युक्त केंद्रक झिल्ली से घिरा होता है जिसमें केंद्रक छिद्र पाए जाते हैं। भीतरी झिल्ली केंद्रक द्रव्य व क्रोमोटीन पदार्थ को घेरे रहता है। प्राणी कोशिका में तारककेंद्र युग्मित होता है जो एक दूसरे के लंबवत स्थित होते हैं।
अभ्यास
1. इनमें कौन सा सही नहीं है?
(अ) कोशिका की खोज रार्बट ब्राउन ने की थी।
(ब) श्लाइडेन व श्वान ने कोशिका सिद्धांत प्रतिपादित किया था।
(स) वर्चोव के अनुसार कोशिका पूर्वस्थित कोशिका से बनती है।
(द) एक कोशिकीय जीव अपने जीवन के कार्य एक कोशिका के भीतर करते हैं।
Show Answer
#Content Missing2. नई कोशिका का निर्माण होता है।
(अ) जीवाणु किण्वन से।
(ब) पुरानी कोशिकाओं के पुनरुत्पादन से।
(स) पूर्व स्थित कोशिकाओं से।
(द) अजैविक पदार्थों।
Show Answer
#Content Missing3. निम्न के जोड़ा बनाइए :
Column I | Column II |
---|---|
(अ) क्रिस्टी | (i) पीठिका में चपटे कलामय थैली |
(ब) कुंडिका | (ii) सूत्रकणिका में अंतर्वलन |
(स) थाइलेकोइड | (iii) गॉल्जी उपकरण में बिंब आकार की थैली |
Show Answer
#Content Missing4. इनमें से कौन सा सही है :
(अ) सभी जीव कोशिकाओं में केंद्रक मिलता है।
(ब) दोनों जंतु व पादप कोशिकाओं में स्पष्ट कोशिका भित्ति होती है।
(स) प्रोकैरियोटिक की झिल्ली में आवरित अंगक नहीं मिलते हैं।
(द) कोशिका का निर्माण अजैविक पदार्थो से नए सिरे से होता है।
Show Answer
#Content Missing5. प्रोकैरियोटिक कोशिका में क्या मीसोसोम होता है? इसके कार्य का वर्णन करें।
Show Answer
#Content Missing6. कैसे उदासीन विलेय जीवद्रव्यझिल्ली से होकर गति करते हैं? क्या ध्रुवीय अणु उसी प्रकार से इससे होकर गति करते हैं? यदि नहीं तो इनका जीवद्रव्यझिल्ली से होकर परिवहन कैसे होता है?
Show Answer
#Content Missing7. दो कोशिकीय अंगकों का नाम बताइए जो द्विकला से घिरे होते हैं। इन दो अंगकों की क्या विशेषताएं है? इनका कार्य व रेखांकित चित्र बनाइए?
Show Answer
#Content Missing8. प्रोकैरियोटिक कोशिका की क्या विशेषताएं हैं?
Show Answer
#Content Missing9. बहुकोशिकीय जीवों में श्रम विभाजन की व्याख्या कीजिए।
Show Answer
#Content Missing10. कोशिका जीवन की मूल इकाई है, इसे संक्षिप्त में वर्णन करें।
Show Answer
#Content Missing11. केंद्रक छिद्र क्या है? इनके कार्य को बताइए।
Show Answer
#Content Missing12. लयनकाय व रसधानी दोनों अंतःझिल्लीमय संरचना है फिर भी कार्य की दृष्टि से ये अलग होते हैं। इस पर टिप्पणी लिखें?
Show Answer
#Content Missing13. रेखांकित चित्र की सहायता से निम्न की संरचना का वर्णन करें-
(i) केंद्रक
(ii) तारककाय ।
Show Answer
#Content Missing14. गुणसूत्रबिंदु क्या है? कैसे गुणसूत्रबिंदु की स्थिति के आधार पर गुणसूत्र का वर्गीकरण किस रूप में होता है। अपने उत्तर को देने हेतु विभिन्न प्रकार के गुणसूत्रों पर गुणसूत्रबिंदु की स्थिति को दर्शाने हेतु चित्र बनाइए।