Chapter-15 Plant Growth and Development

You have already studied the organisation of a flowering plant in Chapter 5. Have you ever thought about where and how the structures like roots, stems, leaves, flowers, fruits and seeds arise and that too in an orderly sequence? You are, by now, aware of the terms seed, seedling, plantlet, mature plant. You have also seen that trees continue to increase in height or girth over a period of time. However, the leaves, flowers and fruits of the same tree not only have limited dimensions but also appear and fall periodically and some time repeatedly. Why does vegetative phase precede flowering in a plant? All plant organs are made up of a variety of tissues; is there any relationship between the structure of a cell, a tissue, an organ and the function they perform? Can the structure and the function of these be altered? All cells of a plant are descendents of the zygote. The question is, then, why and how do they have different structural and functional attributes? Development is the sum of two processes: growth and differentiation. To begin with, it is essential and sufficient to know that the development of a mature plant from a zygote (fertilised egg) follow a precise and highly ordered succession of events. During this process a complex body organisation is formed that produces roots, leaves, branches, flowers, fruits, and seeds, and eventually they die (Figure 15.1). The first step in the process of plant growth is seed germination. The seed germinates when favourable conditions for growth exist in the environment. In absence of such favourable conditions the seeds do not germinate and goes into a period of suspended growth or rest. Once favourable conditions return, the seeds resume metabolic activities and growth takes place.

In this chapter, you shall also study some of the factors which govern and control these developmental processes. These factors are both intrinsic (internal) and extrinsic (external) to the plant.

15.1 GROWTH

Growth is regarded as one of the most fundamental and conspicuous characteristics of a living being. What is growth? Growth can be defined as an irreversible permanent increase in size of an organ or its parts or even of an individual cell. Generally, growth is accompanied by metabolic processes (both anabolic and catabolic), that occur at the expense of energy. Therefore, for example, expansion of a leaf is growth. How would you describe the swelling of piece of wood when placed in water?

15.1.1 Plant Growth Generally is Indeterminate

Plant growth is unique because plants retain the capacity for unlimited growth throughout their life. This ability of the plants is due to the presence of meristems at certain locations in their body. The cells of such meristems have the capacity to divide and self-perpetuate. The product, however, soon loses the capacity to divide and such cells make up the plant body. This form of growth wherein new cells are always being added to the plant body by the activity of the meristem is called the open form of growth. What would happen if the meristem ceases to divide? Does this ever happen?

In Chapter 6, you have studied about the root apical meristem and the shoot apical meristem. You know that they are responsible for the primary growth of the plants and principally contribute to the elongation of the plants along their axis. You also know that in dicotyledonous plants and gymnosperms, the lateral meristems, vascular cambium and cork-cambium appear later in life. These are the meristems that cause the increase in the girth of the organs in which they are active. This is known as secondary growth of the plant (see Figure 15.2).

Figure 15.2 Diagrammatic representation of locations of root apical meristem, shoot aplical meristem and vascular cambium. Arrows exhibit the direction of growth of cells and organ

15.1.2 Growth is Measurable

Growth, at a cellular level, is principally a consequence of increase in the amount of protoplasm. Since increase in protoplasm is difficult to measure directly, one generally measures some quantity which is more or less proportional to it. Growth is, therefore, measured by a variety of parameters some of which are: increase in fresh weight, dry weight, length, area, volume and cell number. You may find it amazing to know that one single maize root apical mersitem can give rise to more than 17,500 new cells per hour, whereas cells in a watermelon may increase in size by upto 3,50,000 times. In the former, growth is expressed as increase in cell number; the latter expresses growth as increase in size of the cell. While the growth of a pollen tube is measured in terms of its length, an increase in surface area denotes the growth in a dorsiventral leaf.

15.1.3 Phases of Growth

The period of growth is generally divided into three phases, namely, meristematic, elongation and maturation (Figure 15.3). Let us understand this by looking at the root tips. The constantly dividing cells, both at the root apex and the shoot apex, represent the meristematic phase of growth. The cells in this region are rich in protoplasm, possess large conspicuous nuclei. Their cell walls are primary in nature, thin and cellulosic with abundant plasmodesmatal connections. The cells proximal (just next, away from the tip) to the meristematic zone represent the phase of elongation. Increased vacuolation, cell enlargement and new cell wall deposition are the characteristics of the cells in this phase. Further away from the apex, i.e., more proximal to the phase of elongation, lies the portion of axis which is undergoing the phase of maturation. The cells of this zone, attain their maximal size in terms of wall thickening and protoplasmic modifications. Most of the tissues and cell types you have studied in Chapter 6 represent this phase.

Figure 15.3 Detection of zones of elongation by the parallel line technique. Zones A, B, C, D immediately behind the apex have elongated most.

15.1.4 Growth Rates

The increased growth per unit time is termed as growth rate. Thus, rate of growth can be expressed mathematically. An organism, or a part of the organism can produce more cells in a variety of ways.

Figure 15.4.The growth rate shows an increase that may be arithmetic or geometrical

Figure 15.5 Constant linear growth, a plot of length L against time t

In arithmetic growth, following mitotic cell division, only one daughter cell continues to divide while the other differentiates and matures. The simplest expression of arithmetic growth is exemplified by a root elongating at a constant rate. Look at Figure 15.5. On plotting the length of the organ against time, a linear curve is obtained. Mathematically, it is expressed as

Lt = L0 + rt

Lt = length at time ’t'

L0 = length at time ‘zero’

r = growth rate / elongation per unit time.

Let us now see what happens in geometrical growth. In most systems, the initial growth is slow (lag phase), and it increases rapidly thereafter - at an exponential rate (log or exponential phase). Here, both the progeny cells following mitotic cell division retain the ability to divide and continue to do so. However, with limited nutrient supply, the growth slows down leading to a stationary phase. If we plot the parameter of growth against time, we get a typical sigmoid or S-curve (Figure 15.6).

Figure 15.6 An idealised sigmoid growth curve typical of cells in culture, and many higher plants and plant organ

A sigmoid curve is a characteristic of living organism growing in a natural environment. It is typical for all cells, tissues and organs of a plant. Can you think of more similar examples? What kind of a curve can you expect in a tree showing seasonal activities? The exponential growth can be expressed as

W1 = W0 ert

W1 = final size (weight, height, number etc.)

W0 = initial size at the beginning of the period

r = growth rate

t = time of growth

e = base of natural logarithms

Here, r is the relative growth rate and is also the measure of the ability of the plant to produce new plant material, referred to as efficiency index. Hence, the final size of W1 depends on the initial size, W0.

Quantitative comparisons between the growth of living system can also be made in two ways : (i) measurement and the comparison of total growth per unit time is called the absolute growth rate. (ii) The growth of the given system per unit time expressed on a common basis, e.g., per unit initial parameter is called the relative growth rate. In Figure 15.7 two leaves, A and B, are drawn that are of different sizes but shows absolute increase in area in the given time to give leaves, A1 and B1. However, one of them shows much higher relative growth rate. Which one and why?

Figure 15.7 Diagrammatic comparison of absolute and relative growth rates. Both leaves A and B have increased their area by 5 cm2 in a given time to produce A1 , B1 leaves

15.1.5 Conditions for Growth

Why do you not try to write down what you think are necessary conditions for growth? This list may have water, oxygen and nutrients as very essential elements for growth. The plant cells grow in size by cell enlargement which in turn requires water. Turgidity of cells helps in extension growth. Thus, plant growth and further development is intimately linked to the water status of the plant. Water also provides the medium for enzymatic activities needed for growth. Oxygen helps in releasing metabolic energy essential for growth activities. Nutrients (macro and micro essential elements) are required by plants for the synthesis of protoplasm and act as source of energy.

In addition, every plant organism has an optimum temperature range best suited for its growth. Any deviation from this range could be detrimental to its survival. Environmental signals such as light and gravity also affect certain phases/stages of growth.

15.2 DIFFERENTIATION, DEDIFFERENTIATION AND REDIFFERENTIATION

The cells derived from root apical and shoot-apical meristems and cambium differentiate and mature to perform specific functions. This act leading to maturation is termed as differentiation. During differentiation, cells undergo few to major structural changes both in their cell walls and protoplasm. For example, to form a tracheary element, the cells would lose their protoplasm. They also develop a very strong, elastic, lignocellulosic secondary cell walls, to carry water to long distances even under extreme tension. Try to correlate the various anatomical features you encounter in plants to the functions they perform.

Plants show another interesting phenomenon. The living differentiated cells, that by now have lost the capacity to divide can regain the capacity of division under certain conditions. This phenomenon is termed as dedifferentiation. For example, formation of meristems - interfascicular cambium and cork cambium from fully differentiated parenchyma cells. While doing so, such meristems/tissues are able to divide and produce cells that once again lose the capacity to divide but mature to perform specific functions, i.e., get redifferentiated. List some of the tissues in a woody dicotyledenous plant that are the products of redifferentiation. How would you describe a tumour? What would you call the parenchyma cells that are made to divide under controlled laboratory conditions during plant tissue culture?

Recall, in Section 15.1.1, we have mentioned that the growth in plants is open, i.e., it can be indeterminate or determinate. Now, we may say that even differentiation in plants is open, because cells/tissues arising out of the same meristem have different structures at maturity. The final structure at maturity of a cell/tissue is also determined by the location of the cell within. For example, cells positioned away from root apical meristems differentiate as root-cap cells, while those pushed to the periphery mature as epidermis. Can you add a few more examples of open differentiation correlating the position of a cell to its position in an organ?

15.3 DEVELOPMENT

Development is a term that includes all changes that an organism goes through during its life cycle from germination of the seed to senescence. Diagrammatic representation of the sequence of processes which constitute the development of a cell of a higher plant is given in Figure 15.8. It is also applicable to tissues/organs.

Figure 15.8 Sequence of the developmental process in a plant cell

Plants follow different pathways in response to environment or phases of life to form different kinds of structures. This ability is called plasticity, e.g., heterophylly in cotton, coriander and larkspur. In such plants, the leaves of the juvenile plant are different in shape from those in mature plants. On the other hand, difference in shapes of leaves produced in air and those produced in water in buttercup also represent the heterophyllous development due to environment (Figure 15.9). This phenomenon of heterophylly is an example of plasticity.

Figure 15.9 Heterophylly in (a) larkspur and (b) buttercup

Thus, growth, differentiation and development are very closely related events in the life of a plant. Broadly, development is considered as the sum of growth and differentiation. Development in plants (i.e., both growth and differentiation) is under the control of intrinsic and extrinsic factors. The former includes both intracellular (genetic) or intercellular factors (chemicals such as plant growth regulators) while the latter includes light, temperature, water, oxygen, nutrition, etc.

15.4 PLANT GROWTH REGULATORS

15.4.1 Characteristics

The plant growth regulators (PGRs) are small, simple molecules of diverse chemical composition. They could be indole compounds (indole-3-acetic acid, IAA); adenine derivatives (N 6-furfurylamino purine, kinetin), derivatives of carotenoids (abscisic acid, ABA); terpenes (gibberellic acid, GA3) or gases (ethylene, C2H4). Plant growth regulators are variously described as plant growth substances, plant hormones or phytohormones in literature.

The PGRs can be broadly divided into two groups based on their functions in a living plant body. One group of PGRs are involved in growth promoting activities, such as cell division, cell enlargement, pattern formation, tropic growth, flowering, fruiting and seed formation. These are also called plant growth promoters, e.g., auxins, gibberellins and cytokinins. The PGRs of the other group play an important role in plant responses to wounds and stresses of biotic and abiotic origin. They are also involved in various growth inhibiting activities such as dormancy and abscission. The PGR abscisic acid belongs to this group. The gaseous PGR, ethylene, could fit either of the groups, but it is largely an inhibitor of growth activities.

15.4.2 The Discovery of Plant Growth Regulators

Interestingly, the discovery of each of the five major groups of PGRs have been accidental. All this started with the observation of Charles Darwin and his son Francis Darwin when they observed that the coleoptiles of canary grass responded to unilateral illumination by growing towards the light source (phototropism). After a series of experiments, it was concluded that the tip of coleoptile was the site of transmittable influence that caused the bending of the entire coleoptile (Figure 15.10). Auxin was isolated by F.W. Went from tips of coleoptiles of oat seedlings.

Figure 15.10 Experiment used to demonstrate that tip of the coleoptile is the source of auxin. Arrows indicate direction of light

The ‘bakanae’ (foolish seedling) disease of rice seedlings, was caused by a fungal pathogen Gibberella fujikuroi. E. Kurosawa (1926) reported the appearance of symptoms of the disease in rice seedlings when they were treated with sterile filtrates of the fungus. The active substances were later identified as gibberellic acid.

F. Skoog and his co-workers observed that from the internodal segments of tobacco stems the callus (a mass of undifferentiated cells) proliferated only if, in addition to auxins the nutrients medium was supplemented with one of the following: extracts of vascular tissues, yeast extract, coconut milk or DNA. Miller et al. (1955), later identified and crystallised the cytokinesis promoting active substance that they termed kinetin.

During mid-1960s, three independent researches reported the purification and chemical characterisation of three different kinds of inhibitors: inhibitor-B, abscission II and dormin. Later all the three were proved to be chemically identical. It was named abscisic acid (ABA). H.H. Cousins (1910) confirmed the release of a volatile substance from ripened oranges that hastened the ripening of stored unripened bananas. Later this volatile substance was identified as ethylene, a gaseous PGR. Let us study some of the physiological effects of these five categories of PGRs in the next section.

15.4.3 Physiological Effects of Plant Growth Regulators

15.4.3.1 Auxins

Auxins (from Greek ‘auxein’ : to grow) was first isolated from human urine. The term ‘auxin’ is applied to the indole-3-acetic acid (IAA), and to other natural and synthetic compounds having certain growth regulating properties. They are generally produced by the growing apices of the stems and roots, from where they migrate to the regions of their action. Auxins like IAA and indole butyric acid (IBA) have been isolated from plants. NAA (naphthalene acetic acid) and 2, 4-D (2, 4-dichlorophenoxyacetic) are synthetic auxins. All these auxins have been used extensively in agricultural and horticultural practices.

They help to initiate rooting in stem cuttings, an application widely used for plant propagation. Auxins promote flowering e.g. in pineapples. They help to prevent fruit and leaf drop at early stages but promote the abscission of older mature leaves and fruits.

In most higher plants, the growing apical bud inhibits the growth of the lateral (axillary) buds, a phenomenon called apical dominance. Removal of shoot tips (decapitation) usually results in the growth of lateral buds (Figure 15.11). It is widely applied in tea plantations, hedge-making. Can you explain why?

Figure 15.11 Apical dominance in plants : (a) A plant with apical bud intact (b) A plant with apical bud removed Note the growth of lateral buds into branches after decapitation.

Auxins also induce parthenocarpy, e.g., in tomatoes. They are widely used as herbicides. 2, 4-D, widely used to kill dicotyledonous weeds, does not affect mature monocotyledonous plants. It is used to prepare weed-free lawns by gardeners. Auxin also controls xylem differentiation and helps in cell division.

15.4.3.2 Gibberellins

Gibberellins are another kind of promotory PGR. There are more than 100 gibberellins reported from widely different organisms such as fungi and higher plants. They are denoted as GA 1, GA 2, GA 3 and so on.

However, Gibberellic acid (GA3) was one of the first gibberellins to be discovered and remains the most intensively studied form. All GAs are acidic. They produce a wide range of physiological responses in the plants. Their ability to cause an increase in length of axis is used to increase the length of grapes stalks. Gibberellins, cause fruits like apple to elongate and improve its shape. They also delay senescence. Thus, the fruits can be left on the tree longer so as to extend the market period. GA3 is used to speed up the malting process in brewing industry.

Sugarcane stores carbohydrate as sugar in their stems. Spraying sugarcane crop with gibberellins increases the length of the stem, thus increasing the yield by as much as 20 tonnes per acre. Spraying juvenile conifers with GAs hastens the maturity period, thus leading to early seed production. Gibberellins also promotes bolting (internode elongation just prior to flowering) in beet, cabbages and many plants with rosette habit.

15.4.3.3 Cytokinins

Cytokinins have specific effects on cytokinesis, and were discovered as kinetin (a modified form of adenine, a purine) from the autoclaved herring sperm DNA. Kinetin does not occur naturally in plants. Search for natural substances with cytokinin-like activities led to the isolation of zeatin from corn-kernels and coconut milk. Since the discovery of zeatin, several naturally occurring cytokinins, and some synthetic compounds with cell division promoting activity, have been identified. Natural cytokinins are synthesised in regions where rapid cell division occurs, for example, root apices, developing shoot buds, young fruits etc. It helps to produce new leaves, chloroplasts in leaves, lateral shoot growth and adventitious shoot formation. Cytokinins help overcome the apical dominance. They promote nutrient mobilisation which helps in the delay of leaf senescence.

15.4.3.4 Ethylene

Ethylene is a simple gaseous PGR. It is synthesised in large amounts by tissues undergoing senescence and ripening fruits. Influences of ethylene on plants include horizontal growth of seedlings, swelling of the axis and apical hook formation in dicot seedlings. Ethylene promotes senescence and abscission of plant organs especially of leaves and flowers. Ethylene is highly effective in fruit ripening. It enhances the respiration rate during ripening of the fruits. This rise in rate of respiration is called respiratory climactic.

Ethylene breaks seed and bud dormancy, initiates germination in peanut seeds, sprouting of potato tubers. Ethylene promotes rapid internode/petiole elongation in deep water rice plants. It helps leaves/ upper parts of the shoot to remain above water. Ethylene also promotes root growth and root hair formation, thus helping the plants to increase their absorption surface.

Ethylene is used to initiate flowering and for synchronising fruit-set in pineapples. It also induces flowering in mango. Since ethylene regulates so many physiological processes, it is one of the most widely used PGR in agriculture. The most widely used compound as source of ethylene is ethephon. Ethephon in an aqueous solution is readily absorbed and transported within the plant and releases ethylene slowly. Ethephon hastens fruit ripening in tomatoes and apples and accelerates abscission in flowers and fruits (thinning of cotton, cherry, walnut). It promotes female flowers in cucumbers thereby increasing the yield.

15.4.3.5 Abscisic acid

As mentioned earlier, abscisic acid (ABA) was discovered for its role in regulating abscission and dormancy. But like other PGRs, it also has other wide ranging effects on plant growth and development. It acts as a general plant growth inhibitor and an inhibitor of plant metabolism. ABA inhibits seed germination. ABA stimulates the closure of stomata and increases the tolerance of plants to various kinds of stresses. Therefore, it is also called the stress hormone. ABA plays an important role in seed development, maturation and dormancy. By inducing dormancy, ABA helps seeds to withstand desiccation and other factors unfavourable for growth. In most situations, ABA acts as an antagonist to GAs.

We may summarise that for any and every phase of growth, differentiation and development of plants, one or the other PGR has some role to play. Such roles could be complimentary or antagonistic. These could be individualistic or synergistic. Similarly, there are a number of events in the life of a plant where more than one PGR interact to affect that event, e.g., dormancy in seeds/ buds, abscission, senescence, apical dominance, etc.

Remember, the role of PGR is of only one kind of intrinsic control. Along with genomic control and extrinsic factors, they play an important role in plant growth and development. Many of the extrinsic factors such as temperature and light, control plant growth and development via PGR. Some of such events could be: vernalisation, flowering, dormancy, seed germination, plant movements, etc.

We shall discuss briefly the role of light and temperature (both of them, the extrinsic factors) on initiation of flowering.

Summary

Growth is one of the most conspicuous events in any living organism. It is an irreversible increase expressed in parameters such as size, area, length, height, volume, cell number etc. It conspicuously involves increased protoplasmic material. In plants, meristems are the sites of growth. Root and shoot apical meristems sometimes alongwith intercalary meristem, contribute to the elongation growth of plant axes. Growth is indeterminate in higher plants. Following cell division in root and shoot apical meristem cells, the growth could be arithmetic or geometrical. Growth may not be and generally is not sustained at a high rate throughout the life of cell/tissue/organ/organism. One can define three principle phases of growth - the lag, the log and the senescent phase. When a cell loses the capacity to divide, it leads to differentiation. Differentiation results in development of structures that is commensurate with the function the cells finally has to perform. General principles for differentiation for cell, tissues and organs are similar. A differentiated cell may dedifferentiate and then redifferentiate. Since differentiation in plants is open, the development could also be flexible, i.e., the development is the sum of growth and differentiation. Plant exhibit plasticity in development.

Plant growth and development are under the control of both intrinsic and extrinsic factors. Intercellular intrinsic factors are the chemical substances, called plant growth regulators (PGR). There are diverse groups of PGRs in plants, principally belonging to five groups: auxins, gibberellins, cytokinins, abscisic acid and ethylene. These PGRs are synthesised in various parts of the plant; they control different differentiation and developmental events. Any PGR has diverse physiological effects on plants. Diverse PGRs also manifest similar effects. PGRs may act synergistically or antagonistically. Plant growth and development is also affected by light, temperature, nutrition, oxygen status, gravity and such external factors. Flowering in some plants is induced only when exposed to certain duration of photoperiod. Depending on the nature of photoperiod requirements, the plants are called short day plants, long day plants and day-neutral plants. Certain plants also need to be exposed to low temperature so as to hasten flowering later in life. This treatement is known as vernalisation.

Exercises

1. Define growth, differentiation, development, dedifferentiation, redifferentiation, determinate growth, meristem and growth rate.

Show Answer

Answer

(a) Growth

It is an irreversible and permanent process, accomplished by an increase in the size of an organ or organ parts or even of an individual cell.

(b) Differentiation

It is a process in which the cells derived from the apical meristem (root and shoot apex) and the cambium undergo structural changes in the cell wall and the protoplasm, becoming mature to perform specific functions.

(c) Development

It refers to the various changes occurring in an organism during its life cycle - from the germination of seeds to senescence.

(d) De-differentiation

It is the process in which permanent plant cells regain the power to divide under certain conditions.

(e) Re-differentiation

It is the process in which de-differentiated cells become mature again and lose their capacity to divide.

(f) Determinate growth

It refers to limited growth. For example, animals and plant leaves stop growing after having reached maturity.

(g) Meristem

In plants, growth is restricted to specialised regions where active cell divisions take place. Such a region is called meristem. There are three types of meristems - apical meristem, lateral meristem, and intercalary meristem.

(h) Growth rate

It can be defined as the increased growth in plants per unit time.

2. Why is not any one parameter good enough to demonstrate growth throughout the life of a flowering plant?

Show Answer

Answer

In plants, growth is said to have taken place when the amount of protoplasm increases. Measuring the growth of protoplasm involves many parameters such as the weight of the fresh tissue sample, the weight of the dry tissue sample, the differences in length, area, volume, and cell number measured during the growth period. Measuring the growth of plants using only one parameter does not provide enough information and hence, is insufficient for demonstrating growth.

3. Describe briefly:

(a) Arithmetic growth

(b) Geometric growth

(c) Sigmoid growth curve

(d) Absolute and relative growth rates

Show Answer

Answer

(a) Arithmetic growth

In arithmetic growth, one of the daughter cells continues to divide, while the other differentiates into maturity. The elongation of roots at a constant rate is an example of arithmetic growth.

(b) Geometric growth

Geometric growth is characterised by a slow growth in the initial stages and a rapid growth during the later stages. The daughter cells derived from mitosis retain the ability to divide, but slow down because of a limited nutrient supply.

(c) Sigmoid growth curve

The growth of living organisms in their natural environment is characterised by an S-shaped curve called sigmoid growth curve. This curve is divided into three phases is lag phase, log phase or exponential phase of rapid growth, and stationary phase.

Exponential growth can be expressed as:

$ W_1=W_0 e^{rt} $

Where,

$W_1=$ Final size

$W_0=$ Initial size

$r=$ Growth rate

$t=$ Time of growth

$e=$ Base of natural logarithms

(d) Absolute and relative growth rates

Absolute growth rate refers to the measurement and comparison of total growth per unit time. Relative growth rate refers to the growth of a particular system per unit time, expressed on a common basis.

4. List five main groups of natural plant growth regulators. Write a note on discovery, physiological functions and agricultural/horticultural applications of any one of them.

Show Answer

Answer

Plant growth regulators are the chemical molecules secreted by plants affecting the physiological attributes of a plant. There are five main plant growth regulators. These are:

(i) Auxins

(ii) Gibberellic acid

(iii) Cytokinins

(iv) Ethylene

(v) Abscisic acid

(i) Auxins

Discovery:

The first observations regarding the effects of auxins were made by Charles Darwin and Francis Darwin wherein they saw the coleoptiles of canary gross bending toward a unilateral source of light.

It was concluded after a series of experiments that some substance produced at the tip of coleoptiles was responsible for the bending. Finally, this substance was extracted as auxins from the tips of coleoptiles in oat seedlings.

Physiological functions:

  1. They control plant cell-growth.

  2. They cause the phenomenon of apical dominance.

  3. They control division in the vascular cambium and xylem differentiation.

  4. They induce parthenocarpy and prevent abscission of leaves and fruits.

Horticultural applications:

  1. They are used as the rooting hormones in stem cuttings.

  2. 2-4 D is used weedicide to kill broadleaf, dicotyledonous weeds.

  3. They induce parthenocarpy in tomatoes.

  4. They promote flowering in pineapple and litchi.

(ii) Gibberellic acid

Discovery:

Bakane or the “foolish rice seedling” disease was first observed by Japanese farmers. In this disease, rice seedlings appear to grow taller than natural plants, and become slender and pale green. Later, after several experiments, it was found that this condition was caused by the infection from a certain fungus Gibberella fujikuroi. The active substance was isolated and identified as gibberellic acid.

Physiological functions:

  1. It causes elongation of internodes.

  2. It promotes bolting in rosette plants.

  3. It helps in inducing seed germination by breaking seed dormancy and initiating the synthesis of hydrolases enzymes for digesting reserve food.

Horticultural applications:

  1. It helps in increasing the sugar content in sugarcane by increasing the length of the internodes.

  2. It increases the length of grape stalks.

  3. It improves the shape of apple.

  4. It delays senescence.

  5. It hastens maturity and induces seed-production in juvenile conifers.

(iii) Cytokinins

Discovery:

Through their experimental observations, F. Skoog and his co-workers found that the tobacco callus differentiated when extracts of vascular tissues, yeast extract, coconut milk, or DNA were added to the culture medium. This led to the discovery of cytokinins.

Physiological functions:

  1. They promote the growth of lateral branches by inhibiting apical dominance.

  2. They help in the production of new leaves, chloroplasts, and adventitious shoots.

  3. They help in delaying senescence by promoting nutrient mobilisation.

Horticultural applications:

  1. They are used for preventing apical dominance.

  2. They are used for delaying senescence in leaves.

(iv) Ethylene

Discovery:

It was observed that unripe bananas ripened faster when stored with ripe bananas. Later, the substance promoting the ripening was found to be ethylene.

Physiological functions:

  1. It helps in breaking seed and bud dormancy.

  2. It promotes rapid internode-elongation in deep-water rice plants.

  3. It promotes root-growth and formation of root hairs.

  4. It promotes senescence and abscission of leaves and flowers.

  5. It hastens the respiration rate in fruits and enhances fruit ripening.

Horticultural applications:

  1. It is used to initiate flowering and synchronising the fruit set in pineapples.

  2. It induces flowering in mango.

  3. Ethephon is used to ripen the fruits in tomatoes and apples, and accelerate the abscission of flowers and leaves in cotton, cherry, and walnut.

  4. It promotes the number of female flowers in cucumbers.

(v) Abscisic acid

Discovery:

During the mid 1960s, inhibitor-B, abscission II, and dormin were discovered by three independent researchers. These were later on found to be chemically similar and were thereafter called ABA (Abscisic acid).

Physiological functions:

  1. It acts as an inhibitor to plant metabolism.

  2. It stimulates stomatal closure during water stress.

  3. It induces seed dormancy.

  4. It induces abscission of leaves, fruits, and flowers.

Horticultural application:

It induces seed dormancy in stored seeds.

5. What do you understand by photoperiodism and vernalisation? Describe their significance.

Show Answer

Answer

Photoperiodism refers to the response of plants with respect to the duration of light (i.e., period of day and night). On the basis of its response to the duration of light, a plant is classified as a short-day plant, a long-day plant, or a dayneutral plant. Short-day plants flower when they are exposed to light for a period less than the critical day-length (for example:Chrysanthemum). Long-day plants flower when they are exposed to light for a period more than the critical day-length (for example: radish). When no marked correlation is observed between the duration of exposure to light and the flowering response, plants are termed as day-neutral plants (for example: tomato).

It is hypothesised that the hormonal substance responsible for flowering is formed in the leaves, subsequently migrating to the shoot apices and modifying them into flowering apices. Photoperiodism helps in studying the response of flowering in various crop plants with respect to the duration of exposure to light.

Vernalisation is the cold-induced flowering in plants. In some plants (such as the winter varieties of wheat and rye and biennials such as carrot and cabbage), exposure to low temperature is necessary for flowering to be induced. The winter varieties of rye and wheat are planted in autumn. They remain in the seedling stage during winters and flower during summers. However, when these varieties are sown in spring, they fail to flower. Similar response is seen in cabbage and radish.

6. Why is abscisic acid also known as stress hormone?

Show Answer

Answer

Abscisic acid is called stress hormones as it induces various responses in plants against stress conditions.

It increases the tolerance of plants toward various stresses. It induces the closure of the stomata during water stress. It promotes seed dormancy and ensures seed germination during favourable conditions. It helps seeds withstand desiccation. It also helps in inducing dormancy in plants at the end of the growing season and promotes abscission of leaves, fruits, and flowers.

7. ‘Both growth and differentiation in higher plants are open’. Comment.

Show Answer

Answer

Growth and development in higher plants is referred to as being open. This is because various meristems, having the capacity for continuously dividing and producing new cells, are present at different locations in these plant bodies.

8. ‘Both a short day plant and a long day plant can produce can flower simultaneously in a given place’. Explain.

Show Answer

Answer

The flowering response in short-day plants and long-day plants is dependent on the durations for which these plants are exposed to light. The short-day plant and long-day plant can flower at the same place, provided they have been given an adequate photoperiod.

9. Which one of the plant growth regulators would you use if you are asked to:

(a) induce rooting in a twig

(b) quickly ripen a fruit

(c) delay leaf senescence

(d) induce growth in axillary buds

(e) ‘bolt’ a rosette plant

(f) induce immediate stomatal closure in leaves.

Show Answer

Answer

(a) Induce rooting in a twig - Auxins

(b) Quickly ripen a fruit - Ethylene

(c) Delay leaf senescence - Cytokinins

(d) Induce growth in axillary buds - Cytokinins

(e) ‘Bolt’ a rosette plant - Gibberellic acid

(f) Induce immediate stomatal closure in leaves - Abscisic acid

10. Would a defoliated plant respond to photoperiodic cycle? Why?

Show Answer

Answer

A defoliated plant will not respond to the photoperiodic cycle.

It is hypothesised that the hormonal substance responsible for flowering is formed in the leaves, subsequently migrating to the shoot apices and modifying them into flowering apices. Therefore, in the absence of leaves, light perception would not occur, i.e., the plant would not respond to light.

11. What would be expected to happen if:

(a) GA3 is applied to rice seedlings

(b) dividing cells stop differentiating

(c) a rotten fruit gets mixed with unripe fruits

(d) you forget to add cytokinin to the culture medium.

Show Answer

Answer

(a) If $GA_3$ is applied to rice seedlings, then the rice seedlings will exhibit internode-elongation and increase in height.

(b) If dividing cells stop differentiating, then the plant organs such as leaves and stem will not be formed. The mass of undifferentiated cell is called callus.

(c) If a rotten fruit gets mixed with unripe fruits, then the ethylene produced from the rotten fruits will hasten the ripening of the unripe fruits.

(d) If you forget to add cytokinin to the culture medium, then cell division, growth, and differentiation will not be observed.

आपने पहले ही अध्याय 5 के अंतर्गत फूल वाले पौधे के संगठन के बारे में अध्ययन किया है। क्या आपने कभी सोचा है कि मूल, तना, पत्तियां, फूल तथा बीज जैसी संरचनाएं कहाँ और कैसे पैदा होती हैं और वह भी एक क्रमबद्ध तरीके से? अब आप बीज, पौध (नव अंकुरित पौधा), पादपक (छोटा पौधा) तथा परिपक्व पौधे जैसे शब्दों से परिचित हो गए हैं। आपने यह भी देखा है कि सभी पेड़ समय के अंतराल में ऊंचाई एवं गोलाई (चौड़ाई) में लगातार वृद्धि करते हैं। हालाँकि उसी वृक्ष की पत्तियां, फूल एवं फल आदि न केवल एक सीमित लंबाई-चौड़ाई के होते हैं, बल्कि समयानुकूल वृक्ष से निकलते एवं गिर जाते हैं। यही प्रक्रिया लगातार दोहराई जाती है। एक पौधे में फूल आने की प्रक्रिया कायिक वृद्धि के बाद क्यों होती है? सभी पौधों के अंग विभिन्न तरह के ऊतकों से बने होते हैं। क्या एक कोशिका/ऊतक/अंग की संरचना और उसके द्वारा संपन्न जाने वाली क्रियाकलाप के बीच कोई संबंध है? पौधे की सभी कोशिकाएं युग्मज की संतति या वंशज होती है। तब सवाल यह उठता है कि क्यों और कैसे उनमें भिन्न-भिन्न संरचनात्मक एवं क्रियात्मक विशेषताएं होती हैं? परिवर्धन दो प्रक्रियाओं का योग है: वृद्धि एवं विभेदन। शुरुआत में यह जानना अनिवार्य है कि एक परिपक्व वृक्ष का परिवर्धन एक युग्मक (एक निषेचित अंडा) से शुरू होकर एक सुनिश्चित एवं उच्च नियमित वंशानुक्रम की घटना है। इस प्रक्रिया के दौरान एक जटिल शरीर संरचना का गठन होता है जो जड़ों, पत्तियों, शाखाओं, फूलों, फलों एवं बीजों को उत्पादित करता है और अंततः वे मर जाते हैं। (चित्र 13.1) पौधों की वृद्धि के प्रक्रम का प्रथम चरण बीज का अंकुरण है। जब पर्यावरण में वृद्धि के लिए अनुकूल परिस्थितियाँ होती हैं तो बीज अंकुरित हो जाता है। इस प्रकार की अनुकूल परिस्थितियों के अभाव में बीज अंकुरित नहीं होता तथा निलंबित वृद्धि अथवा प्रसुप्त काल में चला जाता है। जब अनुकूल परिस्थितियाँ वापस आती हैं तब बीजों में उपापचय क्रियाएँ पुनर्वेशित हो जाती हैं तथा वृद्धि होने लगती है।

इस अध्याय में; आप कुछ उन कारकों के बारे में पढ़ेंगे जो कि इस परिवर्धन प्रक्रिया को संचालित एवं नियंत्रित करते हैं। ये कारक एक पौधे के लिए आंतरिक एवं बाहरी होते हैं।

13.1 वृद्धि

एक जीवित वस्तु के लिए वृद्धि को सर्वाधिक आधारभूत एवं सुस्पष्ट विशिष्टता के रूप में जाना जाता है। वृद्धि क्या है? वृद्धि को एक अवयव या अंग या इसके किसी भाग या यहाँ तक कि एक कोशिका के आधार में अनिवर्त्य (अनपलट) स्थाई बढ़त के रूप में पारिभाषित किया जा सकता है। सामान्यतः वृद्धि उपापचयी प्रक्रियाओं (उपचय एवं अपचय दोनों से) से जुड़ा होता है जो ऊर्जा के व्यय पर आधारित होता है। इसलिए एक पत्ती का विस्तार वृद्धि है। आप एक लकड़ी के टुकड़े को पानी में डालने से हुए फैलाव या विस्तार का वर्णन कैसे करेंगे?

13.1.1 पादप वृद्धि प्रायः अपरिमित है

पादप वृद्धि अनूठे ढंग से होती है; क्योंकि पौधे जीवन भर असीमित वृद्धि की क्षमता को अर्जित किए होते हैं। इस क्षमता का कारण उनके शरीर में कुछ खास जगहों पर विभज्योतक (मेरिस्टेम) ऊतकों की उपस्थिति है। ऐसे विभज्योतकों की कोशिकाओं में विभाजन एवं स्वशाश्वतता (निरंतरता) की क्षमता होती है। हालाँकि यह उत्पाद जल्द ही विभाजन की क्षमता खो देते हैं और ऐसी कोशिकाएं जो विभाजन की क्षमता खो देती है, वे पादप शरीर की रचना करती है। इस प्रकार की वृद्धि जहाँ पर विभज्योतक की क्रियात्मकता से पौधे के शरीर में सदैव नई कोशिकाओं को जोड़ा जाता है, उसे वृद्धि का खुला स्वरूप कहा जाता है। क्या होगा जब विभज्योतक का विभाजन बंद हो जाए? क्या कभी ऐसा होता है?

आपने पिछली कक्षाओं में मूल शिखाग्र विभज्योतक तथा प्ररोह शिखाग्र विभज्योतक के स्तर पर विभज्योतक के बारे में पढ़ा है। ये पौधों की प्राथमिक वृद्धि के लिए जिम्मेदार होते हैं और मुख्यतया पौधे के अक्ष के समानांतर दीर्घीकरण में भागीदारी करते हैं। द्विबीज पत्ती तथा नग्नबीजी पौधों में पार्श्व विभज्योतक, संवहनी कैंबियम तथा कार्क कैंबियम जीवन में बाद में प्रकट होते हैं। ये विभज्योतक उन अंग की चौड़ाई को बढ़ाते हैं, जहाँ ये क्रियाशील होते हैं। इसे द्वितीयक वृद्धि के नाम से जाना जाता है (चित्र-13.2 देखें)।

चित्र 13.2 मूल अग्रस्थ विभज्योतक, प्ररोह अग्रस्थ विभज्योतक तथा संवहनी कैंबियम का आरेख निरुपण। कोशिका और वृद्धि की दिशा को दिखाते हुए तीर।

13.1.2 वृद्धि माप योग्य है

कोशिकीय स्तर पर वृद्धि मुख्यतः जीवद्रव्य मात्रा में वृद्धि का परिणाम है। चूँकि जीवद्रव्य की वृद्धि को सीधे मापना कठिन है; अतः कुछ दूसरी मात्राओं को मापा जाता है जो कम या ज्यादा इसी के अनुपात में होता है। इसलिए, वृद्धि को विभिन्न मापदंडों द्वारा मापा जाता है। कुछेक मापदंड ये हैं: ताजी भार वृद्धि, शुष्क भार, लंबाई क्षेत्रफल, आयतन तथा कोशिकाओं की संख्या आदि। आपको यह जानकर आश्चर्य होगा कि एक मक्के की मूल शिखाग्र विभज्योतक में प्रति घंटे 17,500 या अधिक नई कोशकाएं पैदा हो सकती हैं, जबकि एक तरबूज में कोशिकाओं की आकार में वृद्धि $3,50,000$ गुना तक हो सकती है। पहले वाले उदाहरण में वृद्धि को कोशिकाओं की संख्या में वृद्धि के रूप व्यक्त किया गया है, जबकि बाद वाले में वृद्धि को कोशिका के आकार में बढ़ोत्तरी के रूप में किया गया है। एक पराग नलिका की वृद्धि, लंबाई में बढ़त का एक अच्छा मापदंड है, जबकि पृष्ठाधार पत्ती की वृद्धि को उसके पृष्ठीय क्षेत्रफल की बढ़त के रूप में मापा जा सकता है।

13.1.3 वृद्धि के चरण

वृद्धि की अवधि को मुख्यतः तीन चरणों में बाँटा गया है; विभज्योतकीय, दीर्घीकरण एवं परिपक्वता (चित्र-13.3)। आओ, हम इसे मूलाग्र को देख कर समझें। विभज्योतकीय चरण में कोशिकाएं मूल शिखाग्र तथा प्ररोह शिखाग्र दोनों में लगातार विभाजित होती हैं। इन क्षेत्रों की कोशिकाएं जीवद्रव्य से भरपूर होती हैं और व्यापक संलक्ष्य केंद्रक को अधिकृत किए होती हैं। उनकी कोशिका भित्ति प्राथमिक, पतली तथा प्रचुर जीवद्रव्य तंतु संयोजन के साथ सेलुलाजिक होती है। विभज्योतक क्षेत्र के समीपस्थ (ठीक अगला, नोक से दूर) कोशिका दीर्घीकरण के चरण का प्रतिनिधित्व करता है। इस चरण में कोशिकाओं का बड़ा हुआ रसधानी भवन, कोशिका विशालीकरण तथा नव कोशिका भित्ति निक्षेपण आदि विशिष्टताएं हैं। पुनः शिखाग्र से आगे अर्थात् दीर्घीकरण के अधिक समीपस्थ अक्ष का वह भाग स्थित होता है जो कि परिपक्वता के चरण में जा रहा होता है। इस परिक्षेत्र में स्थित होने वाली कोशिकाएं अपने अंतिम आकार को प्राप्त किए होती हैं तथा उनकी भित्ति की मोटाई एवं रसधानी चरम पर होता है। पिछली कक्षाओं में आपने अधिकतर जिन ऊतकोंकोशिकाओं के प्रकार का अध्ययन किया; वे इसी चरण का प्रतिनिधित्व करती है।

चित्र 13.3 दीर्घीकरण क्षेत्र का पहचान समानांतर रेखा तकनीक द्वारा। क्षेत्र अ, ब, स, द जो शीर्ष के पीछे हैं सबसे ज्यादा दीर्घीकृत हुए हैं।

13.1.4 वृद्धि दर

समय की प्रति इकाई के दौरान बढ़ी हुई वृद्धि को वृद्धि दर कहा जाता है। अतः वृद्धि की दर को गणितीय ढंग से (चित्र 13.4) व्यक्त किया जा सकता है। एक जीव या उसके अंग कई तरीकों से अधिक कोशिकाएं पैदा कर सकता है।

चित्र 13.4 (अ) अंकगणितीय और (ब) ज्यामितिक वृद्धि

चित्र 13.5 नियत रेखीय वृद्धि, लंबाई और समय के विरूद्ध आलेख

वृद्धि दर अंकगणितीय या ज्यामितीय (रेखागणितीय) संवंर्धन हो सकती है। अंकगणितीय वृद्धि में, समसूत्री विभाजन के बाद केवल एक पुत्री कोशिका लगातार विभाजित होती रहती है तो जब कि दूसरी विभेदित एवं परिपक्व होती रहती हैं। अंकगणितिय वृद्धि एक सरलतम अभिव्यक्ति है जिसे हम निश्चित दर पर दीर्घीकृत होते मूल में देख सकते हैं। (चित्र 13.5) को देखें जिसमें अंग की लंबाई समय के विरूद्ध अलिखित की गई है जिसके फलस्वरूप रेखीय वक्र पाया गया है। इसे हम गणितीय रूप में इस प्रकार चक्र कर सकते हैं-

$\mathrm{L} _{\mathrm{t}}=\mathrm{L} _{\mathrm{O}}+\mathrm{rt}$

$\mathrm{L}_{\mathrm{t}}=$ टाइम टी के समय लंबाई

$\mathrm{L}_{\mathrm{O}}=$ टाइम शून्य के समय लंबाई

$r=$ वृद्धि दर दीर्घीकरण प्रति इकाई समय

आइए, अब देखें, ज्यामितीय वृद्धि में क्या होती है। हालाँकि अधिकतर प्रणालियों में प्रारंभिक वृद्धि (लैगफेस) धीमी होती है और यह इसके बाद तीव्र गति से एक चरघातांकी दर (लॉग या चरघातांकी चरण) में बढ़ती है। यहाँ पर दोनों संतति कोशिकाएं एक समसूत्री कोशिका के विभाजन का अनुकरण करती है तथा विभाजित होने पर लगातार ऐसा करते रहने के काबिलियत बनाएं रखती हैं। हालाँकि, सीमित पोषण आपूर्ति के साथ वृद्धि धीमी पड़ती हुई स्थिर चरण की ओर बढ़ जाती है। यदि हम समय के प्रति वृद्धि के मापदंड को नियोजित करते हैं तो हम एक विशिष्ट सिगमोइड या एस-वक्र पाते हैं (चित्र 13.6)।

चित्र 13.6 एक आदर्श सिग्मायड वृद्धि वक्र, संवर्धित कोशिकाओं एवं उच्च पादपों और पादप अंगों के लिए प्रारुपिक

एस वक्र सभी जीवित प्राणियों की विशिष्टता है जो स्वाभाविक पर्यावरण में बढ़ रहे होते हैं। यह सभी कोशिकाओं, ऊतकों एवं एक पौधों के विशेष अंगों के लिए आदर्श है। क्या आप अन्य ऐसे ही अधिक उदाहरणों के बारे में सोच सकते हैं? मौसमी क्रियाकलाप प्रकट करने वाले एक वृक्ष से आप किस तरह के वक्र की अपेक्षा कर सकते हैं? चरघातांकीय वृद्धि को इस प्रकार प्रकट किया जा सकता है:

$\mathrm{W} _{1}=\mathrm{W} _{0}{ }^{\text {ert }}$

$\mathrm{W}_{1}=$ अंतिम आकार (भार, ऊंचाई, संख्या आदि)

$\mathrm{W}_{0}=$ प्रथम आकार प्रारंभिक समय में

$\mathrm{r}=$ वृद्धि दर

$\mathrm{t}=$ समय में वृद्धि

$\mathrm{e}=$ स्वाभाविक लघुगाणिक का आधार

यहाँ $r=$ एक सापेक्ष वृद्धि दर है, तथा साथ ही पौधे द्वारा नई पादप सामग्री को पैदा करने की क्षमता को मापने के लिए है,

जिसे एक दक्षता सूचकांक के रूप में संदर्भित किया जाता है। अतः $\mathrm{W} _{1}$ का अंतिम आकार, $\mathrm{W} _{0}$ के प्रारंभिक आकार पर निर्भर करता है। जीवित प्रणाली की वृद्धि के बीच मात्रात्मक तुलना भी दो तरीकों से की जा सकती है: (I) मापन और प्रति यूनिट टाइम की कुल वृद्धि की तुलना, जिसे परम वृद्धि दर कहते हैं। (II) दी गई प्रणाली की प्रति यूनिट समय पर वृद्धि को सामान्य आधार पर प्रकट करना, उदाहरणार्थ- प्रति यूनिट प्रारंभिक मापदंड या पैमाइश को सापेक्षिक वृद्धि दर कहते हैं। देखें चित्र 13.7 जहाँ दो पत्तियां ‘अ’ और ‘ब’ विभिन्न आकारों की दिखाई गई है लेकिन एक दिए गए समय में उनके संपूर्ण क्षेत्रफल में वृद्धि समान है। फिर भी उनमें से एक की सापेक्षिक वृद्धि दर ज्यादा है। यह कौन सी है और क्यों?

चित्र 13.7 निरपेक्ष और सापेक्ष वृद्धि दर (अ और ब पंक्तियों को देखें)। दोनों ने अपने क्षेत्रफल दिए हुए समय में अ ‘अ’ ‘ब’ ब पंक्तियां बनाने के लिए 5 से.मी. $^{-2}$ बढ़ा लिए हैं।

13.1.5 वृद्धि के लिए दशाएं

आप यह लिखने की कोशिश क्यों नहीं करते कि पौधों की वृद्धि के लिए जरूरी चीजें क्या हैं? इस सूची में जल, ऑक्सीजन तथा पोषक तत्व अवश्य होने चाहिए जो वृद्धि के लिए अनिवार्य हैं। पौधों की कोशिकाएं अपने आकार में बड़ी होकर वृद्धि करती है जिसके लिए जल की आवश्यकता होती है। इसलिए एक पादप की वृद्धि और उसका परिवर्धन उसमें पानी की स्थिति या उपलब्धता से जुड़ी है। वृद्धि के लिए आवश्यक एंजाइमों की क्रियाशीलता के लिए जल एक माध्यम उपलब्ध करता है तथा ऑक्सीजन उपाचयी ऊर्जा को मुक्त करने में मदद करती है। पौधों द्वारा पोषकों (स्थूल एवं सूक्ष्म आवश्यक तत्व) की आवश्यकता जीवद्रव्य के संश्लेषण तथा ऊर्जा के स्रोत्र के रूप में काम करने के लिए होती है।

इसके अतिरिक्त प्रत्येक पादप जीव के लिए इष्टतम ताप परिसर होता है, जो उसकी वृद्धि के लिए अत्यंत ही अनुकूल होता है। इस ताप के दायरे से किसी प्रकार का विलगाव उसकी उत्तरजीविता के लिए हानिकारक हो सकता है। इसके साथ ही पर्यावरणीय संकेत जैसे कि प्रकाश एवं गुरुत्वाकर्षण भी वृद्धि की कुछ अवस्थाओं या चरणों को प्रभावित करता है।

13.2 विभेदन, निर्विभेदन तथा पुनर्विभेदन

मूल शिखाग्र विभज्योतक तथा प्ररोह शिखाग्र विभज्योतक से आने वाली कोशिकाएं और कैंबियम विभेदित होती है। तथा विशिष्ट क्रियाकलाप को संपन्न करने के लिए परिपक्व होती है। यह परिपक्वता की ओर अग्रसर होने वाली कार्यवाही विभेदन कहलाती है। वे अपनी कोशिकाभित्ति एवं जीवद्रव्य दोनों में ही या कुछ व्यापक संरचनात्मक बदलावों से गुजरती है। उदाहरणस्वरूप एक वाहिकीय तत्व के बनने में कोशिका अपने जीव द्रव्य को खो देती है और बाद में एक बहुत सुदृढ़ तन्यतापूर्ण लिग्नोसेल्युलोसिक (काष्ठ कोशिका सधानी) द्वितीय कोशिका भित्ति विकसित होती है, जो लंबी दूरी तक सर्वोच्च तनाव में भी जल को वहन करने के लिए उपर्युक्त होता है। आप पौधों के शरीर की विभिन्न रचनात्मक विशिष्टताओं एवं उसकी संबंधित क्रियाशीलता से संबंध स्थापित करने की कोशिश करें।

पौधे अन्य रोचक तथ्य दिखाते हैं। जीवित विभेदित कोशिकाएं कुछ खास परिस्थितियों में विभाजन की क्षमता पुनः प्राप्त कर सकती हैं। इस क्षमता को निर्विभेदन कहते हैं। उदाहरण के तौर पर अंतरापूलय वाहिकी कैंबियम, एवं कार्क कैंबियम। निर्विभेदित कोशिकाओं/तकों के द्वारा उत्पादित कोशिका बाद में फिर से विभाजन की क्षमता खो देती है ताकि विशिष्ट कार्यों को संपादित किया जा सके अर्थात् पुनर्विभेदित हो जाती है। एक काष्ठीय द्विबीजपत्ती पादप के कुछ ऊतकों की सूची बनाएं जो पुनर्विभेदन के उत्पाद हों। आप अर्वुद का कैसे वर्णन करेंगे? आप उस मृदूतक कोशिका को जिसे प्रयोगशाला के नियंत्रित क्षेत्र में पादप ऊतक संवर्धन के दौरान विभाजित कराया जा रहा हो, उसे क्या कहेंगे?

अनुभाग 13.1.1 को याद कीजिए; हमने बताया था कि पौधों में वृद्धि उन्मुक्त होती है अर्थात् यह परिमित या अपरिमित हो सकता है। अब, हम कह सकते हैं कि पादपों में विभेदन भी उन्मुक्त होता है; क्योंकि ठीक उसी विभज्योतक से पैदा हुए ऊतक/कोशिकाएं परिपक्व होने पर भिन्न संरचनाएं तैयार करती हैं। कोशिका/ऊतक की परिपक्वता के समय अंतिम संरचना कोशिका के आंतरिक स्थान पर भी निर्भर करता है। उदाहरण के लिए शिखाग्र विभज्योतक से दूरस्थ कोशिकाएं मूल गोप कोशिका के रूप में विभेदित होती हैं जबकि जिन्हें बाहरी वलय की ओर ढकेल दिया जाता है। बाह्य त्वचा के रूप में परिपक्व होती हैं। क्या आप उन्मुक्त विभेदन का कुछ और उदाहरण जोड़ना चाहेंगे जो कोशिकीय स्थिति तथा पादप अंगों में उनके स्थान के संबंधों को दर्शाता हो?

13.3 परिवर्धन

परिवर्धन वह शब्द है जिसके अंतर्गत एक जीव के जीवन चक्र में आने वाले वे सारे बदलाव शामिल हैं, जो बीजांकुरण एवं जरावस्था के बीच आते हैं। चित्र 13.8 में उच्चपादप की कोशिकाओं में होने वाले परिवर्धन की क्रमिक प्रतिक्रियाओं को रेखा चित्र के द्वारा प्रस्तुत किया गया है। यह ऊतकों/अवयवों (अंगों) पर भी लागू होता है।

चित्र 13.8 एक पादप कोशिका के विकासात्मक प्रक्रम का अनुक्रम

पौधे पर्यावरण के प्रभाव के कारण या जीवन के विभिन्न चरणों में भिन्न पथों का अनुसरण करते हैं, ताकि विभिन्न तरह की संरचनाओं का गठन कर सकें। इस क्षमता को प्लास्टिसिटी कहते हैं। उदाहरण के तौर पर कपास, धनिया एवं लार्कस्पर में विभिन्न आकार की पत्तियाँ इन पौधों में पत्तियों का आकार किशोरावस्था एवं परिपक्व अवस्था में भिन्न होते हैं। दूसरी तरफ बटरकप में पत्तियों का आकार वायवीय भागों में अलग होता है (चित्र 13.9)। विषमपर्णता का यह दृश्य प्लास्टिकता या सुघट्यता का एक उदाहरण है।

चित्र 13.9 लार्कस्पर (अ) एवं (ब) बटरकप में विषमपर्णी

अतः एक पौधे के जीवन में वृद्धि, विभेदन और परिवर्धन बहुत ही निकट संबंध रखने वाली घटनाएं हैं। व्यापक तौर पर परिवर्धन को वृद्धि एवं विभेदन के योग के रूप में माना जाता है। पौधों में परिवर्धन अर्थात् वृद्धि एवं विभेदन दोनों आंतरिक एवं बाह्य कारकों से नियंत्रित है। आंतरिक कारकों में अंतरकोशिकीय आनुवंशिक तथा अंतर कोशिकी कारक (जैसे की पादप वृद्धि नियामक रसायन) शामिल होते हैं, जबकि बाह्य कारकों के अंतगर्त प्रकाश, तापक्रम, जल, ऑक्सीजन तथा पोषक आदि शामिल होते हैं।

13.4 पादप वृद्धि नियामक

13.4.1 विशिष्टताएं

पादप वृद्धि नियामक विविध रासायनिक संघटनों वाले साधारण तथा लघु अणु होते हैं। ये इंडोल सम्मिश्रण (इंडोल-3 एसिटिक अम्ल, आई ए ए); ऐडनीन व्युत्पन्न फरफ्युराइल ऐमिनो प्युरीन काइनटिन) केराटिनायड तथा वसा अम्लों के व्युत्पन्नक (एंसीसिक एसिड, ए बी ए), टर्पीन (जिबेरेलिक एसिड, जी ए) या गैसेस (एथीलिन $\mathrm{C} _{2} \mathrm{H} _{4}$ ) आदि हो सकते हैं। पादप वृद्धि नियामक को पाठय सामग्री में, पादप वृद्धि तत्व, पादप हार्मोन तथा फाइटोहार्मोन के नाम से वर्णित किया गया है।

पादप वृद्धि नियामक (पी जी आर) को व्यापक रूप से एक जीवित पौधे में उनकी कार्यशीलता के आधार पर दो समूहों में बाँटा जा सकता है। पीजीआर का एक समूह वृद्धि उन्नयन क्रियाकलापों में लगा होता है जैसे कि कोशिका विभाजन, कोशिका प्रसार, प्रतिमान संरचना, ट्रापिक (अनुवर्तनी) वृद्धि, पुष्पन, फलीकरण तथा बीज संरचना आदि। इन्हें पादप वृद्धि नियामक भी कहा जाता है जैसे कि ऑक्सिंस, जिब्बेरेलिंस तथा साइटोकिनिंस। उनके समूह के दूसरे पीजीआर तथा दवाब के प्रति पादपों की अनुक्रिया समूह के दूसरे पीजीआर में महत्वपूर्ण भूमिका निभाते हैं। इसके साथ ही वे विभिन्न वृद्धि वाधक कियाकलापों जैसे प्रसुप्ति एवं विलगन में भी शामिल होते हैं। एबसीसिक एसिड पीजीआर इसी समुह का सदस्य है। गैसीय पी जी आर, एथीलिन किसी भी समूह के साथ बैठ जाता है लेकिन व्यापक तौर पर यह एक वृद्धि बाधक क्रिया कलापों में आता है।

13.4.2 पादप वृद्धि नियामकों की खोज

रोचक बात यह है कि पीजीआर के पाँच प्रमुख समूहों में प्रत्येक की खोज मात्र एक संयोग है। इसकी शुरूआत चार्ल्स डारविन और उनके पुत्र फ्रांसिस डारविन के अवलोकन से हुई जब उन्होंने देखा कि कनारी घास का प्रांकुर चोल (कोलियोपटाइल) एकपार्श्वी प्रदीपन के प्रति अनुक्रिया करता है और प्रकाश के उद्गम की तरफ वृद्धि ( प्रकाशानुवर्तन) करता है। प्रयोगों की एक लंबी शृंखला के पश्चात, यह निष्कर्ष निकाला गया कि प्रांकुर चोल की नोक संचारणीय प्रवाह की जगह है जो संपूर्ण प्रांकुर चोल के मुड़ने का कारण है (चित्र 13.10)। ऑक्सिन की खोज एफ डवल्यू वेंट (F.W. Went) के द्वारा जई के अंकुर के प्रांकुरचोल शिखर से की गई है।

चित्र 13.10 प्रांकुर चोल का अग्रभाग पादप वृद्धि नियामक ऑक्सिन का उद्गम

‘बैकेन’ (फूलिश सीडलिंग) धान के पौध (नवोद्भिद्) की बीमारी है जो रोगजनक कवक जिबेरेला फूजीकोराइ के द्वारा होती है। ई. कुरोसोवा (जापानी वैज्ञानिक) ने रोगरहित धान की पौध में रोग लक्षण को बताया, जब उन्हें कवक के जीवाणुहीन निस्यंदों (फिल्ट्रेट) के साथ उपचारित किया। सक्रिय तत्व की पहचान बाद में जिब्बेरेलिक अम्ल के रूप में हुई।

एफ स्कूग (F. Skoog) तथा उनके सहकर्मियों ने देखा कि तंबाकू के तने के अंतरपर्व (इंट्रानोडल) खंड से (अविभेदित कोशिकाओं का समूह) तभी प्रचुरित हुआ जब ऑक्सिंस के अलावा मीडियम में, वाहिका ऊतकों के सत्व या यीस्ट सत्व या नारियल दूध या डीएनए पूरक रूप में दिया गया। मिलर एट आल (Miller et.al) (1955) ने साइटोकाइनेसिस को बढ़ावा देने वाले इस तत्व को पहचाना और इसका क्रिस्टलीकरण किया तथा काइनेटिन नाम दिया।

1960 के मध्य में तीन अलग-अलग वैज्ञानिकों ने स्वतंत्र रूप से तीन तरह के निरोधक का शुद्धिकरण एवं उसका रासायनिक स्वरूप प्रस्तुत किया। वे निरोधक बी, बिलगन II एवं डोरमिन है। बाद में ये तीनों रासायनिक रूप से समान पाए गए। इसका नामकरण एबसिसिक अम्ल के रूप में किया गया। एच.एच. कज़िन्स (H.H. Cousins) (1910) ने यह सुनिश्चित किया कि पके हुए संतरों से निकला हुआ एक वाष्पशील तत्व पास में रखे बिना पके हुए केलों को शीघ्रता में पकाता है। बाद में यह वाष्पशील तत्व एथीलिन के नाम से जाना गया जो एक गैसीय पीजीआर है। आइए, अब हम इन पाँच तरह के पीजीआर के कायिकीय प्रभाव का अगले भाग में अध्ययन करते हैं।

13.4.3 पादप वृद्धि नियामकों का कायिकीय शरीरक्रियात्मक प्रभाव

13.4.3.1ऑक्सिंस

(ग्रीक शब्द आक्सेन : बढ़ना) सर्वप्रथम मनुष्य के मूत्र से निकाला गया। शब्द ऑक्सिंस इनडोल-3 एसेटिक अम्ल (आई ए ए) तथा अन्य प्राकृतिक एवं कृत्रिम यौगिक, जिसमें वृद्धि करने की क्षमता हो, के लिए प्रयोग किया जाता है। ये प्रायः तने एवं मूल के बढ़ते हुए शिखर पर बनते हैं तथा वहाँ से क्रियाशीलता वाले भाग में जाता हैं। ऑक्सिंस जैसे आईएए एवं इनडोल ब्यूटेरिक अम्ल पौधे से निकाला गया है। एनएए (नैफथेलिन एसेटिक अम्ल) तथा 2,4 डी ( 2,4 डाईक्लोरो फिनोक्सी एसेटिक अम्ल) कृत्रिम आक्सिंस हैं। ऑक्सिंस के उपयोग का एक विस्तृत दायरा है और ये बागवानी एवं खेती में प्रयोग किए गए हैं।

ये तनों की कटिंग (कलमों) में जड़ फूटने (रूटिंग) में सहायता करती है जो पादप प्रवर्धन में व्यापकता से इस्तेमाल होती है। आक्सिंस पुष्पन को बढ़ा देती है; जैसे अनानास में। ये पौधों के पत्तों एवं फलों को शुरूआती अवस्था में गिरने से बचाते हैं तथा पुरानी एवं परिपक्व पत्तियों एवं फलों के विलगन को बढ़ावा देते हैं।

उच्च पादपों में वृद्धि करती अग्रस्थ कलिका पार्श्व (कक्षस्थ) कलियों की वृद्धि को अवरोधित करते हैं। जिसे शिखाग्र प्रधान्यता (apical dominance) कहते हैं। प्ररोह सिरों को हटाने (शिरच्छेदन) से प्रायः पार्श्व कलियों की वृद्धि होती है (देखें चित्र 13.11)। यह बात व्यापक रूप से चाय रोपण एवं बाड़ बनाने (हेज मेकिंग) में लागू होती है। क्या आप बता सकते हैं, क्यों?

चित्र 13.11 पादपों में शीर्षस्थ प्रभाविता (अ) अग्रस्थ कलिका की उपस्थिति कक्षस्थ कलिका में वृद्धि को रोकती है (ब) अग्रस्थ कलिका का लंबवत काट, कक्षस्थ कलिका से छत्रक हटाने के बाद शाखाओं के रूप में वृद्धि

इसके साथ ही आक्सिंस अनिषेकफलन को प्रेरित करता है जैसे कि टमाटर में। इन्हें व्यापक रूप से शाकनाशी के रूप में उपयोग किया जाता है। 2 , 4-डी, व्यापक रूप से द्विबीजपत्ती खरपतवारों का नाश कर देता है; लेकिन एकबीजपत्ती परिपक्व पौधों को प्रभावित नहीं करता है। इसका उपयोग मालियों के द्वारा लॉन को तैयार करने में किया जाता है। इसके साथ ही ऑक्सिंस जाइलम विभेदन को नियंत्रित करने तथा कोशिका के विभाजन में मदद करता है।

13.4.3.2जिब्वेरेलिंस

जिब्वेरेलिंस एक अन्य प्रकार का प्रोत्साहक पी जी आर है। सौ से अधिक जिब्वेरेलिंस की सूचना विभिन्न जीवों से आ चुकी है जैसे कि कवकों और उच्च पादपों से। इन्हें जी ए $\left(\mathrm{GA} _{1}\right)$ जी ए $\left(\mathrm{GA} _{2}\right)$ जी ए $\left(\mathrm{GA} _{3}\right)$ और इसी तरह से नामित किया गया है।

हालांकि जी ए वह जिबेरलिंस है जिसकी सबसे पहले खोज की गई थी और अभी भी सभी से अधिक सघनता से अध्ययन किया जाने वाला स्वरूप है। सभी जी ए एस (GAs) अम्लीय होते हैं। ये पौधों में एक व्यापक दायरे की कायिकीय अनुक्रिया देते हैं। ये अक्ष की लंबाई बढ़ाने की क्षमता रखते हैं, अतः अंगूर के डंठल की लंबाई बढ़ाने में प्रयोग किये जाते हैं। जिब्वेरेलिंस सेव जैसे फलों को लंबा बनाते हैं ताकि वे उचित रूप ले सकें। ये जरावस्था को भी रोकते हैं, ताकि फल पेड़ पर अधिक समय तक लगे रह सकें और बाजार में मिल सकें। जी ए $\mathrm{H} _{3}\left(\mathrm{GA} _{3}\right)$ को आसव (शराब) उद्योग में माल्टिंग की गति बढ़ाने के लिए उपयोग किया जाता है।

गन्ने के तने में कार्बोहाइड्रेट्स चीनी या शर्करा के रूप में एकत्र रहता है। गन्ने की खेती में जिब्बेरेलिंस छिड़कने पर तनों की लंबाई बढ़ती है। इससे 20 टन प्रति एकड़ ज्यादा उपज बढ़ जाती है। जी ए छिड़कने पर किशोर शंकुवृक्षों में परिपक्वता तीव्र गति से होती है अतः बीज जल्दी ही तैयार हो जाता है। जिब्बेरेलिंस चुकंदर, पत्तागोभी एवं अन्य रोजेटी स्वभाव वाले पादपों में वोल्टिंग (पुष्पन से पहले अंतःपर्व का दीर्घीकरण) को बढ़ा देता है।

13.4.3.3साइटोकिनिंस

साइटोकिनिंस अपना विशेष प्रभाव साइटोकिनेसिस (कोशिकाद्रव्य विभाजन) में डालता है और इसे काइनेटिन (एडेनिन का रूपांतरित रूप एक प्युरीन) के रूप में आटोक्लेबड्र हेरिंग के शुक्राणु से खोजा गया था। काइनेटिन पौधों में प्राकृतिक रूप से नहीं पाया जाता है। साइटोकिनिन जैसे पदार्थों की खोज के क्रम में मक्का की अष्ठि तथा नारियल दूध से जियाटीन अलग किया जा सका। जियाटिन के खोज के बाद अनेकों प्राकृतिक रूप से प्राप्त साइटोकिनिंस तथा कोशिका विभाजन प्रोत्साहक पहचाने गए। प्राकृतिक साइटोकिनिंस उन क्षेत्रों में संश्लेषित होता है, जहाँ तीव्र कोशिका विभाजन संपन्न होता है, उदाहरण के लिए मूल शिखाग्र, विकासशील प्ररोह कलिकाएं तथा तरुणफल आदि। यह नई पत्तियों में हरितलवक पार्श्व प्ररोह वृद्धि तथा आपस्थानिक प्ररोह संरचना में मदद करता है। साइटोकिनिंस शिखाग्र प्राधान्यता से छुटकारा दिलाता है। वे पोषकों के संचारण को बढ़ावा देते हैं जिससे पत्तियों की जरावस्था को देरी करने में मदद मिलती है।

13.4.3.4एथीलिन

एथीलिन एक साधारण गैसीय पी जी आर है यह जरावस्था को प्राप्त होते ऊतकों तथा पकते हुए फलों के द्वारा भारी मात्रा में संश्लेषित की जाती है। एथीलिन पौधों की अनुप्रस्थ (क्षैतिज) वृद्धि, अक्षों में फुलाव एवं द्विबीजी निवेद्भिदों में अंकुश संरचना को प्रभावित करती है। एथीलिन जरावस्था एवं विलगन को मुख्यतः पत्तियों एवं फूलों में बढ़ाती है। यह फलों को पकाने में बहुत प्रभावी है। फलों के पकने के दौरान यह श्वसन की गति की वृद्धि करता है। श्वसन वृद्धि में गति की इस बढ़त को क्लाइमैक्टिक श्वसन कहते हैं।

एथीलिन बीज तथा कलिका प्रसुप्ति को तोड़ती है, मूंगफली के बीज में अंकुरण को शुरू करती है तथा आलू के कंदों को अंकुरित करती है। एथीलिन गहरे पानी के धान के पौधों में पर्णवृंत को तीव्र दीर्घीकरण के लिए प्रोत्साहित करता है। यह पत्तियों तथा प्ररोह के ऊपरी भाग को पानी से ऊपर रखने में मदद करता है। इसके साथ ही एथीलिन मूल वृद्धि तथा मूल रोमों को प्रोत्साहित करती है; अतः पौधे को अधिक अवशोषण क्षेत्र प्रदान करने में मदद करती है।

एथीलिन अनानास को फूलने तथा फल समकालिकता में सहायता करता है। इसके साथ ही आम को पुष्पित होने में प्रेरित करता है। एथीलिन अनेकानेक कार्यिकी प्रक्रियाओं को नियमित करता है, अतः यह कृषि में सर्वाधिक इस्तेमाल होने वाली पी जी आर है। सर्वाधिक व्यापक तौर पर इस्तेमाल होने वाला यौगिक एथिफॉन है। एथिफॉन जलीय घोल में आसानी से अवशोषित तथा पौधे के अंतर्गत संचारित होता है तथा धीरे-धीरे एथीलिन मुक्त करता है। एथिफॉन टमाटर एवं सेव के फलों के पकाने की गति को बढ़ाता है तथा फूलों एवं फलों में विलगन को तीव्रता प्रदान करता है (कपास, चेरी तथा अखरोट में विरलन)। यह खीरों में मादा पुष्पों का बढ़ाता है जिससे फसल की पैदावार में वृद्धि होती है।

13.4.3.5एबसिसिक एसिड

जैसा कि पहले बताया जा चुका है कि एबसिसिक एसिड $(\mathrm{ABA})$; की खोज विलगन एवं प्रसुप्ति को नियामित करने में उसकी भूमिका के लिए हुई थी। लेकिन अन्य दूसरे पी जी आर की भांति यह भी पादप वृद्धि एवं परिवर्धन में व्यापक दायरे में प्रभाव डालता है। यह एक सामान्य पादप वृद्धि तथा पादप उपापचय के निरोधक का काम करता है। ए बी ए बीज के अंकुरण का निरोध करता है। यह बाह्यत्वचीय पट्टिकाओं में रंध्रों के बंद होने को प्रोत्साहित करता है तथा पौधों को विभिन्न प्रकार के तनावों को सहने हेतु क्षमता प्रदान करता है। इसी कारण इसे तनाव हार्मोन भी कहा जाता है। ए बी ए बीज के विकास, परिपक्वता, प्रसुप्ति आदि में महत्वपूर्ण भूमिका निभाता है। प्रसुप्ति को प्रेरित करने के द्वारा ए बी ए बीज को जल शुष्कन तथा वृद्धि के लिए अन्य प्रतिकूल परिस्थिति से बचाव देता है। बहुत सारी परिस्थतियों में, एबीए, जीएएस (GAs) के लिए एक विरोधक की भूमिका निभाता है।

हम संक्षेप में कह सकते हैं कि पादपों की वृद्धि, विभेदन तथा परिवर्धन के लिए एक या कई अन्य पी जी आर कुछ न कुछ भूमिका निभाते हैं। यह भूमिकाएं संपूरक की या फिर विरोधक की भी हो सकती है। ये भूमिकाएं वैयक्तिक (निज) या योगवाही हो सकती हैं। इसी तरह पौधे के जीवन में कई घटनाएं होती हैं जहाँ एक से ज्यादा पीजीआर मिलकर घटनाओं को प्रभावित करती हैं, उदाहरण के तौर पर बीज या कली का प्रसुप्तीकरण, विलगन, जरावस्था, शिखर प्रभुत्व आदि।

पीजीआर की भूमिका एक तरह के आंतरिक नियंत्रण में है। याद करें, जीनोमिक नियंत्रण एवं बाह्य कारक के साथ ये पौधे की वृद्धि एवं परिवर्धन में महत्वपूर्ण भूमिका निभाते हैं। बहुत सारे वाह्य कारक जैसे कि तापक्रम एवं प्रकाश पौधे की वृद्धि एवं परिवर्धन को पीजीआर के माध्यम से नियंत्रण करते हैं। ऐसी कुछ घटनाओं का उदाहरण हैं: वसंतीकरण पुष्पन, प्रसुप्तीकरण, बीज अंकुरण, पौधों में गति आदि।

हम लोग संक्षेप में प्रकाश और ताप (दोनों बाह्य कारक है) के पुष्पन आरंभ करने की भूमिका को पढ़ेंगे।

सारांश

किसी भी जीवित प्राणी के लिए वृद्धि एक अत्यंत उत्कृष्ट घटना है। यह एक अनपलट, बढ़तयुक्त तथा मापदंड में प्रकट होने वाली है जैसे कि आकार, क्षेत्रफल, लंबाई, ऊंचाई, आयतन, कोशिका संख्या आदि। इसमें बढ़ा हुआ जीव द्रव्य पदार्थ शामिल है। पौधों में विभज्योतक/मेरिस्टेम वृद्धि की जगहें होती हैं। मूलशिखाग्र विभज्योतक तथा प्ररोह शिखाग्र विभज्योतक के साथ-साथ कई बार, अंतरवाहिका विभज्योतक पौधे के अक्ष की दीर्घगामी वृद्धि में भागीदारी करते हैं। उच्च पेड़ों में वृद्धि अनियत होती है। मूल शिखाग्र एवं प्ररोह शिखाग्र में कोशिका विभाजन का अनुपालन करते हुए वृद्धि अंकगणितीय या ज्यामितीय हो सकती है। कोशिका/ऊतक/अंग जीवों में वृद्धि दर सामान्यतः पूरे जीवन काल में उच्च दर पर नहीं टिकी रहती है। वृद्धि को तीन प्रमुख चरणों, लैग, लॉग तथा जरावस्था में बाँटा जा सकता है। जब कोशिका अपनी विभाजन क्षमता खो देती है तो यह विभेदन की ओर बढ़ जाती है। विभेदन संरचनाएं प्रदान करता है जो उत्पाद की क्रियात्मकता के साथ जुड़ी होती है। कोशिकाओं, ऊतकों तथा संबंधी अंगों के लिए विभेदन के लिए सामान्य नियम एक समान होते हैं। एक विभेदित कोशिका फिर विभेदित हो सकती है या फिर पुनःविभेदित हो सकती है। पादपों में विभेदन चूँकि खुला होता है, अतः परिवर्धन लचीला हो सकता है। दूसरे शब्दों में है परिवर्धन वृद्धि एवं विभेदन का योग है।

पादप वृद्धि एवं परिवर्धन बाह्य एवं आंतरिक दोनों कारकों द्वारा नियंत्रित होते हैं। अंतरकोशीय आंतरिक कारक रासायनिक तत्व होते हैं जिन्हें पादप वृद्धि नियामक (पीजीआर) कहा जाता है। पौधों में पीजीआर के विभिन्न समूह होते हैं, जो मुख्यतः पाँच समूह के नाम से जाने जाते हैं: आक्सिन, जिब्बेरेलिंस, साइटोकिनिंस, एबसीसिक एसिड तथा एथीलिन। ये पीजीआर पौधे के विभिन्न हिस्सों में उत्पादित किए जाते हैं। ये विभिन्न विभेदन एवं परिवर्धन की घटनाओं को नियंत्रित करते हैं। कोई भी पीजीआर पादपों के कार्यिकी पर प्रभाव डाल सकता है। ठीक इसी प्रकार से ये प्रभाव विविध प्रकार की पीजीआर से प्रकट होते हैं। ये पीजीआर सहक्रियाशील योगवाही अथवा प्रतिरोधात्मक के रूप में कार्य कर सकते हैं। इसके साथ पादप वृद्धि एवं परिवर्धन प्रकाश, तापक्रम, ऑक्सीजन स्तर, गुरुत्व तथा अन्य ऐसे ही बाहरी घटकों द्वारा भी प्रभावित होते हैं।

अभ्यास

1. वृद्धि, विभेदन, परिवर्धन, निर्विभेदन, पुनर्विभेदन, सीमित वृद्धि, मेरिस्टेम तथा वृद्धि दर की परिभाषा दें।

Show Answer #Content Missing

2. पुष्पित पौधों के जीवन में किसी एक प्राचालिक (Parameter) से वृद्धि को वर्णित नहीं किया जा सकता है, क्यों?

Show Answer #Content Missing

3. संक्षिप्त वर्णित करें-

(अ) अंकगणितीय वृद्धि

(ब) ज्यामितीय वृद्धि

(स) सिग्माइड वृद्धि वक्र

(द) संपूर्ण एवं सापेक्ष वृद्धि दर

Show Answer #Content Missing

4. प्राकृतिक पादप वृद्धि नियामकों के पाँच मुख्य समूहों के बारे में लिखें। इनके आविष्कार, कार्यिकी प्रभाव तथा कृषि/बागवानी में इनका प्रयोग के बारे में लिखें।

Show Answer #Content Missing

5. एबसिसिक एसिड को तनाव हार्मोन कहते हैं, क्यों?

Show Answer #Content Missing

6. उच्च पादपों में वृद्धि एवं विभेदन खुला होता है, टिप्पणी करें?

Show Answer #Content Missing

7. अगर आपको ऐसा करने को कहा जाए तो एक पादप वृद्धि नियामक का नाम दें-

(क) किसी टहनी में जड़ पैदा करने हेतु

(ख) फल को जल्दी पकाने हेतु

(ग) पत्तियों की जरावस्था को रोकने हेतु

(घ) कक्षस्थ कलिकाओं में वृद्धि कराने हेतु

(च) एक रोजेट पौधे में ‘वोल्ट’ हेतु

(छ) पत्तियों के रंध्र को तुरंत बंद करने हेतु

Show Answer #Content Missing

8. क्या हो सकता है, अगर:

(क) जी ए $\mathrm{C} _{3}\left(\mathrm{GA} _{3}\right)$ को धान के नवोद्भिदों पर दिया जाए

(ख) विभाजित कोशिका विभेदन करना बंद कर दें

(ग) एक सड़ा फल कच्चे फलों के साथ मिला दिया जाए।

(घ) अगर आप संवर्धन माध्यम में साइटोकीनिंस डालना भूल जाएं।

Show Answer #Content Missing


Table of Contents