Chapter-03 Motion in a Plane

3.1 INTRODUCTION

In the last chapter we developed the concepts of position, displacement, velocity and acceleration that are needed to describe the motion of an object along a straight line. We found that the directional aspect of these quantities can be taken care of by + and - signs, as in one dimension only two directions are possible. But in order to describe motion of an object in two dimensions (a plane) or three dimensions (space), we need to use vectors to describe the abovementioned physical quantities. Therefore, it is first necessary to learn the language of vectors. What is a vector ? How to add, subtract and multiply vectors ? What is the result of multiplying a vector by a real number ? We shall learn this to enable us to use vectors for defining velocity and acceleration in a plane. We then discuss motion of an object in a plane. As a simple case of motion in a plane, we shall discuss motion with constant acceleration and treat in detail the projectile motion. Circular motion is a familiar class of motion that has a special significance in daily-life situations. We shall discuss uniform circular motion in some detail. The equations developed in this chapter for motion in a plane can be easily extended to the case of three dimensions.

3.2 SCALARS AND VECTORS

In physics, we can classify quantities as scalars or vectors. Basically, the difference is that a direction is associated with a vector but not with a scalar. A scalar quantity is a quantity with magnitude only. It is specified completely by a single number, along with the proper unit. Examples are : the distance between two points, mass of an object, the temperature of a body and the time at which a certain event happened. The rules for combining scalars are the rules of ordinary algebra. Scalars can be added, subtracted, multiplied and divided just as the ordinary numbers*. For example, if the length and breadth of a rectangle are 1.0 m and 0.5 m respectively, then its perimeter is the sum of the lengths of the four sides, 1.0 m + 0.5 m +1.0 m + 0.5 m = 3.0 m. The length of each side is a scalar and the perimeter is also a scalar. Take another example: the maximum and minimum temperatures on a particular day are 35.6 °C and 24.2 °C respectively. Then, the difference between the two temperatures is 11.4 °C. Similarly, if a uniform solid cube of aluminium of side 10 cm has a mass of 2.7 kg, then its volume is 10–3 m3 (a scalar) and its density is 2.7×103 kg m–3 (a scalar). A vector quantity is a quantity that has both a magnitude and a direction and obeys the triangle law of addition or equivalently the parallelogram law of addition. So, a vector is specified by giving its magnitude by a number and its direction. Some physical quantities that are represented by vectors are displacement, velocity, acceleration and force.

To represent a vector, we use a bold face type in this book. Thus, a velocity vector can be represented by a symbol v. Since bold face is difficult to produce, when written by hand, a vector is often represented by an arrow placed over a letter, say rv . Thus, both v and rv represent the velocity vector. The magnitude of a vector is often called its absolute value, indicated by |v| = v. Thus, a vector is represented by a bold face, e.g. by A, a, p, q, r, … x, y, with respective magnitudes denoted by light face A, a, p, q, r, … x, y.

3.2.1 Position and Displacement Vectors

To describe the position of an object moving in a plane, we need to choose a convenient point, say O as origin. Let P and P′ be the positions of the object at time t and t′, respectively [Fig. 3.1(a)]. We join O and P by a straight line. Then, OP is the position vector of the object at time t. An arrow is marked at the head of this line. It is represented by a symbol r, i.e. OP = r. Point P′ isrepresented by another position vector, OP′ denoted by r′. The length of the vector r represents the magnitude of the vector and its direction is the direction in which P lies as seen from O. If the object moves from P to P′, the vector PP′ (with tail at P and tip at P′) is called the displacement vector corresponding to motion from point P (at time t) to point P′ (at time t′)

Fig. 3.1 (a) Position and displacement vectors. (b) Displacement vector PQ and different courses of motion.

It is important to note that displacement vector is the straight line joining the initial and final positions and does not depend on the actual path undertaken by the object between the two positions. For example, in Fig. 4.1(b), given the initial and final positions as P and Q, the displacement vector is the same PQ for different paths of journey, say PABCQ, PDQ, and PBEFQ. Therefore, the magnitude of displacement is either less or equal to the path length of an object between two points. This fact was emphasised in the previous chapter also while discussing motion along a straight line.

3.2.2 Equality of Vectors

Two vectors A and B are said to be equal if, and only if, they have the same magnitude and the same direction.**

Fig. 3.2 (a) Two equal vectors A and B. (b) Two vectors A′ and B′ are unequal though they are of the same length.

Figure 3.2(a) shows two equal vectors A and B. We can easily check their equality. Shift B parallel to itself until its tail Q coincides with that of A, i.e. Q coincides with O. Then, since their tips S and P also coincide, the two vectors are said to be equal. In general, equality is indicated as A = B. Note that in Fig. 3.2(b), vectors A′ and B′ have the same magnitude but they are not equal because they have different directions. Even if we shift B′ parallel to itself so that its tail Q′ coincides with the tail O′ of A′ , the tip S′ of B′ does not coincide with the tip P′ of A′ .

3.3 MULTIPLICATION OF VECTORS BY REAL NUMBERS

Multiplying a vector A with a positive number λ gives a vector whose magnitude is changed by the factor λ but the direction is the same as that of A :

$$ |\lambda \mathbf{A}|=\lambda|\mathbf{A}| \text { if } \lambda=0 $$

For example, if A is multiplied by 2, the resultant vector 2A is in the same direction as A and has a magnitude twice of |A| as shown in Fig. 3.3(a). Multiplying a vector A by a negative number −λ gives another vector whose direction is opposite to the direction of A and whose magnitude is λ times |A|.

Multiplying a given vector A by negative numbers, say –1 and –1.5, gives vectors as shown in Fig 3.3(b). The factor λ by which a vector A is multiplied could be a scalar having its own physical dimension. Then, the dimension of λ A is the product of the dimensions of λ and A. For example, if we multiply a constant velocity vector by duration (of time), we get a displacement vector.

Fig. 3.3 (a) Vector A and the resultant vector after multiplying A by a positive number 2. (b) Vector A and resultant vectors after multiplying it by a negative number –1 and –1.5.

3.4 ADDITION AND SUBTRACTION OF VECTORS — GRAPHICAL METHOD

As mentioned in section 3.2, vectors, by definition, obey the triangle law or equivalently, the parallelogram law of addition. We shall now describe this law of addition using the graphical method. Let us consider two vectors A and B that lie in a plane as shown in Fig. 3.4(a). The lengths of the line segments representing these vectors are proportional to the magnitude of the vectors. To find the sum A + B, we place vector B so that its tail is at the head of the vector A, as in Fig. 3.4(b). Then, we join the tail of A to the head of B. This line OQ represents a vector R, that is, the sum of the vectors A and B. Since, in this procedure of vector addition, vectors are arranged head to tail, this graphical method is called the head-to-tail method. The two vectors and their resultant form three sides of a triangle, so this method is also known as triangle method of vector addition. If we find the resultant of B + A as in Fig. 3.4(c), the same vector R is obtained. Thus, vector addition is commutative:

A + B = B + A $\quad \quad \quad$ (3.1)

Fig. 3.4 (a) Vectors A and B. (b) Vectors A and B added graphically. (c) Vectors B and A added graphically. (d) Illustrating the associative law of vector addition.

The addition of vectors also obeys the associative law as illustrated in Fig. 3.4(d). The result of adding vectors A and B first and then adding vector C is the same as the result of adding B and C first and then adding vector A :

$$ \begin{equation*} (\mathbf{A}+\mathbf{B})+\mathbf{C}=\mathbf{A}+(\mathbf{B}+\mathbf{C}) \tag{3.2} \end{equation*} $$

What is the result of adding two equal and opposite vectors ? Consider two vectors A and –A shown in Fig. 3.3(b). Their sum is A + (–A). Since the magnitudes of the two vectors are the same, but the directions are opposite, the resultant vector has zero magnitude and is represented by 0 called a null vector or a zero vector :

$$\mathbf{A}-\mathbf{A}=\mathbf{0} \qquad |\mathbf{0}|=0 \tag{3.3}$$

Since the magnitude of a null vector is zero, its direction cannot be specified. The null vector also results when we multiply a vector A by the number zero. The main properties of 0 are :

$$ \begin{align*} & \mathbf{A}+\mathbf{0}=\mathbf{A} \\ & \lambda \mathbf{0}=\mathbf{0} \\ & 0 \mathbf{A}=\mathbf{0} \tag{3.4} \end{align*} $$

What is the physical meaning of a zero vector? Consider the position and displacement vectors in a plane as shown in Fig. 3.1(a). Now suppose that an object which is at P at time t, moves to P′ and then comes back to P. Then, what is its displacement? Since the initial and final positions coincide, the displacement is a “null vector”.

Subtraction of vectors can be defined in terms of addition of vectors. We define the difference of two vectors A and B as the sum of two vectors A and –B :

$$ \begin{equation*} \mathbf{A}-\mathbf{B}=\mathbf{A}+(-\mathbf{B}) \tag{3.5} \end{equation*} $$

It is shown in Fig 3.5. The vector $-\mathbf{B}$ is added to vector $\mathbf{A}$ to get $\mathbf{R} _{2}=(\mathbf{A}-\mathbf{B})$. The vector $\mathbf{R} _{1}=\mathbf{A}+\mathbf{B}$ is also shown in the same figure for comparison. We can also use the parallelogram method to find the sum of two vectors. Suppose we have two vectors $\mathbf{A}$ and $\mathbf{B}$. To add these vectors, we bring their tails to a common origin $\mathrm{O}$ as shown in Fig. 3.6(a). Then we draw a line from the head of $\mathbf{A}$ parallel to $\mathbf{B}$ and another line from the head of B parallel to A to complete a parallelogram OQSP. Now we join the point of the intersection of these two lines to the origin O. The resultant vector R is directed from the common origin O along the diagonal (OS) of the parallelogram [Fig. 3.6(b)]. In Fig.3.6(c), the triangle law is used to obtain the resultant of A and B and we see that the two methods yield the same result. Thus, the two methods are equivalent

Fig. 3.5 (a) Two vectors A and B, – B is also shown. (b) Subtracting vector B from vector A – the result is R2 . For comparison, addition of vectors A and B, i.e. R1 is also shown.

Fig. 3.6 (a) Two vectors A and B with their tails brought to a common origin. (b) The sum A + B obtained using the parallelogram method. (c) The parallelogram method of vector addition is equivalent to the triangle method.

Example 3.1 Rain is falling vertically with a speed of 35 m s–1. Winds starts blowing after sometime with a speed of 12 m s–1 in east to west direction. In which direction should a boy waiting at a bus stop hold his umbrella ?

Answer The velocity of the rain and the wind are represented by the vectors $\mathbf{v_r}$ and $\mathbf{v_w}$ in Fig. 3.7 and are in the direction specified by the problem. Using the rule of vector addition, we see that the resultant of $\mathbf{v_r}$ and $\mathbf{v_w}$ is $\mathrm{R}$ as shown in the figure. The magnitude of $\mathrm{R}$ is

$$ R=\sqrt{v _{r}^{2}+v _{w}^{2}}=\sqrt{35^{2}+12^{2}} \mathrm{~m} \mathrm{~s}^{-1}=37 \mathrm{~m} \mathrm{~s}^{-1} $$

The direction $\theta$ that $R$ makes with the vertical is given by

$$ \tan \theta=\frac{v _{w}}{v _{r}}=\frac{12}{35}=0.343 $$

Or, $\theta=\tan ^{-1}(0.343)=19^{\circ}$

Therefore, the boy should hold his umbrella in the vertical plane at an angle of about $19^{\circ}$ with the vertical towards the east.

3.5 RESOLUTION OF VECTORS

Let a and b be any two non-zero vectors in a plane with different directions and let A be another vector in the same plane(Fig. 3.8). A can be expressed as a sum of two vectors — one obtained by multiplying a by a real number and the other obtained by multiplying b by another real number. To see this, let O and P be the tail and head of the vector A. Then, through O, draw a straight line parallel to a, and through P, a straight line parallel to b. Let them intersect at Q. Then, we have

$$ \begin{equation*} \mathbf{A}=\mathbf{O P}=\mathbf{O} \mathbf{Q}+\mathbf{Q P} \tag{3.6} \end{equation*} $$

But since OQ is parallel to a, and QP is parallel to b, we can write :

$$ \begin{equation*} \mathbf{O} \mathbf{Q}=\lambda \mathbf{a} \text { तथा } \mathbf{Q P}=\mu \mathbf{b} \tag{3.7} \end{equation*} $$

where λ and µ are real numbers.

Therefore,

$$\mathbf{A}=\lambda \mathbf{a}+\mu \mathbf{b}\tag{3.8}$$

Fig. 3.8 (a) Two non-colinear vectors a and b. (b) Resolving a vector A in terms of vectors a and b.

We say that A has been resolved into two component vectors λ a and µ b along a and b respectively. Using this method one can resolve a given vector into two component vectors along a set of two vectors - all the three lie in the same plane. It is convenient to resolve a general vector along the axes of a rectangular coordinate system using vectors of unit magnitude. These are called unit vectors that we discuss now. A unit vector is a vector of unit magnitude and points in a particular direction. It has no dimension and unit. It is used to specify a direction only. Unit vectors along the x-, y- and z-axes of a rectangular coordinate system are denoted by $\hat{\mathbf{i}}, \hat{\mathbf{j}} \text{ and }\hat{\mathbf{k}}$ , respectively, as shown in Fig. 3.9(a). Since these are unit vectors, we have

$$ \begin{equation*} |\hat{\mathbf{i}}|=\hat{\mathbf{j}}|=\hat{\mathbf{k}}|=1 \tag{3.9} \end{equation*} $$

These unit vectors are perpendicular to each other. In this text, they are printed in bold face with a cap (^) to distinguish them from other vectors. Since we are dealing with motion in two dimensions in this chapter, we require use of only two unit vectors. If we multiply a unit vector, say $\hat{\mathbf{n}}$ by a scalar, the result is a vector $\lambda = \lambda\hat{\mathbf{n}}$ . In general, a vector A can be written as

$$ \begin{equation*} \mathbf{A}=|\mathbf{A}| \hat{\mathbf{n}} \tag{3.10} \end{equation*} $$

where $\hat{\mathbf{n}}$ is a unit vector along A. We can now resolve a vector A in terms of component vectors that lie along unit vectors $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$. Consider a vector A that lies in x-y plane as shown in Fig. 3.9(b). We draw lines from the head of A perpendicular to the coordinate axes as in Fig. 3.9(b), and get vectors $\mathbf{A_1}$ and $\mathbf{A_2}$ such that $\mathbf{A_1} + \mathbf{A_2} = \mathbf{A}$. Since $\mathbf{A_1}$ is parallel to $\hat{\mathbf{i}}$ and $\mathbf{A_2}$ is parallel to $\hat{\mathbf{j}}$, we have :

Fig. 3.9 (a) Unit vectors ɵ i , ɵ j and ɵk lie along the x-, y-, and z-axes. (b) A vector A is resolved into its components Ax and Ay along x-, and y- axes. (c) A1 and A2 expressed in terms of ɵ i and ɵ j

$$ \begin{equation*} \mathbf{A} _{1}=A _{x} \hat{\mathbf{i}}, \mathbf{A} _{2}=A _{y} \hat{\mathbf{j}} \tag{3.11} \end{equation*} $$

where $A_x$ and $A_y$ are real numbers.

Thus, $\quad \mathbf{A}=A_x \dot{\hat{\mathbf{i}}}+A_y \hat{\mathbf{j}}\quad \quad \quad (3.12)$

This is represented in Fig. 3.9(c). The quantities $A_x$ and $A_y$ are called $x$-, and $y$-components of the vector A. Note that $A_x$ is itself not a vector, but $A_x \hat{\mathbf{i}}$ is a vector, and so is $A_y \hat{\mathbf{j}}$. Using simple trigonometry, we can express $A_x$ and $A_y$ in terms of the magnitude of $\mathbf{A}$ and the angle $\theta$ it makes with the $x$-axis :

$$ \begin{align*} & A _{x}=A \cos \theta \\ & A _{y}=A \sin \theta \tag{3.13} \end{align*} $$

As is clear from Eq. (3.13), a component of a vector can be positive, negative or zero depending on the value of $\theta$.

Now, we have two ways to specify a vector $\mathbf{A}$ in a plane. It can be specified by :

(i) its magnitude $A$ and the direction $\theta$ it makes with the $x$-axis; or

(ii) its components $A_x$ and $A_y$

If $\mathrm{A}$ and $\theta$ are given, $A_x$ and $A_y$ can be obtained using Eq. (3.13). If $A_x$ and $A_y$ are given, $A$ and $\theta$ can be obtained as follows :

$$ \begin{equation*} A _{x}^{2}+A _{y}^{2}=A^{2} \cos ^{2} \theta+A^{2} \sin ^{2} \theta=A^{2} \tag{3.14} \end{equation*} $$

Or, $ \quad \quad \quad A=\sqrt{A_x^2+A_y^2} \quad \quad \quad (3.14) $

And $ \quad \quad \quad \tan \theta=\frac{A_y}{A_x}, \quad \theta=\tan ^{-1} \frac{A_y}{A_x} \quad \quad \quad (3.15) $

So far we have considered a vector lying in an x-y plane. The same procedure can be used to resolve a general vector A into three components along x-, y-, and z-axes in three dimensions. If α, β, and γ are the angles* between A and the x-, y-, and z-axes, respectively [Fig. 4.9(d)], we have

Fig. 3.9 (d) A vector A resolved into components along x-, y-, and z-axes

$ \mathrm{A_x}=\mathrm{A} \cos \alpha, \mathrm{A_y}=\mathrm{A} \cos \beta, \mathrm{A_z}=\mathrm{A} \cos \gamma \quad\quad \text { (3.16a) } $

In general, we have

$ \mathbf{A}=A_x \hat{\mathbf{i}}+A_y \hat{\mathbf{j}}+A_z \hat{\mathbf{k}} \quad\quad \text { (3.16b) } $

The magnitude of vector $\mathbf{A}$ is

$ A=\sqrt{A_x^2+A_y^2+A_z^2} \quad\quad \text { (3.16c) } $

A position vector $\mathbf{r}$ can be expressed as

$ \mathbf{r}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}} \quad\quad \text { (3.17) } $

where $x, y$, and $z$ are the components of $\mathbf{r}$ along $x-, y-, z$-axes, respectively.

3.6 VECTOR ADDITION - ANALYTICAL METHOD

Although the graphical method of adding vectors helps us in visualising the vectors and the resultant vector, it is sometimes tedious and has limited accuracy. It is much easier to add vectors by combining their respective components. Consider two vectors $\mathbf{A}$ and $\mathbf{B}$ in $x-y$ plane with components $A_x, A_y$ and $B_x, B_y$ :

$ \mathbf{A}=A_x \hat{\mathbf{i}}+A_y \hat{\mathbf{j}} \quad\quad \text { (3.18) } $

$ \mathbf{B}=B_x \hat{\mathbf{i}}+B_y \hat{\mathbf{j}} $

Let $\mathbf{R}$ be their sum. We have

$ \begin{aligned} \mathbf{R} & =\mathbf{A}+\mathbf{B} \\ & =\left(A_x \hat{\mathbf{i}}+A_y \hat{\mathbf{j}}\right)+\left(B_x \hat{\mathbf{i}}+B_y \hat{\mathbf{j}}\right) \quad\quad \text { (3.19a) } \end{aligned} $

Since vectors obey the commutative and associative laws, we can arrange and regroup the vectors in Eq. (3.19a) as convenient to us :

$$ \begin{equation*} \mathbf{R}=\left(A _{x}+B _{x}\right) \hat{\mathbf{i}}+\left(A _{y}+B _{y}\right) \hat{\mathbf{j}} \tag{3.19a} \end{equation*} $$

Since $\mathbf{R}=R_x \hat{\mathbf{i}}+R_y \hat{\mathbf{j}} \quad\quad \text { (3.20) }$

we have, $R_x=A_x+B_x, R_y=A_y+B_y \quad\quad \text { (3.21) }$

Thus, each component of the resultant vector $\mathbf{R}$ is the sum of the corresponding components of $\mathbf{A}$ and $\mathbf{B}$.

In three dimensions, we have

$ \begin{aligned} & \mathbf{A}=A_x \hat{\mathbf{i}}+A_y \hat{\mathbf{j}}+A_z \hat{\mathbf{k}} \\ & \mathbf{B}=B_x \hat{\mathbf{i}}+B_y \hat{\mathbf{j}}+B_z \hat{\mathbf{k}} \\ & \mathbf{R}=\mathbf{A}+\mathbf{B}=R_x \hat{\mathbf{i}}+R_y \hat{\mathbf{j}}+R_z \hat{\mathbf{k}} \end{aligned} $

$ \begin{aligned} \text{with}\quad & R_x=A_x+B_x \\ & R_y=A_y+B_y \\ & R_z=A_z+B_z \quad \quad (3.22) \end{aligned} $

This method can be extended to addition and subtraction of any number of vectors. For example, if vectors $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$ are given as

$ \begin{aligned} & \mathbf{a}=a_x \hat{\mathbf{i}}+a_y \hat{\mathbf{j}}+a_z \hat{\mathbf{k}} \\ & \mathbf{b}=b_x \hat{\mathbf{i}}+b_y \hat{\mathbf{j}}+b_z \hat{\mathbf{k}} \\ & \mathbf{c}=c_x \hat{\mathbf{i}}+c_y \hat{\mathbf{j}}+c_z \hat{\mathbf{k}} \quad \quad \quad \quad (3.23a) \end{aligned} $

then, a vector $\mathbf{T}=\mathbf{a}+\mathbf{b}-\mathbf{c}$ has components :

$ \begin{aligned} & T_x=a_x+b_x-c_x \\ & T_y=a_y+b_y-c_y \quad \quad \quad \quad (3.23b) \\ & T_z=a_z+b_z-c_z . \end{aligned} $

Example 4.2 Find the magnitude and direction of the resultant of two vectors A and B in terms of their magnitudes and angle θ between them

Answer Let OP and OQ represent the two vectors A and B making an angle θ (Fig. 4.10). Then, using the parallelogram method of vector addition, OS represents the resultant vector R :

$ \mathbf{R}=\mathbf{A}+\mathbf{B} $

$S N$ is normal to $O P$ and $P M$ is normal to $O S$. From the geometry of the figure,

$ \begin{aligned} &O S^2=O N^2+S N^2 \\ \text{but}\quad & O N=O P+P N=A+B \cos \theta \\ & S N=B \sin \theta \\ & O S^2=(A+B \cos \theta)^2+(B \sin \theta)^2 \end{aligned} $

$ \text{or}\quad R^2=A^2+B^2+2 A B \cos \theta $

$ R=\sqrt{A^2+B^2+2 A B \cos \theta} \quad \quad\quad\quad$ (3.24a)

In $\Delta$ OSN, $S N=O S \sin \alpha=R \sin \alpha$, and in $\Delta \mathrm{PSN}, \quad \mathrm{SN}=P \mathrm{~S} \sin \theta=B \sin \theta$ Therefore, $R \sin \alpha=B \sin \theta$

or, $\frac{R}{\sin \theta}=\frac{B}{\sin \alpha} \quad \quad\quad\quad $ (3.24b)

Similarly,

$ \mathrm{PM}=A \sin \alpha=B \sin \beta $

or, $\frac{A}{\sin \beta}=\frac{B}{\sin \alpha} \quad \quad\quad\quad $ (3.24c)

Combining Eqs. (3.24b) and (3.24c), we get

$ \frac{R}{\sin \theta}=\frac{A}{\sin \beta}=\frac{\mathrm{B}}{\sin \alpha} \quad \quad\quad\quad (3.24d) $

Using Eq. (3.24d), we get:

$ \sin \alpha=\frac{B}{R} \sin \theta \quad \quad\quad\quad (3.24e) $

where $R$ is given by Eq. (3.24a).

$ \text { or, } \tan \alpha=\frac{S N}{O P+P N}=\frac{B \sin \theta}{A+B \cos \theta} \quad \quad\quad\quad$ (3.24f)

Equation (3.24a) gives the magnitude of the resultant and Eqs. (3.24e) and (3.24f) its direction. Equation (3.24a) is known as the Law of cosines and Eq. (3.24d) as the Law of sines.

Example 4.3 A motorboat is racing towards north at 25 km/h and the water current in that region is 10 km/h in the direction of 60° east of south. Find the resultant velocity of the boat.

Answer The vector $\mathbf{v_b}$ representing the velocity of the motorboat and the vector $\mathbf{v_c}$ representing the water current are shown in Fig. 3.11 in directions specified by the problem. Using the parallelogram method of addition, the resultant $\mathbf{R}$ is obtained in the direction shown in the figure.

We can obtain the magnitude of $\mathbf{R}$ using the Law of cosine :

$ \begin{aligned} & R=\sqrt{v_{\mathrm{b}}^2+v_{\mathrm{c}}^2+2 v_{\mathrm{b}} v_{\mathrm{c}} \cos 120^{\circ}} \\ = & \sqrt{25^2+10^2+2 \times 25 \times 10(-1 / 2)} \cong 22 \mathrm{~km} / \mathrm{h} \end{aligned} $

To obtain the direction, we apply the Law of sines

$ \begin{aligned} & \frac{R}{\sin \theta}=\frac{v_c}{\sin \phi} \text { or, } \sin \phi=\frac{v_c}{R} \sin \theta \\ & =\frac{10 \times \sin 120^{\circ}}{21.8}=\frac{10 \sqrt{3}}{2 \times 21.8} \equiv 0.397 \\ & \phi \equiv 23.4^{\circ} \end{aligned} $

3.7 MOTION IN A PLANE

In this section we shall see how to describe motion in two dimensions using vectors.

3.7.1 Position Vector and Displacement

The position vector r of a particle P located in a plane with reference to the origin of an x-y reference frame (Fig. 3.12) is given by

$\mathbf{r} = x\mathbf{\hat{i}} + y \mathbf{\hat{j}}$

where x and y are components of r along x-, and y- axes or simply they are the coordinates of the object.

Fig. 3.12 (a) Position vector r. (b) Displacement ∆r and average velocity v of a particle.

Suppose a particle moves along the curve shown by the thick line and is at $\mathrm{P}$ at time $t$ and $\mathrm{P}^{\prime}$ at time $t^{\prime}$ [Fig. 3.12(b)]. Then, the displacement is :

$\Delta \mathbf{r}=\mathbf{r}^{\prime}-\mathbf{r} \quad \quad \quad \quad$ (3.25)

and is directed from $\mathrm{P}$ to $\mathrm{P}^{\prime}$.

We can write Eq. (3.25) in a component form:

$ \begin{array}{r} \Delta \mathbf{r}=\left(x^{\prime} \hat{\mathbf{i}}+y^{\prime} \hat{\mathbf{j}}\right)-(x \hat{\mathbf{i}}+y \hat{\mathbf{j}}) \ =\hat{\mathbf{i}} \Delta x+\hat{\mathbf{j}} \Delta y \end{array} $

where $\quad \Delta x=x^{\prime}-x, \Delta y=y^{\prime}-y\quad \quad \quad \quad$ (3.26)

Velocity

The average velocity $(\overline{\mathbf{v}})$ of an object is the ratio of the displacement and the corresponding time interval :

$$ \begin{equation*} \overline{\mathbf{v}}=\frac{\Delta \mathbf{r}}{\Delta t}=\frac{\Delta x \hat{\mathbf{i}}+\Delta y \hat{\mathbf{j}}}{\Delta t}=\hat{\mathbf{i}} \frac{\Delta x}{\Delta t}+\hat{\mathbf{j}} \frac{\Delta y}{\Delta t} \tag{3.27} \end{equation*} $$

Or, $\quad \overline{\mathbf{v}}=\bar{v}_x \hat{\mathbf{i}}+\bar{v}_y \hat{\mathbf{j}}$

Since $\overline{\mathbf{v}}=\frac{\Delta \mathbf{r}}{\Delta t}$, the direction of the average velocity is the same as that of $\Delta \mathbf{r}$ (Fig. 3.12). The velocity (instantaneous velocity) is given by the limiting value of the average velocity as the time interval approaches zero :

$$ \begin{equation*} \mathbf{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{r}}{\Delta t}=\frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t} \tag{3.28} \end{equation*} $$

The meaning of the limiting process can be easily understood with the help of Fig 3.13(a) to (d). In these figures, the thick line represents the path of an object, which is at $\mathrm{P}$ at time $t . \mathrm{P}_1, \mathrm{P}_2$ and $\mathrm{P}_3$ represent the positions of the object after times $\Delta t_1, \Delta t_2$, and $\Delta t_3 . \Delta \mathbf{r}_1, \Delta \mathbf{r}_2$, and $\Delta \mathbf{r}_3$ are the displacements of the object in times $\Delta t_1, \Delta t_2$, and $\Delta t_3$, respectively. The direction of the average velocity $\overline{\mathbf{v}}$ is shown in figures (a), (b) and (c) for three decreasing values of $\Delta t$, i.e. $\Delta t_1, \Delta t_2$, and $\Delta t_3$, $\left(\Delta t_1>\Delta t_2>\Delta t_3\right)$. As $\Delta t \rightarrow 0, \Delta \mathbf{r} \rightarrow 0$ and is along the tangent to the path [Fig. 3.13(d)]. Therefore, the direction of velocity at any point on the path of an object is tangential to the path at that point and is in the direction of motion. We can express $\mathbf{v}$ in a component form :

Fig. 3.13 As the time interval ∆t approaches zero, the average velocity approaches the velocity v. The direction of v is parallel to the line tangent to the path.

$$ \begin{align*} \mathbf{v} & =\frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t} \\ & =\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t} \hat{\mathbf{i}}+\frac{\Delta y}{\Delta t} \hat{\mathbf{j}} \tag{3.29} \\ & =\hat{\mathbf{i}} \lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}+\hat{\mathbf{j}} \lim _{\Delta t \rightarrow 0} \frac{\Delta y}{\Delta t} \end{align*} $$

Or, $\quad \mathbf{v}=\hat{\mathbf{i}} \frac{\mathrm{d} x}{\mathrm{~d} t}+\hat{\mathbf{j}} \frac{\mathrm{d} y}{\mathrm{~d} t}=v_x \hat{\mathbf{i}}+v_y \hat{\mathbf{j}}$.

where $v_x=\frac{\mathrm{d} x}{\mathrm{~d} t}, v_y=\frac{\mathrm{d} y}{\mathrm{~d} t} \quad \quad \quad \text{(3.30a)}$

So, if the expressions for the coordinates $x$ and $y$ are known as functions of time, we can use these equations to find $v_x$ and $v_y$.

The magnitude of $\mathbf{v}$ is then

$$ v=\sqrt{v_x^2+v_y^2} \quad \quad \quad \text{(3.30b)} $$

and the direction of $\mathbf{v}$ is given by the angle $\theta$ :

$$ \tan \theta=\frac{v_y}{v_x}, \quad \theta=\tan ^{-1}\left(\frac{v_y}{v_x}\right) \quad \quad \quad \text{(3.30c)} $$

$V_x, V_y$ and angle $\theta$ are shown in Fig. 3.14 for a velocity vector $\mathbf{v}$ at point $\mathbf{p}$.

Fig. 3.14 The components vx and vy of velocity v and the angle θ it makes with x-axis. Note that vx = v cos θ, vy = v sin θ.

Acceleration
The average acceleration a of an object for a time interval $\Delta t$ moving in $x-y$ plane is the change in velocity divided by the time interval :

$$ \overline{\mathbf{a}}=\frac{\Delta \mathbf{v}}{\Delta \mathrm{t}}=\frac{\Delta\left(v_x \hat{\mathbf{i}}+v_y \hat{\mathbf{j}}\right)}{\Delta t}=\frac{\Delta v_x}{\Delta t} \hat{\mathbf{i}}+\frac{\Delta v_y}{\Delta t} \hat{\mathbf{j}} \quad \quad \quad \text{(3.31a)} $$

Or, $\quad \quad\overline{\mathbf{a}}=a_x \hat{\mathbf{i}}+a_y \hat{\mathbf{j}}\quad \quad \quad \text{(3.31b)}$.

  • In terms of $x$ and $y, a_x$ and $a_y$ can be expressed as

$$ a_x=\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)=\frac{\mathrm{d}^2 x}{\mathrm{~d} t^2}, a_y=\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)=\frac{\mathrm{d}^2 y}{\mathrm{~d} t^2} $$

The acceleration (instantaneous acceleration) is the limiting value of the average acceleration as the time interval approaches zero :

$$ \begin{equation*} \mathbf{a}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{v}}{\Delta t} \tag{3.30a} \end{equation*} $$

Since $\Delta \boldsymbol{v}=\Delta v_x \hat{\mathbf{i}}+\Delta v_y \hat{\mathbf{j}}$, we have

$$ \mathbf{a}=\hat{\mathbf{i}} \lim _{\Delta t \rightarrow 0} \frac{\Delta v_x}{\Delta t}+\hat{\mathbf{j}} \lim _{\Delta t \rightarrow 0} \frac{\Delta v_y}{\Delta t} $$

Or,

$$ \begin{equation*} \mathbf{a}=\hat{\mathbf{i}} a _{x}+\hat{\mathbf{j}} a _{y} \tag{3.32b} \end{equation*} $$

where, $a_x=\frac{\mathrm{d} v_x}{\mathrm{~d} t}, a_y=\frac{\mathrm{d} v_y}{\mathrm{~d} t}\quad \quad \quad \text{(3.32c)}$

As in the case of velocity, we can understand graphically the limiting process used in defining acceleration on a graph showing the path of the object’s motion. This is shown in Figs. 3.15(a) to (d). $\mathrm{P}$ represents the position of the object at time $t$ and $\mathrm{P}_1, \mathrm{P}_2, \mathrm{P}_3$ positions after time $\Delta t_1, \Delta t_2$, $\Delta t_3$, respectively $\left(\Delta t_1>\Delta t_2>\Delta t_3\right)$. The velocity vectors at points $\mathrm{P}, \mathrm{P}_1, \mathrm{P}_2, \mathrm{P}_3$ are also shown in Figs. 3.15 (a), (b) and (c). In each case of $\Delta t, \Delta \mathbf{v}$ is obtained using the triangle law of vector addition. By definition, the direction of average acceleration is the same as that of $\Delta \mathbf{v}$. We see that as $\Delta t$ decreases, the direction of $\Delta \mathbf{v}$ changes and consequently, the direction of the acceleration changes. Finally, in the limit $\Delta t \rightarrow 0$ [Fig. 3.15(d)], the average acceleration becomes the instantaneous acceleration and has the direction as shown.

Fig. 3.15 The average acceleration for three time intervals (a) ∆t1 , (b) ∆t2 , and (c) ∆t3 , (∆t1> ∆t2> ∆t3 ). (d) In the limit ∆t g0, the average acceleration becomes the acceleration

Note that in one dimension, the velocity and the acceleration of an object are always along the same straight line (either in the same direction or in the opposite direction). However, for motion in two or three dimensions, velocity and acceleration vectors may have any angle between 0° and 180° between them.

Example 3.4 The position of a particle is given by

$$ \mathbf{r}=3.0 t \hat{\mathbf{i}}+2.0 t^2 \hat{\mathbf{j}}+5.0 \hat{\mathbf{k}} $$

where $t$ is in seconds and the coefficients have the proper units for $\mathbf{r}$ to be in metres. (a) Find $\mathbf{v}(t)$ and $\mathbf{a}(t)$ of the particle. (b) Find the magnitude and direction of $\mathbf{v}(t)$ at $t=1.0 \mathrm{~s}$.

Answer

$$ \begin{aligned} \mathbf{v}(t) & =\frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t}=\frac{\mathrm{d}}{\mathrm{d} t}\left(3.0 t \hat{\mathbf{i}}+2.0 t^{2} \hat{\mathbf{j}}+5.0 \hat{\mathbf{k}}\right) \\ & =3.0 \hat{\mathbf{i}}+4.0 t \hat{\mathbf{j}} \\ \mathbf{a}(t) & =\frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t}=4.0 \hat{\mathbf{j}} \\ a & =4.0 \mathrm{~m} \mathrm{~s}^{-2} \text{ along } y\text{-direction} \\ t & =1.0 \mathrm{~s} \text { पर } \mathbf{v}=3.0 \hat{\mathbf{i}}+4.0 \hat{\mathbf{j}} \end{aligned} $$

It’s magnitude is $v=\sqrt{3^2+4^2}=5.0 \mathrm{~m} \mathrm{~s}^{-1}$ and direction is

$\theta=\tan ^{-1}\left(\frac{v_y}{v_x}\right)=\tan ^{-1}\left(\frac{4}{3}\right) \cong 53^{\circ} \text { with } x \text {-axis. }$

3.8 MOTION IN A PLANE WITH CONSTANT ACCELERATION

Suppose that an object is moving in $x-y$ plane and its acceleration a is constant. Over an interval of time, the average acceleration will equal this constant value. Now, let the velocity of the object be $\mathbf{v}_0$ at time $t=0$ and $\mathbf{v}$ at time $t$. Then, by definition

$$\mathbf{a}=\frac{\mathbf{v}-\mathbf{v_0}}{t-0}=\frac{\mathbf{v}-\mathbf{v_0}}{t} $$

Or, $\quad \mathbf{v}=\mathbf{v}_{\mathbf{0}}+\mathbf{a} t \quad \quad \quad \quad \text{3.33a}$

In terms of components :

$$ \begin{aligned} & v_x=v_{a x}+a_x t \\ & v_y=v_{\text {oy }}+a_y t \quad \quad \quad \quad \text{3.33b} \end{aligned} $$

Let us now find how the position $\mathbf{r}$ changes with time. We follow the method used in the onedimensional case. Let $\mathbf{r}_0$ and $\mathbf{r}$ be the position vectors of the particle at time 0 and $t$ and let the velocities at these instants be $\mathbf{v}_0$ and $\mathbf{v}$. Then, over this time interval $t$, the average velocity is $\left(\mathbf{v}_0+\mathbf{v}\right) / 2$. The displacement is the average velocity multiplied by the time interval :

$$ \begin{aligned} \mathbf{r}-\mathbf{r_0} & =\left(\frac{\mathbf{v}+\mathbf{v_0}}{2}\right) t=\left(\frac{\left(\mathbf{v_0}+\mathbf{a} t\right)+\mathbf{v_0}}{2}\right) t \\ & =\mathbf{v_0} t+\frac{1}{2} \mathbf{a} t^2 \end{aligned} $$

Or, $\quad \mathbf{r}=\mathbf{r}_0+\mathbf{v}_0 t+\frac{1}{2} \mathbf{a} t^2\quad \quad \quad \quad \text{3.34a}$

It can be easily verified that the derivative of Eq. (3.34a), i.e. $\frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t}$ gives Eq.(3.33a) and it also satisfies the condition that at $t=0, \mathbf{r}=\mathbf{r_0}$. Equation (3.34a) can be written in component form as

$$ \begin{aligned} & x=x_0+v_{o x} t+\frac{1}{2} a_x t^2 \\ & y=y_0+v_{o y} t+\frac{1}{2} a_y t^2 \quad \quad \quad \quad \text{3.34b} \end{aligned} $$

One immediate interpretation of Eq.(3.34b) is that the motions in x- and y-directions can be treated independently of each other. That is, motion in a plane (two-dimensions) can be treated as two separate simultaneous one-dimensional motions with constant acceleration along two perpendicular directions. This is an important result and is useful in analysing motion of objects in two dimensions. A similar result holds for three dimensions. The choice of perpendicular directions is convenient in many physical situations, as we shall see in section 4.10 for projectile motion

Example 3.5 A particle starts from origin at $t=0$ with a velocity $5.0 \mathrm{i} \mathrm{m} / \mathrm{s}$ and moves in $x-y$ plane under action of a force which produces a constant acceleration of $(3.0 \hat{\mathbf{i}}+2.0 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}^2$. (a) What is the $y$-coordinate of the particle at the instant its $x$-coordinate is $84 \mathrm{~m}$ ? (b) What is the speed of the particle at this time?

Answer From Eq. (3.34a) for $\mathbf{r}_0=0$, the position of the particle is given by

$$ \begin{aligned} & \mathbf{r}(t)=\mathbf{v}_0 t+\frac{1}{2} \mathbf{a} t^2 \\ & =5.0 \hat{\mathbf{i}} t+(1 / 2)(3.0 \hat{\mathbf{i}}+2.0 \hat{\mathbf{j}}) t^2 \end{aligned} $$

$$ =\left(5.0 t+1.5 t^2\right) \hat{\mathbf{i}}+1.0 t^2 \hat{\mathbf{j}} $$

$ \begin{aligned} \text{Therefore, } \quad & x(t)=5.0 t+1.5 t^2 \\ & y(t)=+1.0 t^2 \end{aligned} $

$ \begin{aligned} \text{Given }& x(t)=84 \mathrm{~m}, t=? \\ & 5.0 t+1.5 t^2=84 \Rightarrow t=6 \mathrm{~s} \end{aligned} $

At $t=6 \mathrm{~s}, y=1.0(6)^2=36.0 \mathrm{~m}$

Now, the velocity $\mathbf{v}=\frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t}=(5.0+3.0 t) \hat{\mathbf{i}}+2.0 t \hat{\mathbf{j}}$

At $t=6 \mathbf{s}, \mathbf{v}=23.0 \hat{\mathbf{i}}+12.0 \hat{\mathbf{j}}$

$\text { speed }=|\mathbf{v}|=\sqrt{23^2+12^2} \cong 26 \mathrm{~m} \mathrm{~s}^{-1} \text {. }$

3.9 PROJECTILE MOTION

As an application of the ideas developed in the previous sections, we consider the motion of a projectile. An object that is in flight after being thrown or projected is called a projectile. Such a projectile might be a football, a cricket ball, a baseball or any other object. The motion of a projectile may be thought of as the result of two separate, simultaneously occurring components of motions. One component is along a horizontal direction without any acceleration and the other along the vertical direction with constant acceleration due to the force of gravity. It was Galileo who first stated this independency of the horizontal and the vertical components of projectile motion in his Dialogue on the great world systems (1632).

In our discussion, we shall assume that the air resistance has negligible effect on the motion of the projectile. Suppose that the projectile is launched with velocity $\mathbf{v} _0$ that makes an angle $\theta _{\text {a }}$ with the $x$-axis as shown in Fig. 3.16.

After the object has been projected, the acceleration acting on it is that due to gravity which is directed vertically downward:

$$ \begin{array}{ll} & \mathbf{a}=-g \hat{\mathbf{j}} \\ \text { Or, } & a_x=0, a_y=-g \quad \quad \quad \quad \text{3.35} \end{array} $$

The components of initial velocity $\mathbf{v}_{\mathrm{o}}$ are :

$$ \begin{aligned} & V_{a x}=V_o \cos \theta_o \\ & V_{o y}=V_o \sin \theta_o \quad \quad \quad \quad \text{3.36} \end{aligned} $$

If we take the initial position to be the origin of the reference frame as shown in Fig. 3.16, we have :

$$ x_o=0, y_o=0 $$

Then, Eq.(3.34b) becomes :

$$ \begin{align*} & x=v _{o x} t=\left(v _{0} \cos \theta _{0}\right) t \\ \text{ and, }& y=\left(v _{0} \sin \theta _{0}\right) t-\frac{1}{2} g t^{2} \tag{3.37} \end{align*} $$

The components of velocity at time $t$ can be obtained using Eq.(3.33b) :

$$ \begin{aligned} & V_x=V_{a x}=V_o \cos \theta_o \\ & V_y=V_o \sin \theta_o-g t & \quad \quad \quad \quad \text{3.38} \end{aligned} $$

Fig 3.16 Motion of an object projected with velocity vo at angle θ0 .

Equation (3.37) gives the $x$-, and $y$-coordinates of the position of a projectile at time $t$ in terms of two parameters - initial speed $v_{\mathrm{o}}$ and projection angle $\theta_0$. Notice that the choice of mutually perpendicular $x^{\text {-, and }} y$-directions for the analysis of the projectile motion has resulted in a simplification. One of the components of velocity, i.e. $x$-component remains constant throughout the motion and only the $y$-component changes, like an object in free fall in vertical direction. This is shown graphically at few instants in Fig. 3.17. Note that at the point of maximum height, $v_y=0$ and therefore,

$ \theta=\tan ^{-1} \frac{v_y}{v_x}=0 $

Equation of path of a projectile

What is the shape of the path followed by the projectile? This can be seen by eliminating the time between the expressions for x and y as given in Eq. (3.37). We obtain:

$y=\left(\tan \theta_{\mathrm{o}}\right) x-\frac{g}{2\left(v_{\mathrm{o}} \cos \theta_{\mathrm{o}}\right)^2} x^2 \quad \quad \quad \quad \text{(3.39)}$

Now, since $g, \theta_o$ and $v_0$ are constants, Eq. (3.39) is of the form $y=a x+b x^2$, in which $a$ and $b$ are constants.

This is the equation of a parabola, i.e. the path of the projectile is a parabola (Fig. 3.17).

Fig. 3.17 The path of a projectile is a parabola.

Time of maximum height

How much time does the projectile take to reach the maximum height? Let this time be denoted by $t_{\mathrm{mm}}$ Since at this point, $v_y=0$, we have from Eq. (3.38):

$$ \begin{align*} & v _{\mathrm{y}}=v _{0} \sin \theta _{0}-g t _{\mathrm{m}}=0 \\ \text{or, } \qquad& t _{m}=v _{o} \sin \theta _{o} / g \tag{3.40a} \end{align*} $$

The total time $T_f$ during which the projectile is in flight can be obtained by putting $y=0$ in Eq. (3.37). We get :

$$ T_f=2\left(v_o \sin \theta_o\right) / g \quad\quad\quad\quad \text{(3.40b)} $$

$T_f$ is known as the time of flight of the projectile. We note that $T_f=2 t_m$, which is expected because of the symmetry of the parabolic path.

Horizontal range of a projectile

The horizontal distance travelled by a projectile from its initial position (x = y = 0) to the position where it passes y = 0 during its fall is called the horizontal range, R. It is the distance travelled during the time of flight Tf . Therefore, the range R is the distance travelled during the time of flight $T_f$. Therefor the range R is

$$ \begin{aligned} R & =\left(v_o \cos \theta_o\right)\left(T_f\right) \\ & =\left(v_o \cos \theta_o\right)\left(2 v_o \sin \theta_o\right) / g \\ \text { Or, } \quad R & =\frac{v_O^2 \sin 2 \theta_0}{g} \quad\quad\quad\quad \text{(3.42a)} \end{aligned} $$

Equation (3.42a) shows that for a given projection velocity $v_0, R$ is maximum when $\sin$ $2 \theta_0$ is maximum, i.e., when $\theta_0=45^{\circ}$. The maximum horizontal range is, therefore,

$$ R_m=\frac{v_O^2}{g} \quad\quad\quad\quad \text{(3.42b)} $$

Example 3.6 Galileo, in his book Two new sciences, stated that “for elevations which exceed or fall short of 45° by equal amounts, the ranges are equal”. Prove this statement.

Answer For a projectile launched with velocity $\mathbf{v}_0$ at an angle $\theta_0$, the range is given by

$$ R=\frac{v_0^2 \sin 2 \theta_0}{g} $$

Now, for angles, $(45+\alpha)$ and $(45-\alpha), 2 \theta_0$ is $(90+2 \alpha)$ and $(90-2 \alpha)$, respectively. The values of $\sin (90+2 \alpha)$ and $\sin (90-2 \alpha)$ are the same, equal to that of $\cos 2 \alpha$. Therefore, ranges are equal for elevations which exceed or fall short of 45 by equal amounts $\alpha$.

Example 3.7 A hiker stands on the edge of a cliff $490 \mathrm{~m}$ above the ground and throws a stone horizontally with an initial speed of $15 \mathrm{~m} \mathrm{~s}^{-1}$. Neglecting air resistance, find the time taken by the stone to reach the ground, and the speed with which it hits the ground. (Take $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$ ).

Answer We choose the origin of the x-,and yaxis at the edge of the cliff and t = 0 s at the instant the stone is thrown. Choose the positive direction of x-axis to be along the initial velocity and the positive direction of y-axis to be the vertically upward direction. The x-, and ycomponents of the motion can be treated independently. The equations of motion are :

$$ \begin{aligned} & x(t)=x _{0}+v _{o x} t \\ & y(t)=y _{0}+v _{o y} t+(1 / 2) a _{y} t^{2} \end{aligned} $$

यहाँ $x _{\mathrm{o}}=y _{\mathrm{o}}=0, v _{\mathrm{oy}}=0, a _{y}=-g=-9.8 \mathrm{~m} \mathrm{~s}^{-2}$

$$ v _{\mathrm{ox}}=15 \mathrm{~m} \mathrm{~s}^{-1} $$

The stone hits the ground when $y(t)=-490 \mathrm{~m}$.

$$ \therefore -490 \mathrm{~m}=-(1 / 2)(9.8) t^2 \text {. } $$

This gives $t=10 \mathrm{~s}$.

The velocity components are $v_x=v_{o x}$ and

$v_y=v_{a y}-g t $

so that when the stone hits the ground:

$$ \begin{aligned} & V_{a x}=15 \mathrm{~m} \mathrm{~s}^{-1} \\ & V_{a y}=0-9.8 \quad 10=-98 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned} $$

Therefore, the speed of the stone is

$$ \sqrt{v_x^2+v_y^2}=\sqrt{15^2+98^2}=99 \mathrm{~m} \mathrm{~s}^{-1} $$

Example 3.8 A cricket ball is thrown at a speed of $28 \mathrm{~m} \mathrm{~s}^{-1}$ in a direction 30 above the horizontal. Calculate (a) the maximum height, (b) the time taken by the ball to return to the same level, and (c) the distance from the thrower to the point where the ball returns to the same level.

Answer (a) The maximum height is given by

$$ \begin{aligned} h_m & =\frac{\left(v_o \sin \theta_o\right)^2}{2 g}=\frac{\left(28 \sin 30^{\circ}\right)^2}{2(9.8)} \mathrm{m} \\ & =\frac{14 \times 14}{2 \times 9.8}=10.0 \mathrm{~m} \end{aligned} $$

(b) The time taken to return to the same level is

$$ \begin{aligned} & T_f=\left(2 v_{\mathrm{o}} \sin \theta_{\mathrm{o}}\right) / g=\left(\begin{array}{lll} 2 & 28 & \sin 30 \end{array}\right) / 9.8 \\ & =28 / 9.8 \mathrm{~s}=2.9 \mathrm{~s} \\ & \end{aligned} $$

(c) The distance from the thrower to the point where the ball returns to the same level is

$$ R=\frac{\left(v_{\mathrm{o}}^2 \sin 2 \theta_{\mathrm{o}}\right)}{g}=\frac{28 \times 28 \times \sin 60^{\circ}}{9.8}=69 \mathrm{~m} $$

3.10 UNIFORM CIRCULAR MOTION

When an object follows a circular path at a constant speed, the motion of the object is called uniform circular motion. The word “uniform” refers to the speed, which is uniform (constant) throughout the motion. Suppose an object is moving with uniform speed v in a circle of radius R as shown in Fig. 3.18. Since the velocity of the object is changing continuously in direction, the object undergoes acceleration. Let us find the magnitude and the direction of this acceleration.

Fig. 3.18 Velocity and acceleration of an object in uniform circular motion. The time interval ∆t decreases from (a) to (c) where it is zero. The acceleration is directed, at each point of the ath, towards the centre of the circle.

Let $\mathbf{r}$ and $\mathbf{r}^{\prime}$ be the position vectors and $\mathbf{v}$ and $\mathbf{v}^{\prime}$ the velocities of the object when it is at point $P$ and $P^{\prime}$ as shown in Fig. 3.18(a). By definition, velocity at a point is along the tangent at that point in the direction of motion. The velocity vectors $\mathbf{v}$ and $\mathbf{v}^{\prime}$ are as shown in Fig. 3.18(a1). $\Delta \mathbf{v}$ is obtained in Fig. 3.18 (a2) using the triangle law of vector addition. Since the path is circular, $\mathbf{v}$ is perpendicular to $\mathbf{r}$ and so is $\mathbf{v}^{\prime}$ to $\mathbf{r}^{\prime}$. Therefore, $\Delta \mathbf{v}$ is perpendicular to $\Delta \mathbf{r}$. Since average acceleration is along $\Delta \mathbf{v}\left(\overline{\mathbf{a}}=\frac{\Delta \mathbf{v}}{\Delta t}\right)$, the average acceleration $\overline{\mathbf{a}}$ is perpendicular to $\Delta \mathbf{r}$. If we place $\Delta \mathbf{v}$ on the line that bisects the angle between $\mathbf{r}$ and $\mathbf{r}^{\prime}$, we see that it is directed towards the centre of the circle. Figure 3.18(b) shows the same quantities for smaller time interval. $\Delta \mathbf{v}$ and hence $\overline{\mathbf{a}}$ is again directed towards the centre. In Fig. 3.18(c), $\Delta t \rightarrow 0$ and the average acceleration becomes the instantaneous acceleration. It is directed towards the centre*. Thus, we find that the acceleration of an object in uniform circular motion is always directed towards the centre of the circle. Let us now find the magnitude of the acceleration. The magnitude of $\mathbf{a}$ is, by definition, given by

$$ |\mathbf{a}|=\lim\limits_{\Delta \mathrm{t} \to 0} \frac{|\Delta \mathbf{v}|}{\Delta t} $$

Let the angle between position vectors $\mathbf{r}$ and $\mathbf{r}^{\prime}$ be $\Delta \theta$. Since the velocity vectors $\mathbf{v}$ and $\mathbf{v}^{\prime}$ are always perpendicular to the position vectors, the angle between them is also $\Delta \theta$. Therefore, the triangle $\mathrm{CPP}^{\prime}$ formed by the position vectors and the triangle GHI formed by the velocity vectors $\mathbf{v}, \mathbf{v}^{\prime}$ and $\Delta \mathbf{v}$ are similar (Fig. 3.18a). Therefore, the ratio of the base-length to side-length for one of the triangles is equal to that of the other triangle. That is :

$$ \begin{aligned} & \frac{|\Delta \mathbf{v}|}{v}=\frac{|\Delta \mathbf{r}|}{R} \\ \text{Or,} \quad& |\Delta \mathbf{v}|=v \frac{|\Delta \mathbf{r}|}{R} \end{aligned} $$

Therefore,

$$ |\mathbf{a}|=\lim\limits_{\Delta t \rightarrow 0} \frac{|\Delta \mathbf{v}|}{\Delta t}=\lim\limits_{\Delta t \rightarrow 0} \frac{v|\Delta \mathbf{r}|}{\mathrm{R} \Delta t}=\frac{v}{\mathrm{R}} \lim\limits_{t \rightarrow 0} \frac{|\Delta \mathbf{r}|}{\Delta t} $$

If $\Delta t$ is small, $\Delta \theta$ will also be small and then arc $P P^{\prime}$ can be approximately taken to be $|\Delta \mathbf{r}|$ :

$$ \begin{aligned} & |\Delta \mathbf{r}| \cong v \Delta t \\ & \frac{|\Delta \mathbf{r}|}{\Delta t} \cong v \end{aligned} $$

Or, $\quad \quad\lim\limits_{\Delta t \rightarrow 0} \frac{|\Delta \mathbf{r}|}{\Delta t}=v$

Therefore, the centripetal acceleration $a_c$ is :

$a_{\mathrm{c}}=\left(\frac{v}{R}\right) v=v^2 / R \quad \quad \quad \quad \quad \text{(3.43)}$

Thus, the acceleration of an object moving with speed $v$ in a circle of radius $R$ has a magnitude $v^2 / R$ and is always directed towards the centre. This is why this acceleration is called centripetal acceleration (a term proposed by Newton). A thorough analysis of centripetal acceleration was first published in 1673 by the Dutch scientist Christiaan Huygens (1629-1695) but it was probably known to Newton also some years earlier. “Centripetal” comes from a Greek term which means ‘centre-seeking. Since $v$ and $R$ are constant, the magnitude of the centripetal acceleration is also constant. However, the direction changes pointing always towards the centre. Therefore, a centripetal acceleration is not a constant vector.

We have another way of describing the velocity and the acceleration of an object in uniform circular motion. As the object moves from $\mathrm{P}$ to $\mathrm{P}^{\prime}$ in time $\Delta t\left(=t^{\prime}-t\right)$, the line $\mathrm{CP}$ (Fig. 3.18) turns through an angle $\Delta \theta$ as shown in the figure. $\Delta \theta$ is called angular distance. We define the angular speed $\omega$ (Greek letter omega) as the time rate of change of angular displacement:

$$ \omega=\frac{\Delta \theta}{\Delta t} \quad \quad \quad \quad \text{(3.44)} $$

Now, if the distance travelled by the object during the time $\Delta t$ is $\Delta \mathrm{s}$, i.e. $P P^{\prime}$ is $\Delta \mathrm{s}$, then :

$$ v=\frac{\Delta s}{\Delta t} $$

but $\Delta s=R \Delta \theta$. Therefore :

$$ \begin{aligned} v=R \frac{\Delta \theta}{\Delta t}=\mathrm{R} \omega \\ V=R \omega & \quad \quad \quad \quad \text{(3.45)} \end{aligned} $$

We can express centripetal acceleration $a_c$ in terms of angular speed :

$$ \begin{aligned} & a_c=\frac{v^2}{R}=\frac{\omega^2 R^2}{R}=\omega^2 R \\ & a_c=\omega^2 R & \quad \quad \quad \quad \text{(3.46)} \end{aligned} $$

The time taken by an object to make one revolution is known as its time period $T$ and the number of revolution made in one second is called its frequency $v(=1 / T)$. However, during this time the distance moved by the object is $s=2 \pi R$.

Therefore, $v=2 \pi R / T=2 \pi R v \quad \quad \quad \quad \text{(3.47)}$

In terms of frequency $v$, we have

$$ \begin{aligned} \omega=2 \pi v \\ v=2 \pi R v \\ a_c=4 \pi^2 v^2 R & \quad \quad \quad \quad \text{(3.48)} \end{aligned} $$

Example 3.9 An insect trapped in a circular groove of radius $12 \mathrm{~cm}$ moves along the groove steadily and completes 7 revolutions in $100 \mathrm{~s}$. (a) What is the angular speed, and the linear speed of the motion? (b) Is the acceleration vector a constant vector ? What is its magnitude?

Answer This is an example of uniform circular motion. Here $R=12 \mathrm{~cm}$. The angular speed $\omega$ is given by

$$ \omega=2 \pi / T=2 \pi \quad 7 / 100=0.44 \mathrm{rad} / \mathrm{s} $$

The linear speed $v$ is :

$$ V=\omega R=0.44 \mathrm{~s}^{-1} \quad 12 \mathrm{~cm}=5.3 \mathrm{~cm} \mathrm{~s}^{-1} $$

The direction of velocity $v$ is along the tangent to the circle at every point. The acceleration is directed towards the centre of the circle. Since this direction changes continuously, acceleration here is not a constant vector. However, the magnitude of acceleration is constant:

$$ \begin{aligned} & a=\omega^2 R=\left(0.44 \mathrm{~s}^{-1}\right)^2(12 \mathrm{~cm}) \\ & =2.3 \mathrm{~cm} \mathrm{~s}^{-2} \end{aligned} $$

Summary

1. Scalar quantttes are quantitles with magnitudes only. Examples are distance, speed, mass and temperature.

2. Vector quantities are quantities with magnitude and direction both. Examples are displacement, velocity and acceleration. They obey special rules of vector algebra.

3. A vector A multiplied by a real number $\lambda$ is also a vector, whose magnitude is $\lambda$ times the magnitude of the vector $\mathbf{A}$ and whose direction is the same or opposite depending upon whether $\lambda$ is positive or negative.

4. Two vectors $\mathbf{A}$ and $\mathbf{B}$ may be added graphically using head-to-tail method or parallelogram method.

5. Vector addition is commutative:

$$ \mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A} $$

It also obeys the associative law : $$ (\mathbf{A}+\mathbf{B})+\mathbf{C}=\mathbf{A}+(\mathbf{B}+\mathbf{C}) $$

6. A null or zero vector is a vector with zero magnitude. Since the magnitude is zero, we don’t have to specify its direction. It has the properties : $$ \begin{aligned} \mathbf{A}+\mathbf{0} & =\mathbf{A} \\ \lambda \mathbf{0} & =\mathbf{0} \\ 0 \mathbf{A} & =\mathbf{0} \end{aligned} $$

7. The subtraction of vector $\mathbf{B}$ from $\mathbf{A}$ is defined as the sum of $\mathbf{A}$ and $-\mathbf{B}$ :

$$ \mathbf{A}-\mathbf{B}=\mathbf{A}+(-\mathbf{B}) $$

8. A vector $\mathbf{A}$ can be resolved into component along two given vectors $\mathbf{a}$ and $\mathbf{b}$ lying in the same plane :

where $\lambda$ and $\mu$ are real numbers.

$$ \mathbf{A}=\lambda \mathbf{a}+\mu \mathbf{b} $$

9. A unit vector associated with a vector $\mathbf{A}$ has magnitude 1 and is along the vector $\mathbf{A}$ :

$$ \hat{\mathbf{n}}=\frac{\mathbf{A}}{|\mathbf{A}|} $$

The unit vectors ɵ ɵ ɵ i, j, k are vectors of unit magnitude and point in the direction of the x-, y-, and z-axes, respectively in a right-handed coordinate system.

10. A vector $\mathbf{A}$ can be expressed as

$$ \mathbf{A}=A_x \hat{\mathbf{i}}+A_y \hat{\mathbf{j}} $$ where $A_x, A_y$ are its components along $x$-, and $y$-axes. If vector $\mathbf{A}$ makes an angle $\theta$ with the $x$-axis, then $A_x=A \cos \theta, A_y=A \sin \theta$ and $A=|\mathbf{A}|=\sqrt{A_x^2+A_y^2}, \tan \theta=\frac{A_y}{A_x}$.

11. Vectors can be conveniently added using analytical method. If sum of two vectors $\mathbf{A}$ and $\mathbf{B}$, that lie in $x-y$ plane, is $\mathbf{R}$, then : $$ \mathbf{R}=R_x \hat{\mathbf{i}}+R_y \hat{\mathbf{j}} \text {, where, } R_x=A_x+B_x \text {, and } R_y=A_y+B_y $$

12. The position vector of an object in $x-y$ plane is given by $\mathbf{r}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}$ and the displacement from position $\mathbf{r}$ to position $\mathbf{r}$ ’ is given by $$ \begin{aligned} & \Delta \mathbf{r}=\mathbf{r}^{\prime}-\mathbf{r} \ & =\left(x^{\prime}-x\right) \hat{\mathbf{i}}+\left(y^{\prime}-y\right) \hat{\mathbf{j}} \ & =\Delta x \hat{\mathbf{i}}+\Delta y \hat{\mathbf{j}} \end{aligned} $$

13. If an object undergoes a displacement $\Delta \mathbf{r}$ in time $\Delta t$, its average velocity is given by $\mathbf{v}=\frac{\Delta \mathbf{r}}{\Delta t}$. The velocity of an object at time $t$ is the limiting value of the average velocity as $\Delta t$ tends to zero :

$\mathbf{v}=\lim\limits_{\Delta t \to 0} \frac{\Delta \mathbf{r}}{\Delta t}=\frac{\mathrm{d} \mathbf{r}}{\mathrm{dt}}$.

It can be written in unit vector notation as :

$\mathbf{v}=v_x \hat{\mathbf{i}}+v_y \hat{\mathbf{j}}+v_z \hat{\mathbf{k}}$ where $v_x=\frac{\mathrm{d} x}{\mathrm{~d} t}, v_y=\frac{\mathrm{d} y}{\mathrm{~d} t}, v_z=\frac{\mathrm{d} z}{\mathrm{~d} t}$

When position of an object is plotted on a coordinate system, $\mathbf{v}$ is always tangent to the curve representing the path of the object.

14. If the velocity of an object changes from $\mathbf{v}$ to $\mathbf{v}^{\prime}$ in time $\Delta t$, then its average acceleration is given by: $\overline{\mathbf{a}}=\frac{\mathbf{v}-\mathbf{v}^{\prime}}{\Delta t}=\frac{\Delta \mathbf{v}}{\Delta t}$ The acceleration a at any time $t$ is the limiting value of $\overline{\mathbf{a}}$ as $\Delta t \rightarrow 0$ :

$$ \mathbf{a}=\lim\limits_{\Delta t \rightarrow 0} \frac{\Delta \mathbf{v}}{\Delta t}=\frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t} $$

In component form, we have :

$\mathbf{a}=a_x \hat{\mathbf{i}}+a_y \hat{\mathbf{j}}+a_z \hat{\mathbf{k}}$

where,

$a_x=\frac{d v_x}{d t}, a_y=\frac{d v_y}{d t}, a_z=\frac{d v_z}{d t}$

15. If an object is moving in a plane with constant acceleration $a=|\mathbf{a}|=\sqrt{a_x^2+a_y^2}$ and its position vector at time $t=0$ is $\mathbf{r}_0$, then at any other time $t$, it will be at a point given by:

$$ \mathbf{r}=\mathbf{r_o}+\mathbf{v_o} t+\frac{1}{2} \mathbf{a} t^2 $$

and its velocity is given by :

$$ \mathbf{v}=\mathbf{v}_0+\mathbf{a} t $$

where $\mathbf{v}_{\mathrm{o}}$ is the velocity at time $t=0$

In component form :

$$ \begin{aligned} & x=x_o+v_{o x} t+\frac{1}{2} a_x t^2 \\ & y=y_0+v_{o y} t+\frac{1}{2} a_y t^2 \\ & v_x=v_{o x}+a_x t \\ & v_y=v_{o y}+a_y t \end{aligned} $$

Motion in a plane can be treated as superposition of two separate simultaneous onedimensional motions along two perpendicular directions*

16. An object that is in flight after being projected is called a projectile. If an object is projected with initial velocity $\mathbf{v_o}$, making an angle $\theta_0$ with $x$-axis and if we assume its initial position to coincide with the origin of the coordinate system, then the position and velocity of the projectile at time $t$ are given by :

$$ \begin{gathered} x=\left(v_o \cos \theta_o\right) t \\ y=\left(v_o \sin \theta_o\right) t-(1 / 2) g t^2 \\ v_x=v_{a x}=v_o \cos \theta_o \\ v_y=v_o \sin \theta_o-g t \end{gathered} $$

The path of a projectile is parabolic and is given by :

$$ y=\left(\tan \theta_0\right) x-\frac{g x^2}{2\left(v_o \cos \theta_o\right)^2} $$

$$ h_m=\frac{\left(v_o \sin \theta_o\right)^2}{2 g} $$

The time taken to reach this height is :

$$ t_m=\frac{v_o \sin \theta_o}{g} $$

The horizontal distance travelled by a projectile from its initial position to the position it passes $y=0$ during its fall is called the range, $R$ of the projectile. It is : $$ R=\frac{v_o^2}{g} \sin 2 \theta_o $$

17. When an object follows a circular path at constant speed, the motion of the object is called uniform circular motion. The magnitude of its acceleration is $a_c=v^2 / R$. The direction of $a_c$ is always towards the centre of the circle. The angular speed $\omega$, is the rate of change of angular distance. It is related to velocity $v$ by $v=\omega R$. The acceleration is $a_c=\omega^2 R$. If $T$ is the time period of revolution of the object in circular motion and $v$ is its frequency, we have $\omega=2 \pi v, v=2 \pi v \mathrm{R}, a_c=4 \pi^2 v^2 R$

Phyelon
guntity
Eymbol Dlmennioas Unft Remar. 3
Position vector $\mathbf{r}$ $[\mathrm{L}]$ $\mathrm{m}$ Vector. It may be denoted by
any other symbol as well.
Displacement $\Delta \mathbf{r}$ [L] $\mathrm{m}$ - do -
Velocity [LT $\mathrm{m} \mathrm{s}^{-1}$
(a) Average $\overline{\mathbf{v}}$ $=\frac{\Delta \mathbf{r}}{\Delta t}$, vector
(b) Instantaneous $\mathbf{v}$ $=\frac{\mathrm{dr}}{\mathrm{d} t}$, vector
Acceleration $\left[\mathrm{LT}^{-2}\right]$ $\mathrm{m} \mathrm{s}^{-2}$
(a) Average $\overline{\mathbf{a}}$ $=\frac{\Delta \boldsymbol{v}}{}$, vector
(b) Instantaneous a $\nu$ $=\frac{\mathrm{d} \mathbf{v}}{1}$, vector
Projectile motion
(a) Time of max.
height
$t_{\mathrm{m}}$ $[\mathrm{T}]$ $\mathrm{s}$ $=\frac{v_0 \sin \theta_0}{g}$
(b) Max. height $h_{\mathrm{m}}$ [L] $\mathrm{m}$ $=\frac{\left(v_0 \sin \theta_0\right)^2}{2 g}$
(c) Horizontal range $R$ [L] $\mathrm{m}$ $=\frac{v_0^2 \sin 2 \theta_0}{g}$
Circular motion
(a) Angular speed
$\omega$ $\left[\mathrm{T}^{-1}\right]$ $\mathrm{rad} / \mathrm{s}$ $=\frac{\Delta \theta}{\Delta t}=\frac{v}{r}$
(b) Centripetal
acceleration
$a_e$ $\left[\mathrm{LT}^{-2}\right]$ $\mathrm{m} \mathrm{s}^{-2}$ $=\frac{v^2}{r}$

POINTS TO PONDER

1. The path length traversed by an object between two points is, in general, not the same as the magnitude of displacement. The displacement depends only on the end points; the path length (as the name implies) depends on the actual path. The two quantities are equal only if the object does not change its direction during the course of motion. In all other cases, the path length is greater than the magnitude of displacement.

2. In view of point 1 above, the average speed of an object is greater than or equal to the magnitude of the average velocity over a given time interval. The two are equal only if the path length is equal to the magnitude of displacement.

3. The vector equations (3.33a) and (3.34a) do not involve any choice of axes. Of course, you can always resolve them along any two independent axes.

4. The kinematic equations for uniform acceleration do not apply to the case of uniform circular motion since in this case the magnitude of acceleration is constant but its direction is changing.

5. An object subjected to two velocities $\mathbf{v_1}$ and $\mathbf{v_2}$ has a resultant velocity $\mathbf{v}= \mathbf{v_1} +\mathbf{v_2}$. Take care to distinguish it from velocity of object 1 relative to velocity of object $2: \mathbf{v}_{12}=\mathbf{v}_1-\mathbf{v_2}$. Here $\mathbf{v_1}$ and $\mathbf{v_2}$ are velocities with reference to some common reference frame.

6. The resultant acceleration of an object in circular motion is towards the centre only if the speed is constant.

7. The shape of the trajectory of the motion of an object is not determined by the acceleration alone but also depends on the initial conditions of motion ( initial position and initial velocity). For example, the trajectory of an object moving under the same acceleration due to gravity can be a straight line or a parabola depending on the initial conditions.

Exercises

3.1 State, for each of the following physical quantities, if it is a scalar or a vector : volume, mass, speed, acceleration, density, number of moles, velocity, angular frequency, displacement, angular velocity.

Show Answer

Answer

Scalar: Volume, mass, speed, density, number of moles, angular frequency

Vector: Acceleration, velocity, displacement, angular velocity

A scalar quantity is specified by its magnitude only. It does not have any direction associated with it. Volume, mass, speed, density, number of moles, and angular frequency are some of the scalar physical quantities.

A vector quantity is specified by its magnitude as well as the direction associated with it. Acceleration, velocity, displacement, and angular velocity belong to this category.

3.2 Pick out the two scalar quantities in the following list : force, angular momentum, work, current, linear momentum, electric field, average velocity, magnetic moment, relative velocity.

Show Answer

Answer

Work and current are scalar quantities.

Work done is given by the dot product of force and displacement. Since the dot product of two quantities is always a scalar, work is a scalar physical quantity.

Current is described only by its magnitude. Its direction is not taken into account. Hence, it is a scalar quantity.

3.3 Pick out the only vector quantity in the following list : Temperature, pressure, impulse, time, power, total path length, energy, gravitational potential, coefficient of friction, charge.

Show Answer

Answer

Impulse

Impulse is given by the product of force and time. Since force is a vector quantity, its product with time (a scalar quantity) gives a vector quantity.

3.4 State with reasons, whether the following algebraic operations with scalar and vector physical quantities are meaningful :

(a) adding any two scalars, (b) adding a scalar to a vector of the same dimensions , (c) multiplying any vector by any scalar, (d) multiplying any two scalars, (e) adding any two vectors, (f) adding a component of a vector to the same vector.

Show Answer

Answer

(a) Meaningful

(b) Not Meaningful

(c) Meaningful

(d) Meaningful

(e) Meaningful

(f) Meaningful

Explanation:

(a) The addition of two scalar quantities is meaningful only if they both represent the same physical quantity.

(b) The addition of a vector quantity with a scalar quantity is not meaningful.

(c) A scalar can be multiplied with a vector. For example, force is multiplied with time to give impulse.

(d) A scalar, irrespective of the physical quantity it represents, can be multiplied with another scalar having the same or different dimensions.

(e) The addition of two vector quantities is meaningful only if they both represent the same physical quantity.

(f) A component of a vector can be added to the same vector as they both have the same dimensions.

3.5 Read each statement below carefully and state with reasons, if it is true or false : (a) The magnitude of a vector is always a scalar, (b) each component of a vector is always a scalar, (c) the total path length is always equal to the magnitude of the displacement vector of a particle. (d) the average speed of a particle (defined as total path length divided by the time taken to cover the path) is either greater or equal to the magnitude of average velocity of the particle over the same interval of time, (e) Three vectors not lying in a plane can never add up to give a null vector.

Show Answer

Answer

(a) True

(b) False

(c) False

(d) True

(e) True

Explanation:

(a) The magnitude of a vector is a number. Hence, it is a scalar.

(b) Each component of a vector is also a vector.

(c) Total path length is a scalar quantity, whereas displacement is a vector quantity. Hence, the total path length is always greater than the magnitude of displacement. It becomes equal to the magnitude of displacement only when a particle is moving in a straight line.

(d) It is because of the fact that the total path length is always greater than or equal to the magnitude of displacement of a particle.

(e) Three vectors, which do not lie in a plane, cannot be represented by the sides of a triangle taken in the same order.

3.6 Establish the following vector inequalities geometrically or otherwise :

(a) $|\mathbf{a}+\mathbf{b}| \leq|\mathbf{a}|+|\mathbf{b}|$

(b) $|\mathbf{a}+\mathbf{b}| \geq|| \mathbf{a}|-| \mathbf{b}||$

(c) $|\mathrm{a}-\mathrm{b}| \leq|\mathrm{a}|+|\mathrm{b}|$

(d) $|\mathbf{a}-\mathbf{b}| \geq|| \mathbf{a}|-| \mathbf{b}||$

When does the equality sign above apply?

Show Answer

Answer

Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram OMNP, as shown in the given figure.

Here, we can write:

$$ \begin{align*} & |\overrightarrow{{}OM}|=|\vec{a}| \tag{i} \end{align*} $$

$$ \begin{align*} & |\overrightarrow{{}MN}|=|\overrightarrow{{}OP}|=|\vec{b}| \tag{ii}\\ & |\overrightarrow{{}ON}|=|\vec{a}+\vec{b}| \tag{iii} \end{align*} $$

In a triangle, each side is smaller than the sum of the other two sides.

Therefore, in $\triangle OMN$, we have:

$ON<(OM+MN)$

$$|\vec{a}+\vec{b}|<|\vec{a}|+|\vec{b}| \tag{iv}$$

If the two vectors $\vec{a}$ and $\vec{b}$ act along a straight line in the same direction, then we can write:

$$ |\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}| \tag{iv}$$

Combining equations (iv) and (v), we get:

$|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$

Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram OMNP, as shown in the given figure.

Here, we have:

$$ \begin{align*} & |\overrightarrow{{}OM}|=|\vec{a}| \tag{i} \end{align*} $$

$$ \begin{align*} & |\overrightarrow{{}MN}|=|\overrightarrow{{}OP}|=|\vec{b}| \tag{ii} \\ & |\overrightarrow{{}ON}|=|\vec{a}+\vec{b}| \tag{iii} \end{align*} $$

In a triangle, each side is smaller than the sum of the other two sides.

Therefore, in $\triangle OMN$, we have:

$ \begin{aligned} & ON+MN>OM \\ & ON+OM>MN \\ & |\overrightarrow{{}ON}|>|\overrightarrow{{}OM}-\overrightarrow{{}OP}| \quad(\because OP=MN) \\ & |\vec{a}+\vec{b}|>|| \vec{a}|-| \vec{b}|| _{\ldots(i v)} \end{aligned} $

If the two vectors $\vec{a}$ and $\vec{b}$ act along a straight line in the same direction, then we can write:

$|\vec{a}+\vec{b}|=|| \vec{a}|-| \vec{b}|| _{\ldots(v)}$

Combining equations (iv) and (v), we get:

$ |\vec{a}+\vec{b}| \geq|| \vec{a}|-| \vec{b}|| $

Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram PORS, as shown in the given figure.

Here we have:

$$ \begin{align*} & |\overrightarrow{{}OR}|=|\overrightarrow{{}PS}|=|\vec{b}| \tag{i} \end{align*} $$

$$ \begin{align*} & |\overrightarrow{{}OP}|=|\vec{a}| \tag{ii} \end{align*} $$

In a triangle, each side is smaller than the sum of the other two sides. Therefore, in $\triangle OPS$, we have:

$$ \begin{align*} & OS<OP+PS \end{align*} $$

$$ \begin{align*} & |\vec{a}-\vec{b}|<|\vec{a}|+|-\vec{b}| \\ & |\vec{a}-\vec{b}|<|\vec{a}|+|\vec{b}| \tag{iii} \end{align*} $$

If the two vectors act in a straight line but in opposite directions, then we can write:

$$ \begin{equation*} |\vec{a}-\vec{b}|=|\vec{a}|+|\vec{b}| \tag{iv} \end{equation*} $$

Combining equations (iii) and (iv), we get:

$ |\vec{a}-\vec{b}| \leq|\vec{a}|+|\vec{b}| $

Let two vectors $\vec{a}$ and $\vec{b}$ be represented by the adjacent sides of a parallelogram PORS, as shown in the given figure.

The following relations can be written for the given parallelogram.

$$ \begin{align*} & OS+PS>OP \tag{i}\\ & OS>OP-PS \tag{ii}\\ & |\vec{a}-\vec{b}|>|\vec{a}|-|\vec{b}| \tag{iii} \end{align*} $$

The quantity on the LHS is always positive and that on the RHS can be positive or negative. To make both quantities positive, we take modulus on both sides as:

$$ \begin{align*} & || \vec{a}-\vec{b}||>|| \vec{a}|-| \vec{b}|| \\ & |\vec{a}-\vec{b}|>|| \vec{a}|-| \vec{b}|| \tag{iv} \end{align*} $$

If the two vectors act in a straight line but in the opposite directions, then we can write:

$$ \begin{equation*} |\vec{a}-\vec{b}|=| \vec{a}|-| \vec{b}|| \tag{v} \end{equation*} $$

Combining equations (iv) and (v), we get:

$|\vec{a}-\vec{b}| \geq|| \vec{a}|-| \vec{b}||$

3.7 Given $\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}=\mathbf{0}$, which of the following statements are correct :

(a) a, b, c, and $\mathbf{d}$ must each be a null vector,

(b) The magnitude of $(\mathbf{a}+\mathbf{c})$ equals the magnitude of (b + d),

(c) The magnitude of a can never be greater than the sum of the magnitudes of $\mathbf{b}, \mathbf{c}$, and $\mathbf{d}$,

(d) $\mathbf{b}+\mathbf{c}$ must lie in the plane of $\mathbf{a}$ and $\mathbf{d}$ if $\mathbf{a}$ and $\mathbf{d}$ are not collinear, and in the line of $\mathbf{a}$ and $\mathbf{d}$, if they are collinear ?

Show Answer

Answer

(a) Incorrect

In order to make $\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}=\mathbf{0}$, it is not necessary to have all the four given vectors to be null vectors. There are many other combinations which can give the sum zero.

(b) Correct

$\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}=\mathbf{0}$

$\mathbf{a}+\mathbf{c}=-(\mathbf{b}+\mathbf{d})$

Taking modulus on both the sides, we get:

$|\mathbf{a}+\mathbf{c}|=|-(\mathbf{b}+\mathbf{d})|=|\mathbf{b}+\mathbf{d}|$

Hence, the magnitude of $(\mathbf{a}+\mathbf{c})$ is the same as the magnitude of $(\mathbf{b}+\mathbf{d})$.

(c) Correct

$\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}=\mathbf{0}$

$\mathbf{a}=(\mathbf{b}+\mathbf{c}+\mathbf{d})$

Taking modulus both sides, we get:

$|\mathbf{a}|=|\mathbf{b}+\mathbf{c}+\mathbf{d}|$

$|\mathbf{a}| \leq|\mathbf{a}|+|\mathbf{b}|+|\mathbf{c}| \ldots(i)$

Equation (i) shows that the magnitude of a is equal to or less than the sum of the magnitudes of $\mathbf{b}, \mathbf{c}$, and $\mathbf{d}$.

Hence, the magnitude of vector $a$ can never be greater than the sum of the magnitudes of $\mathbf{b}, \mathbf{c}$, and $\mathbf{d}$.

(d) Correct

For $\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}=0$

$\mathbf{a}+(\mathbf{ b}+\mathbf{c})+\mathbf{d}=0$

The resultant sum of the three vectors $\mathbf{a},(\mathbf{b}+\mathbf{c})$, and $\mathbf{d}$ can be zero only if $(\mathbf{b}+\mathbf{c})$ lie in a plane containing a and $\mathbf{d}$, assuming that these three vectors are represented by the three sides of a triangle.

If $\mathbf{a}$ and $\mathbf{d}$ are collinear, then it implies that the vector $(\mathbf{b}+\mathbf{c})$ is in the line of $\mathbf{a}$ and $\mathbf{d}$. This implication holds only then the vector sum of all the vectors will be zero.

3.8 Three girls skating on a circular ice ground of radius $200 \mathrm{~m}$ start from a point $P$ on the edge of the ground and reach a point Q diametrically opposite to $P$ following different paths as shown in Fig. 3.19. What is the magnitude of the displacement vector for each? For which girl is this equal to the actual length of path skate?

Show Answer

Answer

Displacement is given by the minimum distance between the initial and final positions of a particle. In the given case, all the girls start from point $P$ and reach point $Q$. The magnitudes of their displacements will be equal to the diameter of the ground.

Radius of the ground $=200 m$

Diameter of the ground $=2 \times 200=400 m$

Hence, the magnitude of the displacement for each girl is $400 m$. This is equal to the actual length of the path skated by girl B.

3.9 A cyclist starts from the centre $O$ of a circular park of radius $1 \mathrm{~km}$, reaches the edge $P$ of the park, then cycles along the circumference, and returns to the centre along QO as shown in Fig. 3.20. If the round trip takes $10 \mathrm{~min}$, what is the (a) net displacement, (b) average velocity, and (c) average speed of the cyclist?

Fig. 3.20

Show Answer

Answer

Displacement is given by the minimum distance between the initial and final positions of a body. In the given case, the cyclist comes to the starting point after cycling for 10 minutes. Hence, his net displacement is zero.

Average velocity is given by the relation:

Average velocity $=\frac{\text{ Net displacement }}{\text{ Total time }}$

Since the net displacement of the cyclist is zero, his average velocity will also be zero.

Average speed of the cyclist is given by the relation:

Average speed $=\frac{\text{ Total path length }}{\text{ Total time }}$

Total path length $=OP+PQ+QO$

$=1+\frac{1}{4}(2 \pi \times 1)+1$

$=2+\frac{1}{2} \pi=3.570 km$

Time taken $=10 \min =\frac{10}{60}=\frac{1}{6} h$

$\therefore$ Average speed

$ =\frac{3.570}{\frac{1}{6}}=21.42 km / h $

3.10 On an open ground, a motorist follows a track that turns to his left by an angle of $60^{\circ}$ after every $500 \mathrm{~m}$. Starting from a given turn, specify the displacement of the motorist at the third, sixth and eighth turn. Compare the magnitude of the displacement with the total path length covered by the motorist in each case.

Show Answer

Answer

The path followed by the motorist is a regular hexagon with side $500 m$, as shown in the given figure

Let the motorist start from point $P$.

The motorist takes the third turn at $S$.

$\therefore$ Magnitude of displacement $=PS=PV+VS=500+500=1000 m$

Total path length $=PQ+QR+RS=500+500+500=1500 m$

The motorist takes the sixth turn at point $P$, which is the starting point.

$\therefore$ Magnitude of displacement $=0$

Total path length $=PQ+QR+RS+ST+TU+UP$

$=500+500+500+500+500+500=3000 m$

The motorist takes the eight turn at point $R$

$\therefore$ Magnitude of displacement $=PR$

$ \begin{aligned} & =\sqrt{PQ^{2}+QR^{2}+2(PQ) \cdot(QR) \cos 60^{\circ}} \\ & =\sqrt{500^{2}+500^{2}+(2 \times 500 \times 500 \times \cos 60^{\circ})} \\ & =\sqrt{250000+250000+(500000 \times \frac{1}{2})} \\ & =866.03 m \\ & \beta=\tan ^{-1}(\frac{500 \sin 60^{\circ}}{500+500 \cos 60^{\circ}})=30^{\circ} \end{aligned} $

Therefore, the magnitude of displacement is $866.03 m$ at an angle of $30^{\circ}$ with PR.

Total path length $=$ Circumference of the hexagon $+PQ+QR$

$=6 \times 500+500+500=4000 m$

The magnitude of displacement and the total path length corresponding to the required turns is shown in the given table

Turn Magnitude of displacement (m) Total path length (m)
Third 1000 1500
Sixth 0 3000
Eighth $866.03 ; 30^{\circ}$ 4000

3.11 A passenger arriving in a new town wishes to go from the station to a hotel located $10 \mathrm{~km}$ away on a straight road from the station. A dishonest cabman takes him along a circuitous path $23 \mathrm{~km}$ long and reaches the hotel in $28 \mathrm{~min}$. What is

(a) the average speed of the taxi,

(b) the magnitude of average velocity? Are the two equal ?

Show Answer

Answer

Total distance travelled $=23 km$

Total time taken $=28 \min =\frac{28}{60} h$

$\therefore$ Average speed of the taxi $=\frac{\text{ Total distance travelled }}{\text{ Total time taken }}$

$=\frac{23}{(\frac{28}{60})}=49.29 km / h$

Distance between the hotel and the station $=10 km=$ Displacement of the car

$=\frac{10}{28}=21.43 km / h$

$\therefore$ Average velocity

60

Therefore, the two physical quantities (averge speed and average velocity) are not equal.

3.12 The ceiling of a long hall is $25 \mathrm{~m}$ high. What is the maximum horizontal distance that a ball thrown with a speed of $40 \mathrm{~m} \mathrm{~s}^{-1}$ can go without hitting the ceiling of the hall ?

Show Answer

Answer

Speed of the ball, $u=40 m / s$

Maximum height, $h=25 m$

In projectile motion, the maximum height reached by a body projected at an angle $\theta$, is given by the relation:

$h=\frac{u^{2} \sin ^{2} \theta}{2 g}$

$25=\frac{(40)^{2} \sin ^{2} \theta}{2 \times 9.8}$

$\sin ^{2} \theta=0.30625$ $\sin \theta=0.5534$

$\therefore \theta=\sin ^{-1}(0.5534)=33.60^{\circ}$

Horizontal range, $R=\frac{u^{2} \sin 2 \theta}{g}$

$=\frac{(40)^{2} \times \sin 2 \times 33.60}{9.8}$

$=\frac{1600 \times \sin 67.2}{9.8}$

$=\frac{1600 \times 0.922}{9.8}=150.53 m$

3.13 A cricketer can throw a ball to a maximum horizontal distance of $100 \mathrm{~m}$. How much high above the ground can the cricketer throw the same ball?

Show Answer

Answer

Maximum horizontal distance, $R=100 m$

The cricketer will only be able to throw the ball to the maximum horizontal distance when the angle of projection is $45^{\circ}$, i.e., $\theta=45^{\circ}$.

The horizontal range for a projection velocity $v$, is given by the relation:

$$ \begin{align*} & R=\frac{u^{2} \sin 2 \theta}{g} \\ & 100=\frac{u^{2}}{g} \sin 90^{\circ} \\ & \frac{u^{2}}{g}=100 \tag{i} \end{align*} $$

The ball will achieve the maximum height when it is thrown vertically upward. For such motion, the final velocity $v$ is zero at the maximum height $H$.

Acceleration, $a=-g$

Using the third equation of motion:

$$ \begin{aligned} & v^{2}-u^{2}=-2 g H \\ & H=\frac{1}{2} \times \frac{u^{2}}{g}=\frac{1}{2} \times 100=50 m \end{aligned} $$

3.14 A stone tied to the end of a string $80 \mathrm{~cm}$ long is whirled in a horizontal circle with a constant speed. If the stone makes 14 revolutions in $25 \mathrm{~s}$, what is the magnitude and direction of acceleration of the stone?

Show Answer

Answer

Length of the string, $l=80 cm=0.8 m$

Number of revolutions $=14$

Time taken $=25 s$

Frequency, $\quad v=\frac{\text{ Number of revolutions }}{\text{ Time taken }}=\frac{14}{25} Hz$

Angular frequency, $\omega=2 \pi \nu$

$=2 \times \frac{22}{7} \times \frac{14}{25}=\frac{88}{25} rad s^{-1}$

Centripetal acceleration, $a_c=\omega^{2} r$

$=(\frac{88}{25})^{2} \times 0.8$

$=9.91 m / s^{2}$

The direction of centripetal acceleration is always directed along the string, toward the centre, at all points.

3.15 An aircraft executes a horizontal loop of radius $1.00 \mathrm{~km}$ with a steady speed of 900 $\mathrm{km} / \mathrm{h}$. Compare its centripetal acceleration with the acceleration due to gravity.

Show Answer

Answer

Radius of the loop, $r=1 km=1000 m$

Speed of the aircraft, $v=900 km / h=900 \times \frac{5}{18}=250 m / s$

Centripetal acceleration, $a_c=\frac{v^{2}}{r}$

$ =\frac{(250)^{2}}{1000}=62.5 m / s^{2} $

Acceleration due to gravity, $g=9.8 m / s^{2}$

$ \frac{a_c}{g}=\frac{62.5}{9.8}=6.38 $

$ a_c=6.38 g $

3.16 Read each statement below carefully and state, with reasons, if it is true or false :

(a) The net acceleration of a particle in circular motion is always along the radius of the circle towards the centre

(b) The velocity vector of a particle at a point is always along the tangent to the path of the particle at that point

(c) The acceleration vector of a particle in uniform circular motion averaged over one cycle is a null vector

Show Answer

Answer

(a) False

The net acceleration of a particle in circular motion is not always directed along the radius of the circle toward the centre. It happens only in the case of uniform circular motion.

(b) True

At a point on a circular path, a particle appears to move tangentially to the circular path. Hence, the velocity vector of the particle is always along the tangent at a point.

(c) True

In uniform circular motion (UCM), the direction of the acceleration vector points toward the centre of the circle. However, it constantly changes with time. The average of these vectors over one cycle is a null vector.

3.17 The position of a particle is given by $$ \mathbf{r}=3.0 t \hat{\mathbf{i}}-2.0 t^2 \hat{\mathbf{j}}+4.0 \hat{\mathbf{k}} \mathrm{m} $$where $t$ is in seconds and the coefficients have the proper units for $\mathbf{r}$ to be in metres.

(a) Find the $\mathbf{v}$ and $\mathbf{a}$ of the particle? (b) What is the magnitude and direction of velocity of the particle at $t=2.0 \mathrm{~s}$ ?

Show Answer

Answer

$\vec{v}(t)=(3.0 \hat{\mathbf{i}}-4.0 t \hat{\mathbf{j}}) ; \vec{a}=-4.0 \hat{\mathbf{j}}$

The position of the particle is given by:

$\vec{r}=3.0 t \hat{\mathbf{i}}-2.0 t^{2} \hat{\mathbf{j}}+4.0 \hat{\mathbf{k}}$

Velocity $\vec{v}$, of the particle is given as:

$\vec{v}=\frac{d \vec{r}}{d t}=\frac{d}{d t}(3.0 t \hat{\mathbf{i}}-2.0 t^{2} \hat{\mathbf{j}}+4.0 \hat{\mathbf{k}})$

$\therefore \vec{v}=3.0 \hat{\mathbf{i}}-4.0 t \hat{\mathbf{j}}$

Acceleration $\vec{a}$, of the particle is given as:

$\vec{a}=\frac{d \vec{v}}{d t}=\frac{d}{d t}(3.0 \hat{\mathbf{i}}-4.0 t \hat{\mathbf{j}})$

$\therefore \vec{a}=-4.0 \hat{\mathbf{j}}$

$8.54 m / s, 69.45^{\circ}$ below the $x$-axis

We have velocity vector, $\vec{v}=3.0 \hat{\mathbf{i}}-4.0 t \hat{\mathbf{j}}$

At $t=2.0 s$ :

$\vec{v}=3.0 \hat{\mathbf{i}}-8.0 \hat{\mathbf{j}}$

The magnitude of velocity is given by:

$|\vec{v}|=\sqrt{3^{2}+(-8)^{2}}=\sqrt{73}=8.54 m / s$

Direction, $\theta=\tan ^{-1}(\frac{v_y}{v_x})$

$=\tan ^{-1}(\frac{-8}{3})=-\tan ^{-1}(2.667)$

$=-69.45^{\circ}$

The negative sign indicates that the direction of velocity is below the $x$-axis.

3.18 A particle starts from the origin at $t=0 \mathrm{~s}$ with a velocity of $10.0 \hat{\mathbf{j}} \mathrm{m} / \mathrm{s}$ and moves in the $x-y$ plane with a constant acceleration of $(8.0 \hat{\mathbf{i}}+2.0 \hat{\mathbf{j}}) \mathrm{m} \mathrm{s}^{-2}$.

(a) At what time is the $x$-coordinate of the particle $16 \mathrm{~m}$ ? What is the $y$-coordinate of the particle at that time?

(b) What is the speed of the particle at the time?

Show Answer

Answer

Velocity of the particle, $\vec{v}=10.0 \hat{\mathbf{j}} m / s$

Acceleration of the particle $\vec{a}=(8.0 \hat{\mathbf{i}}+2.0 \hat{\mathbf{j}})$

Also,

$ \vec{a}=\frac{d \vec{v}}{d t}=8.0 \hat{\mathbf{i}}+2.0 \hat{\mathbf{j}} $

But,

$d \vec{v}=(8.0 \hat{\mathbf{i}}+2.0 \hat{\mathbf{j}}) d t$

Integrating both sides:

$\vec{v}(t)=8.0 t \hat{\mathbf{i}}+2.0 t \hat{\mathbf{j}}+\vec{u}$

Where,

$\vec{u}=$ Velocity vector of the particle at $t=0$

$\vec{v}=$ Velocity vector of the particle at time $t$

But, $\vec{v}=\frac{d \vec{r}}{d t}$

$d \vec{r}=\vec{v} d t=(8.0 t \hat{\mathbf{i}}+2.0 t \hat{\mathbf{j}}+\vec{u}) d t$

Integrating the equations with the conditions: at $t=0 ; r=0$ and at $t=t ; r=r$

$ \begin{aligned} \vec{r} & =\vec{u} t+\frac{1}{2} 8.0 t^{2} \hat{\mathbf{i}}+\frac{1}{2} \times 2.0 t^{2} \hat{\mathbf{j}} \\ & =\vec{u} t+4.0 t^{2} \hat{\mathbf{i}}+t^{2} \hat{\mathbf{j}} \\ & =(10.0 \hat{\mathbf{j}}) t+4.0 t^{2} \hat{\mathbf{i}}+t^{2} \hat{\mathbf{j}} \\ x & \hat{\mathbf{i}}+y \hat{\mathbf{j}}=4.0 t^{2} \hat{\mathbf{i}}+(10 t+t^{2}) \hat{\mathbf{j}} \end{aligned} $

Since the motion of the particle is confined to the $x-y$ plane, on equating the coefficients of $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$, we get:

$x=4 t^{2}$

$t=(\frac{x}{4})^{\frac{1}{2}}$

And $y=10 t+t^{2}$

When $x=16 m$ :

$t=(\frac{16}{4})^{\frac{1}{2}}=2 s$

$\therefore y=10 \times 2+(2)^{2}=24 m$

Velocity of the particle is given by:

$ \begin{aligned} & \vec{v}(t)=8.0 t \hat{\mathbf{i}}+2.0 t \hat{\mathbf{j}}+\vec{u} \\ & \text{ at } t=2 s \\ & \vec{v}(t)=8.0 \times 2 \hat{\mathbf{i}}+2.0 \times 2 \hat{\mathbf{j}}+10 \hat{\mathbf{j}} \\ & \quad=16 \hat{\mathbf{i}}+14 \hat{\mathbf{j}} \end{aligned} $

$\therefore$ Speed of the particle:

$ \begin{aligned} |\vec{v}| & =\sqrt{(16)^{2}+(14)^{2}} \\ & =\sqrt{256+196}=\sqrt{452} \\ & =21.26 m / s \end{aligned} $

3.19 $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$ are unit vectors along $x$ - and $y$-axis respectively. What is the magnitude and direction of the vectors $\hat{\mathbf{i}}+\hat{\mathbf{j}}$, and $\hat{\mathbf{i}}-\hat{\mathbf{j}}$ ? What are the components of a vector $\mathbf{A}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}$ along the directions of $\hat{\mathbf{i}}+\hat{\mathbf{j}}$ and $\hat{\mathbf{i}}-\hat{\mathbf{j}}$ ? [You may use graphical method]

Show Answer

Answer

Consider a vector $\vec{P}$, given as:

$ \begin{aligned} & \stackrel{harpoonup}{P}=\hat{\mathbf{i}}+\hat{\mathbf{j}} \\ & P_x \hat{\mathbf{i}}+P_y \hat{\mathbf{j}}=\hat{\mathbf{i}}+\hat{\mathbf{j}} \end{aligned} $

On comparing the components on both sides, we get:

$$ \begin{align*} & P_x=P_y=1 \\ & \overrightarrow{{}|P|}=\sqrt{P_x^{2}+P_y^{2}}=\sqrt{1^{2}+1^{2}}=\sqrt{2} \tag{i} \end{align*} $$

Hence, the magnitude of the vector $\hat{\mathbf{i}}+\hat{\mathbf{j}}$ is $\sqrt{2}$.

Let $\theta$ be the angle made by the vector $\vec{P}$, with the $x$-axis, as shown in the following figure.

$$\therefore \tan \theta=(\frac{P_y}{P_x})$$

$$\theta=\tan ^{-1}(\frac{1}{1})=45^{\circ} \tag{ii}$$

Hence, the vector $\hat{\mathbf{i}}+\hat{\mathbf{j}}$ makes an angle of $45^{\circ}$ with the $x$-axis.

Let $\vec{Q}=\hat{\mathbf{i}}-\hat{\mathbf{j}}$

$Q_x \hat{\mathbf{i}}-Q_y \hat{\mathbf{j}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}$

$Q_x=Q_y=1$

$|\vec{Q}|=\sqrt{Q_x^{2}+Q_y^{2}}=\sqrt{2} \quad \quad \quad \quad \quad (iii)$

Hence, the magnitude of the vector $\hat{\mathbf{i}}-\hat{\mathbf{j}}$ is $\sqrt{2}$.

Let $\theta$ be the angle made by the vector $\vec{Q}$, with the $x$-axis, as shown in the following figure.

$\therefore \tan \theta=(\frac{Q_y}{Q_x})$

$\theta=-\tan ^{-1}(-\frac{1}{1})=-45^{\circ}\quad \quad \quad \quad \quad (iv)$

Hence, the vector $\hat{\mathbf{i}}-\hat{\mathbf{j}}$ makes an angle of $-45^{\circ}$ with the $x$-axis.

It is given that:

$ \begin{aligned} & \vec{A}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}} \\ & A_x \hat{\mathbf{i}}+A_y \hat{\mathbf{j}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}} \end{aligned} $

On comparing the coefficients of $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$, we have:

$ \begin{aligned} & A_x=2 \text{ and } A_y=3 \\ & |\vec{A}|=\sqrt{2^{2}+3^{2}}=\sqrt{13} \end{aligned} $

Let $ \vec{A} _x$ make an angle $\theta _{\text{with the }} x$-axis, as shown in the following figure.

$ \begin{aligned} & \therefore \tan \theta=(\frac{A_y}{A_x}) \\ & \theta=\tan ^{-1}(\frac{3}{2}) \\ & \quad=\tan ^{-1}(1.5)=56.31^{\circ} \end{aligned} $

Angle between the vectors $(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}})$ and $(\hat{\mathbf{i}}+\hat{\mathbf{j}}), \theta^{\prime}=56.31-45=11.31^{\circ}$

Component of vector $\vec{A}$, along the direction of $\vec{P}$, making an angle $\theta^{\prime}$

$$ \begin{align*} & =(A \cos \theta) \hat{P}=(A \cos 11.31) \frac{(\hat{\mathbf{i}}+\hat{\mathbf{j}})}{\sqrt{2}} \\ & =\sqrt{13} \times \frac{0.9806}{\sqrt{2}}(\hat{\mathbf{i}}+\hat{\mathbf{j}}) \\ & =2.5(\hat{\mathbf{i}}+\hat{\mathbf{j}}) \\ & =\frac{25}{10} \times \sqrt{2} \\ & =\frac{5}{\sqrt{2}} \tag{v} \end{align*} $$

Let $\theta^{*}$ be the angle between the vectors $(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}})$ and $(\hat{\mathbf{i}}-\hat{\mathbf{j}})$.

$ \theta^{\prime \prime}=45+56.31=101.31^{\circ} $

Component of vector $\vec{A}$, along the direction of $\vec{Q}$, making an angle $\theta^{\prime \prime}$

$$ \begin{align*} & =(A \cos \theta^{\prime \prime}) \vec{Q}=(A \cos \theta^{\prime \prime}) \frac{\hat{\mathbf{i}}-\hat{\mathbf{j}}}{\sqrt{2}} \\ & =\sqrt{13} \cos (901.31^{\circ}) \frac{(\hat{\mathbf{i}}-\hat{\mathbf{j}})}{\sqrt{2}} \\ & =-\sqrt{\frac{13}{2}} \sin 11.30^{\circ}(\hat{\mathbf{i}}-\hat{\mathbf{j}}) \\ & =-2.550 \times 0.1961(\hat{\mathbf{i}}-\hat{\mathbf{j}}) \\ & =-0.5(\hat{\mathbf{i}}-\hat{\mathbf{j}}) \\ & =-\frac{5}{10} \times \sqrt{2} \\ & =-\frac{1}{\sqrt{2}} \tag{vi} \end{align*} $$

3.20 For any arbitrary motion in space, which of the following relations are true:

(a) $\mathbf{v}_{\text {average }}=(1 / 2)\left(\mathbf{v}\left(t_1\right)+\mathbf{v}\left(t_2\right)\right)$

(b) $\mathbf{v}_{\text {average }}=\left[\mathbf{r}\left(t_2\right)-\mathbf{r}\left(t_1\right)\right] /\left(t_2-t_1\right)$

(c) $\mathbf{v}(t)=\mathbf{v}(0)+\mathbf{a} t$

(d) $\mathbf{r}(t)=\mathbf{r}(0)+\mathbf{v}(0) t+(1 / 2) \mathbf{a} t^2$

(e) $\mathbf{a}_{\text {average }}=\left[\mathbf{v}\left(t_2\right)-\mathbf{v}\left(t_1\right)\right] /\left(t_2-t_1\right)$

(The ‘average’ stands for average of the quantity over the time interval $t_1$ to $t_2$ )

Show Answer

Answer

(b) and (e)

(a) It is given that the motion of the particle is arbitrary. Therefore, the average velocity of the particle cannot be given by this equation.

(b) The arbitrary motion of the particle can be represented by this equation.

(c) The motion of the particle is arbitrary. The acceleration of the particle may also be non-uniform. Hence, this equation cannot represent the motion of the particle in space.

(d) The motion of the particle is arbitrary; acceleration of the particle may also be nonuniform. Hence, this equation cannot represent the motion of particle in space.

(e) The arbitrary motion of the particle can be represented by this equation.

3.21 Read each statement below carefully and state, with reasons and examples, if it is true or false :

A scalar quantity is one that

(a) is conserved in a process

(b) can never take negative values

(c) must be dimensionless

(d) does not vary from one point to another in space

(e) has the same value for observers with different orientations of axes.

Show Answer

Answer

(a) False

Despite being a scalar quantity, energy is not conserved in inelastic collisions.

(b) False

Despite being a scalar quantity, temperature can take negative values.

(c) False

Total path length is a scalar quantity. Yet it has the dimension of length.

(d) False

A scalar quantity such as gravitational potential can vary from one point to another in space.

(e) True

The value of a scalar does not vary for observers with different orientations of axes.

3.22 An aircraft is flying at a height of $3400 \mathrm{~m}$ above the ground. If the angle subtended at a ground observation point by the aircraft positions $10.0 \mathrm{~s}$ a part is $30^{\circ}$, wat is the speed of the aircraft?

Show Answer

Answer

The positions of the observer and the aircraft are shown in the given figure.

Height of the aircraft from ground, $OR=3400 m$

Angle subtended between the positions, $\angle POQ=30^{\circ}$

Time $=10 s$

In $\triangle PRO$ :

$\tan 15^{\circ}=\frac{PR}{OR}$

$PR=OR \tan 15^{\circ}$

$=3400 \times \tan 15^{\circ}$

$\triangle PRO$ is similar to $\triangle RQO$.

$\therefore PR=RQ$

$PQ=PR+RQ$

$=2 PR=2 \times 3400 \tan 15^{\circ}$

$=6800 \times 0.268=1822.4 m$

$\therefore$ Speed of the aircraft $=\frac{1822.4}{10}=182.24 m / s$

3.1 भूमिका

पिछले अध्याय में हमने स्थिति, विस्थापन, वेग एवं त्वरण की धारणाओं को विकसित किया था, जिनकी किसी वस्तु की सरल रेखीय गति का वर्णन करने के लिए आवश्यकता पड़ती है । क्योंकि एकविमीय गति में मात्र दो ही दिशाएँ संभव हैं, इसलिए इन राशियों के दिशात्मक पक्ष को + और - चिह्नों से व्यक्त कर सकते हैं । परंतु जब हम वस्तुओं की गति का द्विविमीय (एक समतल) या त्रिविमीय (दिक्स्थान) वर्णन करना चाहते हैं, तब हमें उपर्युक्त भौतिक राशियों का अध्ययन करने के लिए सदिशों की आवश्यकता पड़ती है । अतएव सर्वप्रथम हम सदिशों की भाषा (अर्थात सदिशों के गुणों एवं उन्हें उपयोग में लाने की विधियाँ) सीखेंगे । सदिश क्या है ? सदिशों को कैसे जोड़ा, घटाया या गुणा किया जाता है ? सदिशों को किसी वास्तविक संख्या से गुणा करें तो हमें क्या परिणाम मिलेगा ? यह सब हम इसलिए सीखेंगे जिससे किसी समतल में वस्तु के वेग एवं त्वरण को परिभाषित करने के लिए हम सदिशों का उपयोग कर सकें। इसके बाद हम किसी समतल में वस्तु की गति पर परिचर्चा करेंगे। किसी समतल में गति के सरल उदाहरण के रूप में हम एकसमान त्वरित गति का अध्ययन करेंगे तथा एक प्रक्षेप्य की गति के विषय में विस्तार से पढ़ेंगे । वृत्तीय गति से हम भलीभाँति परिचित हैं जिसका हमारे दैनिक जीवन में विशेष महत्त्व है । हम एकसमान वृत्तीय गति की कुछ विस्तार से चर्चा करेंगे । हम इस अध्याय में जिन समीकरणों को प्राप्त करेंगे उन्हें आसानी से त्रिविमीय गति के लिए विस्तारित किया जा सकता है ।

3.2 अदिश एवं सदिश

हम भौतिक राशियों को अदिशों एवं सदिशों में वर्गीकृत करते हैं । दोनों में मूल अंतर यह है कि सदिश के साथ दिशा को संबद्ध करते हैं वहीं अदिश के साथ ऐसा नहीं करते । एक अदिश राशि वह राशि है जिसमें मात्र परिमाण होता है । इसे केवल एक संख्या एवं उचित मात्रक द्वारा पूर्ण रूप से व्यक्त किया जा सकता है । इसके उदाहरण हैं : दो बिंदुओं के बीच की दूरी, किसी वस्तु की संहति (द्रव्यमान), किसी वस्तु का तापक्रम, तथा वह समय जिस पर कोई घटना घटती है । अदिशों के जोड़ में वही नियम लागू होते हैं जो सामान्यतया बीजगणित में। अदिशों को हम ठीक वैसे ही जोड़ सकते हैं, घटा सकते हैं, गुणा या भाग कर सकते हैं जैसा कि हम सामान्य संख्याओं के साथ करते हैं* । उदाहरण के लिए, यदि किसी आयत की लंबाई और चौड़ाई क्रमशः $1.0 \mathrm{~m}$ तथा $0.5 \mathrm{~m}$ है तो उसकी परिमाप चारों भुजाओं के योग, $1.0 \mathrm{~m}+0.5 \mathrm{~m}+1.0 \mathrm{~m}+0.5 \mathrm{~m}=$ $3.0 \mathrm{~m}$ होगा। हर भुजा की लंबाई एक अदिश है तथा परिमाप भी एक अदिश है । हम एक दूसरे उदाहरण पर विचार करेंगे : यदि किसी एक दिन का अधिकतम एवं न्यूनतम ताप क्रमशः $35.6^{\circ} \mathrm{C}$ तथा $24.2^{\circ} \mathrm{C}$ है तो इन दोनों का अंतर $11.4{ }^{\circ} \mathrm{C}$ होगा। इसी प्रकार यदि एल्युमिनियम के किसी एकसमान ठोस घन की भुजा $10 \mathrm{~cm}$ है और उसका द्रव्यमान $2.7 \mathrm{~kg}$ है तो उसका आयतन $10^{-3} \mathrm{~m}^{3}$ (एक अदिश) होगा तथा घनत्व $2.7 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ भी एक अदिश है । एक सदिश राशि वह राशि है जिसमें परिमाण तथा दिशा दोनों होते हैं तथा वह योग संबंधी त्रिभुज के नियम अथवा समानान्तर चतुर्भुज के योग संबंधी नियम का पालन करती है । इस प्रकार, एक सदिश को उसके परिमाण की संख्या तथा दिशा द्वारा व्यक्त करते हैं । कुछ भौतिक राशियाँ जिन्हें सदिशों द्वारा व्यक्त करते हैं, वे हैं विस्थापन, वेग, त्वरण तथा बल ।

सदिश को व्यक्त करने के लिए इस पुस्तक में हम मोटे अक्षरों का प्रयोग करेंगे। जैसे कि वेग सदिश को व्यक्त करने के लिए $\mathbf{v}$ चिह्न का प्रयोग करेंगे। परंतु हाथ से लिखते समय क्योंकि मोटे अक्षरों का लिखना थोड़ा मुश्किल होता है, इसलिए एक सदिश को अक्षर के ऊपर तीर लगाकर व्यक्त करते हैं, जैसे $\vec{v}$ । इस प्रकार $v$ तथा $\vec{v}$ दोनों ही वेग सदिश को व्यक्त करते हैं । किसी सदिश के परिमाण को प्रायः हम उसका ‘परम मान’ कहते हैं और उसे $|\mathbf{v}|=v$ द्वारा व्यक्त करते हैं । इस प्रकार एक सदिश को हम मोटे अक्षर यथा $\mathbf{A}$ या $\mathbf{a}, \mathbf{p}, \mathbf{q}, \mathbf{r}, \ldots . \mathbf{x}$, $\mathbf{y}$ से व्यक्त करते हैं जबकि इनके परिमाणों को क्रमशः हम $A$ या $a, p, q, r, \ldots x, y$ द्वारा व्यक्त करते हैं ।

3.2.1 स्थिति एवं विस्थापन सदिश

किसी समतल में गतिमान वस्तु की स्थिति व्यक्त करने के लिए हम सुविधानुसार किसी बिंदु $O$ को मूल बिंदु के रूप में चुनते हैं । कल्पना कीजिए कि दो भिन्न-भिन्न समयों $t$ और $t^{\prime}$ पर वस्तु की स्थिति क्रमशः $\mathrm{P}$ और $\mathrm{P}^{\prime}$ है (चित्र 3.1a) । हम $\mathrm{P}$ को $O$ से एक सरल रेखा से जोड़ देते हैं। इस प्रकार OP समय $t$ पर वस्तु की स्थिति सदिश होगी । इस रेखा के सिरे पर एक तीर का निशान लगा देते हैं । इसे किसी चिह्न (मान लीजिए) $\mathbf{r}$ से निरूपित करते हैं, अर्थात् $\mathbf{O P}=\mathbf{r}$ । इसी प्रकार बिंदु $\mathrm{P}^{\prime}$ को एक दूसरे स्थिति सदिश $O P^{\prime}$ यानी $\mathbf{r}^{\prime}$ से निरूपित करते हैं। सदिश $\mathbf{r}$ की लंबाई उसके परिमाण को निरूपित करती है तथा सदिश की दिशा वह होगी जिसके अनुदिश $P$ (बिंदु $O$ से देखने पर) स्थित होगा । यदि वस्तु $\mathrm{P}$ से चलकर $\mathrm{P}^{\prime}$ पर पहुंच जाती है तो सदिश $\mathbf{P P}^{\prime}$ ( जिसकी पुच्छ $\mathrm{P}$ पर तथा शीर्ष $\mathrm{P}^{\prime}$ पर है) बिंदु $\mathrm{P}($ समय $t)$ से $\mathrm{P}^{\prime}$ (समय $\left.t^{\prime}\right)$ तक गति के संगत विस्थापन सदिश कहलाता है ।

चित्र 3.1 (a) स्थिति तथा विस्थापन सदिश, (b) विस्थापन सदिश $\mathbf{P Q}$ तथा गति के भिन्न-भिन्न मार्ग ।

यहाँ यह बात महत्वपूर्ण है कि ‘विस्थापन सदिश’ को एक सरल रेखा से व्यक्त करते हैं जो वस्तु की अंतिम स्थिति को उसकी प्रारम्भिक स्थिति से जोड़ती है तथा यह उस वास्तविक पथ पर निर्भर नहीं करता जो वस्तु द्वारा बिंदुओं के मध्य चला जाता है । उदाहरणस्वरूप, जैसा कि चित्र $3.1 \mathrm{~b}$ में दिखाया गया है, प्रारम्भिक स्थिति $\mathrm{P}$ तथा अंतिम स्थिति $\mathrm{Q}$ के मध्य विस्थापन सदिश PQ यद्यपि वही है परंतु दोनों स्थितियों के बीच चली गई दूरियां जैसे PABCQ, PDQ तथा PBEFQ अलग-अलग हैं। इसी प्रकार, किन्हीं दो बिंदुओं के मध्य विस्थापन सदिश का परिमाण या तो गतिमान वस्तु की पथ-लंबाई से कम होता है या उसके बराबर होता है। पिछले अध्याय में भी एक सरल रेखा के अनुदिश गतिमान वस्तु के लिए इस तथ्य को भलीभांति समझाया गया था ।

3.2.2 सदिशों की समता

दो सदिशों $\mathbf{A}$ तथा $\mathbf{B}$ को केवल तभी बराबर कहा जा सकता है जब उनके परिमाण बराबर हों तथा उनकी दिशा समान हो**।

चित्र 3.2 (a) दो समान सदिश $\mathbf{A}$ तथा $\mathbf{B},(b)$ दो सदिश $\mathbf{A}^{\prime}$ व $\mathbf{B}^{\prime}$ असमान हैं यद्यपि उनकी लंबाइयाँ वही हैं।

चित्र 3.2(a) में दो समान सदिशों $\mathbf{A}$ तथा $\mathbf{B}$ को दर्शाया गया है। हम इनकी समानता की परख आसानी से कर सकते हैं । B को स्वयं के समांतर खिसकाइये ताकि उसकी पुच्छ $\mathrm{Q}$ सदिश $\mathbf{A}$ की पुच्छ $O$ के संपाती हो जाए। फिर क्योंकि उनके शीर्ष $S$ एवं $P$ भी संपाती हैं अतः दोनों सदिश बराबर कहलाएंगे। सामान्यतया इस समानता को $\mathbf{A}=\mathbf{B}$ के रूप में लिखते हैं । इस[^0] बात की ओर ध्यान दीजिए कि चित्र 3.2(b) में यद्यपि सदिशों $\mathbf{A}^{\prime}$ तथा $\mathbf{B}^{\prime}$ के परिमाण समान हैं फिर भी दोनों सदिश समान नहीं हैं क्योंकि उनकी दिशायें अलग-अलग हैं । यदि हम $\mathbf{B}^{\prime}$ को उसके ही समांतर खिसकाएं जिससे उसकी पुच्छ $\mathbf{Q}^{\prime}, \mathbf{A}^{\prime}$ की पुच्छ $O^{\prime}$ से संपाती हो जाए तो भी $\mathbf{B}^{\prime}$ का शीर्ष $S^{\prime}, \mathbf{A}^{\prime}$ के शीर्ष $\mathrm{P}^{\prime}$ का संपाती नहीं होगा ।

3.3 सदिशों की वास्तविक संख्या से गुणा

यदि एक सदिश $\mathbf{A}$ को किसी धनात्मक संख्या $\lambda$ से गुणा करें तो हमें एक सदिश ही मिलता है जिसका परिमाण सदिश $\mathbf{A}$ के परिमाण का $\lambda$ गुना हो जाता है तथा जिसकी दिशा वही है जो $\mathbf{A}$ की है । इस गुणनफल को हम $\lambda \mathbf{A}$ से लिखते हैं ।

$$ |\lambda \mathbf{A}|=\lambda|\mathbf{A}| \text { यदि } \lambda=0 $$

उदाहरणस्वरूप, यदि $\mathbf{A}$ को 2 से गुणा किया जाए, तो परिणामी सदिश $2 \mathbf{A}$ होगा (चित्र 3.3a) जिसकी दिशा $\mathbf{A}$ की दिशा होगी तथा परिमाण $|\mathbf{A}|$ का दोगुना होगा । सदिश $\mathbf{A}$ को यदि एक ॠणात्मक संख्या $-\lambda$ से गुणा करें तो एक अन्य सदिश प्राप्त होता है जिसकी दिशा $\mathbf{A}$ की दिशा के विपरीत है और जिसका परिमाण $|\mathbf{A}|$ का $\lambda$ गुना होता है ।

यदि किसी सदिश $\mathbf{A}$ को ऋणात्मक संख्याओं -1 व-1.5 से गुणा करें तो परिणामी सदिश चित्र 3.3(b) जैसे होंगे। भौतिकी में जिस घटक $\lambda$ द्वारा सदिश $\mathbf{A}$ को गुणा किया जाता है वह कोई अदिश हो सकता है जिसकी स्वयं की विमाएँ होती हैं । अतएव $\lambda \mathbf{A}$ की विमाएँ $\lambda$ व $\mathbf{A}$ की विमाओं के गुणनफल के बराबर होंगी । उदाहरणस्वरूप, यदि हम किसी अचर वेग सदिश को किसी (समय) अंतराल से गुणा करें तो हमें एक विस्थापन सदिश प्राप्त होगा ।

चित्र 3.3 (a) सदिश $\mathbf{A}$ तथा उसे धनात्मक संख्या दो से गुणा करने पर प्राप्त परिणामी सदिश, (b) सदिश $\mathbf{A}$ तथा उसे ॠणात्मक संख्याओं -1 तथा -1.5 से गुणा करने पर प्राप्त परिणामी सदिश।

3.4 सदिशों का संकलन व व्यवकलन : ग्राफी विधि

जैसा कि खण्ड 3.2 में बतलाया जा चुका है कि सदिश योग के त्रिभुज नियम या समान्तर चतुर्भुज के योग के नियम का पालन करते हैं। अब हम ग्राफी विधि द्वारा योग के इस नियम को समझाएंगे । हम चित्र 3.4 (a) में दर्शाए अनुसार किसी समतल में स्थित दो सदिशों $\mathbf{A}$ तथा $\mathbf{B}$ पर विचार करते हैं । इन सदिशों को व्यक्त करने वाली रेखा-खण्डों की लंबाइयाँ सदिशों के परिमाण के समानुपाती हैं । योग $\mathbf{A}+\mathbf{B}$ प्राप्त करने के लिए चित्र 3.4(b) के अनुसार हम सदिश $\mathbf{B}$ इस प्रकार रखते हैं कि उसकी पुच्छ सदिश $\mathbf{A}$ के शीर्ष पर हो । फिर हम $\mathbf{A}$ की पुच्छ को B के सिरे से जोड़ देते हैं । यह रेखा $\mathrm{OQ}$ परिणामी सदिश $\mathbf{R}$ को व्यक्त करती है जो सदिशों $\mathbf{A}$ तथा $\mathbf{B}$ का योग है। क्योंकि सदिशों के जोड़ने की इस विधि में सदिशों में से किसी एक के शीर्ष को दूसरे की पुच्छ से जोड़ते हैं, इसलिए इस ग्राफी विधि को शीर्ष व पुच्छ विधि के नाम से जाना जाता है । दोनों सदिश तथा उनका परिणामी सदिश किसी त्रिभुज की तीन भुजाएं बनाते हैं। इसलिए इस विधि को सदिश योग के त्रिभुज नियम भी कहते हैं । यदि हम $\mathbf{B}+\mathbf{A}$ का परिणामी सदिश प्राप्त करें तो भी हमें वही सदिश $\mathbf{R}$ प्राप्त होता है (चित्र $3.4 \mathrm{c}$ )। इस प्रकार सदिशों का योग ‘क्रम विनिमेय’ (सदिशों के जोड़ने में यदि उनका क्रम बदल दें तो भी परिणामी सदिश नहीं बदलता) है।

$$ \begin{equation*} \mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A} \tag{3.1} \end{equation*} $$

चित्र 3.4 (a) सदिश $\mathbf{A}$ तथा $\mathbf{B},(b)$ सदिशों $\mathbf{A}$ व $\mathbf{B}$ का ग्राफी विधि द्वारा जोड़ना, (c) सदिशों $\mathbf{B}$ व $\mathbf{A}$ का ग्राफी विधि द्वारा जोड़ना, (d) सदिशों के जोड़ से संबंधित साहचर्य नियम का प्रदर्शन ।

सदिशों का योग साहचर्य नियम का भी पालन करता है जैसा कि चित्र 3.4 (d) में दर्शाया गया है । सदिशों $\mathbf{A}$ व $\mathbf{B}$ को पहले जोड़कर और फिर सदिश $\mathbf{C}$ को जोड़ने पर जो परिणाम प्राप्त होता है वह वही है जो सदिशों $\mathbf{B}$ और $\mathbf{C}$ को पहले जोड़कर फिर $\mathbf{A}$ को जोड़ने पर मिलता है, अर्थात्

$$ \begin{equation*} (\mathbf{A}+\mathbf{B})+\mathbf{C}=\mathbf{A}+(\mathbf{B}+\mathbf{C}) \tag{3.2} \end{equation*} $$

दो समान और विपरीत सदिशों को जोड़ने पर क्या परिणाम मिलता है ? हम दो सदिशों $\mathbf{A}$ और $-\mathbf{A}$ जिन्हें चित्र 3.3(b) में दिखलाया है, पर विचार करते हैं । इनका योग $\mathbf{A}+(-\mathbf{A})$ है। क्योंकि दो सदिशों का परिमाण वही है किन्तु दिशा विपरीत है, इसलिए परिणामी सदिश का परिमाण शून्य होगा और इसे $\mathbf{O}$ से व्यक्त करते हैं।

$$\mathbf{A}-\mathbf{A}=\mathbf{0} \qquad |\mathbf{0}|=0 \tag{3.3}$$

$\mathbf{0}$ को हम शून्य सदिश कहते हैं । क्योंकि शून्य सदिश का परिमाण शून्य होता है, इसलिए इसकी दिशा का निर्धारण नहीं किया जा सकता है । दरअसल जब हम एक सदिश $\mathbf{A}$ को संख्या शून्य से गुणा करते हैं तो भी परिणामस्वरूप हमें एक सदिश ही मिलेगा किन्तु उसका परिमाण शून्य होगा। $\mathbf{O}$ सदिश के मुख्य गुण निम्न हैं:

$$ \begin{align*} & \mathbf{A}+\mathbf{0}=\mathbf{A} \\ & \lambda \mathbf{0}=\mathbf{0} \\ & 0 \mathbf{A}=\mathbf{0} \tag{3.4} \end{align*} $$

शून्य सदिश का भौतिक अर्थ क्या है ? जैसाकि चित्र 3.1(a) में दिखाया गया है हम किसी समतल में स्थिति एवं विस्थापन सदिशों पर विचार करते हैं । मान लीजिए कि किसी क्षण $t$ पर कोई वस्तु $\mathrm{P}$ पर है । वह $\mathrm{P}^{\prime}$ तक जाकर पुन: $\mathrm{P}$ पर वापस आ जाती है । इस स्थिति में वस्तु का विस्थापन क्या होगा ? चूंकि प्रारंभिक एवं अंतिम स्थितियां संपाती हो जाती हैं, इसलिए विस्थापन “शून्य सदिश” होगा ।

सदिशों का व्यवकलन सदिशों के योग के रूप में भी परिभाषित किया जा सकता है । दो सदिशों $\mathbf{A}$ व $\mathbf{B}$ के अंतर को हम दो सदिशों $\mathbf{A}$ व -B के योग के रूप में निम्न प्रकार से व्यक्त करते हैं :

$$ \begin{equation*} \mathbf{A}-\mathbf{B}=\mathbf{A}+(-\mathbf{B}) \tag{3.5} \end{equation*} $$

इसे चित्र 3.5 में दर्शाया गया है । सदिश $-\mathbf{B}$ को सदिश $\mathbf{A}$ में जोड़कर $\mathbf{R} _{2}=(\mathbf{A}-\mathbf{B})$ प्राप्त होता है । तुलना के लिए इसी चित्र में सदिश $\mathbf{R} _{1}=\mathbf{A}+\mathbf{B}$ को भी दिखाया गया है । समान्तर चतुर्भुज विधि को प्रयुक्त करके भी हम दो सदिशों का योग ज्ञात कर सकते हैं । मान लीजिए हमारे पास दो सदिश $\mathbf{A}$ व $\mathbf{B}$ हैं। इन सदिशों को जोड़ने के लिए उनकी पुच्छ को एक उभयनिष्ठ मूल बिंदु $\mathrm{O}$ पर लाते हैं जैसा चित्र 3.6(a) में दिखाया गया है। फिर हम $\mathbf{A}$ के शीर्ष से $\mathbf{B}$ के समांतर एक रेखा खींचते हैं और $\mathbf{B}$ के शीर्ष से $\mathbf{A}$ के समांतर एक दूसरी रेखा खींचकर समांतर चतुर्भुज OQSP पूरा करते हैं । जिस बिंदु पर यह दोनों रेखाएं एक दूसरे को काटती हैं, उसे मूल बिंदु $O$ से जोड़ देते हैं। परिणामी सदिश $\mathbf{R}$ की दिशा समान्तर चतुर्भुज के मूल बिंदु $O$ से कटान बिंदु $\mathrm{S}$ की ओर खींचे गए विकर्ण $\mathrm{OS}$ के अनुदिश होगी [चित्र 3.6 (b)]। चित्र 3.6 (c) में सदिशों $\mathbf{A}$ व $\mathbf{B}$ का परिणामी निकालने के लिए त्रिभुज नियम का उपयोग दिखाया गया है । दोनों चित्रों से स्पष्ट है कि दोनों विधियों से एक ही परिणाम निकलता है । इस प्रकार दोनों विधियाँ समतुल्य हैं।

चित्र 3.5 (a) दो सदिश $\mathbf{A}$ व $\mathbf{B},-\mathbf{B}$ को भी दिखाया गया है । (b) सदिश $\mathbf{A}$ से सदिश $\mathbf{B}$ का घटाना-परिणाम $\mathbf{R} _{2}$ है । तुलना के लिए सदिशों $\mathbf{A}$ व $\mathbf{B}$ का योग $\mathbf{R} _{1}$ भी दिखलाया गया है ।

चित्र 3.6 (a) एक ही उभयनिष्ठ बिंदु वाले दो सदिश $\mathbf{A}$ व $\mathbf{B}$ पर, (b) समान्तर चतुर्भुज विधि द्वारा $\mathbf{A}+\mathbf{B}$ योग प्राप्त करना, (c) दो सदिशों को जोड़ने की समान्तर चतुर्भुज विधि त्रिभुज विधि के समतुल्य है ।

उदाहरण 3.1 किसी दिन वर्षा $35 \mathrm{~m} \mathrm{~s}^{-1}$ की चाल से ऊर्ध्वाधर नीचे की ओर हो रही है । कुछ देर बाद हवा $12 \mathrm{~m} \mathrm{~s}^{-1}$ की चाल से पूर्व से पश्चिम दिशा की ओर चलने लगती है। बस स्टाप पर खड़े किसी लड़के को अपना छाता किस दिशा में करना चाहिए ?

हल : वर्षा एवं हवा के वेगों को सदिशों $\mathbf{v} _{\mathrm{r}}$ तथा $\mathbf{v} _{\mathrm{w}}$ से चित्र 3.7 में दर्शाया गया है। इनकी दिशाएं प्रश्न के अनुसार प्रदर्शित की गई हैं । सदिशों के योग के नियम के अनुसार $\mathbf{v} _{\mathbf{r}}$ तथा $\mathbf{v} _{\mathbf{w}}$ का परिणामी $\mathbf{R}$ चित्र में खींचा गया है । $\mathbf{R}$ का परिमाण होगा-

$$ R=\sqrt{v _{r}^{2}+v _{w}^{2}}=\sqrt{35^{2}+12^{2}} \mathrm{~m} \mathrm{~s}^{-1}=37 \mathrm{~m} \mathrm{~s}^{-1} $$

ऊर्ध्वाधर से $R$ की दिशा $\theta$ होगी-

$$ \tan \theta=\frac{v _{w}}{v _{r}}=\frac{12}{35}=0.343 $$

या $\theta=\tan ^{-1}(0.343)=19$

अतएव लड़के को अपना छाता ऊर्ध्वाधर तल में ऊर्ध्वाधर से 19 का कोण बनाते हुए पूर्व दिशा की ओर रखना चाहिए।

3.5 सदिशों का वियोजन

मान लीजिए कि $\mathbf{a}$ व $\mathbf{b}$ किसी समतल में भिन्न दिशाओं वाले दो शून्येतर (शून्य नहीं) सदिश हैं तथा $\mathbf{A}$ इसी समतल में कोई अन्य सदिश है । (चित्र 3.8) तब $\mathbf{A}$ को दो सदिशों के योग के रूप में वियोजित किया जा सकता है । एक सदिश $\mathbf{a}$ के किसी वास्तविक संख्या के गुणनफल के रूप में और इसी प्रकार दूसरा सदिश $\mathbf{b}$ के गुणनफल के रूप में है । ऐसा करने के लिए पहले $A$ खींचिए जिसका पुच्छ $O$ तथा शीर्ष $P$ है । फिर $O$ से $a$ के समांतर एक सरल रेखा खींचिए तथा $P$ से एक सरल रेखा $\mathbf{b}$ के समांतर खींचिए । मान लीजिए वे एक दूसरे को $\mathrm{Q}$ पर काटती हैं । तब,

$$ \begin{equation*} \mathbf{A}=\mathbf{O P}=\mathbf{O} \mathbf{Q}+\mathbf{Q P} \tag{3.6} \end{equation*} $$

परंतु क्योंकि $\mathbf{O Q}, \mathbf{a}$ के समांतर है तथा $\mathbf{Q P}, \mathbf{b}$ के समांतर है इसलिए

$$ \begin{equation*} \mathbf{O} \mathbf{Q}=\lambda \mathbf{a} \text { तथा } \mathbf{Q P}=\mu \mathbf{b} \tag{3.7} \end{equation*} $$

जहां $\lambda$ तथा $\mu$ कोई वास्तविक संख्याएँ हैं । दो अरैखिक सदिश $\mathbf{a}$ व $\mathbf{b}$, (b) सदिश $\mathbf{A}$ का $\mathbf{a}$ व $\mathbf{b}$ के पदों में वियोजन ।

अत:

$$\mathbf{A}=\lambda \mathbf{a}+\mu \mathbf{b}\tag{3.8}$$

चित्र 3.8 (a) दो अरैखिक सदिश a व b,(b) सदिश A का a व b के पदों में वियोजन ।

हम कह सकते हैं कि $\mathbf{A}$ को $\mathbf{a}$ व $\mathbf{b}$ के अनुदिश दो सदिश-घटकों क्रमशः $\lambda \mathbf{a}$ तथा $\mu \mathbf{b}$ में वियोजित कर दिया गया है । इस विधि का उपयोग करके हम किसी सदिश को उसी समतल के दो सदिश-घटकों में वियोजित कर सकते हैं । एकांक परिमाण के सदिशों की सहायता से समकोणिक निर्देशांक निकाय के अनुदिश किसी सदिश का वियोजन सुविधाजनक होता है । ऐसे सदिशों को एकांक सदिश कहते हैं जिस पर अब हम परिचर्चा करेंगे । एकांक सदिश : एकांक सदिश वह सदिश होता है जिसका परिमाण एक हो तथा जो किसी विशेष दिशा के अनुदिश हो। न तो इसकी कोई विमा होती है और न ही कोई मात्रक । मात्र दिशा व्यक्त करने के लिए इसका उपयोग होता है । चित्र $3.9 \mathrm{a}$ में प्रदर्शित एक ‘आयतीय निर्देशांक निकाय’ की $x, y$ तथा $z$ अक्षों के अनुदिश एकांक सदिशों को हम क्रमशः $\hat{\mathbf{i}}, \hat{\mathbf{j}}$ तथा $\hat{\mathbf{k}}$ द्वारा व्यक्त करते हैं । क्योंकि ये सभी एकांक सदिश हैं, इसलिए

$$ \begin{equation*} |\hat{\mathbf{i}}|=\hat{\mathbf{j}}|=\hat{\mathbf{k}}|=1 \tag{3.9} \end{equation*} $$

ये एकांक सदिश एक दूसरे के लंबवत् हैं । दूसरे सदिशों से इनकी अलग पहचान के लिए हमने इस पुस्तक में मोटे टाइप $\mathbf{i}, \mathbf{j}, \mathbf{k}$ के ऊपर एक कैप (^) लगा दिया है । क्योंकि इस अध्याय में हम केवल द्विविमीय गति का ही अध्ययन कर रहे हैं अतः हमें केवल दो एकांक सदिशों की आवश्यकता होगी। यदि किसी एकांक सदिश $\hat{\mathbf{n}}$ को एक अदिश $\lambda$ से गुणा करें तो परिणामी एक सदिश $\lambda \hat{\mathbf{n}}$ होगा । सामान्यतया किसी सदिश $\mathbf{A}$ को निम्न प्रकार से व्यक्त कर सकते हैं :

$$ \begin{equation*} \mathbf{A}=|\mathbf{A}| \hat{\mathbf{n}} \tag{3.10} \end{equation*} $$

यहाँ $\mathbf{A}$ के अनुदिश $\hat{\mathbf{n}}$ एकांक सदिश है । हम किसी सदिश $\mathbf{A}$ को एकांक सदिशों $\hat{\mathbf{i}}$ तथा $\hat{\mathbf{j}}$ के पदों में वियोजित कर सकते हैं । मान लीजिए कि चित्र (3.9b) के अनुसार सदिश $\mathbf{A}$ समतल $x-y$ में स्थित है । चित्र $3.9(\mathrm{~b})$ के अनुसार $\mathbf{A}$ के शीर्ष से हम निर्देशांक अक्षों पर लंब खींचते हैं। इससे हमें दो सदिश $\mathbf{A} _{1}$ व $\mathbf{A} _{2}$ इस प्रकार प्राप्त हैं कि $A _{1}+A _{2}=A$ । क्योंकि $A _{1}$ एकांक सदिश $\hat{i}$ के समान्तर है तथा $\mathbf{A} _{2}$ एकांक सदिश $\hat{\mathbf{j}}$ के समान्तर है, अतः

चित्र 3.9 (a) एकांक सदिश $\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}$ अक्षों $x, y, z$ के अनुदिश है, (b) किसी सदिश $\mathbf{A}$ को $x$ एवं $y$ अक्षों के अनुदिश घटकों $\boldsymbol{A} _{1}$ तथा $\boldsymbol{A} _{2}$ में वियोजित किया है, (c) $\boldsymbol{A} _{1}$ तथा $\boldsymbol{A} _{2}$ को $\hat{\mathbf{i}}$ तथा $\hat{\mathbf{j}}$ के पदों में व्यक्त किया है ।

$$ \begin{equation*} \mathbf{A} _{1}=A _{x} \hat{\mathbf{i}}, \mathbf{A} _{2}=A _{y} \hat{\mathbf{j}} \tag{3.11} \end{equation*} $$

यहाँ $A _{x}$ तथा $A _{y}$ वास्तविक संख्याएँ हैं ।

इस प्रकार $\quad \mathbf{A}=A_x \dot{\hat{\mathbf{i}}}+A_y \hat{\mathbf{j}}\quad \quad \quad (3.12)$

इसे चित्र $(3.9 \mathrm{c})$ में दर्शाया गया है । राशियों $A _{x}$ व $A _{y}$ को हम सदिश $\mathbf{A}$ के $x$ - व $y$ - घटक कहते हैं । यहाँ यह बात ध्यान देने योग्य है कि $A _{x}$ सदिश नहीं है, वरन् $A _{x} \hat{\mathbf{i}}$ एक सदिश है । इसी प्रकार $A _{y} \hat{\mathbf{j}}$ एक सदिश है । त्रिकोणमिति का उपयोग करके $A _{x}$ व $A _{y}$ को $\mathbf{A}$ के परिमाण तथा उसके द्वारा $x$-अक्ष के साथ बनने वाले कोण $\theta$ के पदों में व्यक्त कर सकते हैं :

$$ \begin{align*} & A _{x}=A \cos \theta \\ & A _{y}=A \sin \theta \tag{3.13} \end{align*} $$

समीकरण (3.13) से स्पष्ट है कि किसी सदिश का घटक कोण $\theta$ पर निर्भर करता है तथा वह धनात्मक, ॠणात्मक या शून्य हो सकता है ।

किसी समतल में एक सदिश $\mathbf{A}$ को व्यक्त करने के लिए अब हमारे पास दो विधियाँ हैं :

(i) उसके परिमाण $A$ तथा उसके द्वारा $x$-अक्ष के साथ बनाए गए कोण $\theta$ द्वारा, अथवा

(ii) उसके घटकों $A _{x}$ तथा $A _{y}$ द्वारा ।

यदि $A$ तथा $\theta$ हमें ज्ञात हैं तो $A _{x}$ और $A _{y}$ का मान समीकरण (3.13) से ज्ञात किया जा सकता है । यदि $A _{x}$ एवं $A _{y}$ ज्ञात हों तो $A$ तथा $\theta$ का मान निम्न प्रकार से ज्ञात किया जा सकता है :

$$ \begin{equation*} A _{x}^{2}+A _{y}^{2}=A^{2} \cos ^{2} \theta+A^{2} \sin ^{2} \theta=A^{2} \tag{3.14} \end{equation*} $$

अथवा $\quad \quad \quad A=\sqrt{A_x^2+A_y^2} \quad \quad \quad (3.14)$

एवं $\quad \quad \quad\tan \theta=\frac{A _{y}}{A _{x}}, \theta=\tan ^{-1} \frac{A _{y}}{A _{x}} \quad \quad \quad(3.15)$

अभी तक इस विधि में हमने एक $(x-y)$ समतल में किसी सदिश को उसके घटकों में वियोजित किया है किन्तु इसी विधि द्वारा किसी सदिश $\mathbf{A}$ को तीन विमाओं में $x, y$ तथा $z$ अक्षों के अनुदिश तीन घटकों में वियोजित किया जा सकता है । यदि $\mathbf{A}$ व $x$-, $y$-, व $z$ - अक्षों के मध्य कोण क्रमशः $\alpha, \beta$ तथा $\gamma$ हो* [चित्र 3.9 (d)] तो

चित्र 3.9(d) सदिश $\boldsymbol{A}$ का $x, y$ एवं $z$ - अक्षों के अनुदिश घटकों में वियोजन ।

$$ \begin{equation*} A _{x}=A \cos \alpha, A _{y}=A \cos \beta, A _{z}=A \cos \gamma \tag{3.16a} \end{equation*} $$

(d) सामान्य रूप से,

$$ \begin{equation*} \mathbf{A}=A _{x} \hat{\mathbf{i}}+A _{y} \hat{\mathbf{j}}+A _{z} \hat{\mathbf{k}} \tag{3.16b} \end{equation*} $$

सदिश $\mathbf{A}$ का परिमाण होगा ।

$$ \begin{equation*} A=\sqrt{A _{x}^{2}+A _{y}^{2}+A _{z}^{2}} \tag{3.16c} \end{equation*} $$

एक स्थिति सदिश $\mathbf{r}$ को निम्नलिखित प्रकार से व्यक्त किया जा सकता है :

$$ \begin{equation*} \mathbf{r}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}} \tag{3.17} \end{equation*} $$

यहां $x, y$ तथा $z$ सदिश $\mathbf{r}$ के अक्षों $x$-, $y$-, $z$ - के अनुदिश घटक हैं ।

3.6 सदिशों का योग : विश्लेषणात्मक विधि

यद्यपि सदिशों को जोड़ने की ग्राफी विधि हमें सदिशों तथा उनके परिणामी सदिश को स्पष्ट रूप से समझने में सहायक होती है, परन्तु कभी-कभी यह विधि जटिल होती है और इसकी शुद्धता भी सीमित होती है । भिन्न-भिन्न सदिशों को उनके संगत घटकों को मिलाकर जोड़ना अधिक आसान होता है। मान लीजिए कि किसी समतल में दो सदिश $\mathbf{A}$ तथा $\mathbf{B}$ हैं जिनके घटक क्रमशः $A _{x}, A _{y}$ तथा $B _{x}, B _{y}$ हैं तो

$$ \mathbf{A}=A _{x} \hat{\mathbf{i}}+A _{y} \hat{\mathbf{j}} $$

$$ \begin{equation*} \mathbf{B}=B _{x} \hat{\mathbf{i}}+B _{y} \hat{\mathbf{j}} \tag{3.18} \end{equation*} $$

मान लीजिए कि $\mathbf{R}$ इनका योग है, तो

$$ \begin{align*} \mathbf{R} & =\mathbf{A}+\mathbf{B} \\ & =\left(A _{x} \hat{\mathbf{i}}+A _{y} \hat{\mathbf{j}}\right)+\left(B _{x} \hat{\mathbf{i}}+B _{y} \hat{\mathbf{j}}\right) \tag{3.19} \end{align*} $$

क्योंकि सदिश क्रमविनिमेय तथा साहचर्य नियमों का पालन करते हैं, इसलिए समीकरण (3.19) में व्यक्त किए गए सदिशों को निम्न प्रकार से पुनः व्यवस्थित कर सकते हैं :

$$ \begin{equation*} \mathbf{R}=\left(A _{x}+B _{x}\right) \hat{\mathbf{i}}+\left(A _{y}+B _{y}\right) \hat{\mathbf{j}} \tag{3.19a} \end{equation*} $$

क्योंकि $\mathbf{R}=R _{x} \hat{\mathbf{i}}+R _{y} \hat{\mathbf{j}}\tag{3.20}$

इसलिए $R _{x}=A _{x}+B _{x}, R _{y}=A _{y}+B _{y} \tag{3.21}$

इस प्रकार परिणामी सदिश $\mathbf{R}$ का प्रत्येक घटक सदिशों $\mathbf{A}$ और $\mathbf{B}$ के संगत घटकों के योग के बराबर होता है ।

तीन विमाओं के लिए सदिशों $\mathbf{A}$ और $\mathbf{B}$ को हम निम्न प्रकार से व्यक्त करते हैं :

$ \begin{aligned} & \mathbf{A}=A_x \hat{\mathbf{i}}+A_y \hat{\mathbf{j}}+A_z \hat{\mathbf{k}} \\ & \mathbf{B}=B_x \hat{\mathbf{i}}+B_y \hat{\mathbf{j}}+B_z \hat{\mathbf{k}} \\ & \mathbf{R}=\mathbf{A}+\mathbf{B}=R_x \hat{\mathbf{i}}+R_y \hat{\mathbf{j}}+R_z \hat{\mathbf{k}} \end{aligned} $

जहाँ घटकों $R _{x}, R _{y}$ तथा $R _{z}$ के मान निम्न प्रकार से हैं: $$ \begin{align*} & R _{x}=A _{x}+B _{x} \\ & R _{y}=A _{y}+B _{y} \\ & R _{z}=A _{z}+B _{z} \tag{3.22} \end{align*} $$

इस विधि को अनेक सदिशों को जोड़ने व घटाने के लिए उपयोग में ला सकते हैं । उदाहरणार्थ, यदि $\mathbf{a}, \mathbf{b}$ तथा $\mathbf{c}$ तीनों सदिश निम्न प्रकार से दिए गए हों :

$$ \begin{align*} & \mathbf{a}=a _{x} \hat{\mathbf{i}}+a _{y} \hat{\mathbf{j}}+a _{z} \hat{\mathbf{k}} \\ & \mathbf{b}=b _{x} \hat{\mathbf{i}}+b _{y} \hat{\mathbf{j}}+b _{z} \hat{\mathbf{k}} \\ & \mathbf{c}=c _{x} \hat{\mathbf{i}}+c _{y} \hat{\mathbf{j}}+c _{z} \hat{\mathbf{k}} \tag{3.23a} \end{align*} $$

तो सदिश $\mathbf{T}=\mathbf{a}+\mathbf{b}-\mathbf{c}$ के घटक निम्नलिखित होंगे:

$$ \begin{align*} & T _{x}=a _{x}+b _{x}-c _{x} \\ & T _{y}=a _{y}+b _{y}-c _{y} \\ & T _{z}=a _{z}+b _{z}-c _{z} \tag{3.23b} \end{align*} $$

उदाहरण 3.2 चित्र 3.10 में दिखाए गए दो सदिशों $\mathbf{A}$ तथा B के बीच का कोण $\theta$ है । इनके परिणामी सदिश का परिमाण तथा दिशा उनके परिमाणों तथा $\theta$ के पद में निकालिए।[^1]

हल चित्र 3.10 के अनुसार मान लीजिए कि OP तथा $\mathbf{O G}$ दो सदिशों $\mathbf{A}$ तथा $\mathbf{B}$ को व्यक्त करते हैं, जिनके बीच का कोण $\theta$ है । तब सदिश योग के समान्तर चर्तुभुज नियम द्वारा हमें परिणामी सदिश $\mathbf{R}$ प्राप्त होगा जिसे चित्र में OS द्वारा दिखाया गया है । इस प्रकार

$$ \mathbf{R}=\mathbf{A}+\mathbf{B} $$

चित्र में $\mathrm{SN}, \mathrm{OP}$ के लंबवत् है तथा $\mathrm{PM}, \mathrm{OS}$ के लंबवत् है ।

$ \begin{aligned} &O S^2=O N^2+S N^2 \\ \text{but}\quad & O N=O P+P N=A+B \cos \theta \\ & S N=B \sin \theta \\ & O S^2=(A+B \cos \theta)^2+(B \sin \theta)^2 \end{aligned} $

अथवा $R^{2}=A^{2}+B^{2}+2 A B \cos \theta$

$$ \begin{equation*} R=\sqrt{A^{2}+B^{2}+2 A B \cos \theta} \tag{3.24a} \end{equation*} $$

त्रिभुज $\mathrm{OSN}$ में, $\quad S N=O S \sin \alpha=R \sin \alpha$ एवं त्रिभुज $\mathrm{PSN}$ में, $\mathrm{SN}=P S \sin \theta=B \sin \theta$ अतएव $R \sin \alpha=B \sin \theta$

अथवा $\frac{\mathrm{R}}{\sin \theta}=\frac{\mathrm{B}}{\sin \alpha}$

इसी प्रकार,

$P M=A \sin \alpha=B \sin \beta$

अथवा $\frac{A}{\sin \beta}=\frac{B}{\sin \alpha}$

समीकरणों (3.24b) तथा $(3.24 \mathrm{c})$ से हमें प्राप्त होता है-

$$ \begin{equation*} \frac{R}{\sin \theta}=\frac{A}{\sin \beta}=\frac{\mathrm{B}}{\sin \alpha} \tag{3.24d} \end{equation*} $$

समीकरण (3.24d) के द्वारा हम निम्नांकित सूत्र प्राप्त करते हैं-

$$ \begin{equation*} \sin \alpha=\frac{B}{R} \sin \theta \tag{3.24e} \end{equation*} $$

यहाँ $R$ का मान समीकरण (3.24a) में दिया गया है ।

या, $\tan \alpha=\frac{S N}{O P+P N}=\frac{B \sin \theta}{A+B \cos \theta}\tag{3.24f}$

समीकरण (3.24a) से परिणामी $\mathbf{R}$ का परिमाण तथा समीकरण $(3.24 \mathrm{e})$ से इसकी दिशा मालूम की जा सकती है । समीकरण (3.24a) को कोज्या-नियम तथा समीकरण (3.24d) को ज्या-नियम कहते हैं ।

उदाहरण 3.3 एक मोटरबोट उत्तर दिशा की ओर $25 \mathrm{~km} / \mathrm{h}$ के वेग से गतिमान है । इस क्षेत्र में जल-धारा का वेग $10 \mathrm{~km} / \mathrm{h}$ है । जल-धारा की दिशा दक्षिण से पूर्व की ओर $60^{\circ}$ पर है । मोटरबोट का परिणामी वेग निकालिए।

हल चित्र 3.11 में सदिश $v _{b}$ मोटरबोट के वेग को तथा $v _{c}$ जल धारा के वेग को व्यक्त करते हैं। प्रश्न के अनुसार चित्र में इनकी दिशायें दर्शाई गई हैं। सदिश योग के समांतर चतुर्भुज नियम के अनुसार प्राप्त परिणामी $\mathbf{R}$ की दिशा चित्र में दर्शाई गई है ।

(चित्र 3.11) कोज्या-नियम का उपयोग करके हम $\mathbf{R}$ का परिमाण निकाल सकते हैं ।

$$ \begin{aligned} \mathrm{R} & =\sqrt{v _{\mathrm{b}}^{2}+v _{\mathrm{c}}^{2}+2 v _{\mathrm{b}} v _{\mathrm{c}} \cos 120^{\circ}} \\ & =\sqrt{25^{2}+10^{2}+2 \times 25 \times 10(-1 / 2)} \cong 22 \mathrm{~km} / \mathrm{h} \end{aligned} $$

$\mathbf{R}$ की दिशा ज्ञात करने के लिए हम ‘ज्या-नियम’ का उपयोग करते हैं-

$$ \begin{aligned} & \frac{R}{\sin \theta}=\frac{v _{c}}{\sin \varphi} \text { या, } \sin \varphi=\frac{v _{c}}{R} \sin \theta \\ & =\frac{10 \times \sin 120^{\circ}}{21.8}=\frac{10 \sqrt{3}}{2 \times 21.8} \cong 0.397 \\ & \varphi \cong 23.4^{\circ} \end{aligned} $$

3.7 किसी समतल में गति

इस खण्ड में हम सदिशों का उपयोग कर दो या तीन विमाओं में गति का वर्णन करेंगे ।

3.7.1 स्थिति सदिश तथा विस्थापन

किसी समतल में स्थित कण P का $x-y$ निर्देशतंत्र के मूल बिंदु के सापेक्ष स्थिति सदिश $\mathbf{r}$ [चित्र (3.12)] को निम्नलिखित समीकरण से व्यक्त करते हैं :

$$ \mathbf{r}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}} $$

यहाँ $x$ तथा $y$ अक्षों $x$-तथा $y$ - के अनुदिश $\mathbf{r}$ के घटक हैं । इन्हें हम कण के निर्देशांक भी कह सकते हैं ।

चित्र 3.12 (a) स्थिति सदिश $\mathbf{r}$, (b) विस्थापन $\Delta \mathbf{r}$ तथा कण का औसत वेग $\overline{\mathbf{v}}$

मान लीजिए कि चित्र (3.12b) के अनुसार कोई कण मोटी रेखा से व्यक्त वक्र के अनुदिश चलता है । किसी क्षण $t$ पर इसकी स्थिति $\mathrm{P}$ है तथा दूसरे अन्य क्षण $t^{\prime}$ पर इसकी स्थिति $\mathrm{P}^{\prime}$ है । कण के विस्थापन को हम निम्नलिखित प्रकार से लिखेंगे,

$\Delta \mathbf{r}=\mathbf{r}^{\prime}-\mathbf{r} \quad \quad \quad \quad (3.25)$

इसकी दिशा $\mathrm{P}$ से $\mathrm{P}^{\prime}$ की ओर है ।

समीकरण (3.25) को हम सदिशों के घटक के रूप में निम्नांकित प्रकार से व्यक्त करेंगे,

$ \begin{array}{r} \Delta \mathbf{r}=\left(x^{\prime} \hat{\mathbf{i}}+y^{\prime} \hat{\mathbf{j}}\right)-(x \hat{\mathbf{i}}+y \hat{\mathbf{j}}) \ =\hat{\mathbf{i}} \Delta x+\hat{\mathbf{j}} \Delta y \end{array} $

where $\quad \Delta x=x^{\prime}-x, \Delta y=y^{\prime}-y\quad \quad \quad \quad$ (3.26)

वेग

वस्तु के विस्थापन और संगत समय अंतराल के अनुपात को हम औसत वेग $(\overline{\mathbf{v}})$ कहते हैं, अतः

$$ \begin{equation*} \overline{\mathbf{v}}=\frac{\Delta \mathbf{r}}{\Delta t}=\frac{\Delta x \hat{\mathbf{i}}+\Delta y \hat{\mathbf{j}}}{\Delta t}=\hat{\mathbf{i}} \frac{\Delta x}{\Delta t}+\hat{\mathbf{j}} \frac{\Delta y}{\Delta t} \tag{3.27} \end{equation*} $$

अथवा, $\overline{\mathbf{v}}=\bar{v} _{x} \hat{\mathbf{i}}+\bar{v} _{y} \hat{\mathbf{j}}$

क्योंकि $\overline{\mathbf{v}}=\frac{\Delta \mathbf{r}}{\Delta t}$, इसलिए चित्र (3.12) के अनुसार औसत वेग की दिशा वही होगी, जो $\Delta \mathbf{r}$ की है । गतिमान वस्तु का वेग (तात्क्षणिक वेग) अति सूक्ष्म समयान्तराल ( $\Delta t \rightarrow 0$ की सीमा में) विस्थापन $\Delta \mathbf{r}$ का समय अन्तराल $\Delta t$ से अनुपात है । इसे हम $\mathbf{v}$ से व्यक्त करेंगे, अतः

$$ \begin{equation*} \mathbf{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{r}}{\Delta t}=\frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t} \tag{3.28} \end{equation*} $$

चित्रों 3.13(a) से लेकर 3.13(d) की सहायता से इस सीमान्त प्रक्रम को आसानी से समझा जा सकता है । इन चित्रों में मोटी रेखा उस पथ को दर्शाती है जिस पर कोई वस्तु क्षण $t$ पर बिंदु $\mathrm{P}$ से चलना प्रारम्भ करती है । वस्तु की स्थिति $\Delta t _{1}, \Delta t _{2}, \Delta t _{3}$, समयों के उपरांत क्रमशः $\mathrm{P} _{1}, \mathrm{P} _{2}, \mathrm{P} _{3}$, से व्यक्त होती है । इन समयों में कण का विस्थापन क्रमशः $\Delta \mathbf{r} _{1}, \Delta \mathbf{r} _{2}, \Delta \mathbf{r} _{3}$, है । चित्रों (a), (b) तथा (c) में क्रमशः घटते हुए $\Delta t$ के मानों अर्थात् $\Delta t _{1}$, $\Delta t _{2}, \Delta t _{3},\left(\Delta t _{1}>\Delta t _{2}>\Delta t _{3}\right)$ के लिए कण के औसत वेग $\overline{\mathbf{v}}$ की दिशा को दिखाया गया है । जैसे ही $\Delta t \rightarrow 0$ तो $\Delta r \rightarrow 0$ एवं $\Delta \mathbf{r}$ पथ की स्पर्श रेखा के अनुदिश हो जाता है (चित्र 3.13d)। इस प्रकार पथ के किसी बिंदु पर वेग उस बिंदु पर खींची गई स्पर्श रेखा द्वारा व्यक्त होता है जिसकी दिशा वस्तु की गति के अनुदिश होती है। सुविधा के लिए $\mathbf{v}$ को हम प्राय: घटक के रूप में निम्नलिखित प्रकार से व्यक्त करते हैं :

चित्र 3.13 जैसे ही समय अंतराल $\Delta t$ शून्य की सीमा को स्पर्श कर लेता है, औसत वेग $\overline{\mathbf{v}}$ वस्तु के वेग $\mathbf{v}$ के बराबर हो जाता है / $\mathbf{v}$ की दिशा किसी क्षण पथ पर स्पर्श रेखा के समांतर है।

$$ \begin{align*} \mathbf{v} & =\frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t} \\ & =\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t} \hat{\mathbf{i}}+\frac{\Delta y}{\Delta t} \hat{\mathbf{j}} \tag{3.29} \\ & =\hat{\mathbf{i}} \lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}+\hat{\mathbf{j}} \lim _{\Delta t \rightarrow 0} \frac{\Delta y}{\Delta t} \end{align*} $$

या, $\quad \mathbf{v}=\hat{\mathbf{i}} \frac{\mathrm{d} x}{\mathrm{~d} t}+\hat{\mathbf{j}} \frac{\mathrm{d} y}{\mathrm{~d} t}=v _{x} \hat{\mathbf{i}}+v _{y} \hat{\mathbf{j}}$.

यहाँ $v _{x}=\frac{\mathrm{d} x}{\mathrm{~d} t}, v _{y}=\frac{\mathrm{d} y}{\mathrm{~d} t}\quad \quad \quad \text{(3.30a)}$

अतः यदि समय के फलन के रूप में हमें निर्देशांक $x$ और $y$ ज्ञात हैं तो हम उपरोक्त समीकरणों का उपयोग $v _{x}$ और $v _{y}$ निकालने में कर सकते हैं ।

सदिश $\mathbf{v}$ का परिमाण निम्नलिखित होगा,

$$ \begin{equation*} v=\sqrt{v _{x}^{2}+v _{y}^{2}} \tag{3.30b} \end{equation*} $$

तथा इसकी दिशा कोण $\theta$ द्वारा निम्न प्रकार से व्यक्त होगी :

$$ \begin{equation*} \tan \theta=\frac{v _{y}}{v _{x}}, \quad \theta=\tan ^{-1} \frac{v _{y}}{v _{x}} \tag{3.30c} \end{equation*} $$

चित्र 3.14 में बिन्दु $\mathrm{P}$ पर किसी वेग सदिश $\mathbf{v}$ के लिए $v _{x}$, $v _{y}$ तथा कोण $\theta$ को दर्शाया गया है ।

चित्र 3.14 वेग $\mathbf{v}$ के घटक $v _{x}, v _{y}$ तथा कोण $\theta$ जो $x$-अक्ष से बनाता है । चित्र में $v _{x}=v \cos \theta, v _{y}=v \sin \theta$

त्वरण $x-y \text { समतल में गतिमान वस्तु का औसत त्वरण }(\overline{\mathbf{a}}) \text { उसके वेग }$ में परिवर्तन तथा संगत समय अंतराल $\Delta t$ के अनुपात के बराबर होता है :

$$ \overline{\mathbf{a}}=\frac{\Delta \mathbf{v}}{\Delta \mathrm{t}}=\frac{\Delta\left(v_x \hat{\mathbf{i}}+v_y \hat{\mathbf{j}}\right)}{\Delta t}=\frac{\Delta v_x}{\Delta t} \hat{\mathbf{i}}+\frac{\Delta v_y}{\Delta t} \hat{\mathbf{j}} \quad \quad \quad \text{(3.31a)} $$

अथवा $\quad \quad\overline{\mathbf{a}}=a_x \hat{\mathbf{i}}+a_y \hat{\mathbf{j}}\quad \quad \quad \text{(3.31b)}$.

  • $x$ व $y$ के पदों में $a _{x}$ तथा $a _{y}$ को हम निम्न प्रकार से व्यक्त करते हैं :

$$ a_x=\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)=\frac{\mathrm{d}^2 x}{\mathrm{~d} t^2}, a_y=\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)=\frac{\mathrm{d}^2 y}{\mathrm{~d} t^2} $$

त्वरण ( तात्क्षणिक त्वरण) औसत त्वरण के सीमान्त मान के बराबर होता है जब समय अंतराल शून्य हो जाता है :

$$ \begin{equation*} \mathbf{a}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{v}}{\Delta t} \tag{3.30a} \end{equation*} $$

क्योंकि $\Delta \mathbf{v}=\hat{\mathbf{i}} \Delta v _{\mathrm{x}}+\hat{\mathbf{j}} \Delta v _{y}$, इसलिए

$$ \mathbf{a}=\hat{\mathbf{i}} \lim _{\Delta t \rightarrow 0} \frac{\Delta v _{x}}{\Delta t}+\hat{\mathbf{j}} \lim _{\Delta t \rightarrow 0} \frac{\Delta v _{y}}{\Delta t} $$

अथवा

$$ \begin{equation*} \mathbf{a}=\hat{\mathbf{i}} a _{x}+\hat{\mathbf{j}} a _{y} \tag{3.32b} \end{equation*} $$

जहाँ $a_x=\frac{\mathrm{d} v_x}{\mathrm{~d} t}, a_y=\frac{\mathrm{d} v_y}{\mathrm{~d} t}\quad \quad \quad \text{(3.32c)}$

वेग की भाँति यहाँ भी वस्तु के पथ को प्रदर्शित करने वाले किसी आलेख में त्वरण की परिभाषा के लिए हम ग्राफी विधि से सीमान्त प्रक्रम को समझ सकते हैं । इसे चित्रों (3.15a) से (3.15d) तक में समझाया गया है । किसी क्षण $t$ पर कण की स्थिति बिंदु $\mathrm{P}$ द्वारा दर्शाई गई है । $\Delta t _{1}, \Delta t _{2}, \Delta t _{3},\left(\Delta t _{1}>\Delta t _{2}>\Delta t _{3}\right)$ समय के बाद कण की स्थिति क्रमशः बिंदुओं $\mathrm{P} _{1}, \mathrm{P} _{2}, \mathrm{P} _{3}$ द्वारा व्यक्त कीगई है । चित्रों (3.15) $\mathrm{a}, \mathrm{b}$ और $\mathrm{c}$ में इन सभी बिंदुओं $\mathrm{P}$, $\mathrm{P} _{1}, \mathrm{P} _{2}, \mathrm{P} _{3}$ पर वेग सदिशों को भी दिखाया गया है । प्रत्येक $\Delta t$ के लिए सदिश योग के त्रिभुज नियम का उपयोग करके $\Delta \mathbf{v}$ का मान निकालते हैं । परिभाषा के अनुसार औसत त्वरण की दिशा वही है जो $\Delta \mathbf{v}$ की होती है । हम देखते हैं कि जैसे-जैसे $\Delta t$ का मान घटता जाता है वैसे-वैसे $\Delta \mathrm{v}$ की दिशा भी बदलती जाती है और इसके परिणामस्वरूप त्वरण की भी दिशा बदलती है । अंततः $\Delta t \rightarrow 0$ सीमा में [चित्र 3.15 (d)] औसत त्वरण, तात्क्षणिक त्वरण के बराबर हो जाता है और इसकी दिशा चित्र में दर्शाए अनुसार होती है।

चित्र 3.15 तीन समय अंतरालों (a) $\Delta t _{1}$, (b) $\Delta t _{2}$, (c) $\Delta t _{3},\left(\Delta t _{1}>\Delta t _{2}>\Delta t _{3}\right)$ के लिए औसत त्वरण $\mathbf{\mathbf { a }}$ (d) $\Delta t \rightarrow 0$ सीमा के अंतर्गत औसत त्वरण वस्तु के त्वरण के बराबर होता है ।

ध्यान दें कि एक विमा में वस्तु का वेग एवं त्वरण सदैव एक सरल रेखा में होते हैं ( वे या तो एक ही दिशा में होते हैं अथवा विपरीत दिशा में) । परंतु दो या तीन विमाओं में गति के लिए वेग एवं त्वरण सदिशों के बीच $0^{\circ}$ से $180^{\circ}$ के बीच कोई भी कोण हो सकता है।

उदाहरण 3.4 किसी कण की स्थिति

$\mathbf{r}=3.0 t \hat{\mathbf{i}}+2.0 t^{2} \hat{\mathbf{j}}+5.0 \hat{\mathbf{k}}$ है ।

जहां $t$ सेकंड में व्यक्त किया गया है । अन्य गुणकों के मात्रक इस प्रकार हैं कि $\mathbf{r}$ मीटर में व्यक्त हो जाएँ। (a) कण का $\mathbf{v}(t)$ व $\mathbf{a}(t)$ ज्ञात कीजिए; (b) $t=1.0 \mathrm{~s}$ पर $\mathbf{v}(t)$ का परिमाण व दिशा ज्ञात कीजिए ।

हल

$$ \begin{aligned} \mathbf{v}(t) & =\frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t}=\frac{\mathrm{d}}{\mathrm{d} t}\left(3.0 t \hat{\mathbf{i}}+2.0 t^{2} \hat{\mathbf{j}}+5.0 \hat{\mathbf{k}}\right) \\ & =3.0 \hat{\mathbf{i}}+4.0 t \hat{\mathbf{j}} \\ \mathbf{a}(t) & =\frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t}=4.0 \hat{\mathbf{j}} \\ a & =4.0 \mathrm{~m} \mathrm{~s}^{-2} y \text { - दिशा में } \\ t & =1.0 \mathrm{~s} \text { पर } \mathbf{v}=3.0 \hat{\mathbf{i}}+4.0 \hat{\mathbf{j}} \end{aligned} $$

इसका परिमाण $v=\sqrt{3^{2}+4^{2}}=5.0 \mathrm{~m} \mathrm{~s}^{-1}$ है, तथा इसकी दिशा

$$ \theta=\tan ^{-1} \frac{v _{y}}{v _{x}}=\tan ^{-1} \frac{4}{3} \cong 53^{\circ} $$

3.8 किसी समतल में एकसमान त्वरण से गति

मान लीजिए कि कोई वस्तु एक समतल $x-y$ में एक समान त्वरण $\mathbf{a}$ से गति कर रही है अर्थात् $\mathbf{a}$ का मान नियत है । किसी समय अंतराल में औसत त्वरण इस स्थिर त्वरण के मान $\overline{\mathbf{a}}$ के बराबर होगा $\overline{\mathbf{a}}=\mathbf{a}$ । अब मान लीजिए किसी क्षण $t=0$ पर वस्तु का वेग $\mathbf{v} _{0}$ तथा दूसरे अन्य क्षण $t$ पर उसका वेग $\mathbf{v}$ है । तब परिभाषा के अनुसार

$$ \mathbf{a}=\frac{\mathbf{v}-\mathbf{v} _{\mathbf{0}}}{t-0}=\frac{\mathbf{v}-\mathbf{v} _{\mathbf{0}}}{t} $$

$$ \begin{equation*} \text { अथवा } \quad \mathbf{v}=\mathbf{v} _{\mathbf{0}}+\mathbf{a} t \tag{3.33a} \end{equation*} $$

उपर्युक्त समीकरण को सदिशों के घटक के रूप में निम्नलिखित प्रकार से व्यक्त करते हैं-

$$ \begin{align*} & v _{x}=v _{O x}+a _{x} t \\ & v _{y}=v _{O y}+a _{y} t \tag{3.33b} \end{align*} $$

अब हम देखेंगे कि समय के साथ स्थिति सदिश $\mathbf{r}$ किस प्रकार बदलता है । यहाँ एकविमीय गति के लिए बताई गई विधि का उपयोग करेंगे । मान लीजिए कि $t=0$ तथा $t=t$ क्षणों पर कण के स्थिति के सदिश क्रमशः $\mathbf{r} _{0}$ तथा $\mathbf{r}$ हैं तथा इन क्षणों पर कण के वेग $\mathbf{v} _{0}$ तथा $\mathbf{v}$ हैं । तब समय अंतराल $t-0=t$ में कण का औसत वेग $\left(\mathbf{v} _{\mathbf{o}}+\mathbf{v}\right) / 2$ तथा विस्थापन $\mathbf{r}-\mathbf{r} _{0}$ होगा। क्योंकि विस्थापन औसत तथा समय अंतराल का गुणनफल होता है,

$$ \begin{aligned} \mathbf{r}-\mathbf{r} _{\mathbf{0}} & =\left(\frac{\mathbf{v}+\mathbf{v} _{\mathbf{0}}}{2}\right) t=\left(\frac{\left(\mathbf{v} _{\mathbf{0}}+\mathbf{a} t\right)+\mathbf{v} _{\mathbf{0}}}{2}\right) t \\ & =\mathbf{v} _{\mathbf{0}}+\frac{1}{2} \mathbf{a} t^{2} \end{aligned} $$

अतएव, $$ \begin{equation*} \mathbf{r}=\mathbf{r} _{\mathbf{0}}+\mathbf{v} _{\mathbf{0}} t+\frac{1}{2} \mathbf{a} t^{2} \tag{3.34a} \end{equation*} $$

यह बात आसानी से सत्यापित की जा सकती है कि समीकरण (3.34a)का अवकलन $\frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t}$ समीकरण (3.33a) है तथा साथ ही $t=0$ क्षण पर $\mathbf{r}=\mathbf{r} _{0}$ की शर्त को भी पूरी करता है । समीकरण (3.34a) को घटकों के रूप में निम्नलिखित प्रकार से व्यक्त कर सकते हैं :

$$ \begin{align*} & x=x _{0}+v _{o x} t+\frac{1}{2} a _{x} t^{2} \\ & y=y _{0}+v _{o y} t+\frac{1}{2} a _{y} t^{2} \tag{3.34b} \end{align*} $$

समीकरण (3.34b) की सीधी व्याख्या यह है कि $x$ व $y$ दिशाओं में गतियाँ एक दूसरे पर निर्भर नहीं करती हैं । अर्थात्, किसी समतल (दो विमा) में गति को दो अलग-अलग समकालिक एकविमीय एकसमान त्वरित गतियों के रूप में समझ सकते हैं जो परस्पर लंबवत् दिशाओं के अनुदिश हों। यह महत्वपूर्ण परिणाम है जो दो विमाओं में वस्तु की गति के विश्लेषण में उपयोगी होता है । यहाँ परिणाम त्रिविमीय गति के लिए भी है। बहुत-सी भौतिक स्थितियों में दो लंबवत् दिशाओं का चुनाव सुविधाजनक होता है जैसा कि हम प्रक्षेप्य गति के लिए खण्ड (3.10) में देखेंगे ।

उदाहरण 3.5 $t=0$ क्षण पर कोई कण मूल बिंदु से $5.0 \hat{\mathbf{i}} \mathrm{m} / \mathrm{s}$ के वेग से चलना शुरू करता है । $x-y$ समतल में उस पर एक ऐसा बल लगता है जो उसमें एकसमान त्वरण $(3.0 \hat{\mathbf{i}}+2.0 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}^{2}$ उत्पन्न करता है । (a) जिस क्षण पर कण का $x$ निर्देशांक $84 \mathrm{~m}$ हो उस क्षण उसका $y$ निर्देशांक कितना होगा ? (b) इस क्षण कण की चाल क्या होगी?

हल समीकरण (3.34a) से $\mathbf{r} _{0}=0$ पर प्रश्नानुसार कण की स्थिति निम्नांकित समीकरण से व्यक्त होगी,

$$ \begin{aligned} & \mathbf{r}(t)=\mathbf{v} _{0} t+\frac{1}{2} \mathbf{a} t^{2} \\ & =5.0 \hat{\mathbf{i}} t+\frac{1}{2}(3.0 \hat{\mathbf{i}}+2.0 \hat{\mathbf{j}}) t^{2} \end{aligned} $$

$$ =\left(5.0 t+1.5 t^{2}\right) \hat{\mathbf{i}}+1.0 t^{2} \hat{\mathbf{j}} $$

$ \begin{aligned} \text{अतएव, } \quad & x(t)=5.0 t+1.5 t^2 \\ & y(t)=+1.0 t^2 \end{aligned} $

$ \begin{aligned} \text{जब }& x(t)=84 \mathrm{~m}, t=? \\ & 5.0 t+1.5 t^2=84 \Rightarrow t=6 \mathrm{~s} \end{aligned} $

हल करने पर $t=6.0 \mathrm{~s} \text { पर } y=1.0(6)^{2}=36.0 \mathrm{~m}$

$\mathbf{v}=\frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t}=(5.0+3.0 t) \hat{\mathbf{i}}+2.0 t \hat{\mathbf{j}}$

$ t=6 \mathrm{~s} \text { के लिए, } \quad \mathbf{v}=23.0 \hat{\mathbf{i}}+12.0 \hat{\mathbf{j}}$

अतः कण की चाल, $|\mathbf{v}|=\sqrt{23^{2}+12^{2}} \cong 26 \mathrm{~m} \mathrm{~s}^{-1}$

3.9 प्रक्षेप्य गति

इससे पहले खण्ड में हमने जो विचार विकसित किए हैं, उदाहरणस्वरूप उनका उपयोग हम प्रक्षेप्य की गति के अध्ययन के लिए करेंगे । जब कोई वस्तु उछालने के बाद उड़ान में हो या प्रक्षेपित की गई हो तो उसे प्रक्षेप्य कहते हैं । ऐसा प्रक्षेप्य फुटबॉल, क्रिकेट की बॉल, बेस-बॉल या अन्य कोई भी वस्तु हो सकती है । किसी प्रक्षेप्य की गति को दो अलग-अलग समकालिक गतियों के घटक के परिणाम के रूप में लिया जा सकता है । इनमें से एक घटक बिना किसी त्वरण के क्षैतिज दिशा में होता है तथा दूसरा गुरुत्वीय बल के कारण एकसमान त्वरण से ऊर्ध्वाधर दिशा में होता है । सर्वप्रथम गैलीलियो ने अपने लेख डायलॉग आन दि ग्रेट वर्ल्ड सिस्टम्स (1632) में प्रक्षेप्य गति के क्षैतिज एवं ऊर्ध्वाधर घटकों की स्वतंत्र प्रकृति का उल्लेख किया था ।

इस अध्ययन में हम यह मानेंगे कि प्रक्षेप्य की गति पर वायु का प्रतिरोध नगण्य प्रभाव डालता है । माना कि प्रक्षेप्य को ऐसी दिशा की ओर $\mathbf{v} _{0}$ वेग से फेंका गया है जो $x$-अक्ष से (चित्र 3.16 के अनुसार) $\theta _{0}$ कोण बनाता है ।

फेंकी गई वस्तु को प्रक्षेपित करने के बाद उस पर गुरुत्व के कारण लगने वाले त्वरण की दिशा नीचे की ओर होती है :

$$ \begin{array}{ll} & \mathbf{a}=-g \hat{\mathbf{j}} \\ \text { अर्थात्, } & a_x=0, a_y=-g \quad \quad \quad \quad \text{3.35} \end{array} $$

प्रारंम्भिक वेग $\mathbf{v} _{0}$ के घटक निम्न प्रकार होंगे :

$$ \begin{align*} & v _{o x}=v _{0} \cos \theta _{o} \\ & v _{o y}=v _{0} \sin \theta _{0} \tag{3.36} \end{align*} $$

यदि चित्र 3.16 के अनुसार वस्तु की प्रारंभिक स्थिति निर्देश तंत्र के मूल बिंदु पर हो, तो

$$ x _{0}=0, y _{0}=0 $$

इस प्रकार समीकरण (3.34b) को निम्न प्रकार से लिखेंगे :

$$ \begin{align*} & x=v _{o x} t=\left(v _{0} \cos \theta _{0}\right) t \\ \text{ तथा, }& y=\left(v _{0} \sin \theta _{0}\right) t-\frac{1}{2} g t^{2} \tag{3.37} \end{align*} $$

समीकरण (3.33b) का उपयोग करके किसी समय $t$ के लिए वेग के घटकों को नीचे लिखे गए समीकरणों से व्यक्त करेंगे :

$$ \begin{align*} & v _{x}=v _{o x}=v _{0} \cos \theta _{0} \\ & v _{y}=v _{0} \sin \theta _{0}-g t \tag{3.38} \end{align*} $$

चित्र $3.16 v _{0}$ वेग से $\theta _{0}$ कोण पर प्रक्षेपित किसी वस्तु की गति ।

समीकरण (3.37) से हमें किसी क्षण $t$ पर प्रारंभिक वेग $\mathbf{v} _{0}$ तथा प्रक्षेप्य कोण $\theta _{0}$ के पदों में प्रक्षेप्य के निर्देशांक $x$-और $y$ - प्राप्त हो जाएँगे। इस बात पर ध्यान दीजिए कि $x$ व $y$ दिशाओं के परस्पर लंबवत् होने के चुनाव से प्रक्षेप्य गति के विश्लेषण में पर्याप्त सरलता हो गई है। वेग के दो घटकों में से एक $x$ - घटक गति की पूरी अवधि में स्थिर रहता है जबकि दूसरा $y$ - घटक इस प्रकार परिवर्तित होता है मानो प्रक्षेप्य स्वतंत्रतापूर्वक नीचे गिर रहा हो । चित्र 3.17 में विभिन्न क्षणों के लिए इसे आलेखी विधि से दर्शाया गया है । ध्यान दीजिए कि अधिकतम ऊँचाई वाले बिंदु के लिए $v _{y}=0$ तथा

$\theta=\tan ^{-1} \frac{v _{y}}{v _{x}}=0$

प्रक्षेपक के पथ का समीकरण

प्रक्षेप्य द्वारा चले गए पथ की आकृति क्या होती है ? इसके लिए हमें पथ का समीकरण निकालना होगा। समीकरण (3.37) में दिए गए $x$ व $y$ व्यंजकों से $t$ को विलुप्त करने से निम्नलिखित समीकरण प्राप्त होता है :

$$ \begin{equation*} y=\left(\tan \theta _{\mathrm{o}}\right) x-\frac{g}{2\left(v _{\mathrm{o}} \cos \theta _{\mathrm{o}}\right)^{2}} x^{2} \tag{3.39} \end{equation*} $$

यह प्रक्षेप्य के पथ का समीकरण है और इसे चित्र 3.17 में दिखाया गया है । क्योंकि $g, \theta _{0}$ तथा $v _{0}$ अचर हैं, समीकरण (3.39) को निम्न प्रकार से व्यक्त कर सकते हैं : $$ y=a x+b x^{2} $$

इसमें $a$ तथा $b$ नियतांक हैं । यह एक परवलय का समीकरण है, अर्थात् प्रक्षेप्य का पथ परवलयिक होता है ।

चित्र 3.17 प्रक्षेप्य का पथ परवलयाकार होता है ।

अधिकतम ऊँचाई का समय

प्रक्षेप्य अधिकतम ऊँचाई तक पहुँचने के लिए कितना समय लेता है? मान लीजिए कि यह समय $t _{m}$ है । क्योंकि इस बिंदु पर $v _{\mathrm{y}}$ $=0$ इसलिए समीकरण (3.38) से हम $t _{m}$ का मान निकाल सकते हैं :

$$ \begin{align*} & v _{\mathrm{y}}=v _{0} \sin \theta _{0}-g t _{\mathrm{m}}=0 \\ \text{अथवा, }\qquad & t _{m}=v _{o} \sin \theta _{o} / g \tag{3.40a} \end{align*} $$

प्रक्षेप्य की उड़ान की अवधि में लगा कुल समय $T _{f}$ हम समीकरण (3.38) में $y=0$ रखकर निकाल लेते हैं । इसलिए,

$$ \begin{equation*} T _{f}=2\left(v _{o} \sin \theta _{o}\right) / g \tag{3.40b} \end{equation*} $$

$T _{f}$ को प्रक्षेप्य का उड्डयन काल कहते हैं । यह ध्यान देने की बात है कि $T _{f}=2 t _{\mathrm{m}}$ । पथ की सममिति से हम ऐसे ही परिणाम की आशा करते हैं ।

प्रक्षेप्य का क्षैतिज परास

प्रारंभिक स्थिति $(x=y=0)$ से चलकर उस स्थिति तक जब $y=0$ हो प्रक्षेप्य द्वारा चली गई दूरी को क्षैतिज परास, $R$, कहते हैं। क्षैतिज परास उड्डयन काल $T _{f}$ में चली गई दूरी है । इसलिए, परास $R$ होगा :

$$ \begin{aligned} R & =\left(v _{0} \cos \theta _{0}\right)(T) \\ & =\left(v _{o} \cos \theta _{0}\right)\left(2 v _{o} \sin \theta _{0}\right) / g \end{aligned} $$ $$ \begin{equation*} \text { अथवा } R=\frac{v _{O}^{2} \sin 2 \theta _{0}}{g} \tag{3.42} \end{equation*} $$

समीकरण (3.42) से स्पष्ट है कि किसी प्रक्षेप्य के वेग $v _{0}$ लिए $R$ अधिकतम तब होगा जब $\theta _{0}=45^{\circ}$ क्योंकि $\sin 90^{\circ}=1$ (जो $\sin 2 \theta _{0}$ का अधिकतम मान है) । इस प्रकार अधिकतम क्षैतिज परास होगा

$$ \begin{equation*} R _{m}=\frac{v _{O}^{2}}{g} \tag{3.42a} \end{equation*} $$

उदाहरण 3.6 : गैलीलियो ने अपनी पुस्तक “टू न्यू साइंसेज़” में कहा है कि “उन उन्नयनों के लिए जिनके मान $45^{\circ}$ से बराबर मात्रा द्वारा अधिक या कम हैं, क्षैतिज परास बराबर होते हैं”। इस कथन को सिद्ध कीजिए ।

हल यदि कोई प्रक्षेप्य $\theta _{0}$ कोण पर प्रांरभिक वेग $v _{0}$ से फेंका जाए, तो उसका परास

$$ R=\frac{v _{0}^{2} \sin 2 \theta _{0}}{g} \text { होगा। } $$

अब कोणों $\left(45^{\circ}+\alpha\right)$ तथा $\left(45^{\circ}-\alpha\right)$ के लिए $2 \theta _{0}$ का मान क्रमशः $\left(90^{\circ}+2 \alpha\right)$ तथा $\left(90^{\circ}-2 \alpha\right)$ होगा । $\sin \left(90^{\circ}\right.$ $+2 \alpha)$ तथा $\sin \left(90^{\circ}-2 \alpha\right)$ दोनों का मान समान अर्थात् $\cos$ $2 \alpha$ होता है । अतः उन उन्नयनों के लिए जिनके मान $45^{\circ}$ से बराबर मात्रा द्वारा कम या अधिक हैं, क्षैतिज परास बराबर होते हैं ।

उदाहरण 3.7 : एक पैदल यात्री किसी खड़ी चट्टान के कोने पर खड़ा है । चट्टान जमीन से $490 \mathrm{~m}$ ऊंची है । वह एक पत्थर को क्षैतिज दिशा में $15 \mathrm{~m} \mathrm{~s}^{-1}$ की आरंभिक चाल से फेंकता है । वायु के प्रतिरोध को नगण्य मानते हुए यह ज्ञात कीजिए कि पत्थर को जमीन तक पहुँचने में कितना समय लगा तथा जमीन से टकराते समय उसकी चाल कितनी थी? $\left(g=9.8 \mathrm{~m} \mathrm{~s}^{-2}\right)$ ।

हल हम खड़ी चट्टान के कोने को $x$-तथा $y$-अक्ष का मूल बिंदु तथा पत्थर फेंके जाने के समय को $t=0$ मानेंगे । $x$-अक्ष की धनात्मक दिशा आरंभिक वेग के अनुदिश तथा $y$-अक्ष की धनात्मक दिशा ऊर्ध्वाधर ऊपर की ओर चुनते हैं । जैसा कि हम पहले कह चुके हैं कि गति के $x$-व $y$-घटक एक दूसरे पर निर्भर नहीं करते, इसलिए

$$ \begin{aligned} & x(t)=x _{0}+v _{o x} t \\ & y(t)=y _{0}+v _{o y} t+(1 / 2) a _{y} t^{2} \end{aligned} $$

यहाँ $x _{\mathrm{o}}=y _{\mathrm{o}}=0, v _{\mathrm{oy}}=0, a _{y}=-g=-9.8 \mathrm{~m} \mathrm{~s}^{-2}$

$$ v _{\mathrm{ox}}=15 \mathrm{~m} \mathrm{~s}^{-1} $$

पत्थर उस समय जमीन से टकराता है जब $y(t)=-490 \mathrm{~m}$

$$ \therefore -490 \mathrm{~m}=-(1 / 2)(9.8) t^{2} $$

अर्थात् $t=10 \mathrm{~s}$

वेग घटक $v _{x}=v _{o x}$

तथा $v _{y}=v _{o y}-g t$ होंगे ।

अतः, जब पत्थर जमीन से टकराता है, तब

$$ \begin{aligned} & v _{o x}=15 \mathrm{~m} \mathrm{~s}^{-1} \\ & v _{o y}=0-9.8 \times 10=-98 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned} $$

इसलिए पत्थर की चाल

$\sqrt{v _{x}^{2}+v _{y}^{2}}=\sqrt{15^{2}+98^{2}}=99 \mathrm{~m} \mathrm{~s}^{-1}$ होगी ।

उदाहरण 3.8: क्षैतिज से ऊपर की ओर $30^{\circ}$ का कोण बनाते हुए एक क्रिकेट गेंद $28 \mathrm{~m} \mathrm{~s}^{-1}$ की चाल से फेंकी जाती है । (a) अधिकतम ऊँचाई की गणना कीजिए, (b) उसी स्तर पर वापस पहुँचने में लगे समय की गणना कीजिए, तथा (c) फेंकने वाले बिंदु से उस बिंदु की दूरी जहाँ गेंद उसी स्तर पर पहुँची है, की गणना कीजिए।

हल (a) अधिकतम ऊँचाई

$$ \begin{gathered} h _{m}=\frac{\left(v _{0} \sin \theta _{0}\right)^{2}}{2 g}=\frac{\left(28 \sin 30^{\circ}\right)^{2}}{2(9.8)} \mathrm{m} \\ =10.0 \mathrm{~m} \text { होगी । } \end{gathered} $$

(b) उसी धरातल पर वापस आने में लगा समय

$$ \begin{aligned} T _{f} & =\left(2 v _{\mathrm{o}} \sin \theta _{\mathrm{o}}\right) / g=\left(2 \times 28 \times \sin 30^{\circ}\right) / 9.8 \\ & =28 / 9.8 \mathrm{~s}=2.9 \mathrm{~s} \text { होगा । } \end{aligned} $$

(c) फेंकने वाले बिंदु से उस बिंदु की दूरी जहाँ गेंद उसी स्तर पर पहुँचती है:

$R=\frac{\left(\mathrm{v} _{\mathrm{o}}^{2} \sin 2 \theta _{\mathrm{o}}\right)}{g}=\frac{28 \times 28 \times \sin 60^{\circ}}{9.8}=69 \mathrm{~m}$ होगी।

3.10 एकसमान वृत्तीय गति

जब कोई वस्तु एकसमान चाल से एक वृत्ताकार पथ पर चलती है, तो वस्तु की गति को एकसमान वृत्तीय गति कहते हैं । शब्द “एकसमान” उस चाल के संदर्भ में प्रयुक्त हुआ है जो वस्तु की गति की अवधि में एकसमान (नियत) रहती है । माना कि चित्र 3.18 के अनुसार कोई वस्तु एकसमान चाल $v$ से $R$ त्रिज्या वाले वृत्त के अनुदिश गतिमान है । क्योंकि वस्तु के वेग की दिशा में निरन्तर परिवर्तन हो रहा है, अतः उसमें त्वरण उत्पन्न हो रहा है। हमें त्वरण का परिमाण तथा उसकी दिशा ज्ञात करनी है।

चित्र 3.18 किसी वस्तु की एकसमान वृत्तीय गति के लिए वेग तथा त्वरण । चित्र $(a)$ $(c)$ तक $\Delta t$ घटता जाता है (चित्र $c$ में शून्य हो जाता है) । वृत्ताकार थ के प्रत्येक बिंदु पर त्वरण वृत्त के केंद्र की ओर होता है ।

माना $\mathbf{r}$ व $\mathbf{r}^{\prime}$ तथा $\mathbf{v}$ व $\mathbf{v}^{\prime}$ कण की स्थिति तथा गति सदिश हैं जब वह गति के दौरान क्रमशः बिंदुओं $P$ व $P^{\prime}$ पर है (चित्र 3.18a)। परिभाषा के अनुसार, किसी बिंदु पर कण का वेग उस बिंदु पर स्पर्श रेखा के अनुदिश गति की दिशा में होता है । चित्र 3.18(a1) में वेग सदिशों $\mathbf{v}$ व $\mathbf{v}^{\prime}$ को दिखाया गया है। चित्र 3.18(a2) में सदिश योग के त्रिभुज नियम का उपयोग करके $\Delta \mathbf{v}$ निकाल लेते हैं । क्योंकि पथ वृत्तीय है, इसलिए चित्र में, ज्यामिति से स्पष्ट है कि $\mathbf{v}, \mathbf{r}$ के तथा $\mathbf{v}^{\prime}, \mathbf{r}^{\prime}$ के लंबवत् हैं । इसलिए, $\Delta \mathbf{v}, \Delta \mathbf{r}$ के लंबवत् होगा । पुनः क्योंकि औसत त्वरण $\Delta \mathbf{v} \overline{\mathbf{a}}=\frac{\Delta \mathbf{v}}{\Delta t}$ के अनुदिश है, इसलिए $\overline{\mathbf{a}}$ भी $\Delta \mathbf{r}$ के लंबवत् होगा। अब यदि हम $\Delta \mathbf{v}$ को उस रेखा पर रखें जो $\mathbf{r}$ व $\mathbf{r}^{\prime}$ के बीच के कोण को द्विभाजित करती है तो हम देखेंगे कि इसकी दिशा वृत्त के केंद्र की ओर होगी। इन्ही राशियों को चित्र 3.18(b) में छोटे समय अंतराल के लिए दिखाया गया है । $\Delta \mathbf{v}$, अत: $\overline{\mathbf{a}}$ की दिशा पुन: केंद्र की ओर होगी । चित्र (3.18c) में $\Delta t \rightarrow 0$ है, इसलिए औसत त्वरण, तात्क्षणिक त्वरण के बराबर हो जाता है । इसकी दिशा केंद्र की ओर होती है*। इस प्रकार, यह निष्कर्ष निकलता है कि एकसमान वृत्तीय गति के लिए वस्तु के त्वरण की दिशा वृत्त के केंद्र की ओर होती है । अब हम इस त्वरण का परिमाण निकालेंगे। परिभाषा के अनुसार, $\mathbf{a}$ का परिमाण निम्नलिखित सूत्र से व्यक्त होता है,

$$ |\mathbf{a}|=\lim _{\Delta t \rightarrow 0} \frac{|\Delta \mathbf{v}|}{\Delta t} $$

मान लीजिए $\mathbf{r}$ व $\mathbf{r}^{\prime}$ के बीच का कोण $\Delta \theta$ है । क्योंकि वेग सदिश $\mathbf{v}$ व $\mathbf{v}$ ‘सदैव स्थिति सदिशों के लंबवत् होते हैं, इसलिए उनके बीच का कोण भी $\Delta \theta$ होगा । अतएव स्थिति सदिशों द्वारा निर्मित त्रिभुज $(\triangle \mathrm{CPP})$ तथा वेग सदिशों $\mathbf{v}, \mathbf{v}^{\prime}$ व $\Delta \mathbf{v}$ द्वारा निर्मित त्रिभुज ( $\triangle \mathrm{GHI}$ ) समरूप हैं (चित्र 3.18a) । इस प्रकार एक त्रिभुज के आधार की लंबाई व किनारे की भुजा की लंबाई का अनुपात दूसरे त्रिभुज की तदनुरूप लंबाइयों के अनुपात के बराबर होगा, अर्थात्

$$ \begin{aligned} & \frac{|\Delta \mathbf{v}|}{v}=\frac{|\Delta \mathbf{r}|}{R} \\ \text{या,} \quad& |\Delta \mathbf{v}|=v \frac{|\Delta \mathbf{r}|}{R} \end{aligned} $$

इसलिए,

$$ |\mathbf{a}|={ } _{\Delta t \rightarrow 0} \frac{|\Delta \mathbf{v}|}{\Delta t}={ } _{\Delta t \rightarrow 0} \frac{v|\Delta \mathbf{r}|}{\mathrm{R} \Delta t}=\frac{v}{\mathrm{R}} \Delta t \rightarrow 0 \frac{|\Delta \mathbf{r}|}{\Delta t} $$

यदि $\Delta t$ छोटा है, तो $\Delta \theta$ भी छोटा होगा । ऐसी स्थिति में चाप $\mathrm{PP}^{\prime}$ को लगभग $|\Delta \mathbf{r}|$ के बराबर ले सकते हैं ।

अर्थात्, $|\Delta \mathbf{r}| \cong v \Delta t$

$$ \text { या } \frac{|\Delta \mathbf{r}|}{\Delta t} \cong v \text { अथवा } \quad \Delta t \rightarrow 0 \frac{|\Delta \mathbf{r}|}{\Delta t}=v $$

इस प्रकार, अभिकेंद्र त्वरण $a _{\mathrm{c}}$ का मान निम्नलिखित होगा,

$$ \begin{equation*} a _{\mathrm{c}}=\frac{v}{R} \quad v=v^{2} / R \tag{3.43} \end{equation*} $$

इस प्रकार किसी $R$ त्रिज्या वाले वृत्तीय पथ के अनुदिश $v$ चाल से गतिमान वस्तु के त्वरण का परिमाण $v^{2} / \mathrm{R}$ होता है जिसकी दिशा सदैव वृत्त के वेंद्र की ओर होती है । इसी कारण इस प्रकार के त्वरण को अभिवेंंद्र त्वरण कहते हैं (यह पद न्यूटन ने सुझाया था)। अभिकेंद्र त्वरण से संबंधित संपूर्ण विश्लेषणात्मक लेख सर्वप्रथम 1673 में एक डच वैज्ञानिक क्रिस्चियान हाइगेन्स (1629-1695) ने प्रकाशित करवाया था, किन्तु संभवतया न्यूटन को भी कुछ वर्षों पूर्व ही इसका ज्ञान हो चुका था। अभिकेंद्र को अंग्रेजी में सेंट्रीपीटल कहते हैं जो एक ग्रीक शब्द है जिसका अभिप्राय केंद्र-अभिमुख (केंद्र की ओर) है। क्योंकि $v$ तथा $R$ दोनों अचर हैं इसलिए अभिकेंद्र त्वरण का परिमाण भी अचर होता है। परंतु दिशा बदलती रहती है और सदैव केंद्र की ओर होती है। इस प्रकार निष्कर्ष निकलता है कि अभिकेंद्र त्वरण एकसमान सदिश नहीं होता है ।

किसी वस्तु के एकसमान वृत्तीय गति के वेग तथा त्वरण को हम एक दूसरे प्रकार से भी समझ सकते हैं । चित्र 3.18 में दिखाए गए अनुसार $\Delta t\left(=t^{\prime}-t\right)$ समय अंतराल में जब कण $\mathrm{P}$ से $\mathrm{P}^{\prime}$ पर पहुँच जाता है तो रेखा $\mathrm{CP}$ कोण $\Delta \theta$ से घूम जाती है । $\Delta \theta$ को हम कोणीय दूरी कहते हैं । कोणीय वेग $\omega$ (ग्रीक अक्षर ‘ओमेगा’) को हम कोणीय दूरी के समय परिवर्तन की दर के रूप में परिभाषित करते हैं । इस प्रकार,

$$ \begin{equation*} \omega=\frac{\Delta 6}{\Delta t} \tag{3.44} \end{equation*} $$

अब यदि $\Delta t$ समय में कण द्वारा चली दूरी को $\Delta s$ से व्यक्त करें (अर्थात् $\mathrm{PP}^{\prime}=\Delta s$ ) तो,

$$ v=\frac{\Delta s}{\Delta t} $$

किंतु $\Delta \mathrm{s}=R \Delta \theta$, इसलिए $v=R \frac{\Delta \theta}{\Delta t}=R \omega$

अत: $v=\omega R$

अभिकेंद्र त्वरण को हम कोणीय चाल के रूप में भी व्यक्त कर सकते हैं । अर्थात्,

$$ \begin{aligned} & a_c=\frac{v^2}{R}=\frac{\omega^2 R^2}{R}=\omega^2 R \\ & a_c=\omega^2 R & \quad \quad \quad \quad \text{(3.46)} \end{aligned} $$

वृत्त का एक चक्कर लगाने में वस्तु को जो समय लगता है उसे हम आवर्तकाल $T$ कहते हैं । एक सेकंड में वस्तु जितने चक्कर लगाती है, उसे हम वस्तु की आवृत्ति $v$ कहते हैं । परंतु इतने समय में वस्तु द्वारा चली गई दूरी $s=2 \pi R$ होती है, इसलिए

$$ \begin{equation*} v=2 \pi R / T=2 \pi R v \tag{3.47} \end{equation*} $$

इस प्रकार $\omega, v$ तथा $a _{c}$ को हम आवृति $v$ के पद में व्यक्त कर सकते हैं, अर्थात्

$$ \begin{align*} & \omega=2 \pi \nu \\ & v=2 \pi \nu R \\ & a _{c}=4 \pi^{2} \nu^{2} R \tag{3.48} \end{align*} $$

उदाहरण 3.9 : कोई कीड़ा एक वृत्तीय खाँचे में जिसकी त्रिज्या $12 \mathrm{~cm}$ है, फँस गया है । वह खाँचे के अनुदिश स्थिर चाल से चलता है और 100 सेकंड में 7 चक्कर लगा लेता है। (a) कीडे की कोणीय चाल व रैखिक चाल कितनी होगी? $(\mathrm{b})$ क्या त्वरण सदिश एक अचर सदिश है। इसका परिणाम कितना होगा?

हल यह एकसमान वृत्तीय गति का एक उदाहरण है । यहाँ $R=12 \mathrm{~cm}$ है । कोणीय चाल $\omega$ का मान

$$ \omega=2 \pi / T=2 \pi \times 7 / 100=0.44 \mathrm{rad} / \mathrm{s} $$

है तथा रैखिक चाल $v$ का मान

$$ v=\omega R=0.44 \times 12 \mathrm{~cm}=5.3 \mathrm{~cm} \mathrm{~s}^{-1} $$

होगा । वृत्त के हर बिंदु पर वेग $v$ की दिशा उस बिंदु पर स्पर्श रेखा के अनुदिश होगी तथा त्वरण की दिशा वृत्त के केंद्र की ओर होगी। क्योंकि यह दिशा लगातार बदलती रहती है, इसलिए त्वरण एक अचर सदिश नहीं है । परंतु त्वरण का परिमाण अचर है, जिसका मान

$a=\omega^{P} R=\left(0.44 \mathrm{~s}^{-1}\right)^{2}(12 \mathrm{~cm})=2.3 \mathrm{~cm} \mathrm{~s}^{-2}$ होगा।

सारांश

1. अदिश राशियाँ वे राशियाँ हैं जिनमें केवल परिमाण होता है । दूरी, चाल, संहति (द्रव्यमान) तथा ताप अदिश राशियों के कुछ उदाहरण हैं ।

2. सदिश राशियाँ वे राशियाँ हैं जिनमें परिमाण तथा दिशा दोनों होते हैं । विस्थापन, वेग तथा त्वरण आदि इस प्रकार की राशि के कुछ उदाहरण हैं । ये राशियाँ सदिश बीजगणित के विशिष्ट नियमों का पालन करती हैं ।

3. यदि किसी सदिश $\mathbf{A}$ को किसी वास्तविक संख्या $\lambda$ से गुणा करें तो हमें एक दूसरा सदिश $\mathbf{B}$ प्राप्त होता है जिसका परिमाण $\mathbf{A}$ के परिमाण का $\lambda$ गुना होता है । नए सदिश की दिशा या तो $\mathbf{A}$ के अनुदिश होती है या इसके विपरीत । दिशा इस बात पर निर्भर करती है कि $\lambda$ धनात्मक है या ऋणात्मक ।

4. दो सदिशों $\mathbf{A}$ व $\mathbf{B}$ को जोड़ने के लिए या तो शीर्ष व पुच्छ की ग्राफी विधि का या समान्तर चतुर्भुज विधि का उपयोग करते हैं ।

5. सदिश योग क्रम-विनिमेय नियम का पालन करता है-

$\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$

साथ ही यह साहचर्य के नियम का भी पालन करता है अर्थात् $(\mathbf{A}+\mathbf{B})+\mathbf{C}=\mathbf{A}+(\mathbf{B}+\mathbf{C})$

6. शून्य सदिश एक ऐसा सदिश होता है जिसका परिमाण शून्य होता है। क्योंकि परिमाण शून्य होता है इसलिए इसके साथ दिशा बतलाना आवश्यक नहीं है । इसके निम्नलिखित गुण होते हैं : $$ \begin{aligned} & \mathbf{A}+\mathbf{0}=\mathbf{A} \\ & \lambda \mathbf{O}=\mathbf{0} \\ & \mathrm{OA}=\mathbf{0} \end{aligned} $$

7. सदिश $\mathbf{B}$ को $\mathbf{A}$ से घटाने की क्रिया को हम $\mathbf{A}$ व $-\mathbf{B}$ को जोड़ने के रूप में परिभाषित करते हैं-

$$ \mathbf{A}-\mathbf{B}=\mathbf{A}+(-\mathbf{B}) $$

8. किसी सदिश $\mathbf{A}$ को उसी समतल में स्थित दो सदिशों $\mathbf{a}$ तथा $\mathbf{b}$ के अनुदिश दो घटक सदिशों में वियोजित कर सकते हैं:

यहाँ $\lambda$ व $\mu$ वास्तविक संख्याएँ हैं ।

$$ \mathbf{A}=\lambda \mathbf{a}+\mu \mathbf{b} $$

9. किसी सदिश $\mathbf{A}$ से संबंधित एकांक सदिश वह सदिश है जिसका परिमाण एक होता है और जिसकी दिशा सदिश $\mathbf{A}$ के अनुदिश होती है ।

एकांक सदिश $\hat{\mathbf{n}}=\frac{\mathbf{A}}{|\mathbf{A}|}$

एकांक सदिश $\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}$ इकाई परिमाण वाले वे सदिश हैं जिनकी दिशाएँ दक्षिणावर्ती निकाय की अक्षों क्रमशः $x$-, $y$ व $Z^{\text {- }}$ के अनुदिश होती हैं ।

10. दो विमा के लिए सदिश $\mathbf{A}$ को हम निम्न प्रकार से व्यक्त करते हैं-

$\mathbf{A}=A _{x} \hat{\mathbf{i}}+A _{y} \hat{\mathbf{j}}$ यहाँ $A _{x}$ तथा $A _{y}$ क्रमशः $x$-, $y$-अक्षों के अनुदिश $\mathbf{A}$ के घटक हैं । यदि सदिश $\mathbf{A}, x$-अक्ष के साथ $\theta$ कोण बनाता है, तो $A _{x}=A \cos \theta, A _{y}=A \sin \theta$ तथा $$ A=|\mathbf{A}|=\sqrt{A _{x}^{2}+A _{y}^{2}}, \tan \theta=\frac{A _{y}}{A _{x}} $$

11. विश्लेषणात्मक विधि से भी सदिशों को आसानी से जोड़ा जा सकता है । यदि $x-y$ समतल में दो सदिशों $\mathbf{A}$ व $\mathbf{B}$ का योग $\mathbf{R}$ हो, तो $$ \mathbf{R}=R _{\mathrm{x}} \hat{\mathbf{i}}+R _{\mathrm{y}} \hat{\mathbf{j}} \quad \text { जहाँ } R _{x}=A _{x}+B _{x} \text { तथा } R _{y}=A _{y}+B _{y} $$

12. समतल में किसी वस्तु की स्थिति सदिश $\mathbf{r}$ को प्रायः निम्न प्रकार से व्यक्त करते हैं : $$ \mathbf{r}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}} $$ स्थिति सदिशों $\mathbf{r}$ व $\mathbf{r}^{\prime}$ के बीच के विस्थापन को निम्न प्रकार से लिखते हैं : $$ \begin{aligned} & \Delta \mathbf{r}=\mathbf{r}^{\prime}-\mathbf{r} \ & =\left(x^{\prime}-x\right) \hat{\mathbf{i}}+\left(y^{\prime}-y\right) \hat{\mathbf{j}} \ & =\Delta x \hat{\mathbf{i}}+\Delta y \hat{\mathbf{j}} \end{aligned} $$

13. यदि कोई वस्तु समय अंतराल $\Delta t$ में $\Delta \mathbf{r}$ से विस्थापित होती है तो उसका औसत वेग $\overline{\mathbf{v}}=\frac{\Delta \mathbf{r}}{\Delta t}$ होगा । किसी क्षण $t$ पर वस्तु का वेग उसके औसत वेग के सीमान्त मान के बराबर होता है जब $\Delta t$ शून्य के सन्निकट हो जाता है । अर्थात्

$$ \mathbf{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{r}}{\Delta t}=\frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t} $$

इसे एकांक सदिशों के रूप में भी व्यक्त करते हैं :जहाँ

$$ \begin{aligned} & \mathbf{v}=v _{\mathrm{x}} \hat{\mathbf{i}}+v _{\mathrm{y}} \hat{\mathbf{j}}+v _{\mathrm{z}} \hat{\mathbf{k}} \\ & v _{x}=\frac{\mathrm{d} x}{\mathrm{~d} t}, v _{y}=\frac{\mathrm{d} y}{\mathrm{~d} t}, v _{z}=\frac{\mathrm{d} z}{\mathrm{~d} t} \end{aligned} $$

जब किसी निर्देशांक निकाय में कण की स्थिति को दर्शाते हैं, तो $\mathbf{v}$ की दिशा कण के पथ के वक्र की उस बिंदु पर खींची गई स्पर्श रेखा के अनुदिश होती है ।

14. यदि वस्तु का वेग $\Delta t$ समय अंतराल में $\mathbf{v}$ से $\mathbf{v}^{\prime}$ में बदल जाता है, तो उसका औसत त्वरण $\overline{\mathbf{a}}=\frac{\mathbf{v}^{\prime} \cdot \mathbf{v}}{\Delta t}=\frac{\Delta \mathbf{v}}{\Delta t}$ होगा । जब $\Delta t$ का सीमान्त मान शून्य हो जाता है तो किसी क्षण $t$ पर वस्तु का त्वरण होगा ।

$\mathbf{a}=\lim _{\Delta \rightarrow 0} \frac{\Delta \mathbf{v}}{\Delta t}=\frac{d \mathbf{v}}{d t}$

घटक के पदों में इसे निम्न प्रकार से व्यक्त किया जा सकता है :

$$ \mathbf{a}=a _{x} \hat{\mathbf{i}}+a _{y} \hat{\mathbf{j}}+a _{z} \hat{\mathbf{k}} $$

यहाँ,

$$ a _{x}=\frac{d v _{x}}{d t}, a _{y}=\frac{d v _{y}}{d t}, a _{z}=\frac{d v _{z}}{d t} $$

15. यदि एक वस्तु किसी समतल में एकसमान त्वरण $a=|\mathbf{a}|=\sqrt{a _{x}^{2}+a _{y}^{2}}$ से गतिमान है तथा क्षण $t=0$ पर उसका स्थिति सदिश $\mathbf{r} _{\mathbf{o}}$ है, तो किसी अन्य क्षण $t$ पर उसका स्थिति सदिश

$\mathbf{r}=\mathbf{r} _{0}+\mathbf{v} _{0} t+\frac{1}{2} \mathbf{a} t^{2}$

होगा तथा उसका वेग

$\mathbf{v}=\mathbf{v} _{0}+\mathbf{a} t$ होगा ।

यहाँ $\mathbf{v} _{0}, t=0$ क्षण पर वस्तु के वेग को व्यक्त करता है ।

घटक के रूप में

$$ \begin{aligned} & x=x _{o}+v _{o x} t+\frac{1}{2} a _{x} t^{2} \\ & y=y _{o}+v _{o y} t+\frac{1}{2} a _{y} t^{2} \\ & v _{x}=v _{0 x}+a _{x} t \\ & v _{y}=v _{0 y}+a _{y} t \end{aligned} $$

किसी समतल में एकसमान त्वरण की गति को दो अलग-अलग समकालिक एकविमीय व परस्पर लंबवत् गतियों के अध्यारोपण के रूप में मान सकते हैं ।

16. प्रक्षेपित होने के उपरांत जब कोई वस्तु उड़ान में होती है तो उसे प्रक्षेप्य कहते हैं । यदि $x$-अक्ष से $\theta _{0}$ कोण पर वस्तु का प्रारंभिक वेग $v _{0}$ है तो $t$ क्षण के उपरांत प्रक्षेप्य के स्थिति एवं वेग संबंधी समीकरण निम्नवत् होंगे-

$$ \begin{aligned} & x=\left(v _{0} \cos \theta _{0}\right) t \\ & y=\left(v _{0} \sin \theta _{0}\right) t-(1 / 2) g t^{2} \\ & v _{x}=v _{0 x}=v _{0} \cos \theta _{0} \\ & v _{y}=v _{0} \sin \theta _{0}-g t \end{aligned} $$

प्रक्षेप्य का पथ परवलयिक होता है जिसका समीकरण

$$ y=\left(\tan \theta _{0}\right) x-\frac{g x^{2}}{2\left(v _{o} \cos \theta _{o}\right)^{2}} \text { होगा । } $$

प्रक्षेप्य की अधिकतम ऊँचाई $h _{m}=\frac{\left(v _{o} \sin \theta _{o}\right)^{2}}{2 g}$, तथा

इस ऊँचाई तक पहुंचने में लगा समय

$t _{m}=\frac{v _{o} \sin \theta _{o}}{g}$ होगा ।

प्रक्षेप्य द्वारा अपनी प्रारंभिक स्थिति से उस स्थिति तक, जिसके लिए नीचे उतरते समय $y=0$ हो, चली गई क्षैतिज दूरी को प्रक्षेप्य का परास $R$ कहते हैं । अतः प्रक्षेप्य का परास $R=\frac{v _{o}^{2}}{g} \sin 2 \theta _{o}$ होगा ।

17. जब कोई वस्तु एकसमान चाल से एक वृत्तीय मार्ग में चलती है तो इसे एकसमान वृत्तीय गति कहते हैं । यदि वस्तु की चाल $v$ हो तथा इसकी त्रिज्या $R$ हो, तो अभिकेंद्र त्वरण, $a _{\mathrm{c}}=v^{2} / R$ होगा तथा इसकी दिशा सदैव वृत्त के केंद्र की ओर होगी । कोणीय चाल $\omega$ कोणीय दूरी के समान परिवर्तन की दर होता है । रैखिक वेग $v=\omega R$ होगा तथा त्वरण $a _{\mathrm{c}}=\omega^{2} R$ होगा । यदि वस्तु का आवर्तकाल $T$ तथा आवृत्ति $v$ हो, तो $\omega, v$ तथा $a _{\mathrm{c}}$ के मान निम्नवत् होंगे । $\omega=2 \pi \nu, \quad v=2 \pi \nu R, \quad a _{\mathrm{c}}=4 \pi^{2} \nu^{2} R$

भौतिक राशि प्रतीक विमा मात्रक टिप्पणी
स्थिति सदिश $\mathbf{r}$ $[\mathrm{L}]$ $\mathrm{m}$ सदिश । किसी अन्य चिहन से भी इसे व्यक्त कर सकते हैं
विस्थापन $\Delta \mathbf{r}$ [L] $\mathrm{m}$ - do -
वेग [LT $\mathrm{m} \mathrm{s}^{-1}$
(b) तात्क्षणिक $\mathbf{v}$ $=\frac{\mathrm{dr}}{\mathrm{d} t}$, सदिश
(a) औसत $\overline{\mathbf{v}}$ $=\frac{\Delta \mathbf{r}}{\Delta t}$, सदिश
त्वरण $\left[\mathrm{LT}^{-2}\right]$ $\mathrm{m} \mathrm{s}^{-2}$
(a) औसत $\overline{\mathbf{a}}$ $=\frac{\Delta \boldsymbol{v}}{}$, सदिश
(b) तात्क्षणिक a $\nu$ $=\frac{\mathrm{d} \mathbf{v}}{1}$, सदिश
प्रक्षेप्य गति
(a) अधिकतमऊंचाई में लगा समय $t_{\mathrm{m}}$ $[\mathrm{T}]$ $\mathrm{s}$ $=\frac{v_0 \sin \theta_0}{g}$
(b) अधिकतम ऊंचाई $h_{\mathrm{m}}$ [L] $\mathrm{m}$ $=\frac{\left(v_0 \sin \theta_0\right)^2}{2 g}$
(c) क्षैतिज परास $R$ [L] $\mathrm{m}$ $=\frac{v_0^2 \sin 2 \theta_0}{g}$
वृत्तीय गति
(a) कोणीय चाल
$\omega$ $\left[\mathrm{T}^{-1}\right]$ $\mathrm{rad} / \mathrm{s}$ $=\frac{\Delta \theta}{\Delta t}=\frac{v}{r}$
(b) अभिकेंद्र त्वरण $a_e$ $\left[\mathrm{LT}^{-2}\right]$ $\mathrm{m} \mathrm{s}^{-2}$ $=\frac{v^2}{r}$

विचारणीय विषय

1. किसी वस्तु द्वारा दो बिंदुओं के बीच की पथ-लंबाई सामान्यतया, विस्थापन के परिमाण के बराबर नहीं होती। विस्थापन केवल पथ के अंतिम बिंदुओं पर निर्भर करता है जबकि पथ-लंबाई (जैसाकि नाम से ही स्पष्ट है) वास्तविक पथ पर निर्भर करती है । दोनों राशियां तभी बराबर होंगी जब वस्तु गति मार्ग में अपनी दिशा नहीं बदलती । अन्य दूसरी परिस्थितियों में पथ-लंबाई विस्थापन के परिमाण से अधिक होती है ।

2. उपरोक्त बिंदु 1 की दृष्टि से वस्तु की औसत चाल किसी दिए समय अंतराल में या तो उसके औसत वेग के परिमाण के बराबर होगी या उससे अधिक होगी । दोनों बराबर तब होंगी जब पथ-लंबाई विस्थापन के परिमाण के बराबर हो ।

3. सदिश समीकरण (3.33) तथा (3.34) अक्षों के चुनाव पर निर्भर नहीं करते हैं । निःसंदेह आप उन्हें दो स्वतंत्र अक्षों के अनुदिश वियोजित कर सकते हैं ।

4. एकसमान त्वरण के लिए शुद्धगतिकी के समीकरण एकसमान वृत्तीय गति में लागू नहीं होते क्योंकि इसमें त्वरण का परिमाण तो स्थिर रहता है परंतु उसकी दिशा निरंतर बदलती रहती है ।

5. यदि किसी वस्तु के दो वेग $\mathbf{v} _{1}$ तथा $\mathbf{v} _{2}$ हों तो उनका परिणामी वेग $\mathbf{v}=\mathbf{v} _{1}+\mathbf{v} _{2}$ होगा । उपरोक्त सूत्र तथा वस्तु 2 के सापेक्ष वस्तु का 1 के वेग अर्थात्: $\mathbf{v} _{12}=\mathbf{v} _{1}-\mathbf{v} _{2}$ के बीच भेद को भलीभांति जानिए । यहां $\mathbf{v} _{1}$ तथा $\mathbf{v} _{2}$ किसी उभयनिष्ठ निर्देश तन्त्र के सापेक्ष वस्तु की गतियां हैं ।

6. वृत्तीय गति में किसी कण का परिणामी त्वरण वृत्त के केंद्र की ओर होता है यदि उसकी चाल एकसमान है।

7. किसी वस्तु की गति के मार्ग की आकृति केवल त्वरण से ही निर्धारित नहीं होती बल्कि वह गति की प्रारंभिक दशाओं (प्रारंभिक स्थिति व प्रारंभिक वेग) पर भी निर्भर करती है । उदाहरणस्वरूप, एक ही गुरुत्वीय त्वरण से गतिमान किसी वस्तु का मार्ग एक सरल रेखा भी हो सकता है या कोई परवलय भी, ऐसा प्रारंभिक दशाओं पर निर्भर करेगा ।

अभ्यास

3.1 निम्नलिखित भौतिक राशियों में से बतलाइए कि कौन-सी सदिश हैं और कौन-सी अदिश : आयतन, द्रव्यमान, चाल, त्वरण, घनत्व, मोल संख्या, वेग, कोणीय आवृत्ति, विस्थापन, कोणीय वेग।

Show Answer #content Missing.

3.2 निम्नांकित सूची में से दो अदिश राशियों को छाँटिएबल, कोणीय संवेग, कार्य, धारा, रैखिक संवेग, विद्युत क्षेत्र, औसत वेग, चुंबकीय आघूर्ण, आपेक्षिक वेग।

Show Answer #content Missing.

3.3 निम्नलिखित सूची में से एकमात्र सदिश राशि को छाँटिएताप, दाब, आवेग, समय, शक्ति, पूरी पथ-लंबाई, ऊर्जा, गुरुत्वीय विभव, घर्षण गुणांक, आवेश।

Show Answer #content Missing.

3.4 कारण सहित बताइए कि अदिश तथा सदिश राशियों के साथ क्या निम्नलिखित बीजगणितीय संक्रियाएँ अर्थपूर्ण हैं?

(a) दो अदिशों को जोड़ना, (b) एक ही विमाओं के एक सदिश व एक अदिश को जोड़ना, (c) एक सदिश को एक अदिश से गुणा करना, (d) दो अदिशों का गुणन, (e) दो सदिशों को जोड़ना, (f) एक सदिश के घटक को उसी सदिश से जोड़ना।

Show Answer #content Missing.

3.5 निम्नलिखित में से प्रत्येक कथन को ध्यानपूर्वक पढ़िए और कारण सहित बताइए कि यह सत्य है या असत्य : (a) किसी सदिश का परिमाण सदैव एक अदिश होता है, (b) किसी सदिश का प्रत्येक घटक सदैव अदिश होता है, (c) किसी कण द्वारा चली गई पथ की कुल लंबाई सदैव विस्थापन सदिश के परिमाण के बराबर होती है, (d) किसी कण की औसत चाल (पथ तय करने में लगे समय द्वारा विभाजित कुल पथ-लंबाई) समय के समान-अंतराल में कण के औसत वेग के परिमाण से अधिक या उसके बराबर होती है । (e) उन तीन सदिशों का योग जो एक समतल में नहीं हैं, कभी भी शून्य सदिश नहीं होता ।

Show Answer #content Missing.

3.6 निम्नलिखित असमिकाओं की ज्यामिति या किसी अन्य विधि द्वारा स्थापना कीजिए :

(a) $|\mathbf{a}+\mathbf{b}| \leq|\mathbf{a}|+|\mathbf{b}|$

(b) $|\mathbf{a}+\mathbf{b}| \geq|| \mathbf{a}|-| \mathbf{b}||$

(c) $|\mathbf{a}-\mathbf{b}| \leq|\mathbf{a}|+|\mathbf{b}|$

(d) $|\mathbf{a}-\mathbf{b}| \geq|| \mathbf{a}|-| \mathbf{b}||$

इनमें समिका (समता) का चिह्न कब लागू होता है ?

Show Answer #content Missing.

3.7 दिया है $\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}=\mathbf{0}$, नीचे दिए गए कथनों में से कौन-सा सही है :

(a) $\mathbf{a}, \mathbf{b}, \mathbf{c}$ तथा $\mathbf{d}$ में से प्रत्येक शून्य सदिश है,

(b) $(\mathbf{a}+\mathbf{c})$ का परिमाण $(\mathbf{b}+\mathbf{d})$ के परिमाण के बराबर है,

(c) $\mathbf{a}$ का परिमाण $\mathbf{b}, \mathbf{c}$ तथा $\mathbf{d}$ के परिमाणों के योग से कभी भी अधिक नहीं हो सकता,

(d) यदि $\mathbf{a}$ तथा $\mathbf{d}$ संरेखीय नहीं हैं तो $\mathbf{b}+\mathbf{c}$ अवश्य ही $\mathbf{a}$ तथा $\mathbf{d}$ के समतल में होगा, और यह $\mathbf{a}$ तथा $\mathbf{d}$ के अनुदिश होगा यदि वे संरेखीय हैं ।

Show Answer #content Missing.

3.8 तीन लड़कियाँ $200 \mathrm{~m}$ त्रिज्या वाली वृत्तीय बर्फीली सतह पर स्केटिंग कर रही हैं । वे सतह के किनारे के बिंदु $\mathrm{P}$ से स्केटिंग शुरू करती हैं तथा $\mathrm{P}$ के व्यासीय विपरीत बिंदु $\mathrm{Q}$ पर विभिन्न पथों से होकर पहुँचती हैं जैसा कि चित्र 3.19 में दिखाया गया है । प्रत्येक लड़की के विस्थापन सदिश का परिमाण कितना है ? किस लड़की के लिए यह वास्तव में स्केट किए गए पथ की लंबाई के बराबर है ।

Show Answer #content Missing.

3.9 कोई साइकिल सवार किसी वृत्तीय पार्क के केंद्र $\mathrm{O}$ से चलना शुरू करता है तथा पार्क के किनारे $\mathrm{P}$ पर पहुँचता है। पुन: वह पार्क की परिधि के अनुदिश साइकिल चलाता हुआ $\mathrm{QO}$ के रास्ते (जैसा चित्र 3.20 में दिखाया गया है) केंद्र पर वापस आ जाता है । पार्क की त्रिज्या $1 \mathrm{~km}$ है । यदि पूरे चक्कर में 10 मिनट लगते हों तो साइकिल सवार का (a) कुल विस्थापन, (b) औसत वेग, तथा (c) औसत चाल क्या होगी?

चित्र 3.20

Show Answer #content Missing.

3.10 किसी खुले मैदान में कोई मोटर चालक एक ऐसा रास्ता अपनाता है जो प्रत्येक $500 \mathrm{~m}$ के बाद उसके बाईं ओर $60^{\circ}$ के कोण पर मुड़ जाता है। किसी दिए मोड़ से शुरू होकर मोटर चालक का तीसरे, छठे व आठवें मोड़ पर विस्थापन बताइए। प्रत्येक स्थिति में मोटर चालक द्वारा इन मोड़ों पर तय की गई कुल पथ-लंबाई के साथ विस्थापन के परिमाण की तुलना कीजिए।

Show Answer #content Missing.

3.11 कोई यात्री किसी नए शहर में आया है और वह स्टेशन से किसी सीधी सड़क पर स्थित किसी होटल तक जो $10 \mathrm{~km}$ दूर है, जाना चाहता है। कोई बेईमान टैक्सी चालक $23 \mathrm{~km}$ के चक्करदार रास्ते से उसे ले जाता है और 28 मिनट में होटल में पहुँचता है।

(a) टैक्सी की औसत चाल, और

(b) औसत वेग का परिमाण क्या होगा? क्या वे बराबर हैं?

Show Answer #content Missing.

3.12 किसी लंबे हाल की छत $25 \mathrm{~m}$ ऊंची है । वह अधिकतम क्षैतिज दूरी कितनी होगी जिसमें $40 \mathrm{~m} \mathrm{~s}^{-1}$ की चाल से फेंकी गई कोई गेंद छत से टकराए बिना गुजर जाए ?

Show Answer #content Missing.

3.13 क्रिकेट का कोई खिलाड़ी किसी गेंद को $100 \mathrm{~m}$ की अधिकतम क्षैतिज दूरी तक फेंक सकता है । वह खिलाड़ी उसी गेंद को जमीन से ऊपर कितनी ऊंचाई तक फेंक सकता है ?

Show Answer #content Missing.

3.14 $80 \mathrm{~cm}$ लंबे धागे के एक सिरे पर एक पत्थर बाँधा गया है और इसे किसी एकसमान चाल के साथ किसी क्षैतिज वृत्त में घुमाया जाता है । यदि पत्थर $25 \mathrm{~s}$ में 14 चक्कर लगाता है तो पत्थर के त्वरण का परिमाण और उसकी दिशा क्या होगी ?

Show Answer #content Missing.

3.15 कोई वायुयान $900 \mathrm{~km} \mathrm{~h}^{-1}$ की एकसमान चाल से उड़ रहा है और $1.00 \mathrm{~km}$ त्रिज्या का कोई क्षैतिज लूप बनाता है । इसके अभिकेंद्र त्वरण की गुरुत्वीय त्वरण के साथ तुलना कीजिए ।

Show Answer #content Missing.

3.16 नीचे दिए गए कथनों को ध्यानपूर्वक पढ़िए और कारण देकर बताइए कि वे सत्य हैं या असत्य :

(a) वृत्तीय गति में किसी कण का नेट त्वरण हमेशा वृत्त की त्रिज्या के अनुदिश केंद्र की ओर होता है ।

(b) किस बिंदु पर किसी कण का वेग सदिश सदैव उस बिंदु पर कण के पथ की स्पर्श रेखा के अनुदिश होता है।

(c) किसी कण का एकसमान वृत्तीय गति में एक चक्र में लिया गया औसत त्वरण सदिश एक शून्य सदिश होता है।

Show Answer #content Missing.

3.17 किसी कण की स्थिति सदिश निम्नलिखित है : $\mathbf{r}=\left(3.0 t \hat{\mathbf{i}}-2.0 t^{2} \hat{\mathbf{j}}+4.0 \hat{\mathbf{k}}\right) \mathrm{m}$ समय $t$ सेकंड में है तथा सभी गुणकों के मात्रक इस प्रकार से हैं कि $\mathbf{r}$ में मीटर में व्यक्त हो जाए ।

(a) कण का $\mathbf{v}$ तथा $\mathbf{a}$ निकालिए, (b) $t=2.0 \mathrm{~s}$ पर कण के वेग का परिमाण तथा दिशा कितनी होगी ?

Show Answer #content Missing.

3.18 कोई कण $t=0$ क्षण पर मूल बिंदु से $10 \hat{\mathbf{j} m}{ }^{-1}$ के वेग से चलना प्रांरभ करता है तथा $x-y$ समतल में एकसमान त्वरण $(8.0 \hat{\mathbf{i}}+2.0 \hat{\mathbf{j}}) \mathrm{m} \mathrm{s}^{-2}$ से गति करता है ।

(a) किस क्षण कण का $x$-निर्देशांक $16 \mathrm{~m}$ होगा ? इसी समय इसका $y$-निर्देशांक कितना होगा ?

(b) इस क्षण कण की चाल कितनी होगी ?

Show Answer #content Missing.

3.19 $\hat{\mathbf{i}}$ व $\hat{\mathbf{j}}$ क्रमशः $x$ - व $y$-अक्षों के अनुदिश एकांक सदिश हैं । सदिशों $\hat{\mathbf{i}}+\hat{\mathbf{j}}$ तथा $\hat{\mathbf{i}}-\hat{\mathbf{j}}$ का परिमाण तथा दिशा क्या होगा ? सदिश $\mathbf{A}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}$ के $\hat{\mathbf{i}}+\hat{\mathbf{j}}$ व $\hat{\mathbf{i}}-\hat{\mathbf{j}}$ के दिशाओं के अनुदिश घटक निकालिए। [ आप ग्राफी विधि का उपयोग कर सकते हैं]

Show Answer #content Missing.

3.20 किसी दिक्स्थान पर एक स्वेच्छ गति के लिए निम्नलिखित संबंधों में से कौन-सा सत्य है ?

(a) $\mathbf{v} _{\text {औसत }}=(1 / 2)\left(\mathbf{v}\left(t _{1}\right)+\mathbf{v}\left(t _{2}\right)\right)$

(b) $\mathbf{v} _{\text {औसत }}=\left[\mathbf{r}\left(t _{2}\right)-\mathbf{r}\left(t _{1}\right)\right] /\left(t _{2}-t _{1}\right)$

(c) $\mathbf{v}(t)=\mathbf{v}(0)+\mathbf{a} t$

(d) $\mathbf{r}(t)=\mathbf{r}(0)+\mathbf{v}(0) t+(1 / 2) \mathbf{a} t^{2}$

(e) $\mathbf{a} _{\text {औसत }}=\left[\mathbf{v}\left(t _{2}\right)-\mathbf{v}\left(t _{1}\right)\right] /\left(t _{2}-t _{1}\right)$

यहाँ ‘औसत’ का आशय समय अंतराल $t _{2}$ व $t _{1}$ से संबंधित भौतिक राशि के औसत मान से है ।

Show Answer #content Missing.

3.21 निम्नलिखित में से प्रत्येक कथन को ध्यानपूर्वक पढ़िए तथा कारण एवं उदाहरण सहित बताइए कि क्या यह सत्य है या असत्य :

अदिश वह राशि है जो

(a) किसी प्रक्रिया में संरक्षित रहती है,

(b) कभी ऋणात्मक नहीं होती,

(c) विमाहीन होती है,

(d) किसी स्थान पर एक बिंदु से दूसरे बिंदु के बीच नहीं बदलती,

(e) उन सभी दर्शकों के लिए एक ही मान रखती है चाहे अक्षों से उनके अभिविन्यास भिन्न-भिन्न क्यों न हों ।

Show Answer #content Missing.

3.22 कोई वायुयान पृथ्वी से $3400 \mathrm{~m}$ की ऊंचाई पर उड़ रहा है । यदि पृथ्वी पर किसी अवलोकन बिंदु पर वायुयान की $10.0 \mathrm{~s}$ की दूरी की स्थितियां $30^{\circ}$ का कोण बनाती हैं तो वायुमान की चाल क्या होगी ?

Show Answer #content Missing.


Table of Contents