Chapter-11 Thermodynamics
11.1 INTRODUCTION
In previous chapter we have studied thermal properties of matter. In this chapter we shall study laws that govern thermal energy. We shall study the processes where work is converted into heat and vice versa. In winter, when we rub our palms together, we feel warmer; here work done in rubbing produces the ‘heat’. Conversely, in a steam engine, the ‘heat’ of the steam is used to do useful work in moving the pistons, which in turn rotate the wheels of the train.
In physics, we need to define the notions of heat, temperature, work, etc. more carefully. Historically, it took a long time to arrive at the proper concept of ‘heat’. Before the modern picture, heat was regarded as a fine invisible fluid filling in the pores of a substance. On contact between a hot body and a cold body, the fluid (called caloric) flowed from the colder to the hotter body ! This is similar to what happens when a horizontal pipe connects two tanks containing water up to different heights. The flow continues until the levels of water in the two tanks are the same. Likewise, in the ‘caloric’ picture of heat, heat flows until the ‘caloric levels’ (i.e., the temperatures) equalise.
In time, the picture of heat as a fluid was discarded in favour of the modern concept of heat as a form of energy. An important experiment in this connection was due to Benjamin Thomson (also known as Count Rumford) in 1798. He observed that boring of a brass cannon generated a lot of heat, indeed enough to boil water. More significantly, the amount of heat produced depended on the work done (by the horses employed for turning the drill) but not on the sharpness of the drill. In the caloric picture, a sharper drill would scoop out more heat fluid from the pores; but this was not observed. A most natural explanation of the observations was that heat was a form of energy and the experiment demonstrated conversion of energy from one form to another-from work to heat.
Thermodynamics is the branch of physics that deals with the concepts of heat and temperature and the inter-conversion of heat and other forms of energy. Thermodynamics is a macroscopic science. It deals with bulk systems and does not go into the molecular constitution of matter. In fact, its concepts and laws were formulated in the nineteenth century before the molecular picture of matter was firmly established. Thermodynamic description involves relatively few macroscopic variables of the system, which are suggested by common sense and can be usually measured directly. A microscopic description of a gas, for example, would involve specifying the co-ordinates and velocities of the huge number of molecules constituting the gas. The description in kinetic theory of gases is not so detailed but it does involve molecular distribution of velocities. Thermodynamic description of a gas, on the other hand, avoids the molecular description altogether. Instead, the state of a gas in thermodynamics is specified by macroscopic variables such as pressure, volume, temperature, mass and composition that are felt by our sense perceptions and are measurable*.
The distinction between mechanics and thermodynamics is worth bearing in mind. In mechanics, our interest is in the motion of particles or bodies under the action of forces and torques. Thermodynamics is not concerned with the motion of the system as a whole. It is concerned with the internal macroscopic state of the body. When a bullet is fired from a gun, what changes is the mechanical state of the bullet (its kinetic energy, in particular), not its temperature. When the bullet pierces a wood and stops, the kinetic energy of the bullet gets converted into heat, changing the temperature of the bullet and the surrounding layers of wood. Temperature is related to the energy of the internal (disordered) motion of the bullet, not to the motion of the bullet as a whole.
11.2 THERMAL EQUILIBRIUM
Equilibrium in mechanics means that the net external force and torque on a system are zero. The term ‘equilibrium’ in thermodynamics appears in a different context : we say the state of a system is an equilibrium state if the macroscopic variables that characterise the system do not change in time. For example, a gas inside a closed rigid container, completely insulated from its surroundings, with fixed values of pressure, volume, temperature, mass and composition that do not change with time, is in a state of thermodynamic equilibrium.
Fig. 11.1 (a) Systems A and B (two gases) separated by an adiabatic wall – an insulating wall that does not allow flow of heat. (b) The same systems A and B separated by a diathermic wall – a conducting wall that allows heat to flow from one to another. In this case, thermal equilibrium is attained in due course.
In general, whether or not a system is in a state of equilibrium depends on the surroundings and the nature of the wall that separates the system from the surroundings. Consider two gases $A$ and $B$ occupying two different containers. We know experimentally that pressure and volume of a given mass of gas can be chosen to be its two independent variables. Let the pressure and volume of the gases be $\left(P_A, V_A\right)$ and $\left(P_B, V_B\right)$ respectively. Suppose first that the two systems are put in proximity but are separated by an adiabatic wall - an insulating wall (can be movable) that does not allow flow of energy (heat) from one to another. The systems are insulated from the rest of the surroundings also by similar adiabatic walls. The situation is shown schematically in Fig. 11.1 (a). In this case, it is found that any possible pair of values $\left(P_{A}, V_{A}\right)$ will be in equilibrium with any possible pair of values $\left(P_{B}, V_{B}\right)$. Next, suppose that the adiabatic wall is replaced by a diathermic wall - a conducting wall that allows energy flow (heat) from one to another. It is then found that the macroscopic variables of the systems $A$ and $B$ change spontaneously until both the systems attain equilibrium states. After that there is no change in their states. The situation is shown in Fig. 11.1(b). The pressure and volume variables of the two gases change to $\left(P_{B}{ }^{\prime}, V_{B}{ }^{\prime}\right)$ and $\left(P_{A}{ }^{\prime}, V_{A}{ }^{\prime}\right)$ such that the new states of $A$ and $B$ are in equilibrium with each other*. There is no more energy flow from one to another. We then say that the system $A$ is in thermal equilibrium with the system $B$.
What characterises the situation of thermal equilibrium between two systems? You can guess the answer from your experience. In thermal equilibrium, the temperatures of the two systems are equal. We shall see how does one arrive at the concept of temperature in thermodynamics? The Zeroth law of thermodynamics provides the clue.
11.3 ZEROTH LAW OF THERMODYNAMICS
Imagine two systems $A$ and $B$, separated by an adiabatic wall, while each is in contact with a third system $C$, via a conducting wall [Fig. 11.2(a)]. The states of the systems (i.e., their macroscopic variables) will change until both $A$ and $B$ come to thermal equilibrium with $C$. After this is achieved, suppose that the adiabatic wall between $A$ and $B$ is replaced by a conducting wall and $C$ is insulated from $A$ and $B$ by an adiabatic wall [Fig.11.2(b)]. It is found that the states of $A$ and $B$ change no further i.e. they are found to be in thermal equilibrium with each other. This observation forms the basis of the Zeroth Law of Thermodynamics, which states that ’two systems in thermal equilibrium with a third system separately are in thermal equilibrium with each other’. R.H. Fowler formulated this law in 1931 long after the first and second Laws of thermodynamics were stated and so numbered.
The Zeroth Law clearly suggests that when two systems $A$ and $B$, are in thermal equilibrium, there must be a physical quantity that has the same value for both. This thermodynamic variable whose value is equal for two systems in thermal equilibrium is called temperature $(T)$. Thus, if $A$ and $B$ are separately in equilibrium with $C, T_{A}=T_{C}$ and $T_{B}=T_{C}$. This implies that $T_{A}=T_{B}$ i.e. the systems $A$ and $B$ are also in thermal equilibrium.
We have arrived at the concept of temperature formally via the Zeroth Law. The next question is: how to assign numerical values to temperatures of different bodies? In other words, how do we construct a scale of temperature ? Thermometry deals with this basic question to which we turn in the next section.
Fig. 11.2 (a) Systems A and B are separated by an adiabatic wall, while each is in contact with a third system C via a conducting wall. (b) The adiabatic wall between A and B is replaced by a conducting wall, while C is insulated from A and B by an adiabatic wall.
11.4 HEAT, INTERNAL ENERGY AND WORK
The Zeroth Law of Thermodynamics led us to the concept of temperature that agrees with our commonsense notion. Temperature is a marker of the ‘hotness’ of a body. It determines the direction of flow of heat when two bodies are placed in thermal contact. Heat flows from the body at a higher temperature to the one at lower temperature. The flow stops when the temperatures equalise; the two bodies are then in thermal equilibrium. We saw in some detail how to construct temperature scales to assign temperatures to different bodies. We now describe the concepts of heat and other relevant quantities like internal energy and work.
The concept of internal energy of a system is not difficult to understand. We know that every bulk system consists of a large number of molecules. Internal energy is simply the sum of the kinetic energies and potential energies of these molecules. We remarked earlier that in thermodynamics, the kinetic energy of the system, as a whole, is not relevant. Internal energy is thus, the sum of molecular kinetic and potential energies in the frame of reference relative to which the centre of mass of the system is at rest. Thus, it includes only the (disordered) energy associated with the random motion of molecules of the system. We denote the internal energy of a system by $U$.
Though we have invoked the molecular picture to understand the meaning of internal energy, as far as thermodynamics is concerned, $U$ is simply a macroscopic variable of the system. The important thing about internal energy is that it depends only on the state of the system, not on how that state was achieved. Internal energy $U$ of a system is an example of a thermodynamic ‘state variable’ - its value depends only on the given state of the system, not on history i.e. not on the ‘path’ taken to arrive at that state. Thus, the internal energy of a given mass of gas depends on its state described by specific values of pressure, volume and temperature. It does not depend on how this state of the gas came about. Pressure, volume, temperature, and internal energy are thermodynamic state variables of the system (gas) (see section 11.7). If we neglect the small intermolecular forces in a gas, the internal energy of a gas is just the sum of kinetic energies associated with various random motions of its molecules. We will see in the next chapter that in a gas this motion is not only translational (i.e. motion from one point to another in the volume of the container); it also includes rotational and vibrational motion of the molecules (Fig. 11.3).
Fig. 11.3 (a) Internal energy U of a gas is the sum of the kinetic and potential energies of its molecules when the box is at rest. Kinetic energy due to various types of motion (translational, rotational, vibrational) is to be included in U. (b) If the same box is moving as a whole with some velocity,the kinetic energy of the box is not to be included in U.
Fig. 11.4 Heat and work are two distinct modes of energy transfer to a system that results in change in its internal energy. (a) Heat is energy transfer due to temperature difference between the system and the surroundings. (b) Work is energy transfer brought about by means (e.g. moving the piston by raising or lowering some weight connected to it) that do not involve such a temperature difference.
What are the ways of changing internal energy of a system ? Consider again, for simplicity, the system to be a certain mass of gas contained in a cylinder with a movable piston as shown in Fig. 11.4. Experience shows there are two ways of changing the state of the gas (and hence its internal energy). One way is to put the cylinder in contact with a body at a higher temperature than that of the gas. The temperature difference will cause a flow of energy (heat) from the hotter body to the gas, thus increasing the internal energy of the gas. The other way is to push the piston down i.e. to do work on the system, which again results in increasing the internal energy of the gas. Of course, both these things could happen in the reverse direction. With surroundings at a lower temperature, heat would flow from the gas to the surroundings. Likewise, the gas could push the piston up and do work on the surroundings. In short, heat and work are two different modes of altering the state of a thermodynamic system and changing its internal energy.
The notion of heat should be carefully distinguished from the notion of internal energy. Heat is certainly energy, but it is the energy in transit. This is not just a play of words. The distinction is of basic significance. The state of a thermodynamic system is characterised by its internal energy, not heat. A statement like ‘a gas in a given state has a certain amount of heat’ is as meaningless as the statement that ‘a gas in a given state has a certain amount of work’. In contrast, ‘a gas in a given state has a certain amount of internal energy’ is a perfectly meaningful statement. Similarly, the statements ‘a certain amount of heat is supplied to the system’ or ‘a certain amount of work was done by the system’ are perfectly meaningful.
To summarise, heat and work in thermodynamics are not state variables. They are modes of energy transfer to a system resulting in change in its internal energy, which, as already mentioned, is a state variable.
In ordinary language, we often confuse heat with internal energy. The distinction between them is sometimes ignored in elementary physics books. For proper understanding of thermodynamics, however, the distinction is crucial.
11.5 FIRST LAW OF THERMODYNAMICS
We have seen that the internal energy $U$ of a system can change through two modes of energy transfer : heat and work. Let
$\Delta Q=$ Heat supplied to the system by the surroundings
$\Delta W=$ Work done by the system on the surroundings
$\Delta U=$ Change in internal energy of the system
The general principle of conservation of energy then implies that
$$\Delta Q=\Delta U+\Delta W \tag{11.1}$$
i.e. the energy $(\Delta Q)$ supplied to the system goes in partly to increase the internal energy of the system $(\Delta U)$ and the rest in work on the environment $(\Delta W)$. Equation (11.1) is known as the First Law of Thermodynamics. It is simply the general law of conservation of energy applied to any system in which the energy transfer from or to the surroundings is taken into account.
Let us put Eq. (11.1) in the alternative form
$$ \begin{equation*} \Delta Q-\Delta W=\Delta U \tag{11.2} \end{equation*} $$
Now, the system may go from an initial state to the final state in a number of ways. For example, to change the state of a gas from $\left(P_{1}, V_{1}\right)$ to $\left(P_{2}, V_{2}\right)$, we can first change the volume of the gas from $V_{1}$ to $V_{2}$, keeping its pressure constant i.e. we can first go the state $\left(P_{1}, V_{2}\right)$ and then change the pressure of the gas from $P_{1}$ to $P_{2}$, keeping volume constant, to take the gas to $\left(P_{2}, V_{2}\right)$. Alternatively, we can first keep the volume constant and then keep the pressure constant. Since $U$ is a state variable, $\Delta U$ depends only on the initial and final states and not on the path taken by the gas to go from one to the other. However, $\Delta Q$ and $\Delta W$ will, in general, depend on the path taken to go from the initial to final states. From the First Law of Thermodynamics, Eq. (11.2), it is clear that the combination $\Delta Q-\Delta W$, is however, path independent. This shows that if a system is taken through a process in which $\Delta U=0$ (for example, isothermal expansion of an ideal gas, see section 11.8 ),
$$ \Delta Q=\Delta W $$
i.e., heat supplied to the system is used up entirely by the system in doing work on the environment.
If the system is a gas in a cylinder with a movable piston, the gas in moving the piston does work. Since force is pressure times area, and area times displacement is volume, work done by the system against a constant pressure $P$ is
$$ \Delta W=P \Delta V $$
where $\Delta V$ is the change in volume of the gas. Thus, for this case, Eq. (11.1) gives
$$ \begin{equation*} \Delta Q=\Delta U+P \Delta V \tag{11.3} \end{equation*} $$
As an application of Eq. (11.3), consider the change in internal energy for $1 \mathrm{~g}$ of water when we go from its liquid to vapour phase. The measured latent heat of water is $2256 \mathrm{~J} /$ g. i.e., for $1 \mathrm{~g}$ of water $\Delta Q=2256 \mathrm{~J}$. At atmospheric pressure, $1 \mathrm{~g}$ of water has a volume $1 \mathrm{~cm}^{3}$ in liquid phase and $1671 \mathrm{~cm}^{3}$ in vapour phase.
Therefore,
$\Delta W=P\left(V_{\mathrm{g}}-V_{1}\right)=1.013 \times 10^{5} \times\left(1671 \times 10^{-6}\right)=169.2 \mathrm{~J}$
Equation (11.3) then gives
$\Delta U=2256-169.2=2086.8 \mathrm{~J}$
We see that most of the heat goes to increase the internal energy of water in transition from the liquid to the vapour phase.
11.6 SPECIFIC HEAT CAPACITY
Suppose an amount of heat $\Delta Q$ supplied to a substance changes its temperature from $T$ to $T+\Delta T$. We define heat capacity of a substance (see Chapter 10) to be
$$ \begin{equation*} S=\frac{\Delta Q}{\Delta T} \tag{11.4} \end{equation*} $$
We expect $\Delta Q$ and, therefore, heat capacity $S$ to be proportional to the mass of the substance. Further, it could also depend on the temperature, i.e., a different amount of heat may be needed for a unit rise in temperature at different temperatures. To define a constant characteristic of the substance and independent of its amount, we divide $S$ by the mass of the substance $m$ in $\mathrm{kg}$ :
$$ \begin{equation*} s=\frac{S}{m}=\frac{1}{m} \frac{\Delta Q}{\Delta T} \tag{11.5} \end{equation*} $$
$s$ is known as the specific heat capacity of the substance. It depends on the nature of the substance and its temperature. The unit of specific heat capacity is $\mathrm{J}^{-1} \mathrm{~K}^{-1}$. If the amount of substance is specified in terms of moles $\mu$ (instead of mass $m$ in $\mathrm{kg}$ ), we can define heat capacity per mole of the substance by
$$ \begin{equation*} C=\frac{S}{\mu}=\frac{1}{\mu} \frac{\Delta Q}{\Delta T} \tag{11.6} \end{equation*} $$
$C$ is known as molar specific heat capacity of the substance. Like $s, C$ is independent of the amount of substance. $C$ depends on the nature of the substance, its temperature and the conditions under which heat is supplied. The unit of $C$ is $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$. As we shall see later (in connection with specific heat capacity of gases), additional conditions may be needed to define $C$ or $s$. The idea in defining $C$ is that simple predictions can be made in regard to molar specific heat capacities.
Table 11.1 lists measured specific and molar heat capacities of solids at atmospheric pressure and ordinary room temperature.
We will see in Chapter 12 that predictions of specific heats of gases generally agree with experiment. We can use the same law of equipartition of energy that we use there to predict molar specific heat capacities of solids (See Section 12.5 and 12.6). Consider a solid of $N$ atoms, each vibrating about its mean position. An oscillator in one dimension has average energy of $2 \times 1 / 2 k_{B} T=k_{B} T$. In three dimensions, the average energy is $3 k_{B} T$. For a mole of a solid, the total energy is
$$ U=3 k_{B} T \times N_{A}=3 R T\left(\because k_{B} T \times N_{A}=R\right) $$
Now, at constant pressure, $\Delta Q=\Delta U+P \Delta V \cong$ $\Delta U$, since for a solid $\Delta V$ is negligible. Therefore,
$$ \begin{equation*} C=\frac{\Delta Q}{\Delta T}=\frac{\Delta U}{\Delta T}=3 R \tag{11.7} \end{equation*} $$
Table 11.1 Specific and molar heat capacities of some solids at room temperature and atmospheric pressure
Substance | Specific $\mathbf{c}^{-\mathbf{v}}$ heat $\left(\mathbf{J} \mathbf{k g}^{-1} \mathbf{K}^{-1}\right)$ |
Molar specific heat $\left(\mathbf{J} \mathbf{~ m o l}^{-1} \mathbf{K}^{-1}\right)$ |
---|---|---|
Aluminium | 900.0 | 24.4 |
Carbon | 506.5 | 6.1 |
Copper | 386.4 | 24.5 |
Lead | 127.7 | 26.5 |
Silver | 236.1 | 25.5 |
Tungsten | 134.4 | 24.9 |
As Table 11.1 shows, the experimentally measured values which generally agrees with predicted value $3 \mathrm{R}$ at ordinary temperatures. (Carbon is an exception.) The agreement is known to break down at low temperatures.
Specific heat capacity of water
The old unit of heat was calorie. One calorie was earlier defined to be the amount of heat required to raise the temperature of $1 \mathrm{~g}$ of water by $1 \mathrm{C}$. With more precise measurements, it was found that the specific heat of water varies slightly with temperature. Figure 11.5 shows this variation in the temperature range 0 to $100^{\circ} \mathrm{C}$.
Fig. 11.5 Variation of specific heat capacity of water with temperature.
For a precise definition of calorie, it was, therefore, necessary to specify the unit temperature interval. One calorie is defined to be the amount of heat required to raise the temperature of $1 \mathrm{~g}$ of water from $14.5{ }^{\circ} \mathrm{C}$ to $15.5^{\circ} \mathrm{C}$. Since heat is just a form of energy, it is preferable to use the unit joule, $J$. In SI units, the specific heat capacity of water is $4186 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ i.e. $4.186 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$. The so called mechanical equivalent of heat defined as the amount of work needed to produce 1 cal of heat is in fact just a conversion factor between two different units of energy : calorie to joule. Since in SI units, we use the unit joule for heat, work or any other form of energy, the term mechanical equivalent is now superfluous and need not be used.
As already remarked, the specific heat capacity depends on the process or the conditions under which heat capacity transfer takes place. For gases, for example, we can define two specific heats: specific heat capacity at constant volume and specific heat capacity at constant pressure. For an ideal gas, we have a simple relation.
$$ \begin{equation*} C_{p}-C_{V}=R \tag{11.8} \end{equation*} $$
where $C_{p}$ and $C_{v}$ are molar specific heat capacities of an ideal gas at constant pressure and volume respectively and $R$ is the universal gas constant. To prove the relation, we begin with Eq. (11.3) for 1 mole of the gas :
$$ \Delta Q=\Delta U+P \Delta V $$
If $\Delta Q$ is absorbed at constant volume, $\Delta V=0$
$$ \begin{equation*} C_\mathrm{v}=\left({\frac{\Delta Q}{\Delta T}}\right)_\mathrm{v}=\left(\frac{\Delta U}{\Delta T}\right)_v=\left(\frac{\Delta U}{\Delta T}\right) \tag{11.9} \end{equation*} $$
where the subscript $\mathrm{v}$ is dropped in the last step, since $U$ of an ideal gas depends only on temperature. (The subscript denotes the quantity kept fixed.) If, on the other hand, $\Delta Q$ is absorbed at constant pressure,
$$C_p=\left(\frac{\Delta Q}{\Delta T}\right)_p=\left(\frac{\Delta U}{\Delta T}\right)_p+P\left(\frac{\Delta V}{\Delta T}\right)_p \tag{11.10}$$
The subscript $p$ can be dropped from the first term since $U$ of an ideal gas depends only on $T$. Now, for a mole of an ideal gas
$$ P V=R T $$
which gives
$$ \begin{equation*} P \frac{\Delta V}{\Delta T_{\mathrm{p}}}=R \tag{11.11} \end{equation*} $$
Equations (11.9) to (11.11) give the desired relation, Eq. (11.8).
11.7 THERMODYNAMIC STATE VARIABLES AND EQUATION OF STATE
Every equilibrium state of a thermodynamic system is completely described by specific values of some macroscopic variables, also called state variables. For example, an equilibrium state of a gas is completely specified by the values of pressure, volume, temperature, and mass (and composition if there is a mixture of gases). A thermodynamic system is not always in equilibrium. For example, a gas allowed to expand freely against vacuum is not an equilibrium state [Fig. 11.6(a)]. During the rapid expansion, pressure of the gas may not be uniform throughout. Similarly, a mixture of gases undergoing an explosive chemical reaction (e.g. a mixture of petrol vapour and air when ignited by a spark) is not an equilibrium state; again its temperature and pressure are not uniform [Fig. 11.6(b)]. Eventually, the gas attains a uniform temperature and pressure and comes to thermal and mechanical equilibrium with its surroundings.
Fig. 11.6 (a) The partition in the box is suddenly removed leading to free expansion of the gas. (b) A mixture of gases undergoing an explosive chemical reaction. In both situations, the gas is not in equilibrium and cannot be described by state variables.
In short, thermodynamic state variables describe equilibrium states of systems. The various state variables are not necessarily independent. The connection between the state variables is called the equation of state. For example, for an ideal gas, the equation of state is the ideal gas relation
$$ P V=\mu R T $$
For a fixed amount of the gas i.e. given $\mu$, there are thus, only two independent variables, say $P$ and $V$ or $T$ and $V$. The pressure-volume curve for a fixed temperature is called an isotherm. Real gases may have more complicated equations of state.
The thermodynamic state variables are of two kinds: extensive and intensive. Extensive variables indicate the ‘size’ of the system. Intensive variables such as pressure and temperature do not. To decide which variable is extensive and which intensive, think of a relevant system in equilibrium, and imagine that it is divided into two equal parts. The variables that remain unchanged for each part are intensive. The variables whose values get halved in each part are extensive. It is easily seen, for example, that internal energy $U$, volume $V$, total mass $M$ are extensive variables. Pressure $P$, temperature $T$, and density $\rho$ are intensive variables. It is a good practice to check the consistency of thermodynamic equations using this classification of variables. For example, in the equation
$$ \Delta Q=\Delta U+P \Delta V $$
quantities on both sides are extensive*. (The product of an intensive variable like $P$ and an extensive quantity $\Delta V$ is extensive.)
11.8 THERMODYNAMIC PROCESSES
11.8.1 Quasi-static process
Consider a gas in thermal and mechanical equilibrium with its surroundings. The pressure of the gas in that case equals the external pressure and its temperature is the same as that of its surroundings. Suppose that the external pressure is suddenly reduced (say by lifting the weight on the movable piston in the container). The piston will accelerate outward. During the process, the gas passes through states that are not equilibrium states. The nonequilibrium states do not have well-defined pressure and temperature. In the same way, if a finite temperature difference exists between the gas and its surroundings, there will be a rapid exchange of heat during which the gas will pass through non-equilibrium states. In due course, the gas will settle to an equilibrium state with well-defined temperature and pressure equal to those of the surroundings. The free expansion of a gas in vacuum and a mixture of gases undergoing an explosive chemical reaction, mentioned in section 11.7 are also examples where the system goes through nonequilibrium states.
Non-equilibrium states of a system are difficult to deal with. It is, therefore, convenient to imagine an idealised process in which at every stage the system is an equilibrium state. Such a[^2]process is, in principle, infinitely slow, hence the name quasi-static (meaning nearly static). The system changes its variables $(P, T, V)$ so slowly that it remains in thermal and mechanical equilibrium with its surroundings throughout. In a quasi-static process, at every stage, the difference in the pressure of the system and the external pressure is infinitesimally small. The same is true of the temperature difference between the system and its surroundings (Fig. 11.7). To take a gas from the state $(P, T)$ to another state $\left(P^{\prime}, T^{\prime}\right)$ via a quasi-static process, we change the external pressure by a very small amount, allow the system to equalise its pressure with that of the surroundings and continue the process infinitely slowly until the system achieves the pressure $P^{\prime}$. Similarly, to change the temperature, we introduce an infinitesimal temperature difference between the system and the surrounding reservoirs and by choosing reservoirs of progressively different temperatures $T$ to $T^{\prime}$, the system achieves the temperature $T^{\prime}$.
Fig. 11.7 In a quasi-static process, the temperature of the surrounding reservoir and the external pressure differ only infinitesimally from the temperature and pressure of the system.
A quasi-static process is obviously a hypothetical construct. In practice, processes that are sufficiently slow and do not involve accelerated motion of the piston, large temperature gradient, etc., are reasonably approximation to an ideal quasi-static process. We shall from now on deal with quasi-static processes only, except when stated otherwise.
A process in which the temperature of the system is kept fixed throughout is called an isothermal process. The expansion of a gas in a metallic cylinder placed in a large reservoir of fixed temperature is an example of an isothermal process. (Heat transferred from the reservoir to the system does not materially affect the temperature of the reservoir, because of its very large heat capacity.) In isobaric processes the pressure is constant while in isochoric processes the volume is constant. Finally, if the system is insulated from the surroundings and no heat flows between the system and the surroundings, the process is adiabatic. The definitions of these special processes are summarised in Table. 11.2
Table 11.2 Some special thermodynamic processes
Type of processes | Feature |
---|---|
Isothermal | Temperature constant |
Isobaric | Pressure constant |
Isochoric | Volume constant |
Adiabatic | No heat flow between the system and the surroundings $(\Delta \mathrm{Q}=0)$ |
We now consider these processes in some detail :
11.8.2 Isothermal process
For an isothermal process ( $T$ fixed), the ideal gas equation gives
$$ P V=\text { constant } $$
i.e., pressure of a given mass of gas varies inversely as its volume. This is nothing but Boyle’s Law.
Suppose an ideal gas goes isothermally (at temperature $T$ ) from its initial state $\left(P_{1}, V_{1}\right)$ to the final state $\left(P_{2}, V_{2}\right)$. At any intermediate stage with pressure $P$ and volume change from $V$ to $V+\Delta V(\Delta V$ small $)$
$$ \Delta W=P \Delta V $$
Taking $(\Delta V \rightarrow 0)$ and summing the quantity $\Delta W$ over the entire process,
$$ \begin{align*} W & =\int_{V_{1}}^{V_{2}} P \mathrm{~d} V & =\mu R T \int_{V_{1}}^{V_{2}} \frac{\mathrm{d} V}{V}=\mu R T \quad \operatorname{In} \frac{V_{2}}{V_{1}} \tag{11.12} \end{align*} $$
where in the second step we have made use of the ideal gas equation $P V=\mu R T$ and taken the constants out of the integral. For an ideal gas, internal energy depends only on temperature. Thus, there is no change in the internal energy of an ideal gas in an isothermal process. The First Law of Thermodynamics then implies that heat supplied to the gas equals the work done by the gas : $Q=W$. Note from Eq. (11.12) that for $V_{2}>V_{1}, W>0$; and for $V_{2}<V_{1}, W<0$. That is, in an isothermal expansion, the gas absorbs heat and does work while in an isothermal compression, work is done on the gas by the environment and heat is released.
11.8.3 Adiabatic process
In an adiabatic process, the system is insulated from the surroundings and heat absorbed or released is zero. From Eq. (11.1), we see that work done by the gas results in decrease in its internal energy (and hence its temperature for an ideal gas). We quote without proof (the result that you will learn in higher courses) that for an adiabatic process of an ideal gas.
$$ \begin{equation*} P V^{\gamma}=\text { const } \tag{11.13} \end{equation*} $$
where $\gamma$ is the ratio of specific heats (ordinary or molar) at constant pressure and at constant volume.
$$ \gamma=\frac{C_{p}}{C_{v}} $$
Thus if an ideal gas undergoes a change in its state adiabatically from $\left(P_{1}, V_{1}\right)$ to $\left(P_{2}, V_{2}\right)$ :
$$ \begin{equation*} P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma} \tag{11.14} \end{equation*} $$
Figure 11.8 shows the $P$ - $V$ curves of an ideal gas for two adiabatic processes connecting two isotherms.
We can calculate, as before, the work done in an adiabatic change of an ideal gas from the state $\left(P_{1}, V_{1}, T_{1}\right)$ to the state $\left(P_{2}, V_{2}, T_{2}\right)$.
$$ \begin{aligned} W=\int_{V_1}^{V_2} P \mathrm{~d} V \end{aligned} $$
$$ \begin{aligned} =\text { constant } \times \int_{V_1}^{V_2} \frac{\mathrm{d} V}{V^{\gamma}}=\text { constant } \times\left.\frac{V^{-\gamma+1}}{1-\gamma}\right|_2 \end{aligned} $$
$$ \begin{align*} \frac{\text { constant }}{(1-\gamma)} \times\left[\frac{1}{V_2^{\gamma-1}}-\frac{1}{V_1^{\gamma-1}}\right] \tag{11.15} \end{align*} $$
From Eq. (11.14), the constant is $P_{1} V_{1}^{\gamma}$ or $P_{2} V_{2}^{\gamma}$
$$ \begin{align*} W & =\frac{1}{1-\gamma} \frac{P_{2} V_{2}^{\gamma}}{V_{2}^{\gamma-1}}-\frac{P_{1} V_{1}^{\gamma}}{V_{1}^{\gamma-1}} \\ & =\frac{1}{1-\gamma}\left[P_{2} V_{2}-P_{1} V_{1}\right]=\frac{\mu R\left(T_{1}-T_{2}\right)}{\gamma-1} \tag{11.16} \end{align*} $$
As expected, if work is done by the gas in an adiabatic process $(W>0)$, from Eq. (11.16), $T_{2}<T_{1}$. On the other hand, if work is done on the gas $(W<0)$, we get $T_{2}>T_{1}$ i.e., the temperature of the gas rises.
11.8.4 Isochoric process
In an isochoric process, $V$ is constant. No work is done on or by the gas. From Eq. (11.1), the heat absorbed by the gas goes entirely to change its internal energy and its temperature. The change in temperature for a given amount of heat is determined by the specific heat of the gas at constant volume.
11.8.5 Isobaric process
In an isobaric process, $P$ is fixed. Work done by the gas is
$$ \begin{equation*} W=P\left(V_{2}-V_{1}\right)=\mu R\left(T_{2}-T_{1}\right) \tag{11.17} \end{equation*} $$
Since temperature changes, so does internal energy. The heat absorbed goes partly to increase internal energy and partly to do work. The change in temperature for a given amount of heat is determined by the specific heat of the gas at constant pressure.
11.8.6 Cyclic process
In a cyclic process, the system returns to its initial state. Since internal energy is a state variable, $\Delta U=0$ for a cyclic process. From Eq. (11.1), the total heat absorbed equals the work done by the system.
11.9 SECOND LAW OF THERMODYNAMICS
The First Law of Thermodynamics is the principle of conservation of energy. Common experience shows that there are many conceivable processes that are perfectly allowed by the First Law and yet are never observed. For example, nobody has ever seen a book lying on a table jumping to a height by itself. But such a thing would be possible if the principle of conservation of energy were the only restriction. The table could cool spontaneously, converting some of its internal energy into an equal amount of mechanical energy of the book, which would then hop to a height with potential energy equal to the mechanical energy it acquired. But this never happens. Clearly, some additional basic principle of nature forbids the above, even though it satisfies the energy conservation principle. This principle, which disallows many phenomena consistent with the First Law of Thermodynamics is known as the Second Law of Thermodynamics.
The Second Law of Thermodynamics gives a fundamental limitation to the efficiency of a heat engine and the co-efficient of performance of a refrigerator. In simple terms, it says that efficiency of a heat engine can never be unity. For a refrigerator, the Second Law says that the co-efficient of performance can never be infinite. The following two statements, one due to Kelvin and Planck denying the possibility of a perfect heat engine, and another due to Clausius denying the possibility of a perfect refrigerator or heat pump, are a concise summary of these observations
Kelvin-Planck statement
No process is possible whose sole result is the absorption of heat from a reservoir and the complete conversion of the heat into work.
Clausius statement
No process is possible whose sole result is the transfer of heat from a colder object to a hotter object. It can be proved that the two statements above are completely equivalent.
11.10 REVERSIBLE AND IRREVERSIBLE PROCESSES
Imagine some process in which a thermodynamic system goes from an initial state $i$ to a final state $f$. During the process the system absorbs heat $Q$ from the surroundings and performs work $W$ on it. Can we reverse this process and bring both the system and surroundings to their initial states with no other effect anywhere? Experience suggests that for most processes in nature this is not possible. The spontaneous processes of nature are irreversible. Several examples can be cited. The base of a vessel on an oven is hotter than its other parts. When the vessel is removed, heat is transferred from the base to the other parts, bringing the vessel to a uniform temperature (which in due course cools to the temperature of the surroundings). The process cannot be reversed; a part of the vessel will not get cooler spontaneously and warm up the base. It will violate the Second Law of Thermodynamics, if it did. The free expansion of a gas is irreversible. The combustion reaction of a mixture of petrol and air ignited by a spark cannot be reversed. Cooking gas leaking from a gas cylinder in the kitchen diffuses to the entire room. The diffusion process will not spontaneously reverse and bring the gas back to the cylinder. The stirring of a liquid in thermal contact with a reservoir will convert the work done into heat, increasing the internal energy of the reservoir. The process cannot be reversed exactly; otherwise it would amount to conversion of heat entirely into work, violating the Second Law of Thermodynamics. Irreversibility is a rule rather an exception in nature. Irreversibility arises mainly from two causes: one, many processes (like a free expansion, or an explosive chemical reaction) take the system to non-equilibrium states; two, most processes involve friction, viscosity and other dissipative effects (e.g., a moving body coming to a stop and losing its mechanical energy as heat to the floor and the body; a rotating blade in a liquid coming to a stop due to viscosity and losing its mechanical energy with corresponding gain in the internal energy of the liquid). Since dissipative effects are present everywhere and can be minimised but not fully eliminated, most processes that we deal with are irreversible.
A thermodynamic process (state $i \rightarrow$ state $f$ ) is reversible if the process can be turned back such that both the system and the surroundings return to their original states, with no other change anywhere else in the universe. From the preceding discussion, a reversible process is an idealised notion. A process is reversible only if it is quasi-static (system in equilibrium with the surroundings at every stage) and there are no dissipative effects. For example, a quasi-static isothermal expansion of an ideal gas in a cylinder fitted with a frictionless movable piston is a reversible process.
Why is reversibility such a basic concept in thermodynamics? As we have seen, one of the concerns of thermodynamics is the efficiency with which heat can be converted into work. The Second Law of Thermodynamics rules out the possibility of a perfect heat engine with $100 %$ efficiency. But what is the highest efficiency possible for a heat engine working between two reservoirs at temperatures $T_{1}$ and $T_{2}$ ? It turns out that a heat engine based on idealised reversible processes achieves the highest efficiency possible. All other engines involving irreversibility in any way (as would be the case for practical engines) have lower than this limiting efficiency.
11.11 CARNOT ENGINE
Suppose we have a hot reservoir at temperature $T_{1}$ and a cold reservoir at temperature $T_{2}$. What is the maximum efficiency possible for a heat engine operating between the two reservoirs and what cycle of processes should be adopted to achieve the maximum efficiency? Sadi Carnot, a French engineer, first considered this question in 1824. Interestingly, Carnot arrived at the correct answer, even though the basic concepts of heat and thermodynamics had yet to be firmly established.
We expect the ideal engine operating between two temperatures to be a reversible engine. Irreversibility is associated with dissipative effects, as remarked in the preceding section, and lowers efficiency. A process is reversible if it is quasi-static and non-dissipative. We have seen that a process is not quasi-static if it involves finite temperature difference between the system and the reservoir. This implies that in a reversible heat engine operating between two temperatures, heat should be absorbed (from the hot reservoir) isothermally and released (to the cold reservoir) isothermally. We thus have identified two steps of the reversible heat engine : isothermal process at temperature $T_{1}$ absorbing heat $Q_{1}$ from the hot reservoir, and another isothermal process at temperature $T_{2}$ releasing heat $Q_{2}$ to the cold reservoir. To complete a cycle, we need to take the system from temperature $T_{1}$ to $T_{2}$ and then back from temperature $T_{2}$ to $T_{1}$. Which processes should we employ for this purpose that are reversible? A little reflection shows that we can only adopt reversible adiabatic processes for these purposes, which involve no heat flow from any reservoir. If we employ any other process that is not adiabatic, say an isochoric process, to take the system from one temperature to another, we shall need a series of reservoirs in the temperature range $T_{2}$ to $T_{1}$ to ensure that at each stage the process is quasi-static. (Remember again that for a process to be quasi-static and reversible, there should be no finite temperature difference between the system and the reservoir.) But we are considering a reversible engine that operates between only two temperatures. Thus adiabatic processes must bring about the temperature change in the system from $T_{1}$ to $T_{2}$ and $T_{2}$ to $T_{1}$ in this engine.
Fig. 11.9 Carnot cycle for a heat engine with an ideal gas as the working substance.
A reversible heat engine operating between two temperatures is called a Carnot engine. We have just argued that such an engine must have the following sequence of steps constituting one cycle, called the Carnot cycle, shown in Fig. 11.9. We have taken the working substance of the Carnot engine to be an ideal gas.
(a) Step $1 \rightarrow 2$ Isothermal expansion of the gas taking its state from $\left(P_{1}, V_{1}, T_{1}\right)$ to $\left(P_{2}, V_{2}, T_{1}\right)$.
The heat absorbed by the gas $\left(Q_{1}\right)$ from the reservoir at temperature $T_{1}$ is given by Eq. (11.12). This is also the work done $\left(W_{1 \rightarrow 2}\right)$ by the gas on the environment.
$$ \begin{equation*} W_{1 \rightarrow 2}=Q_{1}=\mu R T_{1} \ln \frac{V_{2}}{V_{1}} \tag{11.18} \end{equation*} $$
(b) Step $2 \rightarrow 3$ Adiabatic expansion of the gas from $\left(P_{2}, V_{2}, T_{1}\right)$ to $\left(P_{3}, V_{3}, T_{2}\right)$ Work done by the gas, using Eq. (11.16), is
$$ \begin{equation*} W_{2 \rightarrow 3}=\frac{\mu R\left(T_{1}-T_{2}\right)}{\gamma-1} \tag{11.19} \end{equation*} $$
(c) Step $3 \rightarrow 4$ Isothermal compression of the gas from $\left(P_{3}, V_{3}, T_{2}\right)$ to $\left(P_{4}, V_{4}, T_{2}\right)$.
Heat released $\left(Q_{2}\right)$ by the gas to the reservoir at temperature $T_{2}$ is given by Eq. (11.12). This is also the work done $\left(W_{3 \rightarrow 4}\right)$ on the gas by the environment.
$$ \begin{equation*} W_{3 \rightarrow 4}=Q_{2}=\mu R T_{2} \ln \frac{V_{3}}{V_{4}} \tag{11.20} \end{equation*} $$
(d) Step $4 \rightarrow 1$ Adiabatic compression of the gas from $\left(P_{4}, V_{4}, T_{2}\right)$ to $\left(P_{1}, V_{1}, T_{1}\right)$. Work done on the gas, using Eq.(11.16), is
$$ \begin{equation*} W_{4 \rightarrow 1}=\mu R \frac{T_{1}-T_{2}}{\gamma-1} \tag{11.21} \end{equation*} $$
From Eqs. (11.18) to (11.21) total work done by the gas in one complete cycle is
$$ \begin{align*} & W=W_{1 \rightarrow 2}+W_{2 \rightarrow 3}-W_{3 \rightarrow 4}-W_{4 \rightarrow 1} \\ & =\mu R T_{1} \ln \frac{V_{2}}{V_{1}}-\mu R T_{2} \ln \frac{V_{3}}{V_{4}} \tag{11.22} \end{align*} $$
The efficiency $\eta$ of the Carnot engine is
$$ \eta=\frac{W}{Q_{1}}=1-\frac{Q_{2}}{Q_{1}} $$
$$ \begin{equation*} =1-\frac{T_{2}}{T_{1}} \frac{\operatorname{In} \frac{V_{3}}{V_{4}}}{\operatorname{In} \frac{V_{2}}{V_{1}}} \tag{11.23} \end{equation*} $$
Now since step $2 \rightarrow 3$ is an adiabatic process,
$$ T_{1} V_{2}^{\gamma-1}=T_{2} V_{3}^{\gamma-1} $$
$$\text { i.e. } \frac{V_2}{V_3}=\left(\frac{T_2}{T_1}\right)^{1 /(\gamma-1)} \tag{11.24}$$
Similarly, since step $4 \rightarrow 1$ is an adiabatic process
$$ \begin{align*} & T_{2} V_{4}^{\gamma-1}=T_{1} V_{1}^{\gamma-1} \ & \text { i.e. } \frac{V_{1}}{V_{4}}={\frac{T}{T_{1}}}^{1 / \gamma-1} \tag{11.25} \end{align*} $$
From Eqs. (11.24) and (11.25),
$$ \begin{equation*} \frac{V_{3}}{V_{4}}=\frac{V_{2}}{V_{1}} \tag{11.26} \end{equation*} $$
Using Eq. (11.26) in Eq. (11.23), we get
$$ \begin{equation*} \eta=1-\frac{T_{2}}{T_{1}} \text { (Carnot engine) } \tag{11.27} \end{equation*} $$
We have already seen that a Carnot engine is a reversible engine. Indeed it is the only reversible engine possible that works between two reservoirs at different temperatures. Each step of the Carnot cycle given in Fig. 11.9 can be reversed. This will amount to taking heat $Q_{2}$ from the cold reservoir at $T_{2}$, doing work $W$ on the system, and transferring heat $Q_{1}$ to the hot reservoir. This will be a reversible refrigerator.
We next establish the important result (sometimes called Carnot’s theorem) that (a) working between two given temperatures $T_{1}$ and $T_{2}$ of the hot and cold reservoirs respectively, no engine can have efficiency more than that of the Carnot engine and (b) the efficiency of the Carnot engine is independent of the nature of the working substance.
To prove the result (a), imagine a reversible (Carnot) engine $R$ and an irreversible engine $I$ working between the same source (hot reservoir) and sink (cold reservoir). Let us couple the engines, $I$ and $R$, in such a way so that $I$ acts like a heat engine and $R$ acts as a refrigerator. Let $I$ absorb heat $Q_{1}$ from the source, deliver work $W^{\prime}$ and release the heat $Q_{1}-W^{\prime}$ to the sink. We arrange so that $R$ returns the same heat $Q_{1}$ to the source, taking heat $Q_{2}$ from the sink and requiring work $W=Q_{1}-Q_{2}$ to be done on it. Now suppose $\eta_{\mathrm{R}}<\eta_{\mathrm{I}}$ i.e. if $R$ were to act as an engine it would give less work output than that of $I$ i.e. $W<W^{\prime}$ for a given $Q_{1}$. With $R$ acting like a refrigerator, this would mean $Q_{2}=Q_{1}-W>Q_{1}-W^{\prime}$. Thus, on the whole, the coupled $I-R$ system extracts heat $\left(Q_{1}-W\right)-\left(Q_{1}-W^{\prime}\right)=\left(W^{\prime}-W\right)$ from the cold reservoir and delivers the same amount of work in one cycle, without any change in the source or anywhere else. This is clearly against the Kelvin-Planck statement of the Second Law of Thermodynamics. Hence the assertion $\eta_{\mathrm{I}}>\eta_{\mathrm{R}}$ is wrong. No engine can have efficiency greater than that of the Carnot engine. A similar argument can be constructed to show that a reversible engine with one particular substance cannot be more efficient than the one using another substance. The maximum efficiency of a Carnot engine given by Eq. (11.27) is independent of the nature of the system performing the Carnot cycle of operations. Thus we are justified in using an ideal gas as a system in the calculation of efficiency $\eta$ of a Carnot engine. The ideal gas has a simple equation of state, which allows us to readily calculate $\eta$, but the final result for $\eta$, [Eq. (11.27)], is true for any Carnot engine.
Fig. 11.10 An irreversible engine (I) coupled to a reversible refrigerator (R). If W ′ > W, this would amount to extraction of heat W′ – W from the sink and its full conversion to work, in contradiction with the Second Law of Thermodynamics.
This final remark shows that in a Carnot cycle,
$$ \begin{equation*} \frac{Q_{1}}{Q_{2}}=\frac{T_{1}}{T_{2}} \tag{11.28} \end{equation*} $$
is a universal relation independent of the nature of the system. Here $Q_{1}$ and $Q_{2}$ are respectively, the heat absorbed and released isothermally (from the hot and to the cold reservoirs) in a Carnot engine. Equation (11.28), can, therefore, be used as a relation to define a truly universal thermodynamic temperature scale that is independent of any particular properties of the system used in the Carnot cycle. Of course, for an ideal gas as a working substance, this universal temperature is the same as the ideal gas temperature introduced in section 11.9.
Summary
1. The zeroth law of thermodynamics states that ’two systems in thermal equilibrium with a third system separately are in thermal equilibrium with each other’. The Zeroth Law leads to the concept of temperature.
2. Internal energy of a system is the sum of kinetic energies and potential energies of the molecular constituents of the system. It does not include the over-all kinetic energy of the system. Heat and work are two modes of energy transfer to the system. Heat is the energy transfer arising due to temperature difference between the system and the surroundings. Work is energy transfer brought about by other means, such as moving the piston of a cylinder containing the gas, by raising or lowering some weight connected to it.
3. The first law of thermodynamics is the general law of conservation of energy applied to any system in which energy transfer from or to the surroundings (through heat and work) is taken into account. It states that
$$ \Delta Q=\Delta U+\Delta W $$
where $\Delta Q$ is the heat supplied to the system, $\Delta W$ is the work done by the system and $\Delta U$ is the change in internal energy of the system.
4. The specific heat capacity of a substance is defined by
$$ s=\frac{1}{m} \frac{\Delta Q}{\Delta T} $$
where $m$ is the mass of the substance and $\Delta Q$ is the heat required to change its temperature by $\Delta T$. The molar specific heat capacity of a substance is defined by
$$ C=\frac{1}{\mu} \frac{\Delta Q}{\Delta T} $$
where $\mu$ is the number of moles of the substance. For a solid, the law of equipartition of energy gives
$$ C=3 R $$
which generally agrees with experiment at ordinary temperatures.
Calorie is the old unit of heat. 1 calorie is the amount of heat required to raise the temperature of $1 \mathrm{~g}$ of water from $14.5^{\circ} \mathrm{C}$ to $15.5^{\circ} \mathrm{C} .1 \mathrm{cal}=4.186 \mathrm{~J}$.
5. For an ideal gas, the molar specific heat capacities at constant pressure and volume satisfy the relation
$$ C_{p}-C_{V}=R $$
where $R$ is the universal gas constant.
6. Equilibrium states of a thermodynamic system are described by state variables. The value of a state variable depends only on the particular state, not on the path used to arrive at that state. Examples of state variables are pressure $(P)$, volume $(V)$, temperature $(T)$, and mass $(m)$. Heat and work are not state variables. An Equation of State (like the ideal gas equation $P V=\mu R T$ ) is a relation connecting different state variables.
7. A quasi-static process is an infinitely slow process such that the system remains in thermal and mechanical equilibrium with the surroundings throughout. In a quasi-static process, the pressure and temperature of the environment can differ from those of the system only infinitesimally.
8. In an isothermal expansion of an ideal gas from volume $V_{1}$ to $V_{2}$ at temperature $T$ the heat absorbed $(Q)$ equals the work done $(W)$ by the gas, each given by
$$ Q=W=\mu R T \ln \left(\frac{V_{2}}{V_{1}}\right) $$
9. In an adiabatic process of an ideal gas
$$ \begin{aligned} & P V^{\gamma}=\text { constant } & \text { where } \quad \gamma=\frac{C_{p}}{C_{v}} \end{aligned} $$
Work done by an ideal gas in an adiabatic change of state from $\left(P_{1}, V_{1}, T_{1}\right)$ to $\left(P_{2}, V_{2}, T_{2}\right)$ is
$$ W=\frac{\mu R\left(T_{1}-T_{2}\right)}{\gamma-1} $$
10. The second law of thermodynamics disallows some processes consistent with the First Law of Thermodynamics. It states
Kelvin-Planck statement
No process is possible whose sole result is the absorption of heat from a reservoir and complete conversion of the heat into work.
Clausius statement
No process is possible whose sole result is the transfer of heat from a colder object to a hotter object.
Put simply, the Second Law implies that no heat engine can have efficiency $\eta$ equal to 1 or no refrigerator can have co-efficient of performance $\alpha$ equal to infinity.
11. A process is reversible if it can be reversed such that both the system and the surroundings return to their original states, with no other change anywhere else in the universe. Spontaneous processes of nature are irreversible. The idealised reversible process is a quasi-static process with no dissipative factors such as friction, viscosity, etc.
12. Carnot engine is a reversible engine operating between two temperatures $T_{1}$ (source) and $T_{2}$ (sink). The Carnot cycle consists of two isothermal processes connected by two adiabatic processes. The efficiency of a Carnot engine is given by
$$ \eta=1-\frac{T_{2}}{T_{1}} \quad \text { (Carnot engine) } $$
No engine operating between two temperatures can have efficiency greater than that of the Carnot engine.
13. If $\mathrm{Q}>0$, heat is added to the system
If $\mathrm{Q}<0$, heat is removed to the system
If $\mathrm{W}>0$, Work is done by the system
If $\mathrm{W}<0$, Work is done on the system
Quantity | Symbol | Dimensions | Unit | Remark |
---|---|---|---|---|
Co-efficienty of volume expansion |
$\alpha_{\mathrm{v}}$ | $\left[\mathrm{K}^{-1}\right]$ | $\mathrm{K}^{-1}$ | $\alpha_{\mathrm{v}}=3 \alpha_{1}$ |
Heat supplied to a system | $\Delta Q$ | $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$ | $\mathrm{J}$ | Qis not a state variable |
Specific heat capacity | $S$ | $\left[\mathrm{~L}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right]$ | $\mathrm{J} \mathrm{kg}^{-1} \mathrm{~K}^{-1}$ | |
Thermal Conductivity | $K$ | $\left[\mathrm{MLT}^{-3} \mathrm{~K}^{-1}\right]$ | $\mathrm{J} \mathrm{s}^{-1} \mathrm{~K}^{-1}$ | $H=-K A \frac{\mathrm{d} t}{\mathrm{~d} x}$ |
POINTS TO PONDER
1. Temperature of a body is related to its average internal energy, not to the kinetic energy of motion of its centre of mass. A bullet fired from a gun is not at a higher temperature because of its high speed.
2. Equilibrium in thermodynamics refers to the situation when macroscopic variables describing the thermodynamic state of a system do not depend on time. Equilibrium of a system in mechanics means the net external force and torque on the system are zero.
3. In a state of thermodynamic equilibrium, the microscopic constituents of a system are not in equilibrium (in the sense of mechanics).
4. Heat capacity, in general, depends on the process the system goes through when heat is supplied.
5. In isothermal quasi-static processes, heat is absorbed or given out by the system even though at every stage the gas has the same temperature as that of the surrounding reservoir. This is possible because of the infinitesimal difference in temperature between the system and the reservoir.
Exercises
11.1 A geyser heats water flowing at the rate of 3.0 litres per minute from $27^{\circ} \mathrm{C}$ to $77^{\circ} \mathrm{C}$. If the geyser operates on a gas burner, what is the rate of consumption of the fuel if its heat of combustion is $4.0 \times 10^{4} \mathrm{~J} / \mathrm{g}$ ?
Show Answer
Answer
Water is flowing at a rate of 3.0 litre/min.
The geyser heats the water, raising the temperature from $27^{\circ} C$ to $77^{\circ} C$.
Initial temperature, $T_1=27^{\circ} C$
Final temperature, $T_2=77^{\circ} C$
$\therefore$ Rise in temperature, $\Delta T=T_2-T_1$
$=77-27=50^{\circ} C$
Heat of combustion $=4 \times 10^{4} J / g$
Specific heat of water, $c=4.2 J g^{-1}{ }^{\circ} C^{-1}$
Mass of flowing water, $m=3.0$ litre $/ min=3000 g / min$
Total heat used, $\Delta Q=m c \Delta T$
$=3000 \times 4.2 \times 50$
$=6.3 \times 10^{5} J / min$
$\therefore$ Rate of consumption $=\frac{\frac{6.3 \times 10^{5}}{4 \times 10^{4}}}{}=15.75 g / min$
11.2 What amount of heat must be supplied to $2.0 \times 10^{-2} \mathrm{~kg}$ of nitrogen (at room temperature) to raise its temperature by $45{ }^{\circ} \mathrm{C}$ at constant pressure ? (Molecular mass of $\mathrm{N}_{2}=28 ; R=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.)
Show Answer
Answer
Mass of nitrogen, $m=2.0 \times 10^{-2} kg=20 g$
Rise in temperature, $\Delta T=45^{\circ} C$
Molecular mass of $N_2, M=28$
Universal gas constant, $R=8.3 J mol^{-1} K^{-1}$
Number of moles, $n=\frac{m}{M}$
$=\frac{2.0 \times 10^{-2} \times 10^{3}}{28}=0.714$
Molar specific heat at constant pressure for nitrogen, $C_P=\frac{7}{2} R$
$ \begin{aligned} & =\frac{7}{2} \times 8.3 \\ & =29.05 J mol^{-1} K^{-1} \end{aligned} $
The total amount of heat to be supplied is given by the relation:
$ \Delta Q=n C_P \Delta T $
$=0.714 \times 29.05 \times 45$
$=933.38 J$
Therefore, the amount of heat to be supplied is $933.38 J$.
11.3 Explain why
(a) Two bodies at different temperatures $T_{1}$ and $T_{2}$ if brought in thermal contact do not necessarily settle to the mean temperature $\left(T_{1}+T_{2}\right) / 2$.
(b) The coolant in a chemical or a nuclear plant (i.e., the liquid used to prevent the different parts of a plant from getting too hot) should have high specific heat.
(c) Air pressure in a car tyre increases during driving.
(d) The climate of a harbour town is more temperate than that of a town in a desert at the same latitude.
Show Answer
Answer
(a) When two bodies at different temperatures $T_1$ and $T_2$ are brought in thermal contact, heat flows from the body at the higher temperature to the body at the lower temperature till equilibrium is achieved, i.e., the temperatures of both the bodies become equal. The equilibrium temperature is equal to the mean temperature $(T_1+T_2) / 2$ only when the thermal capacities of both the bodies are equal.
(b) The coolant in a chemical or nuclear plant should have a high specific heat. This is because higher the specific heat of the coolant, higher is its heat-absorbing capacity and vice versa. Hence, a liquid having a high specific heat is the best coolant to be used in a nuclear or chemical plant. This would prevent different parts of the plant from getting too hot.
(c) When a car is in motion, the air temperature inside the car increases because of the motion of the air molecules. According to Charles’ law, temperature is directly proportional to pressure. Hence, if the temperature inside a tyre increases, then the air pressure in it will also increase.
(d) A harbour town has a more temperate climate (i.e., without the extremes of heat or cold) than a town located in a desert at the same latitude. This is because the relative humidity in a harbour town is more than it is in a desert town.
11.4 A cylinder with a movable piston contains 3 moles of hydrogen at standard temperature and pressure. The walls of the cylinder are made of a heat insulator, and the piston is insulated by having a pile of sand on it. By what factor does the pressure of the gas increase if the gas is compressed to half its original volume?
Show Answer
Answer
The cylinder is completely insulated from its surroundings. As a result, no heat is exchanged between the system (cylinder) and its surroundings. Thus, the process is adiabatic.
Initial pressure inside the cylinder $=P_1$
Final pressure inside the cylinder $=P_2$
Initial volume inside the cylinder $=V_1$
Final volume inside the cylinder $=V_2$
Ratio of specific heats, $\gamma=1.4$
For an adiabatic process, we have:
$ P_1 V_1^{\gamma}=P_2 V_2^{\gamma} $
The final volume is compressed to half of its initial volume.
$ \begin{aligned} & \therefore V_2=\frac{V_1}{2} \\ & P_1(V_1)^{\gamma}=P_2(\frac{V_1}{2})^{\gamma} \\ & \frac{P_2}{P_1}=\frac{(V_1)^{\gamma}}{(\frac{V_1}{2})^{\gamma}}=(2)^{\gamma}=(2)^{1.4}=2.639 \end{aligned} $
Hence, the pressure increases by a factor of 2.639 .
11.5 In changing the state of a gas adiabatically from an equilibrium state $A$ to another equilibrium state $B$, an amount of work equal to $22.3 \mathrm{~J}$ is done on the system. If the gas is taken from state $A$ to $B$ via a process in which the net heat absorbed by the system is $9.35 \mathrm{cal}$, how much is the net work done by the system in the latter case ? (Take $1 \mathrm{cal}=4.19 \mathrm{~J}$ )
Show Answer
Answer
The work done $(W)$ on the system while the gas changes from state $A$ to state $B$ is $22.3 J$.
This is an adiabatic process. Hence, change in heat is zero.
$\therefore \Delta Q=0$
$\Delta W=-22.3 J$ (Since the work is done on the system)
From the first law of thermodynamics, we have:
$\Delta Q=\Delta U+\Delta W$
Where,
$\Delta U=$ Change in the internal energy of the gas
$\therefore \Delta U=\Delta Q-\Delta W=-(-22.3 J)$
$\Delta U=+22.3 J$
When the gas goes from state $A$ to state $B$ via a process, the net heat absorbed by the system is:
$\Delta Q=9.35 cal=9.35 \times 4.19=39.1765 J$
Heat absorbed, $\Delta Q=\Delta U+\Delta Q$
$\therefore \Delta W=\Delta Q-\Delta U$
$=39.1765-22.3$
$=16.8765 J$
Therefore, $16.88 J$ of work is done by the system.
11.6 Two cylinders $A$ and $B$ of equal capacity are connected to each other via a stopcock. $A$ contains a gas at standard temperature and pressure. $B$ is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following :
(a) What is the final pressure of the gas in $A$ and $B$ ?
(b) What is the change in internal energy of the gas?
(c) What is the change in the temperature of the gas ?
(d) Do the intermediate states of the system (before settling to the final equilibrium state) lie on its $P-V$ - $T$ surface?
Show Answer
Answer
(a) $0.5 \mathrm{~atm}$
(b) Zero
(c) Zero
(d) No
Explanation:
(a) The volume available to the gas is doubled as soon as the stopcock between cylinders $A$ and $B$ is opened. Since volume is inversely proportional to pressure, the pressure will decrease to one-half of the original value. Since the initial pressure of the gas is $1 atm$, the pressure in each cylinder will be $0.5 atm$.
(b) The internal energy of the gas can change only when work is done by or on the gas. Since in this case no work is done by or on the gas, the internal energy of the gas will not change.
(c) Since no work is being done by the gas during the expansion of the gas, the temperature of the gas will not change at all.
(d) The given process is a case of free expansion. It is rapid and cannot be controlled. The intermediate states do not satisfy the gas equation and since they are in non-equilibrium states, they do not lie on the $P-V-T$ surface of the system.
11.7 An electric heater supplies heat to a system at a rate of $100 \mathrm{~W}$. If system performs work at a rate of 75 joules per second. At what rate is the internal energy increasing?
Show Answer
Answer
Heat is supplied to the system at a rate of $100 W$.
$\therefore$ Heat supplied, $Q=100 J / s$
The system performs at a rate of $75 J / s$. $\therefore$ Work done, $W=75 J / s$
From the first law of thermodynamics, we have:
$Q=U+W$
Where,
$U=$ Internal energy
$\therefore U=Q-W$
$=100-75$
$=25 J / s$
$=25 W$
Therefore, the internal energy of the given electric heater increases at a rate of $25 W$.
11.8 A thermodynamic system is taken from an original state to an intermediate state by the linear process shown in Fig. (11.13)
Fig. 11.11
Its volume is then reduced to the original value from $\mathrm{E}$ to $\mathrm{F}$ by an isobaric process. Calculate the total work done by the gas from $\mathrm{D}$ to $\mathrm{E}$ to $\mathrm{F}$
Show Answer
Answer
Total work done by the gas from $D$ to $E$ to $F=$ Area of $\triangle DEF$
Area of $\Delta DEF=\frac{1}{2} DE \times EF$
Where,
$DF=$ Change in pressure
$=600 N / m^{2}-300 N / m^{2}$
$=300 N / m^{2}$
$FE=$ Change in volume
$=5.0 m^{3}-2.0 m^{3}$
$=3.0 m^{3}$
Area of $\triangle DEF=e^{\frac{1}{2} \times 300 \times 3}=450 J$
Therefore, the total work done by the gas from D to E to F is $450 J$.
11.1 भूमिका
पिछले अध्याय में हमने द्रव्यों के तापीय गुणों का अध्ययन किया। इस अध्याय में हम उन नियमों का अध्ययन करेंगे जो ऊष्मीय ऊर्जा को निर्धारित करते हैं। हम उन प्रक्रियाओं का अध्ययन करेंगे जिनमें कार्य ऊष्मा में परिवर्तित होता है, तथा विलोमतः ऊष्मा भी कार्य में परिवर्तित होती है । शीत ऋतु में जब हम हथेलियों को परस्पर रगड़ते हैं तो हमें गरमी की अनुभूति होती है क्योंकि इस प्रक्रिया में किया गया कार्य ऊष्मा उत्पन्न करता है । इसके विपरीत, भाप इंजन में वाष्प की ऊष्मा का उपयोग लाभप्रद कार्य को संपन्न करने में अर्थात् पिस्टन को गति देने में होता है जिसके परिणामस्वरूप रेलगाड़ी के पहिए घूतते हैं।
भौतिकी में ऊष्मा, ताप, कार्य आदि की अवधारणाओं को अधिक सावधानीपूर्वक परिभाषित करने की आवश्यकता पड़ती है । ऐतिहासिक रूप से ऊष्मा की सटीक अवधारणा तक पहुँचने के लिए पर्याप्त समय लगा। आधुनिक अवधारणा के पूर्व ऊष्मा को ऐसे सूक्ष्म अदृश्य तरल के रूप में समझा गया जो किसी पदार्थ के रंध्रों में भरा रहता है । गरम व ठंडे पिंडों के पारस्परिक संपर्क में आने पर यह तरल (जिसे कैलॉरिक कहते थे) ठंडे पिंड से अपेक्षाकृत गरम पिंड में बहने लगता है ! यह बिलकुल वैसा ही है जैसा उस समय होता है जब भिन्न-भिन्न ऊँचाइयों तक पानी से भरी दो टंकियों को एक क्षैतिज नल से जोड़ दिया जाता है। जल का बहाव उस समय तक निरंतर बना रहता है जब तक दोनों टंकियों में जल के तल समान न हो जाएँ। इसी के समान ऊष्मा की ‘कैलॉरिक’ धारणा में ऊष्मा उस समय तक प्रवाहित होती रहती है जब तक कि ‘कैलॉरिक तल’ (अर्थात् ताप) समान नहीं हो जाते ।
इसी बीच, ऊष्मा को ऊर्जा के रूप में कल्पित करने की आधुनिक अवधारणा के कारण इसके (ऊष्मा के) तरल स्वरूप को नकार दिया गया। इस संबंध में 1798 में बेंजामिन थॉमसन (जिन्हें काउन्ट रम्फोर्ड भी कहते हैं) ने एक महत्वपूर्ण प्रयोग भी किया। इन्होंने पाया कि पीतल की तोप में छेद करते समय इतनी अधिक ऊष्मा उत्पन्न होती है कि उससे पानी उबल सकता है। इससे अधिक महत्वपूर्ण तथ्य यह प्राप्त हुआ कि प्रयोग में उत्पन्न ऊष्मा का परिमाण उस कार्य पर निर्भर करता था जो घोड़े ड्रिल को घुमाने में करते थे न कि ड्रिल के पैनेपन पर। कैलॉरिक स्वरूप के अनुसार अधिक पैनी ड्रिल को रंध्रों से अधिक ऊष्मा तरल बाहर निकालना चाहिए, किंतु प्रयोग में यह सही नहीं पाया गया। प्रेक्षणों की सबसे अधिक स्वाभाविक व्याख्या यह थी कि ऊष्मा ऊर्जा का ही एक रूप है तथा प्रयोग से भी यह प्रमाणित हो गया कि ऊर्जा एक रूप से दूसरे रूप में अर्थात् कार्य से ऊष्मा में रूपांतारित हो जाती है ।
ऊष्मागतिकी भौतिकी की वह शाखा है जो ऊष्मा तथा ताप की अवधारणा एवं ऊष्मा के अन्य प्रकार की ऊर्जाओं में अंतरारूपान्तरण का विवेचन करती है। ऊष्मागतिकी एक स्थूल विज्ञान है, क्योंकि यह किसी निकाय की स्थूल प्रकृति पर विचार करती है न कि द्रव्य की आण्विक संरचना पर । वास्तव में, इससे संबंधित अवधारणाओं तथा नियमों का प्रतिपादन 19 वीं शताब्दी में उस समय हुआ था जब द्रव्य के आण्विक स्वरूप को दृढ़तापूर्वक प्रमाणित नहीं किया गया था। ऊष्मागतिकी के वर्णन में निकाय के अपेक्षाकृत कुछ ही स्थूल चर समाहित होते हैं जो सामान्य अनुभव पर आधारित हैं तथा जिन्हें प्रत्यक्ष रूप में मापा जा सकता है । उदाहरणार्थ, किसी गैस के सूक्ष्म वर्णन में उसकी रचना करने वाले अगणित अणुओं के निर्देशांकों एवं वेगों का निर्धारण आवश्यक होता है। हालांकि गैसों के अणुगति सिद्धांत का विवरण बहुत विस्तृत नहीं है फिर भी इसमें अणुओं के वेर्गों का विवरण समाहित है। इसके विपरीत किसी गैस के ऊष्मागतिकीय विवरण में आण्विक वर्णन पूर्ण रूप से नकार दिया जाता है। ऊष्मागतिकी में किसी गैस को अवस्था दाब, आयतन, ताप, द्रव्यमान तथा संगठन जैसे ऐसे स्थूल चरों द्वारा निर्धारित होती है जिन्हें हम अपनी इंद्रियों से अनुभव करते हैं और माप सकते हैं।
यांत्रिकी एवं ऊष्मागतिकी के बीच भेद आपके मस्तिष्क में भलीभांति आ जाना चाहिए । यांत्रिकी में हमारी रुचि बलों तथा बल आघूर्णों के प्रभाव में गति कर रहे कणों एवं पिण्डों में होती है । ऊष्मागतिकी में संपूर्ण निकाय की गति पर विचार नहीं किया जाता। इसकी रुचि पिण्ड की आंतिरक स्थूल अवस्था में होती है। जब बंदूक से गोली दागते हैं तब जो परिवर्तन होता है वह गोली की यांत्रिक अवस्था (विशेषकर गतिज ऊर्जा) में परिवर्तन होता है, उसके ताप में नहीं। जब गोली लकड़ी में धँसकर रुक जाती है तो गोली की गतिज ऊर्जा ऊष्मा में रूपांतरित हो जाती है जिससे गोली तथा उसके चारों ओर की लकड़ी की सतहों का ताप परिवर्तित हो जाता है। ताप गोली की आंतरिक गति (जो अव्यवस्थित है) की ऊर्जा से संबंधित होता है न कि गोली की संपूर्ण गति से ।
11.2 तापीय साम्य
यांत्रिकी में साम्यावस्था से तात्पर्य है कि निकाय पर नेट बाह्य बल व बल आघूर्ण शून्य हैं। ऊष्मागतिकी में साम्यावस्था का अर्थ भिन्न संदर्भ में दृष्टिगोचर होता है : निकाय की अवस्था को हम उस समय साम्यावस्था में कहते हैं जब निकाय को अभिलक्षणित करने वाले स्थूल चर समय के साथ परिवर्तित नहीं होते । उदाहरणार्थ, किसी पर्यावरण से पूर्णतः ऊष्मारोधी बंद दृढ़ पात्र में भरी कोई गैस ऊष्मागतिक रूप से तब साम्यावस्था में होगी जब उसके दाब, आयतन, ताप, द्रव्यमान के परिमाण तथा संगठन समय के साथ परिवर्तित न हों।
चित्र 11.1 (a) (दो गैसों के) निकाय $A$ व $B$ एक रुद्धोष्म दीवार से पृथक् हैं : इस दीवार से ऊष्मा आर-पार नहीं जा पाती। (b) यही निकाय $A$ व $B$ एक ऊष्मा-पार्थ दीवार से पृथक् दर्शाए गए हैं । यह एक चालक दीवार होती है जिससे ऊष्मा एक निकाय से दूसरे में चली जाती है। इस उदाहरण में तापीय साम्य यथोचित समय में प्राप्त हो जाता है।
कोई निकाय साम्यावस्था में है कि नहीं व्यापक रूप में यह चारों ओर के परिवेश तथा उस दीवार की प्रकृति पर निर्भर करता है जो निकाय को परिवेश से पृथक् करती है। कल्पना कीजिए कि दो गैसें $A$ व $B$ दो भिन्न-भिन्न पात्रों में भरी हैं। प्रयोग द्वारा हमें पता है कि किसी गैस के दिए हुए द्रव्यमान के दाब व ताप को उसके दो स्वतंत्र चरों के रूप में चुना जा सकता है । मान लीजिए कि गैसों के दाब व आयतन क्रमशः $\left(P _{\mathrm{A}}, V _{\mathrm{A}}\right)$ तथा $\left(P _{\mathrm{B}}, V _{\mathrm{B}}\right)$ हैं। कल्पना कीजिए कि पहले दोनों निकाय पास-पास हैं परंतु उन्हें किसी रुद्धोष्म दीवार (एक ऊष्मारोधी दीवार) द्वारा एक दूसरे से पृथक् रखा गया है। इस दीवार के कारण ऊर्जा (ऊष्मा) एक पात्र से दूसरे पात्र में नहीं जा पाती है । निकायों को भी शेष परिवेश से इसी प्रकार की रुद्धोष्म दीवार से पृथक् रखते हैं। इस व्यवस्था का आरेखीय चित्रण [11.1(a)] में दिया गया है । यहाँ यह पाया गया है कि $\left(P _{\mathrm{A}}, V _{\mathrm{A}}\right)$ के किसी[^6] भी संभावित युग्म का मान $\left(P _{\mathrm{B}}, V _{\mathrm{B}}\right)$ के किसी भी संभव युग्म के मान के साथ साम्यावस्था में होगा। पुनः कल्पना कीजिए कि रुद्धोष्म दीवार को एक ऊष्मा-पार्थ-दीवार से प्रतिस्थापित कर दिया गया है - यह दीवार (ऊष्मा) ऊर्जा को एक निकाय से दूसरे निकाय में जाने देती है। ऐसा करने में यह देखा गया है कि निकायों $A$ व $B$ के स्थूल चर स्वतः उस समय तक परिवर्तित होते हैं जब तक कि दोनों निकाय साम्यावस्था की स्थिति प्राप्त नहीं कर लेते । इसके पश्चात् उनकी अवस्था में कोई परिवर्तन नहीं होता है। इस स्थिति को चित्र [11.1(b)] में दर्शाया गया है। मान लीजिए कि दोनों गैसों के दाब व आयतन संबंधी चर परिवर्तित होकर क्रमशः $\left(P _{\mathrm{A}}^{\prime}, V _{\mathrm{A}}^{\prime}\right)$ तथा $\left(P _{\mathrm{B}}^{\prime}, V _{\mathrm{B}}^{\prime}\right)$ हो जाते हैं ताकि $A$ व $B$ की नयी अवस्थाएँ पुनः एक-दूसरे की साम्यावस्था में हो जाती हैं*। एक निकाय से दूसरे निकाय में अब और ऊर्जा का प्रवाह नहीं होता। ऐसी स्थिति में हम कहते हैं कि निकाय $A$, निकाय $B$ के साथ तापीय साम्य में है ।
दो निकायों के मध्य की साम्यावस्था की स्थिति को क्या अभिलक्षित करती है ? आप अपने अनुभव से उत्तर का अनुमान लगा सकते हैं । तापीय साम्य में, दो निकायों के ताप समान होते हैं। हम जानेंगे कि ऊष्मागतिकी में ताप की अवधारणा तक कैसे पहुँचते हैं ? ऊष्मागतिकी का शून्य कोटि का नियम इसकी ओर संकेत करता है ।
11.3 ऊष्मागतिकी का शून्य कोटि नियम
कल्पना कीजिए कि दो निकाय $A$ व $B$ एक रुद्धोष्म दीवार से पृथक् हैं। इनमें से प्रत्येक एक तीसरे निकाय $C$ से एक सुचालक दीवार द्वारा संपर्क में हैं [चित्र 11.2(a)] । निकायों की अवस्थाएँ (अर्थात् उनके स्थूल चर) तब तक परिवर्तित होंगी जब तक $A$ व $B$ दोनों निकाय $C$ के साथ तापीय साम्य में नहीं आ जाते हैं। जब ऐसा हो जाए तो कल्पना कीजिए कि $A$ व $B$ के मध्य की रुद्धोष्म दीवार एक सुचालक दीवार से प्रतिस्थापित कर दी जाती है तथा $C$ को $A$ व $B$ से किसी रुद्धोष्म दीवार से पृथक् कर दिया जाता है [चित्र 11.2(b)]। ऐसा देखा जाता है कि $A$ व $B$ की अवस्थाएँ अब और नहीं बदलतीं अर्थात् वे दोनों अब तापीय साम्य में होती हैं। यह प्रेक्षण ऊष्मागतिकी के शून्य कोटि नियम का आधार बना। यह नियम बतलाता है कि यदि दो निकाय किसी तीसरे निकाय के साथ पृथक्-पृथक् रूप से तापीय साम्य में हैं तो वे परस्पर भी तापीय साम्य में होते हैं। यहाँ यह बात ध्यान में रखनी चाहिए कि ऊष्मागतिकी के प्रथम व द्वितीय नियम की अभिव्यक्ति तथा उनके क्रमांकन के बहुत समय बाद 1931 में आर.एच. फाउलर ने शून्य कोटि नियम का प्रतिपादन किया था।
शून्य कोटि नियम से यह संकेत मिलता है कि जब दो निकाय $A$ व $B$ परस्पर तापीय साम्य में होते हैं, तो ऐसी कोई भौतिक राशि है जो दोनों निकायों के लिए समान मान रखती है । यह ऊष्मागतिक चर, जिसका मान तापीय साम्य वाले निकायों के लिए समान होता है, ताप ( $T$ ) कहलाता है। अतः यदि $A$ व $B$ साम्यावस्था में तीसरे निकाय $C$ से पृथक् हैं तो $T _{A}=T _{C}$ तथा $T _{B}=T _{C}$ । इसका तात्पर्य यह है कि $T _{A}=T _{B}$ अर्थात् निकाय $A$ व $B$ स्वयं भी तापीय साम्य में हैं।
शून्य कोटि नियम के माध्यम से हमने विधिवत ताप की अवधारणा विकसित की है । हमारे सामने पुनः एक प्रश्न उत्पन्न होता है : भिन्न-भिन्न पिंडों के ताप के लिए हम अंकिक मानों का निर्धारण कैसे करें? दूसरे शब्दों में, हम ताप मापक्रम कैसे बनाएँ? तापमिति इस मौलिक प्रश्न से संबंध रखती है जिसके विषय में हम अगले अनुभाग में अध्ययन करेंगे।
चित्र $11.2(a)$ निकाय $A$ व $B$ जो एक रुद्धोष्म दीवार से पृथक हैं जबकि इनमें से प्रत्येक एक तीसरे निकाय $C$ से एक सुचालक दीवार द्वारा संपर्क में है। (b) $A$ व $B$ के मध्य की रुद्धोष्म दीवार को किसी सुचालक दीवार से प्रतिस्थापित किया गया है जबकि $C$ को $A$ व $B$ से रुद्धोष्म दीवार से पृथक दर्शाया गया है ।
11.4 ऊष्मा, आंतरिक ऊर्जा तथा कार्य
ऊष्मागतिकी के शून्य कोटि नियम से ताप की अवधारणा की उत्पत्ति हुई जो हमारे सामान्य ज्ञान के अनुकूल है। ताप किसी पिण्ड की उष्णता का द्योतक है। जब दो पिण्ड ऊष्मीय संपर्क में लाए जाते हैं तो इससे ऊष्मा के प्रवाह की दिशा निर्धारित होती है। ऊष्मा उच्च ताप वाले पिण्ड से निम्न ताप वाले पिण्ड की ओर प्रवाहित होती है। जब ताप समान हो जाते हैं तो प्रवाह रुक जाता है। ऐसी स्थिति में दोनों पिण्ड तापीय साम्य में होते हैं। हम यह विस्तार से पढ़ चुके हैं कि भांति-भांति के पिण्डों के ताप के निर्धरण के लिए ताप मापक्रम कैसे बनाए जाते हैं। अब हम ऊष्मा तथा तत्संबंधित राशियों; जैसे-आंतरिक ऊर्जा तथा कार्य की अवधारणाओं का वर्णन करेंगे ।
किसी निकाय की आंतरिक ऊर्जा की अवधारणा को समझना कठिन नहीं है। हम जानते हैं कि प्रत्येक स्थूल निकाय असंख्य अणुओं से निर्मित है। आंतरिक ऊर्जा इन अणुओं की स्थितिज व गतिज ऊर्जाओं का योग है । हमने यह टिप्पणी की है कि ऊष्मागतिकी में निकाय की समग्र रूप से गतिज ऊर्जा प्रासंगिक नहीं होती । इस प्रकार, निर्देश फ्रेम में आंतरिक ऊर्जा अणु की गतिज व स्थितिज ऊर्जा के योग के बराबर होती है जिसके सापेक्ष निकाय का द्रव्यमान-केंद्र विरामावस्था में होता है । इस प्रकार, इसमें केवल निकाय के अणुओं की यादृच्छिक गति से संबंधित (अव्यवस्थित) ऊर्जा ही समाहित होती है। निकाय की आंतरिक ऊर्जा को $U$ से चिह्नित करते हैं।
यद्यपि हमने आंतरिक ऊर्जा के अर्थ को समझने के लिए आण्विक चित्र प्रस्तुत किया है तथापि जहाँ तक ऊष्मागतिकी का संबंध है, $U$ निकाय का केवल एक स्थूल चर ही है । आंतरिक ऊर्जा के संबंध में एक महत्वपूर्ण तथ्य यह है कि यह केवल निकाय की अवस्था पर निर्भर करती है न कि इस बात पर कि यह अवस्था किस प्रकार प्राप्त हुई। निकाय की आंतरिक ऊर्जा $U$ ऊष्मागतिकीय ‘अवस्था चर’ का एक उदाहरण है। इसका मान निकाय की दी हुई अवस्था पर निर्भर करता है न कि उसके इतिवृत्ति (History) (अर्थात् उस स्थिति तक पहुँचने के लिए अनुसरण किए गए पथ) पर। अतः किसी गैस के दिए गए द्रव्यमान के लिए आंतरिक ऊर्जा उसकी स्थिति पर निर्भर करती है । यह स्थिति दाब, आयतन व ताप के विशिष्ट मानों से वर्णित होती है। यह इस बात पर निर्भर नहीं करती कि गैस की यह स्थिति किस प्रकार प्राप्त हुई । दाब, आयतन, ताप तथा आंतरिक ऊर्जा निकाय (गैस) के ऊष्मागतिकीय अवस्था चर कहलाते हैं (अनुभाग 11.7 देखें) । यदि गैस के अल्पप्रभावी अंतराण्विक बलों की उपेक्षा कर दें तो गैस की आंतरिक ऊर्जा उसके अणुओं की अनेक यादृच्छिक गतियों से संबद्ध गतिज ऊर्जाओं के योग के ठीक बराबर होती है । अगले अध्याय में हम पढ़ंगे कि किसी गैस में यह गति केवल स्थानांतरीय ही नहीं होती (इसमें गति पात्र के आयतन में एक बिंदु से दूसरे बिंदु के मध्य होती है), वरन् इसमें अणु की घूर्णी तथा कंपन गति भी होती है (चित्र 11.3)।
चित्र 11.3 (a) जब बॉक्स विरामावस्था में है तो गैस की आंतरिक ऊर्जा $U$ उसके अणुओं की गतिज व स्थितिज ऊर्जा के योग के बराबर होती है। विभिन्न प्रकार की गतियों (स्थानांतरीय, घूर्णी, कंपन) के कारण गतिज ऊर्जा को $U$ में समाहित किया जाता है। (b) यदि यही समग्र बॉक्स कुछ वेग से गतिमान है, तो बॉक्स की गतिज ऊर्जा को $U$ में सम्मिलित नहीं करना है।
चित्र 11.4 ऊष्मा व कार्य किसी निकाय में ऊर्जा स्थानांतरण की दो विभिन्न विधियाँ हैं जिनसे उसकी आंतरिक ऊर्जा में परिवर्तन होता है। (a) निकाय तथा परिवेश के बीच तापांतर के कारण ऊष्मा को ऊर्जा के स्थानांतरण के रूप में परिभाषित करते हैं। (b) कार्य उन साधनों (उदाहरणार्थ, पिस्टन से जुड़े भारों को ऊपर नीचे करके पिस्टन को गति देना) द्वारा उत्पन्न ऊर्जा का स्थानांतरण है जिनमें तापांतर समाहित नहीं होता।
किसी निकाय की आंतरिक ऊर्जा में किन उपायों से परिवर्तन किए जा सकते हैं ? सुविधा की दृष्टि से पुनः कल्पना कीजिए कि चित्र 11.4 के अनुसार निकाय किसी दिए गए द्रव्यमान की एक गैस है जो एक सिलिंडर में भरी है जिसमें गतिशील पिस्टन लगा है। अनुभव यह बताता है कि गैस की अवस्था (तथा इस प्रकार उसकी आंतरिक ऊर्जा) परिवर्तित करने के दो उपाय होते हैं। एक उपाय है कि सिलिंडर को उस पिण्ड के संपर्क में रखें जो गैस की अपेक्षा उच्च ताप पर है। तापांतर के कारण ऊर्जा (ऊष्मा) गरम पिण्ड से गैस में प्रवाहित होगी। इससे गैस की आंतरिक ऊर्जा बढ़ जाएगी। दूसरा उपाय है कि पिस्टन को नीचे की ओर दबाया जाए (अर्थात् निकाय पर कार्य किया जाए)। इसमें भी गैस की आंतरिक ऊर्जा बढ़ जाती है । निःसंदेह ये दोनों बातें विपरीत दिशा में भी संभव होती हैं। यदि चारों ओर के परिवेश का ताप कम है तो ऊष्मा गैस से परिवेश में प्रवाहित होगी। इसी प्रकार, गैस पिस्टन को ऊपर की ओर धक्का दे सकती है और परिवेश पर कार्य कर सकती है। संक्षेप में, ऊष्मा और कार्य दो भिन्न-भिन्न विधियाँ हैं जिनसे ऊष्मीय निकाय की स्थिति परिवर्तित होती है तथा उसकी आंतरिक ऊर्जा में परिवर्तन होता है।
ऊष्मा एवं आंतरिक ऊर्जा की धारणाओं में अंतर को सावधानीपूर्वक समझना आवश्यक है । ऊष्मा निश्चित रूप से ऊर्जा है परंतु यह ऊर्जा पारगमन में है । यह मात्र शब्दों का खेल नहीं है । दोनों में अंतर मूल महत्त्व का है । किसी ऊष्मागतिकी निकाय की स्थिति उसकी आंतरिक ऊर्जा से अभिलक्षित होती है न कि ऊष्मा से । इस प्रकार का प्रकथन कि ‘किसी दी हुई अवस्था में गैस में ऊष्मा की कुछ मात्रा होती है’ उतना ही निरर्थक है जितना कि यह प्रकथन कि ‘किसी दी हुई स्थिति में गैस में कुछ कार्य निहित होता है।’ इसके विपरीत, ‘किसी दी हुई अवस्था में गैस में आंतरिक ऊर्जा की कुछ मात्रा होती है’ पूरी तरह से एक सार्थक प्रकथन है । इसी प्रकार से, ऐसे प्रकथन जैसे ‘निकाय को एक निश्चित मात्रा की ऊष्मा दी गई है’ या ‘निकाय द्वारा एक निश्चित मात्रा का कार्य किया गया’ पूर्णतः अर्थपूर्ण सार्थक प्रकथन हैं।
संक्षेप में, ऊष्मा व कार्य ऊष्मागतिकी में स्थिति चर नहीं होते । ये किसी निकाय में ऊर्जा स्थानांतरण की विधियाँ होती हैं जिससे उसकी आंतरिक ऊर्जा परिवर्तित होती है। जो, जैसा कि पहले वर्णन कर चुके हैं, एक अवस्था चर होता है।
साधारण भाषा में हमें प्रायः ऊष्मा तथा आंतरिक ऊर्जा में भ्रम बना रहता है। कुछ प्राथमिक भौतिकी की पुस्तकों में कभी-कभी इस भेद की उपेक्षा कर दी जाती है । तथापि ऊष्मागतिकी को भलीभांति समझने के लिए यह विभेद आवश्यक है ।
11.5 ऊष्मागतिकी का प्रथम नियम
हम यह देख चुके हैं कि किसी निकाय की आंतरिक ऊर्जा $U$ दो विधियों से ऊर्जा स्थानांतरण के कारण परिवर्तित हो सकती है। ये विधियाँ हैं : ऊष्मा तथा कार्य । कल्पना कीजिए कि
$ \Delta Q=$ परिवेश द्वारा निकाय को दी गई ऊष्मा
$ \Delta W=$ निकाय द्वारा परिवेश पर किया गया कार्य
$ \Delta U=$ निकाय की आंतरिक ऊर्जा में परिवर्तन
ऊर्जा संरक्षण के सामान्य नियम में यह अंतर्निहित है कि
$$ \begin{equation*} \Delta Q=\Delta U+\Delta W \tag{11.1} \end{equation*} $$
इसका तात्पर्य यह है कि जो ऊर्जा $(\Delta Q)$ निकाय को दी जाती है, उसका कुछ अंश निकाय की आंतरिक ऊर्जा में वृद्धि करता है $(\Delta U)$ तथा शेष परिवेश पर किया गया कार्य $(\Delta W)$ है । समीकरण (11.1) को ऊष्मागतिकी के प्रथम नियम के रूप में जाना जाता है। यह ऊर्जा संरक्षण का केवल सामान्य नियम है जिसे किसी भी उस निकाय पर लागू किया जा सकता है जिसमें परिवेश को अथवा परिवेश से ऊष्मा स्थानांतरण पर ध्यान दिया जाता है ।
मान लीजिए कि हम समीकरण (11.1) को वैकल्पिक रूप में प्रस्तुत करते हैं,
$$ \begin{equation*} \Delta Q-\Delta W=\Delta U \tag{11.2} \end{equation*} $$
अब मान लीजिए कि निकाय किसी आरंभिक अवस्था से अंतिम अवस्था में कई प्रकार से आता है। उदाहरणार्थ, गैस की अवस्था $\left(P _{1}, V _{1}\right)$ से परिवर्तित करके $\left(P _{2}, V _{2}\right)$ कर दी जाए तो हम पहले गैस के दाब को स्थिर रखकर उसके आयतन को $V _{1}$ से $V _{2}$ में परिवर्तित करते हैं अर्थात् पहले हम अवस्था $\left(P _{1}, V _{2}\right)$ में जा सकते हैं और फिर गैस के आयतन को स्थिर रखते हुए इसके दाब को $P _{1}$ से $P _{2}$ में परिवर्तित करते हैं । इससे गैस $\left(P _{2}\right.$, $V _{2}$ ) अवस्था में पहुँच जाती है । विकल्पतः हम पहले आयतन को स्थिर रख सकते हैं और फिर दबाव स्थिर रखते हैं। चूंकि $U$ एक अवस्था चर है, $\Delta U$ केवल प्रारंभिक व अंतिम अवस्थाओं पर निर्भर करेगा न कि उस पथ पर जिससे गैस एक अवस्था से दूसरी अवस्था में पहुँचती है । यद्यपि, $\Delta Q$ तथा $\Delta W$ दोनों, सामान्यतया, उस पथ पर निर्भर करते हैं जिससे गैस प्रारंभिक अवस्था से अंतिम अवस्था में जाती है। ऊष्मागतिकी के प्रथम नियम, समीकरण (11.2), से यह स्पष्ट है कि संयोजन $\Delta Q-\Delta W$ पथ पर निर्भर नहीं करता । इससे पता चलता है कि यदि कोई निकाय ऐसी प्रक्रिया अपनाता है जिसमें $\Delta U=0$ (उदाहरणार्थ, आदर्श गैस का समतापीय प्रसार, अनुभाग 11.8 देखिए), तो
$$ \Delta Q=\Delta W $$
अर्थात् निकाय को दी गई ऊष्मा निकाय द्वारा परिवेश पर कार्य करने में पूर्ण रूप से उपयोग में आ जाती है ।
यदि निकाय सिलिंडर में भरी गैस है तथा सिलिंडर में गतिशील पिस्टन लगा है तो पिस्टन को गति देने में गैस को कार्य करना पड़ता है । चूंकि बल को दाब $\times$ क्षेत्रफल के रूप में परिभाषित करते हैं तथा क्षेत्रफल $x$ विस्थापन को आयतन कहते हैं तो स्थिर दाब $P$ के विरुद्ध निकाय द्वारा संपादित कार्य निम्नलिखित होगा,
$$ \Delta W=P \Delta V $$
यहाँ $\Delta V$ गैस में आयतन के परिवर्तन को व्यक्त करता है । अतः इस उदाहरण के लिए, समीकरण (11.20) निम्न प्रकार से लिखी जाएगी
$$ \begin{equation*} \Delta Q=\Delta U+P \Delta V \tag{11.3} \end{equation*} $$
समीकरण (11.3) के अनुप्रयोग के रूप में हमें $1 \mathrm{~g}$ जल की आंतरिक ऊर्जा के परिवर्तन पर विचार करना होगा जब यह अपनी द्रव प्रावस्था से वाष्प प्रावस्था में परिवर्तित होता है । जल की मापी गई गुप्त ऊष्मा $2256 \mathrm{~J} / \mathrm{g}$ है अर्थात् जल के 1 ग्राम के लिए $\Delta \mathrm{Q}=2256 \mathrm{~J}$ होता है । वायुमंडलीय दाब पर, $1 \mathrm{~g}$ जल का आयतन द्रव प्रावस्था में $1 \mathrm{~cm}^{3}$ तथा वाष्प प्रावस्था में $1671 \mathrm{~cm}^{3}$ होता है ।
अत:
$\Delta W=P\left(V _{g}-V _{1}\right)=1.013 \times 10^{5} \times\left(1671 \times 10^{-6}\right)=169.2 \mathrm{~J}$
समीकरण (11.3) से हमें आंतरिक ऊर्जा का मान प्राप्त होता है,
$$ \Delta U=2256-169.2=2086.8 \mathrm{~J} $$
इस प्रकार, हम देखते हैं कि ऊष्मा का अधिकांश भाग जल की आंतरिक ऊर्जा में वृद्धि करने में व्यय होता है। इस प्रक्रिया में जल द्रव से वाष्प प्रावस्था में परिवर्तित होता है ।
11.6 विशिष्ट ऊष्मा धारिता
कल्पना कीजिए कि किसी पदार्थ को दी गई ऊष्मा की मात्रा $\Delta Q$ उसके ताप को $T$ से बढ़ाकर $T+\Delta T$ कर देती है । हम पदार्थ की ऊष्मा धारिता को निम्नलिखित प्रकार से परिभाषित करते हैं।
$$ \begin{equation*} S=\frac{\Delta Q}{\Delta T} \tag{11.4} \end{equation*} $$
हम आशा करते हैं कि $\Delta Q$ और इस प्रकार से ऊष्मा धारिता $S$ पदार्थ के द्रव्यमान के अनुक्रमानुपाती होती है। इसके अतिरिक्त यह ताप पर भी निर्भर कर सकती है। अर्थात् भिन्न-भिन्न तापों पर पदार्थ के ताप में एकांक वृद्धि के लिए ऊष्मा के भिन्न-भिन्न परिमाणों की आवश्यकता पड़ सकती है। पदार्थ के किसी नियत अभिलक्षण को परिभाषित करने तथा उसे उसके परिमाण से स्वतंत्र रखने के लिए हम $S$ को पदार्थ के द्रव्यमान $m$ ( $\mathrm{kg}$ में) से विभाजित कर देते हैं :
$$ \begin{equation*} s=\frac{S}{m}=\frac{1}{m} \frac{\Delta Q}{\Delta T} \tag{11.5} \end{equation*} $$
$s$ को पदार्थ की विशिष्ट ऊष्मा धारिता कहते हैं। यह पदार्थ की प्रकृति और उसके ताप पर निर्भर करती है। विशिष्ट ऊष्मा का मात्रक $\mathrm{J} \mathrm{kg}^{-1} \mathrm{~K}^{-1}$ है। यदि पदार्थ के परिमाण का निर्धारण $\mu$ मोल (द्रव्यमान $m$ को $\mathrm{kg}$ में व्यक्त करने के स्थान पर) के पदों में करें तो हम पदार्थ की ऊष्मा धारिता प्रति मोल को इस प्रकार से व्यक्त कर सकते हैं
$$ \begin{equation*} C=\frac{S}{\mu}=\frac{1}{\mu}=\frac{\Delta Q}{\Delta T} \tag{11.6} \end{equation*} $$
$C$ को पदार्थ की मोलर विशिष्ट ऊष्मा धारिता कहते हैं। $s$ की भांति $C$ भी पदार्थ के परिमाण पर निर्भर नहीं करता तथा प्रदत्त ऊष्मा की परिस्थितियों, पदार्थ की प्रकृति, उसके ताप पर निर्भर करता है । $C$ का मात्रक $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ है । जैसा कि हम बाद में देखेंगे (गैस की विशिष्ट ऊष्मा के संबंध में) $C$ या $s$ को परिभाषित करने के लिए अतिरिक्त शर्तो की आवश्यकता पड़ सकती है। $C$ को परिभाषित करने के पीछे यह विचार है कि मोलर विशिष्ट ऊष्माओं के संबंध में सरल भविष्यवाणियाँ की जा सकती हैं।
सारणी 11.1 में कमरे के ताप तथा वायुमंडलीय दाब पर कुछ ठोसों की विशिष्ट ऊष्मा धारिता तथा मोलर विशिष्ट ऊष्मा धारिता दी गई हैं।
हम अध्याय 12 में पढ़ंगे कि गैसों की विशिष्ट ऊष्माओं के संबंध में की गई भविष्यवाणियाँ सामान्यतया प्रयोग से मेल खाती हैं। हम उसी ऊर्जा सम विभाजन नियम का उपयोग कर सकते हैं। जैसा कि हमने वहाँ ठोसों की मोलर विशिष्ट ऊष्मा की भविष्यवाणी में किया है (खंड 12.5 और 12.6 देखें)। $N$ परमाणुओं वाले किसी ठोस पर विचार करें। प्रत्येक परमाणु अपनी माध्य स्थिति के दोनों ओर कंपन करता है । एक विमा में किसी दोलक की माध्य ऊर्जा $2 \times 1 / 2 k _{\mathrm{B}} T=k _{\mathrm{B}} T$ होगी । तीन विमाओं में माध्य ऊर्जा $3 k _{\mathrm{B}} T$ होगी। ठोस के एक मोल के लिए कुल ऊर्जा
$$ U=3 k _{\mathrm{B}} T \times N _{\mathrm{A}}=3 R T \quad\left(k _{\mathrm{B}} N _{\mathrm{A}}=R\right) $$
अब स्थिर दाब पर, $\Delta Q=\Delta U+P \Delta V \cong \Delta U$ होगा, क्योंकि किसी ठोस के लिए $\Delta V$ नगण्य होगा । अतः
$$ \begin{equation*} C=\frac{\Delta Q}{\Delta T}=\frac{\Delta U}{\Delta T}=3 R \tag{11.7} \end{equation*} $$
सारणी 11.1 कमरे के ताप तथा वायुमंडलीय दाब पर कुछ ठोसों की विशिष्ट ऊष्मा धारिता तथा मोलर विशिष्ट ऊष्मा धारिता
पदार्थ | विशिष्ट ऊष्मा धारिता $\left(\mathrm{J} \mathrm{kg}^{-1} \mathbf{K}^{-1}\right)$ |
मोलर विशिष्ट ऊष्मा धारिता $\left(\mathrm{J} \mathrm{mol}^{-1} \mathbf{K}^{-1}\right)$ |
---|---|---|
ऐलुमिनियम | 900.0 | 24.4 |
कार्बन | 506.5 | 6.1 |
ताँबा | 386.4 | 24.5 |
सीसा | 127.7 | 26.5 |
चाँदी | 236.1 | 25.5 |
टंगस्टन | 134.4 | 24.9 |
जैसा कि सारणी से स्पष्ट है कि भविष्यवाणियाँ सामान्यतया साधारण तापों पर प्रायोगिक मानों से मेल खाती हैं (कार्बन एक अपवाद है)। यह ज्ञात है कि यह मेल निम्न तापों पर भंग हो जाता है ।
जल की विशिष्ट ऊष्मा धारिता
ऊष्मा का पुराना मात्रक कैलोरी था। 1 कैलोरी को ऊष्मा के उस परिमाण के रूप में परिभाषित करते थे जो $1 \mathrm{~g}$ जल के ताप में $1^{\circ} \mathrm{C}$ की वृद्धि कर दे। अधिक परिशुद्ध मापों से यह पाया गया है कि जल की विशिष्ट ऊष्मा में ताप के साथ किंचितमात्र परिवर्तन होता है । चित्र 11.5 में ताप परिसर $0-100^{\circ} \mathrm{C}$ में यह परिवर्तन दर्शाया गया है ।
चित्र 11.5 ताप के साथ जल की विशिष्ट ऊष्मा धारिता में परिवर्तन
इसलिए कैलोरी की यथार्थ परिभाषा के लिए यह आवश्यक समझा गया कि एकांक ताप अंतराल को निर्धारित किया जाए। ऊष्मा का वह परिमाण जो $1 \mathrm{~g}$ जल के ताप में $1{ }^{\circ} \mathrm{C}(14.5$ ${ }^{\circ} \mathrm{C}$ से $15.5^{\circ} \mathrm{C}$ ) की वृद्धि कर दे, उसे 1 कैलोरी के रूप में परिभाषित किया गया। चूंकि ऊष्मा ऊर्जा का ही एक रूप है, इसलिए मात्रक जूल, $\mathrm{J}$ के उपयोग को प्राथमिकता देना अधिक उपयुक्त है । SI मात्रकों में, जल की विशिष्ट ऊष्मा धारिता 4186 $\mathrm{J} \mathrm{kg}^{-1} \mathrm{~K}^{-1}$ अर्थात् $4.186 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$ है । तथाकथित ऊष्मा का यांत्रिक तुल्यांक, जिसे 1 कैलोरी ऊष्मा उत्पन्न करने के लिए आवश्यक कार्य के रूप में परिभाषित करते हैं, वास्तव में ऊर्जा के दो भिन्न मात्रकों (कैलोरी से जूल) के मध्य एक परिवर्तन गुणक है। चूंकि SI मात्रक पद्धति में ऊष्मा कार्य या ऊर्जा के किसी अन्य रूप के लिए जूल मात्रक का उपयोग करते हैं, अतः ‘यांत्रिक तुल्यांक’ पद अब निरर्थक हो गया है और इसे उपयोग में लाने की आवश्यकता नहीं है ।
जैसा कि पहले वर्णन किया जा चुका है कि विशिष्ट ऊष्मा धारिता, प्रक्रिया या उन परिस्थितियों पर निर्भर करती है जिनके अंतर्गत ऊष्मा का स्थानांतरण होता है । उदाहरणार्थ, गैसों के लिए हम दो विशिष्ट ऊष्माओं को परिभाषित करते हैं : स्थिर आयतन पर विशिष्ट ऊष्मा धारिता तथा स्थिर दाब पर विशिष्ट ऊष्मा धारिता। किसी आदर्श गैस के लिए हमारे पास एक सरल संबंध होता है जिसे हम निम्नलिखित प्रकार से व्यक्त करते हैं :
$$ \begin{equation*} C _{P}-C _{V}=R \tag{11.8} \end{equation*} $$
यहाँ $C _{P}$ व $C _{V}$ आदर्श गैस की क्रमशः स्थिर दाब व स्थिर आयतन पर मोलर विशिष्ट ऊष्मा धारिताएँ हैं तथा $R$ सार्वत्रिक गैस नियतांक है । इसे सिद्ध करने के लिए हम 1 मोल गैस के लिए समीकरण (11.3) पर विचार करते हैं :
$$ \Delta Q=\Delta U+P \Delta V $$
यदि $\Delta Q$ का स्थिर आयतन पर अवशोषण होता है तो $\Delta V=0$ होगा।
$$ \begin{equation*} C _{v}=\left(\frac{\Delta Q}{\Delta T}\right) _{v}=\left(\frac{\Delta U}{\Delta T}\right) _{v} \equiv\left(\frac{\Delta U}{\Delta T}\right) \tag{11.9} \end{equation*} $$
यहाँ अधोलिखित $V$ को अंतिम पद में छोड़ दिया गया है क्योंकि आदर्श गैस के लिए $U$ का मान मात्र ताप पर निर्भर करता है । (अधोलिखित यह व्यक्त करता है कि तत्संबंधित राशि स्थिर है ।) इसके विपरीत, यदि $\Delta Q$ का स्थिर दाब पर अवशोषण होता है तो
$$C_p=\left(\frac{\Delta Q}{\Delta T}\right)_p=\left(\frac{\Delta U}{\Delta T}\right)_p+P\left(\frac{\Delta V}{\Delta T}\right)_p \tag{11.10}$$
अधोलिखित $P$ को प्रथम पद में छोड़ा जा सकता है क्योंकि आदर्श गैस के लिए $U$ का मान मात्र $T$ पर निर्भर करता है । आदर्श गैस के 1 मोल के लिए
$$ P V=R T $$
जो निम्नलिखित परिणाम देता है :
$$ \begin{equation*} P\left(\frac{\Delta V}{\Delta T}\right) _{P}=R \tag{11.11} \end{equation*} $$
समीकरणों (11.9) से (11.11) तक के उपयोग से हमें वांछित संबंध ( 11.8 ) प्राप्त होता है ।
11.7 ऊष्मागतिकीय अवस्था चर तथा अवस्था का समीकरण
किसी भी ऊष्मागतिकीय निकाय की प्रत्येक साम्य अवस्था को कुछ स्थूल चरों के विशिष्ट मानों के उपयोग द्वारा पूरी तरह से वर्णित कर सकते हैं। उदाहरणार्थ, किसी गैस की साम्य अवस्था उसके दाब, आयतन, ताप व द्रव्यमान (तथा संगठन यदि गैसों का सम्मिश्रण है) के मानों द्वारा पूरी तरह से निर्धारित होती है। कोई ऊष्मागतिक निकाय सदैव साम्य स्थिति में नहीं होता। उदाहरणार्थ, किसी गैस को निर्वात के विरुद्ध यदि फैलने दिया जाता है तो यह साम्य अवस्था नहीं होती [चित्र 11.6(a)]। द्रुत्र प्रसरण की अवधि में गैस का दाब संभव है कि सभी स्थानों पर एकसमान न हो। इसी प्रकार, गैसों का वह सम्मिश्रण जिसमें विस्फोटक रासायनिक अभिक्रिया होती है (उदाहरणार्थ, पेट्रोल की वाष्प तथा वायु का मिश्रण जिसे एक चिंगारी से प्रज्ज्वलित किया जाता है) एक साम्य अवस्था नहीं है; इसके अतिरिक्त इसके ताप व दाब एकसमान नहीं हैं [चित्र 11.6(b)]। अंततः, गैस का ताप व दाब एकसमान हो जाता है तथा वह परिवेश के साथ तापीय व यांत्रिक साम्य में आ जाती है ।
चित्र 11.6 (a) बॉक्स के विभाजक को अचानक हटा दिया गया है जिससे गैस का मुक्त प्रसरण होता है। $(b)$ गैसों का मिश्रण जिसमें विस्फोटक रासायनिक अभिक्रिया संपन्न होती है। दोनों स्थितियों में गैस साम्यावस्था में नहीं है तथा चरों से इसका विवरण नहीं दिया जा सकता।
संक्षेप में, ऊष्मागतिकीय अवस्था चर निकायों की साम्यावस्था का विवरण देते हैं । यह आवश्यक नहीं है कि विभिन्न अवस्था चर स्वतंत्र हों । अवस्था चरों के पारस्परिक संबंध को अवस्था का समीकरण कहते हैं। उदाहरणार्थ, किसी आदर्श गैस के लिए अवस्था का समीकरण आदर्श गैस संबंध होता है,
$$ P V=\mu R T $$
गैस की निश्चित मात्रा के लिए अर्थात् दिए गए $\mu$ के लिए इस प्रकार से केवल दो ही स्वतंत्र चर होते हैं। मान लीजिए कि वे $P$ और $V$ या $T$ और $V$ हैं । निश्चित ताप पर दाब आयतन वक्र को समतापी कहते हैं। वास्तविक गैसों के लिए अवस्था का समीकरण अधिक जटिल हो सकता है।
ऊष्मागतिकीय अवस्था चर दो प्रकार के होते हैं : विस्तीर्ण तथा गहन। विस्तीर्ण चर निकाय के आकार का संकेत देते हैं जबकि गहन चर जैसे दाब तथा ताप से ऐसा नहीं करते । यह निर्णय लेने के लिए कि कौन-सा चर विस्तीर्ण है तथा कौन-सा गहन है, किसी प्रासंगिक निकाय पर विचार कीजिए तथा कल्पना कीजिए कि उसे दो समान भागों में बाँट दिया गया है। वे चर जो हर भाग में अपरिवर्तित रहते हैं गहन चर कहलाते हैं किंतु जिन चरों का मान हर भाग में आधा हो जाता है, उन्हें विस्तीर्ण चर कहते हैं। उदाहरणार्थ, यह आसानी से देखा जा सकता है कि आंतरिक ऊर्जा $U$, आयतन $V$, कुल द्रव्यमान $M$ विस्तीर्ण चर हैं जबकि दाब $P$, ताप $T$ व घनत्व $\rho$ गहन चर हैं। यह एक अच्छी आदत होगी यदि चरों के इस प्रकार के वर्गीकरण के द्वारा ऊष्मागतिकीय समीकरणों की प्रासंगिकता का परीक्षण कर लिया जाए। उदाहरणार्थ, समीकरण,
$$ \Delta Q=\Delta U+P \Delta V $$
में दोनों ओर की राशियाँ विस्तीर्ण है* (किसी गहन चर जैसे $P$ तथा विस्तीर्ण राशि $\Delta V$ का गुणनफल विस्तीर्ण राशि है)।
11.8 ऊष्मागतिकीय प्रक्रम
11.8.1 स्थैतिककल्प प्रक्रम
ऐसी गैस पर विचार कीजिए जो अपने परिवेश से तापीय तथा यांत्रिक रूप से साम्य में हो । ऐसी स्थिति में गैस का दाब बाह्य दाब के बराबर होगा तथा इसका ताप वही होगा जो परिवेश का है । कल्पना कीजिए कि बाह्य दाब को यकायक कम कर देते हैं (मान लीजिए कि बर्तन में लगे गतिशील पिस्टन से भार हटा लेते हैं)। पिस्टन बाहर की ओर त्वरित होगा। प्रक्रम की अवधि में गैस उन अवस्थाओं से गुजरती है जो साम्यावस्थाएँ नहीं हैं । असाम्य अवस्थाओं का सुनिश्चित दाब व ताप नहीं होता । इसी प्रकार, यदि गैस व उसके परिवेश के मध्य सीमित तापांतर है, तो ऊष्मा का विनिमय द्रुत गति से होता है। इस प्रक्रम में गैस असाम्यावस्था से गुजरती है । यथासमय, गैस संतुलन की अवस्था में पहुँच जाएगी जिसमें सुनिश्चित ताप व दाब परिवेश के ताप व दाब के बराबर हो जाएगा । निर्वात में गैस का स्वतंत्र प्रसार[^8] तथा विस्फोटक रासायनिक अभिक्रिया प्रदर्शित करने वाली गैसों का सम्मिश्रण (जिसका खंड (11.7) में वर्णन किया गया है) भी ऐसे उदाहरण हैं जिसमें निकाय असाम्यावस्था से गुजरता है।
किसी निकाय की असाम्यावस्था से व्यवहार करना कठिन होता है । इसलिए एक आदर्शीकृत प्रक्रम की कल्पना करना सरल होता है जिसके हर चरण में निकाय एक साम्यावस्था में है । ऐसा प्रक्रम सिद्धांतः अनंत रूप से धीमा होता है । इस कारण इस प्रक्रम को स्थैतिककल्प (लगभग स्थिर) प्रक्रम कहते हैं। यह निकाय अपने चरों $(P, T, V)$ को इतनी धीमी गति से परिवर्तित करता है कि यह पूरी अवधि में अपने परिवेश से तापीय व यांत्रिक साम्य में रहता है। किसी स्थैतिककल्प प्रक्रम के हर चरण में निकाय के दाब तथा उसके बाह्य दाब का अंतर अत्यंत छोटा होता है । यही बात निकाय तथा उसके परिवेश के मध्य तापांतर पर भी लागू होती है । स्थैतिककल्प प्रक्रम के माध्यम से किसी गैस को उसकी अवस्था $(P, T)$ से अन्य अवस्था $\left(P^{\prime}, T^{\prime}\right)$ में ले जाते हैं तो हम बाह्य दाब को अत्यल्प मात्रा से परिवर्तित करते हैं तथा इसके दाब को परिवेश के दाब के बराबर हो जाने देते हैं। प्रक्रम को अति धीमी गति से चलने देते हैं जब तक कि निकाय का दाब $P^{\prime}$ न हो जाए । इसी प्रकार, ताप बदलने के लिए हम निकाय तथा परिवेश के ऊष्मा भंडार के मध्य अत्यन्त सूक्ष्म तापांतर उत्पन्न करते हैं तथा ऊष्मा भंडारों का चयन उत्तरोत्तर भिन्न तापों $T$ से $T^{\prime}$ का करते हैं। इस प्रकार निकाय का ताप $T^{\prime}$ हो जाता है ।
चित्र 11.7 स्थैतिककल्प प्रक्रम में परिवेश के पात्र का ताप तथा बाह्य दाब एवं निकाय के ताप व दाब का अंतर अत्यल्प है ।
स्पष्ट रूप से, स्थैतिककल्प प्रक्रम काल्पनिक रचना है। व्यवहार रूप से उन प्रक्रमों को, जो बहुत ही धीमे हैं, जिनके पिस्टन में त्वरित गति नहीं होती तथा जिनमें अधिक ताप प्रवणता नहीं होती, इन्हें आदर्श स्थैतिककल्प प्रक्रम मानना तर्कसंगत है। यदि अन्य बात का वर्णन न किया जाए तो हम अब स्थैतिककल्प प्रक्रमों के विषय में ही अध्ययन करेंगे।
वह प्रक्रम जिसकी पूरी अवधि में निकाय का ताप स्थिर रखा जाता है, समतापीय प्रक्रम कहलाता है । स्थिर ताप के किसी विशाल ऊष्मा भंडार में रखे धात्विक सिलिंडर में प्रसरित हो रही गैस समतापीय प्रक्रम का एक उदाहरण है । (ऊष्मा भंडार से निकाय में ऊष्मा के स्थानांतरण से ऊष्माशय का ताप यथार्थ रूप से प्रभावित नहीं होता, क्योंकि उसकी ऊष्माधारिता अत्यधिक होती है)। समदाबीय प्रक्रम में दाब स्थिर रहता है जबकि समआयतनिक प्रक्रम में आयतन स्थिर रहता है। अंततः, यदि निकाय को परिवेश से ऊष्मारुद्ध कर दिया जाए तथा निकाय व परिवेश के मध्य ऊष्मा प्रवाहित न हो, तो प्रक्रम रुद्धोष्म होता है । इन विशेष प्रक्रमों की परिभाषाओं का सार सारणी 11.2 में प्रस्तुत किया गया है ।
सारणी 11.2 कुछ विशिष्ट ऊष्मागतिकीय प्रक्रम करेंगे।
प्रक्रमों का प्रकार | विशेषता |
---|---|
समतापीय | स्थिर ताप |
समदाबीय | स्थिर दाब |
समआयतनिक | स्थिर आयतन |
रुद्धोष्म | निकाय व परिवेश के मध्य ऊष्मा प्रवाह |
नहीं $(\Delta Q=0)$ |
अब हम इन प्रक्रमों के विषय में विस्तार से अध्ययन
11.8.2 समतापीय प्रक्रम
किसी समतापीय प्रक्रम में (जिसमें $T$ स्थिर है) आदर्श गैस समीकरण से निम्नलिखित सूत्र प्राप्त होता है
$$ P V=\text { नियतांक } $$
अर्थात् किसी निश्चित द्रव्यमान की गैस का दाब उसके आयतन का व्युत्क्रमानुपाती होता है । यह और कुछ नहीं वरन् बॉयल का नियम है ।
कल्पना कीजिए कि कोई आदर्श गैस समतापीय (ताप $T$ पर) रूप से अपनी प्रारंभिक $\left(P _{1}, V _{1}\right)$ से अंतिम अवस्था $\left(P _{2}, V _{2}\right)$ में पहुँचती है । बीच के किसी चरण में जब दाब $P$ हो तथा आयतन में परिवर्तन $V$ से $V+\Delta V(\Delta V$ कम) हो, तो
$$ \Delta W=P \Delta V $$
$\Delta V \rightarrow 0$ लेते हुए राशि $\Delta W$ को संपूर्ण प्रक्रम में जोड़कर कार्य की कुल मात्रा निम्नलिखित रूप से ज्ञात कर लेते हैं,
$$ \begin{align*} & W=\int _{V _{1}}^{V _{2}} P d V \\ & =\mu R T \int _{V _{1}}^{V _{2}} \frac{d V}{V}=\mu R T \ln \frac{V _{2}}{V _{1}} \tag{11.12} \end{align*} $$
दूसरे चरण में हमने आदर्श गैस समीकरण $P V=\mu R T$ का उपयोग किया है तथा अचरों को समाकलन से बाहर ले लिया है। आदर्श गैस के लिए आंतरिक ऊर्जा ताप पर निर्भर करती है । इस प्रकार, किसी आदर्श गैस के समतापीय प्रक्रम में आंतरिक ऊर्जा में कोई परिवर्तन नहीं होता । इसलिए ऊष्मागतिकी के प्रथम नियम के अनुसार, गैस को दी गई ऊष्मा की मात्रा गैस द्वारा संपादित किए गए कार्य के बराबर होती है : $Q=W$ । समीकरण (11.12) में ध्यान दीजिए कि जब $V _{2}>V _{1}$ तो $W>0$; तथा $V _{2}<V _{1}$ के लिए $W<0$ होता है । इसका तात्पर्य यह है कि समतापीय प्रसार में गैस ऊष्मा अवशोषित करके कुछ कार्य संपादित करती है जबकि समतापीय संपीडन में गैस पर परिवेश द्वारा कार्य होता है तथा ऊष्मा का निष्कासन होता है ।
11.8.3 रुद्धोष्म प्रक्रम
रुद्धोष्म प्रक्रम में निकाय को परिवेश से ऊष्मारुद्ध कर देते हैं फलस्वरूप अवशोषित या निष्कासित ऊष्मा शून्य होती है । समीकरण (11.1) से पता चलता है कि गैस द्वारा संपादित कार्य के फलस्वरूप आंतरिक ऊर्जा कम हो जाती है (और इस प्रकार आदर्श गैस के लिए उसका ताप)। यहाँ हम बिना उपपत्ति के इस तथ्य का उल्लेख कर रहे हैं (जिसका आप उच्च कक्षाओं में अध्ययन करेंगे) कि आदर्श गैस के लिए रुद्धोष्म प्रक्रम में
$$ \begin{equation*} P V^{\gamma}=\text { नियतांक } \tag{11.13} \end{equation*} $$
जहाँ $\gamma$ गैस की दो विशिष्ट ऊष्माओं (सामान्य अथवा मोलर), स्थिर दाब पर विशिष्ट ऊष्मा $C _{p}$ तथा स्थिर आयतन पर विशिष्ट ऊष्मा $C _{v}$ का अनुपात है । अर्थात्
$$ \gamma=\frac{C _{p}}{C _{v}} $$
अतः यदि कोई आदर्श गैस रुद्धोष्म ढंग से $\left(P _{1}, V _{1}\right)$ अवस्था से $\left(P _{2}, V _{2}\right)$ अवस्था में पहुँच जाती है, तो
$$ \begin{equation*} P _{1} V _{1}^{\gamma}=P _{2} V _{2}^{\gamma} \tag{11.14} \end{equation*} $$
चित्र 11.8 में आदर्श गैस के लिए $P-V$ वक्रों को दो रुद्धोष्म से जोड़ने वाले दो समतापीय को दर्शाया गया है ।
चित्र 11.8 आदर्श गैस के समतापीय व रुद्धोष्म प्रक्रमों के लिए $P-V$ वक्र । किसी आदर्श गैस की अवस्था $\left(P _{1}, V _{1}, T _{1}\right)$ से अवस्था $\left(P _{2}, V _{2}, T _{2}\right)$ में रुद्धोष्म परिवर्तन में होने वाले कार्य को हम पहले ही की भांति परिकलित कर सकते हैं । अर्थात्,
$$ \begin{align*} & W=\int _{V _{1}}^{V _{2}} P \mathrm{~d} V \end{align*} $$
$$ \begin{align*} & =\text { नियतांक } \times \int _{V _{1}}^{V _{2}} \frac{\mathrm{d} V}{V^{\gamma}}=\text { नियतांक } \times\left.\frac{V^{-\gamma+1}}{1-\gamma}\right| _{V _{1}} ^{v _{2}} \end{align*} $$
$$ \begin{align*} & =\frac{\text { नियतांक }}{1-\gamma} \times \frac{1}{V _{2}^{\gamma-1}}-\frac{1}{V _{1}^{\gamma-1}} \tag{11.15} \end{align*} $$
समीकरण (11.14), से नियतांक $P _{1} V _{1}^{\gamma}$ है अथवा $P _{2} V _{2}^{\gamma}$
$$ \begin{align*} \therefore \quad W & =\frac{1}{1-\gamma} \times\left[\frac{P _{2} V _{2}^{\gamma}}{V _{2}^{\gamma-1}}-\frac{P _{1} V _{1}^{\gamma}}{V _{1}^{\gamma-1}}\right] \\ & =\frac{1}{1-\gamma}\left[P _{2} V _{2}-P _{1} V _{1}\right]=\frac{\mu R\left(T _{1}-T _{2}\right)}{\gamma-1} \tag{11.16} \end{align*} $$
जैसा अपेक्षित है, यदि रुद्धोष्म प्रक्रम में कार्य गैस द्वारा संपन्न होता है $(W>0)$, तब समीकरण $(11.16)$ से $T _{2}>T _{1}$ । इसके विपरीत, यदि कार्य गैस पर संपादित होता है $(W<0)$ तो, हमें $T _{2}>T _{1}$ प्राप्त होता है, अर्थात् गैस का ताप बढ़ता है ।
11.8.4 समआयतनिक प्रक्रम
किसी समआयतनिक प्रक्रम में $V$ नियत रहता है । इस प्रक्रम में न तो गैस पर कोई कार्य होता है और न ही गैस द्वारा कोई कार्य संपादित होता है । समीकरण (11.1) से गैस द्वारा अवशोषित ऊष्मा पूर्ण रूप से उसकी आंतरिक ऊर्जा तथा उसके ताप को परिवर्तित करने में व्यय होती है । किसी दी गई ऊष्मा की मात्रा के लिए ताप में परिवर्तन नियत आयतन पर गैस की विशिष्ट ऊष्मा द्वारा निर्धारित की जाती है।
11.8.5 समदाबीय प्रक्रम
समदाबीय प्रक्रम में दाब $P$ नियत रहता है । गैस द्वारा किया गया कार्य
$$ \begin{equation*} W=P\left(V _{2}-V _{1}\right)=\mu R\left(T _{2}-T _{1}\right) \tag{11.17} \end{equation*} $$
चूंकि ताप परिवर्तित होता है, अतः आंतरिक ऊर्जा भी परिवर्तित होती है । अवशोषित ऊष्मा आंशिक रूप से आंतरिक ऊर्जा में वृद्धि करने में तथा आंशिक रूप से कार्य करने में व्यय होती है । किसी नियत ऊष्मा की मात्रा के लिए ताप में परिवर्तन नियत दाब पर गैस की विशिष्ट ऊष्मा द्वारा निर्धारित किया जाता है ।
11.8.6 चक्रीय प्रक्रम
चक्रीय प्रक्रम में निकाय अपनी प्रारंभिक अवस्था में वापस लौट आता है । चूंकि आंतरिक ऊर्जा अवस्था चर है, चक्रीय प्रक्रम के लिए $\Delta U=0$ । समीकरण (11.1) से, अवशोषित ऊष्मा की कुल मात्रा निकाय द्वारा किए गए कार्य के बराबर होती है ।
11.9 ऊष्मागतिकी का द्वितीय नियम
ऊष्मागतिकी का प्रथम नियम ऊर्जा संरक्षण नियम है। सामान्य अनुभव यह बतलाता है कि ऐसे बहुत से मनोगम्य प्रक्रम हैं जो ऊष्मागतिकी के प्रथम नियम से पूर्णतया अनुमत हैं तथापि कभी भी होते हुए दिखाई नहीं देते । उदाहरणार्थ, ऐसा किसी ने कभी नहीं देखा कि मेज पर पड़ी कोई पुस्तक स्वतः उछलकर किसी ऊँचाई पर पहुँच जाए। किंतु ऐसी बात तभी संभव हो सकती है यदि केवल ऊर्जा संरक्षण नियम का ही नियंत्रण हो । मेज स्वतः ठंडी होकर अपनी आंतरिक ऊर्जा का कुछ अंश पुस्तक की समान मात्रा की यांत्रिक ऊर्जा में रूपांतरित करने में करे और इस यांत्रिक ऊर्जा के कारण पुस्तक उस ऊँचाई तक उछले जिसकी स्थितिज ऊर्जा पुस्तक द्वारा प्राप्त यांत्रिक ऊर्जा के बराबर हो। परंतु ऐसा कदापि नहीं होता। स्पष्ट है कि प्रकृति के किसी आंतरिक मूल नियम के कारण यह निषेध है। यद्यपि यह ऊर्जा संरक्षण नियम का अनुपालन करता है। वह नियम जो ऊष्मागतिकी के प्रथम नियम से संगत अनेक परिघटनाओं को स्वीकृति नहीं देता, ऊष्मागतिकी का द्वितीय नियम कहलाता है।
ऊष्मागतिकी का द्वितीय नियम किसी ऊष्मा इंजन की दक्षता तथा किसी प्रशीतक के निष्पादन गुणांक की मूल सीमा निर्धरित करता है। सरल भाषा में, यह नियम बताता है कि ऊष्मा इंजन की दक्षता कदापि 1 नहीं हो सकती। ठंडे ऊष्मा भंडार की मुक्त ऊष्मा को कभी भी शून्य नहीं किया जा सकता। प्रशीतक के लिए द्वितीय नियम यह बताता है कि निष्पादन गुणांक कदापि अनंत नहीं हो सकता। प्रशीतक पर बाह्य कार्य $(W)$ कभी भी शून्य नहीं हो सकता। अधोलिखित दोनों प्रकथन, इन प्रेक्षणों का एक संक्षिप्त सार है। उनमें से एक केल्विन तथा प्लैंक के द्वारा दिया गया है जिसके अनुसार, किसी आदर्श ऊष्मा इंजन की संभावना का खंडन किया गया है, तथा दूसरा क्लासियस द्वारा दिया गया है जिसके अनुसार, किसी आदर्श प्रशीतक अथवा ऊष्मा पंप की संभावना का खंडन किया गया है।
केल्विन-प्लैंक का प्रकथन
ऐसा कोई प्रक्रम संभव नहीं है जिसका एकमात्र परिणाम किसी ऊष्मा भंडार से ऊष्मा का अवशोषण करना तथा उस ऊष्मा को पूर्णतया कार्य में रूपांतरित करना हो।
क्लासियस का प्रकथन
ऐसा कोई भी प्रक्रम संभव नहीं है जिसका एकमात्र परिणाम किसी ठंडे पिंड से किसी गर्म पिंड में ऊष्मा स्थानांतरण हो। उच्च कक्षाओं के पाठ्यक्रमों में आप इसकी उपपत्ति पढ़ेंगे कि दोनों प्रकथन पूर्णतया समतुल्य हैं ।
11.10 उत्क्रमणीय व अनुत्क्रमणीय प्रक्रम
किसी ऐसे प्रक्रम की कल्पना कीजिए जिसमें कोई ऊष्मागतिकीय निकाय आरंभिक अवस्था $i$ से अंतिम अवस्था $f$ में पहुँचता है। प्रक्रम में निकाय परिवेश से $Q$ ऊष्मा अवशोषित करता है तथा उस पर $W$ कार्य संपादित करता है। क्या हम इस प्रक्रम को उलट सकते हैं तथा निकाय व परिवेश दोनों को, कहीं भी कोई अन्य प्रभाव पड़े बिना, आरंभिक अवस्था में वापस ला सकते हैं? अनुभव बताता है कि प्रकृति के अधिकांश प्रक्रमों में ऐसा होना संभव नहीं है। प्रकृति में सभी नैसर्गिक प्रक्रम अनुत्क्रमणीय हैं। इनके अनेक उदाहरण गिनाये जा सकते हैं। चूल्हे पर रखे बर्तन का आधार दूसरे भागों की अपेक्षा अधिक गरम होता है। जब बर्तन को हटाते हैं तो ऊष्मा आधार से दूसरे भागों में स्थानांतरित होती है जिससे बर्तन का ताप एकसमान हो जाता है (यथोचित समय में यह परिवेश के ताप के बराबर ठंडा हो जाता है)। इस प्रक्रम को उत्क्रमित नहीं किया जा सकता, बर्तन का कोई भाग स्वतः ठंडा होकर आधार को गर्म नहीं करेगा। यदि ऐसा होता है तो ऊष्मागतिकी के द्वितीय नियम का उल्लंघन होगा। गैस का मुक्त प्रसार अनुत्क्रमणीय होता है। वायु तथा पेट्रोल के मिश्रण में स्फुलिंग द्वारा प्रज्वलित दहन अभिक्रिया को उत्क्रमित नहीं किया जा सकता। रसोईघर में किसी गैस सिलिंडर से रिस रही भोजन पकाने की गैस पूरे कमरे में विसरित हो जाती है। विसरण प्रक्रम स्वतः उत्क्रमित नहीं होगा जिससे गैस वापस सिलिंडर में भर जाए। किसी ऊष्मा भंडार के ऊष्मीय संपर्क में आने वाले द्रव का विलोड़न संपादित हो रहे कार्य को ऊष्मा में रूपांतरित कर देगा जिससे उष्माशय की आंतरिक ऊर्जा बढ़ जाती है। प्रक्रम को पूर्णतया उत्क्रमित नहीं कर सकते, अन्यथा इसका अर्थ होगा कि ऊष्मा पूर्णतया कार्य में परिवर्तित हो गई है। यह ऊष्मागतिकी के दूसरे नियम का उल्लंघन है। अनुत्क्रमणीयता एक नियम है न कि प्रकृति में कोई अपवाद। अनुत्क्रमणीयता मुख्यतः दो कारणों से उत्पन्न होती है : पहला, अनेक प्रक्रम (जैसे मुक्त प्रसरण या विस्फोटक रासायनिक अभिक्रिया) निकाय को असंतुलन की अवस्थाओं में ले जाते हैं; दूसरा, अनेक प्रक्रमों में घर्षण, श्यानता तथा अन्य क्षय संबंधी प्रभाव निहित होते हैं (इसके उदाहरण हैं - किसी गतिमान पिंड का रुकना जिसमें पिंड अपनी यांत्रिक ऊर्जा को फर्श व स्वयं अपनी ऊष्मा के रूप में दे देता है; द्रव में घूमते हुए ब्लेड का श्यानता के कारण रुक जाना जिसमें यह अपनी यांत्रिक ऊर्जा को द्रव की आंतरिक ऊर्जा के रूप में दे देता है)। चूंकि क्षयकारी प्रभाव सभी स्थानों पर उपस्थित रहते हैं। इन्हें कम तो किया जा सकता है पर पूर्णतया समाप्त नहीं किया जा सकता। जिन प्रक्रमों से हमारा अधिकतर सामना होता है वे सभी अनुत्क्रमणीय होते हैं।
कोई ऊष्मागतिकीय प्रक्रम (अवस्था $i \rightarrow$ अवस्था $f$ ) तभी उत्क्रमणीय होता है यदि उसे इस प्रकार वापस लौटाया जा सके कि निकाय व परिवेश दोनों अपनी प्रारंभिक अवस्थाओं में वापस आ जाएँ तथा परिवेश में कहीं भी किसी भी प्रकार का अन्य परिवर्तन न हो । पूर्व विवेचना के अनुसार कोई उत्क्रमणीय प्रक्रम एक आदर्श धारणा है। कोई प्रक्रम उत्क्रमणीय तभी होता है जब वह स्थैतिककल्प होता है (परिवेश के साथ प्रत्येक चरण पर साम्य निकाय) तथा निकाय में कोई क्षयकारी प्रभाव नहीं होते हैं। उदाहरणार्थ, घर्षणहीन गतिशील पिस्टन लगे सिलिंडर भरी किसी आदर्श गैस का स्थैतिककल्प समतापीय प्रसरण उत्क्रमणीय प्रक्रम है ।
उत्क्रमणीयता ऊष्मागतिकी की ऐसी मूल धारणा क्यों है ? जैसा कि हम देख चुके है, ऊष्मागतिकी के महत्त्वों में से एक महत्त्व दक्षता का है जिससे ऊष्मा कार्य में रूपांतरित की जा सकती है । ऊष्मागतिकी का दूसरा नियम $100 %$ दक्षता के आदर्श ऊष्मा इंजन की संभावना को नियम विरुद्ध बताता है । $T _{1}$ व $T _{2}$ के दो ऊष्मा भंडारों के बीच कार्य करने वाले किसी ऊष्मा इंजन की संभावित अधिकतम दक्षता कितनी होगी ? यह देखा जाता है कि आदर्श उत्क्रमणीय प्रक्रमों पर आधारित ऊष्मा इंजन अधिकतम संभावित दक्षता प्राप्त करता है । अन्य दूसरे इंजनों जिनमें किसी न किसी रूप में अनुत्क्रमणीयता निहित होती है (जैसा कि व्यावहारिक इंजनों में होता है) की दक्षता इस सीमांत दक्षता से कम होती है ।
11.11 कार्नो इंजन
कल्पना कीजिए कि हमारे पास ताप $T _{1}$ पर एक उष्ण ऊष्मा भंडार व ताप $T _{2}$ पर एक ठंडा ऊष्मा भंडार है । इन दोनों ऊष्मा भंडारों के बीच कार्य करने वाले किसी ऊष्मा इंजन की अधिकतम दक्षता कितनी होगी तथा सर्वाधिक दक्षता प्राप्त करने के लिए प्रकर्मों के किस चक्र को अपनाना चाहिए ? फ्रेंच इंजीनियर, साडी कार्नो ने 1824 में सर्वप्रथम इस प्रश्न पर विचार किया। दिलचस्प बात यह है कि कार्नो ने इस प्रश्न का सही उत्तर पा लिया था यद्यपि ऊष्मा और ऊष्मागतिकी की मौलिक अवधारणा को तब तक दृढ़तापूर्वक स्थापित नहीं किया जा सका था।
हम यह आशा करते हैं कि दो तापों के बीच कार्य करने वाला आदर्श इंजन उत्क्रमणीय इंजन है । जैसा कि पहले अनुभागों में बताया जा चुका है, अनुत्क्रमणीयता से दक्षता को कम करने वाले क्षयकारी प्रभाव संबद्ध होते हैं। कोई प्रक्रम तभी उत्क्रमणीय होता है यदि वह स्थैतिककल्प तथा ऊर्जा-संरक्षी हो। हम यह देख चुके हैं कि वह प्रक्रम स्थैतिककल्प नहीं होता है जिसमें निकाय व ऊष्मा भंडार के बीच तापांतर पर्याप्त हो। इसका तात्पर्य यह है कि दो तापों के मध्य कार्य कर रहे किसी उत्क्रमणीय ऊष्मा इंजन में ऊष्मा का अवशोषण (गरम ऊष्मा भंडार से) समतापीय विधि द्वारा होना चाहिए तथा (अपेक्षाकृत ठंडे ऊष्मा भंडार को) समतापीय विधि द्वारा ऊष्मा मुक्त होनी चाहिए। इस प्रकार, हमने उत्क्रमणीय इंजन के दो चरणों की पहचान की : ताप $T _{1}$ पर समतापीय प्रक्रम जिसमें गरम ऊष्मा भंडार से $Q _{1}$ ऊष्मा अवशोषित होती है तथा ताप $T _{2}$ पर दूसरा समतापीय प्रक्रम जिसमें ठंडे ऊष्मा भंडार को $Q _{2}$ ऊष्मा मुक्त होती है । चक्र पूरा होने के लिए इस बात की आवश्यकता है कि हम निकाय को ताप $T _{1}$ से $T _{2}$ तक ले जाएँ फिर उसे ताप $T _{2}$ से $T _{1}$ पर वापस ले जाएँ। प्रश्न यह है कि इस उद्देश्य के लिए हमें किन प्रक्रमों का उपयोग करना चाहिए जो उत्क्रमणीय हों ? थोड़े चिंतन से यह पता चल जाता है कि उस उद्देश्य के लिए हम केवल उत्क्रमणीय रुद्धोष्म प्रक्रम ही अपना सकते हैं जिसमें किसी भी ऊष्मा भंडार से ऊष्मा का प्रवाह सम्मिलित नहीं होता । निकाय को एक ताप से दूसरे ताप तक ले जाने के लिए यदि हम कोई अन्य प्रक्रम अपनाते हैं जो रुद्धोष्म नहीं है, मान लीजिए समआयतनिक प्रक्रम, तो हमें ताप परिसर $T _{2}$ से $T _{1}$ में ऊष्मा भंडार की एक शृंखला की आवश्यकता होगी ताकि यह निश्चित किया जा सके कि हर चरण में प्रक्रम स्थैतिककल्प में है। (हम आपको पुनः याद दिलाते हैं कि किसी स्थैतिककल्प व उत्क्रमणीय प्रक्रम में निकाय व ऊष्मा भंडार के बीच बहुत तापांतर नहीं होना चाहिए)। परंतु हम यहाँ एक ऐसे उत्क्रमणीय इंजन पर विचार कर रहे हैं जो केवल दो तापों के बीच कार्य करता है । इस प्रकार, रुद्धोष्म प्रक्रमों द्वारा निकाय के ताप में $T _{1}$ से $T _{2}$ तथा इस इंजन के ताप में $T _{2}$ से $T _{1}$ का परिवर्तन लाना चाहिए।
चित्र 11.9 किसी ऊष्मा इंजन के लिए कार्नो चक्र जिसमें कार्यकारी पदार्थ के रूप में आदर्श गैस का उपयोग होता है।
दो तापों के मध्य कार्य करने वाला कोई उत्क्रमणीय ऊष्मा इंजन कार्नो इंजन कहलाता है । हमने अभी विवेचना की है कि इस इंजन में चरणों का क्रम निम्नलिखित होना चाहिए, जो चित्र 11.11 में दर्शाए अनुसार एक चक्र का निर्माण करते हैं, जिसे कार्नो चक्र कहते हैं। हमने कार्नो इंजन का कार्यकारी पदार्थ एक आदर्श गैस लिया है ।
(a) चरण $1 \rightarrow 2$ गैस का समतापी प्रसार जिसमें गैस अवस्था $\left(P _{1}, V _{1}, T _{1}\right)$ से $\left(P _{2}, V _{2}, T _{1}\right)$ में पहुँच जाती है ।
ताप $T _{1}$ पर ऊष्माशय से अवशोषित ऊष्मा $\left(Q _{1}\right)$ का मान समीकरण (11.12) से दिया जाता है । यह गैस द्वारा परिवेश पर संपादित किए गए कार्य $W _{1 \rightarrow 2}$ के बराबर होता है ।
$$ \begin{equation*} W _{1 \rightarrow 2}=Q _{1}=\mu R T _{1} \ln \left(\frac{V _{2}}{V _{1}}\right) \tag{11.18} \end{equation*} $$
(b) चरण $2 \rightarrow 3\left(P _{2}, V _{2}, T _{1}\right)$ से $\left(P _{3}, V _{3}, T _{2}\right)$ अवस्था में गैस का रुद्धोष्म प्रसार । समीकरण (11.16) से गैस द्वारा संपादित हुआ कार्य होगा
$$ \begin{equation*} W _{2 \rightarrow 3}=\frac{\mu R\left(T _{1}-T _{2}\right)}{(\gamma-1)} \tag{11.19} \end{equation*} $$
(c) चरण $3 \rightarrow 4$ गैस की अवस्था $\left(P _{3}, V _{3}, T _{2}\right)$ से $\left(P _{4}, V _{4}\right.$, $T _{2}$ ) में समतापी संपीडन ।
ताप $T _{2}$ पर गैस द्वारा ऊष्माशय को मुक्त की गई ऊष्मा की मात्रा समीकरण (11.12) से प्राप्त होती है । यह परिवेश द्वारा गैस पर संपादित कार्य $W _{3 \rightarrow 4}$ के भी बराबर होती है
$$ \begin{equation*} W _{3 \rightarrow 4}=Q _{2}=\mu R T _{2} \ln \left(\frac{V _{3}}{V _{4}}\right) \tag{11.20} \end{equation*} $$
(d) चरण $4 \rightarrow 1$ गैस की अवस्था $\left(P _{4}, V _{4}, T _{2}\right)$ से $\left(P _{1}, V _{1}\right.$, $T _{1}$ ) में रुद्धोष्म संपीडन। समीकरण (11.16) से गैस पर किया गया कार्य
$$ \begin{equation*} W _{4 \rightarrow 1}=\mu R \frac{\left(T _{1}-T _{2}\right)}{(\gamma-1)} \tag{11.21} \end{equation*} $$
समीकरणों (11.18) से (11.21) के उपयोग से एक पूरे चक्र में गैस द्वारा संपादित कुल कार्य की मात्रा,
$$ \begin{align*} W & =W _{1 \rightarrow 2}+W _{2 \rightarrow 3}-W _{3 \rightarrow 4}-W _{4 \rightarrow 1} \\ & =\mu R T _{1} \ln \left(\frac{V _{2}}{V _{1}}\right)-\mu R T _{2} \ln \left(\frac{V _{3}}{V _{4}}\right) \tag{11.22} \end{align*} $$
कार्नो इंजन की दक्षता
$$ \eta=\frac{W}{Q_{1}}=1-\frac{Q_{2}}{Q_{1}} $$
$$ \begin{equation*} =1-\frac{T_{2}}{T_{1}} \frac{\operatorname{In} \frac{V_{3}}{V_{4}}}{\operatorname{In} \frac{V_{2}}{V_{1}}} \tag{11.23} \end{equation*} $$
अब चूंकि चरण $2 \rightarrow 3$ एक रुद्धोष्म प्रक्रम है, इसलिए
$$ T_{1} V_{2}^{\gamma-1}=T_{2} V_{3}^{\gamma-1} $$
$$\text { i.e. } \frac{V_2}{V_3}=\left(\frac{T_2}{T_1}\right)^{1 /(\gamma-1)} \tag{11.24}$$
इसी प्रकार, चूंकि चरण $4 \rightarrow 1$ भी एक रुद्धोष्म प्रक्रम है, इसलिए
$$ \begin{align*} & T_{2} V_{4}^{\gamma-1}=T_{1} V_{1}^{\gamma-1} \ & \text { i.e. } \frac{V_{1}}{V_{4}}={\frac{T}{T_{1}}}^{1 / \gamma-1} \tag{11.25} \end{align*} $$
समीकरणों (11.24) तथा (11.25) से,
$$ \begin{equation*} \frac{V _{3}}{V _{4}}=\frac{V _{2}}{V _{1}} \tag{11.26} \end{equation*} $$
समीकरण (11.26) के उपयोग से समीकरण (11.23) से $\eta$ का निम्नलिखित सूत्र प्राप्त होता है :
$$ \begin{equation*} \eta=1-\frac{T _{2}}{T _{1}} \text { (कार्नो इंजन) } \tag{11.27} \end{equation*} $$
हम जानते हैं कि कार्नो इंजन एक उत्क्रमणीय इंजन है। वास्तव में यही एकमात्र ऐसा इंजन संभव है जो भिन्न तापों के दो ऊष्मा भंडारों के मध्य कार्य करता है। चित्र 11.9 में दर्शाए कार्नो चक्र का हर चरण उत्क्रमित किया जा सकता है। यह उस प्रक्रम के समान होता है, जिसमें $T _{2}$ ताप पर ठंडे ऊष्मा भंडार से $Q _{2}$ ऊष्मा ली जाती है, निकाय पर $W$ कार्य किया जाता है, तथा गरम ऊष्मा भंडार को $Q _{1}$ ऊष्मा स्थानांतरित कर दी जाती है। यह युक्ति एक उत्क्रमणीय प्रशीतक होगी।
अब हम महत्वपूर्ण परिणाम सिद्ध करेंगे (जिसे कभी-कभी कार्नो प्रमेय कहते हैं) (a) दिए हुए गरम तथा ठंडे ऊष्माशयों के क्रमशः दो तापों $T _{1}$ तथा $T _{2}$ के बीच कार्यरत किसी भी इंजन की दक्षता कार्नो इंजन की दक्षता से अधिक नहीं हो सकती है तथा (b) कार्नो इंजन की दक्षता कार्यकारी पदार्थ की प्रकृति पर निर्भर नहीं करती।
परिणाम (a) को सिद्ध करने के लिए हम कल्पना करते हैं कि एक उत्क्रमणीय (कार्नो) इंजन $R$ तथा एक अनुत्क्रमणीय इंजन $I$ एक ही स्रोत (गरम ऊष्मा भंडार) तथा अभिगम (Sink) (ठंडा ऊष्मा भंडार) के बीच कार्यरत हैं। अब हम इन दोनों इंजनों को इस प्रकार संयोजित करते हैं कि $I$ ऊष्मा इंजन की भांति तथा $R$ प्रशीतक की भांति कार्य करें। कल्पना कीजिए कि $I$ स्रोत से $Q _{1}$ ऊष्मा अवशोषित करता है, $W^{\prime}$ कार्य प्रदान करता है तथा $Q _{1}-W^{\prime}$ ऊष्मा अभिगम को मुक्त करता है । हम ऐसा समायोजन करते हैं कि $R$ अधिगम से $Q _{2}$ ऊष्मा लेकर तथा उस पर जो कार्य $W=Q _{1}-Q _{2}$ किया जाना है, उसे कराकर उतनी ही ऊष्मा $Q _{1}$ स्रोत को वापस करता है । मान लीजिए कि $\eta _{\mathrm{R}}<\eta _{\mathrm{I}}$ है। अर्थात् यदि $R$ इंजन की भांति कार्य करता तो वह $I$ की अपेक्षा कम कार्य निर्गत करता। अर्थात् किसी दी गई ऊष्मा $Q _{1}$ के लिए $W<W^{\prime}$ । यदि $R$ प्रशीतक के रूप में कार्य करता, तो इसका तात्पर्य यह होता कि $Q _{2}=Q _{1}-W$ $>Q _{1}-W^{\prime}$ । इस प्रकार, युक्तिपूर्ण संयोजित $I-R$ निकाय ठंडे ऊष्मा भंडार से $\left(Q _{1}-W\right)-\left(Q _{1}-W^{\prime}\right)=W^{\prime}-W$ ऊष्मा निकालता है तथा एक चक्र में इतनी ही मात्रा का कार्य उसे सौंप देता है (इस पूरे चक्र में स्रोत या अन्यत्र कोई परिवर्तन नहीं होता)। यह ऊष्मागतिकी के द्वितीय नियम से संबंधित केल्विन-प्लैंक के प्रकथन से सर्वथा विपरीत है । इसलिए यह निश्चयपूर्वक कहना कि $\eta _{\mathrm{I}}>\eta _{\mathrm{R}}$ अनुचित है । अतः समान तापों के मध्य कार्यरत किसी भी इंजन की दक्षता कार्नो इंजन की दक्षता से अधिक नहीं हो सकती। इसी प्रकार के एक तर्क की रचना यह दर्शाने के लिए भी की जा सकती है कि ऐसे उत्क्रमणीय इंजन की दक्षता जिसमें एक विशेष कार्यकारी पदार्थ है, उस इंजन की दक्षता से अधिक नहीं हो सकती जिसमें कोई अन्य पदार्थ उपयोग होता है। कार्नो इंजन की अधिकतम दक्षता जो समीकरण (11.27) से दी जाती है, कार्नो चक्र की प्रक्रिया को संपादित करने वाले निकाय की प्रकृति पर निर्भर नहीं करती है । अतः हमारे लिए कार्नो इंजन की दक्षता $\eta$ के परिकलन के लिए कार्यकारी पदार्थ के रूप में आदर्श गैस का उपयोग न्यायसंगत है । आदर्श गैस की अवस्था समीकरण सरल होती है जिसके कारण $\eta$ का परिकलन सरल हो जाता है, किंतु $\eta$ के लिए अंतिम परिणाम, समीकरण (11.27), किसी भी कार्नो इंजन के लिए सही है ।
चित्र 11.10 उत्क्रमणीय प्रशीतक $(R)$ से संयुक्त एक अनुत्क्रमणीय इंजन (I) । यदि $W^{\prime}>W$, तो इसका आशय यह हुआ कि अवशोषक से $W^{1}-W$ ऊष्मा निकालकर उसे पूर्णतः कार्य में रूपांतरित कर दिया गया है, जो ऊष्मागतिकी के दूसरे नियम के विपरीत है ।
यह अंतिम टिप्पणी दर्शाती है कि कार्नो इंजन के लिए,
$$ \begin{equation*} \frac{Q _{1}}{Q _{2}}=\frac{T _{1}}{T _{2}} \tag{11.28} \end{equation*} $$
एक व्यापक संबंध है जो निकाय की प्रकृति पर निर्भर नहीं करता। यहाँ $Q _{1}$ व $Q _{2}$ कार्नो इंजन में क्रमशः गरम व ठंडे ऊष्मा भंडारों द्वारा समतापीय ढंग से अवशोषित व मुक्त की गई ऊष्माएँ हैं। किसी वास्तविक सर्वव्यापक ऊष्मागतिकीय ताप मापक्रम को परिभाषित करने के लिए हम समीकरण (11.28) का एक सूत्र के रूप में उपयोग कर सकते हैं । यह तापक्रम कार्नो चक्र में प्रयुक्त निकाय के किन्हीं विशेष गुणधर्मो पर निर्भर नहीं करता। वास्तव में, कार्यकारी पदार्थ के रूप में किसी आदर्श गैस के लिए इस ताप का मान वही है जो खंड 11.9 में उल्लेखित आदर्श गैस ताप का है ।
सारांश
1. ऊष्मागतिकी का शून्यवाँ नियम यह अभिव्यक्त करता है कि “दो निकाय जो किसी तीसरे निकाय के साथ स्वतंत्र रूप से तापीय साम्य में हैं, वे एक-दूसरे के साथ भी तापीय साम्य में होते हैं”। शून्यवाँ नियम ताप की अवधारणा का सूत्रपात करता है ।
2. निकाय की आंतरिक ऊर्जा उसके आण्विक घटकों की गतिज एवं स्थितिज ऊर्जाओं के योग के बराबर होती है । इसमें निकाय की संपूर्ण गतिज ऊर्जा सम्मिलित नहीं होती । ऊष्मा और कार्य किसी निकाय में ऊर्जा स्थानांतरण के दो रूप हैं। निकाय व उसके परिवेश के बीच तापांतर के कारण ऊर्जा का स्थानांतरण ऊष्मा के रूप में होता है । कार्य अन्य साधनों (जैसे गैस भरे सिलिंडर के पिस्टन जिससे कुछ भार संबद्ध है, को ऊपर नीचे करने में) द्वारा उत्पन्न ऊर्जा का स्थानांतरण है । इसमें तापांतर समाहित नहीं होता है ।
3. ऊष्मागतिकी का प्रथम नियम ऊर्जा संरक्षण का व्यापक नियम है, जो उस निकाय में लागू होता है जिसमें परिवेश को या परिवेश से (ऊष्मा व कार्य द्वारा) ऊर्जा स्थानांतरण हो । यह बताता है कि
$$ \Delta Q=\Delta U+\Delta W $$
यहाँ $\Delta Q$ निकाय को दी गई ऊष्मा है, $\Delta W$ निकाय पर किया गया कार्य है तथा $\Delta U$ निकाय की आंतरिक ऊर्जा में परिवर्तन है ।
4. पदार्थ की विशिष्ट ऊष्मा धारिता को हम निम्नलिखित सूत्र द्वारा परिभाषित करते हैं
$$ s=\frac{1}{m} \frac{\Delta Q}{\Delta T} $$
यहाँ $m$ पदार्थ का द्रव्यमान है तथा $\Delta Q$ वह ऊष्मा है जिसके द्वारा पदार्थ के ताप में $\Delta T$ की वृद्धि हो जाती है। पदार्थ की मोलीय विशिष्ट ऊष्मा धारिता निम्नांकित सूत्र से परिभाषित की जाती है
$$ C=\frac{1}{\mu} \frac{\Delta Q}{\Delta T} $$
$\mu$ पदार्थ के मोल की संख्या को व्यक्त करता है । किसी ठोस के लिए ऊर्जा के सम विभाजन के नियम से
$$ C=3 R $$
जो सामान्यतया साधारण तापों पर किए जाने वाले प्रयोगों से प्राप्त परिणामों से मेल खाता है ।
कैलोरी ऊष्मा का पुराना मात्रक है । 1 कैलोरी ऊष्मा की वह मात्रा है जो $1 \mathrm{~g}$ जल के ताप में $14.5^{\circ} \mathrm{C}$ से $15.5^{\circ} \mathrm{C}$ तक वृद्धि कर देती है । $1 \mathrm{cal}=4.186 \mathrm{~J}$
5. किसी आदर्श गैस के लिए स्थिर ताप तथा स्थिर दाब पर मोलीय विशिष्ट ऊष्मा धारिताएँ निम्नलिखित संबंध का पालन करती हैं
$$ C _{P}-C _{V}=R $$
यहाँ $R$ गैस का सार्वत्रिक नियतांक है ।
6. किसी ऊष्मागतिकीय निकाय की साम्यावस्था का विवरण अवस्था चरों द्वारा होता है। किसी अवस्था चर का मान केवल उसकी किसी विशेष अवस्था पर निर्भर करता है न कि उस पथ पर जिससे यह अवस्था प्राप्त होती है। अवस्था चरों के उदाहरण हैं : दाब $(P)$, आयतन $(V)$, ताप $(T)$, तथा द्रव्यमान $(m)$ । ऊष्मा और कार्य अवस्था चर नहीं हैं। कोई अवस्था समीकरण (जैसे आदर्श गैस समीकरण $P V=\mu R T$ ) विभिन्न अवस्था चरों के मध्य एक संबंध को व्यक्त करता है ।
7. कोई स्थैतिककल्प प्रक्रम अत्यंत धीमी गति से संपन्न होने वाला प्रक्रम है जिसमें निकाय परिवेश के साथ पूरे समय तापीय व यांत्रिक साम्य में रहता हैं। स्थैतिककल्प प्रक्रम में परिवेश के दाब व ताप तथा निकाय के दाब व ताप में अनंत सूक्ष्म अंतर हो सकता है।
8. किसी आदर्श गैस के ताप $T$ पर आयतन $V _{1}$ से $V _{2}$ तक होने वाले किसी समतापीय प्रसार में अवशोषित ऊष्मा $(Q)$ का मान गैस द्वारा किए गए कार्य $(W)$ के बराबर होता है। प्रत्येक का मान निम्नलिखित है :
$$ Q=W=\mu R T \ln \left(\frac{V _{2}}{V _{1}}\right) $$
9. किसी आदर्श गैस के रुद्धोष्म प्रक्रम में
$$ \begin{aligned} & P V^{\gamma}=\text { नियतांक } \\ & \text { जहाँ } \gamma=\frac{C _{P}}{C _{V}} \end{aligned} $$
किसी आदर्श गैस द्वारा अवस्था $\left(P _{1}, V _{1}, T _{1}\right)$ से अवस्था $\left(P _{2}, V _{2}, T _{2}\right)$ में रुद्धोष्म प्रक्रम से परिवर्तन में संपादित कार्य है :
$$ W=\frac{\mu R\left(T _{1}-T _{2}\right)}{\gamma-1} $$
10. ऊष्मागतिकी का द्वितीय नियम कुछ उन प्रक्रमों की स्वीकृति नहीं देता जो ऊष्मागतिकी के प्रथम नियम के अनुकूल हैं। इसके दो प्रकथन इस प्रकार हैं :
केल्विन-प्लैंक का प्रकथन
ऐसा कोई प्रक्रम संभव नहीं है जिसका मात्र परिणाम केवल किसी ऊष्मा भंडार से ऊष्मा का अवशोषण करके उसे पूर्णतया कार्य में रूपांतरित करना हो।
क्लॉसियस का प्रकथन
ऐसा कोई प्रक्रम संभव नहीं है जिसका मात्र परिणाम ऊष्मा का किसी ठंडे पिंड से अपेक्षाकृत गरम पिंड में स्थानांतरण हो।
इसे सरल ढंग से कहा जाए तो द्वितीय नियम यह बताता है कि किसी भी ऊष्मा इंजन की दक्षता $\eta=1$ नहीं हो सकती अथवा किसी प्रशीतक का निष्पादन गुणांक $\alpha$ अनंत के बराबर नहीं हो सकता।
11. कोई प्रक्रम उत्क्रमणीय होता है यदि उसे इस प्रकार उत्क्रमित किया जाए कि निकाय व परिवेश दोनों अपनी प्रारंभिक अवस्थाओं में वापस पहुँच जाएँ और परिवेश में कहीं भी कोई परिवर्तन न हो। प्रकृति के नैसर्गिक प्रक्रम अनुत्क्रमणीय होते हैं। आदर्शीकृत उत्क्रमणीय प्रक्रम स्थैतिककल्प प्रक्रम होता है जिसमें कोई भी क्षयकारी घटक; जैसे - घर्षण, श्यानता आदि विद्यमान नहीं रहते।
12. किन्हीं दो तापों $T _{1}$ (स्रोत) तथा $T _{2}$ (अभिगम) के मध्य कार्य करने वाला कार्नो इंजन उत्क्रमणीय इंजन है। दो रुद्धोष्म प्रक्रमों से संयुक्त दो समतापी प्रक्रम कार्नो चक्र का निर्माण करते हैं। कार्नो इंजन की दक्षता निम्नलिखित सूत्र से व्यक्त की जाती है :
$$ \eta=1-\frac{T _{2}}{T _{1}} \quad \text { (कार्नो इंजन) } $$
किन्हीं दो तापों के मध्य कार्य करने वाले इंजन की दक्षता कार्नो इंजन की दक्षता से अधिक नहीं हो सकती।
13. यदि $\mathrm{Q}>0$, निकाय को ऊष्मा दी गई।
यदि $\mathrm{Q}<0$, निकाय से ऊष्मा निकाली गई।
यदि $\mathrm{W}>0$, निकाय द्वारा कार्य किया गया।
यदि $\mathrm{W}<0$, निकाय पर कार्य किया गया।
राशि | प्रतीक | विमाएँ | मात्रक | टिप्पणी |
---|---|---|---|---|
1. आयतन प्रसार गुणांक | $\alpha _{\mathrm{v}}$ | $\left[\mathrm{K}^{-1}\right]$ | $\mathrm{K}^{-1}$ | $\alpha _{v}=3 \alpha _{l}$ |
2. किसी निकाय को प्रदत ऊष्मा | $\Delta Q$ | $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$ | J | $Q$ अवस्था चर नहीं है । |
3. विशिष्ट ऊष्मा धारिता | $s$ | $\left[\mathrm{~L}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right]$ | $\mathrm{J} \mathrm{kg}^{-1} \mathrm{~K}^{-1}$ | |
ऊष्मा इंजन की दक्षता | $\eta$ | विमाहीन | - | |
प्रशीतक का निष्पादन गुणांक | $\alpha$ | विमाहीन | - | |
4. तापीय चालकता | $K$ | $\left[\mathrm{MLT}^{-3} \mathrm{~K}^{-1}\right]$ | $\mathrm{J} \mathrm{s}^{-1} \mathrm{~K}^{-1}$ | $H=K A \frac{\mathrm{d} t}{\mathrm{~d} x}$ |
विचारणीय विषय
1. किसी पिंड का ताप उसकी माध्य आंतरिक ऊर्जा से संबंधित है न कि उसके द्रव्यमान केंद्र की गतिज ऊर्जा से बंदूक से दागी गई किसी गोली का उच्च ताप उसकी अधिक चाल के कारण नहीं होता ।
2. ऊष्मागतिकी में साम्य उस परिस्थिति की ओर निर्देश करता है जब निकाय की ऊष्मागतिकीय अवस्था का वर्णन करने वाले स्थूल चर, समय पर निर्भर नहीं करते । यांत्रिकी में किसी निकाय की साम्यावस्था से अभिप्राय है कि निकाय पर कार्य करने वाले नेट बल तथा बल आघूर्ण दोनों शून्य होते हैं ।
3. ऊष्मागतिकीय साम्य में निकाय के सूक्ष्म संघटक साम्यावस्था में नहीं होते (यांत्रिकी के प्रसंग में)।
4. ऊष्माधारिता, व्यापक रूप में उस प्रक्रम पर निर्भर करती है जिससे निकाय तब गुजरता है जब वह ऊष्मा ग्रहण करता है ।
5. समतापीय स्थैतिककल्प प्रक्रमों में, निकाय द्वारा ऊष्मा अवशोषित या निर्गत होती है यद्यपि हर चरण में गैस का ताप वही होता है जो परिवेशीय ऊष्मा भंडार होता है । निकाय तथा ऊष्मा भंडार के मध्य अत्यंत सूक्ष्म तापांतर के कारण ऐसा संभव हो पाता है ।
अभ्यास
11.1 कोई गीज़र 3.0 लीटर प्रति मिनट की दर से बहते हुए जल को $27^{\circ} \mathrm{C}$ से $77^{\circ} \mathrm{C}$ तक गर्म करता है । यदि गीज़र का परिचालन गैस बर्नर द्वारा किया जाए तो ईंधन के व्यय की क्या दर होगी ? बर्नर के ईंधन की दहन-ऊष्मा $4.0 \times 10^{4} \mathrm{~J} \mathrm{~g}^{-1}$ है ?
Show Answer
#Content Missing11.2 स्थिर दाब पर $2.0 \times 10^{-2} \mathrm{~kg}$ नाइट्रोजन (कमरे के ताप पर) के ताप में $45^{\circ} \mathrm{C}$ वृद्धि करने के लिए कितनी ऊष्मा की आपूर्ति की जानी चाहिए ? $\left(\mathrm{N} _{2}\right.$ का अणुभार $\left.=28 ; R=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ ।
Show Answer
#Content Missing11.3 व्याख्या कीजिए कि ऐसा क्यों होता है :
(a) भिन्न-भिन्न तापों $T _{1}$ व $T _{2}$ के दो पिण्डों को यदि ऊष्मीय संपर्क में लाया जाए तो यह आवश्यक नहीं कि उनका अंतिम ताप $\left(T _{1}+T _{2}\right) / 2$ ही हो।
(b) रासायनिक या नाभिकीय संयत्रों में शीतलक (अर्थात् द्रव जो संयत्र के भिन्न-भिन्न भागों को अधिक गर्म होने से रोकता है) की विशिष्ट ऊष्मा अधिक होनी चाहिए।
(c) कार को चलाते-चलाते उसके टायरों में वायुदाब बढ़ जाता है।
(d) किसी बंदरगाह के समीप के शहर की जलवायु, समान अक्षांश के किसी रेगिस्तानी शहर की जलवायु से अधिक शीतोष्ण होती है।
Show Answer
#Content Missing11.4 गतिशील पिस्टन लगे किसी सिलिंडर में मानक ताप व दाब पर 3 मोल हाइड्रोजन भरी है । सिलिंडर की दीवारें ऊष्मारोधी पदार्थ की बनी हैं तथा पिस्टन को उस पर बालू की परत लगाकर ऊष्मारोधी बनाया गया है । यदि गैस को उसके आरंभिक आयतन के आधे आयतन तक संपीडित किया जाए तो गैस का दाब कितना बढ़ेगा ?
Show Answer
#Content Missing11.5 रुद्धोष्म विधि द्वारा किसी गैस की अवस्था परिवर्तन करते समय उसकी एक साम्यावस्था $A$ से दूसरी साम्यावस्था $B$ तक ले जाने में निकाय पर $22.3 \mathrm{~J}$ कार्य किया जाता है। यदि गैस को दूसरी प्रक्रिया द्वारा अवस्था $\mathrm{A}$ से अवस्था $\mathrm{B}$ में लाने में निकाय द्वारा अवशोषित नेट ऊष्मा $9.35 \mathrm{cal}$ है तो बाद के प्रकरण में निकाय द्वारा किया गया नेट कार्य कितना है? $(1 \mathrm{cal}=4.19 \mathrm{~J})$ ।
Show Answer
#Content Missing11.6 समान धारिता वाले दो सिलिंडर $A$ तथा $B$ एक-दूसरे से स्टॉपकॉक के द्वारा जुड़े हैं। $A$ में मानक ताप व दाब पर गैस भरी है जबकि $\mathrm{B}$ पूर्णतः निर्वातित है। स्टॉपकॉक यकायक खोल दी जाती है । निम्नलिखित का उत्तर दीजिए :
(a) सिलिंडर $\mathrm{A}$ तथा $\mathrm{B}$ में अंतिम दाब क्या होगा ?
(b) गैस की आंतरिक ऊर्जा में कितना परिवर्तन होगा ?
(c) गैस के ताप में क्या परिवर्तन होगा ?
(d) क्या निकाय की माध्यमिक अवस्थाएँ (अंतिम साम्यावस्था प्राप्त करने के पूर्व) इसके $P-V$ - $T$ पृष्ठ पर होंगी ?
Show Answer
#Content Missing11.7 एक हीटर किसी निकाय को $100 \mathrm{~W}$ की दर से ऊष्मा प्रदान करता है। यदि निकाय $75 \mathrm{~J} \mathrm{~s}^{-1}$ की दर से कार्य करता है, तो आंतरिक ऊर्जा की वृद्धि किस दर से होगी?
Show Answer
#Content Missing11.8 किसी ऊष्मागतिकीय निकाय को मूल अवस्था से मध्यवर्ती अवस्था तक चित्र (11.11) में दर्शाये अनुसार एक रेखीय प्रक्रम द्वारा ले जाया गया है।
चित्र 11.11
एक समदाबी प्रक्रम द्वारा इसके आयतन को $\mathrm{E}$ से $\mathrm{F}$ तक ले जाकर मूल मान तक कम कर देते हैं। गैस द्वारा $\mathrm{D}$ से $\mathrm{E}$ तथा वहाँ से $\mathrm{F}$ तक कुल किए गए कार्य का आकलन कीजिए।