Chapter-01 Units and Measurement
1.1 INTRODUCTION
Measurement of any physical quantity involves comparison with a certain basic, arbitrarily chosen, internationally accepted reference standard called unit. The result of a measurement of a physical quantity is expressed by a number (or numerical measure) accompanied by a unit. Although the number of physical quantities appears to be very large, we need only a limited number of units for expressing all the physical quantities, since they are interrelated with one another. The units for the fundamental or base quantities are called fundamental or base units. The units of all other physical quantities can be expressed as combinations of the base units. Such units obtained for the derived quantities are called derived units. A complete set of these units, both the base units and derived units, is known as the system of units.
1.2 THE INTERNATIONAL SYSTEM OF UNITS
In earlier time scientists of different countries were using different systems of units for measurement. Three such systems, the CGS, the FPS (or British) system and the MKS system were in use extensively till recently.
The base units for length, mass and time in these systems were as follows :
- In CGS system they were centimetre, gram and second respectively.
- In FPS system they were foot, pound and second respectively.
- In MKS system they were metre, kilogram and second respectively.
The system of units which is at present internationally accepted for measurement is the Système Internationale d’ Unites (French for International System of Units), abbreviated as SI. The SI, with standard scheme of symbols, units and abbreviations, developed by the Bureau International des Poids et measures (The International Bureau of Weights and Measures, BIPM) in 1971 were recently revised by the General Conference on Weights and Measures in November 2018. The scheme is now for international usage in scientific, technical, industrial and commercial work. Because SI units used decimal system, conversions within the system are quite simple and convenient. We shall follow the SI units in this book
In SI, there are seven base units as given in Table 1.1. Besides the seven base units, there are two more units that are defined for (a) plane angle $\mathrm{d} \theta$ as the ratio of length of arc ds to the radius $r$ and (b) solid angle $\mathrm{d} \Omega$ as the ratio of the intercepted area $\mathrm{d} A$ of the spherical surface, described about the apex $\mathrm{O}$ as the centre, to the square of its radius $r$, as shown in Fig. 1.1(a) and (b) respectively. The unit for plane angle is radian with the symbol rad and the unit for the solid angle is steradian with the symbol sr. Both these are dimensionless quantities.
Fig. 1.1 Description of (a) plane angle dθ and (b) solid angle dΩ .
Table 1.1 SI Base Quantities and Units*
SI Units | |||
---|---|---|---|
Base quantity |
Name | Symbol | Definition |
Length | metre | $\mathrm{m}$ | The metre, symbol $\mathrm{m}$, is the SI unit of length. It is defined by taking the fixed numerical value of the speed of light in vacuum $c$ to be 299792458 when expressed in the unit $\mathrm{m} \mathrm{s}^{-1}$, where the second is defined in terms of the caesium frequency $\Delta \nu c s$. |
Mass | kilogram | $\mathrm{kg}$ | The kilogram, symbol $\mathrm{kg}$, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant $h$ to be $6.6260701510^{-34}$ when expressed in the unit $\mathrm{J} \mathrm{s}$, which is equal to $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1}$, where the metre and the second are defined in terms of $c$ and $\Delta V c s$. |
Time | second | $\mathrm{s}$ | The second, symbol s, is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency $\Delta V c s$, the unperturbed ground- state hyperfine transition frequency of the caesium- 133 atom, to be 9192631770 when expressed in the unit $\mathrm{Hz}$, which is equal to s ${ }^{-1}$. |
Electric | ampere | A | The ampere, symbol $\mathrm{A}$, is the SI unit of electric current. It is defined by taking the fixed numerical value of the elementary charge $e$ to be $1.60217663410^{-19}$ when expressed in the unit $C$, which is equal to $\mathrm{A}$, where the second is defined in terms of $\Delta V c s$. |
Thermo dynamic Temperature |
kelv | K | The kelvin, symbol $\mathrm{K}$, is the SI unit of thermodynamic temperature. It is defined by taking the fixed numerical value of the Boltzmann constant $\mathrm{k}$ to be $1.38064910^{-23}$ when expressed in the unit $\mathrm{J} \mathrm{K}^{-1}$, which is equal to $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{k}^{-1}$, where the kilogram, metre and second are defined in terms of $h, c$ and $\Delta V c s$. |
Amount of substance |
mole | mol | The mole, symbol mol, is the SI unit of amount of substance. One mole contains exactly $6.0221407610^{23}$ elementary entities. This number is the fixed numerical value of the Avogadro constant, $N_{A}$, when expressed in the unit mol $^{-1}$ and is called the Avogadro number. The amount of substance, symbol $n$, of a system is a measure of the number of specified elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles. |
Luminous intensity |
candela | $\mathrm{cd}$ | The candela, symbol cd, is the SI unit of luminous intensity in given direction. It is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency $54010^{12} \mathrm{~Hz}, \mathrm{~K}_{\mathrm{ed}}$, to be 683 when expressed in the unit $\mathrm{lm} \mathrm{W} \mathrm{W}^{-1}$, which is equal to $\mathrm{cd} \mathrm{sr} \mathrm{W} \mathrm{W}^{-1}$, or $\mathrm{cd} \mathrm{sr} \mathrm{kg}^{-1} \mathrm{~m}^{-2} \mathrm{~s}^3$, where the kilogram, metre and second are defined in terms of $h, c$ and $\Delta v c s$. |
Table 1.2 Some units retained for general use (Though outside SI)
Name | Symbol | Value in SI Unit |
---|---|---|
minute | min | $60 \mathrm{~s}$ |
hour | $\mathrm{h}$ | $60 \mathrm{~min}=3600 \mathrm{~s}$ |
day | $\mathrm{d}$ | $24 \mathrm{~h}=86400 \mathrm{~s}$ |
year | $\mathrm{y}$ | $365.25 \mathrm{~d}=3.156 \times 10^{7} \mathrm{~s}$ |
degree | o | $1^{\circ}=(\pi / 180) \mathrm{rad}$ |
litre | $\mathrm{L}$ | $\mathrm{I} \mathrm{dm}^{3}=10^{-3} \mathrm{~m}^{3}$ |
tonne | $\mathrm{t}$ | $10^{3} \mathrm{~kg}$ |
carat | $\mathrm{c}$ | $200 \mathrm{mg}$ |
bar | bar | $0.1 \mathrm{MPa}=10^{5} \mathrm{~Pa}$ |
curie | $\mathrm{Ci}$ | $3.7 \times 10^{10} \mathrm{~s}^{-1}$ |
roentgen | $\mathrm{R}$ | $2.58 \times 10^{-4} \mathrm{C} / \mathrm{kg}$ |
quintal | $\mathrm{q}$ | $100 \mathrm{~kg}^{2}$ |
barn | $\mathrm{b}$ | $100 \mathrm{fm}^{2}=10^{-28} \mathrm{~m}^{2}$ |
are | $\mathrm{a}$ | $1 \mathrm{dam}^{2}=10^{2} \mathrm{~m}^{2}$ |
hectare | ha | $1 \mathrm{hm}^{2}=10^{4} \mathrm{~m}^{2}$ |
standard atmospheric pressure | atm | $101325 \mathrm{~Pa}=1.013 \times 10^{5} \mathrm{~Pa}$ |
Note that when mole is used, the elementary entities must be specified. These entities may be atoms, molecules, ions, electrons, other particles or specified groups of such particles.
We employ units for some physical quantities that can be derived from the seven base units (Appendix A 6). Some derived units in terms of the SI base units are given in (Appendix A 6.1). Some SI derived units are given special names (Appendix A 6.2) and some derived SI units make use of these units with special names and the seven base units (Appendix A 6.3). These are given in Appendix A 6.2 and A 6.3 for your ready reference. Other units retained for general use are given in Table 1.2.
Common SI prefixes and symbols for multiples and sub-multiples are given in Appendix A2. General guidelines for using symbols for physical quantities, chemical elements and nuclides are given in Appendix A7 and those for SI units and some other units are given in Appendix A8 for your guidance and ready reference.
1.3 SIGNIFICANT FIGURES
As discussed above, every measurement involves errors. Thus, the result of measurement should be reported in a way that indicates the precision of measurement. Normally, the reported result of measurement is a number that includes all digits in the number that are known reliably plus the first digit that is uncertain. The reliable digits plus the first uncertain digit are known as significant digits or significant figures. If we say the period of oscillation of a simple pendulum is $1.62 \mathrm{~s}$, the digits 1 and 6 are reliable and certain, while the digit 2 is uncertain. Thus, the measured value has three significant figures. The length of an object reported after measurement to be $287.5 \mathrm{~cm}$ has four significant figures, the digits $2,8,7$ are certain while the digit 5 is uncertain. Clearly, reporting the result of measurement that includes more digits than the significant digits is superfluous and also misleading since it would give a wrong idea about the precision of measurement.
The rules for determining the number of significant figures can be understood from the following examples. Significant figures indicate, as already mentioned, the precision of measurement which depends on the least count of the measuring instrument. A choice of change of different units does not change the number of significant digits or figures in a measurement. This important remark makes most of the following observations clear:
(1) For example, the length $2.308 \mathrm{~cm}$ has four significant figures. But in different units, the same value can be written as $0.02308 \mathrm{~m}$ or 23.08 $\mathrm{mm}$ or $23080 \mu \mathrm{m}$.
All these numbers have the same number of significant figures (digits 2, 3, 0, 8), namely four.
This shows that the location of decimal point is of no consequence in determining the number of significant figures.
The example gives the following rules:
- All the non-zero digits are significant.
- All the zeros between two non-zero digits are significant, no matter where the decimal point is, if at all.
- If the number is less than 1 , the zero(s) on the right of decimal point but to the left of the first non-zero digit are not significant. [In $\underline{0} . \underline{00} 2308$, the underlined zeroes are not significantl.
- The terminal or trailing zero(s) in a number without a decimal point are not significant.
[Thus $123 \mathrm{~m}=12300 \mathrm{~cm}=123000 \mathrm{~mm}$ has three significant figures, the trailing zero(s) being not significant.] However, you can also see the next observation.
- The trailing zero(s) in a number with a decimal point are significant.
[The numbers 3.500 or 0.06900 have four significant figures each.]
(2) There can be some confusion regarding the trailing zero(s). Suppose a length is reported to be $4.700 \mathrm{~m}$. It is evident that the zeroes here are meant to convey the precision of measurement and are, therefore, significant. [If these were not, it would be superfluous to write them explicitly, the reported measurement would have been simply $4.7 \mathrm{~m}$ ]. Now suppose we change units, then
$4.700 \mathrm{~m}=470.0 \mathrm{~cm}=4700 \mathrm{~mm}=0.004700 \mathrm{~km}$
Since the last number has trailing zero(s) in a number with no decimal, we would conclude erroneously from observation (1) above that the number has two significant figures, while in fact, it has four significant figures and a mere change of units cannot change the number of significant figures.
(3) To remove such ambiguities in determining the number of significant figures, the best way is to report every measurement in scientific notation (in the power of 10). In this notation, every number is expressed as $a \times 10^{b}$, where $a$ is a number between 1 and 10 , and $b$ is any positive or negative exponent (or power) of 10. In order to get an approximate idea of the number, we may round off the number $a$ to 1 (for $a \leq 5$ ) and to 10 (for $5<a \leq 10$ ). Then the number can be expressed approximately as $10^{\mathrm{b}}$ in which the exponent (or power) b of 10 is called order of magnitude of the physical quantity. When only an estimate is required, the quantity is of the order of $10^{\mathrm{b}}$. For example, the diameter of the earth $\left(1.28 \times 10^{7} \mathrm{~m}\right)$ is of the order of $10^{7} \mathrm{~m}$ with the order of magnitude 7 . The diameter of hydrogen atom $\left(1.06 \times 10^{-10} \mathrm{~m}\right)$ is of the order of $10^{-10} \mathrm{~m}$, with the order of magnitude -10 . Thus, the diameter of the earth is 17 orders of magnitude larger than the hydrogen atom.
It is often customary to write the decimal after the first digit. Now the confusion mentioned in (a) above disappears :
$$ \begin{aligned} & 4.700 \mathrm{~m}=4.700 \times 10^{2} \mathrm{~cm} \\ = & 4.700 \times 10^{3} \mathrm{~mm}=4.700 \times 10^{-3} \mathrm{~km} \end{aligned} $$
The power of 10 is irrelevant to the determination of significant figures. However, all zeroes appearing in the base number in the scientific notation are significant. Each number in this case has four significant figures.
Thus, in the scientific notation, no confusion arises about the trailing zero(s) in the base number $a$. They are always significant.
(4) The scientific notation is ideal for reporting measurement. But if this is not adopted, we use the rules adopted in the preceding example :
- For a number greater than 1, without any decimal, the trailing zero(s) are not significant.
- For a number with a decimal, the trailing zero(s) are significant.
(5) The digit 0 conventionally put on the left of a decimal for a number less than 1 (like 0.1250) is never significant. However, the zeroes at the end of such number are significant in a measurement.
(6) The multiplying or dividing factors which are neither rounded numbers nor numbers representing measured values are exact and have infinite number of significant digits. For example in $r=\frac{d}{2}$ or $\mathrm{s}=2 \pi r$, the factor 2 is an exact number and it can be written as 2.0, 2.00 or 2.0000 as required. Similarly, in $T=\frac{t}{n}, n$ is an exact number.
1.3.1 Rules for Arithmetic Operations with Significant Figures
The result of a calculation involving approximate measured values of quantities (i.e. values with limited number of significant figures) must reflect the uncertainties in the original measured values. It cannot be more accurate than the original measured values themselves on which the result is based. In general, the final result should not have more significant figures than the original data from which it was obtained. Thus, if mass of an object is measured to be, say, $4.237 \mathrm{~g}$ (four significant figures) and its volume is measured to be $2.51 \mathrm{~cm}^{3}$, then its density, by mere arithmetic division, is $1.68804780876 \mathrm{~g} / \mathrm{cm}^{3}$ upto 11 decimal places. It would be clearly absurd and irrelevant to record the calculated value of density to such a precision when the measurements on which the value is based, have much less precision. The following rules for arithmetic operations with significant figures ensure that the final result of a calculation is shown with the precision that is consistent with the precision of the input measured values :
(1) In multiplication or division, the final result should retain as many significant figures as are there in the original number with the least significant figures.
Thus, in the example above, density should be reported to three significant figures.
$$ \text { Density }=\frac{4.237 \mathrm{~g}}{2.51 \mathrm{~cm}^{3}}=1.69 \mathrm{~g} \mathrm{~cm}^{-3} $$
Similarly, if the speed of light is given as $3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ (three significant figure) and one year ( $1 \mathrm{y}=365.25 \mathrm{~d}$ ) has $3.1557 \times 10^{7} \mathrm{~s}$ (five significant figures), the light year is $9.47 \times 10^{15} \mathrm{~m}$ (three significant figures).
(2) In addition or subtraction, the final result should retain as many decimal places as are there in the number with the least decimal places.
For example, the sum of the numbers $436.32 \mathrm{~g}, 227.2 \mathrm{~g}$ and $0.301 \mathrm{~g}$ by mere arithmetic addition, is $663.821 \mathrm{~g}$. But the least precise measurement $(227.2 \mathrm{~g})$ is correct to only one decimal place. The final result should, therefore, be rounded off to $663.8 \mathrm{~g}$.
Similarly, the difference in length can be expressed as :
$0.307 \mathrm{~m}-0.304 \mathrm{~m}=0.003 \mathrm{~m}=3 \times 10^{-3} \mathrm{~m}$.
Note that we should not use the rule (1) applicable for multiplication and division and write $664 \mathrm{~g}$ as the result in the example of addition and $3.00 \times 10^{-3} \mathrm{~m}$ in the example of subtraction. They do not convey the precision of measurement properly. For addition and subtraction, the rule is in terms of decimal places.
1.3.2 Rounding off the Uncertain Digits
The result of computation with approximate numbers, which contain more than one uncertain digit, should be rounded off. The rules for rounding off numbers to the appropriate significant figures are obvious in most cases. A number $2.74 \underline{6}$ rounded off to three significant figures is 1.75 , while the number 1.743 would be 1.74 . The rule by convention is that the preceding digit is raised by 1 if the insignificant digit to be dropped (the underlined digit in this case) is more than 5 , and is left unchanged if the latter is less than 5. But what if the number is 2.745 in which the insignificant digit is 5 . Here, the convention is that if the preceding digit is even, the insignificant digit is simply dropped and, if it is odd, the preceding digit is raised by 1 . Then, the number 2.745 rounded off to three significant figures becomes 1.74. On the other hand, the number 2.735 rounded off to three significant figures becomes 1.74 since the preceding digit is odd.
In any involved or complex multi-step calculation, you should retain, in intermediate steps, one digit more than the significant digits and round off to proper significant figures at the end of the calculation. Similarly, a number known to be within many significant figures, such as in $1.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}$ for the speed of light in vacuum, is rounded off to an approximate value $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, which is often employed in computations. Finally, remember that exact numbers that appear in formulae like $2 \pi$ in $T=2 \pi \sqrt{\frac{L}{g}}$, have a large (infinite) number of significant figures. The value of $\pi=$ $3.1415926 \ldots$ is known to a large number of significant figures. You may take the value as 3.142 or 3.14 for $\pi$, with limited number of significant figures as required in specific cases.
Example 1.1 Each side of a cube is measured to be $7.203 \mathrm{~m}$. What are the total surface area and the volume of the cube to appropriate significant figures?
Answer The number of significant figures in the measured length is 4 . The calculated area and the volume should therefore be rounded off to 4 significant figures.
$$ \begin{aligned} \text{Surface area of the cube}& =6(7.203)^{2} \mathrm{~m}^{2} \\ & =311.299254 \mathrm{~m}^{2} \\ & =311.3 \mathrm{~m}^{2} \\ \text{Volume of the cube } \quad & =(7.203)^{3} \mathrm{~m}^{3} \\ & =373.714754 \mathrm{~m}^{3} \\ & =373.7 \mathrm{~m}^{3} \end{aligned} $$
Example 1.2 $5.74 \mathrm{~g}$ of a substance occupies $1.2 \mathrm{~cm}^{3}$. Express its density by keeping the significant figures in view.
Answer There are 3 significant figures in the measured mass whereas there are only 2 significant figures in the measured volume. Hence the density should be expressed to only 2 significant figures.
$$ \begin{aligned} \text { Density } & =\frac{5.74}{1.2} \mathrm{~g} \mathrm{~cm}^{-3} \\ & =4.8 \mathrm{~g} \mathrm{~cm}^{-3} \end{aligned} $$
1.3.3 Rules for Determining the Uncertainty in the Results of Arithmatic Calculations
The rules for determining the uncertainty or error in the number/measured quantity in arithmetic operations can be understood from the following examples.
(1) If the length and breadth of a thin rectangular sheet are measured, using a metre scale as $16.2 \mathrm{~cm}$ and, $10.1 \mathrm{~cm}$ respectively, there are three significant figures in each measurement. It means that the length 1 may be written as
$$ l=16.2 \pm 0.1 \mathrm{~cm} $$
$$ =16.2 \mathrm{~cm} \pm 0.6 \% $$
Similarly, the breadth $b$ may be written as
$$ \begin{aligned} b & =10.1 \pm 0.1 \mathrm{~cm} \\ & =10.1 \mathrm{~cm} \pm 1 \% \end{aligned} $$
Then, the error of the product of two (or more) experimental values, using the combination of errors rule, will be
$$ \begin{aligned} 1 b & =163.62 \mathrm{~cm}^{2} \pm 1.6 \% \\ & =163.62 \pm 2.6 \mathrm{~cm}^{2} \end{aligned} $$
This leads us to quote the final result as
$$ 1 b=164 \pm 3 \mathrm{~cm}^{2} $$
Here $3 \mathrm{~cm}^{2}$ is the uncertainty or error in the estimation of area of rectangular sheet.
(2) If a set of experimental data is specified to $\mathbf{n}$ significant figures, a result obtained by combining the data will also be valid to $n$ significant figures.
However, if data are subtracted, the number of significant figures can be reduced.
For example, $12.9 \mathrm{~g}-7.06 \mathrm{~g}$, both specified to three significant figures, cannot properly be evaluated as $5.84 \mathrm{~g}$ but only as $5.8 \mathrm{~g}$, as uncertainties in subtraction or addition combine in a different fashion (smallest number of decimal places rather than the number of significant figures in any of the number added or subtracted).
(3) The relative error of a value of number specified to significant figures depends not only on $\mathbf{n}$ but also on the number itself.
For example, the accuracy in measurement of mass $1.02 \mathrm{~g}$ is $\pm 0.01 \mathrm{~g}$ whereas another measurement $9.89 \mathrm{~g}$ is also accurate to $\pm 0.01 \mathrm{~g}$.
The relative error in $1.02 \mathrm{~g}$ is
$$ \begin{aligned} & =( \pm 0.01 / 1.02) \times 100 \% \\ & = \pm 1 \% \end{aligned} $$
Similarly, the relative error in $9.89 \mathrm{~g}$ is
$$ \begin{aligned} & =( \pm 0.01 / 9.89) \times 100 \% \\ & = \pm 0.1 \% \end{aligned} $$
Finally, remember that intermediate results in a multi-step computation should be calculated to one more significant figure in every measurement than the number of digits in the least precise measurement. These should be justified by the data and then the arithmetic operations may be carried out; otherwise rounding errors can build up. For example, the reciprocal of 9.58, calculated (after rounding off) to the same number of significant figures (three) is 0.104 , but the reciprocal of 0.104 calculated to three significant figures is 9.62. However, if we had written $1 / 9.58=0.1044$ and then taken the reciprocal to three significant figures, we would have retrieved the original value of 9.58.
This example justifies the idea to retain one more extra digit (than the number of digits in the least precise measurement) in intermediate steps of the complex multi-step calculations in order to avoid additional errors in the process of rounding off the numbers.
1.4 DIMENSIONS OF PHYSICAL QUANTITIES
The nature of a physical quantity is described by its dimensions. All the physical quantities represented by derived units can be expressed in terms of some combination of seven fundamental or base quantities. We shall call these base quantities as the seven dimensions of the physical world, which are denoted with square brackets [ ]. Thus, length has the dimension $[\mathrm{L}]$, mass $[\mathrm{M}]$, time [T], electric current $[\mathrm{A}]$, thermodynamic temperature $[\mathrm{K}]$, luminous intensity [cd], and amount of substance [mol]. The dimensions of a physical quantity are the powers (or exponents) to which the base quantities are raised to represent that quantity. Note that using the square brackets [ ] round a quantity means that we are dealing with ’the dimensions of’ the quantity.
In mechanics, all the physical quantities can be written in terms of the dimensions [L], [M] and $[\mathrm{T}]$. For example, the volume occupied by an object is expressed as the product of length, breadth and height, or three lengths. Hence the dimensions of volume are $[\mathrm{L}] \times[\mathrm{L}] \times[\mathrm{L}]=[\mathrm{L}]^{3}=\left[\mathrm{L}^{3}\right]$. As the volume is independent of mass and time, it is said to possess zero dimension in mass $\left[\mathrm{M}^{\circ}\right]$, zero dimension in time $\left[\mathrm{T}^{\circ}\right]$ and three dimensions in length.
Similarly, force, as the product of mass and acceleration, can be expressed as
Force $=$ mass $\times$ acceleration
$=$ mass $\times($ length $) /(\text { time })^{2}$
The dimensions of force are $[\mathrm{M}][\mathrm{L}] /[\mathrm{T}]^{2}=$ $\left[\mathrm{M} \mathrm{L} \mathrm{T}^{-2}\right]$. Thus, the force has one dimension in mass, one dimension in length, and -2 dimensions in time. The dimensions in all other base quantities are zero.
Note that in this type of representation, the magnitudes are not considered. It is the quality of the type of the physical quantity that enters. Thus, a change in velocity, initial velocity, average velocity, final velocity, and speed are all equivalent in this context. Since all these quantities can be expressed as length/time, their dimensions are $[\mathrm{L}] /[\mathrm{T}]$ or $\left[\mathrm{L} \mathrm{T}^{-1}\right]$.
1.5 DIMENSIONAL FORMULAE AND DIMENSIONAL EQUATIONS
The expression which shows how and which of the base quantities represent the dimensions of a physical quantity is called the dimensional formula of the given physical quantity. For example, the dimensional formula of the volume is $\left[\mathrm{M}^{\circ} \mathrm{L}^{3} \mathrm{~T}^{\circ}\right]$, and that of speed or velocity is $\left[\mathrm{M}^{\circ} \mathrm{LT}^{-1}\right]$. Similarly, $\left[\mathrm{M}^{\circ} \mathrm{L} \mathrm{T}^{-2}\right]$ is the dimensional formula of acceleration and $\left[\mathrm{M} \mathrm{L}^{-3} \mathrm{~T}^{\circ}\right]$ that of mass density.
An equation obtained by equating a physical quantity with its dimensional formula is called the dimensional equation of the physical quantity. Thus, the dimensional equations are the equations, which represent the dimensions of a physical quantity in terms of the base quantities. For example, the dimensional equations of volume $[V]$, speed $[v]$, force $[F]$ and mass density $[\rho]$ may be expressed as
$$ \begin{aligned} & {[V]=\left[\mathrm{M}^{0} \mathrm{~L}^{3} \mathrm{~T}^{0}\right]} \\ & {[v]=\left[\mathrm{M}^{0} \mathrm{~L} \mathrm{~T}^{-1}\right]} \\ & {[F]=\left[\mathrm{M} \mathrm{L} \mathrm{T}^{-2}\right]} \\ & {[\rho]=\left[\mathrm{M} \mathrm{L}^{-3} \mathrm{~T}^{0}\right]} \end{aligned} $$
The dimensional equation can be obtained from the equation representing the relations between the physical quantities. The dimensional formulae of a large number and wide variety of physical quantities, derived from the equations representing the relationships among other physical quantities and expressed in terms of base quantities are given in Appendix 9 for your guidance and ready reference.
1.6 DIMENSIONAL ANALYSIS AND ITS APPLICATIONS
The recognition of concepts of dimensions, which guide the description of physical behaviour is of basic importance as only those physical quantities can be added or subtracted which have the same dimensions. A thorough understanding of dimensional analysis helps us in deducing certain relations among different physical quantities and checking the derivation, accuracy and dimensional consistency or homogeneity of various mathematical expressions. When magnitudes of two or more physical quantities are multiplied, their units should be treated in the same manner as ordinary algebraic symbols. We can cancel identical units in the numerator and denominator. The same is true for dimensions of a physical quantity. Similarly, physical quantities represented by symbols on both sides of a mathematical equation must have the same dimensions.
1.6.1 Checking the Dimensional Consistency of Equations
The magnitudes of physical quantities may be added together or subtracted from one another only if they have the same dimensions. In other words, we can add or subtract similar physical quantities. Thus, velocity cannot be added to force, or an electric current cannot be subtracted from the thermodynamic temperature. This simple principle called the principle of homogeneity of dimensions in an equation is extremely useful in checking the correctness of an equation. If the dimensions of all the terms are not same, the equation is wrong. Hence, if we derive an expression for the length (or distance) of an object, regardless of the symbols appearing in the original mathematical relation, when all the individual dimensions are simplified, the remaining dimension must be that of length. Similarly, if we derive an equation of speed, the dimensions on both the sides of equation, when simplified, must be of length/ time, or $\left[\mathrm{L} \mathrm{T}^{-1}\right]$.
Dimensions are customarily used as a preliminary test of the consistency of an equation, when there is some doubt about the correctness of the equation. However, the dimensional consistency does not guarantee correct equations. It is uncertain to the extent of dimensionless quantities or functions. The arguments of special functions, such as the trigonometric, logarithmic and exponential functions must be dimensionless. A pure number, ratio of similar physical quantities, such as angle as the ratio (length/length), refractive index as the ratio (speed of light in vacuum/speed of light in medium) etc., has no dimensions
Now we can test the dimensional consistency or homogeneity of the equation
$$ x=x_{0}+v_{0} t+(1 / 2) a t^{2} $$
for the distance $x$ travelled by a particle or body in time $t$ which starts from the position $x_{0}$ with an initial velocity $v_{0}$ at time $t=0$ and has uniform acceleration $a$ along the direction of motion.
The dimensions of each term may be written as
$$ \begin{gathered} {[x]=[\mathrm{L}]} \\ {\left[x_{0}\right]=[\mathrm{L}]} \\ {\left[v_{0} t\right]=\left[\mathrm{L} \mathrm{T} \mathrm{T}^{-1}\right][\mathrm{T}]} \\ =[\mathrm{L}] \\ {\left[(1 / 2) a t^{2}\right]=\left[\mathrm{L} \mathrm{T}^{-2}\right]\left[\mathrm{T}^{2}\right]} \\ =[\mathrm{L}] \end{gathered} $$
As each term on the right hand side of this equation has the same dimension, namely that of length, which is same as the dimension of left hand side of the equation, hence this equation is a dimensionally correct equation.
It may be noted that a test of consistency of dimensions tells us no more and no less than a test of consistency of units, but has the advantage that we need not commit ourselves to a particular choice of units, and we need not worry about conversions among multiples and sub-multiples of the units. It may be borne in mind that if an equation fails this consistency test, it is proved wrong, but if it passes, it is not proved right. Thus, a dimensionally correct equation need not be actually an exact (correct) equation, but a dimensionally wrong (incorrect) or inconsistent equation must be wrong.
Example 1.3 Let us consider an equation
$$ \frac{1}{2} m v^{2}=m g h $$
where $m$ is the mass of the body, $v$ its velocity, $q$ is the acceleration due to gravity and $h$ is the height. Check whether this equation is dimensionally correct.
Answer The dimensions of LHS are
$$ \begin{gathered} {[\mathrm{M}]\left[\mathrm{L} \mathrm{T}^{-1}\right]^{2}=[\mathrm{M}]\left[\mathrm{L}^{2} \mathrm{~T}^{-2}\right]} \\ =\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}\right] \end{gathered} $$
The dimensions of RHS are
$$ \begin{aligned} {[\mathrm{M}]\left[\mathrm{L} \mathrm{T}^{-2}\right][\mathrm{L}] } & =[\mathrm{M}]\left[\mathrm{L}^{2} \mathrm{~T}^{-2}\right] \\ & =\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}\right] \end{aligned} $$
The dimensions of LHS and RHS are the same and hence the equation is dimensionally correct.
Example 1.4 The SI unit of energy is $\mathrm{J}=\mathrm{kg} \mathrm{m}^2 \mathrm{~s}^{-2}$; that of speed $v$ is $\mathrm{m} \mathrm{s}^{-1}$ and of acceleration $a$ is $\mathrm{m} \mathrm{s}^{-2}$. Which of the formulae for kinetic energy $(K)$ given below can you rule out on the basis of dimensional arguments ( $m$ stands for the mass of the body) :
(a) $K=m^2 v^3$
(b) $K=(1 / 2) m v^2$
(c) $K=m a$
(d) $K=(3 / 16) m v^2$
(e) $K=(1 / 2) m v^2+m a$
Answer Every correct formula or equation must have the same dimensions on both sides of the equation. Also, only quantities with the same physical dimensions can be added or subtracted. The dimensions of the quantity on the right side are $\left[\mathrm{M}^{2} \mathrm{~L}^{3} \mathrm{~T}^{-3}\right]$ for (a); $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}\right]$ for (b) and (d); [M L T ${ }^{-2}$ ] for (c). The quantity on the right side of (e) has no proper dimensions since two quantities of different dimensions have been added. Since the kinetic energy $K$ has the dimensions of $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}\right]$, formulas (a), (c) and (e) are ruled out. Note that dimensional arguments cannot tell which of the two, (b) or (d), is the correct formula. For this, one must turn to the actual definition of kinetic energy (see Chapter 5). The correct formula for kinetic energy is given by (b).
1.6.2 Deducing Relation among the Physical Quantities
The method of dimensions can sometimes be used to deduce relation among the physical quantities. For this we should know the dependence of the physical quantity on other quantities (upto three physical quantities or linearly independent variables) and consider it as a product type of the dependence. Let us take an example.
Example 1.5 Consider a simple pendulum, having a bob attached to a string, that oscillates under the action of the force of gravity. Suppose that the period of oscillation of the simple pendulum depends on its length (I), mass of the bob $(m)$ and acceleration due to gravity $(g)$. Derive the expression for its time period using method of dimensions.
Answer The dependence of time period $T$ on the quantities $l, g$ and $m$ as a product may be written as :
$T=k l^{x} g^{y} m^{z}$
where $\mathrm{k}$ is dimensionless constant and $x, y$ and $z$ are the exponents.
By considering dimensions on both sides, we have
$$ \left[\mathrm{L}^{\mathrm{o}} \mathrm{M}^{\mathrm{o}} \mathrm{T}^{1}\right]=\left[\mathrm{L}^{1}\right]^{x}\left[\mathrm{~L}^{1} \mathrm{~T}^{-2}\right]^{y}\left[\mathrm{M}^{1}\right]^{z} $$
$=\mathrm{L}^{x+y} \mathrm{~T}^{-2 y} \mathrm{M}^{z}$
On equating the dimensions on both sides, we have
$$ x+y=0 ;-2 y=1 ; \text { and } z=0 $$
So that $x=\frac{1}{2}, y=-\frac{1}{2}, z=0$
Then, $T=k l^{1 / 2} g^{-1 / 2}$
or, $T=k \sqrt{\frac{l}{g}}$
Note that value of constant $k$ can not be obtained by the method of dimensions. Here it does not matter if some number multiplies the right side of this formula, because that does not affect its dimensions.
Actually, $k=2 \pi$ so that $T=2 \pi \sqrt{\frac{l}{g}}$
Dimensional analysis is very useful in deducing relations among the interdependent physical quantities. However, dimensionless constants cannot be obtained by this method. The method of dimensions can only test the dimensional validity, but not the exact relationship between physical quantities in any equation. It does not distinguish between the physical quantities having same dimensions.
A number of exercises at the end of this chapter will help you develop skill in dimensional analysis.
Summary
1. Physics is a quantitative science, based on measurement of physical quantities. Certain physical quantities have been chosen as fundamental or base quantities (such as length, mass, time, electric current, thermodynamic temperature, amount of substance, and luminous intensity).
2. Each base quantity is defined in terms of a certain basic, arbitrarily chosen but properly standardised reference standard called unit (such as metre, kilogram, second, ampere, kelvin, mole and candela). The units for the fundamental or base quantities are called fundamental or base units.
3. Other physical quantities, derived from the base quantities, can be expressed as a combination of the base units and are called derived units. A complete set of units, both fundamental and derived, is called a system of units.
4. The International System of Units (SI) based on seven base units is at present internationally accepted unit system and is widely used throughout the world.
5. The SI units are used in all physical measurements, for both the base quantities and the derived quantities obtained from them. Certain derived units are expressed by means of SI units with special names (such as joule, newton, watt, etc).
6. The SI units have well defined and internationally accepted unit symbols (such as $m$ for metre, kg for kilogram, $\mathrm{s}$ for second, A for ampere, $\mathrm{N}$ for newton etc.).
7. Physical measurements are usually expressed for small and large quantities in scientific notation, with powers of 10 . Scientific notation and the prefixes are used to simplify measurement notation and numerical computation, giving indication to the precision of the numbers.
8. Certain general rules and guidelines must be followed for using notations for physical quantities and standard symbols for SI units, some other units and SI prefixes for expressing properly the physical quantities and measurements.
9. In computing any physical quantity, the units for derived quantities involved in the relationship(s) are treated as though they were algebraic quantities till the desired units are obtained.
10. In measured and computed quantities proper significant figures only should be retained. Rules for determining the number of significant figures, carrying out arithmetic operations with them, and ‘rounding off ’ the uncertain digits must be followed.
11. The dimensions of base quantities and combination of these dimensions describe the nature of physical quantities. Dimensional analysis can be used to check the dimensional consistency of equations, deducing relations among the physical quantities, etc. A dimensionally consistent equation need not be actually an exact (correct) equation, but a dimensionally wrong or inconsistent equation must be wrong.
Exercises
Note : In stating numerical answers, take care of significant figures.
1.1 Fill in the blanks
(a) The volume of a cube of side $1 \mathrm{~cm}$ is equal to ….. $\mathrm{m}^{3}$
(b) The surface area of a solid cylinder of radius $2.0 \mathrm{~cm}$ and height $10.0 \mathrm{~cm}$ is equal to … $(\mathrm{mm})^{2}$
(c) A vehicle moving with a speed of $18 \mathrm{~km} \mathrm{~h}^{-1}$ covers…. $\mathrm{m}$ in $1 \mathrm{~s}$
(d) The relative density of lead is 11.3 . Its density is …. $\mathrm{g} \mathrm{cm}^{-3}$ or …. $\mathrm{kg} \mathrm{m}^{-3}$
Show Answer
Answer
(a) 1 cm $=\frac{1}{100} ~m$
Volume of the cube $=1 ~cm^{3}$
But, $1 ~cm^{3}=1 ~cm \times 1 ~cm \times 1 ~cm=(\frac{1}{100}) ~m \times(\frac{1}{100}) ~m \times(\frac{1}{100}) ~m$
$\therefore 1 ~cm^{3}=10^{-6} ~m^{3}$
Hence, the volume of a cube of side $1 ~cm$ is equal to $10^{-6} ~m^{3}$.
(b) The total surface area of a cylinder of radius $r$ and height $h$ is
$S=2 \pi r(r+h)$.
Given that,
$r=2 ~cm=2 \times 1 ~cm=2 \times 10 ~mm=20 ~mm$
$h=10 ~cm=10 \times 10 ~mm =100 ~mm$
$\therefore S=2 \times 3.14 \times 20 \times(20+100)=15072=1.5 \times 10^{4} ~mm^{2}$
(c) Using the conversion,
$1 ~km / h=\frac{5}{18} ~m / s$
$18 ~km / h=18 \times \frac{5}{18}=5 ~m / s$
Therefore, distance can be obtained using the relation:
Distance $=$ Speed $\times$ Time $=5 \times 1=5 ~m$
Hence, the vehicle covers $5 ~m$ in $1 ~s$.
(d) Relative density of a substance is given by the relation,
Relative density $=\frac{\text{ Density of substance }}{\text{ Density of water }}$
Density of water $=1 ~g / ~cm^{3}$
Density of lead $=$ Relative density of lead $\times$ Density of water
$ =11.3 \times 1=11.3 g / ~cm^{3} $
Again, $1 g=\frac{1}{1000} kg$
$1 ~cm^{3}=10^{-6} ~m^{3}$
$1 g / ~cm^{3}=\frac{10^{-3}}{10^{-6}} kg / ~m^{3}=10^{3} kg / ~m^{3}$
$\therefore 11.3 g / ~cm^{3}=11.3 \times 10^{3} kg / ~m^{3}$
1.2Fill in the blanks by suitable conversion of units
(a) $1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}=\ldots . . \mathrm{g} \mathrm{cm}^{2} \mathrm{~s}^{-2}$
(b) $1 \mathrm{~m}=\ldots . .1 \mathrm{ly}$
(c) $3.0 \mathrm{~m} \mathrm{~s}^{-2}=\ldots . \mathrm{km} \mathrm{h}^{-2}$
(d) $G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2}(\mathrm{~kg})^{-2}=\ldots(\mathrm{cm})^{3} \mathrm{~s}^{-2} \mathrm{~g}^{-1}$.
Show Answer
Answer
(a) $1 kg=10^{3} ~g$
$1 m^{2}=10^{4} cm^{2}$
$1 ~g m^{2} s^{-2}=1 ~kg \times 1 m^{2} \times 1 ~s^{-2}$
$=10^{3} ~g \times 10^{4} cm^{2} \times 1 ~s^{-2}=10^{7} ~g cm^{2} s^{-2}$
(b) Light year is the total distance travelled by light in one year.
$1 ~ly=$ Speed of light $\times$ One year
$=(3 \times 10^{8} ~m / s) \times(365 \times 24 \times 60 \times 60 s)$
$=9.46 \times 10^{15} ~m$
$\therefore 1 ~m=\frac{1}{9.46 \times 10^{15}}=1.057 \times 10^{-16} ~ly$
(c) $1 ~m=10^{-3} ~km$
Again, $1 ~s=\frac{1}{3600} ~h$
$1 ~s^{-1}=3600 ~h^{-1}$
$1 ~s^{-2}=(3600)^{2} ~h^{-2}$
$\therefore 3 ~m s^{-2}=(3 \times 10^{-3} ~km) \times((3600)^{2} h^{-2})=3.88 \times 10^{-4} ~km h^{-2}$
(d) $1 ~N=1 ~kg m s^{-2}$
$1 ~kg=10^{-3} ~g^{-1}$
$1 ~m^{3}=10^{6} ~cm^{3}$
$\therefore 6.67 \times 10^{-11} ~N m^{2} kg^{-2}=6.67 \times 10^{-11} \times(1 ~kg m s^{-2})(1 m^{2})(1 s^{-2})$
$ \begin{aligned} & =6.67 \times 10^{-11} \times(1 kg \times 1 m^{3} \times 1 s^{-2}) \\ & =6.67 \times 10^{-11} \times(10^{-3} g^{-1}) \times(10^{6} cm^{3}) \times(1 s^{-2}) \\ & =6.67 \times 10^{-8} cm^{3} s^{-2} g^{-1} \end{aligned} $
1.3 A calorie is a unit of heat (energy in transit) and it equals about $4.2 \mathrm{~J}$ where $1 \mathrm{~J}=$ $1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$. Suppose we employ a system of units in which the unit of mass equals $\alpha$ $\mathrm{kg}$, the unit of length equals $\beta \mathrm{m}$, the unit of time is $\gamma \mathrm{s}$. Show that a calorie has a magnitude $4.2 \alpha^{-1} \beta^{-2} \gamma^{2}$ in terms of the new units.
Show Answer
Answer
Given that,
1 calorie $=4.2(1 kg)(1 m^{2})(1 s^{-2})$
New unit of mass $=\alpha kg$
Hence, in terms of the new unit, $1 kg=\frac{1}{\alpha}=\alpha^{-1}$
In terms of the new unit of length,
$ 1 m=\frac{1}{\beta}=\beta^{-1} \text{ or } 1 m^{2}=\beta^{-2} $
And, in terms of the new unit of time,
$ \begin{aligned} & 1 s=\frac{1}{\gamma}=\gamma^{-1} \\ & 1 s^{2}=\gamma^{-2} \\ & 1 s^{-2}=\gamma^{2} \\ & \therefore 1 \text{ calorie }=4.2(1 \alpha^{-1})(1 \beta^{-2})(1 \gamma^{2})=4.2 \alpha^{-1} \beta^{-2} \gamma^{2} \end{aligned} $
1.4 Explain this statement clearly : “To call a dimensional quantity ’large’ or ‘small’ is meaningless without specifying a standard for comparison”. In view of this, reframe the following statements wherever necessary :
(a) atoms are very small objects
(b) a jet plane moves with great speed
(c) the mass of Jupiter is very large
(d) the air inside this room contains a large number of molecules
(e) a proton is much more massive than an electron
(f) the speed of sound is much smaller than the speed of light.
Show Answer
Answer
The given statement is true because a dimensionless quantity may be large or small in comparision to some standard reference. For example, the coefficient of friction is dimensionless. The coefficient of sliding friction is greater than the coefficient of rolling friction, but less than static friction.
(a) An atom is a very small object in comparison to a soccer ball.
(b) A jet plane moves with a speed greater than that of a bicycle.
(c) Mass of Jupiter is very large as compared to the mass of a cricket ball.
(d) The air inside this room contains a large number of molecules as compared to that present in a geometry box.
(e) A proton is more massive than an electron.
(f) Speed of sound is less than the speed of light.
1.5 A new unit of length is chosen such that the speed of light in vacuum is unity. What is the distance between the Sun and the Earth in terms of the new unit if light takes $8 \mathrm{~min}$ and $20 \mathrm{~s}$ to cover this distance?
Show Answer
Answer
Distance between the Sun and the Earth:
$=$ Speed of light $\times$ Time taken by light to cover the distance
Given that in the new unit, speed of light $=1$ unit
Time taken, $t=8 \min 20 s=500 s$
$\therefore$ Distance between the Sun and the Earth $=1 \times 500=500$ units
1.6 Which of the following is the most precise device for measuring length :
(a) a vernier callipers with 20 divisions on the sliding scale
(b) a screw gauge of pitch $1 \mathrm{~mm}$ and 100 divisions on the circular scale
(c) an optical instrument that can measure length to within a wavelength of light ?
Show Answer
Answer
(a) A device with minimum count is the most suitable to measure length.
Least count of vernier callipers
$=1$ standard division $(SD)-1$ vernier division (VD)
$=1-\frac{9}{10}=\frac{1}{10}=0.01 cm$
(b) Least count of screw gauge $= \frac{\text{Pitch}}{\text{Number of divisions}}$
$=\frac{1}{1000}=0.001 cm$
(c) Least count of an optical device $=$ Wavelength of light $\sim 10^{-5} cm$
$=0.00001 cm$
Hence, it can be inferred that an optical instrument is the most suitable device to measure length.
1.7 A student measures the thickness of a human hair by looking at it through a microscope of magnification 100. He makes 20 observations and finds that the average width of the hair in the field of view of the microscope is $3.5 \mathrm{~mm}$. What is the estimate on the thickness of hair?
Show Answer
Answer
Magnification of the microscope $=100$
Average width of the hair in the field of view of the microscope $=3.5 ~mm$
$\therefore$ Actual thickness of the hair is $\frac{3.5}{100}=0.035 ~mm$.
1.8 Answer the following :
(a)You are given a thread and a metre scale. How will you estimate the diameter of the thread?
(b)A screw gauge has a pitch of $1.0 \mathrm{~mm}$ and 200 divisions on the circular scale. Do you think it is possible to increase the accuracy of the screw gauge arbitrarily by increasing the number of divisions on the circular scale?
(c) The mean diameter of a thin brass rod is to be measured by vernier callipers. Why is a set of 100 measurements of the diameter expected to yield a more reliable estimate than a set of 5 measurements only?
Show Answer
Answer
Wrap the thread on a uniform smooth rod in such a way that the coils thus formed are very close to each other. Measure the length of the thread using a metre scale. The diameter of the thread is given by the relation,
Diameter $=\frac{\text{ Length of thread }}{\text{ Number of turns }}$
It is not possible to increase the accuracy of a screw gauge by increasing the number of divisions of the circular scale. Increasing the number divisions of the circular scale will increase its accuracy to a certain extent only.
A set of 100 measurements is more reliable than a set of 5 measurements because random errors involved in the former are very less as compared to the latter.
1.9 The photograph of a house occupies an area of $1.75 \mathrm{~cm}^{2}$ on a $35 \mathrm{~mm}$ slide. The slide is projected on to a screen, and the area of the house on the screen is $1.55 \mathrm{~m}^{2}$. What is the linear magnification of the projector-screen arrangement.
Show Answer
Answer
Area of the house on the slide $=1.75 cm^{2}$
Area of the image of the house formed on the screen $=1.55 m^{2}$
$=1.55 \times 10^{4} cm^{2}$
Arial magnification, $m_a=\frac{\text{ Area of image }}{\text{ Area of object }}=\frac{1.55}{1.75} \times 10^{4}$
$\therefore$ Linear magnifications, $m_l=\sqrt{m_a}$
$=\sqrt{\frac{1.55}{1.75} \times 10^{4}}=94.11$
1.10 State the number of significant figures in the following :
(a) $0.007 \mathrm{~m}^{2}$
(b) $2.64 \times 10^{24} \mathrm{~kg}$
(c) $0.2370 \mathrm{~g} \mathrm{~cm}^{-3}$
(d) $6.320 \mathrm{~J}$
(e) $6.032 \mathrm{~N} \mathrm{~m}^{-2}$
(f) $0.0006032 \mathrm{~m}^{2}$
Show Answer
Answer
(a)
The given quantity is $0.007 ~m^{2}$.
If the number is less than one, then all zeros on the right of the decimal point (but left to the first non-zero) are insignificant. This means that here, two zeros after the decimal are not significant. Hence, only 7 is a significant figure in this quantity.
(b)
The given quantity is $2.64 \times 10^{24} ~kg$.
Here, the power of 10 is irrelevant for the determination of significant figures. Hence, all digits i.e., 2, 6 and 4 are significant figures.
(c)
The given quantity is $0.2370 ~g cm^{-3}$.
For a number with decimals, the trailing zeroes are significant. Hence, besides digits 2, 3 and 7, 0 that appears after the decimal point is also a significant figure.
(d)
The given quantity is $6.320 ~J$.
For a number with decimals, the trailing zeroes are significant. Hence, all four digits appearing in the given quantity are significant figures.
(e)
The given quantity is $6.032 ~Nm^{-2}$.
All zeroes between two non-zero digits are always significant.
(f)
The given quantity is $0.0006032 ~m^{2}$.
If the number is less than one, then the zeroes on the right of the decimal point (but left to the first non-zero) are insignificant. Hence, all three zeroes appearing before 6 are not significant figures. All zeros between two non-zero digits are always significant. Hence, the remaining four digits are significant figures.
1.11 The length, breadth and thickness of a rectangular sheet of metal are $4.234 \mathrm{~m}, 1.005 \mathrm{~m}$, and $2.01 \mathrm{~cm}$ respectively. Give the area and volume of the sheet to correct significant figures.
Show Answer
Answer
Length of sheet, $l=4.234 ~m$
Breadth of sheet, $b=1.005 ~m$
Thickness of sheet, $h=2.01 cm=0.0201 ~m$
The given table lists the respective significant figures:
Quantity | Number | Significant Figure |
---|---|---|
$l$ | 4.234 | 4 |
$b$ | 1.005 | 4 |
$h$ | 2.01 | 3 |
Hence, area and volume both must have least significant figures i.e., 3 .
Surface area of the sheet $=2(l \times b+b \times h+h \times l)$
$=2(4.234 \times 1.005+1.005 \times 0.0201+0.0201 \times 4.234)$
$=2(4.25517+0.02620+0.08510)$
$=2 \times 4.360$
$=8.72 ~m^{2}$
Volume of the sheet $=l \times b \times h$
$=4.234 \times 1.005 \times 0.0201$
$=0.0855 ~m^{3}$
This number has only 3 significant figures i.e., 8 , 5, and 5.
1.12 The mass of a box measured by a grocer’s balance is $2.30 \mathrm{~kg}$. Two gold pieces of masses $20.15 \mathrm{~g}$ and $20.17 \mathrm{~g}$ are added to the box. What is (a) the total mass of the box, (b) the difference in the masses of the pieces to correct significant figures ?
Show Answer
Answer
Mass of grocer’s box $=2.300 ~kg$
Mass of gold piece $\mathbf{I}=20.15 ~g=0.02015 ~kg$
Mass of gold piece $\mathbf{I I}=20.17 ~g=0.02017 ~kg$
Total mass of the box $=2.3+0.02015+0.02017=2.34032 ~kg$
In addition, the final result should retain as many decimal places as there are in the number with the least decimal places. Hence, the total mass of the box is $2.3 ~kg$.
Difference in masses $=20.17-20.15=0.02 ~g$
In subtraction, the final result should retain as many decimal places as there are in the number with the least decimal places.
1.13 A famous relation in physics relates ‘moving mass’ $m$ to the ‘rest mass’ $m_{0}$ of a particle in terms of its speed $v$ and the speed of light, $c$. (This relation first arose as a consequence of special relativity due to Albert Einstein). A boy recalls the relation almost correctly but forgets where to put the constant c. He writes :
$m=\frac{m_{O}}{\left(1-v^{2}\right)^{1 / 2}}$
Guess where to put the missing $c$.
Show Answer
Answer
Given the relation,
$ m=\frac{m_0}{(1-v^{2})^{\frac{1}{2}}} $
Dimension of $m=M^{1} L^{0} T^{0}$
Dimension of $m_0=M^{1} L^{0} T^{0}$
Dimension of $v=M^{0} L^{1} T^{-1}$
Dimension of $v^{2}=M^{0} L^{2} T^{-2}$
Dimension of $c=M^{0} L^{1} T^{-1}$
The given formula will be dimensionally correct only when the dimension of L.H.S is the same as that of R.H.S. This is only possible when the factor, $(1-v^{2})^{\frac{1}{2}}$ is dimensionless i.e., $(1-v^{2})$ is dimensionless. This is only possible if $v^{2}$ is divided by $c^{2}$. Hence, the correct relation is
$ m=\frac{m_0}{(1-\frac{v^{2}}{c^{2}})^{\frac{1}{2}}} $
1.14 The unit of length convenient on the atomic scale is known as an angstrom and is denoted by $\mathring{A}$ : $1 \mathring{A}=10^{-10} \mathrm{~m}$. The size of a hydrogen atom is about $0.5 \mathring{A}$. What is the total atomic volume in $\mathrm{m}^{3}$ of a mole of hydrogen atoms?
Show Answer
Answer
Radius of hydrogen atom, $r=0.5 \quad \dot{A}=0.5 \times 10^{-10} m$
Volume of hydrogen atom $=\frac{4}{3} \pi r^{3}$
$=\frac{4}{3} \times \frac{22}{7} \times(0.5 \times 10^{-10})^{3}$
$=0.524 \times 10^{-30} m^{3}$
1 mole of hydrogen contains $6.023 \times 10^{23}$ hydrogen atoms.
$\therefore$ Volume of 1 mole of hydrogen atoms $=6.023 \times 10^{23} \times 0.524 \times 10^{-30}$
$=3.16 \times 10^{-7} m^{3}$
1.15 One mole of an ideal gas at standard temperature and pressure occupies $22.4 \mathrm{~L}$ (molar volume). What is the ratio of molar volume to the atomic volume of a mole of hydrogen? (Take the size of hydrogen molecule to be about $1 \mathring{A}$ ). Why is this ratio so large?
Show Answer
Answer
Radius of hydrogen atom, $r=0.5 \quad \dot{A}=0.5 \times 10^{-10} m$
Volume of hydrogen atom $=\frac{4}{3} \pi r^{3}$
$=\frac{4}{3} \times \frac{22}{7} \times(0.5 \times 10^{-10})^{3}$
$=0.524 \times 10^{-30} m^{3}$
Now, 1 mole of hydrogen contains $6.023 \times 10^{23}$ hydrogen atoms.
$\therefore$ Volume of 1 mole of hydrogen atoms, $V_a=6.023 \times 10^{23} \times 0.524 \times 10^{-30}$
$=3.16 \times 10^{-7} m^{3}$
Molar volume of 1 mole of hydrogen atoms at STP,
$V_m=22.4 L=22.4 \times 10^{-3} m^{3}$
$\therefore \frac{V_m}{V_a}=\frac{22.4 \times 10^{-3}}{3.16 \times 10^{-7}}=7.08 \times 10^{4}$
Hence, the molar volume is $7.08 \times 10^{4}$ times higher than the atomic volume. For this reason, the inter-atomic separation in hydrogen gas is much larger than the size of a hydrogen atom.
1.16 Explain this common observation clearly : If you look out of the window of a fast moving train, the nearby trees, houses etc. seem to move rapidly in a direction opposite to the train’s motion, but the distant objects (hill tops, the Moon, the stars etc.) seem to be stationary. (In fact, since you are aware that you are moving, these distant objects seem to move with you).
Show Answer
Answer
Line of sight is defined as an imaginary line joining an object and an observer’s eye. When we observe nearby stationary objects such as trees, houses, etc. while sitting in a moving train, they appear to move rapidly in the opposite direction because the line of sight changes very rapidly.
On the other hand, distant objects such as trees, stars, etc. appear stationary because of the large distance. As a result, the line of sight does not change its direction rapidly.
1.17 The Sun is a hot plasma (ionized matter) with its inner core at a temperature exceeding $10^{7} \mathrm{~K}$, and its outer surface at a temperature of about $6000 \mathrm{~K}$. At these high temperatures, no substance remains in a solid or liquid phase. In what range do you expect the mass density of the Sun to be, in the range of densities of solids and liquids or gases? Check if your guess is correct from the following data: mass of the Sun $=2.0 \times 10^{30} \mathrm{~kg}$, radius of the Sun $=7.0 \times 10^{8} \mathrm{~m}$.
Show Answer
Answer
Mass of the Sun, $M=2.0 \times 10^{30} kg$
Radius of the Sun, $R=7.0 \times 10^{8} m$
Volume of the Sun, $V=\frac{4}{3} \pi R^{3}$
$=\frac{4}{3} \times \frac{22}{7} \times(7.0 \times 10^{8})^{3}$
$=\frac{88}{21} \times 343 \times 10^{24}=1437.3 \times 10^{24} m^{3}$
Density of the Sun $=\frac{\text{ Mass }}{\text{ Volume }}=\frac{2.0 \times 10^{30}}{1437.3 \times 10^{24}} \sim 1.4 \times 10^{3} kg / m^{5}$
The density of the Sun is in the density range of solids and liquids. This high density is attributed to the intense gravitational attraction of the inner layers on the outer layer of the Sun.
1.1 भूमिका
किसी भौतिक राशि का मापन, एक निश्चित, आधारभूत, यादृच्छिक रूप से चुने गए मान्यताप्राप्त, संदर्भ-मानक से इस राशि की तुलना करना है। यह संदर्भ-मानक मात्रक कहलाता है। किसी भी भौतिक राशि की माप को मात्रक के आगे एक संख्या (आंकिक संख्या) लिखकर व्यक्त किया जाता है। यद्यपि हमारे द्वारा मापी जाने वाली भौतिक राशियों की संख्या बहुत अधिक है, फिर भी, हमें इन सब भौतिक राशियों को व्यक्त करने के लिए, मात्रकों की सीमित संख्या की ही आवश्यकता होती है, क्योंकि, ये राशियाँ एक दूसरे से परस्पर संबंधित हैं। मूल राशियों को व्यक्त करने के लिए प्रयुक्त मात्रकों को मूल मात्रक कहते हैं। इनके अतिरिक्त अन्य सभी भौतिक राशियों के मात्रकों को मूल मात्रकों के संयोजन द्वारा व्यक्त किया जा सकता है। इस प्रकार प्राप्त किए गए व्युत्पन्न राशियों के मात्रकों को व्युत्पन्न मात्रक कहते हैं। मूल-मात्रकों और व्युत्पन्न मात्रकों के सम्पूर्ण समुच्चय को मात्रकों की प्रणाली (या पद्धति) कहते हैं।
1.2 मात्रकों की अंतर्राष्ट्रीय प्रणाली
बहुत वर्षों तक मापन के लिए, विभिन्न देशों के वैज्ञानिक, अलग-अलग मापन प्रणालियों का उपयोग करते थे। अब से कुछ समय-पूर्व तक ऐसी तीन प्रणालियाँ - CGS प्रणाली, FPS (या ब्रिटिश) प्रणाली एवं MKS प्रणाली, प्रमुखता से प्रयोग में लाई जाती थीं।
इन प्रणालियों में लम्बाई, द्रव्यमान एवं समय के मूल मात्रक क्रमशः इस प्रकार हैं :
-
CGS प्रणाली में, सेन्टीमीटर, ग्राम एवं सेकन्ड।
-
FPS प्रणाली में, फुट, पाउन्ड एवं सेकन्ड।
-
MKS प्रणाली में, मीटर, किलोग्राम एवं सेकन्ड।
आजकल अंतर्राष्ट्रीय स्तर पर मान्य प्रणाली “सिस्टम इन्टरनेशनल डि यूनिट्स” है (जो फ्रेंच भाषा में “मात्रकों की अंतर्राष्ट्रीय प्रणाली” कहना है)। इसे संकेताक्षर में SI लिखा जाता है। SI प्रतीकों, मात्रकों और उनके संकेताक्षरों की योजना अंतर्राष्ट्रीय माप-तोल ब्यूरो (बी.आई.पी.एम.) द्वारा 1971 में विकसित की गई थी एवं नवंबर, 2018 में आयोजित माप-तोल के महासम्मेलन में संशोधित की गई। यह योजना अब वैज्ञानिक, तकनीकी, औद्योगिक एवं व्यापारिक कार्यों में अंतर्राष्ट्रीय स्तर पर उपयोग हेतु अनुमोदित की गई। SI मात्रकों की 10 की घातों पर आधारित (दाश्मिक) प्रकृति के कारण, इस प्रणाली के अंतर्गत रूपांतरण अत्यंत सुगम एवं सुविधाजनक है। हम इस पुस्तक में SI मात्रकों का ही प्रयोग करेंगे।
SI में सात मूल मात्रक हैं, जो सारणी 1.1 में दिए गए हैं। इन सात मूल मात्रकों के अतिरिक्त दो पूरक मात्रक भी हैं जिनको हम इस प्रकार परिभाषित कर सकते हैं : (i) समतलीय कोण, $d \theta$ चित्र 1.1(a) में दर्शाए अनुसार वृत्त के चाप की लम्बाई $d s$ और इसकी त्रिज्या $r$ का अनुपात होता है। तथा (ii) घन-कोण, $d \Omega$ चित्र 1.1(b) में दर्शाए अनुसार शीर्ष $O$ को केन्द्र की भांति प्रयुक्त करके उसके परितः निर्मित गोलीय पृष्ठ के अपरोधन क्षेत्र $d A$ तथा त्रिज्या $r$ के वर्ग का अनुपात होता है। समतलीय कोण का मात्रक रेडियन है जिसका प्रतीक $\mathrm{rad}$ है एवं घन कोण का मात्रक स्टेरेडियन है जिसका प्रतीक $\mathrm{sr}$ है। ये दोनों ही विमाविहीन राशियाँ हैं।
चित्र 1.1 (a) समतलीय कोण $d \theta$ एवं (b) घन कोण $d \Omega$ का आरेखीय विवरण
सारणी 1.1 SI मूल राशियाँ एवं उनके मात्रक*
मूल राशि | SI मात्रक | ||
---|---|---|---|
नाम | प्रतीक | परिभाषा | |
लंबाई | मीटर | $\mathrm{m}$ | मीटर, संकेत m, लंबाई का SI मात्रक है। इसे निर्वात में प्रकाश की चाल $c$ के नियत संख्यात्मक मान 299792458 को लेकर, जो कि $\mathrm{ms}^{-1}$ मात्रक में व्यक्त है, से परिभाषित किया गया है, जहां सेकंड सीज़ियम आवृत्ति $\Delta V _{c s}$ के पदों में परिभाषित है। |
द्रव्यमान | किलोग्राम | $\mathrm{kg}$ | किलोग्राम, संकेत $\mathrm{kg}$, द्रव्यमान का SI मात्रक है। इसे प्लांक नियतांक $\boldsymbol{h}$ के नियत संख्यात्मक मान $6.62607015 \times 10^{-34}$ को लेकर, जोकि J.S. मात्रक में व्यक्त है, से परिभाषित किया गया है; यहां मात्रक J.S. $\mathrm{kg} \mathrm{m}^{2} \mathrm{~S}^{-1}$ के समान है, जहां मीटर और सेकंड की परिभाषा $\boldsymbol{c}$ तथा $\Delta \nu _{\text {cs }}$ के पदों में दी गई है। |
समय | सेकंड | s | सेकंड, संकेत S, समय का SI मात्रक है। इसकी परिभाषा सीज़ियम आवृत्ति $\Delta V _{c s}$, जो सीज़ियम-133 परमाणु की अक्षुब्ध मूल अवस्था अतिसूक्ष्म संक्रमण आवृत्ति है, के नियत संख्यात्मक मान 9192631770 को लेकर, जिसे $\mathrm{Hz}$ मात्रक जो $\mathrm{s}^{-1}$ के समान है, में व्यक्त किया गया है; दी गई है। |
विद्युत धारा | ऐम्पियर | A | ऐम्पियर, संकेत $\mathrm{A}$, विधुत-धारा का $\mathrm{SI}$ मात्रक है। इसकी परिभाषा, मूल आवेश $e$ के नियत संख्यात्मक मान $1.602176634 \times 10^{-19}$ को लेकर; जिसे $\mathrm{C}$ मात्रक जो A.S के समान है, जहां सेकंड को $\Delta \mathrm{V} _{\mathrm{cs}}$ के पदों में व्यक्त किया गया है; दी जाती है। |
ऊष्मागतिक ताप | केल्विन | K | केल्विन, संकेत $\mathrm{K}$, ऊष्मागतिक ताप का $\mathrm{SI}$ मात्रक है। इसकी परिभाषा, बोल्ट्ज़मान नियतांक, $\mathrm{K}$ के नियत संख्यात्मक मान $1.380649 \times 10^{-23}$ को लेकर; जिसे $\mathrm{J} \mathrm{K}^{-1}$ मात्रक में व्यक्त किया गया है, जो $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{k}^{-1}$ के समान है, जहां किलोग्राम, मीटर और सेकंड को $h, c$ और $\Delta \nu _{\mathrm{cs}}$ के पदों में परिभाषित किया जाता है; दी गई है। |
पदार्थ की मात्रा | मोल | mol | मोल, संकेत मोल $(\mathrm{mol})$, पदार्थ की मात्र का SI मात्रक है। एक मोल में ठीक $6.02214076 \times 10^{23}$ ही मूलभूत कण होते हैं। यह संख्या, आवोगाद्रो स्थिरांक, $N _{\mathrm{A}}$ का नियत संख्यात्मक मान होता है जब उसे $\mathrm{mol}^{-1}$ मात्रक में व्यक्त किया जाता है और इसे आवोगाद्रो संख्या कहा जाता है। किसी निकाय के पदार्थ की मात्रा, संकेत $n$, विशिष्ट मूल कणों की संख्या का आमाप होती है। ये मूल कण एक परमाणु, अणु, आयन, इलेक्ट्रॉन, कोई अन्य कण या कणों के विशिष्ट समूह हो सकते हैं। |
ज्योति-तीव्रता | केंडेला | cd | केंडेला, संकेत cd, दी गई दिशा में ज्योति-तीवृता का SI मात्रक है। इसकी परिभाषा, $540 \times 10^{12} \mathrm{Hz}$ आवृत्ति वाले एकवर्णी विकिरण की दीप्त प्रभाविकता, $\mathrm{k} _{\mathrm{cd}}$ के नियत संख्यात्मक मान 683 को लेकर जब उसे मीटर और सेकंड को $h, c$ और $\Delta \nu _{c s}$ के पदों में परिभाषित किया जाता है; दी गई है। |
सारणी 1.2 सामान्य प्रयोग के लिए SI मात्रकों के अतिरिक्त कुछ अन्य मात्रक
नाम | प्रतीक | SI मात्रक के पदों में मान |
---|---|---|
मिनट | $\mathrm{min}$ | $60 \mathrm{~s}$ |
घंटा | $\mathrm{h}$ | $60 \mathrm{~min}=3600 \mathrm{~s}$ |
दिन | $\mathrm{d}$ | $24 \mathrm{~h}=86400 \mathrm{~s}$ |
वर्ष | $\mathrm{y}$ | $365.25 \mathrm{~d}=3.156 \times 10^{7} \mathrm{~s}$ |
डिग्री | $\mathrm{o}$ | $1^{\circ}=(\pi / 180) \mathrm{rad}$ |
लिटर | $\mathrm{L}$ | $1 \mathrm{dm}^{3}=10^{-3} \mathrm{~m}^{3}$ |
टन | $\mathrm{t}$ | $10^{3} \mathrm{~kg}$ |
कैरट | $\mathrm{c}$ | $200 \mathrm{mg}$ |
बार | $\mathrm{bar}$ | $0.1 \mathrm{MPa}=10^{5} \mathrm{~Pa}$ |
क्यूरी | $\mathrm{Ci}$ | $3.7 \times 10^{10} \mathrm{~s}^{-1}$ |
रोंजन | $\mathrm{R}$ | $2.58 \times 10^{-4} \mathrm{C} \mathrm{kg}^{-1}$ |
क्विंटल | $\mathrm{q}$ | $100 \mathrm{~kg}^{28}$ |
बार्न | $\mathrm{b}$ | $100 \mathrm{fm}^{2}=10^{-28} \mathrm{~m}^{2}$ |
आर | $\mathrm{a}$ | $1 \mathrm{dam}^{2}=10^{2} \mathrm{~m}^{2}$ |
हेक्टार | $\mathrm{ha}$ | $1 \mathrm{hm}^{2}=10^{4} \mathrm{~m}^{2}$ |
मानक वायुमंडलीय दाब | $\mathrm{atm}$ | $101325 \mathrm{~Pa}^{2}=1.013 \times 10^{5} \mathrm{~Pa}$ |
ध्यान दीजिए, मोल का उपयोग करते समय मूल सत्ताओं का विशेष रूप से उल्लेख किया जाना चाहिए। ये मूल सत्ताएँ परमाणु, अणु, आयन, इलेक्ट्रॉन, अन्य कोई कण अथवा इसी प्रकार के कणों का विशिष्ट समूह हो सकता है।
हम ऐसी भौतिक राशियों के मात्रकों का भी उपयोग करते हैं जिन्हें सात मूल राशियों से व्युत्पन्न किया जा सकता है (परिशिष्ट A 6)। SI मूल मात्रकों के पदों में व्यक्त कुछ व्युत्पन्न मात्रक (परिशिष्ट A 6.1) में दिए गए हैं। कुछ व्युत्पन्न SI मात्रकों को विशिष्ट नाम दिए गए हैं (परिशिष्ट A 6.2) और कुछ व्युत्पन्न SI मात्रक इन विशिष्ट नामों वाले व्युत्पन्न मात्रकों और सात मूल-मात्रकों के संयोजन से बनते हैं (परिशिष्ट A 6.3)। आपको तात्कालिक संदर्भ तथा मार्गदर्शन प्रदान करने के लिए इन मात्रकों को परिशिष्ट (A 6.2) एवं (A 6.3) में दिया गया है। सामान्य व्यवहार में आने वाले अन्य मात्रक सारणी 1.2 में दिए गए हैं।
SI मात्रकों के सामान्य गुणज और अपवर्तकों को व्यक्त करने वाले उपसर्ग और उनके प्रतीक परिशिष्ट (A2) में दिए गए हैं। भौतिक राशियों, रासायनिक तत्वों और नाभिकों के संकेतों के उपयोग संबंधी सामान्य निर्देश परिशिष्ट (A7) में दिए गए हैं और आपके मार्गदर्शन तथा तात्कालिक संदर्भ के लिए SI मात्रकों एवं अन्य मात्रकों संबंधी निर्देश परिशिष्ट (A8) में दिए गए हैं।
1.3 सार्थक अंक
जैसा कि ऊपर वर्णन किया जा चुका है, हर मापन में त्रुटियाँ सम्मिलित होती हैं। अतः मापन के परिणामों को इस प्रकार प्रस्तुत किया जाना चाहिए कि मापन की परिशुद्धता स्पष्ट हो जाए। साधारणतः, मापन के परिणामों को एक संख्या के रूप में प्रस्तुत करते हैं जिसमें वह सभी अंक सम्मिलित होते हैं जो विश्वसनीय हैं, तथा वह प्रथम अंक भी सम्मिलित किया जाता है जो अनिश्चित है। विश्वसनीय अंकों और पहले अनिश्चित अंक को संख्या के सार्थक-अंक माना जाता है। यदि हम कहें कि किसी सरल लोलक का दोलन काल $1.62 \mathrm{~s}$ है, तो इसमें अंक 1 एवं 6 तो विश्वसनीय एवं निश्चित हैं, जबकि अंक 2 अनिश्चित है; इस प्रकार मापित मान में 3 सार्थक अंक हैं। यदि मापन के बाद किसी वस्तु की लम्बाई, $287.5 \mathrm{~cm}$ व्यक्त की जाए तो इसमें चार सार्थक अंक हैं, जिनमें $2,8,7$ तो निश्चित हैं परन्तु अंक 5 अनिश्चित है। अतः राशि के मापन के परिणाम में सार्थक अंकों से अधिक अंक लिखना अनावश्यक एवं भ्रामक होगा, क्योंकि, यह माप की परिशुद्धता के विषय में गलत धारणा देगा।
किसी संख्या में सार्थक अंकों की संख्या ज्ञात करने के नियम निम्नलिखित उदाहरणों द्वारा समझे जा सकते हैं। जैसा पहले वर्णन किया जा चुका है कि सार्थक अंक मापन की परिशुद्धता इंगित करते हैं जो मापक यंत्र के अल्पतमांक पर निर्भर करती है। किसी मापन में विभिन्न मात्रकों के परिवर्तन के चयन से सार्थक अंकों की संख्या परिवर्तित नहीं होती। यह महत्वपूर्ण टिप्पणी निम्नलिखित में से अधिक प्रेक्षणों को स्पष्ट कर देती है:
(1) उदाहरण के लिए, लम्बाई $2.308 \mathrm{~cm}$ में चार सार्थक अंक हैं। परन्तु विभिन्न मात्रकों में इसी लम्बाई को हम 0.02308 $\mathrm{m}$ या $23.08 \mathrm{~mm}$ या $23080 \mu \mathrm{m}$ भी लिख सकते हैं।
इन सभी संख्याओं में सार्थक अंकों की संख्या वही अर्थात चार (अंक $2,3,0,8$ ) है।
यह दर्शाता है कि सार्थक अंकों की संख्या निर्धारित करने में, दशमलव कहाँ लगा है इसका कोई महत्व नहीं होता।
उपरोक्त उदाहरण से निम्नलिखित नियम प्राप्त होते हैं :
- सभी शून्येतर अंक सार्थक अंक होते हैं।
- यदि किसी संख्या में दशमलव बिन्दु है, तो उसकी स्थिति का ध्यान रखे बिना, किन्हीं दो शून्येतर अंकों के बीच के सभी शून्य सार्थक अंक होते हैं।
- यदि कोई संख्या 1 से छोटी है तो वे शून्य जो दशमलव के दाईं ओर पर प्रथम शून्येतर अंक के बाईं ओर हों, सार्थक अंक नहीं होते। ( $\underline{0} . \underline{00} 2308$ में अधोरेखांकित शून्य सार्थक अंक नहीं हैं)।
- ऐसी संख्या जिसमें दशमलव नहीं है के अंतिम अथवा अनुगामी शून्य सार्थक अंक नहीं होते।
(अतः $123 \mathrm{~m}=12300 \mathrm{~cm}=123000 \mathrm{~mm}$ में तीन ही सार्थक अंक हैं, संख्या में अनुगामी शून्य सार्थक अंक नहीं हैं)। तथापि, आप अगले प्रेक्षण पर भी ध्यान दे सकते हैं।
- एक ऐसी संख्या, जिसमें दशमलव बिन्दु हो, के अनुगामी शून्य सार्थक अंक होते हैं।
(संख्या 3.500 या 0.06900 में चार सार्थक अंक हैं)।
(2) अनुगामी शून्य सार्थक अंक हैं या नहीं इस विषय में भ्रांति हो सकती है। मान लीजिए किसी वस्तु की लम्बाई $4.700 \mathrm{~m}$ लिखी गई है। इस प्रेक्षण से यह स्पष्ट है कि यहाँ शून्यों का उद्देश्य माप की परिशुद्धता को बतलाना है अतः यहाँ सभी शून्य सार्थक अंक हैं। (यदि ये सार्थक न होते तो इनको स्पष्ट रूप से लिखने की आवश्यकता न होती। तब सीधे-सीधे हम अपनी माप को $4.7 \mathrm{~m}$ लिख सकते थे।) अब मान लीजिए हम अपना मात्रक बदल लेते हैं तो
$4.700 \mathrm{~m}=470.0 \mathrm{~cm}=0.004700 \mathrm{~km}=4700 \mathrm{~mm}$
क्योंकि, अंतिम संख्या में दो शून्य, बिना दशमलव वाली संख्या में अनुगामी शून्य हैं, अतः प्रेक्षण (1) के अनुसार हम इस गलत निष्कर्ष पर पहुँच सकते हैं कि इस संख्या में 2 सार्थक अंक हैं जबकि वास्तव में इसमें चार सार्थक अंक हैं, मात्र मात्रकों के परिवर्तन से सार्थक अंकों की संख्या में परिवर्तन नहीं होता।
(3) सार्थक अंकों के निर्धारण में इस प्रकार की संदिग्धता को दूर करने के लिए सर्वोत्तम उपाय यह है कि प्रत्येक माप को वैज्ञानिक संकेत ( 10 की घातों के रूप में) में प्रस्तुत किया जाए। इस संकेत पद्धति में प्रत्येक संख्या को $a \times 10^{b}$ के रूप में लिखा जाता है, जहाँ $a, 1$ से 10 के बीच की कोई संख्या है और $b, 10$ की कोई धनात्मक या ऋणात्मक घात है। संख्या की सन्निकट अवधारणा बनाने के लिए हम इसका पूर्णांकन कर सकते हैं, यानि $(a \leq 5)$ होने पर इसे 1 और $(5<a \leq 10)$ होने पर 10 मान सकते हैं। तब, इस संख्या को लगभग $10^{\mathrm{b}}$ के रूप में व्यक्त कर सकते हैं जिसमें 10 की घात $b$ भौतिक राशि के परिमाण की कोटि कहलाती है। जब केवल एक अनुमान की आवश्यकता हो तो यह कहने से काम चलेगा कि राशि $10^{\mathrm{b}}$ की कोटि की है। उदाहरण के लिए पृथ्वी का व्यास $\left(1.28 \times 10^{7} \mathrm{~m}\right), 10^{7} \mathrm{~m}$ की कोटि का है, इसके परिमाण की कोटि 7 है। हाइड्रोजन परमाणु का व्यास $\left(1.06 \times 10^{-10} \mathrm{~m}\right), 10^{-10} \mathrm{~m}$ की कोटि का है। इसके परिमाण की कोटि -10 है। अतः, पृथ्वी का व्यास, हाइड्रोजन परमाणु के व्यास से 17 परिमाण कोटि बड़ा है।
प्रायः एक अंक के बाद दशमलव लगाने की प्रथा है। इससे ऊपर प्रेक्षण (a) में उल्लिखित भ्रांति लुप्त हो जाता है :
$$ \begin{aligned} & 4.700 \mathrm{~m}=4.700 \times 10^{2} \mathrm{~cm} \\ = & 4.700 \times 10^{3} \mathrm{~mm}=4.700 \times 10^{-3} \mathrm{~km} \end{aligned} $$
यहाँ सार्थक अंकों की संख्या ज्ञात करने में 10 की घात असंगत है। तथापि, वैज्ञानिक संकेत में आधार संख्या के सभी शून्य सार्थक अंक होते हैं। इस प्रकरण में सभी संख्याओं में 4 सार्थक अंक हैं।
इस प्रकार, वैज्ञानिक संकेत में आधार संख्या $a$ के अनुगामी शून्यों के बारे में कोई भ्रांति नहीं रह जाती। वे सदैव सार्थक अंक होते हैं।
(4) किसी भी मापन के प्रस्तुतिकरण की वैज्ञानिक संकेत विधि एक आदर्श विधि है। परन्तु यदि यह विधि नहीं अपनायी जाती, तो हम पूर्वगामी उदाहरण में उल्लिखित नियमों का पालन करते हैं :
- एक से बड़ी, बिना दशमलव वाली संख्या के लिए, अनुगामी शून्य सार्थक-अंक नहीं हैं।
- दशमलव वाली संख्या के लिए अनुगामी शून्य सार्थक अंक हैं।
(5) 1 से छोटी संख्या में, पारस्परिक रूप से, दशमलव के बाईं ओर लिखा शून्य (जैसे 0.1250 ) कभी भी सार्थक अंक नहीं होता। तथापि, किसी माप में ऐसी संख्या के अंत में आने वाले शून्य सार्थक अंक होते हैं।
(6) गुणक या विभाजी कारक जो न तो पूर्णांकित संख्याएँ होती हैं और न ही किसी मापित मान को निरूपित करती हैं, यथार्थ होती हैं और उनमें अनन्त सार्थक-अंक होते हैं। उदाहरण के लिए $r=\frac{d}{2}$ अथवा $\mathrm{s}=2 \pi r$ में गुणांक 2 एक यथार्थ संख्या है और इसे $2.0,2.00$ या 2.0000 , जो भी आवश्यक हो लिखा जा सकता है। इसी प्रकार, $T=\frac{t}{n}$, में $n$ एक पूर्णांक है।
1.3.1 सार्थक अंकों से संबंधित अंकीय संक्रियाओं के नियम
किसी परिकलन का परिणाम, जिसमें राशियों के सन्निकट मापे गए मान सम्मिलित हैं (अर्थात् वे मान जिनमें सार्थक अंकों की संख्या सीमित है) व्यक्त करते समय, मूल रूप से मापे गए मानों की अनिश्चितता भी प्रतिबिम्बित होनी चाहिए। यह परिणाम, उन मापित मानों से अधिक यथार्थ नहीं हो सकता जिन पर यह आधारित है। अतः, व्यापक रूप से, किसी भी परिणाम में सार्थक अंकों की संख्या, उन मूल आंकड़ों से अधिक नहीं हो सकती जिनसे इसे प्राप्त किया गया है। इस प्रकार, यदि किसी पिण्ड का मापित द्रव्यमान मान लीजिए $4.237 \mathrm{~g}$ है (4 सार्थक अंक), और इसका मापित आयतन $2.51 \mathrm{~cm}^{3}$ है, तो मात्र अंकीय विभाजन द्वारा इसका घनत्व दशमलव के 11 स्थानों तक $1.68804780876 \mathrm{~g} / \mathrm{cm}^{3}$ आता है। स्पष्टतः घनत्व के इस परिकलित मान को इतनी परिशुद्धता के साथ लिखना पूर्णतः हास्यास्पद तथा असंगत होगा, क्योंकि जिन मापों पर यह मान आधारित है उनकी परिशुद्धता काफी कम है। सार्थक अंकों के साथ अंकीय संक्रियाओं के निम्नलिखित नियम यह सुनिश्चित करते हैं कि किसी परिकलन का अंतिम परिणाम उतनी ही परिशुद्धता के साथ दर्शाया जाता है जो निवेशित मापित मानों की परिशुद्धता के संगत हो:
(1) संख्याओं को गुणा या भाग करने से प्राप्त परिणाम में केवल उतने ही सार्थक अंक रहने देना चाहिए जितने कि सबसे कम सार्थक अंकों वाली मूल संख्या में है।
अतः उपरोक्त उदाहरण में घनत्व को तीन सार्थक अंकों तक ही लिखा जाना चाहिए,
$$ \text { घनत्व }=\frac{4.237 \mathrm{~g}}{2.51 \mathrm{~cm}^{3}}=1.69 \mathrm{~g} \mathrm{~cm}^{-3} $$
इसी प्रकार, यदि दी गई प्रकाश कीचाल $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}^{-1}$ (तीन सार्थक अंक) और एक वर्ष $(1 \mathrm{y}=365.25 \mathrm{~d})$ में $3.1557 \times 10^{7} \mathrm{~s}$ (पांच सार्थक अंक) हों, तो एक प्रकाश वर्ष में $9.47 \times 10^{15} \mathrm{~m}$ (तीन सार्थक अंक) होंगे।
(2) संख्याओं के संकलन अथवा व्यवकलन से प्राप्त अंतिम परिणाम में दशमलव के बाद उतने ही सार्थक अंक रहने देने चाहिए जितने कि संकलित या व्यवकलित की जाने वाली किसी राशि में दशमलव के बाद कम से कम हैं।
उदाहरणार्थ, संख्याओं $436.32 \mathrm{~g}, 227.2 \mathrm{~g}$ एवं $0.301 \mathrm{~g}$ का योग $663.821 \mathrm{~g}$ है। दी गई संख्याओं में सबसे कम परिशुद्ध $(227.2 \mathrm{~g})$ माप दशमलव के एक स्थान तक ही यथार्थ है। इसलिए, अंतिम परिणाम को $663.8 \mathrm{~g}$ तक पूर्णांकित कर दिया जाना चाहिए।
इसी प्रकार, लम्बाइयों में अंतर को निम्न प्रकार से व्यक्त कर सकते हैं,
$0.307 \mathrm{~m}-0.304 \mathrm{~m}=0.003 \mathrm{~m}=3 \quad 10^{-3} \mathrm{~m}$
ध्यान दीजिए, हमें नियम (1) जो गुणा और भाग के लिए लागू होता है, उसे संकलन (योग) के उदाहरण में प्रयोग करके परिणाम को $664 \mathrm{~g}$ नहीं लिखना चाहिए और व्यवकलन के उदाहरण में $3.00 \quad 10^{-3} \mathrm{~m}$ नहीं लिखना चाहिए। ये माप की परिशुद्धता को उचित रूप से व्यक्त नहीं करते हैं। संकलन और व्यवकलन के लिए यह नियम दशमलव स्थान के पदों में है।
1.3.2 अनिश्चित अंकों का पूर्णांकन
जिन संख्याओं में एक से अधिक अनिश्चित अंक होते हैं, उनके अभिकलन के परिणाम का पूर्णांकन किया जाना चाहिए। अधिकांश प्रकरणों में, संख्याओं को उचित सार्थक अंकों तक पूर्णांकित करने के नियम स्पष्ट ही हैं। संख्या $2.74 \underline{6}$ को तीन सार्थक अंकों तक पूर्णांकित करने पर 2.75 प्राप्त होता है, जबकि 2.743 के पूर्णांकन से 2.74 मिलता है। परिपाटी के अनुसार नियम यह है कि यदि उपेक्षणीय अंक (पूर्वोक्त संख्या में अधोरेखांकित अंक) 5 से अधिक है तो पूर्ववर्ती अंक में एक की वृद्धि कर दी जाती है, और यदि यह उपेक्षणीय अंक 5 से कम होता है, तो पूर्ववर्ती अंक अपरिवर्तित रखा जाता है। लेकिन यदि संख्या $2.74 \underline{5}$ है, जिसमें उपेक्षणीय अंक 5 है, तो क्या होता है? यहाँ परिपाटी यह है कि यदि पूर्ववर्ती अंक सम है तो उपेक्षणीय अंक को छोड़ दिया जाता है और यदि यह विषम है, तो पूर्ववर्ती अंक में 1 की वृद्धि कर देते हैं। तब संख्या 2.745 , तीन सार्थक अंकों तक पूर्णांकन करने पर 2.74 हो जाती है। दूसरी ओर, संख्या 2.735 तीन सार्थक अंकों तक पूर्णांकित करने के पश्चात् 2.74 हो जाती है, क्योंकि पूर्ववर्ती अंक विषम है।
किसी भी उलझन वाले अथवा बहुपदी जटिल परिकलन में, मध्यवर्ती पदों में सार्थक अंकों से एक अंक अधिक रहने देना चाहिए, जिसे परिकलन के अंत में उचित सार्थक अंकों तक पूर्णांकित कर देना चाहिए। इसी प्रकार, एक संख्या जो कई सार्थक अंकों तक ज्ञात है, जैसे निर्वात में प्रकाश का वेग, जिसके लिए, प्राय: $2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}$ को सन्निकट मान $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ में पूर्णांकित कर परिकलनों में उपयोग करते हैं। अंत में ध्यान रखिये कि सूत्रों में उपयोग होने वाली यथार्थ संख्याएं, जैसे $T=2 \pi \sqrt{\frac{L}{g}}$ में $2 \pi$, में सार्थक अंकों की संख्या अत्यधि क (अनन्त) है। $\pi=3.1415926 \ldots$ का मान बहुत अधिक सार्थक अंकों तक ज्ञात है लेकिन आम मापित राशियों में परिशुद्धि के आधार पर $\pi$ का मान 3.142 या 3.14 भी लेना तर्क सम्मत है।
उदाहरण 1.1 किसी घन की प्रत्येक भुजा की माप $7.203 \mathrm{~m}$ है। उचित सार्थक अंकों तक घन का कुल पृष्ठ क्षेत्रफल एवं आयतन ज्ञात कीजिए।
हल मापी गई लम्बाई में सार्थक अंकों की संख्या 4 है। इसलिए, परिकलित क्षेत्रफल एवं आयतन के मानों को भी 4 सार्थक अंकों तक पूर्णांकित किया जाना चाहिए।
$$ \begin{aligned} \text घन का पृष्ठ क्षेत्रफल & =6(7.203)^{2} \mathrm{~m}^{2} \\ & =311.299254 \mathrm{~m}^{2} \\ & =311.3 \mathrm{~m}^{2}\\ \text घन का आयतन & =(7.203)^{3} \mathrm{~m}^{3} \\ & =373.714754 \mathrm{~m}^{3} \\ & =373.7 \mathrm{~m}^{3} \end{aligned} $$
उदाहरण 1.2 किसी पदार्थ के $5.74 \mathrm{~g}$ का आयतन $1.2 \mathrm{~cm}^{3}$ है। सार्थक अंकों को ध्यान में रखते हुए इसका घनत्व व्यक्त कीजिए।
हल द्रव्यमान में 3 सार्थक अंक हैं, जबकि आयतन के मापित मान में केवल दो सार्थक अंक हैं। अतः घनत्व को केवल दो सार्थक अंकों तक व्यक्त किया जाना चाहिए।
$$ \begin{aligned} \text { घनत्व }= & \frac{5.74}{1.2} \mathrm{~g} \mathrm{~cm}^{-3} \\ & =4.8 \mathrm{~g} \mathrm{~cm}^{-3} \end{aligned} $$
1.3.3 अंकगणितीय परिकलनों के परिणामों में अनिश्चितता
निर्धारित करने के नियमअंकीय संक्रियाओं में संख्याओं/ मापित राशियों में अनिश्चितता या त्रुटि निर्धारित करने संबंधी नियमों को निम्नलिखित उदाहरणों के द्वारा समझा जा सकता है।
(1) यदि किसी पतली, आयताकार शीट की लम्बाई और चौड़ाई, किसी मीटर पैमाने से मापने पर क्रमशः $16.2 \mathrm{~cm}$ एवं $10.1 \mathrm{~cm}$ हैं, तो यहाँ प्रत्येक माप में तीन सार्थक अंक हैं। इसका अर्थ है कि लम्बाई को हम इस प्रकार लिख सकते हैं
$$ \begin{aligned} l= & 16.2 \pm 0.1 \mathrm{~cm} \\ \end{aligned} $$
$$ \begin{aligned} & =16.2 \mathrm{~cm} \pm 0.6 \% . \end{aligned} $$
इसी प्रकार, चौड़ाई को इस प्रकार लिखा जा सकता है
$$ \begin{aligned} b & =10.1 \pm 0.1 \mathrm{~cm} \\ & =10.1 \mathrm{~cm} \pm 1 \% \end{aligned} $$
तब, त्रुटि संयोजन के नियम का उपयोग करने पर, दो (या अधिक) प्रायोगिक मापों के गुणनफल की त्रुटि
$$ \begin{aligned} l b & =163.62 \mathrm{~cm}^{2} \pm 1.6 \% \\ & =163.62 \pm 2.6 \mathrm{~cm}^{2} \end{aligned} $$
इस उदाहरण के अनुसार हम अंतिम परिणाम को इस प्रकार लिखेंगे
$$ l b =164 \pm 3 \mathrm{~cm}^{2} $$
यहाँ, $3 \mathrm{~cm}^{2}$ आयताकार शीट के क्षेत्रफल के आकलन में की गई त्रुटि अथवा अनिश्चितता है।
(2) यदि किसी प्रायोगिक आंकड़े के समुच्चय में $\boldsymbol{n}$ सार्थक अंकों का उल्लेख है, तो आंकड़े के संयोजन से प्राप्त परिणाम भी $n$ सार्थक अंकों तक वैध होगा।
तथापि, यदि आंकड़े घटाये जाते हैं तो सार्थक अंकों की संख्या कम की जा सकती है।
उदाहरणार्थ, $12.9 \mathrm{~g}-7.06 \mathrm{~g}$ दोनों तीन सार्थक अंकों तक विनिर्दिष्ट हैं, परन्तु इसे $5.84 \mathrm{~g}$ के रूप में मूल्यांकित नहीं किया जा सकता है बल्कि केवल $5.8 \mathrm{~g}$ लिखा जाएगा, क्योंकि संकलन या व्यवकलन में अनिश्चितताएँ एक भिन्न प्रकार से संयोजित होती हैं। (संकलित या व्यवकलित की जाने वाली संख्याओं में दशमलव के बाद कम से कम अंकों वाली संख्या न कि कम से कम सार्थक अंकों वाली संख्या निर्णय का आधार होती है।)
(3) किसी संख्या के मान में आपेक्षिक त्रुटि, जो विनिर्दिष्ट सार्थक अंकों तक दी गई है, न केवल $n$ पर, वरन, दी गई संख्या पर भी निर्भर करती है।
उदाहरणार्थ, द्रव्यमान $1.02 \mathrm{~g}$ के मापन में यथार्थता $\pm 0.01 \mathrm{~g}$ है, जबकि दूसरी माप $9.89 \mathrm{~g}$ भी $\pm 0.01 \mathrm{~g}$ तक ही यथार्थ है।
1.02 में आपेक्षिक त्रुटि
$$ \begin{aligned} & =( \pm 0.01 / 1.02) \times 100 \% \\ & = \pm 1 \% \end{aligned} $$
इसी प्रकार $9.89 \mathrm{~g}$ में आपेक्षिक त्रुटि
$$ \begin{aligned} & =( \pm 0.01 / 9.89) \times 100 \% \\ & = \pm 0.1 \% \end{aligned} $$
अंत में, याद रखिए कि बहुपदीय अभिकलन के मध्यवर्ती परिणाम को परिकलित करने में प्रत्येक माप को, अल्पतम परिशुद्ध माप से एक सार्थक अंक अधिक रखना चाहिए। आंकड़ों के अनुसार इसे तर्कसंगत करने के बाद ही इनकी अंकीय संक्रियाएँ करना चाहिए अन्यथा पूर्णांकन की त्रुटियाँ उत्पन्न हो जाएंगी। उदाहरणार्थ, 9.58 के व्युत्क्रम का तीन सार्थक अंकों तक पूर्णांकन करने पर मान 0.104 है, परन्तु 0.104 का व्युत्क्रम करने पर तीन सार्थक अंकों तक प्राप्त मान 9.62 है। पर यदि हमने $1 / 9.58=0.1044$ लिखा होता तो उसके व्युत्क्रम को तीन सार्थक अंकों तक पूर्णांकित करने पर हमें मूल मान 9.58 प्राप्त होगा।
उपरोक्त उदाहरण, जटिल बहुपदी परिकलन के मध्यवर्ती पदों में (कम से कम परिशुद्ध माप में अंकों की संख्या की अपेक्षा) एक अतिरिक्त अंक रखने की धारणा को न्यायसंगत ठहराता है, जिससे कि संख्याओं की पूर्णांकन प्रक्रिया में अतिरिक्त त्रुटि से बचा जा सके।
1.4 भौतिक राशियों की विमाएँ
किसी भौतिक राशि की प्रकृति की व्याख्या उसकी विमाओं द्वारा की जाती है। व्युत्पन्न मात्रकों द्वारा व्यक्त होने वाली सभी भौतिक राशियाँ, सात मूल राशियों के संयोजन के पदों में प्रस्तुत की जा सकती हैं। इन मूल राशियों को हम भौतिक संसार की सात विमाएँ कह सकते हैं और इन्हें गुरु कोष्ठक के साथ निर्दिष्ट किया जाता है। इस प्रकार, लम्बाई की विमा [L], विद्युत धारा की [A], ऊष्मागतिकीय ताप की [K], ज्योति तीव्रता की [cd], और पदार्थ की मात्रा की [mol] है। किसी भौतिक राशि की विमाएँ उन घातों (या घातांकों) को कहते हैं, जिन्हें उस राशि को व्यक्त करने के लिए मूल राशियों पर चढ़ाना पड़ता है। ध्यान दीजिए किसी राशि को गुरु कोष्ठक [ ] से घेरने का यह अर्थ है कि हम उस राशि की विमा पर विचार कर रहे हैं।
यांत्रिकी में, सभी भौतिक राशियों को विमाओं [L], [M] और $[T]$ के पदों में व्यक्त किया जा सकता है। उदाहरणार्थ, किसी वस्तु द्वारा घेरा गया आयतन उसकी लम्बाई, चौड़ाई और ऊँचाई अथवा तीन लम्बाइयों के गुणन द्वारा व्यक्त किया जाता है। इसलिए, आयतन का विमीय सूत्र $=[\mathrm{L}] \times[\mathrm{L}] \times[\mathrm{L}]=[\mathrm{L}]^{3}=$ [ $\left.{ }^{3}\right]$ ] क्योंकि, आयतन, द्रव्यमान और समय पर निर्भर नहीं करता, इसलिए यह कहा जाता है कि आयतन में द्रव्यमान की शून्य विमा, $\left[\mathrm{M}^{\circ}\right]$, समय की शून्य विमा $\left[\mathrm{T}^{\circ}\right]$ तथा लम्बाई की 3 विमाएँ $\left[\mathrm{L}^{3}\right]$ हैं।
इसी प्रकार, बल को द्रव्यमान और त्वरण के गुणनफल के रूप में इस प्रकार व्यक्त कर सकते हैं,
बल $=$ द्रव्यमान $\times$ त्वरण
$=$ द्रव्यमान $\times($ (लम्बाई $) /(\text { समय) })^{2}$
बल की विमाएँ $[\mathrm{M}][\mathrm{L}] /[\mathrm{T}]^{2}=\left[\mathrm{M} \mathrm{L} \mathrm{T}^{-2}\right]$ हैं। अतः बल में, द्रव्यमान की 1 , लम्बाई की 1 और समय की -2 विमाएँ हैं। यहाँ अन्य सभी मूल राशियों की विमाएँ शून्य हैं।
ध्यान दीजिए, इस प्रकार के प्रस्तुतीकरण में परिमाणों पर विचार नहीं किया जाता। इसमें भौतिक राशियों के प्रकार की गुणता का समावेश होता है। इस प्रकार, इस संदर्भ में वेग परिवर्तन, प्रारंभिक वेग, औसत वेग, अंतिम वेग और चाल, ये सभी तुल्य राशियाँ हैं, क्योंकि ये सभी राशियाँ लम्बाई/समय के रूप में व्यक्त की जा सकती हैं और इनकी विमाएँ $[\mathrm{L}] /[\mathrm{T}]$ या $\left[\mathrm{L} \mathrm{T}^{-1}\right]$ हैं।
1.5 विमीय सूत्र एवं विमीय समीकरणें
किसी दी हुई भौतिक राशि का विमीय सूत्र वह व्यंजक है जो यह दर्शाता है कि किसी भौतिक राशि में किस मूल राशि की कितनी विमाएँ हैं। उदाहरणार्थ, आयतन का विमीय सूत्र $\left[\mathrm{M}^{\circ} \mathrm{L}^{3} \mathrm{~T}^{\circ}\right]$ और वेग या चाल का $\left[\mathrm{M}^{\circ} \mathrm{LT}^{-1}\right]$ है। इसी प्रकार, $\left[\mathrm{M}^{\circ} \mathrm{L} \mathrm{T}^{-2}\right]$, त्वरण का तथा $\left[\mathrm{M} \mathrm{L}^{-3} \mathrm{~T}^{\circ}\right]$ द्रव्यमान घनत्व का विमीय सूत्र है।
किसी भौतिक राशि को उसके विमीय सूत्र के बराबर लिखने पर प्राप्त समीकरण को उस राशि का विमीय समीकरण कहते हैं। अतः विमीय समीकरण वह समीकरण है जिसमें किसी भौतिक राशि को मूल राशियों और उनकी विमाओं के पदों में निरूपित किया जाता है। उदाहरण के लिए, आयतन $[V]$, चाल $[v]$, बल $[F]$ और द्रव्यमान घनत्व $[\rho]$ की विमीय समीकरण को इस प्रकार व्यक्त किया जा सकता है :
$$ \begin{aligned} & {[V]=\left[\mathrm{M}^{0} \mathrm{~L}^{3} \mathrm{~T}^{0}\right]} \\ & {[v]=\left[\mathrm{M}^{0} \mathrm{~L} \mathrm{~T}^{-1}\right]} \\ & {[F]=\left[\mathrm{M} \mathrm{L} \mathrm{T}^{-2}\right]} \\ & {[\rho]=\left[\mathrm{M} \mathrm{L}^{-3} \mathrm{~T}^{0}\right]} \end{aligned} $$
भौतिक राशियों के बीच संबंध निरूपित करने वाले समीकरण के आधार पर विमीय समीकरण, व्युत्पन्न की जा सकती है। विविध प्रकार की बहुत सी भौतिक राशियों के विमीय सूत्र, जिन्हें अन्य भौतिक राशियों के मध्य संबंधों को निरूपित करने वाले समीकरणों से व्युत्पन्न तथा मूल राशियों के पदों में व्यक्त किया गया है, आपके मार्गदर्शन एवं तात्कालिक संदर्भ के लिए परिशिष्ट-9 में दिए गए हैं।
1.6 विमीय विश्लेषण एवं इसके अनुप्रयोग
विमाओं की संकल्पना की स्वीकृति, जो भौतिक व्यवहार के वर्णन में मार्गदर्शन करती है, अपना एक आधारिक महत्व रखती है क्योंकि इसके अनुसार केवल वही भौतिक राशियाँ संकलित या व्यवकलित की जा सकती हैं जिनकी विमाएँ समान हैं।विमीय विश्लेषण का व्यापक ज्ञान, विभिन्न भौतिक राशियों के बीच संबंधों के निगमन में सहायता करता है और विभिन्न गणितीय व्यंजकों की व्युत्पत्ति, यथार्थता तथा विमीय संगतता की जाँच करने में सहायक है। जब दो या अधिक भौतिक राशियों के परिमाणों को गुणा (या भाग) किया जाता है, तो उनके मात्रकों के साथ उस प्रकार का व्यवहार किया जाना चाहिए जैसा हम सामान्य बीज-गणितीय प्रतीकों के साथ करते हैं। अंश और हर से सर्वसम मात्रकों को हम निरसित कर सकते हैं। यही बात भौतिक राशि की विमाओं के साथ भी लागू होती है। इसी प्रकार, किसी गणितीय समीकरण में पक्षों में प्रतीकों द्वारा निरूपित भौतिक राशियों की विमाएँ समान होनी चाहिए।
1.6.1 समीकरणों की विमीय संगति की जाँच
भौतिक राशियों के परिमाण केवल तभी संकलित या व्यवकलित किए जा सकते हैं यदि उनकी विमाएँ समान हों। दूसरे शब्दों में, हम केवल एक ही प्रकार की राशियों का संकलन या व्यवकलन कर सकते हैं। अतः बल को वेग के साथ संकलित या ऊष्मा गतिक ताप में से विद्युत धारा को व्यवकलित नहीं किया जा सकता। इस सरल सिद्धांत को विमाओं की समघातता सिद्धांत कहते हैं और इसकी सहायता से किसी समीकरण की संशुद्धि की जाँच कर सकते हैं। यदि किसी समीकरण के सभी पदों की विमाएँ समान नहीं हैं तो वह समीकरण गलत होती है। अतः यदि हम किसी पिण्ड की लम्बाई (या दूरी) के लिए व्यंजक व्युत्पन्न करें, तो चाहे उसमें सम्मिलित प्रतीक कुछ भी हों, उनकी विमाओं को सरल करने पर अंत में प्रत्येक पद में लम्बाई की विमा ही शेष रहनी चाहिए। इसी प्रकार, यदि हम चाल के लिए समीकरण व्युत्पन्न करें, तो इसके दोनों पक्षों के पदों का विमीय-सूत्र सरलीकरण के बाद $\left[\mathrm{L} \mathrm{T}^{-1}\right]$ ही पाया जाना चाहिए।
यदि किसी समीकरण की संशुद्धि में संदेह हो तो उस समीकरण की संगति की प्राथमिक जांच के लिए मान्य प्रथा के अनुसार विमाओं का उपयोग किया जाता है। किन्तु, विमीय संगति किसी समीकरण के सही होने की गारंटी नहीं है। यह अविम राशियों या फलनों की अनिश्चितता सीमा तक अनिश्चित होती है। त्रिकोणमितीय, लघुगणकीय और चरघातांकी फलनों जैसे विशिष्ट फलनों के कोणांक अविम होने चाहिए। एक शुद्ध संख्या, समान भौतिक राशियों का अनुपात, जैसे अनुपात के रूप में कोण (लम्बाई/लम्बाई), अनुपात के रूप में अपवर्तनांक (निर्वात में प्रकाश का वेग/माध्यम में प्रकाश का वेग) आदि की कोई विमाएँ नहीं होतीं।
अब, हम निम्नलिखित समीकरण की विमीय संगति या समांगता की जाँच कर सकते हैं
$$ x=x _{0}+v _{0} t+(1 / 2) a t^{2} $$
जहाँ $x$ किसी कण अथवा पिण्ड द्वारा $t$ सेकंड में चलित वह दूरी है, जो कण या पिण्ड समय $t=0$ पर स्थिति $x _{0}$ से प्रारंभिक वेग $v _{0}$ से आरम्भ करके तय करता है, और इसका गति की दिशा में एकसमान त्वरण $a$ रहता है।
प्रत्येक पद के लिए विमीय समीकरण लिखने पर,
$$ \begin{aligned} {[x] } & =[\mathrm{L}] \\ {\left[x _{0}\right] } & =[\mathrm{L}] \\ {\left[v _{0} t\right] } & =\left[\mathrm{L} \mathrm{T}^{-1}\right][\mathrm{T}] \\ & =[\mathrm{L}] \\ {\left[1 / 2 a t^{2}\right] } & =\left[\mathrm{L} \mathrm{T}{ }^{-2}\right]\left[\mathrm{T}^{2}\right] \\ & =[\mathrm{L}] \end{aligned} $$
क्योंकि इस समीकरण के सभी पदों की विमाएँ समान (लम्बाई की) हैं, इसलिए यह विमीय दृष्टि से संगत समीकरण है।
यहाँ ध्यान देने योग्य तथ्य यह है, कि विमीय संगति परीक्षण, मात्रकों की संगति से कम या अधिक कुछ नहीं बताता। लेकिन, इसका लाभ यह है कि हम मात्रकों के किसी विशेष चयन के लिए बाध्य नहीं हैं और न ही हमें मात्रकों के पारस्परिक गुणजों या अपवर्तकों में रूपांतरण की चिन्ता करने की आवश्यकता है। यह बात भी हमें स्पष्ट करनी चाहिए कि यदि कोई समीकरण संगति परीक्षण में असफल हो जाती है तो वह गलत सिद्ध हो जाती है, परन्तु यदि वह परीक्षण में सफल हो जाती है तो इससे वह सही सिद्ध नहीं हो जाती। इस प्रकार कोई विमीय रूप से सही समीकरण आवश्यक रूप से यथार्थ ( सही ) समीकरण नहीं होती, जबकि विमीय रूप से गलत या असंगत समीकरण गलत होनी चाहिए।
उदाहरण 1.3 आइए निम्नलिखित समीकरण पर विचार करें
$$ \frac{1}{2} m v^{2}=m g h $$
यहाँ $m$ वस्तु का द्रव्यमान, $v$ इसका वेग है, $g$ गुरुत्वीय त्वरण और $h$ ऊँचाई है। जाँचिए कि क्या यह समीकरण विमीय दृष्टि से सही है।
हल यहाँ वाम पक्ष की विमाएँ
$$ [\mathrm{M}]\left[\mathrm{L} \mathrm{T}^{-1}\right]^{2}=[\mathrm{M}]\left[\mathrm{L}^{2} \mathrm{~T}^{-2}\right] $$ $$ =\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}\right] $$
तथा दक्षिण पक्ष की विमाएँ
$$ \begin{array}{r} {[\mathrm{M}]\left[\mathrm{L} \mathrm{T}^{-2}\right][\mathrm{L}]=[\mathrm{M}]\left[\mathrm{L}^{2} \mathrm{~T}^{-2}\right]} \\ =\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}\right] \end{array} $$
चूँकि, दोनों पक्षों की विमाएँ समान हैं, इसलिए यह समीकरण विमीय दृष्टि से सही है।
उदाहरण 1.4 ऊर्जा का $\mathrm{SI}$ मात्रक $\mathrm{J}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$; है, चाल $v$ का $\mathrm{m} \mathrm{s}^{-1}$ और त्वरण $a$ का $\mathrm{m} \mathrm{s}^{-2}$ है। गतिज ऊर्जा $(k)$ के लिए निम्नलिखित सूत्रों में आप किस-किस को विमीय दृष्टि से गलत बताएँगे? ( $m$ पिण्ड का द्रव्यमान है)।
(a) $K=m^{2} v^{3}$
(b) $K=(1 / 2) m v^{2}$
(c) $K=m a$
(d) $K=(3 / 16) m v^{2}$
(e) $K=(1 / 2) m v^{2}+m a$
हल प्रत्येक सही समीकरण में दोनों पक्षों का विमीय सूत्र समान होना चाहिए। यह भी कि केवल समान विमाओं वाली राशियों का ही संकलन या व्यवकलन किया जा सकता है। दक्षिण पक्ष की राशि की विमाएँ (a) के लिए $\left[\mathrm{M}^{2} \mathrm{~L}^{3} \mathrm{~T}^{-3}\right]$; (b) तथा (d) के लिए $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}\right]$; (c) के लिए $\left[\mathrm{M} \mathrm{L} \mathrm{T}^{-2}\right]$ है। समीकरण (e) के दक्षिण पक्ष की राशि की कोई उचित विमाएँ नहीं हैं क्योंकि इसमें भिन्न विमाओं वाली दो राशियों को संकलित किया गया है। अब क्योंकि $K$ की विमाएँ $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}\right]$ है, इसलिए सूत्र (a), (c) एवं (e) विमीय रूप से संगत नहीं हैं। ध्यान दें, कि विमीय तर्कों से यह पता नहीं चलता कि (b) व (d) में कौन सा सूत्र सही है। इसके लिए गतिज ऊर्जा की वास्तविक परिभाषा को देखना पड़ेगा (देखें अध्याय 5)। गतिज ऊर्जा के लिए सही सूत्र (b) में दिया गया है।
1.6.2 विभिन्न भौतिक राशियों के मध्य संबंध व्युत्पन्न करना
कभी-कभी विभिन्न भौतिक राशियों के बीच संबंध व्युत्पन्न करने के लिए विमाओं की विधि का उपयोग किया जा सकता है। इसके लिए हमें यह ज्ञात होना चाहिए कि एक भौतिक राशि किन-किन दूसरी भौतिक राशियों पर निर्भर करती है (तीन भौतिक राशियों या एकघाततः स्वतंत्र चरों तक)। इसके लिए, हम दी गई राशि को निर्भर राशियों की विभिन्न घातों के गुणनफल के रूप में लिखते हैं। आइये, एक उदाहरण द्वारा इस प्रक्रिया को समझें।
उदाहरण 1.5 एक सरल लोलक पर विचार कीजिए, जिसमें गोलक को एक धागे से बाँध कर लटकाया गया है और जो गुरुत्व बल के अधीन दोलन कर रहा है। मान लीजिए कि इस लोलक का दोलन काल इसकी लम्बाई $(\mathrm{l})$ गोलक के द्रव्यमान $(m)$ और गुरुत्वीय त्वरण $(g)$ पर निर्भर करता है। विमाओं की विधि का उपयोग करके इसके दोलन-काल के लिए सूत्र व्युत्पन्न कीजिए।
हल दोलन काल $T$ की, राशियों $l, g$ और $m$ पर निर्भरता को एक गुणनफल के रूप में इस प्रकार लिखा जा सकता है :
$T=k l^{x} g^{y} m^{z}$
जहाँ, $\mathrm{k}$ एक विमाहीन स्थिरांक है, एवं $x, y, z$ घातांक हैं।
दोनों ओर की राशियों के विमीय सूत्र लिखने पर
$$ \left[\mathrm{L}^{\mathrm{o}} \mathrm{M}^{\mathrm{o}} \mathrm{T}^{1}\right]=\left[\mathrm{L}^{1}\right]^{x}\left[\mathrm{~L}^{1} \mathrm{~T}^{-2}\right]^{y}\left[\mathrm{M}^{1}\right]^{z} $$
$=\mathrm{L}^{x+y} \mathrm{~T}^{-2 y} \mathrm{M}^{z}$
दोनों ओर की विमाएँ समीकृत करने पर
$x+y=0 ;-2 y=1 ;$ एवं $z=0$
अत: $x=\frac{1}{2}, y=-\frac{1}{2}, z=0$
$\therefore T=k 1^{1 / 2} g^{-1 / 2}$
या $\mathrm{T}=k \sqrt{\frac{l}{g}}$
ध्यान दीजिए, यहाँ स्थिरांक $\mathrm{k}$ का मान विमीय विधि से ज्ञात नहीं किया जा सकता है। यहाँ इसका कोई अर्थ नहीं है कि सूत्र के दक्षिण पक्ष को किसी संख्या से गुणा किया गया है, क्योंकि ऐसा करने से विमाएँ प्रभावित नहीं होतीं।
वास्तव में, $k=2 \pi$, अतः $\mathrm{T}=2 \pi \sqrt{\frac{l}{g}}$
परस्पर संबंधित राशियों के बीच संबंध व्युत्पन्न करने के लिए विमीय विश्लेषण काफी उपयोगी है। तथापि विमाहीन स्थिरांकों के मान इस विधि द्वारा ज्ञात नहीं किए जा सकते। विमीय विधि द्वारा किसी समीकरण की केवल विमीय वैधता ही जांची जा सकती है, किसी समीकरण में विभिन्न भौतिक राशियों के बीच यथार्थ संबंध नहीं जांचे जा सकते। यह समान विमा वाली राशियों में विभेद नहीं कर सकती।
इस अध्याय के अंत में दिए गए कई अभ्यास प्रश्न, आपकी विमीय विश्लेषण की कुशलता विकसित करने में सहायक होंगे।
सारांश
1. भौतिक विज्ञान भौतिक राशियों के मापन पर आधारित एक परिमाणात्मक विज्ञान है । कुछ भौतिक राशियां जैसे लंबाई, द्रव्यमान, समय, विद्युत धारा, ऊष्मागतिक ताप, पदार्थ की मात्रा और ज्योति-तीव्रता, मूल राशियों के रूप में चुनी गई हैं।
2. प्रत्येक मूल राशि किसी मूल मात्रक (जैसे मीटर, किलोग्राम, सेकंड, ऐम्पियर, केल्विन, मोल और कैंडेला) के पद में परिभाषित है । मूल मात्रक स्वेच्छा से चयनित परंतु समुचित रूप से मानकीकृत निर्देश मानक होते हैं । मूल राशियों के मात्रकों को मूल मात्रक कहते हैं।
3. मूल राशियों से व्युत्पन्न अन्य भौतिक राशियों को मूल मात्रकों के संयोजन के रूप में व्यक्त कर सकते हैं, जिन्हें व्युत्पन्न मात्रक कहते हैं । मूल और व्युत्पन्न दोनों मात्रकों के पूर्ण समुच्चय को, मात्रक प्रणाली कहते हैं ।
4. सात मूल मात्रकों पर आधारित मात्रकों की अंतर्राष्ट्रीय प्रणाली (SI) वर्तमान में अंतर्राष्ट्रीय स्तर पर स्वीकृत प्रणाली है । यह प्रणाली समस्त संसार में व्यापक रूप से प्रयोग में लाई जाती है ।
5. मूल राशियों और व्युत्पन्न राशियों से प्राप्त सभी भौतिक मापों में SI मात्रकों का प्रयोग किया जाता है। कुछ व्युत्पन्न मात्रकों को SI मात्रकों में विशेष नामों (जैसे जूल, न्यूटन, वाट आदि) से व्यक्त किया जाता है ।
6. $\mathrm{SI}$ मात्रकों के सुपरिभाषित एवं अंतर्राष्ट्रीय स्तर पर स्वीकृत मात्रक प्रतीक हैं (जैसे मीटर के लिए $\mathrm{m}$, किलोग्राम के लिए $\mathrm{kg}$, सेकंड के लिए $\mathrm{s}$, ऐम्पियर के लिए $\mathrm{A}$, न्यूटन के लिए $\mathrm{N}$, इत्यादि)।
7. प्राय: छोटी एवं बड़ी राशियों की भौतिक मापों को वैज्ञानिक संकेत में 10 की घातों में व्यक्त किया जाता है। माप संकेतों तथा आंकिक अभिकलनों की सरलता हेतु संख्याओं की परिशुद्धता का संकेत करते हुए वैज्ञानिक संकेत एवं पूर्वलग्नों का प्रयोग किया जाता है ।
8. भौतिक राशियों के संकेतन और SI मात्रकों के प्रतीकों, कुछ अन्य मात्रकों, भौतिक राशियों और मापों को उचित रूप से व्यक्त करने हेतु पूर्वलग्न के लिए कुछ सामान्य नियमों और निर्देशों का पालन करना चाहिए ।
9. किसी भी भौतिक राशि के अभिकलन में उसके मात्रक की प्राप्ति हेतु संबंध (संबंधों) में सम्मिलित व्युत्पन्न राशियों के मात्रकों को वांछित मात्रकों की प्राप्ति तक बीजगणितीय राशियों की भांति समझना चाहिए ।
10. मापित एवं अभिकलित राशियों में केवल उचित सार्थक अंकों को ही रखा रहने देना चाहिए। किसी भी संख्या में सार्थक अंकों की संख्या का निर्धारण, उनके साथ अंकीय संक्रियाओं को करने और अनिश्चित अंकों का निकटन करने में इनके लिए बनाए गए नियमों का पालन करना चाहिए ।
11. मूल राशियों की विमाओं और इन विमाओं का संयोजन भौतिक राशियों की प्रकृति का वर्णन करता है । समीकरणों की विमीय संगति की जांच और भौतिक राशियों में संबंध व्युत्पन्न करने में विमीय विश्लेषण का प्रयोग किया जा सकता है। कोई विमीय संगत समीकरण वास्तव में सही हो, यह आवश्यक नहीं है परंतु विमीय रूप से गलत या असंगत समीकरण गलत ही होगी ।
अभ्यास
टिप्पणी : संख्यात्मक उत्तरों को लिखते समय, सार्थक अंकों का ध्यान रखिये।
1.1 रिक्त स्थान भरिए
(a) किसी $1 \mathrm{~cm}$ भुजा वाले घन का आयतन………. $\mathrm{m}^{3}$ के बराबर है ।
(b) किसी $2 \mathrm{~cm}$ त्रिज्या व $10 \mathrm{~cm}$ ऊंचाई वाले सिलिंडर का पृष्ठ क्षेत्रफल………(mm) ${ }^{2}$ के बराबर है।
(c) कोई गाड़ी $18 \mathrm{~km} / \mathrm{h}$ की चाल से चल रही है तो यह $1 \mathrm{~s}$ में……… $\mathrm{m}$ चलती है ।
(d) सीसे का आपेक्षिक घनत्व 11.3 है । इसका घनत्व…….. $\mathrm{g} \mathrm{cm}^{-3}$ या…….. $\mathrm{kg} \mathrm{m}^{-3}$ है ।
Show Answer
/#missing1.2 रिक्त स्थानों को मात्रकों के उचित परिर्वतन द्वारा भरिए
(a) $1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}=$ $\mathrm{g} \mathrm{cm}^{2} \mathrm{~s}^{-2}$
(b) $1 \mathrm{~m}=$. ly
(c) $3.0 \mathrm{~m} \mathrm{~s}^{-2}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \mathrm{km} \mathrm{h}^{-2}$
(d) $G=6.67 \quad 10^{-11} \mathrm{Nm}^{2}(\mathrm{~kg})^{-2}=$ $(\mathrm{cm})^{3} \mathrm{~s}^{-2} \mathrm{~g}^{-1}$
Show Answer
/#missing1.3 ऊष्मा (परागमन में ऊर्जा) का मात्रक कैलोरी है और यह लगभग $4.2 \mathrm{~J}$ के बराबर है, जहां $1 \mathrm{~J}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$ । मान लीजिए कि हम मात्रकों की कोई ऐसी प्रणाली उपयोग करते हैं जिससे द्रव्यमान का मात्रक $\alpha \mathrm{kg}$ के बराबर है, लंबाई का मात्रक $\beta \mathrm{m}$ के बराबर है, समय का मात्रक $\gamma \mathrm{s}$ के बराबर है । यह प्रदर्शित कीजिए कि नए मात्रकों के पदों में कैलोरी का परिमाण $4.2 \alpha^{-1} \beta^{-2} \gamma^{2}$ है ।
Show Answer
/#missing1.4 इस कथन की स्पष्ट व्याख्या कीजिए : तुलना के मानक का विशेष उल्लेख किए बिना “किसी विमीय राशि को ‘बड़ा’ या ‘छोटा’ कहना अर्थहीन है” । इसे ध्यान में रखते हुए नीचे दिए गए कथनों को जहां कहीं भी आवश्यक हो, दूसरे शब्दों में व्यक्त कीजिए :
(a) परमाणु बहुत छोटे पिण्ड होते हैं ।
(b) जेट वायुयान अत्यधिक गति से चलता है ।
(c) बृहस्पति का द्रव्यमान बहुत ही अधिक है ।
(d) इस कमरे के अंदर वायु में अणुओं की संख्या बहुत अधिक है ।
(e) इलेक्ट्रॉन, प्रोटॉन से बहुत भारी होता है ।
(f) ध्वनि की गति प्रकाश की गति से बहुत ही कम होती है ।
Show Answer
/#missing1.5 लंबाई का कोई ऐसा नया मात्रक चुना गया है जिसके अनुसार निर्वात में प्रकाश की चाल 1 है। लम्बाई के नए मात्रक के पदों में सूर्य तथा पृथ्वी के बीच की दूरी कितनी है, प्रकाश इस दूरी को तय करने में8 $\mathrm{min}$ और $20 \mathrm{~s}$ लगाता है ।
Show Answer
/#missing1.6 लंबाई मापने के लिए निम्नलिखित में से कौन-सा सबसे परिशुद्ध यंत्र है :
(a) एक वर्नियर केलिपर्स जिसके वर्नियर पैमाने पर 20 विभाजन हैं ।
(b) एक स्क्रूगेज जिसका चूड़ी अंतराल $1 \mathrm{~mm}$ और वृत्तीय पैमाने पर 100 विभाजन हैं ।
(c) कोई प्रकाशिक यंत्र जो प्रकाश की तरंगदैर्घ्य की सीमा के अंदर लंबाई माप सकता है ।
Show Answer
/#missing1.7 कोई छात्र 100 आवर्धन के एक सूक्ष्मदर्शी के द्वारा देखकर मनुष्य के बाल की मोटाई मापता है। वह 20 बार प्रेक्षण करता है और उसे ज्ञात होता है कि सूक्ष्मदर्शी के दृश्य क्षेत्र में बाल की औसत मोटाई $3.5 \mathrm{~mm}$ है । बाल की मोटाई का अनुमान क्या है?
Show Answer
/#missing1.8 निम्नलिखित के उत्तर दीजिए :
(a) आपको एक धागा और मीटर पैमाना दिया जाता है । आप धागे के व्यास का अनुमान किस प्रकार लगाएंगे ?
(b) एक स्क्रूगेज का चूड़ी अंतराल $1.0 \mathrm{~mm}$ है और उसके वृत्तीय पैमाने पर 200 विभाजन हैं । क्या आप यह सोचते हैं कि वृत्तीय पैमाने पर विभाजनों की संख्या स्वेच्छा से बढ़ा देने पर स्क्रूगेज की यथार्थता में वृद्धि करना संभव है ?
(c) वर्नियर केलिपर्स द्वारा पीतल की किसी पतली छड़ का माध्य व्यास मापा जाना है । केवल 5 मापनों के समुच्चय की तुलना में व्यास के 100 मापनों के समुच्चय के द्वारा अधिक विश्वसनीय अनुमान प्राप्त होने की संभावना क्यों है ?
Show Answer
/#missing1.9 किसी मकान का फोटोग्राफ $35 \mathrm{~mm}$ स्लाइड पर $1.75 \mathrm{~cm}^{2}$ क्षेत्र घेरता है । स्लाइड को किसी स्क्रीन पर प्रक्षेपित किया जाता है और स्क्रीन पर मकान का क्षेत्रफल $1.55 \mathrm{~m}^{2}$ है । प्रक्षेपित्र-परदा व्यवस्था का रेखीय आवर्धन क्या है ?
Show Answer
/#missing1.10 निम्नलिखित में सार्थक अंकों की संख्या लिखिए :
(a) $0.007 \mathrm{~m}^{2}$
(b) 2.64 $10^{24} \mathrm{~kg}$
(c) $0.2370 \mathrm{~g} \mathrm{~cm}^{-3}$
(d) $6.320 \mathrm{~J}$
(e) $6.032 \mathrm{~N} \mathrm{~m}^{-2}$
(f) $0.0006032 \mathrm{~m}^{2}$
Show Answer
/#missing1.11 धातु की किसी आयताकार शीट की लंबाई, चौड़ाई व मोटाई क्रमशः $4.234 \mathrm{~m}, 1.005 \mathrm{~m}$ व $2.01 \mathrm{~cm}$ है । उचित सार्थक अंकों तक इस शीट का क्षेत्रफल व आयतन ज्ञात कीजिए ।
Show Answer
/#missing1.12 पंसारी की तुला द्वारा मापे गए डिब्बे का द्रव्यमान $2.30 \mathrm{~kg}$ है । सोने के दो टुकड़े जिनका द्रव्यमान $20.15 \mathrm{~g}$ व $20.17 \mathrm{~g}$ है, डिब्बे में रखे जाते हैं । (a) डिब्बे का कुल द्रव्यमान कितना है, (b) उचित सार्थक अंकों तक टुकड़ों के द्रव्यमानों में कितना अंतर है ?
Show Answer
/#missing1.13 भौतिकी का एक प्रसिद्ध संबंध किसी कण के ‘चल द्रव्यमान (moving mass)’ $\mathrm{m}$, ‘विराम द्रव्यमान (rest mass) ’ $m _{0}$, इसकी चाल $v$, और प्रकाश की चाल $c$ के बीच है । (यह संबंध सबसे पहले अल्बर्ट आइंस्टाइन के विशेष आपेक्षिकता के सिद्धांत के परिणामस्वरूप उत्पन्न हुआ था।) कोई छात्र इस संबंध को लगभग सही याद करता है लेकिन स्थिरांक $c$ को लगाना भूल जाता है । वह लिखता है :
$m=\frac{m _{0}}{\left(1-v^{2}\right)^{1 / 2}}$
अनुमान लगाइए कि $c$ कहां लगेगा ।
Show Answer
/#missing1.14 परमाण्विक पैमाने पर लंबाई का सुविधाजनक मात्रक एंगस्ट्रम है और इसे $Å: 1 Å=10^{-10} \mathrm{~m}$ द्वारा निर्दिष्ट किया जाता है । हाइड्रोजन के परमाणु का आमाप लगभग $0.5 $Å है । हाइड्रोजन परमाणुओं के एक मोल का $\mathrm{m}^{3}$ में कुल आण्विक आयतन कितना होगा?
Show Answer
/#missing1.15 किसी आदर्श गैस का एक मोल (ग्राम अणुक) मानक ताप व दाब पर $22.4 \mathrm{~L}$ आयतन (ग्राम अणुक आयतन) घेरता है । हाइड्रोजन के ग्राम अणुक आयतन तथा उसके एक मोल के परमाण्विक आयतन का अनुपात क्या है? (हाइड्रोजन के अणु की आमाप लगभग 1 Å मानिए) । यह अनुपात इतना अधिक क्यों है?
Show Answer
/#missing1.16 इस सामान्य प्रेक्षण की स्पष्ट व्याख्या कीजिए : यदि आप तीव्र गति से गतिमान किसी रेलगाड़ी की खिड़की से बाहर देखें तो समीप के पेड़, मकान आदि रेलगाड़ी की गति की विपरीत दिशा में तेजी से गति करते प्रतीत होते हैं, परन्तु दूरस्थ पिण्ड (पहाड़ियां, चंद्रमा, तारे आदि) स्थिर प्रतीत होते हैं । (वास्तव में, क्योंकि आपको ज्ञात है कि आप चल रहे हैं, इसलिए, ये दूरस्थ वस्तुएं आपको अपने साथ चलती हुई प्रतीत होती हैं)।
Show Answer
/#missing1.17 सूर्य एक ऊष्म प्लैज़्मा (आयनीकृत पदार्थ) है जिसके आंतरिक क्रोड का ताप $10^{7} \mathrm{~K}$ से अधिक और बाह्य पृष्ठ का ताप लगभग $6000 \mathrm{~K}$ है । इतने अधिक ताप पर कोई भी पदार्थ ठोस या तरल प्रावस्था में नहीं रह सकता। आपको सूर्य का द्रव्यमान घनत्व किस परिसर में होने की आशा है ? क्या यह ठोसों, तरलों या गैसों के घनत्वों के परिसर में है ? क्या आपका अनुमान सही है, इसकी जांच आप निम्नलिखित आंकड़ों के आधार पर कर सकते हैं : सूर्य का द्रव्यमान $=2.0 \times 10^{30}$ $\mathrm{kg}$; सूर्य की त्रिज्या $=7.0 \times 10^{8} \mathrm{~m}$ ।