Chapter-02 Relations and Functions
Mathematics is the indispensable instrument of all physical research. - BERTHELOT
2.1 Introduction
Much of mathematics is about finding a pattern - a recognisable link between quantities that change. In our daily life, we come across many patterns that characterise relations such as brother and sister, father and son, teacher and student. In mathematics also, we come across many relations such as number $m$ is less than number $n$, line $l$ is parallel to line $m$, set $A$ is a subset of set $B$. In all these, we notice that a relation involves pairs of objects in certain order. In this Chapter, we will learn how to link pairs of objects from two sets and then introduce relations between the two objects in the pair. Finally, we will learn about special relations which will qualify to be functions. The
G.W.Leibnitz (1646-1716 A.D.)
The concept of function is very important in mathematics since it captures the idea of a mathematically precise correspondence between one quantity with the other.
2.2 Cartesian Products of Sets
Suppose A is a set of 2 colours and B is a set of 3 objects, i.e.,
$$ A=\{\text { red, blue }\} \text { and } B=\{b, c, s\} \text {, } $$
where $b, c$ and $s$ represent a particular bag, coat and shirt, respectively.
How many pairs of coloured objects can be made from these two sets?
Proceeding in a very orderly manner, we can see that there will be 6 distinct pairs as given below:
(red, $b$ ), (red, $c$ ), (red, $s$ ), (blue, $b$ ), (blue, $c$ ), (blue, $s$ ).
Thus, we get 6 distinct objects (Fig 2.1).
Fig 2.1
Let us recall from our earlier classes that an ordered pair of elements taken from any two sets $P$ and $Q$ is a pair of elements written in small brackets and grouped together in a particular order, i.e., $(p, q), p \in P$ and $q \in Q$. This leads to the following definition:
Definition 1 Given two non-empty sets $P$ and $Q$. The cartesian product $P \times Q$ is the set of all ordered pairs of elements from $P$ and $Q$, i.e.,
$$ P \times Q=\{(p, q): p \in P, q \in Q\} $$
If either $P$ or $Q$ is the null set, then $P \times Q$ will also be empty set, i.e., $P \times Q=\phi$
From the illustration given above we note that
$A \times B=\{(red, b),($ red,$c),($ red,$s),($ blue,$b),($ blue,$c),($ blue,$s)\}$.
Again, consider the two sets:
$A=\{DL, MP, KA\}$, where DL, MP, KA represent Delhi, Madhya Pradesh and Karnataka, respectively and B $=\{01,02, 03 \}$ representing codes for the licence plates of vehicles issued by DL, MP and KA.
If the three states, Delhi, Madhya Pradesh and Karnataka were making codes for the licence plates of vehicles, with the restriction that the code begins with an element from set $A$, which are the pairs available from these sets and how many such pairs will there be (Fig 2.2)?
Fig 2.2
The available pairs are:$(\mathrm{DL}, 01),(\mathrm{DL}, 02),(\mathrm{DL}, 03),(\mathrm{MP}, 01),(\mathrm{MP}, 02)$, $(\mathrm{MP}, 03),(\mathrm{KA}, 01),(\mathrm{KA}, 02),(\mathrm{KA}, 03)$ and the product of set $A$ and set $B$ is given by $\mathrm{A} \times \mathrm{B}=\{(\mathrm{DL}, 01),(\mathrm{DL}, 02),(\mathrm{DL}, 03),(\mathrm{MP}, 01),(\mathrm{MP}, 02),(\mathrm{MP}, 03),(\mathrm{KA}, 01),(\mathrm{KA}, 02)$, $(\mathrm{KA}, 03)\} \text {. }$
It can easily be seen that there will be 9 such pairs in the Cartesian product, since there are 3 elements in each of the sets A and B. This gives us 9 possible codes. Also note that the order in which these elements are paired is crucial. For example, the code (DL, 01 ) will not be the same as the code $(01, DL)$.
As a final illustration, consider the two sets $A=\{a_1, a_2\}$ and $B=\{b_1, b_2, b_3, b_4\}$ (Fig 2.3).
$A \times B=\{(a_1, b_1),(a_1, b_2),(a_1, b_3),(a_1, b_4),(a_2, b_1),(a_2, b_2),(a_2, b_3),(a_2, b_4)\} .$
The 8 ordered pairs thus formed can represent the position of points in the plane if A and B are subsets of the set of real numbers and it is obvious that the point in the position $(a_1, b_2)$ will be distinct from the point in the position $(b_2, a_1)$.
Fig 2.3
Remarks
(i) Two ordered pairs are equal, if and only if the corresponding first elements are equal and the second elements are also equal.
(ii) If there are $p$ elements in $A$ and $q$ elements in $B$, then there will be $p q$ elements in $A \times B$, i.e., if $n(A)=p$ and $n(B)=q$, then $n(A \times B)=p q$.
(iii) If $A$ and $B$ are non-empty sets and either $A$ or $B$ is an infinite set, then so is $A \times B$.
(iv) $A \times A \times A=\{(a, b, c): a, b, c \in A\}$. Here $(a, b, c)$ is called an ordered triplet.
Example 1 If $(x+1, y-2)=(3,1)$, find the values of $x$ and $y$.
Solution Since the ordered pairs are equal, the corresponding elements are equal.
Therefore
$ x+1=3 \text { and } y-2=1 \text {. } $
Solving we get $\quad x=2$ and $y=3$.
Example 2 If $P=\{a, b, c\}$ and $Q=\{r\}$, form the sets $P \times Q$ and $Q \times P$.
Are these two products equal?
Solution By the definition of the cartesian product,
$$ P \times Q=\{(a, r),(b, r),(c, r)\} \text { and } Q \times P=\{(r, a),(r, b),(r, c)\} $$
Since, by the definition of equality of ordered pairs, the pair $(a, r)$ is not equal to the pair $(r, a)$, we conclude that $P \times Q \neq Q \times P$.
However, the number of elements in each set will be the same.
Example 3 Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\}$. Find
(i) $A \times(B \cap C)$
(ii) $(A \times B) \cap(A \times C)$
(iii) $A \times(B \cup C)$
(iv) $(A \times B) \cup(A \times C)$
Solution (i) By the definition of the intersection of two sets, $(B \cap C)=\{4\}$.
Therefore, $A \times(B \cap C)=\{(1,4),(2,4),(3,4)\}$.
(ii) Now $(A \times B)=\{(1,3),(1,4),(2,3),(2,4),(3,3),(3,4)\}$ and $(A \times C)=\{(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)\}$
Therefore, $(A \times B) \cap(A \times C)=\{(1,4),(2,4),(3,4)\}$.
(iii) Since, $\quad(B \cup C)=\{3,4,5,6\}$,
we have $\quad \mathrm{A} \times(\mathrm{B} \cup \mathrm{C})=\{(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,3)$, $(3,4),(3,5),(3,6)\}$.
(iv) Using the sets $A \times B$ and $A \times C$ from part (ii) above, we obtain $(A \times B) \cup(A \times C)=\{(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)$, $(3,3),(3,4),(3,5),(3,6)\}$.
Example 4 If $P=\{1,2\}$, form the set $P \times P \times P$.
Solution We have, $ P \times P \times P=\{(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1)$, $(2,2,2)\} $.
Example 5 If $\mathbf{R}$ is the set of all real numbers, what do the cartesian products $\mathbf{R} \times \mathbf{R}$ and $\mathbf{R} \times \mathbf{R} \times \mathbf{R}$ represent?
Solution The Cartesian product $\mathbf{R} \times \mathbf{R}$ represents the set $\mathbf{R} \times \mathbf{R}=\{(x, y): x, y \in \mathbf{R}\}$ which represents the coordinates of all the points in two dimensional space and the cartesian product $\mathbf{R} \times \mathbf{R} \times \mathbf{R}$ represents the set $\mathbf{R} \times \mathbf{R} \times \mathbf{R}=\{(x, y, z): x, y, z \in \mathbf{R}\}$ which represents the coordinates of all the points in three-dimensional space.
Example 6 If $A \times B=\{(p, q),(p, r),(m, q),(m, r)\}$, find $A$ and $B$.
Solution
$$ \begin{aligned} & A=\text { set of first elements }=\{p, m\} \\ & B=\text { set of second elements }=\{q, r\} . \end{aligned} $$
EXERCISE 2.1
1. If $(\dfrac{x}{3}+1, y-\dfrac{2}{3})=(\dfrac{5}{3}, \dfrac{1}{3})$, find the values of $x$ and $y$.
Show Answer
Answer :
It is given that $(\dfrac{x}{3}+1, y-\dfrac{2}{3})=(\dfrac{5}{3}, \dfrac{1}{3})$
Since the ordered pairs are equal, the corresponding elements will also be equal.
Therefore, $\dfrac{x}{3}+1=\dfrac{5}{3}$ and $y-\dfrac{2}{3}=\dfrac{1}{3}$.
$\dfrac{x}{3}+1=\dfrac{5}{3}$
$\Rightarrow \dfrac{x}{3}=\dfrac{5}{3}-1 \quad y-\dfrac{2}{3}=\dfrac{1}{3}$
$\Rightarrow \dfrac{x}{3}=\dfrac{2}{3} \Rightarrow y=\dfrac{1}{3}+\dfrac{2}{3}$
$\Rightarrow x=2 \quad \Rightarrow y=1$
$\therefore x=2$ and $y=1$
2. If the set $A$ has 3 elements and the set $B=\{3,4,5\}$, then find the number of elements in $(A \times B)$.
Show Answer
Answer :
It is given that set A has 3 elements and the elements of set B are 3, 4, and 5 .
$\Rightarrow$ Number of elements in set $B=3$
Number of elements in $(A \times B)$
$=($ Number of elements in $A) \times($ Number of elements in $B)$
$=3 \times 3=9$
Thus, the number of elements in $(A \times B)$ is 9 .
3. If $G=\{7,8\}$ and $H=\{5,4,2\}$, find $G \times H$ and $H \times G$.
Show Answer
Answer :
$G=\{7,8\}$ and $H=\{5,4,2\}$
We know that the Cartesian product $P \times Q$ of two non-empty sets $P$ and $Q$ is defined as
$P \times Q=\{(p, q): p \in P, q \in Q\}$
$\therefore G \times H=\{(7,5),(7,4),(7,2),(8,5),(8,4),(8,2)\}$
$H \times G=\{(5,7),(5,8),(4,7),(4,8),(2,7),(2,8)\}$
4. State whether each of the following statements are true or false. If the statement is false, rewrite the given statement correctly.
(i) If $P=\{m, n\}$ and $Q=\{n, m\}$, then $P \times Q=\{(m, n),(n, m)\}$.
(ii) If $A$ and $B$ are non-empty sets, then $A \times B$ is a non-empty set of ordered pairs $(x, y)$ such that $x \in A$ and $y \in B$.
(iii) If $A=\{1,2\}, B=\{3,4\}$, then $A \times(B \cap \phi)=\phi$.
Show Answer
Answer :
(i) False
If $P=\{m, n\}$ and $Q=\{n, m\}$, then
$P \times Q=\{(m, m),(m, n),(n, m),(n, n)\}$
(ii) True
(iii) True
5. If $A=\{-1,1\}$, find $A \times A \times A$.
Show Answer
Answer :
It is known that for any non-empty set $A, A \times A \times A$ is defined as
$A \times A \times A=\{(a, b, c): a, b, c \in A\}$
It is given that $A=\{-1,1\}$
$\therefore A \times A \times A=\{(-1,-1,-1),(-1,-1,1),(-1,1,-1),(-1,1,1)$,
$(1,-1,-1),(1,-1,1),(1,1,-1),(1,1,1)\}$
6. If $A \times B=\{(a, x),(a, y),(b, x),(b, y)\}$. Find $A$ and $B$.
Show Answer
Answer :
It is given that $A \times B=\{(a, x),(a, y),(b, x),(b, y)\}$
We know that the Cartesian product of two non-empty sets $P$ and $Q$ is defined as $P \times Q=\{(p, q): p \in P, q \in Q\}$
$\therefore A$ is the set of all first elements and $B$ is the set of all second elements.
Thus, $A=\{a, b\}$ and $B=\{x, y\}$
7. Let $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\}$. Verify that (i) $A \times(B \cap C)=(A \times B) \cap(A \times C)$. (ii) $A \times C$ is a subset of $B \times D$.
Show Answer
Answer :
(i) To verify: $A \times(B \cap C)=(A \times B) \cap(A \times C)$
We have $B \cap C=\{1,2,3,4\} \cap\{5,6\}=\Phi$
$\therefore$ L.H.S. $=A \times(B \cap C)=A \times \Phi=\Phi$
$A \times B=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)\}$
$A \times C=\{(1,5),(1,6),(2,5),(2,6)\}$
$\therefore$ R.H.S. $=(A \times B) \cap(A \times C)=\Phi$
$\therefore$ L.H.S. $=$ R.H.S
Hence, $A \times(B \cap C)=(A \times B) \cap(A \times C)$
(ii) To verify: $A \times C$ is a subset of $B \times D$
$A \times C=\{(1,5),(1,6),(2,5),(2,6)\}$
$B \times D=\{(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8)\}$
We can observe that all the elements of set $A \times C$ are the elements of set $B \times D$.
Therefore, $A \times C$ is a subset of $B \times D$.
8. Let $A=\{1,2\}$ and $B=\{3,4\}$. Write $A \times B$. How many subsets will $A \times B$ have? List them.
Show Answer
Answer :
$A=\{1,2\}$ and $B=\{3,4\}$
$\therefore A \times B=\{(1,3),(1,4),(2,3),(2,4)\}$
$\Rightarrow n(A \times B)=4$
We know that if $C$ is a set with $n(C)=m$, then $n[P(C)]=2^{m}$.
Therefore, the set $A \times B$ has $2^{4}=16$ subsets. These are
$\Phi,\{(1,3)\},\{(1,4)\},\{(2,3)\},\{(2,4)\},\{(1,3),(1,4)\},\{(1,3),(2,3)\}$,
$\{(1,3),(2,4)\},\{(1,4),(2,3)\},\{(1,4),(2,4)\},\{(2,3),(2,4)\}$,
$\{(1,3),(1,4),(2,3)\},\{(1,3),(1,4),(2,4)\},\{(1,3),(2,3),(2,4)\}$,
$\{(1,4),(2,3),(2,4)\},\{(1,3),(1,4),(2,3),(2,4)\}$
9. Let $A$ and $B$ be two sets such that $n(A)=3$ and $n(B)=2$. If $(x, 1),(y, 2),(z, 1)$ are in $A \times B$, find $A$ and $B$, where $x, y$ and $z$ are distinct elements.
Show Answer
Answer :
It is given that $n(A)=3$ and $n(B)=2$; and $(x, 1),(y, 2),(z, 1)$ are in $A \times B$.
We know that $A=$ Set of first elements of the ordered pair elements of $A \times B$
$B=$ Set of second elements of the ordered pair elements of $A \times B$.
$\therefore x, y$, and zare the elements of $A$; and 1 and 2 are the elements of $B$.
Since $n(A)=3$ and $n(B)=2$, it is clear that $A=\{x, y, z\}$ and $B=\{1,2\}$.
10. The Cartesian product $A \times A$ has 9 elements among which are found $(-1,0)$ and $(0,1)$. Find the set $A$ and the remaining elements of $A \times A$.
Show Answer
Answer :
We know that if $n(A)=p$ and $n(B)=q$, then $n(A \times B)=p q$.
$\therefore n(A \times A)=n(A) \times n(A)$
It is given that $n(A \times A)=9$
$\therefore n(A) \times n(A)=9$
$\Rightarrow n(A)=3$
The ordered pairs $(-1,0)$ and $(0,1)$ are two of the nine elements of $A \times A$.
We know that $A \times A=\{(a, a): a \in A\}$. Therefore, $-1,0$, and 1 are elements of $A$.
Since $n(A)=3$, it is clear that $A=\{-1,0,1\}$.
The remaining elements of set $A \times A$ are $(-1,-1),(-1,1),(0,-1),(0,0)$,
$(1,-1),(1,0)$, and $(1,1)$
2.1 Relations
Consider the two sets $P=\{a, b, c\}$ and $Q=\{$ Ali, Bhanu, Binoy, Chandra, Divya $\}$.
The cartesian product of $P$ and $Q$ has 15 ordered pairs which can be listed as $P \times Q=\{(a, \text{Ali})$, (a, Bhanu), (a, Binoy), …, (c, Divya) $\}$.
Fig 2.4
We can now obtain a subset of $P \times Q$ by introducing a relation $R$ between the first element $x$ and the second element $y$ of each ordered pair $(x, y)$ as
$R=\{(x, y): x$ is the first letter of the name $y, x \in P, y \in Q\}$.
Then $R=\{(a, Ali),(b, Bhanu),(b, Binoy),(c$, Chandra $)\}$
A visual representation of this relation $R$ (called an arrow diagram) is shown in Fig 2.4.
Definition 2 A relation $R$ from a non-empty set $A$ to a non-empty set $B$ is a subset of the cartesian product $A \times B$. The subset is derived by describing a relationship between the first element and the second element of the ordered pairs in $A \times B$. The second element is called the image of the first element.
Definition 3 The set of all first elements of the ordered pairs in a relation $R$ from a set A to a set $B$ is called the domain of the relation $R$.
Definition 4 The set of all second elements in a relation $R$ from a set $A$ to a set $B$ is called the range of the relation $R$. The whole set $B$ is called the codomain of the relation $R$. Note that range $\subset$ codomain.
Remarks (i) A relation may be represented algebraically either by the Roster method or by the Set-builder method.
(ii) An arrow diagram is a visual representation of a relation.
Example 7 Let $A=\{1,2,3,4,5,6\}$. Define a relation $R$ from $A$ to $A$ by $R=\{(x, y): y=x+1\}$
(i) Depict this relation using an arrow diagram.
(ii) Write down the domain, codomain and range of $R$.
Solution (i) By the definition of the relation,
$R=\{(1,2),(2,3),(3,4),(4,5),(5,6)\}$.
The corresponding arrow diagram is shown in Fig 2.5.
Fig 2.5
(ii) We can see that the domain $=\{1,2,3,4,5\}$
Similarly, the range $=\{2,3,4,5,6\}$ and the codomain $=\{1,2,3,4,5,6\}$.
Example 8 The Fig 2.6 shows a relation between the sets $P$ and $Q$. Write this relation (i) in set-builder form, (ii) in roster form. What is its domain and range?
Fig 2.6
Solution It is obvious that the relation $R$ is “$x$ is the square of $y$”.
(i) In set-builder form, $R=\{(x, y): x$ is the square of $y, x \in P, y \in \mathbf{Q}\}$
(ii) In roster form, $R=\{(9,3)$, $(9,-3),(4,2),(4,-2),(25,5),(25,-5)\}$
The domain of this relation is $\{4,9,25\}$.
The range of this relation is $\{-2,2,-3,3,-5,5\}$.
Note that the element 1 is not related to any element in set $P$. The set $Q$ is the codomain of this relation.
Note - The total number of relations that can be defined from a set $A$ to a set $B$ is the number of possible subsets of $A \times B$. If $n(A)=p$ and $n(B)=q$, then $n(A \times B)=p q$ and the total number of relations is $2^{p q}$.
Example 9 Let $A=\{1,2\}$ and $B=\{3,4\}$. Find the number of relations from A to B.
Solution We have,
$ A \times B=\{(1,3),(1,4),(2,3),(2,4)\} $
Since $n(A \times B)=4$, the number of subsets of $A \times B$ is $2^{4}$. Therefore, the number of relations from $A$ into $B$ will be $2^{4}$.
Remark A relation $R$ from $A$ to $A$ is also stated as a relation on $A$.
EXERCISE 2.2
1. Let $A=\{1,2,3, \ldots, 14\}$. Define a relation $R$ from $A$ to $A$ by $R=\{(x, y): 3 x-y=0$, where $x, y \in A\}$. Write down its domain, codomain and range.
Show Answer
Answer :
The relation $R$ from $A$ to $A$ is given as
$ R=\{(x, y): 3 x-y=0$, where $x, y \in A \}$
i.e., $R=\{(x, y): 3 x=y$, where $ x, y \in A \}$
$\therefore R=\{(1,3),(2,6),(3,9),(4,12)\}$
The domain of $R$ is the set of all first elements of the ordered pairs in the relation.
$\therefore$ Domain of $R=\{1,2,3,4\}$
The whole set $A$ is the codomainof the relation $R$.
$\therefore$ Codomain of $R=A=\{1,2,3, \ldots, 14\}$
The range of $R$ is the set of all second elements of the ordered pairs in the relation.
$\therefore$ Range of $R=\{3,6,9,12\}$
2. Define a relation $R$ on the set $\mathbf{N}$ of natural numbers by $R=\{(x, y): y=x+5$, $x$ is a natural number less than $4 ; x, y \in \mathbf{N}\}$. Depict this relationship using roster form. Write down the domain and the range.
Show Answer
Answer :
$ R= \{(x, y): y=x+5, x$ is a natural number less than $ 4, x, y \in \mathbf{N} \}$
The natural numbers less than 4 are 1,2 , and 3 .
$\therefore R=\{(1,6),(2,7),(3,8)\}$
The domain of $R$ is the set of all first elements of the ordered pairs in the relation.
$\therefore$ Domain of $R=\{1,2,3\}$
The range of $R$ is the set of all second elements of the ordered pairs in the relation.
$\therefore$ Range of $R=\{6,7,8\}$
3. $A=\{1,2,3,5\}$ and $B=\{4,6,9\}$. Define a relation $R$ from $A$ to $B$ by $R=\{(x, y)$ : the difference between $x$ and $y$ is odd; $x \in A, y \in B\}$. Write $R$ in roster form.
Show Answer
Answer :
$A=\{1,2,3,5\}$ and $B=\{4,6,9\}$
$R=\{(x, y)$ : the difference between $x$ and yis odd; $x \in A, y \in B\}$
$\therefore R=\{(1,4),(1,6),(2,9),(3,4),(3,6),(5,4),(5,6)\}$
4. The Fig2.7 shows a relationship between the sets $P$ and $Q$. Write this relation
(i) in set-builder form (ii) roster form. What is its domain and range?
Show Answer
Answer :
According to the given figure, $P=\{5,6,7\}, Q=\{3,4,5\}$
(i) $R=\{(x, y): y=x-2 ; x \in P\}$ or $R=\{(x, y): y=x-2$ for $x=5,6,7\}$
(ii) $R=\{(5,3),(6,4),(7,5)\}$
Domain of $R=\{5,6,7\}$
Range of $R=\{3,4,5\}$
5. Let $A=\{1,2,3,4,6\}$. Let $R$ be the relation on A defined by $\{(a, b): a, b \in A, b$ is exactly divisible by $a\}$.
Fig 2.7
(i) Write $R$ in roster form
(ii) Find the domain of $R$
(iii) Find the range of $R$.
Show Answer
Answer :
$A=\{1,2,3,4,6\}, R=\{(a, b): a, b \in A, b$ is exactly divisible by $a\}$
(i) $R=\{(1,1),(1,2),(1,3),(1,4),\\ (1,6),(2,2),(2,4),(2,6),(3,3),(3,6),(4,4),(6,6)\}$
(ii) Domain of $R=\{1,2,3,4,6\}$
(iii) Range of $R=\{1,2,3,4,6\}$
6. Determine the domain and range of the relation $R$ defined by $R=\{(x, x+5): x \in\{0,1,2,3,4,5\}\}$.
Show Answer
Answer :
$R=\{(x, x+5): x \in\{0,1,2,3,4,5\}\}$
$\therefore R=\{(0,5),(1,6),(2,7),(3,8),(4,9),(5,10)\}$
$\therefore$ Domain of $R=\{0,1,2,3,4,5\}$
Range of $R=\{5,6,7,8,9,10\}$
7. Write the relation $R=\{(x, x^{3}): x.$ is a prime number less than 10 $\}$ in roster form.
Show Answer
Answer :
$R=\{(x, x^{3}): x.$ is a prime number less than 10 $\}$
The prime numbers less than 10 are 2, 3, 5, and 7 .
$\therefore R=\{(2,8),(3,27),(5,125),(7,343) \}$
8. Let $A=\{x, y, z\}$ and $B=\{1,2\}$. Find the number of relations from $A$ to $B$.
Show Answer
Answer :
It is given that $A=\{x, y, z\}$ and $B=\{1,2\}$.
$\therefore A \times B=\{(x, 1),(x, 2),(y, 1),(y, 2),(z, 1),(z, 2)\}$
Since $n(A \times B)=6$, the number of subsets of $A \times B$ is $2^{6}$.
Therefore, the number of relations from $A$ to $B$ is $2^{6}$.
9. Let $R$ be the relation on $\mathbf{Z}$ defined by $R=\{(a, b): a, b \in \mathbf{Z}, a-b$ is an integer $\}$. Find the domain and range of $R$.
Show Answer
Answer :
$R=\{(a, b): a, b \in \mathbf{Z}, a-b$ is an integer $\}$
It is known that the difference between any two integers is always an integer.
$\therefore$ Domain of $R=Z$
Range of $R=Z$
2.4 Functions
In this Section, we study a special type of relation called function. It is one of the most important concepts in mathematics. We can, visualise a function as a rule, which produces new elements out of some given elements. There are many terms such as ‘map’ or ‘mapping’ used to denote a function.
Definition 5 A relation $f$ from a set $A$ to a set $B$ is said to be a function if every element of set $A$ has one and only one image in set $B$.
In other words, a function $f$ is a relation from a non-empty set $A$ to a non-empty set $B$ such that the domain of $f$ is $A$ and no two distinct ordered pairs in $f$ have the same first element.
If $f$ is a function from A to B and $(a, b) \in f$, then $f(a)=b$, where $b$ is called the image of $a$ under $f$ and $a$ is called the preimage of $b$ under $f$.
The function $f$ from $A$ to $B$ is denoted by $f: A \rightarrow B$.
Looking at the previous examples, we can easily see that the relation in
Example 7 is not a function because the element 6 has no image.
Again, the relation in
Example 8 is not a function because the elements in the domain are connected to more than one images. Similarly, the relation in
Example 9 is also not a function. (Why?) In the examples given below, we will see many more relations some of which are functions and others are not.
Example 10 Let $\mathbf{N}$ be the set of natural numbers and the relation $R$ be defined on $N$ such that $R=\{(x, y): y=2 x, x, y \in \mathbf{N}\}$.
What is the domain, codomain and range of $R$ ? Is this relation a function?
Solution The domain of $R$ is the set of natural numbers $\mathbf{N}$. The codomain is also $\mathbf{N}$. The range is the set of even natural numbers.
Since every natural number $n$ has one and only one image, this relation is a function.
Example 11 Examine each of the following relations given below and state in each case, giving reasons whether it is a function or not?
(i) $R=\{(2,1),(3,1),(4,2)\}$,
(ii) $R=\{(2,2),(2,4),(3,3),(4,4)\}$
(iii) $R=\{(1,2),(2,3),(3,4),(4,5),(5,6),(6,7)\}$
Solution (i) Since 2, 3, 4 are the elements of domain of R having their unique images, this relation $R$ is a function.
(ii) Since the same first element 2 corresponds to two different images 2 and 4 , this relation is not a function.
(iii) Since every element has one and only one image, this relation is a function.
Definition 6 A function which has either $R$ or one of its subsets as its range is called a real valued function. Further, if its domain is also either $R$ or a subset of $R$, it is called a real function.
Example 12 Let $\mathbf{N}$ be the set of natural numbers. Define a real valued function
$f: \mathbf{N} \rightarrow \mathbf{N}$ by $f(x)=2 x+1$. Using this definition, complete the table given below.
$x$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
$y$ | $f(1)=\ldots$ | $f(2)=\ldots$ | $f(3)=\ldots$ | $f(4)=\ldots$ | $f(5)=\ldots$ | $f(6)=\ldots$ | $f(7)=\ldots$ |
Solution The completed table is given by
$x$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
$y$ | $f(1)=3$ | $f(2)=5$ | $f(3)=7$ | $f(4)=9$ | $f(5)=11$ | $f(6)=13$ | $f(7)=15$ |
2.4.1 Some functions and their graphs
(i) Identity function Let $\mathbf{R}$ be the set of real numbers. Define the real valued function $f: \mathbf{R} \rightarrow \mathbf{R}$ by $y=f(x)=x$ for each $x \in \mathbf{R}$. Such a function is called the identity function. Here the domain and range of $f$ are $\mathbf{R}$. The graph is a straight line as shown in Fig 2.8. It passes through the origin.
Fig 2.8
(ii) Constant function Define the function $f: \mathbf{R} \rightarrow \mathbf{R}$ by $y=f(x)=c, x \in \mathbf{R}$ where $c$ is a constant and each $x \in \mathbf{R}$. Here domain of $f$ is $\mathbf{R}$ and its range is $\{c\}$.
Fig 2.9
The graph is a line parallel to $x$-axis. For example, if $f(x)=3$ for each $x \in \mathbf{R}$, then its graph will be a line as shown in the Fig 2.9.
(iii) Polynomial function A function $f: \mathbf{R} \rightarrow \mathbf{R}$ is said to be polynomial function if for each $x$ in $\mathbf{R}, y=f(x)=a_0+a_1 x+a_2 x^{2}+\ldots+a_{n} x^{n}$, where $n$ is a non-negative integer and $a_0, a_1, a_2, \ldots, a_{n} \in \mathbf{R}$.
The functions defined by $f(x)=x^{3}-x^{2}+2$, and $g(x)=x^{4}+\sqrt{2} x$ are some examples of polynomial functions, whereas the function $h$ defined by $h(x)=x^{\frac{2}{3}}+2 x$ is not a polynomial function.(Why?)
Example 13 Define the function $f: \mathbf{R} \rightarrow \mathbf{R}$ by $y=f(x)=x^{2}, x \in \mathbf{R}$. Complete the Table given below by using this definition. What is the domain and range of this function? Draw the graph of $f$.
$x$ | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|---|---|---|
$y=f(x)=x^{2}$ |
Solution The completed Table is given below:
$x$ | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|---|---|---|
$y=f(x)=x^{2}$ | 16 | 9 | 4 | 1 | 0 | 1 | 4 | 9 | 16 |
Domain of $f=\{x: x \in \mathbf{R}\}$. Range of $f=\{x^{2}: x \in \mathbf{R}\}$. The graph of $f$ is given by Fig 2.10
Fig 2.10
Example 14 Draw the graph of the function $\boldsymbol{f}: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=x^{3}, x \in \mathbf{R}$.
Solution We have
$f(0)=0, f(1)=1, f(-1)=-1, f(2)=8, f(-2)=-8, f(3)=27 ; f(-3)=-27$, etc.
Therefore, $f=\{(x, x^{3}): x \in \mathbf{R}\}$.
The graph of $f$ is given in Fig 2.11.
Fig 2.11
(iv) Rational functions are functions of the type $\frac{f(x)}{g(x)}$, where $f(x)$ and $g(x)$ are polynomial functions of $x$ defined in a domain, where $g(x) \neq 0$.
Example 15 Define the real valued function $f: \mathbf{R}-\{0\} \rightarrow \mathbf{R}$ defined by $f(x)=\frac{1}{x}$, $x \in \mathbf{R}-\{0\}$. Complete the Table given below using this definition. What is the domain and range of this function?
$x$ | -2 | -1.5 | -1 | -0.5 | 0.25 | 0.5 | 1 | 1.5 | 2 |
---|---|---|---|---|---|---|---|---|---|
$y=\frac{1}{x}$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
Solution The completed Table is given by
$x$ | -2 | -1.5 | -1 | -0.5 | 0.25 | 0.5 | 1 | 1.5 | 2 |
---|---|---|---|---|---|---|---|---|---|
$y=\frac{1}{x}$ | -0.5 | -0.67 | -1 | -2 | 4 | 2 | 1 | 0.67 | 0.5 |
The domain is all real numbers except 0 and its range is also all real numbers except 0 . The graph of $f$ is given in Fig 2.12.
Fig 2.12
(v) The Modulus function The function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=|x|$ for each $x \in \mathbf{R}$ is called modulus function. For each non-negative value of $x, f(x)$ is equal to $x$. But for negative values of $x$, the value of $f(x)$ is the negative of the value of $x$, i.e., $f(x)=\begin{cases}x,x \geq 0 \\ -x, x <0 \end{cases}$
Fig 2.13
(vi) Signum function The function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by
$$ f(x)=\begin{cases} 1, \text { if } x>0 \\ 0, \text { if } x=0 \\ -1, \text { if } x<0 \end{cases} $$
$$ f(x)=|x| $$
Fig 2.13 is called the signum function. The domain of the signum function is $\mathbf{R}$ and the range is the set $\{-1,0,1\}$. The graph of the signum function is given by the Fig 2.14 .
Fig 2.14
$$ f(x)=\frac{|x|}{x}, x^{\prime} \quad 0 \text { and } 0 \text { for } x=0 $$
(vii) Greatest integer function The function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=[x], x \in \mathbf{R}$ assumes the value of the greatest integer, less than or equal to $x$. Such a function is called the greatest integer function.
From the definition of $[x]$, we can see that
$$ \begin{aligned} & {[x]=-1 \text { for }-1 \leq x<0} \\ & {[x]=0 \text { for } 0 \leq x<1} \\ & {[x]=1 \text { for } 1 \leq x<2} \\ & {[x]=2 \text { for } 2 \leq x<3 \text { and }} \end{aligned} $$ so on.
The graph of the function is Fig 2.15 shown in Fig 2.15.
Fig 2.15
2.4.2 Algebra of real functions
In this Section, we shall learn how to add two real functions, subtract a real function from another, multiply a real function by a scalar (here by a scalar we mean a real number), multiply two real functions and divide one real function by another.
(i) Addition of two real functions Let $f: X \rightarrow \mathbf{R}$ and $g: X \rightarrow \mathbf{R}$ be any two real functions, where $X \subset \mathbf{R}$. Then, we define $(f+g): X \rightarrow \mathbf{R}$ by
$(f+g)(x)=f(x)+g(x)$, for all $x \in \mathbf{X}$.
(ii) Subtraction of a real function from another $Let f: X \rightarrow \mathbf{R}$ and $g: X \rightarrow \mathbf{R}$ be any two real functions, where $\mathbf{X} \subset \mathbf{R}$. Then, we define $(f-g): X \rightarrow \mathbf{R}$ by $(f-g)(x)=f(x)-g(x)$, for all $x \in X$.
(iii) Multiplication by a scalar Let $f: X \rightarrow \mathbf{R}$ be a real valued function and $\alpha$ be a scalar. Here by scalar, we mean a real number. Then the product $\alpha f$ is a function from $X$ to $\mathbf{R}$ defined by $(\alpha f)(x)=\alpha f(x), x \in X$.
(iv) Multiplication of two real functions The product (or multiplication) of two real functions $f: \mathbf{X} \rightarrow \mathbf{R}$ and $g: X \rightarrow \mathbf{R}$ is a function $f g: X \rightarrow \mathbf{R}$ defined by $(f g)(x)=f(x) g(x)$, for all $x \in X$.
This is also called pointwise multiplication.
(v) Quotient of two real functions Let $f$ and $g$ be two real functions defined from $X \rightarrow \mathbf{R}$, where $X \subset \mathbf{R}$. The quotient of $f$ by $g$ denoted by $\frac{f}{g}$ is a function defined by , $(\frac{f}{g})(x)=\frac{f(x)}{g(x)}$, provided $g(x) \neq 0, x \in X$
Example 16 Let $f(x)=x^{2}$ and $g(x)=2 x+1$ be two real functions.Find
$$ (f+g)(x),(f-g)(x),(f g)(x),(\frac{f}{g})(x) $$
Solution We have,
$$ \begin{aligned} & (f+g)(x)=x^{2}+2 x+1,(f-g)(x)=x^{2}-2 x-1, \\ & (f g)(x)=x^{2}(2 x+1)=2 x^{3}+x^{2},(\frac{f}{g})(x)=\frac{x^{2}}{2 x+1}, x \neq-\frac{1}{2} \end{aligned} $$
Example 17 Let $f(x)=\sqrt{x}$ and $g(x)=x$ be two functions defined over the set of nonnegative real numbers. Find $(f+g)(x),(f-g)(x),(f g)(x)$ and $(\frac{f}{g})(x)$.
Solution We have
$$ \begin{aligned} & (f+g)(x)=\sqrt{x}+x,(f-g)(x)=\sqrt{x}-x, \\ & (f g) x=\sqrt{x}(x)=x^{\frac{3}{2}} \text { and }(\frac{f}{g})(x)=\frac{\sqrt{x}}{x}=x^{-\frac{1}{2}}, x \neq 0 \end{aligned} $$
EXERCISE 2.3
1. Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.
(i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$
(ii) $\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$
(iii) $\{(1,3),(1,5),(2,5)\}$.
Show Answer
Answer :
(i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$
Since $2,5,8,11,14$, and 17 are the elements of the domain of the given relation having their unique images, this relation is a function.
Here, domain $=\{2,5,8,11,14,17\}$ and range $=\{1\}$
(ii) $\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$
Since $2,4,6,8,10,12$, and 14 are the elements of the domain of the given relation having their unique images, this relation is a function.
Here, domain $=\{2,4,6,8,10,12,14\}$ and range $=\{1,2,3,4,5,6,7\}$
(iii) $\{(1,3),(1,5),(2,5)\}$
Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.
2. Find the domain and range of the following real functions:
(i) $f(x)=-|x|$
(ii) $f(x)=\sqrt{9-x^{2}}$.
Show Answer
Answer :
(i) $f(x)=-|x|, x \in R$
We know that $|x|=\begin{cases} x, x \geq 0 \\ -x, x<0 \end{cases} .$
$\therefore f(x)=-|x|=\begin{cases} -x, x \geq 0 \\ x, x<0 \end{cases} .$
Since $f(x)$ is defined for $x \in \mathbf{R}$, the domain of fis $\mathbf{R}$.
It can be observed that the range of $f(x)=-|x|$ is all real numbers except positive real numbers.
$\therefore$ The range of fis $(- \infty, 0]$.
(ii) $f(x)=\sqrt{9-x^{2}}$
Since $\sqrt{9-x^{2}}$ is defined for all real numbers that are greater than or equal to 3 and less than or equal to 3 , the domain of $f(x)$ is $\{x$ : -3 $ x \leq 3\}$ or [- 3,3$]$.
For any value of $x$ such that $-3 \leq x \leq 3$, the value of $f(x)$ will lie between 0 and 3 .
$\therefore$ The range of $f(x)$ is $\{x: 0 \leq x \leq 3\}$ or $[0,3]$.
3. A function $f$ is defined by $f(x)=2 x-5$. Write down the values of
(i) $f(0)$,
(ii) $f(7)$,
(iii) $f(-3)$.
Show Answer
Answer :
The given function is $f(x)=2 x-5$.
Therefore,
(i) $f(0)=2 \times 0-5=0-5=-5$
(ii) $f(7)=2 \times 7-5=14-5=9$
(iii) $f(-3)=2 \times(-3)-5=-6-5=-11$
4. The function ’ $t$ ’ which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by $t(C)=\dfrac{9 C}{5}+32$.
Find (i) $t(0)$
(ii) $t(28)$
(iii) $t(-10)$
(iv) The value of $C$, when $t(C)=212$.
Show Answer
Answer :
The given function is
$ t(C)=\dfrac{9 C}{5}+32 $
Therefore,
(i)
$ \begin{aligned} & t(0)=\dfrac{9 \times 0}{5}+32=0+32=32 \\ & t(28)=\dfrac{9 \times 28}{5}+32=\dfrac{252+160}{5}=\dfrac{412}{5} \end{aligned} $
(ii)
(iii)
$ t(-10)=\dfrac{9 \times(-10)}{5}+32=9 \times(-2)+32=-18+32=14 $
(iv) It is given that $t(C)=212$
$\therefore 212=\dfrac{9 C}{5}+32$
$\Rightarrow \dfrac{9 C}{5}=212-32$
$\Rightarrow \dfrac{9 C}{5}=180$
$\Rightarrow 9 C=180 \times 5$
$\Rightarrow C=\dfrac{180 \times 5}{9}=100$
Thus, the value of $t$, when $t(C)=212$, is 100 .
5. Find the range of each of the following functions.
(i) $f(x)=2-3 x, x \in \mathbf{R}, x>0$.
(ii) $f(x)=x^{2}+2, x$ is a real number.
(iii) $f(x)=x, x$ is a real number.
Show Answer
Answer :
(i) $f(x)=2 - 3 x, x \in \mathbf{R}, x>0$
The values of $f(x)$ for various values of real numbers $x>0$ can be written in the tabular form as
$x$ | 0.01 | 0.1 | 0.9 | 1 | 2 | 2.5 | 4 | 5 | … |
---|---|---|---|---|---|---|---|---|---|
$f(x)$ | 1.97 | 1.7 | -0.7 | -1 | -4 | -5.5 | -‘10 | -13 | . |
Thus, it can be clearly observed that the range of fis the set of all real numbers less than 2.
i.e., range of $f=(- \infty, 2)$
Alter:
Let $x>0$
$\Rightarrow 3 x>0$
$\Rightarrow 2 - 3 x<2$
$\Rightarrow f(x)<2$
$\therefore$ Range of $f=(- \infty, 2)$
(ii) $f(x)=x^{2}+2, x$, is a real number
The values of $f(x)$ for various values of real numbers $x$ can be written in the tabular form as
$x$ | 0 | $\pm 0.3$ | $\pm 0.8$ | $\pm 1$ | $\pm 2$ | $\pm 3$ | $\ldots$ |
---|---|---|---|---|---|---|---|
$f(x)$ | 2 | 2.09 | 2.64 | 3 | 6 | 11 | $\ldots \ldots$ |
Thus, it can be clearly observed that the range of fis the set of all real numbers greater than 2 .
i.e., range of $f=[2, \infty)$
Alter:
Let $x$ be any real number.
Accordingly,
$x^{2} \geq 0$
$\Rightarrow x^{2}+2 \geq 0+2$
$\Rightarrow x^{2}+2 \geq 2$
$\Rightarrow f(x) \geq 2$
$\therefore$ Range of $f=[2, \infty)$
(iii) $f(x)=x, x$ is a real number
It is clear that the range of fis the set of all real numbers.
$\therefore$ Range of $f=\mathbf{R}$
Miscellaneous Examples
Example 18 Let $\mathbf{R}$ be the set of real numbers.
Define the real function
$$ f: \mathbf{R} \rightarrow \mathbf{R} \text { by } f(x)=x+10 $$
and sketch the graph of this function.
Solution Here $f(0)=10, f(1)=11, f(2)=12, \ldots$, $f(10)=20$, etc., and
$f(-1)=9, f(-2)=8, \ldots, f(-10)=0$ and so on.
Therefore, shape of the graph of the given function assumes the form as shown in Fig 2.16.
Fig 2.16
Remark The function $f$ defined by $f(x)=m x+c$, $x \in \mathbf{R}$, is called linear function, where $m$ and $c$ are constants. Above function is an example of a linear function.
Example 19 Let $R$ be a relation from $\mathbf{Q}$ to $\mathbf{Q}$ defined by $R=\{(a, b): a, b \in \mathbf{Q}$ and $a-b \in \mathbf{Z}\}$. Show that
(i) $(a, a) \in R$ for all $a \in \mathbf{Q}$
(ii) $(a, b) \in R$ implies that $(b, a) \in R$
(iii) $(a, b) \in R$ and $(b, c) \in R$ implies that $(a, c) \in R$
Solution (i) Since, $a-a=0 \in \mathbf{Z}$, if follows that $(a, a) \in R$.
(ii) $(a, b) \in R$ implies that $a-b \in \mathbf{Z}$. So, $b-a \in \mathbf{Z}$. Therefore, $(b, a) \in R$
(iii) $(a, b)$ and $(b, c) \in R$ implies that $a-b \in \mathbf{Z} . b-c \in \mathbf{Z}$. So, $a-c=(a-b)+(b-c) \in \mathbf{Z}$. Therefore, $(a, c) \in R$
Example 20 Let $f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$ be a linear function from $\mathbf{Z}$ into $\mathbf{Z}$. Find $f(x)$.
Solution Since $f$ is a linear function, $f(x)=m x+c$. Also, since $(1,1),(0,-1) \in R$, $f(1)=m+c=1$ and $f(0)=c=-1$. This gives $m=2$ and $f(x)=2 x-1$.
Example 21 Find the domain of the function $f(x)=\frac{x^{2}+3 x+5}{x^{2}-5 x+4}$
Solution Since $x^{2}-5 x+4=(x-4)(x-1)$, the function $f$ is defined for all real numbers except at $x=4$ and $x=1$. Hence the domain of $f$ is $\mathbf{R}-\{1,4\}$.
Example 22 The function $f$ is defined by
$$ f(x)= \begin{cases}1-x, & x<0 \ 1 & , x=0 \ x+1, & x>0\end{cases} $$
Draw the graph of $f(x)$.
Solution Here, $f(x)=1-x, x<0$, this gives
$ \begin{aligned} & f(-4)=1-(-4)=5 \\ & f(-3)=1-(-3)=4 \\ & f(-2)=1-(-2)=3 \\ & f(-1)=1-(-1)=2 ; \text { etc } \end{aligned} $
and $f(1)=2, f(2)=3, f(3)=4$
$f(4)=5$ and so on for $f(x)=x+1, x>0$.
Thus, the graph of $f$ is as shown in Fig 2.17
Fig 2.17
Miscellaneous Exercise on Chapter 2
1. The relation $f$ is defined by $f(x)=\left\{\begin{array}{l}x^{2}, 0 \leq x \leq 3 \ 3 x, 3 \leq x \leq 10\end{array}\right.$
The relation $g$ is defined by $g(x)=\left\{\begin{array}{l}x^{2}, 0 \leq x \leq 2 \ 3 x, 2 \leq x \leq 10\end{array}\right.$
Show that $f$ is a function and $g$ is not a function.
Show Answer
\missing2. If $f(x)=x^{2}$, find $\dfrac{f(1.1)-f(1)}{(1.1-1)}$.
Show Answer
Answer :
The relation fis defined as
$ f(x)= \begin{cases}x^{2}, & 0 \leq x \leq 3 \\ 3 x, & 3 \leq x \leq 10\end{cases} $
It is observed that for
$0 \leq x<3, f(x)=x^{2}$
$3<x \leq 10, f(x)=3 x$
Also, at $x=3, f(x)=3^{2}=9$ or $f(x)=3 \times 3=9$
i.e., at $x=3, f(x)=9$
Therefore, for $0 \leq x \leq 10$, the images of $f(x)$ are unique.
Thus, the given relation is a function.
The relation gis defined as $g(x)= \begin{cases}x^{2}, 0 \leq x \leq 2 \\ 3 x, 2 \leq x \leq 10\end{cases}$
It can be observed that for $x=2, g(x)=2^{2}=4$ and $g(x)=3 \times 2=6$
Hence, element 2 of the domain of the relation gcorresponds to two different images i.e., 4 and 6 . Hence, this relation is not a function.
3. Find the domain of the function $f(x)=\dfrac{x^{2}+2 x+1}{x^{2}-8 x+12}$.
Show Answer
Answer :
The given function is
$ f(x)=\dfrac{x^{2}+2 x+1}{x^{2}-8 x+12} $
$f(x)=\dfrac{x^{2}+2 x+1}{x^{2}-8 x+12}=\dfrac{x^{2}+2 x+1}{(x-6)(x-2)}$
It can be seen that function fis defined for all real numbers except at $x=6$ and $x=2$.
Hence, the domain of fis $\mathbf{R}$ - $\{2,6\}$.
4. Find the domain and the range of the real function $f$ defined by $f(x)=\sqrt{(x-1)}$.
Show Answer
Answer :
The given real function is $f(x)=\sqrt{x-1}$.
It can be seen that $\sqrt{x-1}$ is defined for (xâ “ $.^{\prime} 1) \geq 0$.
i.e., $f(x)=\sqrt{(x-1)}$ is defined for $x \geq 1$.
Therefore, the domain of $f$ is the set of all real numbers greater than or equal to 1 i.e., the domain of $f=[1, \infty)$.
As $x \geq 1 \Rightarrow(x - 1) \geq 0 \Rightarrow \sqrt{x-1} \geq 0$
Therefore, the range of fis the set of all real numbers greater than or equal to 0 i.e., the range of $f=[0, \infty)$.
5. Find the domain and the range of the real function $f$ defined by $f(x)=|x-1|$.
Show Answer
Answer :
The given real function $is f(x)=|x-1|$.
It is clear that $|x-1|$ is defined for all real numbers.
$\therefore$ Domain of $f=\mathbf{R}$
Also, for $x \in \mathbf{R},|x-1|$ assumes all real numbers.
Hence, the range of fis the set of all non-negative real numbers.
6. Let $f=\{(x, \dfrac{x^{2}}{1+x^{2}}): x \in \mathbf{R}\}$ be a function from $\mathbf{R}$ into $\mathbf{R}$. Determine the range of $f$.
Show Answer
Answer :
$ \begin{aligned} & f=\{(x, \dfrac{x^{2}}{1+x^{2}}): x \in \mathbf{R}\} \\ & =\{(0,0),( \pm 0.5, \dfrac{1}{5}),( \pm 1, \dfrac{1}{2}),( \pm 1.5, \dfrac{9}{13}),( \pm 2, \dfrac{4}{5}),(3, \dfrac{9}{10}),(4, \dfrac{16}{17}), \ldots\} \end{aligned} $
The range of fis the set of all second elements. It can be observed that all these elements are greater than or equal to 0 but less than 1.
[Denominator is greater numerator]
Thus, range of $f=[0,1)$
7. Let $f, g: \mathbf{R} \rightarrow \mathbf{R}$ be defined, respectively by $f(x)=x+1, g(x)=2 x-3$. Find $f+g, f-g$ and $\dfrac{f}{g}$.
Show Answer
Answer :
$f, g: \mathbf{R} \rightarrow \mathbf{R}$ is defined as $f(x)=x+1, g(x)=2 x$ - 3
$(f+g)(x)=f(x)+g(x)=(x+1)+(2 x - 3)=3 x$ - 2
$\therefore(f+g)(x)=3 x$ - 2
$(f - g)(x)=f(x) - g(x)=(x+1)$ -$(2 x - 3)=x+1 -2 x+3= -x+4$
$\therefore(f-g)(x)=\hat{a}-x+4$
$ \begin{aligned} & (\dfrac{f}{g})(x)=\dfrac{f(x)}{g(x)}, g(x) \neq 0, x \in \mathbf{R} \\ & \therefore(\dfrac{f}{g})(x)=\dfrac{x+1}{2 x-3}, 2 x-3 \neq 0 \text{ or } 2 x \neq 3 \\ & \therefore(\dfrac{f}{g})(x)=\dfrac{x+1}{2 x-3}, x \neq \dfrac{3}{2} \end{aligned} $
8. Let $f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$ be a function from $\mathbf{Z}$ to $\mathbf{Z}$ defined by $f(x)=a x+b$, for some integers $a, b$. Determine $a, b$.
Show Answer
Answer :
$f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$
$f(x)=a x+b$
$(1,1) \in f$
$\Rightarrow f(1)=1$
$\Rightarrow a \times 1+b=1$
$\Rightarrow a+b=1$
$(0,-1) \in f$
$\Rightarrow f(0)=-1$
$\Rightarrow a \times 0+b=-1$
$\Rightarrow b=-1$
On substituting $b=-1$ in $a+b=1$, we obtain $a+(-1)=1 \Rightarrow a=1+1=2$.
Thus, the respective values of aand bare 2 and -1 .
9. Let $R$ be a relation from $\mathbf{N}$ to $\mathbf{N}$ defined by $R=\{(a, b): a, b \in \mathbf{N}.$ and $.a=b^{2}\}$. Are the following true?
(i) $(a, a) \in R$, for all $a \in \mathbf{N}$
(ii) $(a, b) \in R$, implies $(b, a) \in R$
(iii) $(a, b) \in R,(b, c) \in R$ implies $(a, c) \in R$.
Justify your answer in each case.
Show Answer
Answer:
$ R=\{(a, b): a, b \in \mathbf{N}.$ and $.a=b^{2} \}$
(i) It can be seen that $2 \in \mathbf{N}$;however, $2 \neq 2^{2}=4$.
Therefore, the statement " $(a, a) \in R$, for all $a \in \mathbf{N}$ " is not true.
(ii) It can be seen that $(9,3) \in \mathbf{N}$ because $9,3 \in \mathbf{N}$ and $9=3^{2}$.
Now, $3 \neq 9^{2}=81$; therefore, $(3,9) \in N$
Therefore, the statement " $(a, b) \in R$, implies $(b, a) \in R$ " is not true.
(iii) It can be seen that $(16,4) \in R,(4,2) \in R$ because $16,4,2 \in \mathbf{N}$ and $16=4^{2}$ and $4=2^{2}$.
Now, $16 \neq 2^{2}=4$; therefore, $(16,2) \in N$
Therefore, the statement " $(a, b) \in R,(b, c) \in R$ implies $(a, c) \in R$ " is not true.
10. Let $A=\{1,2,3,4\}, B=\{1,5,9,11,15,16\}$ and $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$ Are the following true?
(i) $f$ is a relation from $A$ to $B$
(ii) $f$ is a function from $A$ to $B$.
Justify your answer in each case.
Show Answer
Answer :
$A=\{1,2,3,4\}$ and $B=\{1,5,9,11,15,16\}$
$\therefore A \times B=\{(1,1),(1,5),(1,9),(1,11),(1,15),(1,16),(2,1),(2,5),(2,9),(2,11),(2,15),(2,16),(3,1),(3,5),(3,9)$,
$(3,11),(3,15),(3,16),(4,1),(4,5),(4,9),(4,11),(4,15),(4,16)\}$
It is given that $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$
(i) A relation from a non-empty set $A$ to a non-empty set $B$ is a subset of the Cartesian product $A \times B$.
It is observed that fis a subset of $A \times B$.
Thus, fis a relation from $A$ to $B$.
(ii) Since the same first element i.e., 2 corresponds to two different images i.e., 9 and 11 , relation $f$ is not a function.
11. Let $f$ be the subset of $\mathbf{Z} \times \mathbf{Z}$ defined by $f=\{(a b, a+b): a, b \in \mathbf{Z}\}$. Is $f$ a function from $\mathbf{Z}$ to $\mathbf{Z}$ ? Justify your answer.
Show Answer
Answer :
The relation fis defined as $f=\{(a b, a+b): a, b \in \mathbf{Z}\}$
We know that a relation ffrom a set $A$ to a set $B$ is said to be a function if every element of set $A$ has unique images in set B.
Since 2, 6, -2, -6 $\in \mathbf{Z},(2 \times 6,2+6),(-2 \times-6,-2+(-6)) \in f$
i.e., $(12,8),(12,-8) \in f$
It can be seen that the same first element i.e., 12 corresponds to two different images i.e., 8 and -8. Thus, relation fis not a function.
12. Let $A=\{9,10,11,12,13\}$ and let $f: A \rightarrow \mathbf{N}$ be defined by $f(n)=$ the highest prime factor of $n$. Find the range of $f$.
Show Answer
Answer :
$A=\{9,10,11,12,13\}$
$f: A \to$ Nis defined as
$f(n)=$ The highest prime factor of $n$
Prime factor of $9=3$
Prime factors of $10=2,5$
Prime factor of $11=11$
Prime factors of $12=2,3$
Prime factor of $13=13$
$\therefore f(9)=$ The highest prime factor of $9=3$
$f(10)=$ The highest prime factor of $10=5$
$f(11)=$ The highest prime factor of $11=11$
$f(12)=$ The highest prime factor of $12=3$
$f(13)=$ The highest prime factor of $13=13$
The range of fis the set of all $f(n)$, where $n \in A$.
$\therefore$ Range of $f=\{3,5,11,13\}$
Summary
In this Chapter, we studied about relations and functions. The main features of this Chapter are as follows:
Ordered pair A pair of elements grouped together in a particular order.
Cartesian product $A \times B$ of two sets $A$ and $B$ is given by
$A \times B=\{(a, b): a \in A, b \in B\}$
In particular $\mathbf{R} \times \mathbf{R}=\{(x, y): x, y \in \mathbf{R}\}$
and $\mathbf{R} \times \mathbf{R} \times \mathbf{R}=\{(x, y, z): x, y, z \in \mathbf{R}\}$
If $(a, b)=(x, y)$, then $a=x$ and $b=y$. If $n(A)=p$ and $n(B)=q$, then $n(A \times B)=p q$.
$\Delta A \times \phi=\phi$
In general, $A \times B \neq B \times A$.
Relation A relation $R$ from a set $A$ to a set $B$ is a subset of the cartesian product $A \times B$ obtained by describing a relationship between the first element $x$ and the second element $y$ of the ordered pairs in $A \times B$.
The image of an element $x$ under a relation $R$ is given by $y$, where $(x, y) \in R$,
The domain of $R$ is the set of all first elements of the ordered pairs in a relation $R$.
The range of the relation $R$ is the set of all second elements of the ordered pairs in a relation $R$.
Function A function $f$ from a set $A$ to a set $B$ is a specific type of relation for which every element $x$ of set $A$ has one and only one image $y$ in set $B$.
We write $f: A \rightarrow B$, where $f(x)=y$.
A is the domain and B is the codomain of $f$.
The range of the function is the set of images.
A real function has the set of real numbers or one of its subsets both as its domain and as its range.
Algebra of functions For functions $f: X \rightarrow \mathbf{R}$ and $g: X \rightarrow \mathbf{R}$, we have
$$ \begin{aligned} & (f+g)(x)=f(x)+g(x), x \in X \\ & (f-g)(x)=f(x)-g(x), x \in X \\ & (f . g)(x) \quad=f(x) \cdot g(x), x \in X \\ & (k f)(x) \quad=k(f(x)), x \in X, \text { where } k \text { is a real number. } \\ & (\frac{f}{g})(x)=\frac{f(x)}{g(x)}, x \in X, g(x) \neq 0 \end{aligned} $$
Historical Note
The word FUNCTION first appears in a Latin manuscript “Methodus tangentium inversa, seu de fuctionibus” written by Gottfried Wilhelm Leibnitz (1646-1716) in 1673; Leibnitz used the word in the non-analytical sense. He considered a function in terms of “mathematical job” - the “employee” being just a curve.
On July 5, 1698, Johan Bernoulli, in a letter to Leibnitz, for the first time deliberately assigned a specialised use of the term function in the analytical sense. At the end of that month, Leibnitz replied showing his approval.
Function is found in English in 1779 in Chambers’ Cyclopaedia: “The term function is used in algebra, for an analytical expression any way compounded of a variable quantity, and of numbers, or constant quantities”.
गणित सभी भौतिक अनुसंधानों का अनिवार्य साधन है – BERTHELOT
2.1 भूमिका (Introduction)
गणित का अधिकांश भाग पैटर्न अर्थात् परिवर्तनशील राशियों के बीच अभिज्ञेय (पहचान योग्य)कड़ियों को ज्ञात करने के बारे में है। हमारे दैनिक जीवन में, हम संबंधों को चित्रित करने वाले अनेक पैटर्टों के बारे में जानते हैं, जैसे भाई और बहन, पिता और पुत्र, अध्यापक और विद्यार्थी इत्यादि। गणित में भी हमें बहुत से संबंध मिलते हैं जैसे ‘संख्या $m$, संख्या $n$, से छोटी है’, ‘रेखा $l$, रेखा $m$, के समांतर है’, ‘समुच्चय $\mathrm{A}$, समुच्चय $\mathrm{B}$ का उपसमुच्चय है’। इन सभी में हम देखते हैं कि किसी संबंध मं ऐसे युग्म सम्मिलित होते हैं जिनके घटक एक निश्चित क्रम में होते हैं। इस अध्याय में हम सीखेंगे कि किस प्रकार दो समुच्चयों के सदस्यों के युग्म बनाए जा सकते हैं और फिर उन युग्मों में आने वाले दोनों सदस्यों के बीच बनने वाले संबंधों को सुस्पष्ट करेंगे। अंत में, हम ऐसे विशेष संबंधों के बारे में जानेंगे, जो फलन बनने के योग्य हैं।
G.W.Leibnitz (1646-1716 A.D.)
फलन की परिकल्पना गणित में अत्यंत महत्त्वपूर्ण है क्योंकि यह एक वस्तु से दूसरी वस्तु के बीच गणितानुसार यथातथ्य संगतता के विचार का अभिग्रहण करती है।
2.2 समुच्चयों का कार्तीय गुणन (Cartesian Product of Sets)
मान लीजिए कि $\mathrm{A}$, दो प्रकार के रंगों का और $\mathrm{B}$, तीन वस्तुओं का समुच्चय है, अर्थात्
$$ \mathrm{A}=\{\text { लाल, नीला }\} \text { और } \mathrm{B}=\{b, c, s\} \text {, } $$
जहाँ $b, c$ और $s$ क्रमशः किसी विशेष बैग, कोट और कमीज को निरूपित करते हैं।
इन दोनों समुच्चयों से कितने प्रकार की रंगीन वस्तुओं के युग्म बनाए जा सकते हैं?
क्रमबद्ध तरीके से प्रगति करते हुए हम देखते हैं कि निम्नलिखित 6 भिन्न-भिन्न युग्म प्राप्त होते हैं।
(लाल, $b),($ लाल, $c$ ), (लाल, $s),($ नीला, $b),($ नीला, $c$ ), (नीला, $s$ )।
इस प्रकार हमें 6 भिन्न-भिन्न वस्तुएँ प्राप्त होती हैं (आकृति 2.1)।
आकृति 2.1
पिछली कक्षाओं से स्मरण कीजिए कि, एक क्रमित युग्म, अवयवों का वह युग्म है, जिसे वक्र कोष्ठक में लिखते हैं और जिनको एक दूसरे से किसी विशेष क्रम में समूहित किया जाता है अर्थात् $(p, q)$, $p \in \mathrm{P}$ और $q \in \mathrm{Q}$ । इसे निम्नलिखित परिभाषा से स्पष्ट किया जा सकता है।
परिभाषा 1 दो अरिक्त समुच्चयों $\mathrm{P}$ तथा $\mathrm{Q}$ का कार्तीय गुणन $\mathrm{P} \times \mathrm{Q}$ उन सभी क्रमित युग्मों का समुच्चय है, जिनको प्रथम घटक $\mathrm{P}$ से तथा द्वितीय घटक $\mathrm{Q}$, से लेकर बनाया जा सकता है। अतः
$$ P \times Q=\{(p, q): p \in P, q \in Q\} $$
यदि $\mathrm{P}$ या $\mathrm{Q}$ में से कोई भी रिक्त समुच्चय है, तो उनका कार्तीय गुणन भी रिक्त समुच्चय होता है, अर्थात् $\mathrm{P} \times \mathrm{Q}=\phi$
उपरोक्त दृष्टांत से हम जानते हैं कि
$\mathrm{A} \times \mathrm{B}=\{($ लाल,$b),($ लाल,$c),($ लाल,$s),($ नीला,$b),($ नीला,$c),($ नीला,$s)\} ।$
पुनः निम्नलिखित दो समुच्चयों पर विचार कीजिए।
$\mathrm{A}=\{\mathrm{DL}, \mathrm{MP}, \mathrm{KA}\}$, जहाँ $\mathrm{DL}, \mathrm{MP}, \mathrm{KA}$ दिल्ली, मध्य प्रदेश, तथा कर्नाटक को निरूपित करते हैं और $\mathrm{B}=\{01,02,03\}$ क्रमशः दिल्ली, मध्य प्रदेश और कर्नाटक द्वारा गाड़ियों के लिए जारी लाइसेंस प्लेट की सांकेतिक संख्याएँ प्रकट करते हैं।
यदि तीन राज्य दिल्ली, मध्य प्रदेश और कर्नाटक, गाड़ियों के लाइसेंस प्लेट के लिए संकेत पद्धति (संकेतिकी) इस प्रतिबंध के साथ बना रहे हों कि संकेत पद्धति, समुच्चय $A$ के अवयव से प्रारंभ हो, तो इन समुच्चयों से प्राप्त होने वाले युग्म कौन से हैं तथा इन युग्मों की कुल संख्या कितनी है (आकृति 2.2)?
आकृति 2.2
प्राप्त होने वाले युग्म इस प्रकार हैं, $(\mathrm{DL}, 01),(\mathrm{DL}, 02),(\mathrm{DL}, 03),(\mathrm{MP}, 01),(\mathrm{MP}, 02)$, $(\mathrm{MP}, 03),(\mathrm{KA}, 01),(\mathrm{KA}, 02),(\mathrm{KA}, 03)$ और समुच्चय A तथा समुच्चय B का कार्तीय गुणन इस प्रकार होगा, $\mathrm{A} \times \mathrm{B}=\{(\mathrm{DL}, 01),(\mathrm{DL}, 02),(\mathrm{DL}, 03),(\mathrm{MP}, 01),(\mathrm{MP}, 02),(\mathrm{MP}, 03),(\mathrm{KA}, 01),(\mathrm{KA}, 02)$, $(\mathrm{KA}, 03)\} \text {. }$
यह सरलता से देखा जा सकता है कि कार्तीय गुणन में इस प्रकार 9 युग्म हैं क्योंकि समुच्चय $\mathrm{A}$ और $\mathrm{B}$ में से प्रत्येक में 3 अवयव हैं। इससे हमें 9 संभव संकेत पद्धतियाँ मिलती हैं। यह भी नोट कीजिए कि इन अवयवों के युग्म बनाने का क्रम महत्त्वपूर्ण (निर्णायक) है। उदाहरण के लिए सांकेतिक संख्या (DL, 01) वही नहीं है जो सांकेतिक संख्या $(01, \mathrm{DL})$ है।
अंत में स्पष्टीकरण के लिए समुच्चय $\mathrm{A}=\left\{a_{1}, a_{2}\right\}$ और $\mathrm{B}=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ पर विचार कीजिए (आकृति 2.3)। यहाँ
$A \times B=\{(a_1, b_1),(a_1, b_2),(a_1, b_3),(a_1, b_4),(a_2, b_1),(a_2, b_2),(a_2, b_3),(a_2, b_4)\} .$
यदि $\mathrm{A}$ और $\mathrm{B}$, वास्तविक संख्याओं के समुच्चय के उपसमुच्चय हों, तो इस प्रकार प्राप्त 8 क्रमित युग्म किसी समतल के बिंदुओं की स्थिति निरूपित करते हैं तथा यह स्पष्ट है कि $\left(a_{1}, b_{2}\right)$ पर स्थित बिंदु, $\left(b_{2}, a_{1}\right)$ पर स्थित बिंदु से भिन्न हैं।
आकृति 2.3
टिप्पणी
(i) दो क्रमित युग्म समान होते हैं, यदि और केवल यदि उनके संगत प्रथम घटक समान हों और संगत द्वितीय घटक भी समान हों।
(ii) यदि $\mathrm{A}$ में $p$ अवयव तथा $\mathrm{B}$ में $q$ अवयव हैं, तो $\mathrm{A} \times \mathrm{B}$ में $p q$ अवयव होते हैं अर्थात् यदि $n(\mathrm{~A})=p$ तथा $n(\mathrm{~B})=q$, तो $n(\mathrm{~A} \times \mathrm{B})=p q$.
(iii) यदि $A$ तथा $B$ अरिक्त समुच्चय हैं और $A$ या $B$ में से कोई अपरिमित है, तो $\mathrm{A} \times \mathrm{B}$ भी अपरिमित समुच्चय होता है।
(iv) $\mathrm{A} \times \mathrm{A} \times \mathrm{A}=\{(a, b, c): a, b, c \in \mathrm{A}\}$. यहाँ $(a, b, c)$ एक क्रमित त्रिक कहलाता है।
उदाहरण 1 यदि $(x+1, y-2)=(3,1)$, तो $x$ और $y$ के मान ज्ञात कीजिए।
हल क्योंकि क्रमित युग्म समान है, इसलिए संगत घटक भी समान होंगे।
अत:
$ x+1=3 \text { और } y-2=1 \text {. } $
सरल करने पर $\quad x=2$ और $y=3$.
उदाहरण 2 यदि $\mathrm{P}=\{a, b, c\}$ और $\mathrm{Q}=\{r\}$, तो $\mathrm{P} \times \mathrm{Q}$ तथा $\mathrm{Q} \times \mathrm{P}$ ज्ञात कीजिए।
क्या दोनों कार्तीय गुणन समान हैं?
हल कार्तीय गुणन की परिभाषा से
$$ P \times Q=\{(a, r),(b, r),(c, r)\} \text { और } Q \times P=\{(r, a),(r, b),(r, c)\} $$
क्योंकि, क्रमित युग्मों की समानता की परिभाषा से, युग्म $(a, r)$ युग्म $(r, a)$, के समान नहीं है और यह बात कार्तीय गुणन के प्रत्येक युग्म के लिए लागू होती है, जिससे हम निष्कर्ष निकालते हैं कि $ \mathrm{P} \times \mathrm{Q} \neq \mathrm{Q} \times \mathrm{P} . $
तथापि, प्रत्येक समुच्चय में अवयवों की संख्या समान है।
उदाहरण 3 मान लीजिए कि $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{3,4\}$ और $\mathrm{C}=\{4,5,6\}$. निम्नलिखित ज्ञात कीजिए:
(i) $A \times(B \cap C)$
(ii) $(A \times B) \cap(A \times C)$
(iii) $A \times(B \cup C)$
(iv) $(A \times B) \cup(A \times C)$
हल (i) दो समुच्चयों के सर्वनिष्ठ की परिभाषा से $(\mathrm{B} \cap \mathrm{C})=\{4\}$.
अत: $\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})=\{(1,4),(2,4),(3,4)\}$.
(ii) अब $(\mathrm{A} \times \mathrm{B})=\{(1,3),(1,4),(2,3),(2,4),(3,3),(3,4)\}$ और $(\mathrm{A} \times \mathrm{C})=\{(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)\}$
इसलिए $(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})=\{(1,4),(2,4),(3,4)\}$.
(iii) क्योंकि $\quad(\mathrm{B} \cup \mathrm{C})=\{3,4,5,6\}$
अत: $\quad \mathrm{A} \times(\mathrm{B} \cup \mathrm{C})=\{(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,3)$, $(3,4),(3,5),(3,6)\}$.
(iv) भाग (ii) से $\mathrm{A} \times \mathrm{B}$ तथा $\mathrm{A} \times \mathrm{C}$ समुच्चयों के प्रयोग से हमें निम्नलिखित प्राप्त होता है: $(A \times B) \cup(A \times C)=\{(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)$, $(3,3),(3,4),(3,5),(3,6)\}$.
उदाहरण 4 यदि $\mathrm{P}=\{1,2\}$, तो समुच्चय $\mathrm{P} \times \mathrm{P} \times \mathrm{P}$ ज्ञात कीजिए।
हल $\mathrm{P} \times \mathrm{P} \times \mathrm{P}=\{(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2)\}$.
उदाहरण 5 यदि $\mathbf{R}$ समस्त वास्तविक संख्याओं का समुच्चय है, तो कार्तीय गुणन $\mathbf{R} \times \mathbf{R}$ और $\mathbf{R} \times \mathbf{R} \times \mathbf{R}$ क्या निरूपित करते हैं?
हल कार्तीय गुणन $\mathbf{R} \times \mathbf{R}$ समुच्चय $\mathbf{R} \times \mathbf{R}=\{(x, y): x, y \in \mathbf{R}\}$ को निरूपित करता है, जिसका प्रयोग द्विविम समष्टि के बिंदुओं के निर्देशांकों को प्रकट करने के लिए किया जाता है। $\mathbf{R} \times \mathbf{R} \times \mathbf{R}$ समुच्चय $\mathbf{R} \times \mathbf{R} \times \mathbf{R}=\{(x, y, z): x, y, z \in \mathbf{R}\}$ को निरूपित करता है, जिसका प्रयोग त्रिविमीय आकाश के बिंदुओं के निर्देशांकों को प्रकट करने के लिए किया जाता है।
उदाहरण 6 यदि $\mathrm{A} \times \mathrm{B}=\{(p, q),(p, r),(m, q),(m, r)\}$, तो $\mathrm{A}$ और $\mathrm{B}$ को ज्ञात कीजिए।
हल
$$ \begin{aligned} & A=\text { प्रथम घटकों का समुच्चय }=\{p, m\} \\ & B=\text { द्वितीय घटकों का समुच्चय }=\{q, r\} . \end{aligned} $$
प्रश्नावली 2.1
1. यदि $\frac{x}{3}+1, y-\frac{2}{3}=\frac{5}{3}, \frac{1}{3}$, तो $x$ तथा $y$ ज्ञात कीजिए।
Show Answer
\missing2. यदि समुच्चय $\mathrm{A}$ में 3 अवयव हैं तथा समुच्चय $\mathrm{B}=\{3,4,5\}$, तो $(\mathrm{A} \times \mathrm{B})$ में अवयवों की संख्या ज्ञात कीजिए।
Show Answer
\missing3. यदि $\mathrm{G}=\{7,8\}$ और $\mathrm{H}=\{5,4,2\}$, तो $\mathrm{G} \times \mathrm{H}$ और $\mathrm{H} \times \mathrm{G}$ ज्ञात कीजिए।
Show Answer
\missing4. बतलाइए कि निम्नलिखित कथनों में से प्रत्येक सत्य है अथवा असत्य है। यदि कथन असत्य है, तो दिए गए कथन को सही बना कर लिखिए।
(i) यदि $\mathrm{P}=\{m, n\}$ और $\mathrm{Q}=\{n, m\}$, तो $\mathrm{P} \times \mathrm{Q}=\{(m, n),(n, m)\}$.
(ii) यदि $\mathrm{A}$ और $\mathrm{B}$ अरिक्त समुच्चय हैं, तो $\mathrm{A} \times \mathrm{B}$ क्रमित युग्मों $(x, y)$ का एक अरिक्त समुच्चय है, इस प्रकार कि $x \in \mathrm{A}$ तथा $y \in \mathrm{B}$.
(iii) यदि $\mathrm{A}=\{1,2\}, \mathrm{B}=\{3,4\}$, तो $\mathrm{A} \times(\mathrm{B} \cap \phi)=\phi$.
Show Answer
\missing5. यदि $\mathrm{A}=\{-1,1\}$, तो $\mathrm{A} \times \mathrm{A} \times \mathrm{A}$ ज्ञात कीजिए।
Show Answer
\missing6. यदि $\mathrm{A} \times \mathrm{B}=\{(a, x),(a, y),(b, x),(b, y)\}$ तो $\mathrm{A}$ तथा $\mathrm{B}$ ज्ञात कीजिए।
Show Answer
\missing7. मान लीजिए कि $\mathrm{A}=\{1,2\}, \mathrm{B}=\{1,2,3,4\}, \mathrm{C}=\{5,6\}$ तथा $\mathrm{D}=\{5,6,7,8\}$. सत्यापित कीजिए कि (i) $\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})$. (ii) $\mathrm{A} \times \mathrm{C}, \mathrm{B} \times \mathrm{D}$ का एक उपसमुच्चय है।
Show Answer
\missing8. मान लीजिए कि $\mathrm{A}=\{1,2\}$ और $\mathrm{B}=\{3,4\}$. $\mathrm{A} \times \mathrm{B}$ लिखिए। $\mathrm{A} \times \mathrm{B}$ के कितने उपसमुच्चय होंगे? उनकी सूची बनाइए।
Show Answer
\missing9. मान लीजिए कि $\mathrm{A}$ और $\mathrm{B}$ दो समुच्चय हैं, जहाँ $n(\mathrm{~A})=3$ और $n(\mathrm{~B})=2$. यदि $(x, 1)$, $(y, 2),(z, 1), \mathrm{A} \times \mathrm{B}$ में हैं, तो $\mathrm{A}$ और $\mathrm{B}$, को ज्ञात कीजिए, जहाँ $x, y$ और $z$ भिन्न-भिन्न अवयव हैं।
Show Answer
\missing10. कार्तीय गुणन $\mathrm{A} \times \mathrm{A}$ में 9 अवयव हैं, जिनमें $(-1,0)$ तथा $(0,1)$ भी है। समुच्चय $\mathrm{A}$ ज्ञात कीजिए तथा $A \times A$ के शेष अवयव भी ज्ञात कीजिए।
Show Answer
\missing2.3 संबंध (Relation)
दो समुच्चयों $\mathrm{P}=\{a, b, c\}$ तथा $\mathrm{Q}=\{$ Ali, Bhanu, Binoy, Chandra, Divya $\}$ पर विचार कीजिए।
$\mathrm{P}$ तथा $\mathrm{Q}$ के कार्तीय गुणन में 15 क्रमित युग्म हैं, जिन्हें इस प्रकार सूचीबद्ध किया जा सकता है, $\mathrm{P} \times \mathrm{Q}=\{(a, \mathrm{Ali}),(a, \mathrm{Bhanu}),(a, \mathrm{Binoy})$, …, $(c$, Divya $)\}$.
आकृति 2.3
अब हम प्रत्येक क्रमित युग्म $(x, y)$ के प्रथम घटक $x$ तथा द्वितीय घटक $y$ के बीच एक संबंध $\mathrm{R}$ स्थापित कर $\mathrm{P} \times \mathrm{Q}$ का एक उपसमुच्चय इस प्रकार प्राप्त कर सकते हैं।
$\mathrm{R}=\{(x, y): x$, नाम $y$ का प्रथम अक्षर है, $x \in \mathrm{P}, y \in \mathrm{Q}\}$
इस प्रकार $\mathrm{R}=\{(a, \mathrm{Ali}),(b, \mathrm{Bhanu}),(b$, Binoy $),(c$, Chandra $)\}$
संबंध $\mathrm{R}$ का एक दृष्टि-चित्रण, जिसे तीर आरेख कहते हैं, आकृति 2.4 में प्रदर्शित है।
परिभाषा 2 किसी अरिक्त समुच्चय $A$ से अरिक्त समुच्चय $B$ में संबंध कार्तीय गुणन $\mathrm{A} \times \mathrm{B}$ का एक उपसमुच्चय होता है यह उपसमुच्चय $\mathrm{A} \times \mathrm{B}$ के क्रमति युग्मों के प्रथम तथा द्वितीय घटकों के मध्य एक संबंध स्थापित करने से प्राप्त होता है। द्वितीय घटक, प्रथम घटक का प्रतिबिंब कहलाता है।
परिभाषा 3 समुच्चय $\mathrm{A}$ से समुच्चय $\mathrm{B}$ में संबंध $\mathrm{R}$ के क्रमित युग्मों के सभी प्रथम घटकों के समुच्चय को संबंध $\mathrm{R}$ का प्रांत कहते हैं।
परिभाषा 4 समुच्चय $A$ से समुच्चय $B$ में संबंध $R$ के क्रमित युग्मों के सभी द्वितीय घटकों के समुच्चय को संबंध $\mathrm{R}$ का परिसर कहते हैं। समुच्चय $\mathrm{B}$ संबंध $\mathrm{R}$ का सह-प्रांत कहलाता है। नोट कीजिए कि, परिसर $\subseteq$ सहप्रांत
टिप्पणी (i) एक संबंध का बीजीय निरूपण या तो रोस्टर विधि या समुच्चय निर्माण विधि द्वारा किया जा सकता है।
(ii) एक तीर आरेख किसी संबंध का एक दृष्टि चित्रण है।
उदाहरण 7 मान लीजिए कि $\mathrm{A}=\{1,2,3,4,5,6\} . \mathrm{R}=\{(x, y): y=x+1\}$ द्वारा $\mathrm{A}$ से $\mathrm{A}$ में एक संबंध परिभाषित कीजिए।
(i) इस संबंध को एक तीर आरेख द्वारा दर्शाइए।
(ii) $\mathrm{R}$ के प्रांत, सहप्रांत तथा परिसर लिखिए।
हल (i) परिभाषा द्वारा
$\mathrm{R}=\{(1,2),(2,3),(3,4),(4,5),(5,6)\}$.
संगत तीर आरेख आकृति 2.5 में प्रदर्शित है।
आकृति 2.5
(ii) हम देख सकते हैं कि प्रथम घटकों का समुच्चय अर्थात् प्रांत $=\{1,2,3,4,5\}$
इसी प्रकार, द्वितीय घटकों का समुच्चय अर्थात् परिसर $=\{2,3,4,5,6\}$ तथा सहप्रांत $=\{1,2,3,4,5,6\}$.
उदाहरण 8 नीचे आकृति 2.6 में समुच्चय $\mathrm{P}$ और $\mathrm{Q}$ के बीच एक संबंध दर्शाया गया है। इस संबंध को (i) समुच्चय निर्माण रूप में (ii) रोस्टर रूप में लिखिए। इसके प्रांत तथा परिसर क्या हैं?
आकृति 2.6
हल स्पष्टतः संबंध $\mathrm{R}$, " $x, y$ का वर्ग है"
(i) समुच्चय निर्माण रूप में, $\mathrm{R}=\{(x, y): x, y$ का वर्ग है, $x \in \mathrm{P}, y \in \mathbf{Q}\}$
(ii) रोस्टर रूप में, $\mathrm{R}=\{(9,3),(9,-3)$, $(4,2),(4,-2),(25,5),(25,-5)\}$
इस संबंध का प्रांत $\{4,9,25\}$ है।
इस संबंध का परिसर $\{-2,2,-3,3,-5,5\}$.
नोट कीजिए कि अवयव $1, \mathrm{P}$ के किसी भी अवयव से संबंधित नहीं है तथा समुच्चय $\mathrm{Q}$ इस संबंध का सहप्रांत है।
टिप्पणी किसी समुच्चय $A$ से समुच्चय $B$ में संबंधों की कुल संख्या, $A \times B$ के संभव उपसमुच्चयों की संख्या के बराबर होती है। यदि $n(\mathrm{~A})=p$ और $n(\mathrm{~B})=q$, तो $n(\mathrm{~A} \times \mathrm{B})=$ $p q$ और संबंधों की कुल संख्या $2^{p q}$ होती है।
उदाहरण 9 मान लीजिए कि $\mathrm{A}=\{1,2\}$ और $\mathrm{B}=\{3,4\} . \mathrm{A}$ से $\mathrm{B}$ में संबंधों की संख्या ज्ञात कीजिए।
हल यहाँ
$ A \times B=\{(1,3),(1,4),(2,3),(2,4)\} $
क्योंकि $n(\mathrm{~A} \times \mathrm{B})=4$, इसलिए $\mathrm{A} \times \mathrm{B}$ के उपसमुच्चयों की संख्या $2^{4}$ है। इसलिए $\mathrm{A}$ से $\mathrm{B}$ के संबंधों की संख्या $2^{4}$ है।
टिप्पणी $\mathrm{A}$ से $\mathrm{A}$ के संबंध को ’ $\mathrm{A}$ पर संबंध’ भी कहते हैं।
प्रश्नवाली 2.2
1. मान लीजिए कि $\mathrm{A}=\{1,2,3, \ldots, 14\} \cdot \mathrm{R}=\{(x, y): 3 x-y=0$, जहाँ $x, y \in \mathrm{A}\}$ द्वारा, $\mathrm{A}$ से $\mathrm{A}$ का एक संबंध $\mathrm{R}$ लिखिए। इसके प्रांत, सहप्रांत और परिसर लिखिए।
Show Answer
\missing2. प्राकृत संख्याओं के समुच्चय पर $\mathrm{R}=\{(x, y): y=x+5, x$ संख्या 4 से कम, एक प्राकृत संख्या है, $x, y \in \mathbf{N}$ \} द्वारा एक संबंध $\mathrm{R}$ परिभाषित कीजिए। इस संबंध को (i) रोस्टर रूप में इसके प्रांत और परिसर लिखिए।
Show Answer
\missing3. $\mathrm{A}=\{1,2,3,5\}$ और $\mathrm{B}=\{4,6,9\} . \mathrm{A}$ से $\mathrm{B}$ में एक संबंध $\mathrm{R}=\{(x, y): x$ और $y$ का अंतर विषम है, $x \in \mathrm{A}, y \in \mathrm{B}\}$ द्वारा परिभाषित कीजिए। $\mathrm{R}$ को रोस्टर रूप में लिखिए।
Show Answer
\missing4. आकृति 2.7, समुच्चय $P$ से $Q$ का एक संबंध दर्शाती है। इस संबंध को
(i) समुच्चय निर्माण रूप (ii) रोस्टर रूप में लिखिए। इसके प्रांत तथा परिसर क्या हैं?
Show Answer
\missing5. मान लीजिए कि $\mathrm{A}=\{1,2,3,4,6\}$. मान लीजिए कि $\mathrm{R}, \mathrm{A}$ पर $\{(a, b): a, b \in \mathrm{A}$, संख्या $a$ संख्या $b$ को यथावथ विभाजित करती है $\}$ द्वारा परिभाषित एक संबंध है।
आकृति 2.7
(i) $\mathrm{R}$ को रोस्टर रूप में लिखिए
(ii) $\mathrm{R}$ का प्रांत ज्ञात कीजिए
(iii) $\mathrm{R}$ का परिसर ज्ञात कीजिए।
Show Answer
\missing6. $\mathrm{R}=\{(x, x+5): x \in\{0,1,2,3,4,5\}\}$ द्वारा परिभाषित संबंध $\mathrm{R}$ के प्रांत और परिसर ज्ञात कीजिए।
Show Answer
\missing7. संबंध $\mathrm{R}=\left\{\left(x, x^{3}\right): x\right.$ संख्या 10 से कम एक अभाज्य संख्या है $\}$ को रोस्टर रूप में लिखिए।
Show Answer
\missing8. मान लीजिए कि $\mathrm{A}=\{x, y, z\}$ और $\mathrm{B}=\{1,2\}, \mathrm{A}$ से $\mathrm{B}$ के संबंधों की संख्या ज्ञात कीजिए।
Show Answer
\missing9. मान लीजिए कि $\mathrm{R}, \mathbf{Z}$ पर, $\mathrm{R}=\{(a, b): a, b \in \mathbf{Z}, a-b$ एक पूर्णांक है $\}$, द्वारा परिभाषित एक संबंध है। $\mathrm{R}$ के प्रांत तथा परिसर ज्ञात कीजिए।
Show Answer
\missing2.4 फलन (Function)
इस अनुच्छेद में, हम एक विशेष प्रकार के संबंध का अध्ययन करेंगे, जिसे फलन कहते हैं। हम फलन को एक नियम के रूप में देख सकते हैं, जिससे कुछ दिए हुए अवयवों से नए अवयव उत्पन्न होते हैं। फलन को सूचित करने के लिए अनेक पद प्रयुक्त किए जाते हैं, जैसे ‘प्रतिचित्र’ अथवा ‘प्रतिचित्रण’
परिभाषा 5 एक समुच्चय $\mathrm{A}$ से समुच्चय $\mathrm{B}$ का संबंध, $f$ एक फलन कहलाता है, यदि समुच्चय $\mathrm{A}$ के प्रत्येक अवयव का समुच्चय $\mathrm{B}$ में, एक और केवल एक प्रतिबिंब होता है।
दूसरे शब्दों में, फलन $f$, किसी अरिक्त समुच्चय $\mathrm{A}$ से एक अरिक्त समुच्चय $\mathrm{B}$ का है, इस प्रकार का संबंध कि $f$ का प्रांत $\mathrm{A}$ है तथा $f$ के किसी भी दो भिन्न क्रमित युग्मों के प्रथम घटक समान नहीं हैं।
यदि $f, \mathrm{~A}$ से $\mathrm{B}$ का एक फलन है तथा $(a, b) \in f$, तो $f(a)=b$, जहाँ $b$ को $f$ के अंतर्गत $a$ का प्रतिबम्ब तथा $a$ को $b$ का ‘पूर्व प्रतिबिंब’ कहते हैं।
$\mathrm{A}$ से $\mathrm{B}$ के फलन $f$ को प्रतीकात्मक रूप में $f: \mathrm{A} \rightarrow \mathrm{B}$ से निरूपित करते हैं।
पिछले उदाहरणों पर ध्यान देने से हम सरलता से देखते हैं कि
उदाहरण 7 में दिया संबंध एक फलन नहीं है, कयोंकि अवयव 6 का कोई प्रतिबिंब नहीं है।
पुनः
उदाहरण 8 में दिया संबंध एक फलन नहीं है क्योंकि इसके प्रांत के कुछ अवयवों के एक से अधिक प्रतिबिंब हैं।
उदहारण 9 भी फलन नहीं है (क्यों?)। नीचे दिए उदाहरणों में बहुत से संबंधों पर विचार करेंगे, जिनमें से कुछ फलन हैं और दूसरे फलन नहीं हैं।
उदाहरण 10 मान लीजिए कि $\mathbf{N}$ प्राकृत संख्याओं का समुच्चय हे और $\mathbf{N}$ पर परिभाषित एक संबंध $\mathrm{R}$ इस प्रकार है कि $\mathrm{R}=\{(x, y): y=2 x, x, y \in \mathbf{N}\}$.
$\mathrm{R}$ के प्रांत, सहप्रांत तथा परिसर क्या हैं? क्या यह संबंध, एक फलन है?
हल $\mathrm{R}$ का प्रांत, प्राकृत संख्याओं का समुच्चय $\mathbf{N}$ है। इसका सहप्रांत भी $\mathbf{N}$ है। इसका परिसर सम प्राकृत संख्याओं का समुच्चय है।
क्योंकि प्रत्येक प्राकृत संख्या $n$ का एक और केवल एक ही प्रतिबिंब है, इसलिए यह संबंध एक फलन है।
उदाहरण 11 नीचे दिए संबंधों में से प्रत्येक का निरीक्षण कीजिए और प्रत्येक दशा में कारण सहित बतलाइए कि क्या यह फलन है अथवा नहीं?
(i) $\mathrm{R}=\{(2,1),(3,1),(4,2)\}$,
(ii) $\mathrm{R}=\{(2,2),(2,4),(3,3),(4,4)\}$
(iii) $\mathrm{R}=\{(1,2),(2,3),(3,4),(4,5),(5,6),(6,7)\}$
हल (i) क्योंकि $\mathrm{R}$ के प्रांत के प्रत्येक अवयव $2,3,4$ के प्रतिबिंब अद्वितीय हैं, इसलिए यह संबंध एक फलन है।
(ii) क्यांकि एक ही प्रथम अवयव 2 , दो भिन्न-भिन्न प्रतिबिंबों 2 और 4 से संबंधित है, इसलिए यह संबंध एक फलन नहीं हैं।
(iii) क्योंकि प्रत्येक अवयव का एक और केवल एक प्रतिबिंब है, इसलिए यह संबंध एक फलन है।
परिभाषा 6 एक ऐसे फलन को जिसका परिसर वास्तविक संख्याओं का समुच्चय या उसका कोई उपसमुच्चय हो, वास्तविक मान फलन कहते हैं। यदि वास्तविक चर वाले किसी वास्तविक मान फलन का प्रांत भी वास्तविक संख्याओं का समुच्चय अथवा उसका कोई उपसमुच्चय हो तो इसे वास्तविक फलन भी कहते हैं।
उदाहरण 12 मान लीजिए कि $\mathbf{N}$ वास्तविक संख्याओं का समुच्चय है।
$f: \mathbf{N} \rightarrow \mathbf{N}$, $f(x)=2 x+1$, द्वारा परिभाषित एक वास्तविक मान फलन है। इस परिभाषा का प्रयोग करके, नीचे दी गई सारणी को पूर्ण कीजिए।
$x$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
$y$ | $f(1)=\ldots$ | $f(2)=\ldots$ | $f(3)=\ldots$ | $f(4)=\ldots$ | $f(5)=\ldots$ | $f(6)=\ldots$ | $f(7)=\ldots$ |
हल पूर्ण की हुई सारणी नीचे दी गई है:
$x$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
$y$ | $f(1)=3$ | $f(2)=5$ | $f(3)=7$ | $f(4)=9$ | $f(5)=11$ | $f(6)=13$ | $f(7)=15$ |
2.4.1 कुछ फलन और उनके आलेख (Some
functions and their graphs)(i) तत्समक फलन (Identity function) मान लीजिए $\mathbf{R}$ वास्तविक संख्याओं का समुच्चय है। $y=f(x)$, प्रत्येक $x \in \mathbf{R}$ द्वारा परिभाषित वास्तविक मान फलन $f: \mathbf{R} \rightarrow \mathbf{R}$ है। इस प्रकार के फलन को तत्समक फलन कहते हैं। यहाँ पर $f$ के प्रांत तथा परिसर $\mathbf{R}$ हैं। इसका आलेख एक सरल रेखा होता है (आकृति 2.8)। यह रेखा मूल बिंदु से हो कर जाती है।
आकृति 2.8
(ii) अचर फलन (Constant function) $y=f(x)=c$ जहाँ $c$ एक अचर है और प्रत्येक $x \in \mathbf{R}$ द्वारा परिभाषित एक वास्तविक मान फलन $f: \mathbf{R} \rightarrow \mathbf{R}$ है। यहाँ पर $f$ का प्रांत $\mathbf{R}$ है और उसका परिसर $\{c\}$ है।
आकृति 2.9
$f$ का आलेख $x$-अक्ष के समांतर एक रेखा है, उदाहरण के लिए यदि $f(x)=3$ प्रत्येक $x \in \mathbf{R}$ है, तो इसका आलेख आकृति 2.9 में दर्शाई रेखा है।
(iii) बहुपद फलन या बहुपदीय फलन (Polynomial function) फलन $f: \mathbf{R} \rightarrow \mathbf{R}$, एक बहुपदीय फलन कहलाता है, यदि $\mathbf{R}$ के प्रत्येक $x$ के लिए, $y=f(x)=a_{0}+a_{1} x+a_{2} x^{2}$ $+\ldots+a_{n} x^{n}$, जहाँ $n$ एक ऋणेतर पूर्णांक है तथा $a_{0}, a_{1}, a_{2}, \ldots, a_{n} \in \mathbf{R}$.
$f(x)=x^{3}-x^{2}+2$, और $g(x)=x^{4}+\sqrt{2} x$, द्वारा परिभाषित फलन एक बहुपदीय फलन है जब कि $h(x)=x^{\frac{2}{3}}+2 x$ द्वारा परिभाषित फलन $h$, बहुपदीय फलन नहीं है। (क्यों?)
उदाहरण 13 $y=f(x)=x^{2}, x \in \mathbf{R}$ द्वारा फलन $f: \mathbf{R} \rightarrow \mathbf{R}$, की परिभाषा कीजिए। इस परिभाषा का प्रयोग करके नीचे दी गई तालिका को पूरा कीजिए। इस फलन का प्रांत तथा परिसर क्या हैं? $f$ का आलेख भी खींचिए।
$x$ | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|---|---|---|
$y=f(x)=x^{2}$ |
हल पूरी की हुई तालिका नीचे दी गई है:
$x$ | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|---|---|---|
$y=f(x)=x^{2}$ | 16 | 9 | 4 | 1 | 0 | 1 | 4 | 9 | 16 |
$f$ का प्रांत $=\{x: x \in \mathbf{R}\}, f$ का परिसर $=\left\{x^{2}: x \in \mathbf{R}\right\} . f$ का आलेख आकृति 2.10 में प्रदर्शित है।
आकृति 2.10
उदाहरण 14 $f(x)=x^{3}, x \in \mathbf{R}$ द्वारा परिभाषित फलन $\boldsymbol{f}: \mathbf{R} \rightarrow \mathbf{R}$ का आलेख खींचिए।
हल यहाँ पर
$f(0)=0, f(1)=1, f(-1)=-1, f(2)=8, f(-2)=-8, f(3)=27 ; f(-3)=-27$, इत्यादि।
इसलिए $f=\{(x, x^{3}): x \in \mathbf{R}\}$. का
आलेख आकृति 2.11 में खींचा गया है।
आकृति 2.11
(iv) परिमेय फलन (Rational functions) $\frac{f(x)}{g(x)}$, के प्रकार के फलन जहाँ $f(x)$ तथा $g(x)$ एक प्रांत में, $x$ के परिभाषित बहुपदीय फलन हैं, जिसमें $g(x) \neq 0$ परिमेय फलन कहलाते हैं।
उदाहरण 15 एक वास्तविक मान फलन $f: \mathbf{R}-\{0\} \rightarrow \mathbf{R}$ की परिभाषा $f(x)=\frac{1}{x}$, $x \in \mathbf{R}-\{0\}$ द्वारा कीजिए। इस परिभाषा का प्रयोग करके निम्नलिखित तालिका को पूर्ण कीजिए। इस फलन का प्रांत तथा परिसर क्या हैं?
$x$ | -2 | -1.5 | -1 | -0.5 | 0.25 | 0.5 | 1 | 1.5 | 2 |
---|---|---|---|---|---|---|---|---|---|
$y=\frac{1}{x}$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
हल पूर्ण की गई तालिका इस प्रकार है:
$x$ | -2 | -1.5 | -1 | -0.5 | 0.25 | 0.5 | 1 | 1.5 | 2 |
---|---|---|---|---|---|---|---|---|---|
$y=\frac{1}{x}$ | -0.5 | -0.67 | -1 | -2 | 4 | 2 | 1 | 0.67 | 0.5 |
इसका प्रांत, शून्य के अतिरिक्त समस्त वास्तविक संख्याएँ हैं तथा इसका परिसर भी शून्य के अतिरिक्त समस्त वास्तविक संख्याएँ हैं। $f$ का आलेख आकृति 2.12 में प्रदर्शित है।
आकृति 2.12
(v) मापांक फलन (Modulus functions) $f(x)=|x|$ प्रत्येक $x \in \mathbf{R}$ द्वारा परिभाषित फलन $f: \mathbf{R} \rightarrow \mathbf{R}$, मापांक फलन कहलाता है। $x$ के प्रत्येक ॠणेत्तर मान के लिए $f(x), x$ के बराबर होता है। परंतु $x$ के ऋण मानों के लिए, $f(x)$ का मान $x$, के मान के ऋण के बराबर होता है, अर्थात् $ f(x)=\left\{\begin{array}{l} x, x \geq 0\\ -x, x<0 \end{array}\right. $
आकृति 2.13
(vi) चिह्न फलन (Signum functions) प्रत्येक $x \in \mathbf{R}$, के लिए
$$ \begin{array}{r} 1, \text { यदि } x>0\\ f(x)=0, \text { यदि } x=0\\ -1, \text { यदि } x<0 \end{array} $$
$$ f(x)=|x| $$
आकृति 2.13 द्वारा परिभाषित फलन $f: \mathbf{R} \rightarrow \mathbf{R}$ चिन्न फलन कहलाता है। चिह्न फलन का प्रांत $\mathbf{R}$ है। परिसर समुच्चय $\{-1,0,1\}$ है। आकृति 2.14 में चिह्न फलन का आलेख दर्शाया गया है।
आकृति 2.14
$$ f(x)=\frac{|x|}{x}, x^{\prime} \quad 0 \text { और } 0 \text { के लिए } x=0 $$
(vii) महत्तम पूर्णांक फलन (Greatest integer functions) $f(x)=[x], x \in \mathbf{R}$ द्वारा परिभाषित फलन $f: \mathbf{R} \rightarrow \mathbf{R}, x$ से कम या $x$ के बराबर महत्तम पूर्णांक का मान ग्रहण (धारण) करता है ऐसा फलन महत्तम पूर्णांक फलन कहलाता है।
$[x]$, की परिभाषा से हम देख सकते हैं कि
$$ \begin{aligned} & {[x]=-1 \text { यदि }-1 \leq x<0}\\ & {[x]=0 \text { यदि } 0 \leq x<1}\\ & {[x]=1 \text { यदि } 1 \leq x<2}\\ & {[x]=2 \text { यदि } 2 \leq x<3 \text { इत्यदि }} \end{aligned} $$
इस फलन का आलेख आकृति 2.15 में दर्शाया गया है।
आकृति 2.15
2.4.2 वास्तविक फलनों का बीजगणित (Algebra of real functions)
इस अनुच्छेद में, हम सीखेंगे कि किस प्रकार दो वास्तविक फलनों को जोड़ा जाता है, एक वास्तविक फलन को दूसरे में से घटाया जाता है, एक वास्तविक फलन को किसी अदिश (यहाँ आदिश का अभिप्राय वास्तविक संख्या से है) से गुणा किया जाता है, दो वास्तविक फलनों का गुणा किया जाता है तथा एक वास्तविक फलन को दूसरे से भाग दिया जाता है।
(i) दो वास्तविक फलनों का योग मान लीजिए कि $f: \mathrm{X} \rightarrow \mathbf{R}$ तथा $g: \mathbf{X} \rightarrow \mathbf{R}$ कोई दो वास्तविक फलन हैं, जहाँ $\mathrm{X} \subset \mathbf{R}$. तब हम $(f+g): \mathrm{X} \rightarrow \mathbf{R}$ को, सभी $x \in \mathrm{X}$ के लिए,
$(f+g)(x)=f(x)+g(x)$, द्वारा परिभाषित करते हैं।
(ii) एक वास्तविक फलन में से दूसरे को घटाना मान लीजिए कि $f: \mathbf{X} \rightarrow \mathbf{R}$ तथा $g: \mathrm{X} \rightarrow \mathbf{R}$ कोई दो वास्तविक फलन हैं, जहाँ $\mathrm{X} \subset \mathbf{R}$. तब हम $(f-g): \mathbf{X} \rightarrow \mathbf{R}$ को सभी $x \in \mathrm{X}$, के लिए $(f-g)(x)=f(x)-g(x)$, द्वारा परिभाषित करते हैं।
(iii) एक अदिश से गुणा मान लीजिए कि $f: \mathbf{X} \rightarrow \mathbf{R}$ एक वास्तविक मान फलन है तथा $\alpha$ एक अदिश है। यहाँ अदिश से हमारा अभिप्राय किसी वास्तविक संख्या से है। तब गुणनफल $\alpha f, \mathbf{X}$ से $\mathbf{R}$ में एक फलन है, जो $(\alpha f)(x)=\alpha f(x), x \in \mathrm{X}$ से परिभाषित होता है।
(iv) दो वास्तविक फलनों का गुणन दो वास्तविक फलनों $f: \mathbf{X} \rightarrow \mathbf{R}$ तथा $g: \mathbf{X} \rightarrow \mathbf{R}$ का गुणनफल (या गुणा) एक फलन $f g: \mathbf{X} \rightarrow \mathbf{R}$ है, जो सभी $(f g)(x)=f(x) g(x), x \in \mathbf{X}$ द्वारा परिभाषित है।
इसे बिंदुशः गुणन भी कहते हैं।
(v) दो वास्तविक फलनों का भागफल मान लीजिए कि $f$ तथा $g, \mathbf{X} \rightarrow \mathbf{R}$ द्वारा परिभाषित, दो वास्तविक फलन हैं, जहाँ $\mathrm{X} \subset \mathbf{R} . f$ का $g$ से भागफल, जिसे $\frac{f}{g}$ से निरूपित करते हैं, एक फलन है, जो सभी $x \in \mathrm{X}$ जहाँ $g(x) \neq 0$, के लिए, $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$, द्वारा परिभाषित है।
उदाहरण 16 मान लीजिए कि $f(x)=x^{2}$ तथा $g(x)=2 x+1$ दो वास्तविक फलन हैं। ज्ञात कीजिए
$$ (f+g)(x),(f-g)(x),(f g)(x),(\frac{f}{g})(x) $$
हल स्पष्टत:
$$ \begin{aligned} & (f+g)(x)=x^{2}+2 x+1,(f-g)(x)=x^{2}-2 x-1, \\ & (f g)(x)=x^{2}(2 x+1)=2 x^{3}+x^{2},(\frac{f}{g})(x)=\frac{x^{2}}{2 x+1}, x \neq-\frac{1}{2} \end{aligned} $$
उदाहरण 17 मान लीजिए कि $f(x)=\sqrt{x}$ तथा $g(x)=x$ ॠणेत्तर वास्तविक संख्याओं के लिए परिभाषित दो फलन हैं, तो $(f+g)(x),(f-g)(x)(f g)(x)$ और $\left(\frac{f}{g}\right)(x)$ ज्ञात कीजिए।
हल यहाँ हमें निम्नलिखित परिणाम मिलते हैं:
$$ \begin{aligned} & (f+g)(x)=\sqrt{x}+x,(f-g)(x)=\sqrt{x}-x,\\ & (f g) x=\sqrt{x}(x)=x^{\frac{3}{2}} \text { और }\left(\frac{f}{g}\right)(x)=\frac{\sqrt{x}}{x}=x^{-\frac{1}{2}}, x \neq 0 \end{aligned} $$
प्रश्नावली 2.3
1. निम्नलिखित संबंधों में कौन से फलन हैं? कारण का उल्लेख कीजिए। यदि संबंध एक फलन है, तो उसका परिसर निर्धारित कीजिए:
(i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$
(ii) $\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$
(iii) $\{(1,3),(1,5),(2,5)\}$.
Show Answer
\missing2. निम्नलिखित वास्तविक फलनों के प्रांत तथा परिसर ज्ञात कीजिए:
(i) $f(x)=-|x|$
(ii) $f(x)=\sqrt{9-x^{2}}$.
Show Answer
\missing3. एक फलन $f(x)=2 x-5$ द्वारा परिभाषित है। निम्नलिखित के मान लिखिए:
(i) $f(0)$,
(ii) $f(7)$,
(iii) $f(-3)$.
Show Answer
\missing4. फलन ’ $t$ ’ सेल्सियस तापमान का फारेनहाइट तापमान में प्रतिचित्रण करता है, जो $t(\mathrm{C})=\frac{9 \mathrm{C}}{5}+32$ द्वारा परिभाषित हैं निम्नलिखित को ज्ञात कीजिए:
(i) $t(0)$
(ii) $t(28)$
(iii) $t(-10)$
(iv) $\mathrm{C}$ का मान, जब $t(\mathrm{C})=212$.
Show Answer
\missing5. निम्नलिखित में से प्रत्येक फलन का परिसर ज्ञात कीजिए:
(i) $f(x)=2-3 x, x \in \mathrm{R}, x>0$.
(ii) $f(x)=x^{2}+2, x$ एक वास्तविक संख्या है।
(iii) $f(x)=x, x$ एक वास्तविक संख्या है।
Show Answer
\missingविविध उदाहरण
उदाहरण 18 मान लीजिए कि $\mathbf{R}$ वास्तविक संख्याओं का समुच्चय है। एक वास्तविक फलन $f:$
द्वारा परिभाषित कीजिए और
$$ f: \mathbf{R} \rightarrow \mathbf{R} \text { by } f(x)=x+10 $$
इस फलन का आलेख खींचिए।
हल यहाँ, हम देखते हैं कि $f(0)=10, f(1)=11$, $f(2)=12, \ldots, f(10)=20$, आदि और $f(-1)=9$,
$f(-2)=8, \ldots, f(-10)=0$, इत्यादि।
अतः दिए हुए फलन के आलेख का आकार आकृति 2.16 में दर्शाए गए रूप का होगा।
आकृति 2.16
टिप्पणी $f(x)=m x+c, x \in \mathbf{R}$, एक रैखिक फलन कहलाता है, जहाँ $m$ एवं $c$ अचर हैं। उपरोक्त फलन रैखिक फलन का एक उदाहरण है।
उदाहरण 19 मान लीजिए कि $\mathrm{R}, \mathbf{Q}$ से $\mathbf{Q}$ में $\mathrm{R}=\{(a, b): a, b \in \mathbf{Q}$ तथा $a-b \in \mathbf{Z}\}$. द्वारा परिभाषित, एक संबंध है। सिद्ध कीजिए कि
(i) $(a, a) \in \mathrm{R}$ सभी $a \in \mathbf{Q}$ के लिए
(ii) $(a, b) \in \mathrm{R}$ का तात्पर्य है कि $(b, a) \in \mathrm{R}$
(iii) $(a, b) \in \mathrm{R}$ और $(b, c) \in \mathrm{R}$ का तात्पर्य है कि $(a, c) \in \mathrm{R}$
हल (i) क्योंकि $a-a=0 \in \mathbf{Z}$, जिससे निष्कर्ष निकलता है कि $(a, a) \in \mathrm{R}$.
(ii) $(a, b) \in \mathrm{R}$ का तात्पर्य है कि $a-b \in \mathbf{Z}$. इसलिए, $b-a \in \mathbf{Z}$. अत:, $(b, a) \in \mathrm{R}$
(iii) $(a, b)$ तथा $(b, c) \in \mathbf{R}$ तात्पर्य है कि $a-b \in \mathbf{Z} . b-c \in \mathbf{Z}$. इसलिए, $a-c=(a-b)+(b-c) \in \mathbf{Z}$. अत:, $(a, c) \in \mathrm{R}$
उदाहरण 20 यदि $f=\{(1,1),(2,3),(0,-1),(-1,-3)\}, \mathbf{Z}$ से $\mathbf{Z}$. में एक ‘रैखिक फलन है, तो $f(x)$ ज्ञात कीजिए।
हल क्योंकि $f$ एक रैखिक फलन है, इसलिए $f(x)=m x+c$. पुन: क्योंक $(1,1),(0,-1) \in \mathrm{R}$ है। इसलिए, $f(1)=m+c=1$ तथा $f(0)=c=-1$. इससे हमें $m=2$ मिलता है और इस प्रकार $f(x)=2 x-1$.
उदाहरण 21 फलन $f(x)=\frac{x^{2}+3 x+5}{x^{2}-5 x+4}$ का प्रांत ज्ञात कीजिए।
हल क्योंकि $x^{2}-5 x+4=(x-4)(x-1)$, इसलिए फलन $f, x=4$ और $x=1$ के अतिरिक्त अन्य सभी वास्तविक संख्याओं के लिए परिभाषित है। अतः $f$ का प्रांत $\mathbf{R}-\{1,4\}$ है।
उदाहरण 22 फलन $f$,
$$ f(x)= \begin{cases}1-x, & x<0 \ 1 & , x=0 \ x+1, & x>0\end{cases} $$
द्वारा परिभाषित है। $f(x)$ का आलेख खींचिए।
हल यहाँ $f(x)=1-x, x<0$, से
$ \begin{aligned} & f(-4)=1-(-4)=5 ;\\ & f(-3)=1-(-3)=4,\\ & f(-2)=1-(-2)=3\\ & f(-1)=1-(-1)=2 \text {; इत्यादि } \end{aligned} $
और $f(1)=2, f(2)=3, f(3)=4$
$f(4)=5$ इत्यादि, क्योंकि $f(x)=x+1, x>0$.
अतः $f$ का आलेख आकृति 2.17 में दर्शाए रूप का होगा।
आकृति 2.17
अध्याय 2 पर विविध प्रश्नावली
1. संबंध $f, f(x)=\left\{\begin{array}{l}x^{2}, 0 \leq x \leq 3 \ 3 x, 3 \leq x \leq 10\end{array}\right.$ द्वारा परिभाषित है।
संबंध $g, g(x)=\left\{\begin{array}{l}x^{2}, 0 \leq x \leq 2 \ 3 x, 2 \leq x \leq 10\end{array}\right.$ द्वारा परिभाषित है।
दर्शाइए कि क्यों $f$ एक फलन है और $g$ फलन नहीं है।
Show Answer
\missing2. यदि $f(x)=x^{2}$, तो $\frac{f(1.1)-f(1)}{(1.1-1)}$ ज्ञात कीजिए।
Show Answer
\missing3. फलन $f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$ का प्रांत ज्ञात कीजिए।
Show Answer
\missing4. $f(x)=\sqrt{(x-1)}$ द्वारा परिभाषित वास्तविक फलन $f$ का प्रांत तथा परिसर ज्ञात कीजिए।
Show Answer
\missing5. $f(x)=|x-1|$ द्वारा परिभाषित वास्तविक फलन $f$ का प्रांत तथा परिसर ज्ञात कीजिए।
Show Answer
\missing6. मान लीजिए कि $f=\left\{\left(x, \frac{x^{2}}{1+x^{2}}\right),: x \in \mathbf{R}\right\} \mathbf{R}$ से $\mathbf{R}$ में एक फलन है। $f$ का परिसर निर्धारित कीजिए।
Show Answer
\missing7. मान लीजिए कि $f, g: \mathbf{R} \rightarrow \mathbf{R}$ क्रमशः $f(x)=x+1, g(x)=2 x-3$. द्वारा परिभाषित है। $f+g, f-g$ और $\frac{f}{g}$ ज्ञात कीजिए।
Show Answer
\missing8. मान लीजिए कि $f=\{(1,1),(2,3),(0,-1),(-1,-3)\} \mathbf{Z}$ से $\mathbf{Z}$ में, $f(x)=a x+b$, द्वारा परिभाषित एक फलन है, जहाँ $a, b$. कोई पूर्णांक हैं। $a, b$ को निर्धारित कीजिए।
Show Answer
\missing9. $\mathbf{R}=\left\{(a, b): a, b \in \mathbf{N}\right.$ तथा $\left.a=b^{2}\right\}$ द्वारा परिभाषित $\mathbf{N}$ से $\mathbf{N}$ में, एक संबंध $\mathbf{R}$ है। क्या निम्नलिखित कथन सत्य हैं?
(i) $(a, a) \in \mathrm{R}$, सभी $a \in \mathbf{N}, \quad$
(ii) $(a, b) \in \mathrm{R}$, का तात्पर्य है कि $(b, a) \in \mathrm{R}$
(iii) $(a, b) \in \mathrm{R},(b, c) \in \mathrm{R}$ का तात्पर्य है कि $(a, c) \in \mathrm{R}$ ?
प्रत्येक दशा में अपने उत्तर का औचित्य भी बतलाइए।
Show Answer
\missing10. मान लीजिए कि $\mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{1,5,9,11,15,16\}$ और $f=\{(1,5),(2,9),(3,1),(4,5)$, $(2,11)\}$. क्या निम्नलिखित कथन सत्य हैं?
(i) $f, \mathrm{~A}$ से $\mathrm{B}$ में एक संबंध है।
(ii) $f, \mathrm{~A}$ से $\mathrm{B}$ में एक फलन है।
प्रत्येक दशा में अपने उत्तर का औचित्य बतलाइए।
Show Answer
\missing11. मान लीजिए कि $f, f=\{(a b, a+b): a, b \in \mathbf{Z}\}$ द्वारा परिभाषित $\mathbf{Z} \times \mathbf{Z}$ का एक उपसमुच्चय है। क्या $f, \mathbf{Z}$ से $\mathbf{Z}$ में एक फलन है? अपने उत्तर का औचित्य भी स्पष्ट कीजिए।
Show Answer
\missing12. मान लीजिए कि $\mathrm{A}=\{9,10,11,12,13\}$ तथा $f: \mathrm{A} \rightarrow \mathbf{N}, f(n)=n$ का महत्तम अभाज्य गुणक द्वारा, परिभाषित है। $f$ का परिसर ज्ञात कीजिए।
Show Answer
\missingसारांश
इस अध्याय में हमनें संबंध तथा फलन का अध्ययन किया है। इस अध्याय की मुख्य बातों को नीचे दिया जा रहा है।
क्रमित युग्म किसी विशेष क्रम में समूहित अवयवों का एक युग्म।
कार्तीय गुणन समुच्चयों $\mathrm{A}$ तथा $\mathrm{B}$ का कार्तीय गुणन, समुच्चय
$\mathrm{A} \times \mathrm{B}=\{(a, b): a \in \mathrm{A}, b \in \mathrm{B}\}$ होता है।
विशेष रूप से $\mathbf{R} \times \mathbf{R}=\{(x, y): x, y \in \mathbf{R}\}$
और $\mathbf{R} \times \mathbf{R} \times \mathbf{R}=\{(x, y, z): x, y, z \in \mathbf{R}\}$
यदि $(a, b)=(x, y)$, तो $a=x$ तथा $b=y$. यदि $n(\mathrm{~A})=p$ तथा $n(\mathrm{~B})=q$, तो $n(\mathrm{~A} \times \mathrm{B})=p q$.
$\mathrm{A} \times \phi=\phi$
सामान्यत: $\mathrm{A} \times \mathrm{B} \neq \mathrm{B} \times \mathrm{A}$.
संबंध समुच्चय $\mathrm{A}$ से समुच्चय $\mathrm{B}$ में संबंध $\mathrm{R}$, कार्तीय गुणन $\mathrm{A} \times \mathrm{B}$ का एक उपसमुच्चय होता है, जिसे $\mathrm{A} \times \mathrm{B}$ के क्रमित युग्मों के प्रथम घटक $x$ तथा द्वितीय घटक $y$ के बीच किसी संबंध को वर्णित करके प्राप्त किया जाता है।
किसी अवयव $\boldsymbol{x}$ का, संबंध $\mathrm{R}$ के अंतर्गत, प्रतिबिंब $y$ होता है, जहाँ $(x, y) \in \mathrm{R}$,
संबंध $\mathrm{R}$ के क्रमित युग्मों के प्रथम घटकों का समुच्चय, संबंध $\mathrm{R}$ का प्रांत होता है।
संबंध $\mathrm{R}$ के क्रमित युग्मों के द्वितीय घटकों का समुच्चय, संबंध $\mathrm{R}$ का परिसर होता है।
फलन समुच्चय $\mathrm{A}$ से समुच्चय $\mathrm{B}$ में फलन $f$ एक विशिष्ट प्रकार का संबंध होता है, जिसमें समुच्चय $\mathrm{A}$ के प्रत्येक अवयव $x$ का समुच्चय $\mathrm{B}$ में एक और केवल एक प्रतिबिंब $y$ होता है इस बात को हम
$f: \mathrm{A} \rightarrow \mathrm{B}$ जहाँ $f(x)=y$ लिखते हैं। ।
$\mathrm{A}$ फलन $f$ का प्रांत तथा $\mathrm{B}$ उसका सहप्रांत होता है।
फलन $f$ का परिसर, $f$ के प्रतिबिंबों का समुच्चय होता है।
किसी वास्तविक फलन के प्रांत तथा परिसर दोनों ही वास्तविक संख्याओं का समुच्चय अथवा उसका एक उपसमुच्चय होता है:
फलनों का बीजगणित फलन $f: \mathrm{X} \rightarrow \mathbf{R}$ तथा $g: \mathrm{X} \rightarrow \mathbf{R}$, के लिए हम निम्नलिखित परिभाषाएँ देते हैं।
$$ \begin{aligned} & (f+g)(x)=f(x)+g(x), x \in \mathrm{X} \\ & (f-g)(x)=f(x)-g(x), x \in \mathrm{X} \\ & (f . g)(x)=f(x) \cdot g(x), x \in \mathrm{X}, k \text { कोई अचर है। } \\ & (k f)(x)=k(f(x)), x \in \mathrm{X} \\ & \frac{f}{g}(x)=\frac{f(x)}{g(x)}, x \in \mathrm{X}, g(x) \neq 0 \end{aligned} $$
ऐतिहासिक पृष्ठभूमि
फलन शब्द सर्वप्रथम Gottfried Wilhelm Leibnitz (1646-1716 ई०) द्वारा सन् 1673 में लिखित लैटिन पाण्डुलिपि “Methodus tangentium inversa, seu de fuctionibus” में परिलक्षित हुआ है। Leibnitz ने इस शब्द का प्रयोग अविश्लेषणात्मक भाव में किया है। उन्होंने फलन को ‘गणितीय कार्य’ तथा ‘कर्मचारी’ के पदों द्वारा उत्पत्न मात्र एक वक्र के रूप में अधिकल्पित किया है।
जुलाई 5, सन् 1698 में John Bernoulli नें Leibnitz को लिखे एक प्रत्र में पहली बार सुविचारित रूप से फलन शब्द का विश्लेषणात्मक भाव में विशिष्ट प्रयोग निर्धारित किया है। उसी माह में Leibnitz ने अपनी सहमति दर्शाते हुए उत्तर भी दे दिया था।
अंग्रेज़ी भाषा में फलन (Function) शब्द सन् 1779 के Chamber’s Cyclopaedia में पाया जाता है। बीजगणित में फलन शब्द का प्रयोग चर राशियों और संख्याओं अथवा स्थिर राशियों द्वारा संयुक्त रूप से बने विश्लेषणात्मक व्यंजको के लिए किया गया है।