Chapter-10 Conic Sections
Let the relation of knowledge to real life be very visible to your pupils and let them understand how by knowledge the world could be transformed. - BERTRAND RUSSELL
10.1 Introduction
In the preceding Chapter 10, we have studied various forms of the equations of a line. In this Chapter, we shall study about some other curves, viz., circles, ellipses, parabolas and hyperbolas. The names parabola and hyperbola are given by Apollonius. These curves are in fact, known as conic sections or more commonly conics because they can be obtained as intersections of a plane with a double napped right circular cone. These curves have a very wide range of applications in fields such as planetary motion, design of telescopes and antennas, reflectors in flashlights and automobile headlights, etc.
Apollonius (262 B.C. -190 B.C.)
Now, in the subsequent sections we will see how the intersection of a plane with a double napped right circular cone results in different types of curves.
10.2 Sections of a Cone
Let $l$ be a fixed vertical line and $m$ be another line intersecting it at a fixed point $V$ and inclined to it at angle $\alpha$ (Fig10.1).
Fig 10.1
Suppose we rotate the line $m$ around the line $l$ in such a way that the angle $\alpha$ remains constant. Then the surface generated is a double-napped right circular hollow cone herein after referred as cone and extending indefinitely far in both directions (Fig10.2).
Fig 10.2
The point $V$ is called the vertex; the line $l$ is the axis of the cone. The rotating line $m$ is called a generator of the cone. The vertex separates the cone into two parts called nappes.
If we take the intersection of a plane with a cone, the section so obtained is called a conic section. Thus, conic sections are the curves obtained by intersecting a right circular cone by a plane.
We obtain different kinds of conic sections depending on the position of the intersecting plane with respect to the cone and by the angle made by it with the vertical axis of the cone. Let $\beta$ be the angle made by the intersecting plane with the vertical axis of the cone (Fig10.3).
Fig 10.3
The intersection of the plane with the cone can take place either at the vertex of the cone or at any other part of the nappe either below or above the vertex.
10.2.1 Circle, ellipse, parabola and hyperbola
When the plane cuts the nappe (other than the vertex) of the cone, we have the following situations:
(a) When $\beta=90^{\circ}$, the section is a circle (Fig10.4).
Fig10.4
(b) When $\alpha<\beta<90^{\circ}$, the section is an ellipse (Fig10.5).
Fig10.5
(c) When $\beta=\alpha$; the section is a parabola (Fig10.6).
Fig10.6
(In each of the above three situations, the plane cuts entirely across one nappe of the cone).
(d) When $0 \leq \beta<\alpha$; the plane cuts through both the nappes and the curves of intersection is a hyperbola (Fig10.7).
Fig10.7
10.2.2 Degenerated conic sections
When the plane cuts at the vertex of the cone, we have the following different cases:
(a) When $\alpha<\beta \leq 90^{\circ}$, then the section is a point (Fig10.8).
Fig10.8
(b) When $\beta=\alpha$, the plane contains a generator of the cone and the section is a straight line (Fig10.9).
Fig10.9
It is the degenerated case of a parabola.
(c) When $0 \leq \beta<\alpha$, the section is a pair of intersecting straight lines (Fig10.10). It is the degenerated case of a hyperbola.
Fig10.8 (a)
Fig10.8 (b)
In the following sections, we shall obtain the equations of each of these conic sections in standard form by defining them based on geometric properties.
10.3 Circle
Definition 1 A circle is the set of all points in a plane that are equidistant from a fixed point in the plane.
The fixed point is called the centre of the circle and the distance from the centre to a point on the circle is called the radius of the circle (Fig 10.11).
Fig10.11
The equation of the circle is simplest if the centre of the circle is at the origin. However, we derive below the equation of the circle with a given centre and radius (Fig 10.12).
Fig10.12
Given $C(h, k)$ be the centre and $r$ the radius of circle. Let $P(x, y)$ be any point on the circle (Fig10.12). Then, by the definition, $|CP|=r$. By the distance formula, we have
i.e.
$ \begin{aligned} & \sqrt{(x-h)^{2}+-k)^{2}}=r & (x-h)^{2}+(y-k)^{2}=r^{2} \end{aligned} $
This is the required equation of the circle with centre at $(h, k)$ and radius $r$.
Example 1 Find an equation of the circle with centre at $(0,0)$ and radius $r$.
Solution Here $h=k=0$. Therefore, the equation of the circle is $x^{2}+y^{2}=r^{2}$.
Example 2 Find the equation of the circle with centre $(-3,2)$ and radius 4.
Solution Here $h=-3, k=2$ and $r=4$. Therefore, the equation of the required circle is
$$ (x+3)^{2}+(y-2)^{2}=16 $$
Example 3 Find the centre and the radius of the circle $x^{2}+y^{2}+8 x+10 y-8=0$
Solution The given equation is
$$ (x^{2}+8 x)+(y^{2}+10 y)=8 $$
Now, completing the squares within the parenthesis, we get
$ (x^{2}+8 x+16)+(y^{2}+10 y+25)=8+16+25 $
i.e.
$ (x+4)^{2}+(y+5)^{2}=49 $
i.e.
$[x-(-4)]^2 + [y-(-5)]^2 = 7^2$
Therefore, the given circle has centre at $(-4,-5)$ and radius 7 .
Example 4 Find the equation of the circle which passes through the points $(2,-2)$, and $(3,4)$ and whose centre lies on the line $x+y=2$.
Solution Let the equation of the circle be $(x-h)^{2}+(y-k)^{2}=r^{2}$.
Since the circle passes through $(2,-2)$ and $(3,4)$, we have
$$ \begin{equation*} (2-h)^{2}+(-2-k)^{2}=r^{2} \tag{1} \end{equation*} $$
and $$ \begin{equation*} (3-h)^{2}+(4-k)^{2}=r^{2} \tag{2} \end{equation*} $$
Also since the centre lies on the line $x+y=2$, we have
$$ \begin{equation*} h+k=2 \tag{3} \end{equation*} $$
Solving the equations (1), (2) and (3), we get
$ h=0.7, \quad k=1.3 \text{ and } r^{2}=12.58 $
Hence, the equation of the required circle is
$ (x-0.7)^{2}+(y-1.3)^{2}=12.58 . $
EXERCISE 10.1
In each of the following Exercises 1 to 5, find the equation of the circle with
1. centre $(0,2)$ and radius 2
Show Answer
Answer :
The equation of a circle with centre $(h, k)$ and radius $r$ is given as
$(x-h)^{2}+(y-k)^{2}=r^{2}$
It is given that centre $(h, k)=(0,2)$ and radius $(r)=2$.
Therefore, the equation of the circle is
$(x-0)^{2}+(y-2)^{2}=2^{2}$
$x^{2}+y^{2}+4-4 y=4$
$x^{2}+y^{2}-4 y=0$
2. centre $(-2,3)$ and radius 4
Show Answer
Answer :
The equation of a circle with centre $(h, k)$ and radius $r$ is given as
$(x-h)^{2}+(y-k)^{2}=r^{2}$
It is given that centre $(h, k)=(-2,3)$ and radius $(r)=4$.
Therefore, the equation of the circle is
$(x+2)^{2}+(y-3)^{2}=(4)^{2}$
$x^{2}+4 x+4+y^{2}-6 y+9=16$
$x^{2}+y^{2}+4 x-6 y-3=0$
3. centre $(\dfrac{1}{2}, \dfrac{1}{4})$ and radius $\dfrac{1}{12}$
Show Answer
Answer :
The equation of a circle with centre $(h, k)$ and radius $r$ is given as
$(x - h)^{2}+(y - k)^{2}=r^{2}$
It is given that centre $(h, k)=(\dfrac{1}{2}, \dfrac{1}{4})$ and radius $(r)=\dfrac{1}{12}$.
Therefore, the equation of the circle is
$ \begin{aligned} & (x-\dfrac{1}{2})^{2}+(y-\dfrac{1}{4})^{2}=(\dfrac{1}{12})^{2} \\ & x^{2}-x+\dfrac{1}{4}+y^{2}-\dfrac{y}{2}+\dfrac{1}{16}=\dfrac{1}{144} \\ & x^{2}-x+\dfrac{1}{4}+y^{2}-\dfrac{y}{2}+\dfrac{1}{16}-\dfrac{1}{144}=0 \\ & 144 x^{2}-144 x+36+144 y^{2}-72 y+9-1=0 \\ & 144 x^{2}-144 x+144 y^{2}-72 y+44=0 \\ & 36 x^{2}-36 x+36 y^{2}-18 y+11=0 \\ & 36 x^{2}+36 y^{2}-36 x-18 y+11=0 \end{aligned} $
4. centre $(1,1)$ and radius $\sqrt{2}$
Show Answer
Answer :
The equation of a circle with centre $(h, k)$ and radius $r$ is given as $(x - h)^{2}+(y - k)^{2}=r^{2}$
It is given that centre $(h, k)=(1,1)$ and radius $(r)=\sqrt{2}$.
Therefore, the equation of the circle is
$ \begin{aligned} & (x-1)^{2}+(y-1)^{2}=(\sqrt{2})^{2} \\ & x^{2}-2 x+1+y^{2}-2 y+1=2 \\ & x^{2}+y^{2}-2 x-2 y=0 \end{aligned} $
5. centre $(-a,-b)$ and radius $\sqrt{a^{2}-b^{2}}$
Show Answer
Answer :
The equation of a circle with centre $(h, k)$ and radius $r$ is given as
$(x - h)^{2}+(y - k)^{2}=r^{2}$
It is given that centre $(h, k)=(-$a, -$b)$ and radius $(r)=\sqrt{a^{2}-b^{2}}$.
Therefore, the equation of the circle is
$ \begin{aligned} & (x+a)^{2}+(y+b)^{2}=(\sqrt{a^{2}-b^{2}})^{2} \\ & x^{2}+2 a x+a^{2}+y^{2}+2 b y+b^{2}=a^{2}-b^{2} \\ & x^{2}+y^{2}+2 a x+2 b y+2 b^{2}=0 \end{aligned} $
6. $(x+5)^{2}+(y-3)^{2}=36$
Show Answer
Answer :
The equation of the given circle is $(x+5)^{2}+(y-3)^{2}=36$.
$(x+5)^{2}+(y-3)^{2}=36$
$\Rightarrow\{x-(-5)\}^{2}+(y-3)^{2}=6^{2}$, which is of the form $(x-h)^{2}+(y-k)^{2}=r^{2}$, where $h=-5, k=3$, and $r=6$.
Thus, the centre of the given circle is $(-5,3)$, while its radius is 6 .
7. $x^{2}+y^{2}-4 x-8 y-45=0$
Show Answer
Answer :
The equation of the given circle is $ x^{2}+y^{2} - 4 x-8 y - 45=0$.
$x^{2}+y^{2} -4 x - 8 y - 45=0$
$\Rightarrow(x^{2} - 4 x)+(y^{2} - 8 y)=45$
$\Rightarrow\{x^{2} - 2(x)(2)+2^{2}\}+\{y^{2} - 2(y)(4)+4^{2}\}$ - 4 -16=45
$\Rightarrow(x - 2)^{2}+(y - 4)^{2}=65$
$\Rightarrow(x - 2)^{2}+(y - 4)^{2}=(\sqrt{65})^{2}$, which is of the form $(x - h)^{2}+(y - k)^{2}=r^{2}$, where $h=2, k=4$, and $r=\sqrt{65}$.
Thus, the centre of the given circle is $(2,4)$, while its radius is $\sqrt{65}$.
8. $x^{2}+y^{2}-8 x+10 y-12=0$
Show Answer
Answer :
The equation of the given circle is $x^{2}+y^{2} - 8 x+10 y$ - $12=0$.
$x^{2}+y^{2} - 8 x+10 y - 12=0$
$\Rightarrow(x^{2} - 8 x)+(y^{2}+10 y)=12$
$\Rightarrow\{x^{2} - 2(x)(4)+4^{2}\}+\{y^{2}+2(y)(5)+5^{2}\} - 16$ - $25=12$
$\Rightarrow(x - 4)^{2}+(y+5)^{2}=53$
$\Rightarrow(x-4)^{2}+[{y-(-5)}]^{2}=(\sqrt{53})^{2}$ , which is of the form $(x - h)^{2}+(y - k)^{2}=r^{2}$, where $h=4,k=- $5,
and $r=\sqrt{53}$.
Thus, the centre of the given circle is $( 4, - 5 )$, while its radius is $\sqrt{53}$.
9. $2 x^{2}+2 y^{2}-x=0$
Show Answer
Answer :
The equation of the given circle is $2 x^{2}+2 y^{2} - x=0$.
$ \begin{aligned} & 2 x^{2}+2 y^{2}-x=0 \\ & \Rightarrow(2 x^{2}-x)+2 y^{2}=0 \\ & \Rightarrow 2[(x^{2}-\dfrac{x}{2})+y^{2}]=0 \\ & \Rightarrow\{x^{2}-2 \cdot x(\dfrac{1}{4})+(\dfrac{1}{4})^{2}\}+y^{2}-(\dfrac{1}{4})^{2}=0 \\ & \Rightarrow(x-\dfrac{1}{4})^{2}+(y-0)^{2}=(\dfrac{1}{4})^{2}, \text{ which is of the form }(x - h)^{2}+(y - k)^{2}=r^{2}, \text{ where } h=\dfrac{1}{4}, k=0, \text{ and } r=\dfrac{1}{4} \end{aligned} $
Thus, the centre of the given circle is $(\dfrac{1}{4}, 0)$, while its radius is $\dfrac{1}{4}$.
10. Find the equation of the circle passing through the points $(4,1)$ and $(6,5)$ and whose centre is on the line $4 x+y=16$
Show Answer
Answer :
Let the equation of the required circle be $(x - h)^{2}+(y - k)^{2}=r^{2}$.
Since the circle passes through points $(4,1)$ and $(6,5)$,
(4 - $h)^{2}+(1 \text{ - } k)^{2}=r^{2}$.
(6 - $h)^{2}+(5 - k)^{2}=r^{2}$
Since the centre $(h, k)$ of the circle lies on line $4 x+y=16$,
$4 h+k=16$
From equations (1) and (2), we obtain
$(4 \text{ - } h)^{2}+(1 \text{ - } k)^{2}=(6 \text{ - } h)^{2}+(5 -{2} k)^{2}$
$\Rightarrow 16$ - $8 h+h^{2}+1$-$2 k+k^{2}=36$-$12 h+h^{2}+25$-$10 k+k^{2}$
$\Rightarrow 16$ - $8 h+1$ - $2 k=36$ - $12 h+25$ - $10 k$
$\Rightarrow 4 h+8 k=44$
$\Rightarrow h+2 k=11$.
On solving equations (3) and (4), we obtain $h=3$ and $k=4$.
On substituting the values of $h$ and $k$ in equation (1), we obtain
$(4 \text{ - } 3)^{2}+(1 -4)^{2}=r^{2}$
$\Rightarrow(1)^{2}+(- 3)^{2}=r^{2}$
$\Rightarrow 1+9=r^{2}$
$\Rightarrow r^{2}=10$
$\Rightarrow r=\sqrt{10}$
Thus, the equation of the required circle is
$(x \text{ - } 3)^{2}+(y - 4)^{2}=(\sqrt{10})^{2}$
$x^{2}$ - $6 x+9+y^{2} $ - $8 y+16=10$
$x^{2}+y^{2} -6 x-8 y+15=0$
11. Find the equation of the circle passing through the points $(2,3)$ and $(-1,1)$ and whose centre on line $x-3 y-11=0$.
Show Answer
Answer :
Let the equation of the required circle be $(x - h)^{2}+(y - k)^{2}=r^{2}$.
Since the circle passes through points $(2,3)$ and ( $- 1,1$ ),
$(2 - h)^{2}+(3 - k)^{2}=r^{2} \ldots(1)$
$(- 1 - h)^{2}+(1 - k)^{2}=r^{2}$..
Since the centre $(h, k)$ of the circle lies on line $ x -3 y - 11=0 $,
$h$ -$3 k=11$
From equations (1) and (2), we obtain
$ (2-h)^2 + (3-k)^2 =(-1-h)^2 + (1-k)^2 $
$\Rightarrow 4 - 4 h+h^{2}+9 - 6 k+k^{2}=1+2 h+h^{2}+1 - 2 k+k^{2}$
$\Rightarrow 4 - 4 h+9 - 6 k=1+2 h+1 - 2 k$
$\Rightarrow 6 h+4 k=11$..
On solving equations (3) and (4), we obtain $h=\dfrac{7}{2}$ and $k=\dfrac{-5}{2}$.
On substituting the values of $h$ and $k$ in equation (1), we obtain
$(2-\dfrac{7}{2})^{2}+(3+\dfrac{5}{2})^{2}=r^{2}$
$\Rightarrow(\dfrac{4-7}{2})^{2}+(\dfrac{6+5}{2})^{2}=r^{2}$
$\Rightarrow(\dfrac{-3}{2})^{2}+(\dfrac{11}{2})^{2}=r^{2}$
$\Rightarrow \dfrac{9}{4}+\dfrac{121}{4}=r^{2}$
$\Rightarrow \dfrac{130}{4}=r^{2}$
Thus, the equation of the required circle is
$ \begin{aligned} & (x-\dfrac{7}{2})^{2}+(y+\dfrac{5}{2})^{2}=\dfrac{130}{4} \\ & (\dfrac{2 x-7}{2})^{2}+(\dfrac{2 y+5}{2})^{2}=\dfrac{130}{4} \\ & 4 x^{2}-28 x+49+4 y^{2}+20 y+25=130 \\ & 4 x^{2}+4 y^{2}-28 x+20 y-56=0 \\ & 4(x^{2}+y^{2}-7 x+5 y-14)=0 \\ & x^{2}+y^{2}-7 x+5 y-14=0 \end{aligned} $
12. Find the equation of the circle with radius 5 whose centre lies on $x$-axis and passes through the point $(2,3)$.
Show Answer
Answer :
Let the equation of the required circle be $(x - h)^{2}+(y - k)^{2}=r^{2}$.
Since the radius of the circle is 5 and its centre lies on the $x$-axis, $k=0$ and $r=5$.
Now, the equation of the circle becomes $(x - h)^{2}+y^{2}=25$.
It is given that the circle passes through point $(2,3)$.
$\therefore(2-h)^{2}+3^{2}=25$
$\Rightarrow(2-h)^{2}=25-9$
$\Rightarrow(2-h)^{2}=16$
$\Rightarrow 2-h= \pm \sqrt{16}= \pm 4$
If $2-h=4$, then $h=-2$.
If $2-h=-4$, then $h=6$.
When $h=-2$ , the equation of the circle becomes
$(x+2)^{2}+y^{2}=25$
$x^{2}+4 x+4+y^{2}=25$
$x^{2}+y^{2}+4 x $ - ${21}=0$
When $h=6$, the equation of the circle becomes
$(x \text{ - 6 })^{2}+y^{2}=25$
$ x^2 - 12x + 36 +y^2 = 25 $
$x^{2}+y^{2} - 12 x+11=0$
13. Find the equation of the circle passing through $(0,0)$ and making intercepts $a$ and $b$ on the coordinate axes.
Show Answer
Answer :
Let the equation of the required circle be $(x - h)^{2}+(y \text{ - } k)^{2}=r^{2}$.
Since the circle passes through $(0,0)$,
$(0 \text{ - } h)^{2}+(0 - k)^{2}=r^{2}$
$\Rightarrow h^{2}+k^{2}=r^{2}$
The equation of the circle now becomes $(x \text{ - } h)^{2}+(y - k)^{2}=h^{2}+k^{2}$.
It is given that the circle makes intercepts $a$ and $b$ on the coordinate axes. This means that the circle passes through points $(a, 0)$ and $(0, b)$. Therefore,
$(a - h)^{2}+(0 - k)^{2}=h^{2}+k^{2}$.
$(0 - h)^{2}+(b - k)^{2}=h^{2}+k^{2}$.
From equation (1), we obtain
$a^{2} $ - $ 2 a h+h^{2}+k^{2}=h^{2}+k^{2}$
$\Rightarrow a^{2} - 2 a h=0$
$\Rightarrow a(a - 2 h)=0$
$\Rightarrow a=0$ or $(a - 2 h)=0$
However, $a \neq 0$; hence, $(a - 2 h)=0 \Rightarrow h=2$.
From equation (2), we obtain
$h^{2}+b^{2} - 2 b k+k^{2}=h^{2}+k^{2}$
$\Rightarrow b^{2} - 2 b k=0$
$\Rightarrow b(b - 2 k)=0$
$\Rightarrow b=0$ or $(b - 2 k)=0$
However, $b \neq 0$; hence, ( $b$ - $2 k)=0 \Rightarrow k=\dfrac{b}{2}$.
Thus, the equation of the required circle is
$ \begin{aligned} & (x-\dfrac{a}{2})^{2}+(y-\dfrac{b}{2})^{2}=(\dfrac{a}{2})^{2}+(\dfrac{b}{2})^{2} \\ & \Rightarrow(\dfrac{2 x-a}{2})^{2}+(\dfrac{2 y-b}{2})^{2}=\dfrac{a^{2}+b^{2}}{4} \\ & \Rightarrow 4 x^{2}-4 a x+a^{2}+4 y^{2}-4 b y+b^{2}=a^{2}+b^{2} \\ & \Rightarrow 4 x^{2}+4 y^{2}-4 a x-4 b y=0 \\ & \Rightarrow x^{2}+y^{2}-a x-b y=0 \end{aligned} $
14. Find the equation of a circle with centre $(2,2)$ and passes through the point $(4,5)$.
Show Answer
Answer :
The centre of the circle is given as $(h, k)=(2,2)$.
Since the circle passes through point $(4,5)$, the radius $(r)$ of the circle is the distance between the points $(2,2)$ and $(4$, 5).
$ \therefore r=\sqrt{(2-4)^{2}+(2-5)^{2}}=\sqrt{(-2)^{2}+(-3)^{2}}=\sqrt{4+9}=\sqrt{13} $
Thus, the equation of the circle is
$ \begin{aligned} & (x-h)^{2}+(y-k)^{2}=r^{2} \\ & (x-2)^{2}+(y-2)^{2}=(\sqrt{13})^{2} \\ & x^{2}-4 x+4+y^{2}-4 y+4=13 \\ & x^{2}+y^{2}-4 x-4 y-5=0 \end{aligned} $
15. Does the point $(-2.5,3.5)$ lie inside, outside or on the circle $x^{2}+y^{2}=25$ ?
Show Answer
Answer :
The equation of the given circle is $x^{2}+y^{2}=25$.
$x^{2}+y^{2}=25$
$\Rightarrow(x - 0)^{2}+(y - 0)^{2}=5^{2}$, which is of the form $(x - h)^{2}+(y - k)^{2}=r^{2}$, where $h=0, k=0$, and $r=5$.
$\therefore$ Centre $=(0,0)$ and radius $=5$
Distance between point (-2.5, 3.5) and centre $(0,0)$
$ \begin{aligned} & =\sqrt{(-2.5-0)^{2}+(3.5-0)^{2}} \\ & =\sqrt{6.25+12.25} \\ & =\sqrt{18.5} \\ & =4.3(\text{ approx. })<5 \end{aligned} $
Since the distance between point $(-2.5,3.5)$ and centre $(0,0)$ of the circle is less than the radius of the circle, point (-2.5, 3.5) lies inside the circle.
10.4 Parabola
Definition 2 A parabola is the set of all points in a plane that are equidistant from a fixed line and a fixed point (not on the line) in the plane.
The fixed line is called the directrix of the parabola and the fixed point $F$ is called the focus (Fig 10.13). (‘Para’ means ‘for’ and ‘bola’ means ’throwing’, i.e., the shape described when you throw a ball in the air).
Fig 10.13
Note - If the fixed point lies on the fixed line, then the set of points in the plane, which are equidistant from the fixed point and the fixed line is the straight line through the fixed point and perpendicular to the fixed line. We call this straight line as degenerate case of the parabola.
A line through the focus and perpendicular to the directrix is called the axis of the parabola. The point of intersection of parabola with the axis is called the vertex of the parabola (Fig10.14).
Fig10.14
10.4.1 Standard equations of parabola
The equation of a parabola is simplest if the vertex is at the origin and the axis of symmetry is along the $x$-axis or $y$-axis. The four possible such orientations of parabola are shown below in Fig10.15 (a) to (d).
(a)
(b)
$x^{2}=4 a y$
(c)
$x^{2}=-4 a y$
(d)
We will derive the equation for the parabola shown above in Fig 10.15 (a) with focus at $(a, 0) a>0$; and directricx $x=-a$ as below:
Let $F$ be the focus and $l$ the directrix. Let FM be perpendicular to the directrix and bisect FM at the point O. Produce MO to X. By the $(-a, y)$ B definition of parabola, the mid-point $O$ is on the parabola and is called the vertex of the parabola. Take $O$ as origin, $OX$ the $x$-axis and $OY$ perpendicular to it as the $y$-axis. Let the distance from the directrix to the focus be $2 a$. Then, the coordinates of the focus are $(a, 0)$, and the equation of the directrix is $x+a=0$ as in Fig10.16.
Fig $\mathbf{1 0 . 1 6}$
Let $P(x, y)$ be any point on the parabola such that
$$ PF=PB, \quad \quad\quad\quad\quad\quad\quad\quad\quad\ldots(1) $$
where $PB$ is perpendicular to $l$. The coordinates of $B$ are $(-a, y)$. By the distance formula, we have
$ PF=\sqrt{(x-a)^{2}+y^{2}} \text{ and } PB=\sqrt{(x+a)^{2}} $
Since $PF=PB$, we have
$ \sqrt{(x-a)^{2}+y^{2}}=\sqrt{(x+a)^{2}} $
i.e. $ \quad\quad\quad(x-a)^{2}+y^{2}=(x+a)^{2}$
or $\quad\quad\quad x^{2}-2 a x+a^{2}+y^{2}=x^{2}+2 a x+a^{2}$
or $\quad\quad\quad y^{2}=4 a x(a>0)$.
Hence, any point on the parabola satisfies
$ y^{2}=4 a x \quad \quad\quad\quad\quad\quad\quad\quad\quad\ldots(2) $
Conversely, let $P(x, y)$ satisfy the equation (2)
$ \begin{aligned} PF & =\sqrt{(x-a)^{2}+y^{2}} \quad=\sqrt{(x-a)^{2}+4 a x} \\ & =\sqrt{(x+a)^{2}}=PB \quad \quad\quad\quad\quad\quad\quad\quad\quad\ldots(3) \end{aligned} $
and so $P(x, y)$ lies on the parabola.
Thus, from (2) and (3) we have proved that the equation to the parabola with vertex at the origin, focus at $(a, 0)$ and directrix $x=-a$ is $y^{2}=4 a x$.
Discussion In equation (2), since $a>0, x$ can assume any positive value or zero but no negative value and the curve extends indefinitely far into the first and the fourth quadrants. The axis of the parabola is the positive $x$-axis.
Similarly, we can derive the equations of the parabolas in:
Fig 11.15 (b) as $y^{2}=-4 a x$,
Fig 11.15 (c) as $x^{2}=4 a y$,
Fig $11.15(d)$ as $x^{2}=-4 a y$,
These four equations are known as standard equations of parabolas.
Note - The standard equations of parabolas have focus on one of the coordinate axis; vertex at the origin and thereby the directrix is parallel to the other coordinate axis. However, the study of the equations of parabolas with focus at any point and any line as directrix is beyond the scope here.
From the standard equations of the parabolas, Fig10.15, we have the following observations:
1. Parabola is symmetric with respect to the axis of the parabola.If the equation has a $y^{2}$ term, then the axis of symmetry is along the $x$-axis and if the equation has an $x^{2}$ term, then the axis of symmetry is along the $y$-axis.
2. When the axis of symmetry is along the $x$-axis the parabola opens to the
(a) right if the coefficient of $x$ is positive,
(b) left if the coefficient of $x$ is negative.
3. When the axis of symmetry is along the $y$-axis the parabola opens
(c) upwards if the coefficient of $y$ is positive.
(d) downwards if the coefficient of $y$ is negative.
10.4.2 Latus rectum
Definition 3 Latus rectum of a parabola is a line segment perpendicular to the axis of the parabola, through the focus and whose end points lie on the parabola (Fig10.17).
Fig10.17
To find the Length of the latus rectum of the parabola $ y^{2}= 4 a x $ (Fig 10.18).
Fig10.18
By the definition of the parabola, $AF=AC$.
But $ \mathrm{AC}=\mathrm{FM}=2 a $
Hence $ \mathrm{AF}=2 a $
And since the parabola is symmetric with respect to $x$-axis $AF=FB$ and so
$AB=$ Length of the latus rectum $=4 a$.
Example 5 Find the coordinates of the focus, axis, the equation of the directrix and latus rectum of the parabola $y^{2}=8 x$.
Solution The given equation involves $y^{2}$, so the axis of symmetry is along the $x$-axis.
The coefficient of $x$ is positive so the parabola opens to the right. Comparing with the given equation $y^{2}=4 a x$, we find that $a=2$.
Thus, the focus of the parabola is $(2,0)$ and the equation of the directrix of the parabola is $x=-2$ (Fig 10.19).
Fig 10.19
Length of the latus rectum is $4 a=4 \times 2=8$.
Example 6 Find the equation of the parabola with focus $(2,0)$ and directrix $x=-2$.
Solution Since the focus $(2,0)$ lies on the $x$-axis, the $x$-axis itself is the axis of the parabola. Hence the equation of the parabola is of the form either $y^{2}=4 a x$ or $y^{2}=-4 a x$. Since the directrix is $x=-2$ and the focus is $(2,0)$, the parabola is to be of the form $y^{2}=4 a x$ with $a=2$. Hence the required equation is
$ y^{2}=4(2) x=8 x $
Example 7 Find the equation of the parabola with vertex at $(0,0)$ and focus at $(0,2)$.
Solution Since the vertex is at $(0,0)$ and the focus is at $(0,2)$ which lies on $y$-axis, the $y$-axis is the axis of the parabola. Therefore, equation of the parabola is of the form $x^{2}=4 a y$. thus, we have
$ x^{2}=4(2) y \text{, i.e., } x^{2}=8 y \text{. } $
Example 8 Find the equation of the parabola which is symmetric about the $y$-axis, and passes through the point $(2,-3)$.
Solution Since the parabola is symmetric about $y$-axis and has its vertex at the origin, the equation is of the form $x^{2}=4 a y$ or $x^{2}=-4 a y$, where the sign depends on whether the parabola opens upwards or downwards. But the parabola passes through $(2,-3)$ which lies in the fourth quadrant, it must open downwards. Thus the equation is of the form $x^{2}=-4 a y$.
Since the parabola passes through $(2,-3)$, we have
$ 2^{2}=-4 a(-3) \text{, i.e., } a=\frac{1}{3} $
Therefore, the equation of the parabola is
$ x^{2}=-4(\frac{1}{3}) y \text{, i.e., } 3 x^{2}=-4 y $
EXERCISE 10.2
In each of the following Exercises 1 to 6, find the coordinates of the focus, axis of the parabola, the equation of the directrix and the length of the latus rectum.
1. $y^{2}=12 x$
Show Answer
Answer :
The given equation is $y^{2}=12 x$.
Here, the coefficient of $x$ is positive. Hence, the parabola opens towards the right.
On comparing this equation with $y^{2}=4 a x$, we obtain
$4 a=12 \Rightarrow a=3$
$\therefore$ Coordinates of the focus $=(a, 0)=(3,0)$
Since the given equation involves $y^{2}$, the axis of the parabola is the $x$-axis.
Equation of direcctrix, $x=-a$ i.e., $x=-3$ i.e., $x+3=0$
Length of latus rectum $=4 a=4 \times 3=12$
2. $x^{2}=6 y$
Show Answer
Answer :
The given equation is $x^{2}=6 y$.
Here, the coefficient of $y$ is positive. Hence, the parabola opens upwards.
On comparing this equation with $x^{2}=4 a y$, we obtain
$4 a=6 \Rightarrow a=\dfrac{3}{2}$ $\therefore$ Coordinates of the focus $=(0, a)=(0, \dfrac{3}{2})$
Since the given equation involves $x^{2}$, the axis of the parabola is the $y$-axis.
Equation of directrix,
$ y=-a \text{ i.e., } y=-\dfrac{3}{2} $
Length of latus rectum $=4 a=6$
3. $y^{2}=-8 x$
Show Answer
Answer :
The given equation is $y^{2}=-8 x$.
Here, the coefficient of $x$ is negative. Hence, the parabola opens towards the left.
On comparing this equation with $y^{2}=-4 a x$, we obtain
$-4 a=-8 \Rightarrow a=2$
$\therefore$ Coordinates of the focus $=(-a, 0)=(-2,0)$
Since the given equation involves $y^{2}$, the axis of the parabola is the $x$-axis.
Equation of directrix, $x=$ a i.e., $x=2$
Length of latus rectum $=4 a=8$
4. $x^{2}=-16 y$
Show Answer
Answer :
The given equation is $x^{2}=-16 y$.
Here, the coefficient of $y$ is negative. Hence, the parabola opens downwards.
On comparing this equation with $x^{2}=-4 a y$, we obtain
$-4 a=-16 \Rightarrow a=4$
$\therefore$ Coordinates of the focus $=(0,-a)=(0,-4)$
Since the given equation involves $x^{2}$, the axis of the parabola is the $y$-axis.
Equation of directrix, $y=a$ i.e., $y=4$
Length of latus rectum $=4 a=16$
5. $y^{2}=10 x$
Show Answer
Answer :
The given equation is $y^{2}=10 x$.
Here, the coefficient of $x$ is positive. Hence, the parabola opens towards the right.
On comparing this equation with $y^{2}=4 a x$, we obtain
$4 a=10 \Rightarrow a=\dfrac{5}{2}$
$\therefore$ Coordinates of the focus $=(a, 0)$
$ =(\dfrac{5}{2}, 0) $
Since the given equation involves $y^{2}$, the axis of the parabola is the $x$-axis.
Equation of directrix,
$ x=-a \text{, i.e., } x=-\dfrac{5}{2} $
Length of latus rectum $=4 a=10$
6. $x^{2}=-9 y$
Show Answer
Answer :
The given equation is $x^{2}=-9 y$.
Here, the coefficient of $y$ is negative. Hence, the parabola opens downwards.
On comparing this equation with $x^{2}=4a y $ we obtain
$-4 a=-9 \Rightarrow a=\dfrac{9}{4}$
$\therefore$ Coordinates of the focus $=(0,-a)=(0,-\dfrac{9}{4})$
Since the given equation involves $x^{2}$, the axis of the parabola is the $y$-axis.
Equation of directrix,
$ y=a \text{, i.e., } y=\dfrac{9}{4} $
Length of latus rectum $=4 a=9$
In each of the Exercises 7 to 12, find the equation of the parabola that satisfies the given conditions:
7. Focus $(6,0)$; directrix $x=-6$
Show Answer
Answer :
Focus $(6,0)$; directrix, $x=-6$
Since the focus lies on the $x$-axis, the $x$-axis is the axis of the parabola.
Therefore, the equation of the parabola is either of the form $y^{2}=4 a x$ or
$y^{2}=-4 a x$.
It is also seen that the directrix, $x=-6$ is to the left of the $y$-axis, while the focus $(6,0)$ is to the right of the $y$-axis. Hence, the parabola is of the form $y^{2}=4 a x$.
Here, $a=6$
Thus, the equation of the parabola is $y^{2}=24 x$.
8. Vertex $(0,0)$; focus $(3,0)$
Show Answer
Answer :
Vertex $(0,0)$; focus $(3,0)$
Since the vertex of the parabola is $(0,0)$ and the focus lies on the positive $x$-axis, $x$-axis is the axis of the parabola, while the equation of the parabola is of the form $y^{2}=4 a x$.
Since the focus is $(3,0), a=3$.
Thus, the equation of the parabola is $y^{2}=4 \times 3 x $,
i.e., $y^{2}=12 x$
9. Focus $(0,-3)$; directrix $y=3$
Show Answer
Answer :
Focus $=(0,-3) ;$ directrix $y=3$
Sincethe focus lies on the $y$-axis, the $y$-axis is the axis of the parabola.
Therefore, the equation of the parabola is either of the form $x^{2}=4$ ay or $x^{2}=-4 a y$.
It is also seen that the directrix, $y=3$ is above the $x$-axis, while the focus
$(0,-3)$ is below the $x$-axis. Hence, the parabola is of the form $x^{2}=-4 a y$.
Here, $a=3$
Thus, the equation of the parabola is $x^{2}=-12 y$.
10. Vertex $(0,0)$; focus $(-2,0)$
Show Answer
Answer :
Vertex $(0,0)$ focus $(-2,0)$
Since the vertex of the parabola is $(0,0)$ and the focus lies on the negative $x$-axis, $x$-axis is the axis of the parabola, while the equation of the parabola is of the form $y^{2}=-4 a x$.
Since the focus is $(-2,0), a=2$.
Thus, the equation of the parabola is $y^{2}=-4(2) x$,i.e., $y^{2}=-8 x$
11. Vertex $(0,0)$ passing through $(2,3)$ and axis is along $x$-axis.
Show Answer
Answer :
Since the vertex is $(0,0)$ and the axis of the parabola isthe $x$-axis, the equation of the parabola is either of the form $y^{2}=4 a x$ or $y^{2}= - 4 a x$.
The parabola passes through point $(2,3)$, which lies in the first quadrant.
Therefore, the equation of the parabola is of the form $y^{2}=4 a x$, while point
$(2,3)$ must satisfy the equation $y^{2}=4 a x$.
$\therefore 3^{2}=4 a(2) \Rightarrow a=\dfrac{9}{8}$
Thus, the equation of the parabola is
$ \begin{aligned} & y^{2}=4(\dfrac{9}{8}) x \\ & y^{2}=\dfrac{9}{2} x \\ & 2 y^{2}=9 x \end{aligned} $
12. Vertex $(0,0)$, passing through $(5,2)$ and symmetric with respect to $y$-axis.
Show Answer
Answer :
Since the vertex is $(0,0)$ and the parabola is symmetric aboutthe $y$-axis, the equation of the parabola is either of the form $x^{2}=4$ ay or $x^{2}=- $4ay.
The parabola passes through point $(5,2)$, which lies in the first quadrant.
Therefore, the equation of the parabola is of the form $x^{2}=4 a y$, while point
$(5,2)$ must satisfy the equation $x^{2}=4 a y$.
$\therefore(5)^{2}=4 \times a \times 2 \Rightarrow 25=8 a \Rightarrow a=\dfrac{25}{8}$
Thus, the equation of the parabola is
$x^{2}=4(\dfrac{25}{8}) y$
$2 x^{2}=25 y$
10.5 Ellipse
Definition 4 An ellipse is the set of all points in a plane, the sum of whose distances from two fixed points in the plane is a constant.
The two fixed points are called the foci (plural of ‘focus’) of the ellipse (Fig10.20).
Fig10.20
Note - The constant which is the sum of the distances of a point on the ellipse from the two fixed points is always greater than the distance between the two fixed points is always greater than the distance between the two fixed points.
The mid point of the line segment joining the foci is called the centre of the ellipse. The line segment through the foci of the ellipse is called the major axis and the line segment through the centre and perpendicular to the major axis is called the minor axis. The end points of the major axis are called the vertices of the ellipse(Fig 10.21).
Fig 10.21
We denote the length of the major axis by $2 a$, the length of the minor axis by $2 b$ and the distance between the foci by $2 c$. Thus, the length of the semi major axis is $a$ and semi-minor axis is $b$ (Fig10.22).
Fig10.22
10.5.1 Relationship between semi-major axis, semi-minor axis and the distance of the focus from the center fo the ellipse (Fig 10.23)
Fig 10.23
Take a point $P$ at one end of the minor axis.
Sum of the distances from the point $P$ to the foci is
$F_1P + F_2P = F_1O + OP + F_2P$
(Since, $F_1P = F_1O + OP$)
$\quad \quad \quad \quad \quad = c + a +a - c = 2a$
Take a point Q at one end of the minor axis.
Sum of the distances from the point Q to the foci is
$F_1 P+F_2 Q=\sqrt{b^{2}+c^{2}}+\sqrt{b^{2}+c^{2}}=2 \sqrt{b^{2}+c^{2}}$
Since both $P$ and $Q$ lies on the ellipse.
By the definition of ellipse, we have
$ \begin{aligned} 2 \sqrt{b^{2}+c^{2}} & =2 a, \text{ i.e., } \quad a=\sqrt{b^{2}+c^{2}} \\ \text{or} \quad \quad \quad \quad a^{2} & =b^{2}+c^{2}, \text{ i.e., } c=\sqrt{a^{2}-b^{2}} \end{aligned} $
10.5.2 Eccentricity
Definition 5 The eccentricity of an ellipse is the ratio of the distances from the centre of the ellipse to one of the foci and to one of the vertices of the ellipse (eccentricity is denoted by $e$ ) i.e., $e=\frac{c}{a}$.
Then since the focus is at a distance of $c$ from the centre, in terms of the eccentricity the focus is at a distance of ae from the centre.
10.5.3 Standard equations of an ellipse
The equation of an ellipse is simplest if the centre of the ellipse is at the origin and the foci are on the $x$-axis or $y$-axis. The two such possible orientations are shown in Fig 10.24.
We will derive the equation for the ellipse shown above in Fig 10.24 (a) with foci on the $x$-axis.
Let $F_1$ and $F_2$ be the foci and $O$ be the mid-point of the line segment $F_1 F_2$. Let $O$ be the origin and the line from $O$ through $F_2$ be the positive $x$-axis and that through $F_1$ as the negative $x$-axis. Let, the line through $O$ perpendicular to the $x$-axis be the $y$-axis. Let the coordinates of $F_1$ be $(-c, 0)$ and $F_2$ be $(c, 0)$ (Fig 10.25).
fig 10.25
Let $P(x, y)$ be any point on the ellipse such that the sum of the distances from $P$ to the two foci be $2 a$ so given
$ PF_1+PF_2=2 a . \quad \quad \quad \quad \quad \quad \quad \ldots (1) $
Using the distance formula, we have
$ \begin{aligned} & \qquad \sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}}=2 a \\ & \text{ i.e., } \sqrt{(x+c)^{2}+y^{2}}=2 a-\sqrt{(x-c)^{2}+y^{2}} \end{aligned} $
$ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $
Squaring both sides, we get
$ (x+c)^{2}+y^{2}=4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}}+(x-c)^{2}+y^{2} $
which on simplification gives
$ \sqrt{(x-c)^{2}+y^{2}}=a-\frac{c}{a} x $
Squaring again and simplifying, we get
$ \begin{aligned} \frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}-c^{2}}=1 & \\ \text{ i.e., } \quad \quad\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 & (\text{ Since } c^{2}=a^{2}-b^{2}) \end{aligned} $
Hence any point on the ellipse satisfies
$$ \begin{equation*} \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{2} \end{equation*} $$
Conversely, let $P(x, y)$ satisfy the equation (2) with $0<c<a$. Then
$$ y^{2}=b^{2}(1-\frac{x^{2}}{a^{2}}) $$
Therefore, $PF_1=\sqrt{(x+c)^{2}+y^{2}}$
$ \begin{aligned} & =\sqrt{(x+c)^{2}+b^{2}(\frac{a^{2}-x^{2}}{a^{2}})} \\ & =\sqrt{(x+c)^{2}+(a^{2}-c^{2})(\frac{a^{2}-x^{2}}{a^{2}})}(\text{ since } b^{2}=a^{2}-c^{2}) \\ & =\sqrt{(a+\frac{c x}{a})^{2}}=a+\frac{c}{a} x \end{aligned} $
Similarly $\quad PF_2=a-\frac{c}{a} x$
Hence $\quad PF_1+PF_2=a+\frac{c}{a} x+a-\frac{c}{a} x=2 a \quad \quad \quad \quad \quad \ldots(3)$
So, any point that satisfies $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, satisfies the geometric condition and so $P(x, y)$ lies on the ellipse.
Hence from (2) and (3), we proved that the equation of an ellipse with centre of the origin and major axis along the $x$-axis is
$ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $
Discussion From the equation of the ellipse obtained above, it follows that for every point $P(x, y)$ on the ellipse, we have
$ \frac{x^{2}}{a^{2}}=1-\frac{y^{2}}{b^{2}} \leq 1 \text{, i.e., } x^{2} \leq a^{2} \text{, so }-a \leq x \leq a \text{. } $
Therefore, the ellipse lies between the lines $x=-a$ and $x=a$ and touches these lines.
Similarly, the ellipse lies between the lines $y=-b$ and $y=b$ and touches these lines.
Similarly, we can derive the equation of the ellipse in Fig 10.24 (b) as $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$. These two equations are known as standard equations of the ellipses.
Note - The standard equations of ellipses have centre at the origin and the major and minor axis are coordinate axes. However, the study of the ellipses with centre at any other point, and any line through the centre as major and the minor axes passing through the centre and perpendicular to major axis are beyond the scope here.
From the standard equations of the ellipses (Fig10.24), we have the following observations:
1. Ellipse is symmetric with respect to both the coordinate axes since if $(x, y)$ is a point on the ellipse, then $(-x, y),(x,-y)$ and $(-x,-y)$ are also points on the ellipse.
2. The foci always lie on the major axis. The major axis can be determined by finding the intercepts on the axes of symmetry. That is, major axis is along the $x$-axis if the coefficient of $x^{2}$ has the larger denominator and it is along the $y$-axis if the coefficient of $y^{2}$ has the larger denominator.
10.5.4 Latus rectum
Definition 6 Latus rectum of an ellipse is a line segment perpendicular to the major axis through any of the foci and whose end points lie on the ellipse (Fig 10.26).
Fig 10.26
To find the length of the latus rectum of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Let the length of $AF_2$ be $l$.
Then the coordinates of $A$ are $(c, l)$,i.e., $(a e, l)$
Since A lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we have
$ \begin{aligned} & \frac{(a e)^{2}}{a^{2}}+\frac{l^{2}}{b^{2}}=1 \\ & \Rightarrow l^{2}=b^{2}(1-e^{2}) \\ & \text{But} \quad \quad \quad e^{2}=\frac{c^{2}}{a^{2}}=\frac{a^{2}-b^{2}}{a^{2}}=1-\frac{b^{2}}{a^{2}} \end{aligned} $
Therefore $ \quad \quad \quad l^{2}=\frac{b^{4}}{a^{2}}, \text{ i.e., } l=\frac{b^{2}}{a} $
Since the ellipse is symmetric with respect to $y$-axis (of course, it is symmetric w.r.t. both the coordinate axes), $AF_2=F_2 B$ and so length of the latus rectum is $\frac{2 b^{2}}{a}$.
Example 9 Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the latus rectum of the ellipse $ \frac{x^{2}}{25}+\frac{y^{2}}{9}=1 $
Solution Since denominator of $\frac{x^{2}}{25}$ is larger than the denominator of $\frac{y^{2}}{9}$, the major axis is along the $x$-axis. Comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we get
$ \begin{aligned} & a=5 \text{ and } b=3 . \text{ Also } \\ & c=\sqrt{a^{2}-b^{2}}=\sqrt{25-9}=4 \end{aligned} $
Therefore, the coordinates of the foci are $(-4,0)$ and $(4,0)$, vertices are $(-5,0)$ and $(5,0)$. Length of the major axis is 10 units length of the minor axis $2 b$ is 6 units and the eccentricity is $\frac{4}{5}$ and latus rectum is $\frac{2 b^{2}}{a}=\frac{18}{5}$.
Example 10 Find the coordinates of the foci, the vertices, the lengths of major and minor axes and the eccentricity of the ellipse $9 x^{2}+4 y^{2}=36$.
Solution The given equation of the ellipse can be written in standard form as
$$ \frac{x^{2}}{4}+\frac{y^{2}}{9}=1 $$
Since the denominator of $\frac{y^{2}}{9}$ is larger than the denominator of $\frac{x^{2}}{4}$, the major axis is along the $y$-axis. Comparing the given equation with the standard equation
$ \frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1, \text{ we have } b=2 \text{ and } a=3 $
Also $\quad c=\sqrt{a^{2}-b^{2}}=\sqrt{9-4}=\sqrt{5}$
and $\quad e=\frac{c}{a}=\frac{\sqrt{5}}{3}$
Hence the foci are $(0, \sqrt{5})$ and $(0,-\sqrt{5})$, vertices are $(0,3)$ and $(0,-3)$, length of the major axis is 6 units, the length of the minor axis is 4 units and the eccentricity of the ellipse is $\frac{\sqrt{5}}{3}$.
Example 11 Find the equation of the ellipse whose vertices are $( \pm 13,0)$ and foci are $( \pm 5,0)$.
Solution Since the vertices are on $x$-axis, the equation will be of the form
$ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \text{ where } a \text{ is the semi-major axis. } $
Given that $a=13, c= \pm 5$.
Therefore, from the relation $c^{2}=a^{2}-b^{2}$, we get
$ 25=169-b^{2} \text{, i.e., } b=12 $
Hence the equation of the ellipse is $\frac{x^{2}}{169}+\frac{y^{2}}{144}=1$.
Example 12 Find the equation of the ellipse, whose length of the major axis is 20 and foci are $(0, \pm 5)$.
Solution Since the foci are on $y$-axis, the major axis is along the $y$-axis. So, equation of the ellipse is of the form $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$.
Given that $ \quad \quad \quad \quad \quad a=\text{ semi-major axis }=\frac{20}{2}=10 $
and the relation
$$ \begin{aligned} & \quad \quad \quad \quad \quad c^{2}=a^{2}-b^{2} \text{ gives } \\ & \quad \quad \quad \quad \quad 5^{2}=10^{2}-b^{2} \text{ i.e., } b^{2}=75 \end{aligned} $$
Therefore, the equation of the ellipse is
$ \frac{x^{2}}{75}+\frac{y^{2}}{100}=1 $
Example 13 Find the equation of the ellipse, with major axis along the $x$-axis and passing through the points $(4,3)$ and $(-1,4)$.
Solution The standard form of the ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Since the points $(4,3)$ and $(-1,4)$ lie on the ellipse, we have
$ \begin{aligned} & \quad \quad \quad \quad \frac{16}{a^{2}}+\frac{9}{b^{2}}=1 \quad \quad \quad \quad \quad \ldots (1) \\ & \text{and }\quad \quad \frac{1}{a^{2}}+\frac{16}{b^{2}}=1 \quad \quad \quad \quad \quad \ldots (2) \end{aligned} $
Solving equations (1) and (2), we find that $a^{2}=\frac{247}{7}$ and $b^{2}=\frac{247}{15}$.
Hence the required equation is
$ \frac{x^{2}}{(\frac{247}{7})}+\frac{y^{2}}{\frac{247}{15}}=1 \text{, i.e., } 7 x^{2}+15 y^{2}=247 $
EXERCISE 10.3
In each of the Exercises 1 to 9, find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
1. $\dfrac{x^{2}}{36}+\dfrac{y^{2}}{16}=1$
Show Answer
Answer :
The given equation is $\dfrac{x^{2}}{36}+\dfrac{y^{2}}{16}=1$.
Here, the denominator of $\dfrac{x^{2}}{36}$ is greater than the denominator of $\dfrac{y^{2}}{16}$.
Therefore, the major axis is along the $x$-axis, while the minor axis is along the $y$-axis.
On comparing the given equation with $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1$, we obtain $a=6$ and $b=4$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{36-16}=\sqrt{20}=2 \sqrt{5}$
Therefore,
The coordinates of the foci are $(2 \sqrt{5}, 0)$ and $(-2 \sqrt{5}, 0)$.
The coordinates of the vertices are $(6,0)$ and ( $-6,0$)
Length of major axis $=2 a=12$
Length of minor axis $=2 b=8$
Eccentricity, $e=\dfrac{c}{a}=\dfrac{2 \sqrt{5}}{6}=\dfrac{\sqrt{5}}{3}$
Length of latus rectum $=\dfrac{2 b^{2}}{a}=\dfrac{2 \times 16}{6}=\dfrac{16}{3}$
2. $\dfrac{x^{2}}{4}+\dfrac{y^{2}}{25}=1$
Show Answer
Answer :
The given equation is $\dfrac{x^{2}}{4}+\dfrac{y^{2}}{25}=1$ or $\dfrac{x^{2}}{2^{2}}+\dfrac{y^{2}}{5^{2}}=1$
Here, the denominator of $\dfrac{y^{2}}{25}$ is greater than the denominator of $\dfrac{x^{2}}{4}$.
Therefore, the major axis is along the $y$-axis, while the minor axis is along the $x$-axis.
On comparing the given equation with $\dfrac{x^{2}}{b^{2}}+\dfrac{y^{2}}{a^{2}}=1$, we obtain $b=2$ and $a=5$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{25-4}=\sqrt{21}$
Therefore,
The coordinates of the foci are $(0, \sqrt{21})$ and $(0,-\sqrt{21})$.
The coordinates of the vertices are $(0,5)$ and $(0, - $ 5$)$
Length of major axis $=2 a=10$
Length of minor axis $=2 b=4$
Eccentricity, $e=\dfrac{c}{a}=\dfrac{\sqrt{21}}{5}$
Length of latus rectum $=\dfrac{2 b^{2}}{a}=\dfrac{2 \times 4}{5}=\dfrac{8}{5}$
3. $\dfrac{x^{2}}{16}+\dfrac{y^{2}}{9}=1$
Show Answer
Answer :
The given equation is $\dfrac{x^{2}}{16}+\dfrac{y^{2}}{9}=1$ or $\dfrac{x^{2}}{4^{2}}+\dfrac{y^{2}}{3^{2}}=1$.
Here, the denominator of $\dfrac{x^{2}}{16}$ is greater than the denominator of $\dfrac{y^{2}}{9}$.
Therefore, the major axis is along the $x$-axis, while the minor axis is along the $y$-axis.
On comparing the given equation with $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1$, we obtain $a=4$ and $b=3$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{16-9}=\sqrt{7}$
Therefore,
The coordinates of the foci are $( \pm \sqrt{7}, 0)$.
The coordinates of the vertices are $( \pm 4,0)$.
Length of major axis $=2 a=8$
Length of minor axis $=2 b=6$
Eccentricity, $e=\dfrac{c}{a}=\dfrac{\sqrt{7}}{4}$
Length of latus rectum $=\dfrac{2 b^{2}}{a}=\dfrac{2 \times 9}{4}=\dfrac{9}{2}$
4. $\dfrac{x^{2}}{25}+\dfrac{y^{2}}{100}=1$
Show Answer
Answer :
The given equation is $\dfrac{x^{2}}{25}+\dfrac{y^{2}}{100}=1$ or $\dfrac{x^{2}}{5^{2}}+\dfrac{y^{2}}{10^{2}}=1$.
Here, the denominator of $\dfrac{y^{2}}{100}$ is greater than the denominator of $\dfrac{x^{2}}{25}$.
Therefore, the major axis is along the $y$-axis, while the minor axis is along the $x$-axis.
On comparing the given equation with $\dfrac{x^{2}}{b^{2}}+\dfrac{y^{2}}{a^{2}}=1$, we obtain $b=5$ and $a=10$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{100-25}=\sqrt{75}=5 \sqrt{3}$
Therefore,
The coordinates of the foci are $(0, \pm 5 \sqrt{3})$.
The coordinates of the vertices are $(0, \pm 10)$.
Length of major axis $=2 a=20$
Length of minor axis $=2 b=10$
Eccentricity, $e=\dfrac{c}{a}=\dfrac{5 \sqrt{3}}{10}=\dfrac{\sqrt{3}}{2}$
Length of latus rectum $=\dfrac{2 b^{2}}{a}=\dfrac{2 \times 25}{10}=5$
5. $\dfrac{x^{2}}{49}+\dfrac{y^{2}}{36}=1$
Show Answer
Answer :
Thegiven equation is $\dfrac{x^{2}}{49}+\dfrac{y^{2}}{36}=1$ or $\dfrac{x^{2}}{7^{2}}+\dfrac{y^{2}}{6^{2}}=1$.
Here, the denominator of $\dfrac{x^{2}}{49}$ is greater than the denominator of $\dfrac{y^{2}}{36}$.
Therefore, the major axis is along the $x$-axis, while the minor axis is along the $y$-axis.
On comparing the given equation with $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1$, we obtain $a=7$ and $b=6$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{49-36}=\sqrt{13}$
Therefore,
The coordinates of the foci are $( \pm \sqrt{13}, 0)$.
The coordinates of the vertices are $( \pm 7,0)$.
Length of major axis $=2 a=14$
Length of minor axis $=2 b=12$
Eccentricity, $e=\dfrac{c}{a}=\dfrac{\sqrt{13}}{7}$
Length of latus rectum $=\dfrac{2 b^{2}}{a}=\dfrac{2 \times 36}{7}=\dfrac{72}{7}$
6. $\dfrac{x^{2}}{100}+\dfrac{y^{2}}{400}=1$
Show Answer
Answer :
The given equation is $\dfrac{x^{2}}{100}+\dfrac{y^{2}}{400}=1$ or $\dfrac{x^{2}}{10^{2}}+\dfrac{y^{2}}{20^{2}}=1$.
Here, the denominator of $\dfrac{y^{2}}{400}$ is greater than the denominator of $\dfrac{x^{2}}{100}$.
Therefore, the major axis is along the $y$-axis, while the minor axis is along the $x$-axis.
On comparing the given equation with $\dfrac{x^{2}}{b^{2}}+\dfrac{y^{2}}{a^{2}}=1$, we obtain $b=10$ and $a=20$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{400-100}=\sqrt{300}=10 \sqrt{3}$
Therefore,
The coordinates of the foci are $(0, \pm 10 \sqrt{3})$.
The coordinates of the vertices are $(0, \pm 20)$
Length of major axis $=2 a=40$
Length of minor axis $=2 b=20$
Eccentricity, $e=\dfrac{c}{a}=\dfrac{10 \sqrt{3}}{20}=\dfrac{\sqrt{3}}{2}$
Length of latus rectum $=\dfrac{2 b^{2}}{a}=\dfrac{2 \times 100}{20}=10$
7. $36 x^{2}+4 y^{2}=144$
Show Answer
Answer :
The given equation is $36 x^{2}+4 y^{2}=144$.
It can be written as
$36 x^{2}+4 y^{2}=144$
Or, $\dfrac{x^{2}}{4}+\dfrac{y^{2}}{36}=1$
Or, $\dfrac{x^{2}}{2^{2}}+\dfrac{y^{2}}{6^{2}}=1$
Here, the denominator of $\dfrac{y^{2}}{6^{2}}$ is greater than the denominator of $\dfrac{x^{2}}{2^{2}}$.
Therefore, the major axis is along the $y$-axis, while the minor axis is along the $x$-axis.
On comparing equation (1) with $\dfrac{x^{2}}{b^{2}}+\dfrac{y^{2}}{a^{2}}=1$, we obtain $b=2$ and $a=6$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{36-4}=\sqrt{32}=4 \sqrt{2}$
Therefore,
The coordinates of the foci are $(0, \pm 4 \sqrt{2})$.
The coordinates of the vertices are $(0, \pm 6)$.
Length of major axis $=2 a=12$
Length of minor axis $=2 b=4$
Eccentricity, $e=\dfrac{c}{a}=\dfrac{4 \sqrt{2}}{6}=\dfrac{2 \sqrt{2}}{3}$
Length of latus rectum $=\dfrac{2 b^{2}}{a}=\dfrac{2 \times 4}{6}=\dfrac{4}{3}$
8. $16 x^{2}+y^{2}=16$
Show Answer
Answer :
The given equation is $16 x^{2}+y^{2}=16$.
It can be written as
$16 x^{2}+y^{2}=16$
Or, $\dfrac{x^{2}}{1}+\dfrac{y^{2}}{16}=1$
Or, $\dfrac{x^{2}}{1^{2}}+\dfrac{y^{2}}{4^{2}}=1$
Here, the denominator of $\dfrac{y^{2}}{4^{2}}$ is greater than the denominator of $\dfrac{x^{2}}{1^{2}}$.
Therefore, the major axis is along the $y$-axis, while the minor axis is along the $x$-axis.
On comparing equation (1) with $\dfrac{x^{2}}{b^{2}}+\dfrac{y^{2}}{a^{2}}=1$, we obtain $b=1$ and $a=4$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{16-1}=\sqrt{15}$
Therefore,
The coordinates of the foci are $(0, \pm \sqrt{15})$.
The coordinates of the vertices are $(0, \pm 4)$.
Length of major axis $=2 a=8$
Length of minor axis $=2 b=2$
Eccentricity, $e=\dfrac{c}{a}=\dfrac{\sqrt{15}}{4}$
Length of latus rectum
$ =\dfrac{2 b^{2}}{a}=\dfrac{2 \times 1}{4}=\dfrac{1}{2} $
9. $4 x^{2}+9 y^{2}=36$
Show Answer
Answer :
The given equation is $4 x^{2}+9 y^{2}=36$.
It can be written as
$4 x^{2}+9 y^{2}=36$
Or, $\dfrac{x^{2}}{9}+\dfrac{y^{2}}{4}=1$
Or, $\dfrac{x^{2}}{3^{2}}+\dfrac{y^{2}}{2^{2}}=1$
Here, the denominator of $\dfrac{x^{2}}{3^{2}}$ is greater than the denominator of $\dfrac{y^{2}}{2^{2}}$.
Therefore, the major axis is along the $x$-axis, while the minor axis is along the $y$-axis.
On comparing the given equation with $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1$, we obtain $a=3$ and $b=2$.
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{9-4}=\sqrt{5}$
Therefore,
The coordinates of the foci are $( \pm \sqrt{5}, 0)$.
The coordinates of the vertices are $( \pm 3,0)$.
Length of major axis $=2 a=6$
Length of minor axis $=2 b=4$
Eccentricity, $e=\dfrac{c}{a}=\dfrac{\sqrt{5}}{3}$
Length of latus rectum
$ =\dfrac{2 b^{2}}{a}=\dfrac{2 \times 4}{3}=\dfrac{8}{3} $
In each of the following Exercises 10 to 20, find the equation for the ellipse that satisfies the given conditions:
10. Vertices $( \pm 5,0)$, foci $( \pm 4,0)$
Show Answer
Answer :
Vertices $( \pm 5,0)$, foci $( \pm 4,0)$
Here, the vertices are on the $x$-axis.
Therefore, the equation of the ellipse will be of the form $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1$, where $a$ is the semi-major axis.
Accordingly, $a=5$ and $c=4$.
It is known that $a^{2}=b^{2}+c^{2}$.
$\therefore 5^{2}=b^{2}+4^{2}$
$\Rightarrow 25=b^{2}+16$
$\Rightarrow b^{2}=25-16$
$\Rightarrow b=\sqrt{9}=3$
Thus, the equation of the ellipse is $\dfrac{x^{2}}{5^{2}}+\dfrac{y^{2}}{3^{2}}=1$ or $\dfrac{x^{2}}{25}+\dfrac{y^{2}}{9}=1$.
11. Vertices $(0, \pm 13)$, foci $(0, \pm 5)$
Show Answer
Answer :
Vertices $(0, \pm 13)$, foci $(0, \pm 5)$
Here, the vertices are on the $y$-axis.
Therefore, the equation of the ellipse will be of the form $\dfrac{x^{2}}{b^{2}}+\dfrac{y^{2}}{a^{2}}=1$, where $a$ is the semi-major axis.
Accordingly, $a=13$ and $c=5$.
It is known that $a^{2}=b^{2}+c^{2}$.
$\therefore 13^{2}=b^{2}+5^{2}$
$\Rightarrow 169=b^{2}+25$
$\Rightarrow b^{2}=169-25$
$\Rightarrow b=\sqrt{144}=12$
Thus, the equation of the ellipse is $\dfrac{x^{2}}{12^{2}}+\dfrac{y^{2}}{13^{2}}=1$ or $\dfrac{x^{2}}{144}+\dfrac{y^{2}}{169}=1$
12. Vertices $( \pm 6,0)$, foci $( \pm 4,0)$
Show Answer
Answer :
Vertices $( \pm 6,0)$, foci $( \pm 4,0)$
Here, the vertices are on the $x$-axis.
Therefore, the equation of the ellipse will be of the form $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1$, where $a$ is the semi-major axis.
Accordingly, $a=6, c=4$.
It is known that $a^{2}=b^{2}+c^{2}$.
$\therefore 6^{2}=b^{2}+4^{2}$
$\Rightarrow 36=b^{2}+16$
$\Rightarrow b^{2}=36-16$
$\Rightarrow b=\sqrt{20}$
Thus, the equation of the ellipse is
$ \dfrac{x^{2}}{6^{2}}+\dfrac{y^{2}}{(\sqrt{20})^{2}}=1 \text{ or } \dfrac{x^{2}}{36}+\dfrac{y^{2}}{20}=1 $
13. Ends of major axis $( \pm 3,0)$, ends of minor axis $(0, \pm 2)$
Show Answer
Answer :
Ends of major axis $( \pm 3,0)$, ends of minor axis $(0, \pm 2$ )
Here, the major axis is along the $x$-axis.
Therefore, the equation of the ellipse will be of the form $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1$, where $a$ is the semi-major axis.
Accordingly, $a=3$ and $b=2$.
Thus, the equation of the ellipse is $\dfrac{x^{2}}{3^{2}}+\dfrac{y^{2}}{2^{2}}=1$ i.e., $\dfrac{x^{2}}{9}+\dfrac{y^{2}}{4}=1$.
14. Ends of major axis $(0, \pm \sqrt{5})$, ends of minor axis $( \pm 1,0)$
Show Answer
Answer :
Ends of major axis $(0, \pm \sqrt{5})$, ends of minor axis $( \pm 1,0)$
Here, the major axis is along the $y$-axis.
Therefore, the equation of the ellipse will be of the form $\dfrac{x^{2}}{b^{2}}+\dfrac{y^{2}}{a^{2}}=1$, where $a$ is the semi-major axis.
Accordingly, $a=\sqrt{5}$ and $b=1$.
Thus, the equation of the ellipse is
$ \dfrac{x^{2}}{1^{2}}+\dfrac{y^{2}}{(\sqrt{5})^{2}}=1 \text{ or } \dfrac{x^{2}}{1}+\dfrac{y^{2}}{5}=1 $
15. Length of major axis 26 , foci $( \pm 5,0)$
Show Answer
Answer :
Length of major axis $=26$; foci $=( \pm 5,0)$.
Since the foci are on the $x$-axis, the major axis is along the $x$-axis.
Therefore, the equation of the ellipse will be of the form $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1$, where $a$ is the semi-major axis.
Accordingly, $2 a=26 \Rightarrow a=13$ and $c=5$.
It is known that $a^{2}=b^{2}+c^{2}$.
$\therefore 13^{2}=b^{2}+5^{2}$
$\Rightarrow 169=b^{2}+25$
$\Rightarrow b^{2}=169-25$
$\Rightarrow b=\sqrt{144}=12$
Thus, the equation of the ellipse is $\dfrac{x^{2}}{13^{2}}+\dfrac{y^{2}}{12^{2}}=1$ or $\dfrac{x^{2}}{169}+\dfrac{y^{2}}{144}=1$
16. Length of minor axis 16 , foci $(0, \pm 6)$.
Show Answer
Answer :
Length of minor axis $=16$; foci $=(0, \pm 6)$.
Since the foci are on the $y$-axis, the major axis is along the $y$-axis.
Therefore, the equation of the ellipse will be of the form $\dfrac{x^{2}}{b^{2}}+\dfrac{y^{2}}{a^{2}}=1$, where $a$ is the semi-major axis.
Accordingly, $2 b=16 \Rightarrow b=8$ and $c=6$.
It is known that $a^{2}=b^{2}+c^{2}$.
$\therefore a^{2}=8^{2}+6^{2}=64+36=100$
$\Rightarrow a=\sqrt{100}=10$
Thus, the equation of the ellipse is $\dfrac{x^{2}}{8^{2}}+\dfrac{y^{2}}{10^{2}}=1$ or $\dfrac{x^{2}}{64}+\dfrac{y^{2}}{100}=1$.
17. Foci $( \pm 3,0), a=4$
Show Answer
Answer :
Foci $ ( \pm 3,0), a=4$
Since the foci are on the $x$-axis, the major axis is along the $x$-axis.
Therefore, the equation of the ellipse will be of the form $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1$, where $a$ is the semi-major axis.
Accordingly, $c=3$ and $a=4$.
It is known that $a^{2}=b^{2}+c^{2}$.
$\therefore 4^{2}=b^{2}+3^{2}$
$\Rightarrow 16=b^{2}+9$
$\Rightarrow b^{2}=16-9=7$
Thus, the equation of the ellipse is $\dfrac{x^{2}}{16}+\dfrac{y^{2}}{7}=1$
18. $b=3, c=4$, centre at the origin; foci on the $x$ axis.
Show Answer
Answer :
It is given that $b=3, c=4$, centre at the origin; foci on the $x$ axis.
Since the foci are on the $x$-axis, the major axis is along the $x$-axis.
Therefore, the equation of the ellipse will be of the form $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1$, where $a$ is the semi-major axis.
Accordingly, $b=3, c=4$.
It is known that $a^{2}=b^{2}+c^{2}$.
$\therefore a^{2}=3^{2}+4^{2}=9+16=25$
$\Rightarrow a=5$
Thus, the equation of the ellipse is $\dfrac{x^{2}}{5^{2}}+\dfrac{y^{2}}{3^{2}}=1$ or $\dfrac{x^{2}}{25}+\dfrac{y^{2}}{9}=1$.
19. Centre at $(0,0)$, major axis on the $y$-axis and passes through the points $(3,2)$ and $(1,6)$.
Show Answer
Answer :
Since the centre is at $(0,0)$ and the major axis is on the $y$-axis, the equation of the ellipse will be of the form
$\dfrac{x^{2}}{b^{2}}+\dfrac{y^{2}}{a^{2}}=1$
Where, $a$ is the semi-major axis
The ellipse passes through points $(3,2)$ and $(1,6)$. Hence,
$$ \begin{align*} & \dfrac{9}{b^{2}}+\dfrac{4}{a^{2}}=1 \tag{2}\\ & \dfrac{1}{b^{2}}+\dfrac{36}{a^{2}}=1 \tag{3} \end{align*} $$
On solving equations (2) and (3), we obtain $b^{2}=10$ and $a^{2}=40$.
Thus, the equation of the ellipse is $\dfrac{x^{2}}{10}+\dfrac{y^{2}}{40}=1$ or $4 x^{2}+y^{2}=40$
20. Major axis on the $x$-axis and passes through the points $(4,3)$ and $(6,2)$.
Show Answer
Answer :
Since the major axis is on the $x$-axis, the equation of the ellipse will be of the form
$\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1$
Where, $a$ is the semi-major axis
The ellipse passes through points $(4,3)$ and $(6,2)$. Hence,
$$ \begin{align*} & \dfrac{16}{a^{2}}+\dfrac{9}{b^{2}}=1 \tag{2}\\ & \dfrac{36}{a^{2}}+\dfrac{4}{b^{2}}=1 \tag{3} \end{align*} $$
On solving equations (2) and (3), we obtain $a^{2}=52$ and $b^{2}=13$.
Thus, the equation of the ellipse is
$ \dfrac{x^{2}}{52}+\dfrac{y^{2}}{13}=1 \text{ or } x^{2}+4 y^{2}=52 $
10.6 Hyperbola
Definition 7 A hyperbola is the set of all points in a plane, the difference of whose distances from two fixed points in the plane is a constant.
The term “difference” that is used in the definition means the distance to the farther point minus the distance to the closer point. The two fixed points are called the foci of the hyperbola. The mid-point of the line segment joining the foci is called the centre of the hyperbola. The line through the foci is called the transverse axis and the line through the centre and perpendicular to the transverse axis is called the conjugate axis. The points at which the hyperbola intersects the transverse axis are called the vertices of the hyperbola (Fig 10.27).
Fig 10.27
We denote the distance between the two foci by $2 c$, the distance between two vertices (the length of the transverse axis) by $2 a$ and we define the quantity $b$ as
$b=\sqrt{c^{2}-a^{2}}$
Also $2 b$ is the length of the conjugate axis (Fig 10.28).
Fig 10.28
To find the constant $P_1 F_2-P_1 F_1$ :
By taking the point $P$ at $A$ and $B$ in the Fig 10.28, we have
$BF_1-BF_2=AF_2-AF_1$ (by the definition of the hyperbola)
$BA+AF_1-BF_2=AB+BF_2-AF_1$
i.e., $AF_1=BF_2$
So that, $BF_1-BF_2=BA+AF_1-BF_2=BA=2 a$
10.6.1 Eccentricity
Definition 8 Just like an ellipse, the ratio $e=\frac{c}{a}$ is called the eccentricity of the hyperbola. Since $c \geq a$, the eccentricity is never less than one. In terms of the eccentricity, the foci are at a distance of ae from the centre.
10.6.2 Standard equation of Hyperbola
The equation of a hyperbola is simplest if the centre of the hyperbola is at the origin and the foci are on the $x$-axis or $y$-axis. The two such possible orientations are shown in Fig10.29.
We will derive the equation for the hyperbola shown in Fig 10.29(a) with foci on the $x$-axis.
Let $F_1$ and $F_2$ be the foci and $O$ be the mid-point of the line segment $F_1 F_2$. Let $O$ be the origin and the line through $O$ through $F_2$ be the positive $x$-axis and that through $F_1$ as the negative $x$-axis. The line through $O$ perpendicular to the $x$-axis be the $y$-axis. Let the coordinates of $F_1$ be $\mathbf X^{\prime}$ $(-c, 0)$ and $F_2$ be $(c, 0)$ (Fig 10.30).
Fig10.30
Let $P(x, y)$ be any point on the hyperbola such that the difference of the distances from $P$ to the farther point minus the closer point be $2 a$. So given, $PF_1-PF_2=2 a$
Using the distance formula, we have
$ \begin{aligned} & \quad \quad \quad \quad \sqrt{(x+c)^{2}+y^{2}}-\sqrt{(x-c)^{2}+y^{2}}=2 a \\ &\text{i.e., } \quad \quad \quad \sqrt{(x+c)^{2}+y^{2}}=2 a+\sqrt{(x-c)^{2}+y^{2}} \end{aligned} $
Squaring both side, we get
$ (x+c)^{2}+y^{2}=4 a^{2}+4 a \quad \sqrt{(x-c)^{2}+y^{2}}+(x-c)^{2}+y^{2} $
and on simplifying, we get
$ \frac{c x}{a}-a=\sqrt{(x-c)^{2}+y^{2}} $
On squaring again and further simplifying, we get
$ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{c^{2}-a^{2}}=1 $
i.e., $\quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad$ (Since $c^{2}-a^{2}=b^{2}$ )
Hence any point on the hyperbola satisfies $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Conversely, let $P(x, y)$ satisfy the above equation with $0<a<c$. Then
$ y^{2}=b^{2}(\frac{x^{2}-a^{2}}{a^{2}}) $
Therefore,
$ \begin{aligned} PF_1 & =+\sqrt{(x+c)^{2}+y^{2}} \\ & =+\sqrt{(x+c)^{2}+b^{2}(\frac{x^{2}-a^{2}}{a^{2}})}=a+\frac{c}{a} x \end{aligned} $
Similarly, $\quad PF_2=a-\frac{a}{c} x$
In hyperbola $c>a$; and since $P$ is to the right of the line $x=a, x>a, \frac{c}{a} x>a$. Therefore,
$ a-\frac{c}{a} x \text{ becomes negative. Thus, } PF_2=\frac{c}{a} x-a \text{. } $
Therefore $ \quad \quad \quad \quad PF_1-PF_2=a+\frac{c}{a} x-\frac{c x}{a}+a=2 a $
Also, note that if $P$ is to the left of the line $x=-a$, then
$ PF_1=-(a+\frac{c}{a} x), PF_2=a-\frac{c}{a} x $
In that case $PF_2-PF_1=2 a$. So, any point that satisfies $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, lies on the hyperbola.
Thus, we proved that the equation of hyperbola with origin $(0,0)$ and transverse axis along $x$-axis is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
Note - A hyperbola in which $a=b$ is called an equilateral hyperbola.
Discussion From the equation of the hyperbola we have obtained, it follows that, we have for every point $(x, y)$ on the hyperbola, $\frac{x^{2}}{a^{2}}=1+\frac{y^{2}}{b^{2}} \geq 1$.
i.e, $|\frac{x}{a}| \geq 1$, i.e., $x \leq-a$ or $x \geq a$. Therefore, no portion of the curve lies between the lines $x=+a$ and $x=-a$, (i.e. no real intercept on the conjugate axis).
Similarly, we can derive the equation of the hyperbola in Fig 11.31 (b) as $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$ These two equations are known as the standard equations of hyperbolas.
Note - The standard equations of hyperbolas have transverse and conjugate axes as the coordinate axes and the centre at the origin. However, there are hyperbolas with any two perpendicular lines as transverse and conjugate axes, but the study of such cases will be dealt in higher classes.
From the standard equations of hyperbolas (Fig10.27), we have the following observations:
1. Hyperbola is symmetric with respect to both the axes, since if $(x, y)$ is a point on the hyperbola, then $(-x, y),(x,-y)$ and $(-x,-y)$ are also points on the hyperbola.
2. The foci are always on the transverse axis. It is the positive term whose denominator gives the transverse axis. For example, $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ has transverse axis along $x$-axis of length 6 , while $\frac{y^{2}}{25}-\frac{x^{2}}{16}=1$ has transverse axis along y-axis of length 10 .
10.6.3 Latus rectum
Definition 9 Latus rectum of hyperbola is a line segment perpendicular to the transverse axis through any of the foci and whose end points lie on the hyperbola.
As in ellipse, it is easy to show that the length of the latus rectum in hyperbola is $\frac{2 b^{2}}{a}$.
Example 14 Find the coordinates of the foci and the vertices, the eccentricity,the length of the latus rectum of the hyperbolas:
(i) $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$, (ii) $y^{2}-16 x^{2}=16$
Solution (i) Comparing the equation $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ with the standard equation
$ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $
Here, $a=3, b=4$ and $c=\sqrt{a^{2}+b^{2}}=\sqrt{9+16}=5$
Therefore, the coordinates of the foci are $( \pm 5,0)$ and that of vertices are $( \pm 3,0)$.Also,
The eccentricity $e=\frac{c}{a}=\frac{5}{3}$. The latus rectum $=\frac{2 b^{2}}{a}=\frac{32}{3}$
(ii) Dividing the equation by 16 on both sides, we have $\frac{y^{2}}{16}-\frac{x^{2}}{1}=1$
Comparing the equation with the standard equation $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$, we find that $a=4, b=1$ and $c=\sqrt{a^{2}+b^{2}}=\sqrt{16+1}=\sqrt{17}$.
Therefore, the coordinates of the foci are $(0, \pm \sqrt{17})$ and that of the vertices are $(0, \pm 4)$. Also,
The eccentricity $e=\frac{c}{a}=\frac{\sqrt{17}}{4}$. The latus rectum $=\frac{2 b^{2}}{a}=\frac{1}{2}$.
Example 15 Find the equation of the hyperbola with foci $(0, \pm 3)$ and vertices $(0, \pm \frac{\sqrt{11}}{2})$.
Solution Since the foci is on y-axis, the equation of the hyperbola is of the form $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$
Since vertices are $(0, \pm \frac{\sqrt{11}}{2}), a=\frac{\sqrt{11}}{2}$
Also, since foci are $(0, \pm 3) ; c=3$ and $b^{2}=c^{2}-a^{2}=\frac{25}{4}$.
Therefore, the equation of the hyperbola is
$ \frac{y^{2}}{(\frac{11}{4})}-\frac{x^{2}}{(\frac{25}{4})}=1 \text{, i.e., } 100 y^{2}-44 x^{2}=275 $
Example 16 Find the equation of the hyperbola where foci are $(0, \pm 12)$ and the length of the latus rectum is 36 .
Solution Since foci are $(0, \pm 12)$, it follows that $c=12$.
Length of the latus rectum $=\frac{2 b^{2}}{a}=36$ or $b^{2}=18 a$
$ \begin{aligned} & \text{Therefore} \quad \quad\quad\quad c^{2}=a^{2}+b^{2} ; \text{ gives } \\ & \quad\quad\quad\quad\quad\quad\quad\quad\quad 144=a^{2}+18 a \\ & \text{i.e., } \quad\quad\quad\quad\quad\quad\quad a^{2}+18 a-144=0, \\ & \text{So } \quad \quad\quad\quad\quad\quad\quad a=-24,6 . \end{aligned} $
Since $a$ cannot be negative, we take $a=6$ and so $b^{2}=108$.
Therefore, the equation of the required hyperbola is $\frac{y^{2}}{36}-\frac{x^{2}}{108}=1$, i.e., $3 y^{2}-x^{2}=108$
EXERCISE 10.4
In each of the Exercises 1 to 6, find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas.
1. $\dfrac{x^{2}}{16}-\dfrac{y^{2}}{9}=1$
Show Answer
Answer :
The given equation is $\dfrac{x^{2}}{16}-\dfrac{y^{2}}{9}=1$ or $\dfrac{x^{2}}{4^{2}}-\dfrac{y^{2}}{3^{2}}=1$.
On comparing this equation with the standard equation of hyperbola i.e., $\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1$, we obtain $a=4$ and $b=3$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore c^{2}=4^{2}+3^{2}=25$
$\Rightarrow c=5$
Therefore,
The coordinates of the foci are $( \pm 5,0)$.
The coordinates of the vertices are $( \pm 4,0)$.
Eccentricity, $e=\dfrac{c}{a}=\dfrac{5}{4}$
Length of latus rectum $=\dfrac{2 b^{2}}{a}=\dfrac{2 \times 9}{4}=\dfrac{9}{2}$
2. $\dfrac{y^{2}}{9}-\dfrac{x^{2}}{27}=1$
Show Answer
Answer :
The given equation is
$ \dfrac{y^{2}}{9}-\dfrac{x^{2}}{27}=1 \text{ or } \dfrac{y^{2}}{3^{2}}-\dfrac{x^{2}}{(\sqrt{27})^{2}}=1 $
On comparing this equation with the standard equation of hyperbola i.e., $\dfrac{y^{2}}{a^{2}}-\dfrac{x^{2}}{b^{2}}=1$, we obtain $a=3$ and $b=\sqrt{27}$.
We know that $a^{2}+b^{2}=c^{2}$.
$ \begin{aligned} & \therefore c^{2}=3^{2}+(\sqrt{27})^{2}=9+27=36 \\ & \Rightarrow c=6 \end{aligned} $
Therefore,
The coordinates of the foci are $(0, \pm 6)$.
The coordinates of the vertices are $(0, \pm 3)$.
Eccentricity, $e=\dfrac{c}{a}=\dfrac{6}{3}=2$
Length of latus rectum $=\dfrac{2 b^{2}}{a}=\dfrac{2 \times 27}{3}=18$
3. $9 y^{2}-4 x^{2}=36$
Show Answer
Answer :
The given equation is $9 y^{2} - 4 x^{2}=36$.
It can be written as $9 y^{2} - 4 x^{2}=36$
Or, $\dfrac{y^{2}}{4}-\dfrac{x^{2}}{9}=1$
Or, $\dfrac{y^{2}}{2^{2}}-\dfrac{x^{2}}{3^{2}}=1$
On comparing equation (1) with the standard equation of hyperbola i.e., $\dfrac{y^{2}}{a^{2}}-\dfrac{x^{2}}{b^{2}}=1$, we obtain $a=2$ and $b=3$. We know that $a^{2}+b^{2}=c^{2}$.
$\therefore c^{2}=4+9=13$
$\Rightarrow c=\sqrt{13}$
Therefore,
The coordinates of the foci are $(0, \pm \sqrt{13})$.
The coordinates of the vertices are $(0, \pm 2)$.
Eccentricity, $e=\dfrac{c}{a}=\dfrac{\sqrt{13}}{2}$
Length of latus rectum
$ =\dfrac{2 b^{2}}{a}=\dfrac{2 \times 9}{2}=9 $
4. $16 x^{2}-9 y^{2}=576$
Show Answer
Answer :
The given equation is $16 x^{2} - 9 y^{2}=576$.
It can be written as
$16 x^{2}$-$9 y^{2}=576$
$\Rightarrow \dfrac{x^{2}}{36}-\dfrac{y^{2}}{64}=1$
$\Rightarrow \dfrac{x^{2}}{6^{2}}-\dfrac{y^{2}}{8^{2}}=1$
On comparing equation (1) with the standard equation of hyperbola i.e., $\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1$, we obtain $a=6$ and $b=8$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore c^{2}=36+64=100$
$\Rightarrow c=10$
Therefore,
The coordinates of the foci are $( \pm 10,0)$.
The coordinates of the vertices are $( \pm 6,0)$.
Eccentricity, $e=\dfrac{c}{a}=\dfrac{10}{6}=\dfrac{5}{3}$
Length of latus rectum $=\dfrac{2 b^{2}}{a}=\dfrac{2 \times 64}{6}=\dfrac{64}{3}$
5. $5 y^{2}-9 x^{2}=36$
Show Answer
Answer :
The given equation is $5 y^{2} - 9 x^{2}=36$.
$\Rightarrow \dfrac{y^{2}}{(\dfrac{36}{5})}-\dfrac{x^{2}}{4}=1$
$\Rightarrow \dfrac{y^{2}}{(\dfrac{6}{\sqrt{5}})^{2}}-\dfrac{x^{2}}{2^{2}}=1$
On comparing equation (1) with the standard equation of hyperbola i.e., $\dfrac{y^{2}}{a^{2}}-\dfrac{x^{2}}{b^{2}}=1$, we obtain $a=\dfrac{6}{\sqrt{5}}$ and $b=$ 2. We know that $a^{2}+b^{2}=c^{2}$.
$\therefore c^{2}=\dfrac{36}{5}+4=\dfrac{56}{5}$
$\Rightarrow c=\sqrt{\dfrac{56}{5}}=\dfrac{2 \sqrt{14}}{\sqrt{5}}$
Therefore, the coordinates of the foci are $(0, \pm \dfrac{2 \sqrt{14}}{\sqrt{5}})$.
The coordinates of the vertices are $(0, \pm \dfrac{6}{\sqrt{5}})$.
Eccentricity, $e=\dfrac{c}{a}=\dfrac{(\dfrac{2 \sqrt{14}}{\sqrt{5}})}{(\dfrac{6}{\sqrt{5}})}=\dfrac{\sqrt{14}}{3}$ $=\dfrac{2 b^{2}}{a}=\dfrac{2 \times 4}{(\dfrac{6}{\sqrt{5}})}=\dfrac{4 \sqrt{5}}{3}$
Length of latus rectum
6. $49 y^{2}-16 x^{2}=784$.
Show Answer
Answer :
The given equation is $49 y^{2} - 16 x^{2}=784$.
It can be written as
$49 y^{2} - 16 x^{2}=784$
Or, $\dfrac{y^{2}}{16}-\dfrac{x^{2}}{49}=1$
Or, $\dfrac{y^{2}}{4^{2}}-\dfrac{x^{2}}{7^{2}}=1$
On comparing equation (1) with the standard equation of hyperbola i.e., $\dfrac{y^{2}}{a^{2}}-\dfrac{x^{2}}{b^{2}}=1$, we obtain $a=4$ and $b=7$. We know that $a^{2}+b^{2}=c^{2}$.
$\therefore c^{2}=16+49=65$
$\Rightarrow c=\sqrt{65}$
Therefore,
The coordinates of the foci are $(0, \pm \sqrt{65})$.
The coordinates of the vertices are $(0, \pm 4)$.
Eccentricity, $e=\dfrac{c}{a}=\dfrac{\sqrt{65}}{4}$
Length of latus rectum $=\dfrac{2 b^{2}}{a}=\dfrac{2 \times 49}{4}=\dfrac{49}{2}$
In each of the Exercises 7 to 15 , find the equations of the hyperbola satisfying the given conditions.
7. Vertices $( \pm 2,0)$, foci $( \pm 3,0)$
Show Answer
Answer :
Vertices ( $\pm 2,0)$, foci $( \pm 3,0)$
Here, the vertices are on the $x$-axis.
Therefore, the equation of the hyperbola is of the form $\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1$.
Since the vertices are $( \pm 2,0), a=2$.
Since the foci are $( \pm 3,0), c=3$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore 2^{2}+b^{2}=3^{2}$
$b^{2}=9-4=5$
Thus, the equation of the hyperbola is $\dfrac{x^{2}}{4}-\dfrac{y^{2}}{5}=1$.
8. Vertices $(0, \pm 5)$, foci $(0, \pm 8)$
Show Answer
Answer :
Vertices $(0, \pm 5)$, foci $(0, \pm 8)$
Here, the vertices are on the $y$-axis.
Therefore, the equation of the hyperbola is of the form $\dfrac{y^{2}}{a^{2}}-\dfrac{x^{2}}{b^{2}}=1$.
Since the vertices are $(0, \pm 5), a=5$.
Since the foci are $(0, \pm 8), c=8$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore 5^{2}+b^{2}=8^{2}$
$b^{2}=64-25=39$
Thus, the equation of the hyperbola is $\dfrac{y^{2}}{25}-\dfrac{x^{2}}{39}=1$.
9. Vertices $(0, \pm 3)$, foci $(0, \pm 5)$
Show Answer
Answer :
Vertices $(0, \pm 3)$, foci $(0, \pm 5)$
Here, the vertices are on the $y$-axis.
Therefore, the equation of the hyperbola is of the form $\dfrac{y^{2}}{a^{2}}-\dfrac{x^{2}}{b^{2}}=1$.
Since the vertices are $(0, \pm 3), a=3$.
Since the foci are $(0, \pm 5), c=5$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore 3^{2}+b^{2}=5^{2}$
$\Rightarrow b^{2}=25 - 9=16$
Thus, the equation of the hyperbola is $\dfrac{y^{2}}{9}-\dfrac{x^{2}}{16}=1$.
10. Foci $( \pm 5,0)$, the transverse axis is of length 8 .
Show Answer
Answer :
Foci ( $\pm 5,0)$, the transverse axis is of length 8 .
Here, the foci are on the $x$-axis.
Therefore, the equation of the hyperbola is of the form $\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1$.
Since the foci are $( \pm 5,0), c=5$.
Since the length of the transverse axis is $8,2 a=8 \Rightarrow a=4$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore 4^{2}+b^{2}=5^{2}$
$\Rightarrow b^{2}=25 - 16=9$
Thus, the equation of the hyperbola is $\dfrac{x^{2}}{16}-\dfrac{y^{2}}{9}=1$.
11. Foci $(0, \pm 13)$, the conjugate axis is of length 24 .
Show Answer
Answer :
Foci $(0, \pm 13)$, the conjugate axis is of length 24 .
Here, the foci are on the $y$-axis.
Therefore, the equation of the hyperbola is of the form $\dfrac{y^{2}}{a^{2}}-\dfrac{x^{2}}{b^{2}}=1$.
Since the foci are $(0, \pm 13), c=13$.
Since the length of the conjugate axis is $24,2 b=24 \Rightarrow b=12$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore a^{2}+12^{2}=13^{2}$
$\Rightarrow a^{2}=169$ - $144=25$
Thus, the equation of the hyperbola is $\dfrac{y^{2}}{25}-\dfrac{x^{2}}{144}=1$.
12. Foci $( \pm 3 \sqrt{5}, 0)$, the latus rectum is of length 8 .
Show Answer
Answer :
Foci $( \pm 3 \sqrt{5}, 0)$, the latus rectum is of length 8 .
Here, the foci are on the $x$-axis.
Therefore, the equation of the hyperbola is of the form $\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1$.
Since the foci are $( \pm 3 \sqrt{5}, 0), c= \pm 3 \sqrt{5}$.
Length of latus rectum $=8$ $\Rightarrow \dfrac{2 b^{2}}{a}=8$
$\Rightarrow b^{2}=4 a$
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore a^{2}+4 a=45$
$\Rightarrow a^{2}+4 a - 45=0$
$\Rightarrow a^{2}+9 a$ - $5 a$ - $45=0$
$\Rightarrow(a+9)(a - 5)=0$
$\Rightarrow a=-$ “ 9,5
Since $a$ is non-negative, $a=5$.
$\therefore b^{2}=4 a=4 \times 5=20$
Thus, the equation of the hyperbola is $\dfrac{x^{2}}{25}-\dfrac{y^{2}}{20}=1$
13. Foci $( \pm 4,0)$, the latus rectum is of length 12
Show Answer
Answer :
Foci $( \pm 4,0)$, the latus rectum is of length 12 .
Here, the foci are on the $x$-axis.
Therefore, the equation of the hyperbola is of the form $\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1$.
Since the foci are $( \pm 4,0), c=4$.
Length of latus rectum $=12$
$\Rightarrow \dfrac{2 b^{2}}{a}=12$
$\Rightarrow b^{2}=6 a$
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore a^{2}+6 a=16$
$\Rightarrow a^{2}+6 a - 16=0$
$\Rightarrow a^{2}+8 a$ - $2 a$ - $16=0$
$\Rightarrow(a+8)(a - 2)=0$
$\Rightarrow a=- $ 8,2
Since $a$ is non-negative, $a=2$.
$\therefore b^{2}=6 a=6 \times 2=12$
Thus, the equation of the hyperbola is $\dfrac{x^{2}}{4}-\dfrac{y^{2}}{12}=1$.
14. vertices $( \pm 7,0), e=\dfrac{4}{3}$.
Show Answer
Answer :
Vertices $( \pm 7,0)$,
$ e=\dfrac{4}{3} $
Here, the vertices are on the $x$-axis.
Therefore, the equation of the hyperbola is of the form $\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1$.
Since the vertices are $( \pm 7,0), a=7$.
It is given that $e=\dfrac{4}{3}$
$\therefore \dfrac{c}{a}=\dfrac{4}{3} \quad[e=\dfrac{c}{a}]$
$\Rightarrow \dfrac{c}{7}=\dfrac{4}{3}$
$\Rightarrow c=\dfrac{28}{3}$
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore 7^{2}+b^{2}=(\dfrac{28}{3})^{2}$
$\Rightarrow b^{2}=\dfrac{784}{9}-49$
$\Rightarrow b^{2}=\dfrac{784-441}{9}=\dfrac{343}{9}$
Thus, the equation of the hyperbola is $\dfrac{x^{2}}{49}-\dfrac{9 y^{2}}{343}=1$.
15. Foci $(0, \pm \sqrt{10})$, passing through $(2,3)$
Show Answer
Answer :
Foci $(0, \pm \sqrt{10})$, passing through $(2,3)$
Here, the foci are on the $y$-axis.
Therefore, the equation of the hyperbola is of the form $\dfrac{y^{2}}{a^{2}}-\dfrac{x^{2}}{b^{2}}=1$.
Since the foci are $(0, \pm \sqrt{10}), c=\sqrt{10}$.
We know that $a^{2}+b^{2}=c^{2}$.
$\therefore a^{2}+b^{2}=10$
$\Rightarrow b^{2}=10$ - $a^{2}$
Since the hyperbola passes through point $(2,3)$,
$\dfrac{9}{a^{2}}-\dfrac{4}{b^{2}}=1$
From equations (1) and (2), we obtain
$\dfrac{9}{a^{2}}-\dfrac{4}{(10-a^{2})}=1$
$\Rightarrow 9(10-a^{2})-4 a^{2}=a^{2}(10-a^{2})$
$\Rightarrow 90-9 a^{2}-4 a^{2}=10 a^{2}-a^{4}$
$\Rightarrow a^{4}-23 a^{2}+90=0$
$\Rightarrow a^{4}-18 a^{2}-5 a^{2}+90=0$
$\Rightarrow a^{2}(a^{2}-18)-5(a^{2}-18)=0$
$\Rightarrow(a^{2}-18)(a^{2}-5)=0$
$\Rightarrow a^{2}=18$ or 5
In hyperbola, $c>a$, i.e., $c^{2}>a^{2}$
$\therefore a^{2}=5$
$\Rightarrow b^{2}=10 - a^{2}=10 - 5=5$
Thus, the equation of the hyperbola is $\dfrac{y^{2}}{5}-\dfrac{x^{2}}{5}=1$.
Miscellaneous Examples
Example 17 The focus of a parabolic mirror as shown in Fig 10.31 is at a distance of $5 cm$ from its vertex. If the mirror is $45 cm$ deep, find the distance $AB$ (Fig 10.31).
Fig 10.31
Solution Since the distance from the focus to the vertex is $5 cm$. We have, $a=5$. If the origin is taken at the vertex and the axis of the mirror lies along the positive $x$-axis, the equation of the parabolic section is
$ \quad\quad\quad\quad\quad\quad\quad\quad\quad y^{2}=4(5) x=20 x $
Note that $ \quad\quad\quad\quad\quad x=45 . \text{ Thus } $
$ \quad\quad\quad\quad\quad\quad\quad\quad\quad y^{2}=900 $
Therefore $ \quad\quad\quad\quad\quad\quad y= \pm 30 $
Hence $\quad\quad\quad\quad\quad\quad AB = 2y = 2 \times 30 = 60 \text{cm} $.
Example 18 $A$ beam is supported at its ends by supports which are 12 metres apart. Since the load is concentrated at its centre, there is a deflection of $3 cm$ at the centre and the deflected beam is in the shape of a parabola. How far from the centre is the deflection $1 \text{cm}$ ?
Solution Let the vertex be at the lowest point and the axis vertical. Let the coordinate axis be chosen as shown in Fig 10.32.
Fig 10.32
The equation of the parabola takes the form $x^{2}=4 a y$. Since it passes through $(6, \frac{3}{100})$, we have $(6)^{2}=4 a(\frac{3}{100})$, i.e., $a=\frac{36 \times 100}{12}=300 m$
Let $AB$ be the deflection of the beam which is $\frac{1}{100} m$. Coordinates of $B$ are $(x, \frac{2}{100})$.
$ \begin{aligned} \text{Therefore } \quad\quad\quad\quad\quad x^{2} & =4 \times 300 \times \frac{2}{100}=24 \\ \text{i.e. }\quad\quad\quad\quad\quad x & =\sqrt{24} \quad=2 \sqrt{6} \text{ metres } \end{aligned} $
Example 19 $ A$ rod $AB$ of length $15 cm$ rests in between two coordinate axes in such a way that the end point $A$ lies on $x$-axis and end point $B$ lies on $y$-axis. A point $P(x, y)$ is taken on the rod in such a way that $A P=6 cm$. Show that the locus of $P$ is an ellipse.
Solution Let $AB$ be the rod making an angle $\theta$ with OX as shown in Fig 10.33 and $P(x, y)$ the point on it such that $\quad AP=6 \text{cm}$.
Fig 10.33
$ \begin{aligned} & \text {Since } \quad \quad \quad\quad AB=15 \text{ cm, we have } \\ & \quad\quad\quad \quad\quad\quad \quad PB=9 \text{ cm.} \end{aligned} $
From $P$ draw $PQ$ and $PR$ perpendiculars on $y$-axis and $x$-axis, respectively.
From $\quad\quad\quad \quad \Delta PBQ, \cos \theta=\frac{x}{9}$
From $ \quad\quad\quad \quad \Delta PRA, \sin \theta=\frac{y}{6} $
Since $\cos ^{2} \theta+\sin ^{2} \theta=1$
$ (\frac{x}{9})^{2}+(\frac{y}{6})^{2}=1 $
or $ \quad\quad\quad \quad \frac{x^{2}}{81}+\frac{y^{2}}{36}=1 $
Thus the locus of $P$ is an ellipse.
Miscellaneous Exercise on Chapter 10
1. If a parabolic reflector is $20 cm$ in diameter and $5 cm$ deep, find the focus.
Show Answer
Answer :
The origin of the coordinate plane is taken at the vertex of the parabolic reflector in such a way that the axis of the reflector is along the positive $x$-axis.
This can be diagrammatically represented as
The equation of the parabola is of the form $y^{2}=4 a x$ (as it is opening to the right).
Since the parabola passes through point $A(10,5), 10^{2}=4 a(5)$
$\Rightarrow 100=20 a$
$\Rightarrow a=\dfrac{100}{20}=5$
Therefore, the focus of the parabola is $(a, 0)=(5,0)$, which is the mid-point of the diameter.
Hence, the focus of the reflector is at the mid-point of the diameter.
2. An arch is in the form of a parabola with its axis vertical. The arch is $10 m$ high and $5 m$ wide at the base. How wide is it $2 m$ from the vertex of the parabola?
Show Answer
Answer :
The origin of the coordinate plane is taken at the vertex of the arch in such a way that its vertical axis is along the positivey-axis.
This can be diagrammatically represented as
The equation of the parabola is of the form $x^{2}=4 a y$ (as it is opening upwards).
It can be clearly seen that the parabola passes through point $(\dfrac{5}{2}, 10)$.
$(\dfrac{5}{2})^{2}=4 a(10)$
$\Rightarrow a=\dfrac{25}{4 \times 4 \times 10}=\dfrac{5}{32}$
Therefore, the arch is in the form of a parabola whose equation is
$ x^{2}=\dfrac{5}{8} y $
When $y=2 m, \quad x^{2}=\dfrac{5}{8} \times 2$
$\Rightarrow x^{2}=\dfrac{5}{4}$
$\Rightarrow x=\sqrt{\dfrac{5}{4}} m$
$\therefore AB=2 \times \sqrt{\dfrac{5}{4}} m=2 \times 1.118 m$ (approx.) $=2.23 m$ (approx.)
Hence, when the arch is $2 m$ from the vertex of the parabola, its width is approximately $2.23 m$.
3. The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and $100 m$ long is supported by vertical wires attached to the cable, the longest wire being $30 m$ and the shortest being $6 m$. Find the length of a supporting wire attached to the roadway $18 m$ from the middle.
Show Answer
Answer :
The vertex is at the lowest point of the cable. The origin of the coordinate plane is taken as the vertex of the parabola, while its vertical axis is taken along the positive $y$-axis. This can be diagrammatically represented as
Here, $A B$ and $O C$ are the longest and the shortest wires, respectively, attached to the cable.
DF is the supporting wire attached to the roadway, $18 m$ from the middle.
Here, $AB=30 m, OC=6 m$, and
$ BC=\dfrac{100}{2}=50 m $
The equation of the parabola is of the form $x^{2}=4 a y$ (as it is opening upwards).
The coordinates of point $A$ are $(50,30$ - 6$)=(50,24)$.
Since $A(50,24)$ is a point on the parabola,
$(50)^{2}=4 a(24)$
$\Rightarrow a=\dfrac{50 \times 50}{4 \times 24}=\dfrac{625}{24}$
$\therefore$ Equation of the parabola, $x^{2}=4 \times \dfrac{625}{24} \times y \quad$ or $6 x^{2}=625 y$
The $x$-coordinate of point $D$ is 18 .
Hence, at $x=18$,
$6(18)^{2}=625 y$
$\Rightarrow y=\dfrac{6 \times 18 \times 18}{625}$
$\Rightarrow y=3.11$ (approx)
$\therefore DE=3.11 m$
$D F=D E+E F=3.11 m+6 m=9.11 m$
Thus, the length of the supporting wire attached to the roadway $18 m$ from the middle is approximately $9.11 m$.
4. An arch is in the form of a semi-ellipse. It is $8 m$ wide and $2 m$ high at the centre. Find the height of the arch at a point $1.5 m$ from one end.
Show Answer
Answer :
Since the height and width of the arc from the centre is $2 m$ and $8 m$ respectively, it is clear that the length of the major axis is $8 m$, while the length of the semi-minor axis is $2 m$.
The origin of the coordinate plane is taken as the centre of the ellipse, while the major axis is taken along the $x$-axis. Hence, the semi-ellipse can be diagrammatically represented as
The equation of the semi-ellipse will be of the form $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1, y \geq 0$, where $a$ is the semi-major axis Accordingly, $2 a=8 \Rightarrow a=4$
$b=2$
Therefore, the equation of the semi-ellipse is $\dfrac{x^{2}}{16}+\dfrac{y^{2}}{4}=1, y \geq 0$
Let $A$ be a point on the major axis such that $A B=1.5 m$.
Draw $AC \perp OB$.
$O A=(4 - 1.5) m=2.5 m$
The $x$-coordinate of point $C$ is 2.5 .
On substituting the value of $x$ with 2.5 in equation (1), we obtain
$ \begin{aligned} & \dfrac{(2.5)^{2}}{16}+\dfrac{y^{2}}{4}=1 \\ & \Rightarrow \dfrac{6.25}{16}+\dfrac{y^{2}}{4}=1 \\ & \Rightarrow y^{2}=4(1-\dfrac{6.25}{16}) \\ & \Rightarrow y^{2}=4(\dfrac{9.75}{16}) \\ & \Rightarrow y^{2}=2.4375 \\ & \Rightarrow y=1.56 \quad \text{ (approx.) } \\ & \therefore AC=1.56 m \end{aligned} $
Thus, the height of the arch at a point $1.5 m$ from one end is approximately $1.56 m$.
5. A rod of length $12 cm$ moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point $P$ on the rod, which is $3 cm$ from the end in contact with the $x$-axis.
Show Answer
Answer :
Let $A B$ be the rod making an angle $\theta$ with $O X$ and $P(x, y)$ be the point on it such that $A P=3 cm$.
Then, $P B=A B$ - $A P=(12 - 3) cm=9 cm[A B=12 cm]$
From $P$, draw $PQ \perp OY$ and $PR \perp OX$.
In $\triangle PBQ, \quad \cos \theta=\dfrac{PQ}{PB}=\dfrac{x}{9}$
In $\triangle PRA, \quad \sin \theta=\dfrac{PR}{PA}=\dfrac{y}{3}$
Since, $\sin ^{2} \theta+\cos ^{2} \theta=1$,
$(\dfrac{y}{3})^{2}+(\dfrac{x}{9})^{2}=1$
Or, $\dfrac{x^{2}}{81}+\dfrac{y^{2}}{9}=1$
Thus, the equation of the locus of point $P$ on the rod is $\dfrac{x^{2}}{81}+\dfrac{y^{2}}{9}=1$.
6. Find the area of the triangle formed by the lines joining the vertex of the parabola $x^{2}=12 y$ to the ends of its latus rectum.
Show Answer
Answer :
The given parabola is $x^{2}=12 y$.
On comparing this equation with $x^{2}=4 a y$, we obtain $4 a=12 \Rightarrow a=3$
$\therefore$ The coordinates of foci are $S(0, a)=S(0,3)$
Let $A B$ be the latus rectum of the given parabola.
The given parabola can be roughly drawn as
At $y=3, x^{2}=12(3) \Rightarrow x^{2}=36 \Rightarrow x= \pm 6$
$\therefore$ The coordinates of A are (- 6,3 ), while the coordinates of B are $(6,3)$.
Therefore, the vertices of $\triangle O A B$ are $O(0,0), A(-6,3)$, and $B(6,3)$.
$ \text{ Area of } \begin{aligned} \triangle OAB & =\dfrac{1}{2}|0(3-3)+(-6)(3-0)+6(0-3)| \text{ unit }^{2} \\ & =\dfrac{1}{2}|(-6)(3)+6(-3)| \text{ unit }^{2} \\ & =\dfrac{1}{2}|-18-18| \text{ unit }^{2} \\ & =\dfrac{1}{2}|-36| \text{ unit }^{2} \\ & =\dfrac{1}{2} \times 36 \text{ unit }^{2} \\ & =18 \text{ unit }^{2} \end{aligned} $
Thus, the required area of the triangle is 18 unit $^{2}$.
7. A man running a racecourse notes that the sum of the distances from the two flag posts from him is always $10 m$ and the distance between the flag posts is $8 m$. Find the equation of the posts traced by the man.
Show Answer
Answer :
Let $A$ and $B$ be the positions of the two flag posts and $P(x, y)$ be the position of the man. Accordingly, $PA+PB=10$.
We know that if a point moves in a plane in such a way that the sum of its distances from two fixed points is constant, then the path is an ellipse and this constant value is equal to the length of the major axis of the ellipse.
Therefore, the path described by the man is an ellipse where the length of the major axis is $10 m$, while points $A$ and $B$ are the foci.
Taking the origin of the coordinate plane as the centre of the ellipse, while taking the major axis along the $x$-axis, the ellipse can be diagrammatically represented as
The equation of the ellipse will be of the form $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1$, where $a$ is the semi-major axis
Accordingly, $2 a=10 \Rightarrow a=5$
Distance between the foci $(2 c)=8$
$\Rightarrow c=4$
On using the relation $c=\sqrt{a^{2}-b^{2}}$, we obtain
$4=\sqrt{25-b^{2}}$
$\Rightarrow 16=25-b^{2}$
$\Rightarrow b^{2}=25-16=9$
$\Rightarrow b=3$
Thus, the equation of the path traced by the man is $\dfrac{x^{2}}{25}+\dfrac{y^{2}}{9}=1$.
8. An equilateral triangle is inscribed in the parabola $y^{2}=4 ax$, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.
Show Answer
Answer :
Let $OAB$ be the equilateral triangle inscribed in parabola $y^{2}=4 a x$.
Let $A B$ intersect the $x$-axis at point $C$.
Let $OC=k$
From the equation of the given parabola, we have $y^{2}=4 a k \Rightarrow y= \pm 2 \sqrt{a k}$
$\therefore$ The respective coordinates of points $A$ and $B$ are $(k, 2 \sqrt{a k})$, and $(k,-2 \sqrt{a k})$
$AB=CA+CB=2 \sqrt{a k}+2 \sqrt{a k}=4 \sqrt{a k}$
Since $O A B$ is an equilateral triangle, $O A^{2}=A B^{2}$.
$ \begin{aligned} & \therefore k^{2}+(2 \sqrt{a k})^{2}=(4 \sqrt{a k})^{2} \\ & \Rightarrow k^{2}+4 a k=16 a k \\ & \Rightarrow k^{2}=12 a k \\ & \Rightarrow k=12 a \\ & \therefore AB=4 \sqrt{a k}=4 \sqrt{a \times 12 a}=4 \sqrt{12 a^{2}}=8 \sqrt{3} a \end{aligned} $
Thus, the side of the equilateral triangle inscribed in parabola $y^{2}=4$ ax is $8 \sqrt{3} a$.
Summary
In this Chapter the following concepts and generalisations are studied.
A circle is the set of all points in a plane that are equidistant from a fixed point in the plane.
The equation of a circle with centre $(h, k)$ and the radius $r$ is
$ (x-h)^{2}+(y-k)^{2}=r^{2} . $
A parabola is the set of all points in a plane that are equidistant from a fixed line and a fixed point in the plane.
The equation of the parabola with focus at $(a, 0) a>0$ and directrix $x=-a$ is
$ y^{2}=4 a x $
Latus rectum of a parabola is a line segment perpendicular to the axis of the parabola, through the focus and whose end points lie on the parabola.
Length of the latus rectum of the parabola $y^{2}=4 a x$ is $4 a$.
An ellipse is the set of all points in a plane, the sum of whose distances from two fixed points in the plane is a constant.
The equation of an ellipse with foci on the $x$-axis is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
Latus rectum of an ellipse is a line segment perpendicular to the major axis through any of the foci and whose end points lie on the ellipse.
Length of the latus rectum of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\frac{2 b^{2}}{a}$.
The eccentricity of an ellipse is the ratio between the distances from the centre of the ellipse to one of the foci and to one of the vertices of the ellipse.
A hyperbola is the set of all points in a plane, the difference of whose distances from two fixed points in the plane is a constant.
The equation of a hyperbola with foci on the $x$-axis is : $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Latus rectum of hyperbola is a line segment perpendicular to the transverse axis through any of the foci and whose end points lie on the hyperbola.
Length of the latus rectum of the hyperbola $: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is : $\frac{2 b^{2}}{a}$.
The eccentricity of a hyperbola is the ratio of the distances from the centre of the hyperbola to one of the foci and to one of the vertices of the hyperbola.
Historical Note
Geometry is one of the most ancient branches of mathematics. The Greek geometers investigated the properties of many curves that have theoretical and practical importance. Euclid wrote his treatise on geometry around 300 B.C. He was the first who organised the geometric figures based on certain axioms suggested by physical considerations. Geometry as initially studied by the ancient Indians and Greeks, who made essentially no use of the process of algebra. The synthetic approach to the subject of geometry as given by Euclid and in Sulbasutras, etc., was continued for some 1300 years. In the 200 B.C., Apollonius wrote a book called ‘The Conic’ which was all about conic sections with many important discoveries that have remained unsurpassed for eighteen centuries.
Modern analytic geometry is called ‘Cartesian’ after the name of Rene Descartes (1596-1650) whose relevant ‘La Geometrie’ was published in 1637. But the fundamental principle and method of analytical geometry were already discovered by Pierre de Fermat (1601-1665). Unfortunately, Fermats treatise on the subject, entitled Ad Locus Planos et So LIDOS Isagoge (Introduction to Plane and Solid Loci) was published only posthumously in 1679. So, Descartes came to be regarded as the unique inventor of the analytical geometry.
Isaac Barrow avoided using cartesian method. Newton used method of undetermined coefficients to find equations of curves. He used several types of coordinates including polar and bipolar. Leibnitz used the terms ‘abscissa’, ‘ordinate’ and ‘coordinate’. L’ Hospital (about 1700) wrote an important textbook on analytical geometry.
Clairaut (1729) was the first to give the distance formula although in clumsy form. He also gave the intercept form of the linear equation. Cramer (1750) made formal use of the two axes and gave the equation of a circle as
$ (y-a)^{2}+(b-x)^{2}=r $
He gave the best exposition of the analytical geometry of his time. Monge (1781) gave the modern ‘point-slope’ form of equation of a line as
$ y-y^{\prime}=a(x-x^{\prime}) $
and the condition of perpendicularity of two lines as $a a^{\prime}+1=0$.
S.F. Lacroix (1765-1843) was a prolific textbook writer, but his contributions to analytical geometry are found scattered. He gave the ’two-point’ form of equation of a line as
$ y-\beta=\frac{\beta^{\prime}-\beta}{\alpha^{\prime}-\alpha}(x-\alpha) $
and the length of the perpendicular from $(\alpha, \beta)$ on $y=a x+b$ as $\frac{(\beta-a-b)}{\sqrt{1+a^{2}}}$.
His formula for finding angle between two lines was $\tan \theta=(\frac{a^{\prime}-a}{1+a a^{\prime}})$. It is, of course, surprising that one has to wait for more than 150 years after the invention of analytical geometry before finding such essential basic formula. In 1818, C. Lame, a civil engineer, gave $m E+m^{\prime} E^{\prime}=0$ as the curve passing through the points of intersection of two loci $E=0$ and $E^{\prime}=0$.
Many important discoveries, both in Mathematics and Science, have been linked to the conic sections. The Greeks particularly Archimedes (287-212 B.C.) and Apollonius (200 B.C.) studied conic sections for their own beauty. These curves are important tools for present day exploration of outer space and also for research into behaviour of atomic particles.
Let the relation of knowledge to real life be very visible to your pupils and let them understand how by knowledge the world could be transformed". - BERTRAND RUSSELL
10.1 भूमिका (Introduction)
पिछले अध्याय में हमने एक रेखा के समीकरणों के विभिन्न रूपों का अध्ययन किया है। इस अध्याय में, हम कुछ अन्य वक्रों का अध्ययन करेंगे जैसे वृत्त (circle), परवलय (parabola), दीर्घवृत्त (ellipse) और अतिपरवलय (hyperbola)। परवलय और अतिपरवलय Apollonius द्वारा दिए गए नाम हैं। वास्तव में इन वक्रों को शंकु परिच्छेद या सामान्यतः शांकव कहा जाता है क्योंकि इन्हें एक लंब वृत्तीय द्विशंकु और एक समतल के परिच्छेदन से प्राप्त किया जा सकता है। इन वक्रों का ग्रहों के घूर्णन, दूरदर्शीयंत्र (telescope) और एंटीना के निर्माण, आटोमोबाइल्स की हेडलाइट में, परावर्तक इत्यादि में बहुत अधिक उपयोगी होता है।
Apollonius (262 B.C. -190 B.C.)
अब हम आगे आने वाले अनुभागों में देखेंगें कि किस प्रकार एक लंब वृत्तीय द्विशंकु और एक तल के परिच्छेदन के परिणाम स्वरूप विभिन्न प्रकार के वक्र प्राप्त होते हैं।
10.2 शंकु के परिच्छेद
मान लीजिए $l$ एक स्थिर ऊर्ध्वाधर रेखा है $m$ एक दूसरी रेखा है जो इस रेखा को स्थिर बिंदु $\mathrm{V}$ पर प्रतिच्छेद करती है और इससे एक कोण $\alpha$ बनाती है (आकृति 10.1)।
आकृति 10.1
मान लीजिए हम रेखा $m$ को रेखा $l$ के परितः इस प्रकार घुमाते हैं कि $m$ की सभी स्थितियों में, कोण $\alpha$ अचर रहे तब उत्पन्न पृष्ठ एक लंब वृत्तीय खोखले द्विशंकु है जिन्हें अब से शंकु कहेंगे जो दोनों दिशाओं में अनिश्चित दूरी तक बढ़ रहे हैं (आकृति 10.2)।
आकृति 10.2
स्थिर बिंदु $\mathrm{V}$ को शंकु का शीर्ष (vertex) और स्थिर रेखा $l$ शंकु का अक्ष (axis) कहलाता है। इन सभी स्थितियों में घूमने वाली रेखा $m$ शंकु की जनक (generator) कहलाती है। शंकु को शीर्ष दो भागों में विभक्त करता है जिन्हें नापे (Nappes) कहते हैं।
यदि हम एक तल और एक शंकु का परिच्छेदन लेते हैं तो इस प्रकार प्राप्त परिच्छेद वक्र, शंकु परिच्छेद कहलाते हैं। इस प्रकार, शंकु परिच्छेद वे वक्र हैं जिन्हें एक लंब वृत्तीय शंकु और एक तल के परिच्छेदन से प्राप्त किया जाता है।
शंकु के ऊर्ध्वाधर अक्ष और परिच्छेदी तल के बीच बने कोण और परिच्छेदी तल की स्थितियों के अनुसार विभिन्न प्रकार के शंकु परिच्छेद प्राप्त होते हैं। मान लीजिए परिच्छेदी तल, शंकु के ऊर्ध्वाधर अक्ष के साथ $\beta$ कोण बनाता है (आकृति 10.3)।
आकृति 10.3
शंकु के साथ तल का परिच्छेदन या तो शंकु के शीर्ष पर हो सकता है या नापे के दूसरे किसी भाग पर ऊपर या नीचे हो सकता हैं।
10.2.1 वृत्त, दीर्घवृत्त, परवलय और अतिपरवलय (Circle, ellipse, parabola and hyperbola)
जब तल, शंकु के नापे (शीर्ष के अतिरिक्त) को काटता है, तो हमें निम्नांकित स्थितियाँ प्राप्त होती हैं:
(a) जब $\beta=90^{\circ}$, तो परिच्छेद एक वृत्त होता है (आकृति 10.4)।
आकृति 10.4
(b) जब $\alpha<\beta<90^{\circ}$, तो परिच्छेद एक दीर्घवृत्त होता है (आकृति 10.5)।
आकृति 10.5
(c) जब $\beta=\alpha$, तो परिच्छेद एक परवलय होता है (आकृति 10.6)।
आकृति 10.6
(उपरोक्त तीनों स्थितियों की प्रत्येक स्थिति में तल शंकु को नापे के पूर्णतः आर-पार काटता है)।
(d) जब $0 \leq \beta<\alpha$, तो तल शंकु के दोनों नेप्स को काटता है तो परिच्छेद वक्र एक अतिपरवलय होता है (आकृति 10.7)।
आकृति 10.7
10.2.2 अपभ्रष्ट शंकु परिच्छेद (Degenerated conic sections)
जब तल शंकु के शीर्ष पर काटता है तो निम्नलिखित स्थितियाँ प्राप्त होती हैं:
(a) जब $\alpha<\beta \leq 90^{\circ}$, तो परिच्छेद एक बिंदु है (आकृति 10.8)।
आकृति 10.8
(b) जब $\beta=\alpha$, तो तल, जनक को अंतर्विष्ट करता है और परिच्छेद एक सरल रेखा होती है (आकृति 10.9)।
आकृति 10.9
यह परवलय की अपभ्रष्ट स्थिति है।
(c) जब $0 \leq \beta<\alpha$, तो परिच्छेद एक प्रतिच्छेद करने वाली रेखाओं का युग्म है (आकृति 10.10)। यह अतिपरवलय की अपभ्रष्ट स्थिति है।
आकृति 10.10 (a)
आकृति 10.10 (b)
आगे आने वाले अनुच्छेद में हम इन शंकु परिच्छेदों को ज्यामितीय गुणों के आधार पर परिभाषित करते हुए उनमें से प्रत्येक के समीकरण मानक रूप में प्राप्त करेंगे।
10.3 वृत्त (Circle)
परिभाषा 1 वृत्त, तल के उन बिंदुओं का समुच्चय होता है जो तल के एक स्थिर बिंदु से समान दूरी पर होते हैं।
स्थिर बिंदु को वृत्त का केंद्र (centre) कहते हैं तथा वृत्त पर किसी एक बिंदु की केंद्र से दूरी को वृत्त की त्रिज्या (radius) कहते हैं (आकृति 10.11)।
आकृति 10.11
यदि वृत्त का केंद्र मूल बिंदु पर होता है तो वृत्त का समीकरण सरलतम होता है। फिर भी, हम ज्ञात केंद्र तथा त्रिज्या के वृत्त का समीकरण निम्नलिखित प्रकार से व्युत्पन्न करेंगें (आकृति 10.12)।
आकृति 10.12
वृत्त का केंद्र $\mathrm{C}(h, k)$ तथा त्रिज्या $r$ ज्ञात है। मान लीजिए वृत्त पर कोई बिंदु $\mathrm{P}(x, y)$ है (आकृति 10.12)। तब परिभाषा से, $|\mathrm{CP}|=r$ दूरी सूत्र द्वारा, हम पाते हैं
अर्थात्
$ \begin{aligned} & \sqrt{(x-h)^{2}+-k)^{2}}=r & (x-h)^{2}+(y-k)^{2}=r^{2} \end{aligned} $
यह केंद्र $(h, k)$ तथा त्रिज्या $r$ वाले वृत्त का अभीष्ट समीकरण है।
उदाहरण 1 केंद्र $(0,0)$ तथा त्रिज्या $r$ वाले वृत्त का समीकरण ज्ञात कीजिए।
हल यहाँ $h=k=0$. अतः वृत्त का समीकरण $x^{2}+y^{2}=r^{2}$ है।
उदाहरण 2 केंद्र $(-3,2)$ तथा त्रिज्या 4 इकाई वाले वृत्त का समीकरण ज्ञात कीजिए।
हल यहाँ $h=-3, k=2$ और $r=4$. अतः वृत्त का अभीष्ट समीकरण
$$ (x+3)^{2}+(y-2)^{2}=16 \text { है। } $$
उदाहरण 3 वृत्त $x^{2}+y^{2}+8 x+10 y-8=0$ का केंद्र तथा त्रिज्या ज्ञात कीजिए।
हल दिया गया समीकरण
$$ \left(x^{2}+8 x\right)+\left(y^{2}+10 y\right)=8 $$
अब कोष्ठकों को पूर्ण वर्ग बनाने पर,
या $ (x^{2}+8 x+16)+(y^{2}+10 y+25)=8+16+25 $
या
$ (x+4)^{2}+(y+5)^{2}=49 $
या
$ {x-(-4)}^{2}+{y-(-5)}^{2}=7^{2} $
अतः वृत्त का केंद्र $(-4,-5)$ व त्रिज्या 7 इकाई है।
उदाहरण 4 बिंदुओं $(2,-2)$, और $(3,4)$ से होकर जाने वाले उस वृत्त का समीकरण ज्ञात कीजिए जिसका केंद्र रेखा $x+y=2$ पर स्थित है।
हल मान लीजिए कि वृत्त का समीकरण $(x-h)^{2}+(y-k)^{2}=r^{2}$ है।
यह बिंदुओं $(2,-2)$ और $(3,4)$ से जाता है। इसलिए हम पाते हैं कि
$$ \begin{equation*} (2-h)^{2}+(-2-k)^{2}=r^{2} \tag{1} \end{equation*} $$
और $$ \begin{equation*} (3-h)^{2}+(4-k)^{2}=r^{2} \tag{2} \end{equation*} $$
तथा वृत्त का केंद्र रेखा $x+y=2$, पर स्थित है, इसलिए
$$ \begin{equation*} h+k=2 \tag{3} \end{equation*} $$
समीकरण (1), (2) व (3), को हल करने पर, हम पाते हैं कि
$$ h=0.7, \quad k=1.3 \text { और } r^{2}=12.58 $$
अतः वृत्त का अभीष्ट समीकरण
$$ (x-0.7)^{2}+(y-1.3)^{2}=12.58 $$
प्रश्नावली 10.1
निम्नलिखित प्रश्न 1 से 5 तक प्रत्येक में वृत्त का समीकरण ज्ञात कीजिए:
1. केंद्र $(0,2)$ और त्रिज्या 2 इकाई
Show Answer
\misisng2. केंद्र $(-2,3)$ और त्रिज्या 4 इकाई
Show Answer
\misisng3. केंद्र $(\frac{1}{2}, \frac{1}{4})$ और त्रिज्या $\frac{1}{12}$
Show Answer
\misisng4. केंद्र $(-a,-b)$ और त्रिज्या $\sqrt{a^{2}-b^{2}}$ है।
Show Answer
\misisng5. केंद्र $(-a,-b)$ और त्रिज्या $\sqrt{a^{2}-b^{2}}$
Show Answer
\misisng6. $(x+5)^{2}+(y-3)^{2}=36$
Show Answer
\misisng7. $x^{2}+y^{2}-4 x-8 y-45=0$
Show Answer
\misisng8. $x^{2}+y^{2}-8 x+10 y-12=0$
Show Answer
\misisng9. $2 x^{2}+2 y^{2}-x=0$
Show Answer
\misisng10. बिंदुओं $(4,1)$ और $(6,5)$ से जाने वाले वृत्त का समीकरण कीजिए जिसका केंद्र रेखा $4 x+y=16$ पर स्थित है।
Show Answer
\misisng11. बिंदुओं $(2,3)$ और $(-1,1)$ से जाने वाले वृत्त का समीकरण ज्ञात कीजिए जिसका केंद्र रेखा $x-3 y-11=0$ पर स्थित है।
Show Answer
\misisng12. त्रिज्या 5 के उस वृत्त का समीकरण ज्ञात कीजिए जिसका केंन्द्र $x$-अक्ष पर हो और जो बिंदु $(2,3)$ से जाता है।
Show Answer
\misisng13. $(0,0)$ से होकर जाने वाले वृत्त का समीकरण ज्ञात कीजिए जो निर्देशांक्षों पर $a$ और $b$ अंतःखण्ड बनाता है।
Show Answer
\misisng14. उस वृत्त का समीकरण ज्ञात कीजिए जिसका केंद्र $(2,2)$ हो तथा बिंदु $(4,5)$ से जाता है।
Show Answer
\misisng15. क्या बिंदु $(-2.5,3.5)$ वृत्त $x^{2}+y^{2}=25$ के अंदर, बाहर या वृत्त पर स्थित है ?
Show Answer
\misisng10.4 परवलय (Parabola)
परिभाषा 2 एक परवलय तल के उन सभी बिंदुओं का समुच्चय है जो एक निश्चित सरल रेखा और तल के एक निश्चित बिंदु (जो रेखा पर स्थित नहीं है) से समान दूरी पर है।
निश्चित सरल रेखा को परवलय की नियता (directrix) और निश्चित बिंदु $\mathrm{F}$ को परवलय की नाभि (focus) कहते हैं (आकृति 10.13)। (अंग्रेजी भाषा में ‘Para’ का अर्थ ‘से’ व ‘bola’ का अर्थ ‘फेंकना’, अर्थात् हवा में गेंद फेंकने से बना हुआ पथ)
आकृति 10.13
टिप्पणी यदि निश्चित बिंदु, निश्चित सरल रेखा पर स्थित हो तो तल के उन बिंदुओं का समुच्चय जो निश्चित बिंदु और निश्चित रेखा से समान दूरी पर हैं, निश्चित बिंदु से गुज़रने वाली निश्चित रेखा पर लंबवत सरल रेखा होती है। हम इस सरल रेखा को परवलय की अपभ्रष्ट स्थिति कहते हैं।
परवलय की नाभि से जाने वाली तथा नियता पर लंब रेखा को परवलय का अक्ष कहा जाता है। परवलय का अक्ष जिस बिंदु पर परवलय को काटता है उसे परवलय का शीर्ष(vertex) कहते हैं (आकृति 10.14)।
आकृति 10.14
10.4.1 परवलय का प्रमाणिक समीकरण (Standard equation of parabola)
परवलय का समीकरण सरलतम होता है यदि इसका शीर्ष मूल बिंदु पर हो और इसकी सममित अक्ष, $x$-अक्ष या $y$-अक्ष के अनुदिश होता है। परवलय के ऐसे चार संभव दिक्विन्यास नीचे आकृति $10.15(\mathrm{a})$ से $(\mathrm{d})$ तक में दर्शाए गए हैं।
(a)
(b)
$x^{2}=4 a y$
(c)
$x^{2}=-4 a y$
(d)
अब हम आकृति 10.15 (a) में दर्शाए गए परवलय का समीकरण जिसकी नाभि $(a, 0) a>$ 0 और नियता $x=-a$ को निम्नवत प्राप्त करेंगे।
मान लीजिए कि नाभि $\mathrm{F}$ और नियता $l$ है। नियता पर लंब FM खींचिए और $\mathrm{FM}$ को बिंदु $\mathrm{O}$ पर समद्विभाजित कीजिए। $M O$ को $X$ तक बढ़ाइए। परवलय की परिभाषा के अनुसार मध्य बिंदु $\mathrm{O}$ परवलय पर है और परवलय का शीर्ष कहलाता है। $\mathrm{O}$ को मूल बिंदु मानकर $\mathrm{OX}$ को $x$-अक्ष और इसके लंबवत $\mathrm{OY}$ को $y$-अक्ष लीजिए। मान लीजिए कि नाभि की नियता से दूरी $2 a$ है। तब नाभि के निर्देशांक $(a, 0), a>0$ है तथा नियता का समीकरण $x+a=0$ जैसा कि आकृति 10.16 में है।
आकृति $\mathbf{1 0 . 1 6}$
मान लीजिए परवलय पर कोई बिंदु $\mathrm{P}(x, y)$ इस प्रकार है कि
$ \begin{equation*} P F=P B \tag{1} \end{equation*} $
जहाँ $\mathrm{PB}$ रेखा $l$ पर लंब है। $\mathrm{B}$ के निर्देशांक $(-a, y)$ हैं। दूरी सूत्र से हम पाते हैं
$ \mathrm{PF}=\sqrt{(x-a)^{2}+y^{2}} \text { और } \mathrm{PB}=\sqrt{(x+a)^{2}} $
क्योंकि $\mathrm{PF}=\mathrm{PB}$, हम पाते हैं,
$ \sqrt{(x-a)^{2}+y^{2}}=\sqrt{(x+a)^{2}} $
इसलिए $ \quad\quad\quad(x-a)^{2}+y^{2}=(x+a)^{2}$
या $\quad\quad\quad x^{2}-2 a x+a^{2}+y^{2}=x^{2}+2 a x+a^{2}$
या $\quad\quad\quad y^{2}=4 a x(a>0)$.
इस प्रकार परवलय पर कोई बिंदु समीकरण
$ \begin{equation*} y^{2}=4 a x \text { को संतुष्ट करता है। } \tag{2} \end{equation*} $
विलोमतः माना $(2)$ पर $\mathrm{P}(x, y)$ एक बिंदु है।
अब $ \begin{align*} \mathrm{PF} & =\sqrt{(x-a)^{2}+y^{2}}=\sqrt{(x-a)^{2}+4 a x} \\ & =\sqrt{(x+a)^{2}}=\mathrm{PB} \tag{3} \end{align*} $
इसलिए $\mathrm{P}(x, y)$, परवलय पर स्थित है।
इस प्रकार (2) और (3) से हमने सिद्ध किया कि एक परवलय जिसका शीर्ष मूल बिंदु पर नाभि $(a, 0)$ तथा नियता $x=-a$ का समीकरण $y^{2}=4 a x$ होता है।
विवेचना समीकरण (2) में, यदि $a>0, x$ का मान धनात्मक या शून्य हो सकता है परंतु ऋणात्मक नहीं। इस स्थिति में परवलय को प्रथम और चतुर्थ चतुर्थांश में अनिश्चित रूप से दूर तक बढ़ाया जा सकता है और परवलय का अक्ष, $x$-अक्ष का धनात्मक भाग है।
इसी प्रकार हम परवलयों का समीकरण प्राप्त कर सकते हैं।
आकृति $10.15(\mathrm{~b})$ में $y^{2}=-4 a x$,
आकृति $10.15(\mathrm{c})$ में $x^{2}=4 a y$,
आकृति $10.15(\mathrm{~d})$ में $x^{2}=-4 a y$,
इन चार समीकरणों को परवलय के मानक समीकरण कहते हैं।
टिप्पणी परवलय के मानक समीकरण में, परवलय की नाभि किसी एक निर्देशांक अक्ष पर स्थित होती है, शीर्ष मूल बिंदु पर होता है और नियता, दूसरे अक्ष के समांतर होती है। यहाँ ऐसे परवलयों का अध्ययन, जिनकी नाभि कोई भी बिंदु हो सकती है और नियता कोई भी रेखा हो सकती है, इस पुस्तक के विषय से बाहर है।
आकृति 10.15 , से प्राप्त परवलय के प्रमाणिक समीकरण के निरीक्षण से निम्नांकित निष्कर्ष प्राप्त होते हैं:
1. परवलय, परवलय अक्ष के सापेक्ष सममित होता है। यदि परवलय के समीकरण में $y^{2}$ का पद है तो सममित, $x$-अक्ष के अनुदिश है और यदि समीकरण में $x^{2}$ का पद है तो सममित अक्ष, $y$-अक्ष के अनुदिश है।
2. यदि सममित अक्ष, $x$-अक्ष के अनुदिश हो और
(a) $x$ का गुणांक धनात्मक हो तो परवलय दाईं ओर खुलता है।
(b) $x$ का गुणांक ऋणात्मक हो तो परवलय बाईं ओर खुलता है।
3. यदि सममित अक्ष, $y$-अक्ष के अनुदिश हो और
(a) $y$ का गुणांक धनात्मक हो तो परवलय ऊपर की ओर खुलता है।
(b) $y$ का गुणांक ऋणात्मक हो तो परवलय नीचे की ओर खुलता है।
10.4.2 नाभिलंब जीवा (Latus rectum)
परिभाषा 3 परवलय की नाभि से जाने वाली और परवलय की अक्ष के लंबवत रेखाखंड जिसके अंत्य बिंदु परवलय पर हों, को परवलय की नाभिलंब जीवा कहते हैं (आकृति 10.17)
आकृति 10.17
परवलय $y^{2}=4 a x$ की नाभिलंब जीवा की लंबाई ज्ञात करना (आकृति 10.18)
आकृति 10.18
परवलय की परिभाषा के अनुसार, $\mathrm{AF}=\mathrm{AC}$
परंतु $ \mathrm{AC}=\mathrm{FM}=2 a $
अत: $ \mathrm{AF}=2 a $
और क्योंकि परवलय, $x$-अक्ष के परितः सममित है। अतः $\mathrm{AF}=\mathrm{FB}$ और इसलिए
$\mathrm{AB}=$ नाभिलंब जीवा की लंबाई $=4 a$
उदाहरण 5 यदि एक परवलय का समीकरण $y^{2}=8 x$ है तो नाभि के निर्देशांक, अक्ष, नियता का समीकरण और नाभिलंब जीवा की लंबाई ज्ञात कीजिए।
हल दिए समीकरण में $y^{2}$ का पद है इसलिए परवलय $x$-अक्ष के परितः सममित है।
क्योंकि समीकरण में पद $x$ का गुणांक धनात्मक है इसलिए परवलय दाहिनी ओर खुलता है। दिए गए समीकरण $y^{2}=4 a x$, से तुलना करने पर, $a=2$
अतः परवलय की नाभि $(2,0)$ है और परवलय की नियता का समीकरण $x=-2$ है (आकृति 10.19)।
आकृति 10.19
नाभिलंब जीवा की लंबाई $4 a=4 \times 2=8$
उदाहरण 6 नाभि $(2,0)$ और नियता $x=-2$ वाले परवलय का समीकरण ज्ञात कीजिए।
हल क्योंकि नाभि $(2,0) x$-अक्ष पर है इसलिए $x$-अक्ष स्वयं परवलय का अक्ष है। अतः परवलय का समीकरण $y^{2}=4 a x$ या $y^{2}=-4 a x$ के रूप में होना चाहिए क्योंकि नियता $x=-2$ है और नाभि $(2,0)$ है, इसलिए परवलय का समीकरण $y^{2}=4 a x$ के रूप में है जहाँ $a=2$. अत: परवलय का अभीष्ट समीकरण
$y^{2}=4(2) x=8 x$ है।
उदाहरण 7 एक परवलय का समीकरण ज्ञात कीजिए जिसका शीर्ष $(0,0)$ और नाभि $(0,2)$ है।
हल क्योंकि शीर्ष $(0,0)$ पर और नाभि $(0,2)$ पर है, जो $y$-अक्ष पर स्थित है, अतः परवलय का अक्ष, $y$-अक्ष है। इसलिए परवलय का समीकरण, $x^{2}=4 a y$ के रूप में है। अत: परवलय का समीकरण है
$x^{2}=4(2) y$, अर्थात् $x^{2}=8 y$
उदाहरण 8 उस परवलय का समीकरण ज्ञात कीजिए जो $y$-अक्ष के परितः सममित हो और बिंदु $(2,-3)$ से गुज़रता है।
हल क्योंकि परवलय $y$-अक्ष के परितः सममित है और इसका शीर्ष मूल बिंदु पर है, अतः इसका समीकरण $x^{2}=4 a y$ या $x^{2}=-4 a y$, के रूप में है जहाँ चि्न परवलय के ऊपर या नीचे खुलने पर निर्भर करता है परंतु परवलय चतुर्थ चतुर्थांश में स्थित बिंदु $(2,-3)$ से गुज़रता है इसलिए यह अवश्य ही नीचे की ओर खुलेगा। अत: परवलय का समीकरण $x^{2}=-4 a y$ के अनुरूप है, क्योंकि परवलय $(2,-3)$, से गुज़रता है,
अतः हमें प्राप्त होता है,
$ 2^{2}=-4 a(-3), \text { अर्थात् } a=\frac{1}{3} $
अतः परवलय का समीकरण है
$ x^{2}=-4 \frac{1}{3} y, \text { अर्थात् } 3 x^{2}=-4 y $
प्रश्नावली 10.2
निम्नलिखित प्रश्न 1 से 6 तक प्रत्येक में नाभि के निर्देशांक, परवलय का अक्ष, नियता का समीकरण और नाभिलंब जीवा की लंबाई ज्ञात कीजिए:
1. $y^{2}=12 x$
Show Answer
/missing2. $x^{2}=6 y$
Show Answer
/missing3. $y^{2}=-8 x$
Show Answer
/missing4. $x^{2}=-16 y$
Show Answer
/missing5. $y^{2}=10 x$
Show Answer
6. $x^{2}=-9 y$
Show Answer
/missingनिम्नलिखित प्रश्न 7 से 12 तक प्रत्येक में परवलय का समीकरण ज्ञात कीजिए जो दिए प्रतिबंध को संतुष्ट करता है:
7. Focus $(6,0)$; directrix $x=-6$
Show Answer
/missing8. Vertex $(0,0)$; focus $(3,0)$
Show Answer
/missing9. Focus $(0,-3)$; directrix $y=3$
Show Answer
/missing10. Vertex $(0,0)$; focus $(-2,0)$
Show Answer
/missing11. Vertex $(0,0)$ passing through $(2,3)$ and axis is along $x$-axis.
Show Answer
/missing12. Vertex $(0,0)$, passing through $(5,2)$ and symmetric with respect to $y$-axis.
Show Answer
/missing10.5 दीर्घवृत्त (Ellipse)
परिभाषा 4 एक दीर्घवृत्त तल के उन बिंदुओं का समुच्चय है जिनका तल में दो स्थिर बिंदुओं से दूरी का योग अचर होता है।
दो स्थिर बिंदुओं को दीर्घवृत्त की नाभियाँ कहते हैं (आकृति 10.20)।
आकृति 10.20
टिप्पणी दीर्घवृत्त पर किसी बिंदु का दो स्थिर बिंदुओं से दूरियों का योग अचर होता है, वह स्थिर बिंदुओं के बीच की दूरी से अधिक होता है।
नाभियों को मिलाने वाले रेखाखंड के मध्य बिंदु को दीर्घवृत्त का केंद्र कहते हैं। दीर्घवृत्त की नाभियों से जाने वाला रेखाखंड, दीर्घवृत्त का दीर्ध अक्ष (Major axis) कहलाता है और केंद्र से जाने वाला और दीर्ध अक्ष पर लंबवत रेखाखंड, दीर्घवृत्त का लघु अक्ष (Minor axis) कहलाता है। र्दीर्घ अक्ष के अन्त्य बिंदुओं को दीर्घवृत्त के शीर्ष कहते हैं (आकृति 10.21)।
आकृति 10.21
हम दीर्घ अक्ष की लंबाई को, $2 a$ से लघु अक्ष की लंबाई को, $2 b$ से और नाभियों के बीच की दूरी को $2 c$ से लिखते हैं। अतः अर्ध-दीर्घ अक्ष की लंबाई $a$ तथा अर्ध-लघु अक्ष की लंबाई $b$ है ( आकृति 10.22)।
आकृति 10.22
10.5.1 अर्ध-दीर्ध अक्ष, अर्ध-लघु अक्ष और दीर्घवृत्त के केंद्र से नाभि की दूरी के बीच में संबंध (आकृति 10.23)।
आकृति 10.23
दीर्घवृत्त के दीर्घ अक्ष पर एक अंत्य बिंदु $\mathrm{P}$ लीजिए।
बिंदु $\mathrm{P}$ की नाभियों से दूरियों का योग
$F_1P + F_2P = F_1O + OP + F_2P$
(क्योंकि, $F_1P = F_1O + OP$)
$\quad \quad \quad \quad \quad = c + a +a - c = 2a$
अब लघु अक्ष पर एक अंत्य बिंदु $\mathrm{Q}$ लीजिए।
बिंदु $\mathrm{Q}$ की नाभियों से दूरियों का योग
$$ \mathrm{F} _{1} \mathrm{Q}+\mathrm{F} _{2} \mathrm{Q}=\sqrt{b^{2}+c^{2}}+\sqrt{b^{2}+c^{2}}=2 \sqrt{b^{2}+c^{2}} $$
क्योंकि $\mathrm{P}$ और $\mathrm{Q}$ दोनों दीर्घवृत्त पर स्थित हैं।
अतः दीर्घवृत्त की परिभाषा से हम पाते हैं
$ \begin{aligned} 2 \sqrt{b^{2}+c^{2}} & =2 a, \text{ अर्थात् } \quad a=\sqrt{b^{2}+c^{2}} \\ \text{या} \quad \quad \quad \quad a^{2} & =b^{2}+c^{2}, \text{ अर्थात् } c=\sqrt{a^{2}-b^{2}} \end{aligned} $
10.5.2 उत्केंद्रता (Eccentricity)
परिभाषा 5 दीर्घवृत्त की उत्केंद्रता, दीर्घवृत्त के केंद्र से नाभि और केंद्र से शीर्ष की दूरियों का अनुपात है। उत्केंद्रता को $e$ के द्वारा निर्दिष्ट करते हैं, अर्थात् $e=\frac{c}{a}$ है।
क्योंकि नाभि की केंद्र से दूरी $c$ है इसलिए उत्केंद्रता के पद में नाभि की केंद्र से दूरी $a e$ है।
10.5.3 दीर्घवृत्त का मानक समीकरण (Standard equation of an ellipse)
एक दीर्घवृत्त का समीकरण सरलतम होता है यदि दीर्घवृत्त का केंद्र मूल बिंदु पर हो और नाभियाँ $x$-अक्ष या $y$-अक्ष पर स्थित हों। ऐसे दो संभव दिकविन्यास आकृति 10.24 में दर्शाए गए हैं।
अब हम आकृति 10.24 (a) में दर्शाए गए दीर्घवृत्त, जिसकी नाभियाँ $x$-अक्ष पर स्थित हैं, का समीकरण व्युत्पन्न करेंगें।
मान लीजिए $\mathrm{F} _{1}$ और $\mathrm{F} _{2}$ नाभियाँ हैं और रेखाखंड $\mathrm{F} _{1} \mathrm{~F} _{2}$ का मध्य बिंदु $\mathrm{O}$ है। मान लीजिए $\mathrm{O}$ मूल बिंदु है और $\mathrm{O}$ से $\mathrm{F} _{2}$ की ओर धनात्मक $x$-अक्ष व $\mathrm{O}$ से $\mathrm{F} _{1}$ की ओर ऋणात्मक $x$-अक्ष है। माना $\mathrm{O}$ से $x$-अक्ष पर लंब रेखा $y$-अक्ष है। $\mathrm{F} _{1}$ के निर्देशांक $(-c, 0)$ तथा $\mathrm{F} _{2}$ के निर्देशांक $(c, 0)$ मान लेते हैं (आकृति 10.27)।
आकृति 10.25
मान लीजिए दीर्घवृत्त पर कोई बिंदु $\mathrm{P}(x, y)$ इस प्रकार है कि $\mathrm{P}$ से दोनों नाभियों की दूरियों का योग $2 a$ है अर्थात्
$ PF_1+PF_2=2 a . \quad \quad \quad \quad \quad \quad \quad \ldots (1) $
दूरी सूत्र से हम पाते हैं,
$ \begin{aligned} & \qquad \sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}}=2 a \\ & \text{ i.e., } \sqrt{(x+c)^{2}+y^{2}}=2 a-\sqrt{(x-c)^{2}+y^{2}} \end{aligned} $
$ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $
दोनों पक्षों का वर्ग करने पर, हम प्राप्त करते हैं
$ (x+c)^{2}+y^{2}=4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}}+(x-c)^{2}+y^{2} $
जिसे सरल करने पर मिलता है
$ \sqrt{(x-c)^{2}+y^{2}}=a-\frac{c}{a} x $
पुनः वर्ग करने व सरल करने पर हमें प्राप्त होता है
$ \begin{aligned} \frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}-c^{2}}=1 & \\ \text{अर्थात्., } \quad \quad\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 & (\text{ क्योंकि } c^{2}=a^{2}-b^{2}) \end{aligned} $
अतः दीर्घवृत्त पर कोई बिंदु
$$ \begin{equation*} \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{2} \end{equation*} $$ को संतुष्ट करता है।
विलोमतः माना $\mathrm{P}(x, y)$ समीकरण (2) को संतुष्ट करता है, $0<c<a$. तब
$$ y^{2}=b^{2} \quad 1-\frac{x^{2}}{a^{2}} $$
इसलिए $\mathrm{PF} _{1} \quad=\sqrt{(x+c)^{2}+y^{2}}$
$ =\sqrt{(x+c)^{2}+b^{2} \frac{a^{2}-x^{2}}{a^{2}}} $ $ \begin{aligned} & \left.=\sqrt{(x+c)^{2}+\left(a^{2}-c^{2}\right) \frac{a^{2}-x^{2}}{a^{2}}} \text { (क्योंकि } b^{2}=a^{2}-c^{2}\right) \\ & =\sqrt{a+\frac{c x^{2}}{a}}=a+\frac{c}{a} x \end{aligned} $
इसी प्रकार $ \mathrm{PF} _{2}=a-\frac{c}{a} x $
अत: $ \begin{equation*} \mathrm{PF} _{1}+\mathrm{PF} _{2}=a+\frac{c}{a} x+a-\frac{c}{a} x=2 a \tag{3} \end{equation*} $
इसलिए, कोई बिंदु जो $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, को संतुष्ट करता है, वह ज्यामितीय अनुबंधों को भी संतुष्ट करता है और इसलिए $\mathrm{P}(x, y)$ दीर्घवृत्त पर स्थित है।
इस प्रकार (2) ओर (3) से हमने सिद्ध किया कि एक दीर्घवृत्त, जिसका केंद्र मूल बिंदु और दीर्घ अक्ष $x$-अक्ष के अनुदिश है, का समीकरण
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ है।
विवेचना दीर्घवृत्त के समीकरण से हम यह निष्कर्ष पाते हैं कि दीर्घवृत्त पर प्रत्येक बिंदु $\mathrm{P}(x, y)$ के लिए
$$ \frac{x^{2}}{a^{2}}=1-\frac{y^{2}}{b^{2}} \leq 1 \text {, अर्थात् } x^{2} \leq a^{2} \text {, इसलिए }-a \leq x \leq a \text {. } $$
अतः दीर्घवृत्त रेखाओं $x=-a$ और $x=a$ के बीच में स्थित है और इन रेखाओं को स्पर्श भी करता है।
इसी प्रकार, दीर्घवृत्त, रेखाओं $y=-b$ और $y=b$ के बीच में इन रेखाओं को स्पर्श करता हुआ स्थित है।
इसी प्रकार, हम आकृति 10.24 (b) में, दर्शाए गए दीर्घवृत्त के समीकरण $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$ को व्युत्पन्न कर सकते हैं। इन दो समीकरणों को दीर्घवृत्त के मानक समीकरण कहते हैं।
टिप्पणी दीर्घवृत्त के मानक समीकरण में, दीर्घवृत्त का केंद्र, मूल बिंदु पर और दीर्घ अक्ष व लघु अक्ष निर्देशांक्षों पर स्थित है। यहाँ ऐसे दीर्घवृत्तों का अध्ययन, जिनका केंद्र कोई अन्य बिंदु हो सकता है और केंद्र से गुज़रने वाली रेखा, दीर्घ अक्ष व लघु अक्ष हो सकते हैं, इस पुस्तक की विषय वस्तु से बाहर हैं।
आकृति 10.24 से प्राप्त दीर्घवृत्त के मानक समीकरण के निरीक्षण से हमें निम्नांकित निष्कर्ष प्राप्त होते हैं।
1. दीर्घवृत्त दोनों निर्देशांक्षों के सापेक्ष सममित है क्योंकि यदि दीर्घवृत्त पर एक बिंदु $(x, y)$ है तो बिंदु $(-x, y),(x,-y)$ और $(-x,-y)$ भी दीर्घवृत्त पर स्थित हैं।
2. दीर्घवृत्त की नाभियाँ सदैव दीर्घ अक्ष पर स्थित होती हैं। दीर्घ अक्ष को सममित रेखा पर अन्त: खंड निकालकर प्राप्त किया जा सकता है। जैसे कि यदि $x^{2}$ का हर बड़ा है तो दीर्ध अक्ष $x$-अक्ष के अनुदिश है और यदि $y^{2}$ का हर बड़ा है तो दीर्घ अक्ष $y$-अक्ष के अनुदिश होता है।
10.5.4 नाभिलंब जीवा (Latus rectum)
परिभाषा 6 दीर्घवृत्त की नाभियों से जाने वाली और दीर्घ अक्ष पर लंबवत रेखाखंड जिसके अंत्य बिंदु दीर्घवृत्त पर हों, को दीर्घवृत्त की नाभिलंब जीवा कहते हैं (आकृति 10.26)।
आकृति 10.26
दीर्घवृत्त $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ की नाभिलंब जीवा की लंबाई ज्ञात करना
माना $\mathrm{AF} _{2}$ की लंबाई $l$ है
तब $\mathrm{A}$ के निर्देशांक $(c, l)$,अर्थात् $(a e, l)$ है।
क्योंकि $\mathrm{A}$, दीर्घवृत्त $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, पर स्थित है। इससे हमें प्राप्त होता है:
$
\begin{aligned}
& \frac{(a e)^{2}}{a^{2}}+\frac{l^{2}}{b^{2}}=1 \\ & \Rightarrow l^{2}=b^{2}\left(1-e^{2}\right)
\end{aligned}
$
परंतु
$e^{2}=\frac{c^{2}}{a^{2}}=\frac{a^{2}-b^{2}}{a^{2}}=1-\frac{b^{2}}{a^{2}}$
इसलिए $ l^{2}=\frac{b^{4}}{a^{2}}, \text { अर्थात् } l=\frac{b^{2}}{a} $
क्योंकि दीर्घवृत्त $y$-अक्ष के सापेक्ष सममित होता है, (निःसंदेह यह दोनों अक्षों के सापेक्ष सममित हैं) इसलिए $\mathrm{AF} _{2}=\mathrm{F} _{2} \mathrm{~B}$. अतः नाभिलंब जीवा की लंबाई $\frac{2 b^{2}}{a}$ है।
उदाहरण 9 दीर्घवृत्त $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ के नाभियों और शीर्षों के निर्देशांक, दीर्घ एव लघु अक्ष की लंबाइयाँ, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए।
हल क्योंकि $\frac{x^{2}}{25}$ का हर, $\frac{y^{2}}{9}$ के हर से बड़ा है, इसलिए दीर्घ अक्ष $x$-अक्ष के अनुदिश हैं। दिए गए समीकरण की $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, से तुलना करने पर
$ \begin{gathered} a=5 \text { और } b=3 \text { साथ ही } \\c=\sqrt{a^{2}-b^{2}}=\sqrt{25-9}=4 \end{gathered} $
अतः नाभियों के निर्देशांक $(-4,0)$ और $(4,0)$ है, शीर्षों के निर्देशांक $(-5,0)$ और $(5,0)$ हैं। दीर्घ अक्ष की लंबाई $2 a=10$ इकाइयाँ, लघु अक्ष की लंबाई $2 b=6$ इकाइयाँ और उत्केंद्रता $\frac{4}{5}$ और नाभिलंब $\frac{2 b^{2}}{a}=\frac{18}{5}$ है।
उदाहरण 10 दीर्घवृत्त $9 x^{2}+4 y^{2}=36$ के नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, और उत्केंद्रता ज्ञात कीजिए।
हल दिए गए दीर्घवृत्त की समीकरण की प्रमाणिक समीकरण के रूप में लिखने पर
$$ \frac{x^{2}}{4}+\frac{y^{2}}{9}=1 $$
क्योंकि $\frac{y^{2}}{9}$ का हर, $\frac{x^{2}}{4}$ के हर से बड़ा, इसलिए दीर्घ अक्ष, $y$-अक्ष के अनुदिश है । दिए गए समीकरण की मानक समीकरण
$\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, से तुलना करने पर हमें प्राप्त होता है $b=2$ और $a=3$
$\quad c=\sqrt{a^{2}-b^{2}}=\sqrt{9-4}=\sqrt{5}$
और $\quad e=\frac{c}{a}=\frac{\sqrt{5}}{3}$
अतः नाभियों के निर्देशांक $(0, \sqrt{5})$ व $(0,-\sqrt{5})$, हैं। शीर्षों के निर्देशांक $(0,3)$ व $(0,-3)$ हैं । दीर्घ अक्ष की लंबाई $2 a=6$ इकाइयाँ लघु अक्ष की लंबाई 4 इकाइयाँ और दीर्घवृत्त की उत्केंद्रता $\frac{\sqrt{5}}{3}$ है।
उदाहरण 11 उस दीर्घवृत्त का समीकरण ज्ञात कीजिए, जिसकी नाभियों के निर्देशांक $( \pm 5,0)$ तथा शीर्षों के निर्देशांक $( \pm 13,0)$ हैं।
हल क्योंकि दीर्घवृत्त का शीर्ष $x$-अक्ष पर स्थित है अतः इसका समीकरण
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ के अनुरूप होगा,जहाँ अर्ध-दीर्घ अक्ष की लंबाई $a$ है।
हमें ज्ञात है, कि, $a=13, c= \pm 5$.
अत: $c^{2}=a^{2}-b^{2}$, के सूत्र से हमें प्राप्त होता है,
$25=169-b^{2}$ या $b=12$
अत: दीर्घवृत्त का समीकरण $\frac{x^{2}}{169}+\frac{y^{2}}{144}=1$ है।
उदाहरण 12 उस दीर्घवृत्त का समीकरण ज्ञात कीजिए, जिसके दीर्घ अक्ष की लंबाई 20 है तथा नाभियाँ $(0, \pm 5)$ हैं।
हल क्योंकि नाभियाँ $y$-अक्ष पर स्थित हैं, इसलिए दीर्घवृत्त का समीकरण $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$ के अनुरूप है।
दिया है $ a=\text { अर्ध दीर्घ अक्ष }=\frac{20}{2}=10 $
और सूत्र
$ \begin{aligned} & c^{2}=a^{2}-b^{2} \text { से प्राप्त होता है, } \\ & 5^{2}=10^{2}-b^{2} \text { या } b^{2}=75 \end{aligned} $
अत:
$ \frac{x^{2}}{75}+\frac{y^{2}}{100}=1 $
उदाहरण 13 उस दीर्घवृत्त का समीकरण ज्ञात कीजिए, जिसकी दीर्घ अक्ष, $x$-अक्ष के अनुदिश है और $(4,3)$ तथा $(-1,4)$ दीर्घवृत्त पर स्थित हैं।
हल दीर्घवृत्त के समीकरण का मानक रूप $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ है। चूँकि बिंदु $(4,3)$ तथा $(-1,4)$ दीर्घवृत्त पर स्थित हैं। अतः हमें प्राप्त होता है,
$ \begin{align*} & \frac{16}{a^{2}}+\frac{9}{b^{2}}=1 \tag{1}\\ & \frac{1}{a^{2}}+\frac{16}{b^{2}}=1 \tag{2} \end{align*} $
समीकरण (1) और (2) को हल करने पर $a^{2}=\frac{247}{7}$ व $b^{2}=\frac{247}{15}$ प्राप्त होता है।
अतः अभीष्ट समीकरण:
$ \frac{x^{2}}{\frac{247}{7}}+\frac{y^{2}}{\frac{247}{15}}=1 \text { या } 7 x^{2}+15 y^{2}=247 \text { है। } $
प्रश्नावली 10.3
निम्नलिखित प्रश्नों 1 से 9 तक प्रत्येक दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए:
1. $\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$
Show Answer
\missing2. $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$
Show Answer
/missing3. $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
Show Answer
/missing4. $\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$
Show Answer
/missing5. $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$
Show Answer
/missing6. $\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$
Show Answer
/missing7. $36 x^{2}+4 y^{2}=144$
Show Answer
/missing8. $16 x^{2}+y^{2}=16$
Show Answer
/missing9. $4 x^{2}+9 y^{2}=36$
Show Answer
/missingनिम्नलिखित प्रश्नों 10 से 20 तक प्रत्येक में, दिए प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए:
10. शीर्षों $( \pm 5,0)$, नाभियाँ $( \pm 4,0)$
Show Answer
/missing11. शीर्षों $(0, \pm 13)$, नाभियाँ $(0, \pm 5)$
Show Answer
/missing12. शीर्षों $( \pm 6,0)$, नाभियाँ $( \pm 4,0)$
Show Answer
/missing13. दीर्घ अक्ष के अंत्य बिंदु $( \pm 3,0)$, लघु अक्ष के अंत्य बिंदु $(0, \pm 2)$
Show Answer
/missing14. दीर्घ अक्ष के अंत्य बिंदु $(0, \pm \sqrt{5})$, लघु अक्ष के अंत्य बिंदु $( \pm 1,0)$
Show Answer
/missing15. दीर्घ अक्ष की लंबाई 26 , नाभियाँ $( \pm 5,0)$
Show Answer
/missing16. दीर्घ अक्ष की लंबाई 16 , नाभियाँ $(0, \pm 6)$.
Show Answer
/missing17. नाभियाँ $( \pm 3,0), a=4$
Show Answer
/missing18. $b=3, c=4$, केंद्र मूल बिंदु पर, नाभियाँ $x$ अक्ष पर
Show Answer
/missing19. केंद्र $(0,0)$ पर, दीर्घ-अक्ष, $y$-अक्ष पर और बिंदुओं $(3,2)$ और $(1,6)$ से जाता है।
Show Answer
/missing20. दीर्घ अक्ष, $x$-अक्ष पर और बिंदुओं $(4,3)$ और $(6,2)$ से जाता है।
Show Answer
/missing10.6 अतिपरवलय (Hyperbola)
परिभाषा 7 एक अतिपरवलय, तल के उन सभी बिंदुओं का समुच्चय है जिनकी तल में दो स्थिर बिंदुओं से दूरी का अंतर अचर होता है।
परिभाषा में ‘अंतर’ शब्द का प्रयोग किया गया है जिसका अर्थ है दूर स्थित बिंदु से दूरी ऋण निकट स्थित बिंदु से दूरी। दो स्थिर बिंदुओं को दीर्घवृत्त की नाभियाँ कहते हैं। नाभियों को मिलाने वाले रेखाखंड के मध्य बिंदु को अतिपरवलय का केंद्र कहते हैं। नाभियों से गुज़रने वाली रेखा को अनुप्रस्थ अक्ष (transverse axis) तथा केंद्र से गुज़रने वाली रेखा और अनुप्रस्थ अक्ष पर लंबवत् रेखा को संयुग्मी अक्ष (conjugate axis) कहते हैं। अतिपरवलय, अनुप्रस्थ अक्ष को जिन बिंदुओं पर काटता है, उन्हें अतिपरवलय के शीर्ष (vertices) कहते हैं (आकृति 10.27)।
आकृति 10.27
दोनों नाभियों के बीच की दूरी को हम $2 c$ से प्रदर्शित करते हैं, दोनों शीर्षों के बीच की दूरी (अनुप्रस्थ अक्ष की लंबाई) को $2 a$ से प्रदर्शित करते हैं और हम राशि $b$ को इस प्रकार परिभाषित करते हैं कि
$b=\sqrt{c^{2}-a^{2}} $
$2 b$ को संयुग्मी अक्ष की लंबाई भी कहते है (आकृति 10.28)।
आकृति 10.28
समीकरण (1) की अचर राशि $\mathbf{P} _{1} \mathbf{F} _{2}-\mathbf{P} _{1} \mathbf{F} _{1}$ ज्ञात करना
आकृति 11.30 में $\mathrm{A}$ तथा $\mathrm{B}$ पर बिंदु $\mathrm{P}$ को रखने पर हमें प्राप्त होता है,
$\mathrm{BF} _{1}-\mathrm{BF} _{2}=\mathrm{AF} _{2}-\mathrm{AF} _{1}$ (अतिपरवलय की परिभाषा के अनुसार)
$\mathrm{BA}+\mathrm{AF} _{1}-\mathrm{BF} _{2}=\mathrm{AB}+\mathrm{BF} _{2}-\mathrm{AF} _{1}$
अर्थात् $\mathrm{AF} _{1}=\mathrm{BF} _{2}$
इसलिए, $\mathrm{BF} _{1}-\mathrm{BF} _{2}=\mathrm{BA}+\mathrm{AF} _{1}-\mathrm{BF} _{2}=\mathrm{BA}=2 a$
10.6.1 उत्केंद्रता (Eccentricity)
परिभाषा 8 दीर्घवृत्त की तरह ही अनुपात $e=\frac{c}{a}$ को अतिपरवलय की उत्केंद्रता कहते हैं। चूँकि $c \geq a$, इसलिए उत्केंद्रता कभी भी एक से कम नहीं होती है। उत्केंद्रता के संबंध में, नाभियाँ केंद्र से $a e$ की दूरी पर होती है।
10.6.2 अतिपरवलय का मानक समीकरण (Standard equation of Hyperbola)
यदि अतिपरवलय का केंद्र मूल बिंदु पर और नाभियाँ $x$-अक्ष और $y$-अक्ष पर स्थित हों तो अतिपरवलय का समीकरण सरलतम होता है ऐसे दो संभव दिक्विन्यास आकृति 10.29 में दर्शाए गए हैं।
अब हम आकृति 10.29(a) में दर्शाए गए अतिपरिवलय, जिसकी नाभियाँ $x$-अक्ष पर स्थित हैं का समीकरण व्युत्पन्न करेंगे।
मान लीजिए $\mathrm{F} _{1}$ और $\mathrm{F} _{2}$ नाभियाँ हैं और रेखाखंड $\mathrm{F} _{1} \mathrm{~F} _{2}$ का मध्य बिंदु $\mathrm{O}$ है। मान लीजिए $\mathrm{O}$ मूल बिंदु है और $\mathrm{O}$ से $\mathrm{F} _{2}$ की ओर धनात्मक $x$-अक्ष व $\mathrm{O}$ से $\mathrm{F} _{1}$ की ओर ऋणात्मक $x$-अक्ष है। माना $\mathrm{O}$ से $x$-अक्ष पर लंब $y$-अक्ष है। $\mathrm{F} _{1}$ के निर्देशांक $(-c, 0)$ और $\mathrm{F} _{2}$ के निर्देशांक $(c, 0)$ मान लेते हैं (आकृति 10.30)।
आकृति 10.30
मान लीजिए अतिपरवलय पर कोई बिंदु $\mathrm{P}(x, y)$ इस प्रकार है कि $\mathrm{P}$ की दूरस्थ बिंदु से व निकटस्थ बिंदु से दूरीयों का अंतर $2 a$ है इसलिए, $\mathrm{PF} _{1}-\mathrm{PF} _{2}=2 a$
दूरी सूत्र से हम पाते हैं
$ \begin{aligned} & \quad \quad \quad \quad \sqrt{(x+c)^{2}+y^{2}}-\sqrt{(x-c)^{2}+y^{2}}=2 a \\ &\text{अतः, } \quad \quad \quad \sqrt{(x+c)^{2}+y^{2}}=2 a+\sqrt{(x-c)^{2}+y^{2}} \end{aligned} $
दोनों पक्षों का वर्ग करने पर, हम प्राप्त करते हैं,
$ (x+c)^{2}+y^{2}=4 a^{2}+4 a \quad \sqrt{(x-c)^{2}+y^{2}}+(x-c)^{2}+y^{2} $
जिसे सरल करने पर मिलता है
$ \frac{c x}{a}-a=\sqrt{(x-c)^{2}+y^{2}} $
पुन: वर्ग करने व सरल करने पर हमें प्राप्त होता है,
$ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{c^{2}-a^{2}}=1 $
अतः, $\quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad$ (Since $c^{2}-a^{2}=b^{2}$ )
अतः अप्रतिपरवलय पर स्थित कोई बिंदु $ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $ को संतुष्ट करता है।
विलोमतः माना $\mathrm{P}(x, y)$, समीकरण (3) को संतुष्ट करता है, $0<a<c$. तब,
$ y^{2}=b^{2}(\frac{x^{2}-a^{2}}{a^{2}}) $
इस प्रकार
$ \begin{aligned} PF_1 & =+\sqrt{(x+c)^{2}+y^{2}} \\ & =+\sqrt{(x+c)^{2}+b^{2}(\frac{x^{2}-a^{2}}{a^{2}})}=a+\frac{c}{a} x \end{aligned} $
इसी प्रकार $ \mathrm{PF} _{2}=a-\frac{a}{c} x $
अतिपरवलय में $c>a$ और चूँकि $\mathrm{P}$ रेखा $x=a$, के दाहिनी ओर है, $x>a$, और इसलिए $\frac{c}{a} x>a$.
या $a-\frac{c}{a} x$ ॠणात्मक हो जाता है। अत: $\mathrm{PF} _{2}=\frac{c}{a} x-a$.
इसलिए $\mathrm{PF} _{1}-\mathrm{PF} _{2}=a+\frac{c}{a} x-\frac{c x}{a}+a=2 a$
ध्यान दीजिए, यदि $\mathrm{P}$ रेखा $x=-a$, के बाईं ओर होता तब
$\mathrm{PF} _{1}=-\left(a+\frac{c}{a} x\right), \mathrm{PF} _{2}=a-\frac{c}{a} x$.
उस स्थिति में $\mathrm{PF} _{2}-\mathrm{PF} _{1}=2 a$. इसलिए कोई बिंदु जो $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, को संतुष्ट करता है तो अतिपरवलय पर स्थित होता है।
इस प्रकार हमने सिद्ध किया कि एक अतिपरवलय, जिसका केंद्र $(0,0)$ व अनुप्रस्थ अक्ष, $x$-अक्ष के अनुदिश है, का समीकरण है $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
टिप्पणी एक अतिपरवलय जिसमें $a=b$ हो, समकोणीय अतिपरवलय (rectangular hyperbola) कहलाता है।
विवेचना अतिपरवलय के समीकरण से हम यह निष्कर्ष पाते हैं कि अतिपरवलय पर प्रत्येक बिंदु $(x, y)$ के लिए, $\frac{x^{2}}{a^{2}}=1+\frac{y^{2}}{b^{2}} \geq 1$.
अर्थात् $\left|\frac{x}{a}\right| \geq 1$, अर्थात् $x \leq-a$ या $x \geq a$. इसलिए, वक्र का भाग रेखाओं $x=+a$ और $x=-a$, के बीच में स्थित नहीं है (अथवा संयुग्मी अक्ष पर वास्तविक अंतःखंड नहीं होते हैं)।
इसी प्रकार, आकृति 10.29 (b) में, हम अतिपरवलय का समीकरण $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$ व्युत्पन्न कर सकते हैं। इन दो समीकरणों को अतिपरवलय का मानक समीकरण कहते हैं।
टिप्पणी अतिपरवलय के मानक समीकरण में, अतिपरवलय का केंद्र, मूल बिंदु पर और अनुप्रस्थ अक्ष व संयुग्मी अक्ष निर्देशांक्षो पर स्थित हैं। तथापि यहाँ ऐसे भी अतिपरवलय होते हैं जिनमें कोई दो लंबवत् रेखाएँ अनुप्रस्थ अक्ष व संयुग्मी अक्ष होते हैं परंतु ऐसी स्थितियों का अध्ययन उच्च कक्षाओं में हैं।
आकृति 10.27 , से प्राप्त अतिपरवलयों के मानक समीकरण के निरीक्षण से हमें निम्नलिखित निष्कर्ष प्राप्त होते हैं:
1. अतिपरवलय, दोनों निर्देशांक्षों के सापेक्ष सममित हैं क्योंकि यदि अतिपरवलय पर एक बिंदु $(x, y)$ है तो बिंदु $(-x, y),(x,-y)$ और $(-x,-y)$ भी अतिपरवलय पर स्थित हैं।
2. अतिपरवलय की नाभियाँ सदैव अनुप्रस्थ अक्ष पर स्थित होती हैं। यह सदैव एक धनात्मक पद है जिसका हर अनुप्रस्थ अक्ष देता है। उदाहरणतः $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ का अनुप्रस्थ अक्ष, $x$-अक्ष के अनुदिश है और इसकी लंबाई 6 है जबकि $\frac{y^{2}}{25}-\frac{x^{2}}{16}=1$ का अनुप्रस्थ अक्ष, $y$-अक्ष के अनुदिश है और इसकी लंबाई 10 है।
10.6.3 नाभिलंब जीवा (Latus rectum)
परिभाषा 9 अतिपरवलय की नाभियों से जाने वाली और अनुप्रस्थ अक्ष पर लंबवत् रेखाखंड जिसके अंत्य बिंदु अतिपरवलय पर हों, को अतिपरवलय की नाभिलंब जीवा कहते हैं।
दीर्घवृत्तों की भाँति, यह दर्शाना सरल है कि अतिपरवलय की नाभिलंब जीवा की लंबाई $\frac{2 b^{2}}{a}$ है।
उदाहरण 14 निम्नलिखित अतिपरवलयों के शीर्षों और नाभियों के निर्देशांकों, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए।
(i) $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ (ii) $y^{2}-16 x^{2}=16$
हल (i) दिए गए समीकरण $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ का मानक समीकरण
$$ \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \text { से तुलना करने पर, हम पाते हैं कि } $$
$a=3, b=4$ और $c=\sqrt{a^{2}+b^{2}}=\sqrt{9+16}=5$
अतः नाभियों के निर्देशांक $( \pm 5,0)$ हैं और शीर्षों के निर्देशांक $( \pm 3,0)$ हैं।
उत्केंद्रता $e=\frac{c}{a}=\frac{5}{3}$ नाभिलंब जीवा की लंबाई $=\frac{2 b^{2}}{a}=\frac{32}{3}$
(ii) दिये गए समीकरण के दोनों पक्षों को 16 से भाग करने पर $\frac{y^{2}}{16}-\frac{x^{2}}{1}=1$
हमें प्राप्त होता है, मानक समीकरण $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$, से तुलना करने पर हम पाते हैं कि $a=4, b=1$ और $c=\sqrt{a^{2}+b^{2}}=\sqrt{16+1}=\sqrt{17}$
अतः नाभियों के निर्देशांक $(0, \pm \sqrt{17})$ हैं और शीर्षों के निर्देशांक $(0, \pm 4)$ हैं।
उत्केंद्रता $e=\frac{c}{a}=\frac{\sqrt{17}}{4}$ नाभिलंब जीवा की लंबाई $=\frac{2 b^{2}}{a}=\frac{1}{2}$.
उदाहरण 15 नाभियाँ $(0, \pm 3)$ और शीर्षों $\left(0, \pm \frac{\sqrt{11}}{2}\right)$ वाले अतिपरवलय का समीकरण ज्ञात कीजिए।
हल क्योंकि नाभियाँ $y$-अक्ष पर हैं, इसलिए अतिपरवलय का समीकरण $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$ के रूप में है।
क्योंकि शीर्ष $\left(0, \pm \frac{\sqrt{11}}{2}\right)$, इसलिए $a=\frac{\sqrt{11}}{2}$
और नाभियाँ $(0, \pm 3) ; c=3$ और $b^{2}=c^{2}-a^{2}=\frac{25}{4}$.
इसलिए, अतिपरवलय का समीकरण है
$ \frac{y^{2}}{\left(\frac{11}{4}\right)}-\frac{x^{2}}{\left(\frac{25}{4}\right)}=1, \text { अर्थात् } 100 y^{2}-44 x^{2}=275 $
उदाहरण 16 उस अतिपरवलय का समीकरण ज्ञात कीजिए जिसकी नाभियाँ $(0, \pm 12)$ और नाभिलंब जीवा की लंबाई 36 है।
हल क्योंकि नाभियाँ $(0, \pm 12)$, है इसलिए $c=12$.
नाभिलंब जीवा की लंबाई $=\frac{2 b^{2}}{a}=36, b^{2}=18 a$
$ \begin{aligned} & \text{इसलिए} \quad \quad\quad\quad c^{2}=a^{2}+b^{2} ; \text{ gives } \\ & \quad\quad\quad\quad\quad\quad\quad\quad\quad 144=a^{2}+18 a \\ & \text{ अर्थात् } \quad\quad\quad\quad\quad\quad\quad a^{2}+18 a-144=0, \\ & \text{ } \quad \quad\quad\quad\quad\quad\quad a=-24,6 . \end{aligned} $
क्योंकि $a$ ॠणात्मक नहीं हो सकता है, इसलिए हम $a=6$ लेते हैं और $b^{2}=108$.
अतः अभीष्ट अतिपरवलय का समीकरण $\frac{y^{2}}{36}-\frac{x^{2}}{108}=1$ है, अर्थात् $3 y^{2}-x^{2}=108$
प्रश्नावली 10.4
निम्नलिखित प्रश्न 1 से 6 तक प्रत्येक में, अतिपरवलयों के शीर्षों, नाभियों के निर्देशांक, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए:
1. $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
Show Answer
\missing2. $\frac{y^{2}}{9}-\frac{x^{2}}{27}=1$
Show Answer
/missing3. $9 y^{2}-4 x^{2}=36$
Show Answer
\missing4. $16 x^{2}-9 y^{2}=576$
Show Answer
/missing5. $5 y^{2}-9 x^{2}=36$
Show Answer
/missing6. $49 y^{2}-16 x^{2}=784$.
Show Answer
/missingनिम्नलिखित प्रश्न 7 से 15 तक प्रत्येक में, दिए गए प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए:
7. शीर्ष $( \pm 2,0)$, नाभियाँ $( \pm 3,0)$
Show Answer
\missing8. शीर्ष $(0, \pm 5)$, नाभियाँ $(0, \pm 8)$
Show Answer
\missing9. शीर्ष $(0, \pm 3)$, नाभियाँ $(0, \pm 5)$
Show Answer
\missing10. नाभियाँ $( \pm 5,0)$, अनुप्रस्थ अक्ष की लंबाई 8 है।
Show Answer
\missing11. नाभियाँ $(0, \pm 3)$, संयुग्मी अक्ष की लंबाई 24 है।.
Show Answer
\missing12. नाभियाँ $( \pm 3 \sqrt{5}, 0)$, नाभिलंब जीवा की लंबाई 8 है।
Show Answer
/missing13. नाभियाँ $( \pm 4,0)$, नाभिलंब जीवा की लंबाई 12 है।
Show Answer
\missing14. शीर्ष $( \pm 7,0), e=\frac{4}{3}$.
Show Answer
\missing15. नाभियाँ $(0, \pm \sqrt{10})$, हैं तथा $(2,3)$ से होकर जाता है।
Show Answer
\missingविविध उदाहरण
उदाहरण 17 एक परवलयाकार परावर्तक की नाभि, इसके शीर्ष केंद्र से 5 सेमी की दूरी पर है जैसा कि आकृति 10.31 में दर्शाया गया है। यदि परावर्तक 45 सेमी गहरा है, तो आकृति 10.31 में दूरी $\mathrm{AB}$ ज्ञात कीजिए (आकृति 10.31)।
आकृति 10.31
हल क्योंकि नाभि की केंद्र शीर्ष से दूरी 5 सेमी है, हम $a=5$ सेमी पाते हैं। यदि शीर्ष मूल बिंदु और दर्पण की अक्ष, $x$-अक्ष के धन भाग के अनुदिश हो तो परवलयाकार परिच्छेद का समीकरण
$ \quad\quad\quad\quad\quad\quad\quad\quad\quad y^{2}=4(5) x=20 x $
यदि $ \quad\quad\quad\quad\quad x=45 . \text{ तो हम पाते हैं } $
$ \quad\quad\quad\quad\quad\quad\quad\quad\quad y^{2}=900 $
इसलिए $ \quad\quad\quad\quad\quad\quad y= \pm 30 $
अतः $\quad\quad\quad\quad\quad\quad AB = 2y = 2 \times 30 = 60 \text{cm} $.
उदाहरण 18 एक दंड के सिरे, 12 मीटर दूर रखे आधारों पर टिके हैं। चूँकि दंड का भार केंद्र पर केंद्रित होने से दंड में केंद्र पर 3 सेमी का झुकाव आ जाता है और झुका हुआ दंड एक परवलयाकार है। केंद्र से कितनी दूरी पर झुकाव 1 सेमी है?
हल मान लीजिए शीर्ष निम्नतम बिंदु पर और अक्ष उर्ध्वाधर है। माना निर्देशांक्ष, आकृति 10.32 के अनुसार दर्शाए गए हैं।
आकृति 10.32
परवलय का समीकरण $x^{2}=4 a y$ जैसा है। चूँकि यह $6, \frac{3}{100}$, से गुज़रता है इसलिए हमें $(6)^{2}=4 a \frac{3}{100}$, अर्थात् $a=\frac{36 \times 100}{12}=300$ मी प्राप्त है।
अब दंड में झुकाव $\mathrm{AB}, \frac{1}{100}$ मी है। $\mathrm{B}$ के निर्देशांक $\left(x, \frac{2}{100}\right)$ हैं।
$ \begin{aligned} \text{इसलिए } \quad\quad\quad\quad\quad x^{2} & =4 \times 300 \times \frac{2}{100}=24 \\ \text{i.e. }\quad\quad\quad\quad\quad x & =\sqrt{24} \quad=2 \sqrt{6} \text{ मी } \end{aligned} $
उदाहरण 19 15 सेमी लंबी एक छड़ $\mathrm{AB}$ दोनों निर्देशांक्षों के बीच में इस प्रकार रखी गई है कि उसका एक सिरा $\mathrm{A}, x$-अक्ष पर और दूसरा सिरा $\mathrm{B}, y$-अक्ष पर रहता है छड़ पर एक बिंदु $\mathrm{P}(x, y)$ इस प्रकार लिया गया है कि $\mathrm{AP}=6$ सेमी हैं दिखाइए कि $\mathrm{P}$ का बिंदुपथ एक दीर्घवृत्त है।
हल मान लीजिए छड़ $\mathrm{AB}, \mathrm{OX}$ के साथ $\theta$ कोण बनाती है जैसा कि आकृति 10.33 में दिखाया गया है। $\mathrm{AB}$ पर बिंदु $\mathrm{P}(x, y)$ इस प्रकार है कि $\mathrm{AP}=6$ सेमी है।
आकृति 10.33
$ \begin{aligned} & \text {क्योंकि } \quad \quad \quad\quad AB=15 \text{ सेमी, इसलिए } \\ & \quad\quad\quad \quad\quad\quad \quad PB=9 \text{ सेमी.} \end{aligned} $
$\mathrm{P}$ से $\mathrm{PQ}$ और $\mathrm{PR}$ क्रमशः $y$-अक्ष और $x$-अक्ष पर लंब डालिए।
से $\quad\quad\quad \quad \Delta PBQ, \cos \theta=\frac{x}{9}$
से $ \quad\quad\quad \quad \Delta PRA, \sin \theta=\frac{y}{6} $
क्योंकि $\cos ^{2} \theta+\sin ^{2} \theta=1$
अतः $ \frac{x}{9}^{2}+\frac{y}{6}^{2}=1 $
या $ \quad\quad\quad \quad \frac{x^{2}}{81}+\frac{y^{2}}{36}=1 $
अतः $\mathrm{P}$ का बिंदुपथ एक दीर्घवृत्त है।
अध्याय 10 पर आधारित विविध प्रश्नावली
1. यदि एक परवलयाकार परावर्तक का व्यास 20 सेमी और गहराई 5 सेमी है। नाभि ज्ञात कीजिए।
Show Answer
/missing2. एक मेहराब परवलय के आकार का है और इसका अक्ष ऊर्ध्वाधर है। मेहराव 10 मीटर ऊँचा है और आधार में 5 मीटर चौड़ा है यह, परवलय के दो मीटर की दूरी पर शीर्ष से कितना चौड़ा होगा?
Show Answer
/missing3. एक सर्वसम भारी झूलते पुल की केबिल (cable)परवलय के रूप में लटकी हुई है। सड़क पथ जो क्षैतिज है 100 मीटर लंबा है तथा केबिल से जुड़े ऊर्ध्वाधर तारों पर टिका हुआ है, जिसमें सबसे लंबा तार 30 मीटर और सबसे छोटा तार 6 मीटर है। मध्य से 18 मीटर दूर सड़क पथ से जुड़े समर्थक (supporting) तार की लंबाई ज्ञात कीजिए।
Show Answer
/missing4. एक मेहराव अर्ध-दीर्घवृत्ताकार रूप का है। यह 8 मीटर चौड़ा और केंद्र से 2 मीटर ऊँचा है। एक सिरे से 1.5 मीटर दूर बिंदु पर मेहराव की ऊँचाई ज्ञात कीजिए।
Show Answer
/missing5. एक 12 सेमी लंबी छड़ इस प्रकार चलती है कि इसके सिरे निर्देशांक्षो को स्पर्श करते हैं। छड़ के बिंदु $\mathrm{P}$ का बिंदुपथ ज्ञात कीजिए जो $x$-अक्ष के संपर्क वाले सिरे से 3 सेमी दूर है।
Show Answer
/missing6. त्रिभुज का क्षेत्रफल ज्ञात कीजिए जो परवलय $x^{2}=12 y$ के शीर्ष को इसकी नाभिलंब जीवा के सिरों को मिलाने वाली रेखाओं से बना है।
Show Answer
/missing7. एक व्यक्ति दौड़पथ पर दौड़ते हुऐ अंकित करता है कि उससे दो झंडा चौकियों की दूरियों का योग सदैव 10 मीटर रहता है। और झंडा चौकियों के बीच की दूरी 8 मीटर है। व्यक्ति द्वारा बनाए पथ का समीकरण ज्ञात कीजिए।
Show Answer
/missing8. परवलय $y^{2}=4 a x$, के अंतर्गत एक समबाहु त्रिभुज है जिसका एक शीर्ष परवलय का शीर्ष है। त्रिभुज की भुजा की लंबाई ज्ञात कीजिए।
Show Answer
/missingसारांश
इस अध्याय में निम्नलिखित संकल्पनाओं एवं व्यापकताओं का अध्ययन किया है।
एक वृत्त, तल के उन बिंदुओं का समुच्चय है जो तल के एक स्थिर बिंदु से समान दूरी पर होते हैं।
केंद्र $(h, k)$ तथा त्रिज्या $r$ के वृत्त का समीकरण
$(x-h)^{2}+(y-k)^{2}=r^{2}$ है।
एक परवलय तल के उन सभी बिंदुओं का समुच्चय है जो एक निश्चित सरल रेखा और तल के एक निश्चित बिंदु से समान दूरी पर हैं।
नाभि $(a, 0), a>0$ और नियता $x=-a$ वाले परवलय का समीकरण
$y^{2}=4 a x$ है।
परवलय की नाभि से जाने वाली और परवलय के अक्ष के लंबवत रेखाखंड जिसके अंत्य बिंदु परवलय पर हों, को परवलय की नाभिलंब जीवा कहते हैं।
परवलय $y^{2}=4 a x$ के नाभिलंब जीवा की लंबाई $4 a$ है।
एक दीर्घवृत्त तल के उन बिंदुओं का समुच्चय है जिनकी तल में दो स्थिर बिंदुओं से दूरी का योग अचर होता है।
$x$-अक्ष पर नाभि वाले दीर्घवृत्त का समीकरण $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ है।
दीर्घवृत्त की किसी भी नाभि से जाने वाली और दीर्घ अक्ष पर लंबवत रेखाखंड, जिसके अंत्य बिंदु दीर्घवृत्त पर हों, को दीर्घवृत्त की नाभिलंब जीवा कहते हैं।
दीर्घवृत्त $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ के नाभिलंब जीवा की लंबाई $\frac{2 b^{2}}{a}$ है।
दीर्घवृत्त की उत्केंद्रता, दीघर्वृत्त के केंद्र से नाभि और केंद्र से शीर्ष की दूरियों का अनुपात है।
एक अतिपरवलय तल के उन सभी बिंदुओं का समुच्चय है जिनकी तल में दो स्थिर बिंदुओं से दूरी का अंतर अचर होता है।
$x$-अक्ष पर नाभि वाले अतिपरवलय का समीकरण $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ है।
अतिपरिवलय की किसी भी नाभि से जाने वाली और अनुप्रस्थ पर लंबवत रेखाखंड जिसके अंत्य बिंदु अतिपरवलय पर हों, को अतिपरवलय की नाभिलंब जीवा कहते हैं।
अतिपरवलय $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ के नाभिलंब जीवा की लंबाई $\frac{2 b^{2}}{a}$ है।
अतिपरवलय की उत्केंद्रता, अतिपरवलय के केंद्र से नाभि और केंद्र से शीर्ष की दूरियों का अनुपात है।
ऐतिहासिक पृष्ठभूमिं
ज्यामिति गणित की सबसे प्राचीन शाखाओं में से एक है। यूनान के ज्यामितिविदों ने अनेक वक्रों के गुणधर्मों का अन्वेषण किया जिनकी सैद्धांतिक और व्यावहारिक महत्ता है। Euclid ने लगभग 300 ई.पू. ज्यामिति पर अपना भाष्य लिखा। वह सर्वप्रथम व्यक्ति थे जिन्होनें भौतिक चिंतन द्वारा सुझाए गए निश्चित अभिग्रहीतियों के आधार पर ज्यामितीय चित्रों को संगठित किया। ज्यामिति, जिसका प्रारंभ भारतियों और यूनानियों ने किया, उसके अध्ययन में उन्होंने बीजगणित की विधियों के अनुप्रयोग को आवश्यक नहीं बताया। ज्यामिति विषय की एकीकरण पहुँच जो Euclid, ने दिया तथा जो सुल्वसूत्रों से प्राप्त थी इत्यादि ने दी, लगभग 1300 वर्षों तक चलती रहीं 200 ई. पू. में Apollonius ने एक पुस्तक, ‘The Conic’ लिखी जो अनेक महत्वपूर्ण अन्वेषणों के साथ शंकु परिच्छेदों के बारे में थी और 18 शताब्दियों तक बेजोड़ रही।
Rene Descartes (1596-1650 A.D.) के नाम पर आधुनिक वेश्लेषिक ज्यामिति को कार्तीय (Cartesian) कहा जाता है जिसकी सार्थकता La Geometry नाम से 1637 ई. में प्रकाशित हुई। परंतु वैश्लेषिक ज्यामिति के मूलभूत सिद्धांत और विधियों को पहले ही Peirre de Farmat (1601-1665 ई.) ने अन्वेषित कर लिया था। दुर्भाग्यवश, Fermates का विषय पर भाष्य, Ad Locus Planos et So LIDOS Isagoge - ‘Introduction to Plane and Solid Loci’ केवल उनकी मृत्यु के बाद 1679 ई. में प्रकाशित हुआ था। इसलिए Descartes की वैश्लेषिक ज्यामिति को अद्वितीय अन्वेषक का श्रेय मिला।
Isaac Barrow ने कार्तीय विधियों के प्रयोग को तिरस्कृत किया। न्यूटन ने वक्रों के समीकरण ज्ञात करने के लिए अज्ञात गुणांको की विधि का प्रयोग किया। उन्होंने अनेक प्रकार के निर्देशांकों, ध्रुवीय (Polar) और द्विध्रुवीय (bipolar) का प्रयोग किया। Leibnitz ने ‘भुज’ (abcissa), ‘कोटि’ (ordinate) और निर्देशांक पदों (Coordinate), का प्रयोग किया। L.Hospital (लगभग 1700 ई.) ने वैश्लेषिक ज्यामिति पर एक महत्वपूर्ण पाठ्य पुस्तक लिखी।
Clairaut (1729 ई.) ने सर्वप्रथम दूरी सूत्र को दिया। यद्यपि यह शुद्ध रूप में था उन्होंने रैखिक समीकरण का अंतःखंड रूप भी दिया। Cramer (1750 ई.) ने औपचारिक रूप से दो निर्देशाक्षों को प्रयोग करके वृत्त का समीकरण
$(y-a)^{2}+(b-x)^{2}=r$ दिया।
उन्होंने उस समय में वैश्लेषिक ज्यामिति का सर्वोत्तम प्रस्तुतीकरण दिया। Monge (1781ई.) ने आधुनिक बिंदु प्रवणता के रूप में रेखा का समीकरण निम्न प्रकार से दिया।
$ y-y^{\prime}=a\left(x-x^{\prime}\right) $
तथा दो रेखाओं के लंबवत होने का प्रतिबंध $a a^{\prime}+1=0$ दिया।
S.F. Lacroix (1765-1843 ई.) प्रसिद्ध पाठ्य पुस्तक लेखक थे, लेकिन उनका वैश्लेषिक ज्यामिति में योगदान कहीं कहीं मिलता है। उन्होंने रेखा के समीकरण का दो बिंदु रूप
$ y-\beta=\frac{\beta^{\prime}-\beta}{\alpha^{\prime}-\alpha}(x-\alpha) $
और $(\alpha, \beta)$ से $y=a x+b$ पर लंब की लंबाई $\frac{(\beta-a \alpha-b)}{\sqrt{1+a^{2}}}$ बताया। उन्होनें दो रेखाओं के मध्यस्थ कोण का सूत्र $\tan \theta=\left(\frac{a^{\prime}-a}{1+a a^{\prime}}\right)$ भी दिया।
यह वास्तव में आश्चर्यजनक है कि वैश्लेषिक ज्यामिति के अन्वेषण के बाद इन मूलभूत आवश्यक सूत्रों को ज्ञात करने के लिए 150 वर्षों से अधिक इंतज़ार करना पड़ा। 1818 ई. में C. Lame, एक सिविल इंजीनियर, ने दो बिंदुपथों $\mathrm{E}=0$ और $\mathrm{E}^{\prime}=0$ के प्रतिच्छेद बिंदु से जाने वाले वक्र $m \mathrm{E}+m^{\prime} \mathrm{E}^{\prime}=0$ को बताया।
विज्ञान एवं गणित दोनों में अनेक महत्वपूर्ण अन्वेषण शंकु परिच्छेदों से संबंधित हैं। यूनानियों विशेषकर Archimedes (287-212 ई.पू.) और Apollonius (200 ई.पू.) ने शंकु परिच्छेदों का अध्ययन किया। आजकल ये वक्र महत्वपूर्ण उपक्रम हैं, जिससे बाह्य अंतरिक्ष और परमाणु कणों के व्यवहार से संबंधित अन्वेषणों के द्वारा अनेक रहस्यों का उद्घाटन हुआ है।