Chapter-07 Equilibrium
Chemical equilibria are important in numerous biological and environmental processes. For example, equilibria involving $\mathrm{O_2}$ molecules and the protein hemoglobin play a crucial role in the transport and delivery of $\mathrm{O_2}$ from our lungs to our muscles. Similar equilibria involving $\mathrm{CO}$ molecules and hemoglobin account for the toxicity of $\mathrm{CO}$.
When a liquid evaporates in a closed container, molecules with relatively higher kinetic energy escape the liquid surface into the vapour phase and number of liquid molecules from the vapour phase strike the liquid surface and are retained in the liquid phase. It gives rise to a constant vapour pressure because of an equilibrium in which the number of molecules leaving the liquid equals the number returning to liquid from the vapour. We say that the system has reached equilibrium state at this stage. However, this is not static equilibrium and there is a lot of activity at the boundary between the liquid and the vapour. Thus, at equilibrium, the rate of evaporation is equal to the rate of condensation. It may be represented by
$$ \mathrm{H_2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H_2} \mathrm{O}\text { (vap) } $$
The double half arrows indicate that the processes in both the directions are going on simultaneously. The mixture of reactants and products in the equilibrium state is called an equilibrium mixture.
Equilibrium can be established for both physical processes and chemical reactions. The reaction may be fast or slow depending on the experimental conditions and the nature of the reactants. When the reactants in a closed vessel at a particular temperature react to give products, the concentrations of the reactants keep on decreasing, while those of products keep on increasing for some time after which there is no change in the concentrations of either of the reactants or products. This stage of the system is the dynamic equilibrium and the rates of the forward and reverse reactions become equal. It is due to this dynamic equilibrium stage that there is no change in the concentrations of various species in the reaction mixture. Based on the extent to which the reactions proceed to reach the state of chemical equilibrium, these may be classified in three groups.
(i) The reactions that proceed nearly to completion and only negligible concentrations of the reactants are left. In some cases, it may not be even possible to detect these experimentally.
(ii) The reactions in which only small amounts of products are formed and most of the reactants remain unchanged at equilibrium stage.
(iii) The reactions in which the concentrations of the reactants and products are comparable, when the system is in equilibrium.
The extent of a reaction in equilibrium varies with the experimental conditions such as concentrations of reactants, temperature, etc. Optimisation of the operational conditions is very important in industry and laboratory so that equilibrium is favorable in the direction of the desired product. Some important aspects of equilibrium involving physical and chemical processes are dealt in this unit along with the equilibrium involving ions in aqueous solutions which is called as ionic equilibrium.
7.1 EQUILIBRIUM IN PHYSICAL PROCESSES
The characteristics of system at equilibrium are better understood if we examine some physical processes. The most familiar examples are phase transformation processes, e.g.,
$$ \begin{aligned} \text { solid } & \rightleftharpoons \text { liquid } \\ \text { liquid } & \rightleftharpoons \text { gas } \\ \text { solid } & \rightleftharpoons \text { gas } \end{aligned} $$
7.1.1 Solid-Liquid Equilibrium
Ice and water kept in a perfectly insulated thermos flask (no exchange of heat between its contents and the surroundings) at $273 \mathrm{~K}$ and the atmospheric pressure are in equilibrium state and the system shows interesting characteristic features. We observe that the mass of ice and water do not change with time and the temperature remains constant. However, the equilibrium is not static. The intense activity can be noticed at the boundary between ice and water. Molecules from the liquid water collide against ice and adhere to it and some molecules of ice escape into liquid phase. There is no change of mass of ice and water, as the rates of transfer of molecules from ice into water and of reverse transfer from water into ice are equal at atmospheric pressure and $273 \mathrm{~K}$.
It is obvious that ice and water are in equilibrium only at particular temperature and pressure. For any pure substance at atmospheric pressure, the temperature at which the solid and liquid phases are at equilibrium is called the normal melting point or normal freezing point of the substance. The system here is in dynamic equilibrium and we can infer the following:
(i) Both the opposing processes occur simultaneously.
(ii) Both the processes occur at the same rate so that the amount of ice and water remains constant.
7.1.2 Liquid-Vapour Equilibrium
This equilibrium can be better understood if we consider the example of a transparent box carrying a U-tube with mercury (manometer). Drying agent like anhydrous calcium chloride (or phosphorus penta-oxide) is placed for a few hours in the box. After removing the drying agent by tilting the box on one side, a watch glass (or petri dish) containing water is quickly placed inside the box. It will be observed that the mercury level in the right limb of the manometer slowly increases and finally attains a constant value, that is, the pressure inside the box increases and reaches a constant value. Also the volume of water in the watch glass decreases (Fig. 7.1). Initially there was no water vapour (or very less) inside the box. As water evaporated the pressure in the box increased due to addition of water molecules into the gaseous phase inside the box. The rate of evaporation is constant.
Fig. 7.1 Measuring equilibrium vapour pressure of water at a constant temperature
However, the rate of increase in pressure decreases with time due to condensation of vapour into water. Finally it leads to an equilibrium condition when there is no net evaporation. This implies that the number of water molecules from the gaseous state into the liquid state also increases till the equilibrium is attained i.e.,
rate of evaporation= rate of condensation
$$ \mathrm{H_2} \mathrm{O}(1) \rightleftharpoons \mathrm{H_2} \mathrm{O}(\text { vap) } $$
At equilibrium the pressure exerted by the water molecules at a given temperature remains constant and is called the equilibrium vapour pressure of water (or just vapour pressure of water); vapour pressure of water increases with temperature. If the above experiment is repeated with methyl alcohol, acetone and ether, it is observed that different liquids have different equilibrium vapour pressures at the same temperature, and the liquid which has a higher vapour pressure is more volatile and has a lower boiling point.
If we expose three watch glasses containing separately $1 \mathrm{~mL}$ each of acetone, ethyl alcohol, and water to atmosphere and repeat the experiment with different volumes of the liquids in a warmer room, it is observed that in all such cases the liquid eventually disappears and the time taken for complete evaporation depends on (i) the nature of the liquid, (ii) the amount of the liquid and (iii) the temperature. When the watch glass is open to the atmosphere, the rate of evaporation remains constant but the molecules are dispersed into large volume of the room. As a consequence the rate of condensation from vapour to liquid state is much less than the rate of evaporation. These are open systems and it is not possible to reach equilibrium in an open system.
Water and water vapour are in equilibrium position at atmospheric pressure (1.013 bar) and at $100^{\circ} \mathrm{C}$ in a closed vessel. The boiling point of water is $100^{\circ} \mathrm{C}$ at 1.013 bar pressure. For any pure liquid at one atmospheric pressure (1.013 bar), the temperature at which the liquid and vapours are at equilibrium is called normal boiling point of the liquid. Boiling point of the liquid depends on the atmospheric pressure. It depends on the altitude of the place; at high altitude the boiling point decreases.
7.1.3 Solid - Vapour Equilibrium
Let us now consider the systems where solids sublime to vapour phase. If we place solid iodine in a closed vessel, after sometime the vessel gets filled up with violet vapour and the intensity of colour increases with time. After certain time the intensity of colour becomes constant and at this stage equilibrium is attained. Hence solid iodine sublimes to give iodine vapour and the iodine vapour condenses to give solid iodine. The equilibrium can be represented as,
$\mathrm{I_2}$ (solid) $\rightleftharpoons \mathrm{I_2}$ (vapour)
Other examples showing this kind of equilibrium are,
Camphor (solid) $\rightleftharpoons$ Camphor (vapour)
$\mathrm{NH_4} \mathrm{Cl}$ (solid) $\rightleftharpoons \mathrm{NH_4} \mathrm{Cl}$ (vapour)
7.1.4 Equilibrium Involving Dissolution of Solid or Gases in Liquids
Solids in liquids
We know from our experience that we can dissolve only a limited amount of salt or sugar in a given amount of water at room temperature. If we make a thick sugar syrup solution by dissolving sugar at a higher temperature, sugar crystals separate out if we cool the syrup to the room temperature. We call it a saturated solution when no more of solute can be dissolved in it at a given temperature. The concentration of the solute in a saturated solution depends upon the temperature. In a saturated solution, a dynamic equilibrium exits between the solute molecules in the solid state and in the solution:
Sugar (solution) $\rightleftharpoons$ Sugar (solid),
and
the rate of dissolution of sugar $=$ rate of crystallisation of sugar.
Equality of the two rates and dynamic nature of equilibrium has been confirmed with the help of radioactive sugar. If we drop some radioactive sugar into saturated solution of non-radioactive sugar, then after some time radioactivity is observed both in the solution and in the solid sugar. Initially there were no radioactive sugar molecules in the solution but due to dynamic nature of equilibrium, there is exchange between the radioactive and non-radioactive sugar molecules between the two phases. The ratio of the radioactive to non-radioactive molecules in the solution increases till it attains a constant value.
Gases in liquids
When a soda water bottle is opened, some of the carbon dioxide gas dissolved in it fizzes out rapidly. The phenomenon arises due to difference in solubility of carbon dioxide at different pressures. There is equilibrium between the molecules in the gaseous state and the molecules dissolved in the liquid under pressure i.e.,
$$ \mathrm{CO_2} \text { (gas) } \rightleftharpoons \mathrm{CO_2} \text { (in solution) } $$
This equilibrium is governed by Henry’s law, which states that the mass of a gas dissolved in a given mass of a solvent at any temperature is proportional to the pressure of the gas above the solvent. This amount decreases with increase of temperature. The soda water bottle is sealed under pressure of gas when its solubility in water is high. As soon as the bottle is opened, some of the dissolved carbon dioxide gas escapes to reach a new equilibrium condition required for the lower pressure, namely its partial pressure in the atmosphere. This is how the soda water in bottle when left open to the air for some time, turns ‘flat’. It can be generalised that:
(i) For solid $\rightleftharpoons$ liquid equilibrium, there is only one temperature (melting point) at 1 atm (1.013 bar) at which the two phases can coexist. If there is no exchange of heat with the surroundings, the mass of the two phases remains constant.
(ii) For liquid $\rightleftharpoons$ vapour equilibrium, the vapour pressure is constant at a given temperature.
(iii) For dissolution of solids in liquids, the solubility is constant at a given temperature.
(iv) For dissolution of gases in liquids, the concentration of a gas in liquid is proportional to the pressure (concentration) of the gas over the liquid. These observations are summarised in Table 6.1
Table 6.1 Some Features of Physical Equilibria
7.1.5 General Characteristics of Equilibria Involving Physical Processes
For the physical processes discussed above, following characteristics are common to the system at equilibrium:
(i) Equilibrium is possible only in a closed system at a given temperature.
(ii) Both the opposing processes occur at the same rate and there is a dynamic but stable condition.
(iii) All measurable properties of the system remain constant.
(iv) When equilibrium is attained for a physical process, it is characterised by constant value of one of its parameters at a given temperature. Table 6.1 lists such quantities.
(v) The magnitude of such quantities at any stage indicates the extent to which the physical process has proceeded before reaching equilibrium.
7.2 EQUILIBRIUM IN CHEMICAL PROCESSES - DYNAMIC EQUILIBRIUM
Analogous to the physical systems chemical reactions also attain a state of equilibrium. These reactions can occur both in forward and backward directions. When the rates of the forward and reverse reactions become equal, the concentrations of the reactants and the products remain constant. This is the stage of chemical equilibrium. This equilibrium is dynamic in nature as it consists of a forward reaction in which the reactants give product(s) and reverse reaction in which product(s) gives the original reactants.
For a better comprehension, let us consider a general case of a reversible reaction,
$$ \mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D} $$
With passage of time, there is accumulation of the products $\mathrm{C}$ and $\mathrm{D}$ and depletion of the reactants A and B (Fig. 7.2). This leads to a decrease in the rate of forward reaction and an increase in the rate of the reverse reaction, Eventually, the two reactions occur at the same rate and the system reaches a state of equilibrium. Similarly, the reaction can reach the state of equilibrium even if we start with only $\mathrm{C}$ and $\mathrm{D}$; that is, no A and B being present initially, as the equilibrium can be reached from either direction.
Fig. 7.2 Attainment of chemical equilibrium.
The dynamic nature of chemical equilibrium can be demonstrated in the synthesis of ammonia by Haber’s process. In a series of experiments, Haber started with known amounts of dinitrogen and dihydrogen maintained at high temperature and pressure and at regular intervals determined the amount of ammonia present. He was successful in determining also the concentration of unreacted dihydrogen and dinitrogen. Fig. 7.4 (page 174) shows that after a certain time the composition of the mixture remains the same even though some of the reactants are still present. This constancy in composition indicates that the reaction has reached equilibrium. In order to understand the dynamic nature of the reaction, synthesis of ammonia is carried out with exactly the same starting conditions (of partial pressure and temperature) but using $\mathrm{D_2}$ (deuterium) in place of $\mathrm{H_2}$. The reaction mixtures starting either with $\mathrm{H_2}$ or $\mathrm{D_2}$ reach equilibrium with the same composition, except that $\mathrm{D_2}$ and $\mathrm{ND_3}$ are present instead of $\mathrm{H_2}$ and $\mathrm{NH_3}$. After equilibrium is attained, these two mixtures $\left(\mathrm{H_2}, \mathrm{~N_2}, \mathrm{NH_3}\right.$ and $\left.\mathrm{D_2}, \mathrm{~N_2}, \mathrm{ND_3}\right)$ are mixed together and left for a while. Later, when this mixture is analysed, it is found that the concentration of ammonia is just the same as before.
Fig. 7.4 Depiction of equilibrium for the reaction $\mathrm{N_2}(\mathrm{~g})+3 \mathrm{H_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH_3}(\mathrm{~g})$
However, when this mixture is analysed by a mass spectrometer, it is found that ammonia and all deuterium containing forms of ammonia $\left(\mathrm{NH_3}, \mathrm{NH_2} \mathrm{D}, \mathrm{NHD_2}\right.$ and $\mathrm{ND_3}$ ) and dihydrogen and its deutrated forms $\left(\mathrm{H_2}, \mathrm{HD}\right.$ and $\left.\mathrm{D_2}\right)$ are present. Thus one can conclude that scrambling of $\mathrm{H}$ and $\mathrm{D}$ atoms in the molecules must result from a continuation of the forward and reverse reactions in the mixture. If the reaction had simply stopped when they reached equilibrium, then there would have been no mixing of isotopes in this way.
Use of isotope (deuterium) in the formation of ammonia clearly indicates that chemical reactions reach a state of dynamic equilibrium in which the rates of forward and reverse reactions are equal and there is no net change in composition.
Equilibrium can be attained from both sides, whether we start reaction by taking, $\mathrm{H_2}(\mathrm{~g})$ and $\mathrm{N_2}(\mathrm{~g})$ and get $\mathrm{NH_3}(\mathrm{~g})$ or by taking $\mathrm{NH_3}(\mathrm{~g})$ and decomposing it into $\mathrm{N_2}(\mathrm{~g})$ and $\mathrm{H_2}(\mathrm{~g})$.
$$ \mathrm{N_2}(\mathrm{~g})+3 \mathrm{H_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH_3}(\mathrm{~g}) $$
$$ 2 \mathrm{NH_3}(\mathrm{~g}) \rightleftharpoons \mathrm{N_2}(\mathrm{~g})+3 \mathrm{H_2}(\mathrm{~g}) $$
Similarly let us consider the reaction, $\mathrm{H_2}(\mathrm{~g})+\mathrm{I_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$. If we start with equal initial concentration of $\mathrm{H_2}$ and $\mathrm{I_2}$, the reaction proceeds in the forward direction and the concentration of $\mathrm{H_2}$ and $\mathrm{I_2}$ decreases while that of $\mathrm{HI}$ increases, until all of these become constant at equilibrium (Fig. 7.5). We can also start with $\mathrm{HI}$ alone and make the reaction to proceed in the reverse direction; the concentration of HI will decrease and concentration of $\mathrm{H_2}$ and $\mathrm{I_2}$ will increase until they all become constant when equilibrium is reached (Fig. 7.5). If total number of $\mathrm{H}$ and I atoms are same in a given volume, the same equilibrium mixture is obtained whether we start it from pure reactants or pure product.
Fig. 7.5 Chemicalequilibrium in the reaction $\mathrm{H}_2(\mathrm{~g})$ $+I_2(g) \rightleftharpoons 2 \mathrm{HI}(g)$ can be attained from either direction
Dynamic Equilibrium - A Student’s Activity
Equilibrium whether in a physical or in a chemical system, is always of dynamic nature. This can be demonstrated by the use of radioactive isotopes. This is not feasible in a school laboratory. However this concept can be easily comprehended by performing the following activity. The activity can be performed in a group of 5 or 6 students.
Take two $100 \mathrm{~mL}$ measuring cylinders (marked as 1 and 2 ) and two glass tubes each of $30 \mathrm{~cm}$ length. Diameter of the tubes may be same or different in the range of $3-5 \mathrm{~mm}$. Fill nearly half of the measuring cylinder-1 with coloured water (for this purpose add a crystal of potassium permanganate to water) and keep second cylinder (number 2) empty.
Put one tube in cylinder 1 and second in cylinder 2. Immerse one tube in cylinder 1 , close its upper tip with a finger and transfer the coloured water contained in its lower portion to cylinder 2. Using second tube, kept in $2^{\text {nd }}$ cylinder, transfer the coloured water in a similar manner from cylinder 2 to cylinder 1 . In this way keep on transferring coloured water using the two glass tubes from cylinder 1 to 2 and from 2 to 1 till you notice that the level of coloured water in both the cylinders becomes constant.
If you continue intertransferring coloured solution between the cylinders, there will not be any further change in the levels of coloured water in two cylinders. If we take analogy of ’level’ of coloured water with ‘concentration’ of reactants and products in the two cylinders, we can say the process of transfer, which continues even after the constancy of level, is indicative of dynamic nature of the process. If we repeat the experiment taking two tubes of different diameters we find that at equilibrium the level of coloured water in two cylinders is different. How far diameters are responsible for change in levels in two cylinders? Empty cylinder (2) is an indicator of no product in it at the beginning.
Fig.7.3 Demonstrating dynamic nature of equilibrium. (a) initial stage (b) final stage after the equilibrium is attained.
7.3 LAW OF CHEMICAL EQUILIBRIUM AND EQUILIBRIUM CONSTANT
A mixture of reactants and products in the equilibrium state is called an equilibrium mixture. In this section we shall address a number of important questions about the composition of equilibrium mixtures: What is the relationship between the concentrations of reactants and products in an equilibrium mixture? How can we determine equilibrium concentrations from initial concentrations? What factors can be exploited to alter the composition of an equilibrium mixture? The last question in particular is important when choosing conditions for synthesis of industrial chemicals such as $\mathrm{H_2}, \mathrm{NH_3}, \mathrm{CaO}$ etc.
To answer these questions, let us consider a general reversible reaction:
$$ \mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D} $$
where $\mathrm{A}$ and $\mathrm{B}$ are the reactants, $\mathrm{C}$ and $\mathrm{D}$ are the products in the balanced chemical equation. On the basis of experimental studies of many reversible reactions, the Norwegian chemists Cato Maximillian Guldberg and Peter Waage proposed in 1864 that the concentrations in an equilibrium mixture are related by the following equilibrium equation,
$$ \begin{equation*} K_{c}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]} \tag{7.1} \end{equation*} $$
(6.1) where $K_{c}$ is the equilibrium constant and the expression on the right side is called the equilibrium constant expression.
The equilibrium equation is also known as the law of mass action because in the early days of chemistry, concentration was called “active mass”. In order to appreciate their work better, let us consider reaction between gaseous $\mathrm{H_2}$ and $\mathrm{I_2}$ carried out in a sealed vessel at $731 \mathrm{~K}$.
$$ \begin{aligned} & \mathrm{H_2}(\mathrm{~g})+\mathrm{I_2}(\mathrm{~g}) \rightleftharpoons\\ & 1 \mathrm{~mol} \quad 1 \mathrm{~mol} \end{aligned} \begin{aligned} & 2 \mathrm{HI}(\mathrm{g}) \\ & 2 \mathrm{~mol} \end{aligned} $$
Six sets of experiments with varying initial conditions were performed, starting with only gaseous $\mathrm{H_2}$ and $\mathrm{I_2}$ in a sealed reaction vessel in first four experiments $(1,2,3$ and 4$)$ and only $\mathrm{HI}$ in other two experiments (5 and 6). Experiment 1, 2, 3 and 4 were performed taking different concentrations of $\mathrm{H_2}$ and / or $\mathrm{I_2}$, and with time it was observed that intensity of the purple colour remained constant and equilibrium was attained. Similarly, for experiments 5 and 6 , the equilibrium was attained from the opposite direction.
Data obtained from all six sets of experiments are given in Table 6.2.
It is evident from the experiments 1,2 , 3 and 4 that number of moles of dihydrogen reacted $=$ number of moles of iodine reacted $=1 / 2$ (number of moles of HI formed). Also, experiments 5 and 6 indicate that,
$[H _{2(~g)}] _{eq} = [I _{2(g)}] _{eq}$
Knowing the above facts, in order to establish a relationship between concentrations of the reactants and products, several combinations can be tried. Let us consider the simple expression,
$$ [\mathrm{HI}(\mathrm{g})] _{\mathrm{eq}} /\left[\mathrm{H _2}(\mathrm{~g})\right] _{\mathrm{eq}}\left[\mathrm{I _2}(\mathrm{~g})\right] _{\mathrm{eq}} $$
Table 6.2 Initial and Equilibrium Concentrations of H2, I2 and HI
Table 7.3 Expression I n v o l v i n g t h e Equilibrium $H_2 (g) + I_2 (g) \rightleftharpoons 2HI (g)$
It can be seen from Table 6.3 that if we put the equilibrium concentrations of the reactants and products, the above expression is far from constant. However, if we consider the expression,
$$ [\mathrm{HI}(\mathrm{g})] _{\mathrm{eq}}^{2} /\left[\mathrm{H _2}(\mathrm{~g})\right] _{\mathrm{eq}}\left[\mathrm{I _2}(\mathrm{~g})\right] _{\mathrm{eq}} $$
we find that this expression gives constant value (as shown in Table 6.3) in all the six cases. It can be seen that in this expression the power of the concentration for reactants and products are actually the stoichiometric coefficients in the equation for the chemical reaction. Thus, for the reaction $\mathrm{H_2}(\mathrm{~g})+\mathrm{I_2}(\mathrm{~g}) \rightleftharpoons$ $2 \mathrm{HI}(\mathrm{g})$, following equation 6.1 , the equilibrium constant $K_{c}$ is written as,
$$ \begin{equation*} K _{c}=[\mathrm{HI}(\mathrm{g})] _{\mathrm{eq}}^{2} /\left[\mathrm{H _2}(\mathrm{~g})\right] _{\mathrm{eq}}\left[\mathrm{I _2}(\mathrm{~g})\right] _{\mathrm{eq}} \tag{7.2} \end{equation*} $$
Generally the subscript ’eq’ (used for equilibrium) is omitted from the concentration terms. It is taken for granted that the concentrations in the expression for $K_{c}$ are equilibrium values. We, therefore, write,
$$ \begin{equation*} K_{c}=[\mathrm{HI}(\mathrm{g})]^{2} /\left[\mathrm{H_2}(\mathrm{~g})\right]\left[\mathrm{I_2}(\mathrm{~g})\right] \tag{7.3} \end{equation*} $$
The subscript ’ $c$ ’ indicates that $K_{c}$ is expressed in concentrations of $\mathrm{mol} \mathrm{L}^{-1}$.
At a given temperature, the product of concentrations of the reaction products raised to the respective stoichiometric coefficient in the balanced chemical equation divided by the product of concentrations of the reactants raised to their individual stoichiometric coefficients has a constant value. This is known as the Equilibrium Law or Law of Chemical Equilibrium. The equilibrium constant for a general reaction,
$\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{d} \mathrm{D}$ is expressed as,
$K_{c}=[\mathrm{C}]^{c}[\mathrm{D}]^{\mathrm{d}} /[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}$
where $[A],[B],[C]$ and $[D]$ are the equilibrium concentrations of the reactants and products.
Equilibrium constant for the reaction, $4 \mathrm{NH_3}(\mathrm{~g})+5 \mathrm{O_2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H_2} \mathrm{O}(\mathrm{g})$ is written as
$$ K_{c}=[\mathrm{NO}]^{4}\left[\mathrm{H_2} \mathrm{O}\right]^{6} /\left[\mathrm{NH_3}\right]^{4}\left[\mathrm{O_2}\right]^{5} $$
Molar concentration of different species is indicated by enclosing these in square bracket and, as mentioned above, it is implied that these are equilibrium concentrations. While writing expression for equilibrium constant, symbol for phases ( $\mathrm{s}, 1, \mathrm{~g})$ are generally ignored.
Let us write equilibrium constant for the reaction,
$$\mathrm{H_2}(\mathrm{~g})+\mathrm{I_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})\tag{7.5}$$
$$ \begin{equation*} \text { as, } K_{c}=[\mathrm{HI}]^{2} /\left[\mathrm{H_2}\right]\left[\mathrm{I_2}\right]=\mathrm{x} \tag{7.6} \end{equation*} $$
The equilibrium constant for the reverse reaction, $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H_2}(\mathrm{~g})+\mathrm{I_2}(\mathrm{~g})$, at the same temperature is,
$$K_{c}=\left[\mathrm{H_2}\right]\left[\mathrm{I_2}\right] /[\mathrm{HI}]^{2}=1 / \mathrm{x}=1 / K_{c} \tag{7.7}$$
$$\text{Thus,} \quad \quad K_{c}=1 / K_{c} \tag{7.8}$$
Equilibrium constant for the reverse reaction is the inverse of the equilibrium constant for the reaction in the forward direction.If we change the stoichiometric coefficients in a chemical equation by multiplying throughout by a factor then we must make sure that the expression for equilibrium constant also reflects that change. For example, if the reaction (6.5) is written as,
$$ \begin{equation*} 1 / 2 \mathrm{H_2}(\mathrm{~g})+1 / 2 \mathrm{I_2}(\mathrm{~g}) \rightleftharpoons \mathrm{HI}(\mathrm{g}) \tag{7.9} \end{equation*} $$
the equilibrium constant for the above reaction is given by
$$ \begin{aligned} K _{c} ^{1/2}=[\mathrm{HI}] / \left[\mathrm{H _2} \right] ^{1 / 2}\left[\mathrm{I _2}\right] ^{1 / 2} & =\left\{[\mathrm{HI}]^{2} /\left[\mathrm{H _2}\right]\left[\mathrm{I _2}\right]\right\} ^{1 / 2} \\ = & \mathrm{x} ^{1 / 2}=K _{c} ^{1 / 2}(6.10) \end{aligned} $$
On multiplying the equation (7.5) by $\mathrm{n}$, we get $\mathrm{nH_2}(\mathrm{~g})+\mathrm{nI_2}(\mathrm{~g}) \mathrm{D} \rightleftharpoons 2 \mathrm{nHI}(\mathrm{g})$ Therefore, equilibrium constant for the reaction is equal to $K_{c}{ }^{n}$. These findings are summarised in Table 6.4. It should be noted that because the equilibrium constants $K_{c}$ and $K_{c}$ have different numerical values, it is important to specify the form of the balanced chemical equation when quoting the value of an equilibrium constant.
Table 6.4 Relations between Equilibrium Constants for a General Reaction and its Multiples.
Chemical equation | Equilibrium constant |
---|---|
$\mathrm{a} \mathrm{A}+\mathrm{b} \mathrm{B} \rightleftharpoons \mathrm{c} \mathrm{C}+\mathrm{dD}$ | $K_{c}$ |
$\mathrm{c} \mathrm{C}+\mathrm{d} \mathrm{D} \rightleftharpoons \mathrm{a} \mathrm{A}+\mathrm{b} \mathrm{B}$ | $K_{c}^{\prime}=\left(1 / K_{c}\right)$ |
$\mathrm{na} \mathrm{A}+\mathrm{nb} \mathrm{B} \rightleftharpoons \mathrm{ncC}+\mathrm{ndD}$ | $K_{c}^{\prime \prime}=\left(K_{c}^{n}\right)$ |
Problem 7.1
The following concentrations were obtained for the formation of $\mathrm{NH_3}$ from $\mathrm{N_2}$ and $\mathrm{H_2}$ at equilibrium at $500 \mathrm{~K}$. $\left[\mathrm{N_2}\right]=1.5 \times 10^{-2} \mathrm{M} .\left[\mathrm{H_2}\right]=3.0 \times 10^{-2} \mathrm{M}$ and $\left[\mathrm{NH_3}\right]=1.2 \times 10^{-2} \mathrm{M}$. Calculate equilibrium constant.
Solution
The equilibrium constant for the reaction, $\mathrm{N_2}(\mathrm{~g})+3 \mathrm{H_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH_3}(\mathrm{~g})$ can be written as,
$$ \begin{aligned} K_{c} & =\frac{\left[\mathrm{NH_3}(\mathrm{~g})\right]^{2}}{\left[\mathrm{~N_2}(\mathrm{~g})\right]\left[\mathrm{H_2}(\mathrm{~g})\right]^{3}} \\ & =\frac{\left(1.2 \times 10^{-2}\right)^{2}}{\left(1.5 \times 10^{-2}\right)\left(3.0 \times 10^{-2}\right)^{3}} \\ & =0.106 \times 10^{4}=1.06 \times 10^{3} \end{aligned} $$
Problem 7.2
At equilibrium, the concentrations of $\mathrm{N_2}=3.0 \times 10^{-3} \mathrm{M}, \mathrm{O_2}=4.2 \times 10^{-3} \mathrm{M}$ and $\mathrm{NO}=2.8 \times 10^{-3} \mathrm{M}$ in a sealed vessel at $800 \mathrm{~K}$. What will be $K_{c}$ for the reaction $\mathrm{N_2}(\mathrm{~g})+\mathrm{O_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$
Solution
For the reaction equilibrium constant, $K_{c}$ can be written as,
$$ \begin{aligned} K_{c} & =\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N_2}\right]\left[\mathrm{O_2}\right]} \\ & =\frac{\left(2.8 \times 10^{-3} \mathrm{M}\right)^{2}}{\left(3.0 \times 10^{-3} \mathrm{M}\right)\left(4.2 \times 10^{-3} \mathrm{M}\right)} \\ = & 0.622 \end{aligned} $$
7.4 HOMOGENEOUS EQUILIBRIA
In a homogeneous system, all the reactants and products are in the same phase. For example, in the gaseous reaction, $\mathrm{N_2}(\mathrm{~g})+3 \mathrm{H_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH_3}(\mathrm{~g})$, reactants and products are in the homogeneous phase. Similarly, for the reactions,
$\mathrm{CH_3} \mathrm{COOC_2} \mathrm{H_5}(\mathrm{aq})+\mathrm{H_2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH_3} \mathrm{COOH}(\mathrm{aq})$ $+\mathrm{C_2} \mathrm{H_5} \mathrm{OH}(\mathrm{aq})$
and, $\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{Fe}(\mathrm{SCN})^{2+}(\mathrm{aq})$
all the reactants and products are in homogeneous solution phase. We shall now consider equilibrium constant for some homogeneous reactions.
7.4.1 Equilibrium Constant in Gaseous Systems
So far we have expressed equilibrium constant of the reactions in terms of molar concentration of the reactants and products, and used symbol, $K_{c}$ for it. For reactions involving gases, however, it is usually more convenient to express the equilibrium constant in terms of partial pressure.
The ideal gas equation is written as, $p V=n \mathrm{R} T$
$\Rightarrow p=\frac{n}{V} \mathrm{R} T$
Here, $p$ is the pressure in $\mathrm{Pa}, n$ is the number of moles of the gas, $V$ is the volume in $m^{3}$ and $T$ is the temperature in Kelvin Therefore, $n / V$ is concentration expressed in $\mathrm{mol} / \mathrm{m}^{3}$ If concentration $\mathrm{c}$, is in $\mathrm{mol} / \mathrm{L}$ or $\mathrm{mol} / \mathrm{dm}^{3}$, and $p$ is in bar then
$p=c \mathrm{R} T$, We can also write $p=$ [gas] R $T$.
Here, $\mathrm{R}=0.0831$ bar litre/ $\mathrm{mol} \mathrm{K}$
At constant temperature, the pressure of the gas is proportional to its concentration i.e., $p \propto$ [gas]
For reaction in equilibrium
$\mathrm{H_2}(\mathrm{~g})+\mathrm{I_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ We can write either
$K_{\mathrm{c}}=\frac{[\mathrm{HI}(\mathrm{g})]^{2}}{\left[\mathrm{H_2}(\mathrm{~g})\right]\left[\mathrm{I_2}(\mathrm{~g})\right]}$
or $K_{c}=\frac{\left(p_{H I}\right)^{2}}{\left(p_{\mathrm{H_2}}\right)\left(p_{I_{2}}\right)} \tag{7.12}$
Further, since $p_{\mathrm{HI}}=[\mathrm{HI}(\mathrm{g})] \mathrm{R} T$
$$ \begin{aligned} p_{\mathrm{I_2}} & =\left[\mathrm{I_2}(\mathrm{~g})\right] \mathrm{R} T \\ p_{\mathrm{H_2}} & =\left[\mathrm{H_2}(\mathrm{~g})\right] \mathrm{R} T \end{aligned} $$
Therefore,
$$ \begin{gather*} K_{p}=\frac{\left(p_{\mathrm{HI}}\right)^{2}}{\left(p_{\mathrm{H_2}}\right)\left(p_{\mathrm{I_2}}\right)}=\frac{[\mathrm{HI}(\mathrm{g})]^{2}[\mathrm{R} T]^{2}}{\left[\mathrm{H_2}(\mathrm{~g})\right] \mathrm{R} T \cdot\left[\mathrm{I_2}(\mathrm{~g})\right] \mathrm{R} T} \\ =\frac{[\mathrm{HI}(\mathrm{g})]^{2}}{\left[\mathrm{H_2}(\mathrm{~g})\right]\left[\mathrm{I_2}(\mathrm{~g})\right]}=K_{c} \tag{7.13} \end{gather*} $$
In this example, $K_{p}=K_{c}$ i.e., both equilibrium constants are equal. However, this is not always the case. For example in reaction $\mathrm{N_2}(\mathrm{~g})+3 \mathrm{H_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH_3}(\mathrm{~g})$
$$ \begin{aligned} K_{p} & =\frac{\left(p_{\mathrm{NH_3}}\right)^{2}}{\left(p_{N_{2}}\right)\left(p_{\mathrm{H_2}}\right)^{3}} \\ & =\frac{\left[\mathrm{NH_3}(\mathrm{~g})\right]^{2}[\mathrm{R} T]^{2}}{\left[\mathrm{~N_2}(\mathrm{~g})\right] \mathrm{R} T \cdot\left[H_{2}(\mathrm{~g})\right]^{3}(\mathrm{R} T)^{3}} \end{aligned} $$
$$ \begin{equation*} =\frac{\left[\mathrm{NH_3}(\mathrm{~g})\right]^{2}[\mathrm{R} T]^{-2}}{\left[\mathrm{~N_2}(\mathrm{~g})\right]\left[H_{2}(\mathrm{~g})\right]^{3}}=K_{c}(\mathrm{R} T)^{-2} \tag{7.14} \end{equation*} $$
or $K_{p}=K_{c}(\mathrm{R} T)^{-2}$
Similarly, for a general reaction
$$ \mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD} $$
$$ \begin{align*} K_{p}= & \frac{\left(p_{C}^{c}\right)\left(p_{D}^{d}\right)}{\left(p_{\mathrm{A}}^{a}\right)\left(p_{B}^{b}\right)}=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}(\mathrm{R} T)^{(c+d)}}{[\mathrm{A}]^{a}[\mathrm{~B}]^{b}(\mathrm{R} T)^{(a+b)}} \\ & =\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}(\mathrm{R} T)^{(c+d)-(a+b)} \\ & =\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}(\mathrm{R} T)^{\Delta n}=K_{c}(\mathrm{R} T)^{\Delta n} \tag{7.15} \end{align*} $$
where $\Delta n=$ (number of moles of gaseous products) - (number of moles of gaseous reactants) in the balanced chemical equation. It is necessary that while calculating the value of $K_{p}$, pressure should be expressed in bar because standard state for pressure is 1 bar. We know from Unit 1 that:
1 pascal, $\mathrm{Pa}=1 \mathrm{Nm}^{-2}$, and $1 \mathrm{bar}=10^{5} \mathrm{~Pa}$
$K_{p}$ values for a few selected reactions at different temperatures are given in Table 6.5
Table 6.5 Equilibrium Constants, $\mathrm{Kp}$ for a Few Selected Reactions
Reaction | Temperature $/ \mathbf{K}$ | $\mathbf{K_p}$ |
---|---|---|
$\mathrm{N_2}(\mathrm{~g})+3 \mathrm{H_2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{NH_3}$ | 298 | $6.8 \times 10^{5}$ |
400 | 41 | |
500 | $3.6 \times 10^{-2}$ | |
$2 \mathrm{SO_2}(\mathrm{~g})+\mathrm{O_2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{SO_3}(\mathrm{~g})$ | 298 | $4.0 \times 10^{24}$ |
500 | $2.5 \times 10^{10}$ | |
700 | $3.0 \times 10^{4}$ | |
$\mathrm{~N_2} \mathrm{O_4}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{NO_2}(\mathrm{~g})$ | 298 | 0.98 |
400 | 47.9 | |
500 | 1700 |
Problem 7.3
$\mathrm{PCl_5}, \mathrm{PCl_3}$ and $\mathrm{Cl_2}$ are at equilibrium at 500 $\mathrm{K}$ and having concentration $1.59 \mathrm{M} \mathrm{PCl_3}$, $1.59 \mathrm{M} \mathrm{Cl_2}$ and $1.41 \mathrm{M} \mathrm{PCl_5}$.
Calculate $K_{c}$ for the reaction, $\mathrm{PCl_5} \rightleftharpoons \mathrm{PCl_3}+\mathrm{Cl_2}$
Solution
The equilibrium constant $K_{c}$ for the above reaction can be written as,
$$ K_{\mathrm{c}}=\frac{\left[\mathrm{PCl_3}\right]\left[\mathrm{Cl_2}\right]}{\left[\mathrm{PCl_5}\right]}=\frac{(1.59)^{2}}{(1.41)}=1.79 $$
Problem 7.4
The value of $K_{c}=4.24$ at $800 \mathrm{~K}$ for the reaction,
$\mathrm{CO}(\mathrm{g})+\mathrm{H_2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO_2}(\mathrm{~g})+\mathrm{H_2}(\mathrm{~g})$
Calculate equilibrium concentrations of $\mathrm{CO_2}$, $\mathrm{H_2}, \mathrm{CO}$ and $\mathrm{H_2} \mathrm{O}$ at $800 \mathrm{~K}$, if only $\mathrm{CO}$ and $\mathrm{H_2} \mathrm{O}$ are present initially at concentrations of $0.10 \mathrm{M}$ each.
Solution
For the reaction,
$$ \mathrm{CO}(\mathrm{g})+\mathrm{H_2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO_2}(\mathrm{~g})+\mathrm{H_2}(\mathrm{~g}) $$
Initial concentration:
$$ \begin{array}{llll} 0.1 \mathrm{M} & 0.1 \mathrm{M} & 0 & 0 \end{array} $$
Let $\mathrm{x}$ mole per litre of each of the product be formed.
At equilibrium:
$$ \begin{array}{llll} (0.1-x) M & (0.1-x) M & x M & x M \end{array} $$
where $x$ is the amount of $\mathrm{CO_2}$ and $\mathrm{H_2}$ at equilibrium.
Hence, equilibrium constant can be written as,
$K_{c}=\mathrm{x}^{2} /(0.1-\mathrm{x})^{2}=4.24$
$\mathrm{x}^{2}=4.24\left(0.01+\mathrm{x}^{2}-0.2 \mathrm{x}\right)$
$\mathrm{x}^{2}=0.0424+4.24 \mathrm{x}^{2}-0.848 \mathrm{x}$
$3.24 \mathrm{x}^{2}-0.848 \mathrm{x}+0.0424=0$
$\mathrm{a}=3.24, \mathrm{~b}=-0.848, \mathrm{c}=0.0424$
(for quadratic equation $a x^{2}+b x+c=0$,
$$ x=\frac{\left(-b \pm \sqrt{b^{2}-4 a c}\right)}{2 a} $$
$x=0.848 \pm \sqrt{ }(0.848)^{2}-4(3.24)(0.0424) / (3.24 \times 2)$
$x=(0.848 \pm 0.4118) / 6.48$
$x_{1}=(0.848-0.4118) / 6.48=0.067$
$\mathrm{x_2}=(0.848+0.4118) / 6.48=0.194$
the value 0.194 should be neglected because it will give concentration of the reactant which is more than initial concentration.
Hence the equilibrium concentrations are,
$$ \begin{aligned} & {\left[\mathrm{CO_2}\right]=\left[\mathrm{H_2}\right]=\mathrm{x}=0.067 \mathrm{M}} \\ & {[\mathrm{CO}]=\left[\mathrm{H_2} \mathrm{O}\right]=0.1-0.067=0.033 \mathrm{M}} \end{aligned} $$
Problem 7.5
For the equilibrium,
$2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl_2}(\mathrm{~g})$
the value of the equilibrium constant, $K_{c}$ is $3.75 \times 10^{-6}$ at $1069 \mathrm{~K}$. Calculate the $K_{p}$ for the reaction at this temperature?
Solution
We know that,
$K_{p}=K_{c}(\mathrm{R} T)^{\Delta n}$
For the above reaction,
$\Delta n=(2+1)-2=1$
$K_{p}=3.75 \times 10^{-6}(0.0831 \times 1069)$
$K_{p}=0.033$
7.5 HETEROGENEOUS EQUILIBRIA
Equilibrium in a system having more than one phase is called heterogeneous equilibrium. The equilibrium between water vapour and liquid water in a closed container is an example of heterogeneous equilibrium.
$$ \mathrm{H_2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H_2} \mathrm{O}(\mathrm{g}) $$
In this example, there is a gas phase and a liquid phase. In the same way, equilibrium between a solid and its saturated solution, is a heterogeneous equilibrium.
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+(\mathrm{aq}) \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
Heterogeneous equilibria often involve pure solids or liquids. We can simplify equilibrium expressions for the heterogeneous equilibria involving a pure liquid or a pure solid, as the molar concentration of a pure solid or liquid is constant (i.e., independent of the amount present). In other words if a substance ’ $\mathrm{X}$ ’ is involved, then $[\mathrm{X}(\mathrm{s})]$ and $[\mathrm{X}(1)]$ are constant, whatever the amount of ’ $\mathrm{X}$ ’ is taken. Contrary to this, $[\mathrm{X}(\mathrm{g})]$ and $[\mathrm{X}(\mathrm{aq})]$ will vary as the amount of $\mathrm{X}$ in a given volume varies. Let us take thermal dissociation of calcium carbonate which is an interesting and important example of heterogeneous chemical equilibrium.
$\mathrm{CaCO_3}(\mathrm{~s}) \stackrel{\Delta}{\rightleftharpoons} \mathrm{CaO}(\mathrm{s})+\mathrm{CO_2}(\mathrm{~g})$
On the basis of the stoichiometric equation, we can write,
$$ K_{c}=\frac{[\mathrm{CaO}(\mathrm{s})]\left[\mathrm{CO_2}(\mathrm{~g})\right]}{\left[\mathrm{CaCO_3}(\mathrm{~s})\right]} $$
Since $\left[\mathrm{CaCO_3}(\mathrm{~s})\right]$ and $[\mathrm{CaO}(\mathrm{s})]$ are both constant, therefore modified equilibrium constant for the thermal decomposition of calcium carbonate will be
$$ \begin{align*} & K_{c}^{\prime}=\left[\mathrm{CO_2}(\mathrm{~g})\right] \tag{7.17}\\ & \text { or } K_{p}=p_{\mathrm{CO_2}} \tag{7.18} \end{align*} $$
This shows that at a particular temperature, there is a constant concentration or pressure of $\mathrm{CO_2}$ in equilibrium with $\mathrm{CaO}$ (s) and $\mathrm{CaCO_3}(\mathrm{~s})$. Experimentally it has been found that at $1100 \mathrm{~K}$, the pressure of $\mathrm{CO_2}$ in equilibrium with $\mathrm{CaCO_3}(\mathrm{~s})$ and $\mathrm{CaO}(\mathrm{s})$, is $2.0 \times 10^{5} \mathrm{~Pa}$. Therefore, equilibrium constant at $1100 \mathrm{~K}$ for the above reaction is:
$$ K_{p}=P_{\mathrm{CO_2}}=2 \times 10^{5} \mathrm{~Pa} / 10^{5} \mathrm{~Pa}=2.00 $$
Similarly, in the equilibrium between nickel, carbon monoxide and nickel carbonyl (used in the purification of nickel),
$$ \mathrm{Ni}(\mathrm{s})+4 \mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{~g}) $$
the equilibrium constant is written as
$$ K_{c}=\frac{\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]}{[\mathrm{CO}]^{4}} $$
It must be remembered that for the existence of heterogeneous equilibrium pure solids or liquids must also be present (however small the amount may be) at equilibrium, but their concentrations or partial pressures do not appear in the expression of the equilibrium constant.
In the reaction,
$$ \begin{gathered} \mathrm{Ag_2} \mathrm{O}(\mathrm{s})+2 \mathrm{HNO_3}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{AgNO_3}(\mathrm{aq})+\mathrm{H_2} \mathrm{O}(\mathrm{l}) \\ \mathrm{K_c}=\frac{\left[\mathrm{AgNO_3}\right]^{2}}{\left[\mathrm{HNO_3}\right]^{2}} \end{gathered} $$
Units of Equilibrium Constant
The value of equilibrium constant $K_{\mathrm{c}}$ can be calculated by substituting the concentration terms in $\mathrm{mol} / \mathrm{L}$ and for $K_{p}$ partial pressure is substituted in $\mathrm{Pa}, \mathrm{kPa}$, bar or atm. This results in units of equilibrium constant based on molarity or pressure, unless the exponents of both the numerator and denominator are same.
For the reactions, unit. $\mathrm{H_2}(\mathrm{~g})+\mathrm{I_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}, K_{\mathrm{c}}$ and $K_{p}$ have no $\mathrm{N_2} \mathrm{O_4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO_2}(\mathrm{~g}), K_{\mathrm{c}}$ has unit $\mathrm{mol} / \mathrm{L}$ and $K_{p}$ has unit bar
Equilibrium constants can also be expressed as dimensionless quantities if the standard state of reactants and products are specified. For a pure gas, the standard state is 1 bar. Therefore a pressure of 4 bar in standard state can be expressed as 4 bar $/ 1$ bar $=4$, which is a dimensionless number. Standard state $\left(c_{0}\right)$ for a solute is 1 molar solution and all concentrations can be measured with respect to it. The numerical value of equilibrium constant depends on the standard state chosen. Thus, in this system both $K_{p}$ and $K_{c}$ are dimensionless quantities but have different numerical values due to different standard states.
Problem 7.6
The value of $K_{p}$ for the reaction, $\mathrm{CO_2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$ is 3.0 at $1000 \mathrm{~K}$. If initially $P_{\mathrm{CO_2}}=0.48$ bar and $P_{C O}=0$ bar and pure graphite is present, calculate the equilibrium partial pressures of $\mathrm{CO}$ and $\mathrm{CO_2}$.
Solution
For the reaction, let ’ $x$ ’ be the decrease in pressure of $\mathrm{CO_2}$, then
Initial
$$ \mathrm{CO_2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g}) $$
pressure: 0.48 bar 0
At equilibrium:
$$ (0.48-x) \text { bar } \quad 2 x \text { bar } $$
$$ \begin{aligned} & K_{p}=\frac{p_{C O}^{2}}{p_{\mathrm{CO_2}}} \\ & K_{p}=(2 \mathrm{x})^{2} /(0.48-\mathrm{x})=3 \\ & 4 \mathrm{x}^{2}=3(0.48-\mathrm{x}) \\ & 4 \mathrm{x}^{2}=1.44-\mathrm{x} \\ & 4 \mathrm{x}^{2}+3 \mathrm{x}-1.44=0 \\ & \mathrm{a}=4, \mathrm{~b}=3, \mathrm{c}=-1.44 \end{aligned} $$
$\mathrm{x}=\frac{\left(-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}\right)}{2 \mathrm{a}}$
$=\left[-3 \pm \sqrt{ }(3)^{2}-4(4)(-1.44)\right] / 2 \times 4$
$=(-3 \pm 5.66) / 8$
$=(-3+5.66) / 8$ (as value of $x$ cannot be negative hence we neglect that value)
$\mathrm{x}=2.66 / 8=0.33$
The equilibrium partial pressures are,
$p_{\mathrm{CO_2}}=2 \mathrm{x}=2 \times 0.33=0.66$ bar
$p_{\mathrm{CO_2}}=0.48-\mathrm{x}=0.48-0.33=0.15$ bar
7.6 APPLICATIONS OF EQUILIBRIUM CONSTANTS
Before considering the applications of equilibrium constants, let us summarise the important features of equilibrium constants as follows:
1. Expression for equilibrium constant is applicable only when concentrations of the reactants and products have attained constant value at equilibrium state.
2. The value of equilibrium constant is independent of initial concentrations of the reactants and products.
3. Equilibrium constant is temperature dependent having one unique value for a particular reaction represented by a balanced equation at a given temperature.
4. The equilibrium constant for the reverse reaction is equal to the inverse of the equilibrium constant for the forward reaction.
5. The equilibrium constant $K$ for a reaction is related to the equilibrium constant of the corresponding reaction, whose equation is obtained by multiplying or dividing the equation for the original reaction by a small integer.
Let us consider applications of equilibrium constant to:
-
predict the extent of a reaction on the basis of its magnitude,
-
predict the direction of the reaction, and
-
calculate equilibrium concentrations.
7.6.1 Predicting the Extent of a Reaction
The numerical value of the equilibrium constant for a reaction indicates the extent of the reaction. But it is important to note that an equilibrium constant does not give any information about the rate at which the equilibrium is reached. The magnitude of $K_{c}$ or $K_{p}$ is directly proportional to the concentrations of products (as these appear in the numerator of equilibrium constant expression) and inversely proportional to the concentrations of the reactants (these appear in the denominator). This implies that a high value of $K$ is suggestive of a high concentration of products and vice-versa.
We can make the following generalisations concerning the composition of equilibrium mixtures:
- If $K_{\mathrm{c}}>10^{3}$, products predominate over reactants, i.e., if $K_{c}$ is very large, the reaction proceeds nearly to completion. Consider the following examples:
$\qquad$ (a) The reaction of $\mathrm{H_2}$ with $\mathrm{O_2}$ at $500 \mathrm{~K}$ has a very large equilibrium constant, $K_{\mathrm{c}}=2.4 \times 10^{47}$.
$\qquad$ (b) $\mathrm{H_2}$ (g) $+\mathrm{Cl_2}$ (g) $\rightleftharpoons 2 \mathrm{HCl}(\mathrm{g})$ at $300 \mathrm{~K}$ has $K_{\mathrm{c}}=4.0 \times 10^{31}$.
$\qquad$ (c) $\mathrm{H_2}(\mathrm{~g})+\mathrm{Br_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HBr}$ (g) at $300 \mathrm{~K}$, $K_{c}=5.4 \times 10^{18}$
- If $K_{c}<10^{-3}$, reactants predominate over products, i.e., if $K_{c}$ is very small, the reaction proceeds rarely. Consider the following examples:
$\qquad$ (a) The decomposition of $\mathrm{H_2} \mathrm{O}$ into $\mathrm{H_2}$ and $\mathrm{O_2}$ at $500 \mathrm{~K}$ has a very small equilibrium constant, $K_{c}=4.1 \times 10^{-48}$
$\qquad$ (b) $\mathrm{N_2}(\mathrm{~g})+\mathrm{O_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$, at $298 \mathrm{~K}$ has $K_{c}=4.8 \times 10^{-31}$.
- If $K_{c}$ is in the range of $10^{-3}$ to $10^{3}$, appreciable concentrations of both reactants and products are present. Consider the following examples:
$\qquad$ (a) For reaction of $\mathrm{H_2}$ with $\mathrm{I_2}$ to give $\mathrm{HI}$, $K_{c}=57.0$ at $700 \mathrm{~K}$.
$\qquad$ (b) Also, gas phase decomposition of $\mathrm{N_2} \mathrm{O_4}$ to $\mathrm{NO_2}$ is another reaction with a value of $K_{c}=4.64 \times 10^{-3}$ at $25^{\circ} \mathrm{C}$ which is neither too small nor too large. Hence, equilibrium mixtures contain appreciable concentrations of both $\mathrm{N_2} \mathrm{O_4}$ and $\mathrm{NO_2}$. These generarlisations are illustrated in Fig. 7.6
Fig.7.6 Dependence of extent of reaction on $K_c$
7.6.2 Predicting the Direction of the Reaction
The equilibrium constant helps in predicting the direction in which a given reaction will proceed at any stage. For this purpose, we calculate the reaction quotient $Q$. The reaction quotient, $Q\left(Q_{c}\right.$ with molar concentrations and $Q_{P}$ with partial pressures) is defined in the same way as the equilibrium constant $K_{c}$ except that the concentrations in $Q_{c}$ are not necessarily equilibrium values. For a general reaction:
$$\mathrm{a} \mathrm{A}+\mathrm{bB} \rightleftharpoons \mathrm{c} \mathrm{C}+\mathrm{d} \mathrm{D} \tag{6.19}$$
$$Q_{c}=[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}} /[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}\tag{6.20}$$
Then,
If $Q_{c}>K_{c}$, the reaction will proceed in the direction of reactants (reverse reaction).
If $Q_{c}<K_{c}$, the reaction will proceed in the direction of the products (forward reaction).
If $Q_{c}=K_{c}$, the reaction mixture is already at equilibrium.
Consider the gaseous reaction of $\mathrm{H_2}$ with $\mathrm{I_2}$,
$\mathrm{H_2}(\mathrm{~g})+\mathrm{I_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g}) ; K_{c}=57.0$ at $700 \mathrm{~K}$.
Suppose we have molar concentrations $\left[\mathrm{H_2}\right]_t=0.10 \mathrm{M},\left[\mathrm{I_2}\right]_t=0.20 \mathrm{M}$ and $[\mathrm{HI}]_t=0.40 \mathrm{M}$. (the subscript $t$ on the concentration symbols means that the concentrations were measured at some arbitrary time $t$, not necessarily at equilibrium).
Thus, the reaction quotient, $Q_{c}$ at this stage of the reaction is given by,
$Q_{c}=[\mathrm{HI}]_t^{2} /\left[\mathrm{H_2}\right]_t\left[\mathrm{I_2}\right]_t=(0.40)^{2} /(0.10) \times(0.20) = 8.0$
Now, in this case, $Q_{c}$ (8.0) does not equal $K_{c}(57.0)$, so the mixture of $\mathrm{H_2}(\mathrm{~g}), \mathrm{I_2}(\mathrm{~g})$ and $\mathrm{HI}(\mathrm{g})$ is not at equilibrium; that is, more $\mathrm{H_2}(\mathrm{~g})$ and $\mathrm{I_2}(\mathrm{~g})$ will react to form more $\mathrm{HI}(\mathrm{g})$ and their concentrations will decrease till $Q_{c}=K_{c}$.
The reaction quotient, $Q_{c}$ is useful in predicting the direction of reaction by comparing the values of $Q_{c}$ and $K_{c}$.
Thus, we can make the following generalisations concerning the direction of the reaction (Fig. 7.7) :
Fig. 7.7 Predicting the direction of the reaction
- If $Q_{c}<K_{c}$, net reaction goes from left to right
- If $Q_{c}>K_{c}$, net reaction goes from right to left.
- If $Q_{c}=K_{c}$, no net reaction occurs.
Problem 7.7
The value of $K_{c}$ for the reaction $2 \mathrm{~A} \rightleftharpoons \mathrm{B}+\mathrm{C}$ is $2 \times 10^{-3}$. At a given time, the composition of reaction mixture is $[A]=[B]=[C]=3 \times 10^{-4} \mathrm{M}$. In which direction the reaction will proceed?
Solution
For the reaction the reaction quotient $Q_{c}$ is given by,
$Q_{c}=[\mathrm{B}][\mathrm{C}] /[\mathrm{A}]^{2}$
as $[\mathrm{A}]=[\mathrm{B}]=[\mathrm{C}]=3 \times 10^{-4} \mathrm{M}$
$Q_{c}=\left(3 \times 10^{-4}\right)\left(3 \times 10^{-4}\right) /\left(3 \times 10^{-4}\right)^{2}=1$
as $Q_{c}>K_{c}$ so the reaction will proceed in the reverse direction.
7.6.3 Calculating Equilibrium Concentrations
In case of a problem in which we know the initial concentrations but do not know any of the equilibrium concentrations, the following three steps shall be followed:
Step 1. Write the balanced equation for the reaction.
Step 2. Under the balanced equation, make a table that lists for each substance involved in the reaction:
(a) the initial concentration,
(b) the change in concentration on going to equilibrium, and
(c) the equilibrium concentration.
In constructing the table, define $\mathrm{x}$ as the concentration ( $\mathrm{mol} / \mathrm{L})$ of one of the substances that reacts on going to equilibrium, then use the stoichiometry of the reaction to determine the concentrations of the other substances in terms of $\mathrm{x}$.
Step 3. Substitute the equilibrium concentrations into the equilibrium equation for the reaction and solve for $\mathrm{x}$. If you are to solve a quadratic equation choose the mathematical solution that makes chemical sense.
Step 4. Calculate the equilibrium concentrations from the calculated value of $\mathrm{x}$.
Step 5. Check your results by substituting them into the equilibrium equation.
Problem 7.8
$13.8 \mathrm{~g}$ of $\mathrm{N_2} \mathrm{O_4}$ was placed in a $1 \mathrm{~L}$ reaction vessel at $400 \mathrm{~K}$ and allowed to attain equilibrium
$\mathrm{N_2} \mathrm{O_4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO_2}(\mathrm{~g})$ The total pressure at equilbrium was found to be 9.15 bar. Calculate $K_{c}, K_{p}$ and partial pressure at equilibrium.
Solution
We know $p V=n R T$
Total volume $(V)=1 \mathrm{~L}$
Molecular mass of $\mathrm{N_2} \mathrm{O_4}=92 \mathrm{~g}$
Number of moles of the gas ( $n$ ) $=13.8 \mathrm{~g} / 92 \mathrm{~g}=0.15$
Gas constant $(\mathrm{R})=0.083$ bar $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
Temperature $(T)=400 \mathrm{~K}$
$p V=n \mathrm{R} T$
$p \times 1 \mathrm{~L}=0.15 \mathrm{~mol} \times 0.083$ bar $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~K}^{-1} \times 400 \mathrm{~K}$
$p=4.98$ bar
$$ \begin{equation*} \mathrm{N_2} \mathrm{O_4} \rightleftharpoons 2 \mathrm{NO_2} \end{equation*} $$
Initial pressure: $4.98 \mathrm{bar} \quad \quad \quad 0 $
At equilibrium: $(4.98-\mathrm{x})$ bar $2 \mathrm{x}$ bar Hence,
$p_{\text {total }}$ at equilibrium $=p_{\mathrm{N_2} \mathrm{O_4}}+p_{\mathrm{NO_2}}$
$9.15=(4.98-\mathrm{x})+2 \mathrm{x}$
$9.15=4.98+x$
$x=9.15-4.98=4.17$ bar
Partial pressures at equilibrium are,
$p_{\mathrm{N_2} \mathrm{O_4}}=4.98-4.17=0.81$ bar
$p_{\mathrm{NO_2}}=2 \mathrm{x}=2 \times 4.17=8.34 \mathrm{bar}$
$K_{p}=\left(p_{\mathrm{NO_2}}\right)^{2} / p_{\mathrm{N_2} \mathrm{O_4}}$
$=(8.34)^{2} / 0.81=85.87$
$K_{p}=K_{\mathrm{c}}(\mathrm{R} T)^{\Delta n}$
$85.87=K_{c}(0.083 \times 400)^{1}$
$K_{c}=2.586=2.6$
Problem 7.9
$3.00 \mathrm{~mol}$ of $\mathrm{PCl_5}$ kept in $1 \mathrm{~L}$ closed reaction vessel was allowed to attain equilibrium at $380 \mathrm{~K}$. Calculate composition of the mixture at equilibrium. $K_{c}=1.80$
Solution
$$ \mathrm{PCl_5} \rightleftharpoons \mathrm{PCl_3}+\mathrm{Cl_2} $$
$ \quad \text{ Initial concentration:} \quad \quad 3.0 \quad\quad\quad 0 \quad\quad\quad 0$
Let $\mathrm{x} \mathrm{mol}$ per litre of $\mathrm{PCl_5}$ be dissociated, At equilibrium:
$$ (3-x) \quad \quad \quad \mathrm{x} \quad \quad \quad \mathrm{x} $$
$K_{c}=\left[\mathrm{PCl_3}\right]\left[\mathrm{Cl_2}\right] /\left[\mathrm{PCl_5}\right]$
$1.8=\mathrm{x}^{2} /(3-\mathrm{x})$
$\mathrm{x}^{2}+1.8 \mathrm{x}-5.4=0$
$x=\left[-1.8 \pm \sqrt{ }(1.8)^{2}-4(-5.4)\right] / 2$
$x=[-1.8 \pm \sqrt{ } 3.24+21.6] / 2$
$\mathrm{x}=[-1.8 \pm 4.98] / 2$
$\mathrm{x}=[-1.8+4.98] / 2=1.59$
$\left[\mathrm{PCl_5}\right]=3.0-\mathrm{x}=3-1.59=1.41 \mathrm{M}$
$\left[\mathrm{PCl_3}\right]=\left[\mathrm{Cl_2}\right]=\mathrm{x}=1.59 \mathrm{M}$
7.7 RELATIONSHIP BETWEEN EQUILIBRIUM CONSTANT $K$, REACTION QUOTIENT $Q$ AND GIBBS ENERGY $G$
The value of $K_{c}$ for a reaction does not depend on the rate of the reaction. However, as you have studied in Unit 5, it is directly related to the thermodynamics of the reaction and in particular, to the change in Gibbs energy, $\Delta G$. If,
- $\Delta G$ is negative, then the reaction is spontaneous and proceeds in the forward direction.
- $\Delta G$ is positive, then reaction is considered non-spontaneous. Instead, as reverse reaction would have a negative $\Delta G$, the products of the forward reaction shall be converted to the reactants.
- $\Delta G$ is 0 , reaction has achieved equilibrium; at this point, there is no longer any free energy left to drive the reaction.
A mathematical expression of this thermodynamic view of equilibrium can be described by the following equation:
$$\Delta G=\Delta G^{\ominus}+\mathrm{RT} \ln Q \tag{7.21}$$
where, $G^{\ominus}$ is standard Gibbs energy.
At equilibrium, when $\Delta G=0$ and $Q=K_{c}$, the 7.21) becomes,
$\Delta G=\Delta G^{\ominus}+\mathrm{R} T \ln K=0$
$$\Delta G^{\ominus}=-\mathrm{R} T \ln K\tag{7.22}$$
$\ln K=-\Delta G^{\ominus} / \mathrm{R} T$ Taking antilog of both sides, we get,
$$ \begin{equation*} K=\mathrm{e}^{-\Delta G \ominus / R T} \tag{7.23} \end{equation*} $$
Hence, using the equation (7.23), the reaction spontaneity can be interpreted in terms of the value of $\Delta G^{\ominus}$.
-
If $\Delta G^{\ominus}<0$, then $-\Delta G^{\ominus} / \mathrm{R} T$ is positive, and $e^{-\Delta DG^\circ }< / RT > 1$, making $K > 1 $, which implies a spontaneous reaction or the reaction which proceeds in the forward direction to such an extent that the products are present predominantly.
-
If $\Delta G^{\ominus}>0$, then $-\Delta G^{\ominus} / \mathrm{R} T$ is negative, and $\mathrm{e}^{-\Delta G^{\ominus}</ \mathrm{RT}} 1$, that is , $K<1$, which implies a non-spontaneous reaction or a reaction which proceeds in the forward direction to such a small degree that only a very minute quantity of product is formed.
Problem 7.10
The value of $\Delta G^{\ominus}$ for the phosphorylation of glucose in glycolysis is $13.8 \mathrm{~kJ} / \mathrm{mol}$. Find the value of $K_{c}$ at $298 \mathrm{~K}$.
Solution
$\Delta G^{\ominus}=13.8 \mathrm{~kJ} / \mathrm{mol}=13.8 \times 10^{3} \mathrm{~J} / \mathrm{mol}$
Also, $\Delta G^{\ominus}=-\mathrm{RT} \ln K_{c}$
Hence, $\ln K_{c}=-13.8 \times 10^{3} \mathrm{~J} / \mathrm{mol}$
(8.314 $\left.\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1} \times 298 \mathrm{~K}\right)$
$\ln K_{\mathrm{c}}=-5.569$
$K_{\text {c }}=\mathrm{e}^{-5.569}$
$K_{\mathrm{c}}=3.81 \times 10^{-3}$
Problem 7.11
Hydrolysis of sucrose gives,
Sucrose $+\mathrm{H_2} \mathrm{O} \rightleftharpoons$ Glucose + Fructose
Equilibrium constant $K_{c}$ for the reaction is $2 \times 10^{13}$ at $300 \mathrm{~K}$. Calculate $\Delta G^{\ominus}$ at $300 \mathrm{~K}$.
Solution
$$ \begin{aligned} & \Delta G^{\ominus}=-\mathrm{R} T \ln K_{c} \\ & \Delta G^{\ominus}=-8.314 \mathrm{~J}^{-1} \mathrm{~mol}^{-1} \mathrm{~K}^{-1 \times} \\ & \quad 300 \mathrm{~K} \times \ln \left(2 \times 10^{13}\right) \\ & \Delta G^{\ominus}=-7.64 \times 10^{4} \mathrm{~J} \mathrm{~mol}^{-1} \end{aligned} $$
7.8 FACTORS AFFECTING EQUILIBRIA
One of the principal goals of chemical synthesis is to maximise the conversion of the reactants to products while minimising the expenditure of energy. This implies maximum yield of products at mild temperature and pressure conditions. If it does not happen, then the experimental conditions need to be adjusted. For example, in the Haber process for the synthesis of ammonia from $\mathrm{N_2}$ and $\mathrm{H_2}$, the choice of experimental conditions is of real economic importance. Annual world production of ammonia is about hundred million tones, primarily for use as fertilisers.
Equilibrium constant, $K_{c}$ is independent of initial concentrations. But if a system at equilibrium is subjected to a change in the concentration of one or more of the reacting substances, then the system is no longer at equilibrium; and net reaction takes place in some direction until the system returns to equilibrium once again. Similarly, a change in temperature or pressure of the system may also alter the equilibrium. In order to decide what course the reaction adopts and make a qualitative prediction about the effect of a change in conditions on equilibrium we use Le Chatelier’s principle. It states that a change in any of the factors that determine the equilibrium conditions of a system will cause the system to change in such a manner so as to reduce or to counteract the effect of the change. This is applicable to all physical and chemical equilibria.
We shall now be discussing factors which can influence the equilibrium.
7.8.1 Effect of Concentration Change
In general, when equilibrium is disturbed by the addition/removal of any reactant/ products, Le Chatelier’s principle predicts that:
- The concentration stress of an added reactant/product is relieved by net reaction in the direction that consumes the added substance.
- The concentration stress of a removed reactant/product is relieved by net reaction in the direction that replenishes the removed substance. or in other words, “When the concentration of any of the reactants or products in a reaction at equilibrium is changed, the composition of the equilibrium mixture changes so as to minimize the effect of concentration changes”.
Let us take the reaction,
$$ \mathrm{H_2}(\mathrm{~g})+\mathrm{I_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g}) $$
If $\mathrm{H_2}$ is added to the reaction mixture at equilibrium, then the equilibrium of the reaction is disturbed. In order to restore it, the reaction proceeds in a direction wherein $\mathrm{H_2}$ is consumed, i.e., more of $\mathrm{H_2}$ and $\mathrm{I_2}$ react to form $\mathrm{HI}$ and finally the equilibrium shifts in right (forward) direction (Fig.6.8). This is in accordance with the Le Chatelier’s principle which implies that in case of addition of a reactant/product, a new equilibrium will be set up in which the concentration of the reactant/product should be less than what it was after the addition but more than what it was in the original mixture.
Fig. 7.8 Effect of addition of H2 on change of concentration for the reactants and products in the reaction, $\quad \mathrm{H} _{2}(\mathrm{~g})+\mathrm{I} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
The same point can be explained in terms of the reaction quotient, $Q_{c}$,
$$ Q_{c}=[\mathrm{HI}]^{2} /\left[\mathrm{H_2}\right]\left[\mathrm{I_2}\right] $$
Addition of hydrogen at equilibrium results in value of $Q_{c}$ being less than $K_{c}$. Thus, in order to attain equilibrium again reaction moves in the forward direction. Similarly, we can say that removal of a product also boosts the forward reaction and increases the concentration of the products and this has great commercial application in cases of reactions, where the product is a gas or a volatile substance. In case of manufacture of ammonia, ammonia is liquified and removed from the reaction mixture so that reaction keeps moving in forward direction. Similarly, in the large scale production of $\mathrm{CaO}$ (used as important building material) from $\mathrm{CaCO_3}$, constant removal of $\mathrm{CO_2}$ from the kiln drives the reaction to completion. It should be remembered that continuous removal of a product maintains $Q_{c}$ at a value less than $K_{c}$ and reaction continues to move in the forward direction.
Effect of Concentration - An experiment
This can be demonstrated by the following reaction:
$$\underset{\text{yellow}}{\mathrm{Fe}^{3+}(\mathrm{aq})}+\underset{\text{colourless}}{\mathrm{SCN}^{-}(\mathrm{aq})} \rightleftharpoons\underset{\text{deep red}}{[\mathrm{Fe}(\mathrm{SCN})]^{2+}(\mathrm{aq})} \tag{7.24}$$
$$K_{c}=\frac{\left[\mathrm{Fe}(\mathrm{SCN})^{2+}(\mathrm{aq})\right]}{\left[\mathrm{Fe}^{3+}(\mathrm{aq})\right]\left[\mathrm{SCN}^{-}(\mathrm{aq})\right]} \tag{7.25}$$
A reddish colour appears on adding two drops of $0.002 \mathrm{M}$ potassium thiocynate solution to $1 \mathrm{~mL}$ of $0.2 \mathrm{M}$ iron(III) nitrate solution due to the formation of $[\mathrm{Fe}(\mathrm{SCN})]^{2+}$. The intensity of the red colour becomes constant on attaining equilibrium. This equilibrium can be shifted in either forward or reverse directions depending on our choice of adding a reactant or a product. The equilibrium can be shifted in the opposite direction by adding reagents that remove $\mathrm{Fe}^{3+}$ or $\mathrm{SCN}^{-}$ions. For example, oxalic acid $\left(\mathrm{H_2} \mathrm{C_2} \mathrm{O_4}\right)$, reacts with $\mathrm{Fe}^{3+}$ ions to form the stable complex ion $\left[\mathrm{Fe}\left(\mathrm{C_2} \mathrm{O_4}\right)_{3}\right]^{3-}$, thus decreasing the concentration of free $\mathrm{Fe}^{3+}(\mathrm{aq})$. In accordance with the Le Chatelier’s principle, the concentration stress of removed $\mathrm{Fe}^{3+}$ is relieved by dissociation of $[\mathrm{Fe}(\mathrm{SCN})]^{2+}$ to replenish the $\mathrm{Fe}^{3+}$ ions. Because the concentration of $[\mathrm{Fe}(\mathrm{SCN})]^{2+}$ decreases, the intensity of red colour decreases.
Addition of aq. $\mathrm{HgCl_2}$ also decreases red colour because $\mathrm{Hg}^{2+}$ reacts with $\mathrm{SCN}^{-}$ions to form stable complex ion $\left[\mathrm{Hg}(\mathrm{SCN})_{4}\right]^{2-}$. Removal of free $\mathrm{SCN}^{-}$(aq) shifts the equilibrium in equation (6.24) from right to left to replenish $\mathrm{SCN}^{-}$ions. Addition of potassium thiocyanate on the other hand increases the colour intensity of the solution as it shift the equilibrium to right.
7.8.2 Effect of Pressure Change
A pressure change obtained by changing the volume can affect the yield of products in case of a gaseous reaction where the total number of moles of gaseous reactants and total number of moles of gaseous products are different. In applying Le Chatelier’s principle to a heterogeneous equilibrium the effect of pressure changes on solids and liquids can be ignored because the volume (and concentration) of a solution/liquid is nearly independent of pressure.
Consider the reaction,
$$ \mathrm{CO}(\mathrm{g})+3 \mathrm{H_2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH_4}(\mathrm{~g})+\mathrm{H_2} \mathrm{O}(\mathrm{g}) $$
Here, $4 \mathrm{~mol}$ of gaseous reactants $\left(\mathrm{CO}+3 \mathrm{H_2}\right)$ become $2 \mathrm{~mol}$ of gaseous products $\left(\mathrm{CH_4}{ }^{+}\right.$ $\mathrm{H_2} \mathrm{O}$ ). Suppose equilibrium mixture (for above reaction) kept in a cylinder fitted with a piston at constant temperature is compressed to one half of its original volume. Then, total pressure will be doubled (according to $p V=$ constant). The partial pressure and therefore, concentration of reactants and products have changed and the mixture is no longer at equilibrium. The direction in which the reaction goes to re-establish equilibrium can be predicted by applying the Le Chatelier’s principle. Since pressure has doubled, the equilibrium now shifts in the forward direction, a direction in which the number of moles of the gas or pressure decreases (we know pressure is proportional to moles of the gas). This can also be understood by using reaction quotient, $Q_{c}$. Let $[\mathrm{CO}],\left[\mathrm{H_2}\right],\left[\mathrm{CH_4}\right]$ and $\left[\mathrm{H_2} \mathrm{O}\right]$ be the molar concentrations at equilibrium for methanation reaction. When volume of the reaction mixture is halved, the partial pressure and the concentration are doubled. We obtain the reaction quotient by replacing each equilibrium concentration by double its value.
$$ Q_{c}=\frac{\left[\mathrm{CH_4}(\mathrm{~g})\right]\left[\mathrm{H_2} \mathrm{O}(\mathrm{g})\right]}{[\mathrm{CO}(\mathrm{g})]\left[\mathrm{H_2}(\mathrm{~g})\right]^{3}} $$
As $Q_{c}<K_{c}$, the reaction proceeds in the forward direction.
In reaction $\mathrm{C}(\mathrm{s})+\mathrm{CO_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$, when pressure is increased, the reaction goes in the reverse direction because the number of moles of gas increases in the forward direction.
7.8.3 Effect of Inert Gas Addition
If the volume is kept constant and an inert gas such as argon is added which does not take part in the reaction, the equilibrium remains undisturbed. It is because the addition of an inert gas at constant volume does not change the partial pressures or the molar reaction. The reaction quotient changes only if the added gas is a reactant or product involved in the reaction.
7.8.4 Effect of Temperature Change
Whenever an equilibrium is disturbed by a change in the concentration, pressure or volume, the composition of the equilibrium mixture changes because the reaction quotient, $Q_{c}$ no longer equals the equilibrium constant, $K_{\mathrm{c}}$. However, when a change in temperature occurs, the value of equilibrium constant, $K_{c}$ is changed.
In general, the temperature dependence of the equilibrium constant depends on the sign of $\Delta H$ for the reaction.
- The equilibrium constant for an exothermic reaction (negative $\Delta H$ ) decreases as the temperature increases.
- The equilibrium constant for an endothermic reaction (positive $\Delta H$ ) increases as the temperature increases.
Temperature changes affect the equilibrium constant and rates of reactions. Production of ammonia according to the reaction,
$$ \begin{aligned} & \mathrm{N_2}(\mathrm{~g})+3 \mathrm{H_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH_3}(\mathrm{~g}) ; \\ & \Delta H=-92.38 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$
is an exothermic process. According to Le Chatelier’s principle, raising the temperature shifts the equilibrium to left and decreases the equilibrium concentration of ammonia. In other words, low temperature is favourable for high yield of ammonia, but practically very low temperatures slow down the reaction and thus a catalyst is used.
Effect of Temperature - An experiment
Effect of temperature on equilibrium can be demonstrated by taking $\mathrm{NO_2}$ gas (brown in colour) which dimerises into $\mathrm{N_2} \mathrm{O_4}$ gas (colourless).
$$ 2 \mathrm{NO_2}(\mathrm{~g}) \rightleftharpoons \mathrm{N_2} \mathrm{O_4}(\mathrm{~g}) ; \Delta H=-57.2 \mathrm{~kJ} \mathrm{~mol}^{-1} $$
$\mathrm{NO_2}$ gas prepared by addition of $\mathrm{Cu}$ turnings to conc. $\mathrm{HNO_3}$ is collected in two $5 \mathrm{~mL}$ test tubes (ensuring same intensity of colour of gas in each tube) and stopper sealed with araldite. Three $250 \mathrm{~mL}$ beakers 1,2 and 3 containing freesing mixture, water at room temperature and hot water (363K), respectively, are taken (Fig. 7.9). Both the test tubes are placed in beaker 2 for 8-10 minutes. After this one is placed in beaker 1 and the other in beaker 3. The effect of temperature on direction of reaction is depicted very well in this experiment. At low temperatures in beaker 1, the forward reaction of formation of $\mathrm{N_2} \mathrm{O_4}$ is preferred, as reaction is exothermic, and thus, intensity of brown colour due to $\mathrm{NO_2}$ decreases. While in beaker 3, high temperature favours the reverse reaction of formation of $\mathrm{NO_2}$ and thus, the brown colour intensifies.
Fig. 7.9 Effect of temperature on equilibrium for the reaction, $2 \mathrm{NO}_2(\mathrm{~g}) \rightleftharpoons \mathrm{N}_2 \mathrm{O}_4(\mathrm{~g})$
Effect of temperature can also be seen in an endothermic reaction,
$$ \begin{aligned} & {\underset{\text{pink}}{\left[\mathrm{Co}\left(\mathrm{H_2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})} + \underset{\text{colourless}}{4 \mathrm{Cl}^{-}(\mathrm{aq})} \rightleftharpoons \underset{\text{blue}}{\left[\mathrm{CoCl_4}\right]^{2-}(\mathrm{aq})} + } 6 \mathrm{H_2} \mathrm{O}(1) \\ \end{aligned} $$
At room temperature, the equilibrium mixture is blue due to $\left[\mathrm{CoCl_4}\right]^{2-}$. When cooled in a freesing mixture, the colour of the mixture turns pink due to $\left[\mathrm{Co}\left(\mathrm{H_2} \mathrm{O}\right)_{6}\right]^{3+}$.
7.8.5 Effect of a Catalyst
A catalyst increases the rate of the chemical reaction by making available a new low energy pathway for the conversion of reactants to products. It increases the rate of forward and reverse reactions that pass through the same transition state and does not affect equilibrium. Catalyst lowers the activation energy for the forward and reverse reactions by exactly the same amount. Catalyst does not affect the equilibrium composition of a reaction mixture. It does not appear in the balanced chemical equation or in the equilibrium constant expression.
Let us consider the formation of $\mathrm{NH_3}$ from dinitrogen and dihydrogen which is highly exothermic reaction and proceeds with decrease in total number of moles formed as compared to the reactants. Equilibrium constant decreases with increase in temperature. At low temperature rate decreases and it takes long time to reach at equilibrium, whereas high temperatures give satisfactory rates but poor yields.
German chemist, Fritz Haber discovered that a catalyst consisting of iron catalyse the reaction to occur at a satisfactory rate at temperatures, where the equilibrium concentration of $\mathrm{NH_3}$ is reasonably favourable. Since the number of moles formed in the reaction is less than those of reactants, the yield of $\mathrm{NH_3}$ can be improved by increasing the pressure.
Optimum conditions of temperature and pressure for the synthesis of $\mathrm{NH_3}$ using catalyst are around $500^{\circ} \mathrm{C}$ and $200 \mathrm{~atm}$. Similarly, in manufacture of sulphuric acid by contact process,
$2 \mathrm{SO_2}(\mathrm{~g})+\mathrm{O_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO_3}(\mathrm{~g}) ; K_{c}=1.7 \times 10^{26}$
though the value of $K$ is suggestive of reaction going to completion, but practically the oxidation of $\mathrm{SO_2}$ to $\mathrm{SO_3}$ is very slow. Thus, platinum or divanadium penta-oxide $\left(\mathrm{V_2} \mathrm{O_5}\right)$ is used as catalyst to increase the rate of the reaction.
Note: If a reaction has an exceedingly small $K$, a catalyst would be of little help.
7.9 IONIC EQUILIBRIUM IN SOLUTION
Under the effect of change of concentration on the direction of equilibrium, you have incidently come across with the following equilibrium which involves ions:
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \rightleftharpoons[\mathrm{Fe}(\mathrm{SCN})]^{2+}(\mathrm{aq})$
There are numerous equilibria that involve ions only. In the following sections we will study the equilibria involving ions. It is well known that the aqueous solution of sugar does not conduct electricity. However, when common salt (sodium chloride) is added to water it conducts electricity. Also, the conductance of electricity increases with an increase in concentration of common salt. Michael Faraday classified the substances into two categories based on their ability to conduct electricity. One category of substances conduct electricity in their aqueous solutions and are called electrolytes while the other do not and are thus, referred to as non-electrolytes. Faraday further classified electrolytes into strong and weak electrolytes. Strong electrolytes on dissolution in water are ionized almost completely, while the weak electrolytes are only partially dissociated. For example, an aqueous solution of sodium chloride is comprised entirely of sodium ions and chloride ions, while that of acetic acid mainly contains unionized acetic acid molecules and only some acetate ions and hydronium ions. This is because there is almost $100 %$ ionization in case of sodium chloride as compared to less than $5 %$ ionization of acetic acid which is a weak electrolyte. It should be noted that in weak electrolytes, equilibrium is established between ions and the unionized molecules. This type of equilibrium involving ions in aqueous solution is called ionic equilibrium. Acids, bases and salts come under the category of electrolytes and may act as either strong or weak electrolytes.
7.10 ACIDS, BASES AND SALTS
Acids, bases and salts find widespread occurrence in nature. Hydrochloric acid present in the gastric juice is secreted by the lining of our stomach in a significant amount of 1.2-1.5 L/day and is essential for digestive processes. Acetic acid is known to be the main constituent of vinegar. Lemon and orange juices contain citric and ascorbic acids, and tartaric acid is found in tamarind paste. As most of the acids taste sour, the word “acid” has been derived from a latin word “acidus” meaning sour. Acids are known to turn blue litmus paper into red and liberate dihydrogen on reacting with some metals. Similarly, bases are known to turn red litmus paper blue, taste bitter and feel soapy. A common example of a base is washing soda used for washing purposes. When acids and bases are mixed in the right proportion they react with each other to give salts. Some commonly known examples of salts are sodium chloride, barium sulphate, sodium nitrate. Sodium chloride (common salt) is an important component of our diet and is formed by reaction between hydrochloric acid and sodium hydroxide. It exists in solid state as a cluster of positively charged sodium ions and negatively charged chloride ions which are held together due to electrostatic interactions between oppositely charged species (Fig.6.10). The electrostatic forces between two charges are inversely proportional to dielectric constant of the medium. Water, a universal solvent, possesses a very high dielectric constant of 80 . Thus, when sodium chloride is dissolved in water, the electrostatic interactions are reduced by a factor of 80 and this facilitates the ions to move freely in the solution. Also, they are well-separated due to hydration with water molecules.
Fig.7.10 Dissolution of sodium chloride in water. $Na^+$ and $Cl^–$ ions are stablised by their hydration with polar water molecules.
Comparing, the ionization of hydrochloric acid with that of acetic acid in water we find that though both of them are polar covalent molecules, former is completely ionized into its constituent ions, while the latter is only partially ionized $(<5 %)$. The extent to which ionization occurs depends upon the strength of the bond and the extent of solvation of ions produced. The terms dissociation and ionization have earlier been used with different meaning. Dissociation refers to the process of separation of ions in water already existing as such in the solid state of the solute, as in sodium chloride. On the other hand, ionization corresponds to a process in which a neutral molecule splits into charged ions in the solution. Here, we shall not distinguish between the two and use the two terms interchangeably.
Michael Faraday (1791–1867)
Faraday was born near London into a family of very limited means. At the age of 14 he was an apprentice to a kind bookbinder who allowed Faraday to read the books he was binding. Through a fortunate chance he became laboratory assistant to Davy, and during 1813-4, Faraday accompanied him to the Continent. During this trip he gained much from the experience of coming into contact with many of the leading scientists of the time. In 1825, he succeeded Davy as Director of the Royal Institution laboratories, and in 1833 he also became the first Fullerian Professor of Chemistry. Faraday’s first important work was on analytical chemistry. After 1821 much of his work was on electricity and magnetism and different electromagnetic phenomena. His ideas have led to the establishment of modern field theory. He discovered his two laws of electrolysis in 1834. Faraday was a very modest and kind hearted person. He declined all honours and avoided scientific controversies. He preferred to work alone and never had any assistant. He disseminated science in a variety of ways including his Friday evening discourses, which he founded at the Royal Institution. He has been very famous for his Christmas lecture on the ‘Chemical History of a Candle’. He published nearly 450 scientific papers.
7.10.1 Arrhenius Concept of Acids and Bases
According to Arrhenius theory, acids are substances that dissociates in water to give hydrogen ions $H^{+}(a q)$ and bases are substances that produce hydroxyl ions $\mathrm{OH}^{-}(\mathrm{aq})$. The ionization of an acid HX (aq) can be represented by the following equations:
$$ \begin{gathered} \mathrm{HX}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}) \\ or \quad \mathrm{HX}(\mathrm{aq})+\mathrm{H_2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H_3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}) \end{gathered} $$
A bare proton, $\mathrm{H}^{+}$ is very reactive and cannot exist freely in aqueous solutions. Thus, it bonds to the oxygen atom of a solvent water molecule to give trigonal pyramidal hydronium ion, $\mathrm{H_3} \mathrm{O}^{+}\{\left[\mathrm{H}\left(\mathrm{H_2} \mathrm{O}\right)\right]^{+}\}$ (see box). In this chapter we shall use $\mathrm{H}^{+}(\mathrm{aq})$ and $\mathrm{H_3} \mathrm{O}^{+}(\mathrm{aq})$ interchangeably to mean the same i.e., a hydrated proton.
Similarly, a base molecule like $\mathrm{MOH}$ ionizes in aqueous solution according to the equation:
$$ \mathrm{MOH}(\mathrm{aq}) \rightarrow \mathrm{M}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) $$
The hydroxyl ion also exists in the hydrated form in the aqueous solution. Arrhenius concept of acid and base, however, suffers from the limitation of being applicable only to aqueous solutions and also, does not account for the basicity of substances like, ammonia which do not possess a hydroxyl group.
Hydronium and Hydroxyl Ions
Hydrogen ion by itself is a bare proton with very small size ( $\sim 10^{-15} \mathrm{~m}$ radius) and intense electric field, binds itself with the water molecule at one of the two available lone pairs on it giving $\mathrm{H_3} \mathrm{O}^{+}$. This species has been detected in many compounds (e.g., $\mathrm{H_3} \mathrm{O}^{+} \mathrm{Cl}^{-}$) in the solid state. In aqueous solution the hydronium ion is further hydrated to give species like $\mathrm{H_5} \mathrm{O_2}^{+}, \mathrm{H_7} \mathrm{O_3}{ }^{+}$and $\mathrm{H_9} \mathrm{O_4}^{+}$. Similarly the hydroxyl ion is hydrated to give several ionic species like $\mathrm{H_3} \mathrm{O_2}^{-}, \mathrm{H_5} \mathrm{O_3}^{-}$ and $\mathrm{H_7} \mathrm{O_4}^{-}$ etc.
7.10.2 The Brönsted-Lowry Acids and Bases
The Danish chemist, Johannes Brönsted and the English chemist, Thomas M. Lowry gave a more general definition of acids and bases. According to Brönsted-Lowry theory, acid is a substance that is capable of donating a hydrogen ion $H^{+}$and bases are substances capable of accepting a hydrogen ion, $H^{+}$. In short, acids are proton donors and bases are proton acceptors.
Consider the example of dissolution of $\mathrm{NH_3}$ in $\mathrm{H_2} \mathrm{O}$ represented by the following equation:
The basic solution is formed due to the presence of hydroxyl ions. In this reaction, water molecule acts as proton donor and ammonia molecule acts as proton acceptor and are thus, called Lowry-Brönsted acid and base, respectively. In the reverse reaction, $\mathrm{H}^{+}$is transferred from $\mathrm{NH_4}^{+}$to $\mathrm{OH}^{-}$. In this case, $\mathrm{NH_4}^{+}$acts as a Bronsted acid while $\mathrm{OH}^{-}$acted as a Brönsted base. The acid-base pair that differs only by one proton is called a conjugate acid-base pair. Therefore, $\mathrm{OH}^{-}$ is called the conjugate base of an acid $\mathrm{H_2} \mathrm{O}$ and $\mathrm{NH_4}^{+}$is called conjugate acid of the base $\mathrm{NH_3}$. If Brönsted acid is a strong acid then its conjugate base is a weak base and viceversa. It may be noted that conjugate acid has one extra proton and each conjugate base has one less proton.
Consider the example of ionization of hydrochloric acid in water. $\mathrm{HCl}(\mathrm{aq})$ acts as an acid by donating a proton to $\mathrm{H_2} \mathrm{O}$ molecule which acts as a base.
It can be seen in the above equation, that water acts as a base because it accepts the proton. The species $\mathrm{H_3} \mathrm{O}^{+}$is produced when water accepts a proton from $\mathrm{HCl}$. Therefore, $\mathrm{Cl}^{-}$is a conjugate base of $\mathrm{HCl}$ and $\mathrm{HCl}$ is the conjugate acid of base $\mathrm{Cl}^{-}$. Similarly, $\mathrm{H_2} \mathrm{O}$ is a conjugate base of an acid $\mathrm{H_3} \mathrm{O}^{+}$and $\mathrm{H_3} \mathrm{O}^{+}$is a conjugate acid of base $\mathrm{H_2} \mathrm{O}$.
It is interesting to observe the dual role of water as an acid and a base. In case of reaction with $\mathrm{HCl}$ water acts as a base while in case of ammonia it acts as an acid by donating a proton.
Svante Arrhenius (1859-1927)
Arrhenius was born near Uppsala, Sweden. He presented his thesis, on the conductivities of electrolyte solutions, to the University of Uppsala in 1884. For the next five years he travelled extensively and visited a number of research centers in Europe. In 1895 he was appointed professor of physics at the newly formed University of Stockholm, serving its rector from 1897 to 1902. From 1905 until his death he was Director of physical chemistry at the Nobel Institute in Stockholm. He continued to work for many years on electrolytic solutions. In 1899 he discussed the temperature dependence of reaction rates on the basis of an equation, now usually known as Arrhenius equation.
He worked in a variety of fields, and made important contributions to immunochemistry, cosmology, the origin of life, and the causes of ice age. He was Nobel Prize in Chemistry in 1903 for his theory of electrolytic dissociation and its use in the development of chemistry.
Problem 7.12
What will be the conjugate bases for the following Brönsted acids: $\mathrm{HF}, \mathrm{H_2} \mathrm{SO_4}$ and $\mathrm{HCO_3}^{-}$?
Solution
The conjugate bases should have one proton less in each case and therefore the corresponding conjugate bases are: $\mathrm{F}^{-}$, $\mathrm{HSO_4}^{-}$and $\mathrm{CO_3}^{2-}$ respectively.
Problem 7.13
Write the conjugate acids for the following Brönsted bases: $\mathrm{NH_2}^{-}, \mathrm{NH_3}$ and $\mathrm{HCOO}^{-}$.
Solution
The conjugate acid should have one extra proton in each case and therefore the corresponding conjugate acids are: $\mathrm{NH_3}$, $\mathrm{NH_4}^{+}$and $\mathrm{HCOOH}$ respectively.
Problem 7.14
The species: $\mathrm{H_2} \mathrm{O}, \mathrm{HCO_3}^{-}, \mathrm{HSO_4}^{-}$and $\mathrm{NH_3}$ can act both as Bronsted acids and bases. For each case give the corresponding conjugate acid and conjugate base.
Solution
The answer is given in the following Table:
Species | Conjugate acid |
Conjugate base |
---|---|---|
$\mathrm{H_2} \mathrm{O}$ | $\mathrm{H_3} \mathrm{O}^{+}$ | $\mathrm{OH}^{-}$ |
$\mathrm{HCO_3}^{-}$ | $\mathrm{H_2} \mathrm{CO_3}$ | $\mathrm{CO_3}^{2-}$ |
$\mathrm{HSO_4}^{-}$ | $\mathrm{H_2} \mathrm{SO_4}$ | $\mathrm{SO_4}^{2-}$ |
$\mathrm{NH_3}$ | $\mathrm{NH_4}^{+}$ | $\mathrm{NH_2}^{-}$ |
7.10.3 Lewis Acids and Bases
G.N. Lewis in 1923 defined an acid as a species which accepts electron pair and base which donates an electron pair. As far as bases are concerned, there is not much difference between Brönsted-Lowry and Lewis concepts, as the base provides a lone pair in both the cases. However, in Lewis concept many acids do not have proton. A typical example is reaction of electron deficient species $\mathrm{BF_3}$ with $\mathrm{NH_3}$.
$\mathrm{BF_3}$ does not have a proton but still acts as an acid and reacts with $\mathrm{NH_3}$ by accepting its lone pair of electrons. The reaction can be represented by,
$$ \mathrm{BF_3}+: \mathrm{NH_3} \rightarrow \mathrm{BF_3}: \mathrm{NH_3} $$
Electron deficient species like $\mathrm{AlCl_3}, \mathrm{Co}^{3+}$, $\mathrm{Mg}^{2+}$, etc. can act as Lewis acids while species like $\mathrm{H_2} \mathrm{O}, \mathrm{NH_3}, \mathrm{OH}^{-}$etc. which can donate a pair of electrons, can act as Lewis bases.
Problem 7.15
Classify the following species into Lewis acids and Lewis bases and show how these act as such:
(a) $\mathrm{HO}^{-}$ (b) $\mathrm{F}^{-}$ (c) $\mathrm{H}^{+}$ (d) $\mathrm{BCl_3}$
Solution
(a) Hydroxyl ion is a Lewis base as it can donate an electron lone pair (: $\left.\mathrm{OH}^{-}\right)$.
(b) Flouride ion acts as a Lewis base as it can donate any one of its four electron lone pairs.
(c) A proton is a Lewis acid as it can accept a lone pair of electrons from bases like hydroxyl ion and fluoride ion.
(d) $\mathrm{BCl_3}$ acts as a Lewis acid as it can accept a lone pair of electrons from species like ammonia or amine molecules.
7.11 IONIZATION OF ACIDS AND BASES
Arrhenius concept of acids and bases becomes useful in case of ionization of acids and bases as mostly ionizations in chemical and biological systems occur in aqueous medium. Strong acids like perchloric acid $\left(\mathrm{HClO_4}\right)$, hydrochloric acid $(\mathrm{HCl})$, hydrobromic acid $(\mathrm{HBr})$, hyrdoiodic acid (HI), nitric acid $\left(\mathrm{HNO_3}\right)$ and sulphuric acid $\left(\mathrm{H_2} \mathrm{SO_4}\right)$ are termed strong because they are almost completely dissociated into their constituent ions in an aqueous medium, thereby acting as proton $\left(\mathrm{H}^{+}\right)$donors. Similarly, strong bases like lithium hydroxide $(\mathrm{LiOH})$, sodium hydroxide $(\mathrm{NaOH})$, potassium hydroxide $(\mathrm{KOH})$, caesium hydroxide $(\mathrm{CsOH})$ and barium hydroxide $\mathrm{Ba}(\mathrm{OH})_{2}$ are almost completely dissociated into ions in an aqueous medium giving hydroxyl ions, $\mathrm{OH}^{-}$. According to Arrhenius concept they are strong acids and bases as they are able to completely dissociate and produce $\mathrm{H_3} \mathrm{O}^{+}$and $\mathrm{OH}^{-}$ions respectively in the medium. Alternatively, the strength of an acid or base may also be gauged in terms of Brönsted-Lowry concept of acids and bases, wherein a strong acid means a good proton donor and a strong base implies a good proton acceptor. Consider, the acid-base dissociation equilibrium of a weak acid $\mathrm{HA}$,
$$ \begin{aligned} & \underset{\text{acid}}{\mathrm{HA}(\mathrm{aq})} + \underset{\text{base}}{\mathrm{H_2} \mathrm{O}(\mathrm{l})} \rightleftharpoons \underset{\text{conjugate acid}}{\mathrm{H_3} \mathrm{O}^{+}(\mathrm{aq})} + \underset{\text{conjugate base}}{\mathrm{A}^{-}(\mathrm{aq})} \\ \end{aligned} $$
In section 7.10 .2 we saw that acid (or base) dissociation equilibrium is dynamic involving a transfer of proton in forward and reverse directions. Now, the question arises that if the equilibrium is dynamic then with passage of time which direction is favoured? What is the driving force behind it? In order to answer these questions we shall deal into the issue of comparing the strengths of the two acids (or bases) involved in the dissociation equilibrium. Consider the two acids $\mathrm{HA}$ and $\mathrm{H_3} \mathrm{O}^{+}$ present in the above mentioned acid-dissociation equilibrium. We have to see which amongst them is a stronger proton donor. Whichever exceeds in its tendency of donating a proton over the other shall be termed as the stronger acid and the equilibrium will shift in the direction of weaker acid. Say, if HA is a stronger acid than $\mathrm{H_3} \mathrm{O}^{+}$, then $\mathrm{HA}$ will donate protons and not $\mathrm{H_3} \mathrm{O}^{+}$, and the solution will mainly contain $\mathrm{A}^{-}$ and $\mathrm{H_3} \mathrm{O}^{+}$ ions. The equilibrium moves in the direction of formation of weaker acid and weaker base because the stronger acid donates a proton to the stronger base.
It follows that as a strong acid dissociates completely in water, the resulting base formed would be very weak i.e., strong acids have very weak conjugate bases. Strong acids like perchloric acid $\left(\mathrm{HClO_4}\right)$, hydrochloric acid $(\mathrm{HCl})$, hydrobromic acid $(\mathrm{HBr})$, hydroiodic acid (HI), nitric acid $\left(\mathrm{HNO_3}\right)$ and sulphuric acid $\left(\mathrm{H_2} \mathrm{SO_4}\right)$ will give conjugate base ions $\mathrm{ClO_4}^{-}, \mathrm{Cl}$, $\mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{NO_3}^{-}$ and $\mathrm{HSO_4}^{-}$, which are much weaker bases than $\mathrm{H_2} \mathrm{O}$. Similarly a very strong base would give a very weak conjugate acid. On the other hand, a weak acid say HA is only partially dissociated in aqueous medium and thus, the solution mainly contains undissociated HA molecules. Typical weak acids are nitrous acid $\left(\mathrm{HNO_2}\right)$, hydrofluoric acid ( $\mathrm{HF}$ ) and acetic acid $\left(\mathrm{CH_3} \mathrm{COOH}\right)$. It should be noted that the weak acids have very strong conjugate bases. For example, $\mathrm{NH_2}^{-}, \mathrm{O}^{2-}$ and $\mathrm{H}^{-}$are very good proton acceptors and thus, much stronger bases than $\mathrm{H_2} \mathrm{O}$.
Certain water soluble organic compounds like phenolphthalein and bromothymol blue behave as weak acids and exhibit different colours in their acid (HIn) and conjugate base (In ${ }^{-}$ forms.
$\underset{\substack{\text{acid indicator} \\ \text{colour A}}}{Hln(aq)} + H_2 O (l) \rightleftharpoons \underset{\text{conjugate acid}}{H_3O^+ \text{(aq)}} + \underset{\substack{\text{conjugate} \\ \text{colour B}}}{ln^- \text{(aq)}}$
Such compounds are useful as indicators in acid-base titrations, and finding out $\mathrm{H}^{+}$ion concentration.
7.11.1 The Ionization Constant of Water and its Ionic Product
Some substances like water are unique in their ability of acting both as an acid and a base. We have seen this in case of water in section 6.10.2. In presence of an acid, HA it accepts a proton and acts as the base while in the presence of a base, $\mathrm{B}^{-}$it acts as an acid by donating a proton. In pure water, one $\mathrm{H_2} \mathrm{O}$ molecule donates proton and acts as an acid and another water molecules accepts a proton and acts as a base at the same time. The following equilibrium exists:
$\underset{\text { acid }}{\mathrm{H_2} \mathrm{O}(\mathrm{l})}+ \underset{\text { base }}{\mathrm{H_2} \mathrm{O}(\mathrm{l})} \rightleftharpoons \underset{\text{conjugate base}}{\mathrm{H_3} \mathrm{O}^{+}(\mathrm{aq})} + \underset{\text{conjugated acid}}{\mathrm{OH}^{-}(\mathrm{aq})}$
The dissociation constant is represented by,
$$ \begin{equation*} K=\left[\mathrm{H_3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{H_2} \mathrm{O}\right] \tag{7.26} \end{equation*} $$
The concentration of water is omitted from the denominator as water is a pure liquid and its concentration remains constant. $\left[\mathrm{H_2} \mathrm{O}\right]$ is incorporated within the equilibrium constant to give a new constant, $K_{\mathrm{w}}$, which is called the ionic product of water.
$$ \begin{equation*} K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \tag{7.27} \end{equation*} $$
The concentration of $\mathrm{H}^{+}$has been found out experimentally as $1.0 \times 10^{-7} \mathrm{M}$ at $298 \mathrm{~K}$. And, as dissociation of water produces equal number of $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$ions, the concentration of hydroxyl ions, $\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}$. Thus, the value of $K_{\mathrm{w}}$ at $298 \mathrm{~K}$,
$$K_{\mathrm{w}}=\left[\mathrm{H_3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\left(1 \times 10^{-7}\right)^{2}=1 \times 10^{-14} \mathrm{M}^{2} \tag{7.28}$$
The value of $K_{w}$ is temperature dependent as it is an equilibrium constant.
The density of pure water is $1000 \mathrm{~g} / \mathrm{L}$ and its molar mass is $18.0 \mathrm{~g} / \mathrm{mol}$. From this the molarity of pure water can be given as,
$\left[\mathrm{H_2} \mathrm{O}\right]=(1000 \mathrm{~g} / \mathrm{L})(1 \mathrm{~mol} / 18.0 \mathrm{~g})=55.55 \mathrm{M}$. Therefore, the ratio of dissociated water to that of undissociated water can be given as: $10^{-7} /(55.55)=1.8 \times 10^{-9}$ or $\sim 2$ in $10^{-9}$ (thus, equilibrium lies mainly towards undissociated water)
We can distinguish acidic, neutral and basic aqueous solutions by the relative values of the $\mathrm{H_3} \mathrm{O}^{+}$and $\mathrm{OH}^{-}$concentrations:
$$ \begin{aligned} & \text { Acidic: }\left[\mathrm{H_3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right] \\ & \text {Neutral: }\left[\mathrm{H_3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right] \\ & \text {Basic : }\left[\mathrm{H_3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right] \end{aligned} $$
7.11.2 The pH Scale
Hydronium ion concentration in molarity is more conveniently expressed on a logarithmic scale known as the $\mathbf{p H}$ scale. The $\mathrm{pH}$ of a solution is defined as the negative logarithm to base 10 of the activity $\left(a_{\mathrm{H}^{+}}\right)$of hydrogen ion. In dilute solutions $(<0.01 \mathrm{M})$, activity of hydrogen ion $\left(\mathrm{H}^{+}\right)$is equal in magnitude to molarity represented by $\left[\mathrm{H}^{+}\right]$. It should be noted that activity has no units and is defined as:
$$ \mathrm{a_\mathrm{H}^{+}}=\left[\mathrm{H}^{+}\right] / \mathrm{mol} \mathrm{L}^{-1} $$
From the definition of $\mathrm{pH}$, the following can be written,
$$ \mathrm{pH}=-\log \mathrm{a_\mathrm{H}^{+}}=-\log \{\left[\mathrm{H}^{+}\right] / \mathrm{mol} \mathrm{L}^{-1}\} $$
Thus, an acidic solution of $\mathrm{HCl}\left(10^{-2} \mathrm{M}\right)$ will have a $\mathrm{pH}=2$. Similarly, a basic solution of $\mathrm{NaOH}$ having $\left[\mathrm{OH}^{-}\right]=10^{-4} \mathrm{M}$ and $\left[\mathrm{H_3} \mathrm{O}^{+}\right]=$ $10^{-10} \mathrm{M}$ will have a $\mathrm{pH}=10$. At $25^{\circ} \mathrm{C}$, pure water has a concentration of hydrogen ions, $\left[\mathrm{H}^{+}\right]=10^{-7} \mathrm{M}$. Hence, the $\mathrm{pH}$ of pure water is given as: $\mathrm{pH}=-\log \left(10^{-7}\right)=7$
Acidic solutions possess a concentration of hydrogen ions, $\left[\mathrm{H}^{+}\right]>10^{-7} \mathrm{M}$, while basic solutions possess a concentration of hydrogen ions, $\left[\mathrm{H}^{+}\right]<10^{-7} \mathrm{M}$.
thus, we can summarise that,
Acidic solution has $\mathrm{pH}<7$
Basic solution has $\mathrm{pH}>7$
Neutral solution has $\mathrm{pH}=7$
Now again, consider the equation (7.28) at $298 \mathrm{~K}$
$$ K_{\mathrm{w}}=\left[\mathrm{H_3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14} $$
Taking negative logarithm on both sides of equation, we obtain
$$ \begin{align*} -\log K_{\mathrm{w}} & =-\log \{\left[\mathrm{H_3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]\} \\ & =-\log \left[\mathrm{H_3} \mathrm{O}^{+}\right]-\log \left[\mathrm{OH}^{-}\right] \\ & =-\log 10^{-14} \\ \mathrm{p} K_{\mathrm{w}}= & \mathrm{pH}+\mathrm{pOH}=14 \tag{7.29} \end{align*} $$
Note that although $K_{\mathrm{w}}$ may change with temperature the variations in $\mathrm{pH}$ with temperature are so small that we often ignore it.
$\mathrm{p} K_{\mathrm{w}}$ is a very important quantity for aqueous solutions and controls the relative concentrations of hydrogen and hydroxyl ions as their product is a constant. It should be noted that as the $\mathrm{pH}$ scale is logarithmic, a change in $\mathrm{pH}$ by just one unit also means change in $\left[\mathrm{H}^{+}\right]$by a factor of 10. Similarly, when the hydrogen ion concentration, $\left[\mathrm{H}^{+}\right]$ changes by a factor of 100 , the value of $\mathrm{pH}$ changes by 2 units. Now you can realise why the change in $\mathrm{pH}$ with temperature is often ignored.
Measurement of $\mathrm{pH}$ of a solution is very essential as its value should be known when dealing with biological and cosmetic applications. The $\mathrm{pH}$ of a solution can be found roughly with the help of $\mathrm{pH}$ paper that has different colour in solutions of different $\mathrm{pH}$. Now-a-days $\mathrm{pH}$ paper is available with four strips on it. The different strips have different colours (Fig. 7.11) at the same pH. The $\mathrm{pH}$ in the range of 1-14 can be determined with an accuracy of $\sim 0.5$ using $\mathrm{pH}$ paper.
Fig.7.11 pH-paper with four strips that may have different colours at the same pH
For greater accuracy pH meters are used. pH meter is a device that measures the pH-dependent electrical potential of the test solution within 0.001 precision. pH meters of the size of a writing pen are now available in the market. The pH of some very common substances are given in Table 7.5 (page 212).
Problem 7.16
The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} \mathrm{M}$. what is its $\mathrm{pH}$ ?
Solution
$\mathrm{pH}=-\log \left[3.8 \times 10^{-3}\right]$
$=-\{\log [3.8]+\log \left[10^{-3}\right]\}$
$=-{(0.58)+(-3.0)}=-{-2.42}=2.42$
Therefore, the $\mathrm{pH}$ of the soft drink is 2.42 and it can be inferred that it is acidic.
Table 6.5 The pH of Some Common Substances
Name of the Fluid | pH | Name of the Fluid | pH |
---|---|---|---|
Saturated solution of NaOH | $\sim 15$ | Black Coffee | 5.0 |
O.1 M NaOH solution | 13 | Tomato juice | $\sim 4.2$ |
Lime water | 10.5 | Soft drinks and vinegar | $\sim 3.0$ |
Milk of magnesia | 10 | Lemon juice | $\sim 2.2$ |
Egg white, sea water | 7.8 | Gastric juice | $\sim 1.2$ |
Human blood | 7.4 | 1 M HCl solution | $\sim 0$ |
Milk | 6.8 | Concentrated HCl | $\sim-1.0$ |
Human Saliva | 6.4 |
Problem 7.17
Calculate $\mathrm{pH}$ of a $1.0 \times 10^{-8} \mathrm{M}$ solution of $\mathrm{HCl}$.
Solution
$$ \begin{aligned} & 2 \mathrm{H_2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H_3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\ & K_{\mathrm{w}}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H_3} \mathrm{O}^{+}\right] \\ & \quad=10^{-14} \end{aligned} $$
Let, $x=\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H_3} \mathrm{O}^{+}\right]$from $\mathrm{H_2} \mathrm{O}$. The $\mathrm{H_3} \mathrm{O}^{+}$concentration is generated (i) from the ionization of $\mathrm{HCl}$ dissolved i.e.,
$\mathrm{HCl}(\mathrm{aq})+\mathrm{H_2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H_3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$ and (ii) from ionization of $\mathrm{H_2} \mathrm{O}$. In these very dilute solutions, both sources of $\mathrm{H_3} \mathrm{O}^{+}$must be considered:
$\left[\mathrm{H_3} \mathrm{O}^{+}\right]=10^{-8}+\mathrm{x}$
$K_{\mathrm{w}}=\left(10^{-8}+\mathrm{x}\right)(\mathrm{x})=10^{-14}$
or $\mathrm{x}^{2}+10^{-8} \mathrm{x}-10^{-14}=0$
$\left[\mathrm{OH}^{-}\right]=\mathrm{x}=9.5 \times 10^{-8}$
So, $\mathrm{pOH}=7.02$ and $\mathrm{pH}=6.98$
7.11.3 Ionization Constants of Weak Acids
Consider a weak acid HX that is partially ionized in the aqueous solution. The equilibrium can be expressed by:
$ \begin{aligned} & \underset{\text { Initial }}{\mathrm{HX}(\mathrm{aq})} +\mathrm{H}_2 \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_3 \mathrm{O}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}) \end{aligned} $
Let $\alpha$ be the extent of ionization
Change (M)
$\begin{array}{lll}-\mathrm{c} \alpha & +\mathrm{c} \alpha & +\mathrm{c} \alpha\end{array}$
Equilibrium concentration (M)
$\begin{array}{ccc}\mathrm{c}-\mathrm{c} \alpha & \mathrm{c} \alpha \quad \mathrm{c} \alpha \end{array}$
Here, $\mathrm{c}=$ initial concentration of the undissociated acid, $\mathrm{HX}$ at time, $\mathrm{t}=0 . \alpha=$ extent up to which HX is ionized into ions. Using these notations, we can derive the equilibrium constant for the above discussed acid-dissociation equilibrium:
$$ K_{\mathrm{a}}=\mathrm{c}^{2} \alpha^{2} / \mathrm{c}(1-\alpha)=\mathrm{c} \alpha^{2} / 1-\alpha $$
$K_{\mathrm{a}}$ is called the dissociation or ionization constant of acid HX. It can be represented alternatively in terms of molar concentration as follows,
$$ \begin{equation*} K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{-}\right] /[\mathrm{HX}] \tag{7.30} \end{equation*} $$
At a given temperature $T, K_{\mathrm{a}}$ is a measure of the strength of the acid $\mathrm{HX}$ i.e., larger the value of $K_{a}$, the stronger is the acid. $K_{\mathrm{a}}$ is a dimensionless quantity with the understanding that the standard state concentration of all species is $1 \mathrm{M}$.
The values of the ionization constants of some selected weak acids are given in Table 7.6.
Table 7.6 The Ionization Constants of Some Selected Weak Acids (at 298K)
Acid | Ionization Constant, $\boldsymbol{K_\mathrm{a}}$ |
---|---|
Hydrofluoric Acid $(\mathrm{HF})$ | $3.5 \times 10^{-4}$ |
Nitrous Acid $\left(\mathrm{HNO_2}\right)$ | $4.5 \times 10^{-4}$ |
Formic Acid $(\mathrm{HCOOH})$ | $1.8 \times 10^{-4}$ |
Niacin $\left(\mathrm{C_5} \mathrm{H_4} \mathrm{NCOOH}\right)$ | $1.5 \times 10^{-5}$ |
Acetic Acid $\left(\mathrm{CH_3} \mathrm{COOH}\right)$ | $1.74 \times 10^{-5}$ |
Benzoic Acid $\left(\mathrm{C_6} \mathrm{H_5} \mathrm{COOH}\right)$ | $6.5 \times 10^{-5}$ |
Hypochlorous Acid $(\mathrm{HCIO})$ | $3.0 \times 10^{-8}$ |
Hydrocyanic Acid $(\mathrm{HCN})$ | $4.9 \times 10^{-10}$ |
Phenol $\left(\mathrm{C_6} \mathrm{H_5} \mathrm{OH}\right)$ | $1.3 \times 10^{-10}$ |
The $\mathrm{pH}$ scale for the hydrogen ion concentration has been so useful that besides $\mathrm{p} K_{\mathrm{w}}$, it has been extended to other species and quantities. Thus, we have:
$$ \begin{equation*} \mathrm{p} K_{\mathrm{a}}=-\log \left(K_{\mathrm{a}}\right) \tag{7.31} \end{equation*} $$
Knowing the ionization constant, $K_{\mathrm{a}}$ of an acid and its initial concentration, c, it is possible to calculate the equilibrium concentration of all species and also the degree of ionization of the acid and the $\mathrm{pH}$ of the solution.
A general step-wise approach can be adopted to evaluate the $\mathrm{pH}$ of the weak electrolyte as follows:
Step 1. The species present before dissociation are identified as Brönsted-Lowry acids/bases.
Step 2. Balanced equations for all possible reactions i.e., with a species acting both as acid as well as base are written.
Step 3. The reaction with the higher $K_{\mathrm{a}}$ is identified as the primary reaction whilst the other is a subsidiary reaction.
Step 4. Enlist in a tabular form the following values for each of the species in the primary reaction
(a) Initial concentration, c.
(b) Change in concentration on proceeding to equilibrium in terms of $\alpha$, degree of ionization.
(c) Equilibrium concentration.
Step 5. Substitute equilibrium concentrations into equilibrium constant equation for principal reaction and solve for $\alpha$.
Step 6. Calculate the concentration of species in principal reaction.
Step 7. Calculate $\mathrm{pH}=-\log \left[\mathrm{H_3} \mathrm{O}^{+}\right]$
The above mentioned methodology has been elucidated in the following examples.
Problem 7.18
The ionization constant of $\mathrm{HF}$ is $3.2 \times 10^{-4}$. Calculate the degree of dissociation of $\mathrm{HF}$ in its $0.02 \mathrm{M}$ solution. Calculate the concentration of all species present $\left(\mathrm{H_3} \mathrm{O}^{+}, \mathrm{F}^{-}\right.$and $\left.\mathrm{HF}\right)$ in the solution and its $\mathrm{pH}$.
Solution
The following proton transfer reactions are possible:
- $\mathrm{HF}+\mathrm{H_2} \mathrm{O} \rightleftharpoons \mathrm{H_3} \mathrm{O}^{+}+\mathrm{F}^{-}$
$$ K_{\mathrm{a}}=3.2 \times 10^{-4} $$
- $\mathrm{H_2} \mathrm{O}+\mathrm{H_2} \mathrm{O} \rightleftharpoons \mathrm{H_3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
$$ K_{\mathrm{w}}=1.0 \times 10^{-14} $$
As $K_{\mathrm{a}}$ » $K_{\mathrm{w}}$, [1] is the principle reaction.
$$ \mathrm{HF}+\mathrm{H_2} \mathrm{O} \rightleftharpoons \mathrm{H_3} \mathrm{O}^{+}+\mathrm{F}^{-} $$
Initial concentration (M)
$ \quad \quad \quad \quad $ 0.02 $ \quad \quad \quad $ 0 $ \quad \quad \quad $ 0
Change (M)
$$ -0.02 \alpha \quad+0.02 \alpha+0.02 \alpha $$
Equilibrium concentration (M)
$$ 0.02-0.02 \alpha \quad 0.02 \alpha \quad 0.02 \alpha $$
Substituting equilibrium concentrations in the equilibrium reaction for principal reaction gives:
$K_{\mathrm{a}}=(0.02 \alpha)^{2} /(0.02-0.02 \alpha)$
$=0.02 \alpha^{2} /(1-\alpha)=3.2 \times 10^{-4}$
We obtain the following quadratic equation: $\alpha^{2}+1.6 \times 10^{-2} \alpha-1.6 \times 10^{-2}=0$
The quadratic equation in $\alpha$ can be solved and the two values of the roots are:
$\alpha=+0.12$ and -0.12
The negative root is not acceptable and hence,
$\alpha=0.12$
This means that the degree of ionization, $\alpha=0.12$, then equilibrium concentrations of other species viz., $\mathrm{HF}, \mathrm{F}^{-}$and $\mathrm{H_3} \mathrm{O}^{+}$are given by:
$$ \begin{aligned} {\left[\mathrm{H_3} \mathrm{O}^{+}\right]=\left[\mathrm{F}^{-}\right]=\mathrm{c} \alpha } & =0.02 \times 0.12 \\ & =2.4 \times 10^{-3} \mathrm{M} \end{aligned} $$
$[\mathrm{HF}]=\mathrm{c}(1-\alpha)=0.02(1-0.12)$
$=17.6 \times 10^{-3} \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(2.4 \times 10^{-3}\right)=2.62$
Problem 7.19
The $\mathrm{pH}$ of $0.1 \mathrm{M}$ monobasic acid is 4.50 . Calculate the concentration of species $\mathrm{H}^{+}, \mathrm{A}^{-}$ and HA at equilibrium. Also, determine the value of $K_{a}$ and $\mathrm{p} K_{a}$ of the monobasic acid.
Solution
$ \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] $
Therefore, $\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-4.50}$
$$ =3.16 \times 10^{-5} $$
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]=3.16 \times 10^{-5}$
Thus, $\quad K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$
$[\mathrm{HA}]_{\text {eqlbm }}=0.1-\left(3.16 \times 10^{-5}\right) \simeq 0.1$
$K_{\mathrm{a}}=\left(3.16 \times 10^{-5}\right)^{2} / 0.1=1.0 \times 10^{-8}$
$\mathrm{p} K_{\mathrm{a}}=-\log \left(10^{-8}\right)=8$
Alternatively, “Percent dissociation” is another useful method for measure of strength of a weak acid and is given as:
Percent dissociation
$$=[\mathrm{HA}] _\text {dissociated } / [\mathrm{HA}] _\text {initial } \times 100 \% \tag{7.32}$$
Problem 7.20
Calculate the $\mathrm{pH}$ of $0.08 \mathrm{M}$ solution of hypochlorous acid, $\mathrm{HOCl}$. The ionization constant of the acid is $2.5 \times 10^{-5}$. Determine the percent dissociation of $\mathrm{HOCl}$.
Solution
$\mathrm{HOCl}(\mathrm{aq})+\mathrm{H_2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H_3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{ClO}^{-}(\mathrm{aq})$
Initial concentration (M)
$ \quad \quad \quad $ 0.08 $ \quad \quad \quad $ 0 $ \quad \quad \quad $ 0
Change to reach equilibrium concentration (M)
$$ -\mathrm{x} \quad \quad \quad +\mathrm{x} \quad \quad \quad +\mathrm{x} $$
equilibrium concentartion (M)
$$\begin{array}{lll}0.08-\mathrm{x} \quad \quad \quad & \mathrm{x} \quad \quad \quad & \mathrm{x}\end{array}$$
$K_{\mathrm{a}}=\{\left[\mathrm{H_3} \mathrm{O}^{+}\right]\left[\mathrm{ClO}^{-}\right] /[\mathrm{HOCl}]\}$
$=x^{2} /(0.08-x)$ As $\mathrm{x} < < 0.08$, therefore $0.08-\mathrm{x} \simeq 0.08$
$\mathrm{x}^{2} / 0.08=2.5 \times 10^{-5}$
$\mathrm{x}^{2}=2.0 \times 10^{-6}$, thus, $\mathrm{x}=1.41 \times 10^{-3}$
$\left[\mathrm{H}^{+}\right]=1.41 \times 10^{-3} \mathrm{M}$.
Therefore,
Percent dissociation
$$ \begin{aligned} & =\{[\mathrm{HOCl}] _{dissociated } /[\mathrm{HOCl}] _{initial }\} \times 100 \\ \end{aligned} $$
$$ \begin{aligned} & =1.41 \times 10^{-3} \times 10^{2} / 0.08=1.76 \% \\ & \mathrm{pH}=-\log \left(1.41 \times 10^{-3}\right)=2.85 \end{aligned} $$
7.11.4 Ionization of Weak Bases
The ionization of base $\mathrm{MOH}$ can be represented by equation:
$$ \mathrm{MOH}(\mathrm{aq}) \rightleftharpoons \mathrm{M}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) $$
In a weak base there is partial ionization of $\mathrm{MOH}$ into $\mathrm{M}^{+}$and $\mathrm{OH}^{-}$, the case is similar to that of acid-dissociation equilibrium. The equilibrium constant for base ionization is called base ionization constant and is represented by $K_{\mathrm{b}}$. It can be expressed in terms of concentration in molarity of various species in equilibrium by the following equation:
$$K_{\mathrm{b}}=\left[\mathrm{M}^{+}\right]\left[\mathrm{OH}^{-}\right] /[\mathrm{MOH}] \tag{7.33}$$
Alternatively, if $\mathrm{c}=$ initial concentration of base and $\alpha=$ degree of ionization of base i.e. the extent to which the base ionizes. When equilibrium is reached, the equilibrium constant can be written as:
$K_{b}=(\mathrm{c} \alpha)^{2} / \mathrm{c}(1-\alpha)=\mathrm{c} \alpha^{2} /(1-\alpha)$
The values of the ionization constants of some selected weak bases, $K_{b}$ are given in Table 6.7.
Table 6.7 The Values of the Ionization Constant of Some Weak Bases at $298 \mathrm{~K}$
Base | $\boldsymbol{K_\mathbf{b}}$ |
---|---|
Dimethylamine, $\left(\mathrm{CH_3}\right)_{2} \mathrm{NH}$ | $5.4 \times 10^{-4}$ |
Triethylamine, $\left(\mathrm{C_2} \mathrm{H_5}\right)_{3} \mathrm{~N}$ | $6.45 \times 10^{-5}$ |
Ammonia, $\mathrm{NH_3}$ or $\mathrm{NH_4} \mathrm{OH}$ | $1.77 \times 10^{-5}$ |
Quinine, $(\mathrm{A}$ plant product) | $1.10 \times 10^{-6}$ |
Pyridine, $\mathrm{C_5} \mathrm{H_5} \mathrm{~N}$ | $1.77 \times 10^{-9}$ |
Aniline, $\mathrm{C_6} \mathrm{H_5} \mathrm{NH_2}$ | $4.27 \times 10^{-10}$ |
Urea, $\mathrm{CO}\left(\mathrm{NH_2}\right)_{2}$ | $1.3 \times 10^{-14}$ |
Many organic compounds like amines are weak bases. Amines are derivatives of ammonia in which one or more hydrogen atoms are replaced by another group. For example, methylamine, codeine, quinine and nicotine all behave as very weak bases due to their very small $K_{\mathrm{b}}$. Ammonia produces $\mathrm{OH}^{-}$in aqueous solution:
$$ \mathrm{NH_3}(\mathrm{aq})+\mathrm{H_2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH_4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) $$
The $\mathrm{pH}$ scale for the hydrogen ion concentration has been extended to get:
$$\mathrm{p} K_{b}=-\log \left(K_{b}\right) \tag{7.34}$$
Problem 7.21
The $\mathrm{pH}$ of $0.004 \mathrm{M}$ hydrazine solution is 9.7. Calculate its ionization constant $K_{\mathrm{b}}$ and $\mathrm{p} K_{\mathrm{b}}$.
Solution
$\mathrm{NH_2} \mathrm{NH_2}+\mathrm{H_2} \mathrm{O} \rightleftharpoons \mathrm{NH_2} \mathrm{NH_3}{ }^{+}+\mathrm{OH}^{-}$
From the $\mathrm{pH}$ we can calculate the hydrogen ion concentration. Knowing hydrogen ion concentration and the ionic product of water we can calculate the concentration of hydroxyl ions. Thus we have:
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})$
$=\operatorname{antilog}(-9.7)=1.67 \times 10^{-10}$
$\left[\mathrm{OH}^{-}\right]=K_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]=1 \times 10^{-14} / 1.67 \times 10^{-10}$
$$ =5.98 \times 10^{-5} $$
The concentration of the corresponding hydrazinium ion is also the same as that of hydroxyl ion. The concentration of both these ions is very small so the concentration of the undissociated base can be taken equal to $0.004 \mathrm{M}$.
Thus,
$K_{\mathrm{b}}=\left[\mathrm{NH_2} \mathrm{NH_3}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{NH_2} \mathrm{NH_2}\right]$
$=\left(5.98 \times 10^{-5}\right)^{2} / 0.004=8.96 \times 10^{-7}$
$\mathrm{p} K_{\mathrm{b}}=-\log K_{\mathrm{b}}=-\log \left(8.96 \times 10^{-7}\right)=6.04$.
Problem 7.22
Calculate the $\mathrm{pH}$ of the solution in which $0.2 \mathrm{M} \mathrm{NH_4} \mathrm{Cl}$ and $0.1 \mathrm{M} \mathrm{NH_3}$ are present. The $\mathrm{pK_\mathrm{b}}$ of ammonia solution is 4.75.
Solution
$\mathrm{NH_3}+\mathrm{H_2} \mathrm{O} \rightleftharpoons \mathrm{NH_4}^{+}+\mathrm{OH}^{-}$
The ionization constant of $\mathrm{NH_3}$,
$K_{\mathrm{b}}=\operatorname{antilog}\left(-\mathrm{p} K_{\mathrm{b}}\right)$ i.e.
$K_{\mathrm{b}}=10^{-4.75}=1.77 \times 10^{-5} \mathrm{M}$
$\mathrm{NH} _{3}+\mathrm{H} _{2} \mathrm{O} \rightleftharpoons \mathrm{NH} _{4}^{+}+\mathrm{OH}^{-}$
Initial concentration (M)
$$ \begin{equation*} 0.10 \quad \quad \quad \quad 0.20 \quad \quad \quad \quad 0 \end{equation*} $$
Change to reach equilibrium $(\mathrm{M})$
$$ \begin{equation*} -x \quad \quad \quad \quad +x \quad \quad \quad \quad +x \end{equation*} $$
At equilibrium (M)
$$ \begin{equation*} 0.10-x \quad \quad \quad \quad 0.20+x \quad \quad \quad \quad +x \end{equation*} $$
$K_{\mathrm{b}}=\left[\mathrm{NH_4}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{NH_3}\right]$
$=(0.20+\mathrm{x})(\mathrm{x}) /(0.1-\mathrm{x})=1.77 \times 10^{-5}$
As $K_{\mathrm{b}}$ is small, we can neglect $\mathrm{x}$ in comparison to $0.1 \mathrm{M}$ and $0.2 \mathrm{M}$. Thus,
$\left[\mathrm{OH}^{-}\right]=\mathrm{x}=0.88 \times 10^{-5}$
Therefore, $\left[\mathrm{H}^{+}\right]=1.12 \times 10^{-9}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=8.95$.
7.11.5 Relation between $K_{\mathrm{a}}$ and $K_{\mathrm{b}}$
As seen earlier in this chapter, $K_{\mathrm{a}}$ and $K_{\mathrm{b}}$ represent the strength of an acid and a base, respectively. In case of a conjugate acid-base pair, they are related in a simple manner so that if one is known, the other can be deduced. Considering the example of $\mathrm{NH_4}^{+}$and $\mathrm{NH_3}$ we see,
$$ \begin{aligned} & \mathrm{NH_4}^{+}(\mathrm{aq})+\mathrm{H_2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H_3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NH_3}(\mathrm{aq}) \\ & \quad K_{\mathrm{a}}=\left[\mathrm{H_3} \mathrm{O}^{+}\right]\left[\mathrm{NH_3}\right] /\left[\mathrm{NH_4}^{+}\right]=5.6 \times 10^{-10} \\ & \mathrm{NH_3}(\mathrm{aq})+\mathrm{H_2} \mathrm{O}(1) \rightleftharpoons \mathrm{NH_4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\ & K_{\mathrm{b}}=\left[\mathrm{NH_4}^{+}\right]\left[\mathrm{OH}^{-}\right] / \mathrm{NH_3}=1.8 \times 10^{-5} \\ & \text { Net: } 2 \mathrm{H_2} \mathrm{O}(1) \rightleftharpoons \mathrm{H_3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\ & K_{\mathrm{w}}=\left[\mathrm{H_3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \mathrm{M} \end{aligned} $$
Where, $K_{\mathrm{a}}$ represents the strength of $\mathrm{NH_4}^{+}$ as an acid and $K_{\mathrm{b}}$ represents the strength of $\mathrm{NH_3}$ as a base.
It can be seen from the net reaction that the equilibrium constant is equal to the product of equilibrium constants $K_{\mathrm{a}}$ and $K_{\mathrm{b}}$ for the reactions added. Thus,
$$ \begin{aligned} K_{\mathrm{a}} \times & K_{\mathrm{b}}=\{\left[\mathrm{H_3} \mathrm{O}^{+}\right]\left[\mathrm{NH_3}\right] /\left[\mathrm{NH_4}^{+}\right]\} \times\{\left[\mathrm{NH_4}^{+}\right] \left[\mathrm{OH}^{-}\right] /\left[\mathrm{NH_3}\right]\} \\ \end{aligned} $$
$$ \begin{aligned} = & {\left[\mathrm{H_3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=K_{\mathrm{w}} } \\ & =\left(5.6 \times 10^{-10}\right) \times\left(1.8 \times 10^{-5}\right)=1.0 \times 10^{-14} \mathrm{M} \end{aligned} $$
This can be extended to make a generalisation. The equilibrium constant for a net reaction obtained after adding two (or more) reactions equals the product of the equilibrium constants for individual reactions:
$$ \begin{equation*} K_{\mathrm{NET}}=K_{1} \times K_{2} \times \ldots \ldots \tag{7.35} \end{equation*} $$
Similarly, in case of a conjugate acid-base pair,
$$ \begin{equation*} K_{\mathrm{a}} \times K_{\mathrm{b}}=K_{\mathrm{w}} \tag{7.36} \end{equation*} $$
Knowing one, the other can be obtained. It should be noted that a strong acid will have a weak conjugate base and vice-versa.
Alternatively, the above expression $K_{\mathrm{w}}=K_{\mathrm{a}} \times K_{\mathrm{b}}$, can also be obtained by considering the base-dissociation equilibrium reaction:
$$ \begin{aligned} & \mathrm{B}(\mathrm{aq})+\mathrm{H_2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{BH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\ & K_{\mathrm{b}}=\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right] /[\mathrm{B}] \end{aligned} $$
As the concentration of water remains constant it has been omitted from the denominator and incorporated within the dissociation constant. Then multiplying and dividing the above expression by $\left[\mathrm{H}^{+}\right]$, we get:
$$ \begin{aligned} K_{\mathrm{b}} & = \left[\mathrm{BH}^{+}\right] \left[\mathrm{OH}^{-}\right] \left[\mathrm{H}^{+}\right] / [\mathrm{B}] \left[\mathrm{H}^{+} \right] \\ \end{aligned} $$
$$ \begin{aligned} & =\{ \left[\mathrm{OH}^{-}\right] \left[\mathrm{H}^{+} \right]\}\{ \left[\mathrm{BH}^{+} \right] /[\mathrm{B}] \left[\mathrm{H}^{+} \right]\} \\ & =K_{\mathrm{w}} / K_{\mathrm{a}} \\ \text { or } & K_{\mathrm{a}} \times K_{\mathrm{b}}=K_{\mathrm{w}} \end{aligned} $$
It may be noted that if we take negative logarithm of both sides of the equation, then $\mathrm{p} K$ values of the conjugate acid and base are related to each other by the equation:
$$ \mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=\mathrm{p} K_{\mathrm{w}}=14(\text { at } 298 \mathrm{~K}) $$
Problem 7.23
Determine the degree of ionization and $\mathrm{pH}$ of a $0.05 \mathrm{M}$ of ammonia solution. The ionization constant of ammonia can be taken from Table 6.7. Also, calculate the ionization constant of the conjugate acid of ammonia.
Solution
The ionization of $\mathrm{NH_3}$ in water is represented by equation:
$\mathrm{NH_3}+\mathrm{H_2} \mathrm{O} \rightleftharpoons \mathrm{NH_4}^{+}+\mathrm{OH}^{-}$
We use equation (6.33) to calculate hydroxyl ion concentration,
$\left[\mathrm{OH}^{-}\right]=\mathrm{c} \alpha=0.05 \alpha$
$K_{\mathrm{b}}=0.05 \alpha^{2} /(1-\alpha)$
The value of $\alpha$ is small, therefore the quadratic equation can be simplified by neglecting $\alpha$ in comparison to 1 in the denominator on right hand side of the equation,
Thus,
$$ \begin{aligned} K_{\mathrm{b}}=\mathrm{c} \alpha^{2} \text { or } \alpha & =\sqrt{ }\left(1.77 \times 10^{-5} / 0.05\right) \\ & =0.018 . \end{aligned} $$
$\left[\mathrm{OH}^{-}\right]=\mathrm{c} \alpha=0.05 \times 0.018=9.4 \times 10^{-4} \mathrm{M}$.
$\left[\mathrm{H}^{+}\right]=K_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=10^{-14} /\left(9.4 \times 10^{-4}\right)$
$$ =1.06 \times 10^{-11} $$
$\mathrm{pH}=-\log \left(1.06 \times 10^{-11}\right)=10.97$.
Now, using the relation for conjugate acid-base pair,
$K_{\mathrm{a}} \times K_{\mathrm{b}}=K_{\mathrm{w}}$
using the value of $K_{b}$ of $\mathrm{NH_3}$ from Table 7.7.
We can determine the concentration of conjugate acid $\mathrm{NH_4}^{+}$
$$ \begin{aligned} K_{\mathrm{a}}=K_{\mathrm{w}} / K_{\mathrm{b}} & =10^{-14} / 1.77 \times 10^{-5} \\ & =5.64 \times 10^{-10} . \end{aligned} $$
7.11.6 Di- and Polybasic Acids and Di- and Polyacidic Bases
Some of the acids like oxalic acid, sulphuric acid and phosphoric acids have more than one ionizable proton per molecule of the acid. Such acids are known as polybasic or polyprotic acids.
The ionization reactions for example for a dibasic acid $\mathrm{H_2} \mathrm{X}$ are represented by the equations:
$$ \begin{aligned} & \mathrm{H_2} \mathrm{X}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HX}^{-}(\mathrm{aq}) \\ & \mathrm{HX}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{X}^{2-}(\mathrm{aq}) \end{aligned} $$
And the corresponding equilibrium constants are given below:
$$ K_{a_{1}}=\{\left[\mathrm{H}^{+}\right]\left[\mathrm{HX}^{-}\right]\} /\left[\mathrm{H_2} \mathrm{X}\right] \text { and } $$
$$ K_{\mathrm{a_2}}=\{\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{2-}\right]\} / \left[\mathrm{HX}^{-}\right] $$
Here, $K_{\mathrm{a_1}}$ and $K_{\mathrm{a_2}}$ are called the first and second ionization constants respectively of the acid $\mathrm{H_2}$ X. Similarly, for tribasic acids like $\mathrm{H_3} \mathrm{PO_4}$ we have three ionization constants. The values of the ionization constants for some common polyprotic acids are given in Table 6.8.
Table 6.8 The Ionization Constants of Some Common Polyprotic Acids (298K)
Acid | $\boldsymbol{K_\mathrm{a_\mathbf{1}}}$ | $\boldsymbol{K_\mathrm{a_\mathbf{2}}}$ | $\boldsymbol{K_\mathrm{a_\mathbf{3}}}$ |
---|---|---|---|
Oxalic Acid | $5.9 \times 10^{-2}$ | $6.4 \times 10^{-5}$ | |
Ascorbic Acid | $7.4 \times 10^{-4}$ | $1.6 \times 10^{-12}$ | |
Sulphurous Acid | $1.7 \times 10^{-2}$ | $6.4 \times 10^{-8}$ | |
Sulphuric Acid | Very large | $1.2 \times 10^{-2}$ | |
Carbonic Acid | $4.3 \times 10^{-7}$ | $5.6 \times 10^{-11}$ | |
Citric Acid | $7.4 \times 10^{-4}$ | $1.7 \times 10^{-5}$ | $4.0 \times 10^{-7}$ |
Phosphoric Acid | $7.5 \times 10^{-3}$ | $6.2 \times 10^{-8}$ | $4.2 \times 10^{-13}$ |
It can be seen that higher order ionization constants $\left(K_{\mathrm{a_2}}, K_{\mathrm{a_3}}\right)$ are smaller than the lower order ionization constant $\left(K_{a_{1}}\right)$ of a polyprotic acid. The reason for this is that it is more difficult to remove a positively charged proton from a negative ion due to electrostatic forces. This can be seen in the case of removing a proton from the uncharged $\mathrm{H_2} \mathrm{CO_3}$ as compared from a negatively charged $\mathrm{HCO_3}^{-}$. Similarly, it is more difficult to remove a proton from a doubly charged $\mathrm{HPO_4}^{2-}$ anion as compared to $\mathrm{H_2} \mathrm{PO_4}^{-}$.
Polyprotic acid solutions contain a mixture of acids like $\mathrm{H_2} \mathrm{~A}, \mathrm{HA}^{-}$and $\mathrm{A}^{2-}$ in case of a diprotic acid. $\mathrm{H_2} \mathrm{~A}$ being a strong acid, the primary reaction involves the dissociation of $\mathrm{H_2} \mathrm{~A}$, and $\mathrm{H_3} \mathrm{O}^{+}$in the solution comes mainly from the first dissociation step.
7.11.7 Factors Affecting Acid Strength
Having discussed quantitatively the strengths of acids and bases, we come to a stage where we can calculate the $\mathrm{pH}$ of a given acid solution. But, the curiosity rises about why should some acids be stronger than others? What factors are responsible for making them stronger? The answer lies in its being a complex phenomenon. But, broadly speaking we can say that the extent of dissociation of an acid depends on the strength and polarity of the $\mathrm{H}-\mathrm{A}$ bond. In general, when strength of $\mathrm{H}-\mathrm{A}$ bond decreases, that is, the energy required to break the bond decreases, HA becomes a stronger acid. Also, when the H-A bond becomes more polar i.e., the electronegativity difference between the atoms $\mathrm{H}$ and $\mathrm{A}$ increases and there is marked charge separation, cleavage of the bond becomes easier thereby increasing the acidity.
But it should be noted that while comparing elements in the same group of the periodic table, $\mathrm{H}-\mathrm{A}$ bond strength is a more important factor in determining acidity than its polar nature. As the size of A increases down the group, H-A bond strength decreases and so the acid strength increases. For example,
Similarly, $\mathrm{H_2} \mathrm{~S}$ is stronger acid than $\mathrm{H_2} \mathrm{O}$.
But, when we discuss elements in the same row of the periodic table, H-A bond polarity becomes the deciding factor for determining the acid strength. As the electronegativity of A increases, the strength of the acid also increases. For example,
7.11.8 Common Ion Effect in the Ionization of Acids and Bases
Consider an example of acetic acid dissociation equilibrium represented as:
$\mathrm{CH_3} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH_3} \mathrm{COO}^{-}(\mathrm{aq})$
or $\mathrm{HAc}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Ac}^{-}(\mathrm{aq})$
$K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{Ac}^{-}\right] /[\mathrm{HAc}]$
Addition of acetate ions to an acetic acid solution results in decreasing the concentration of hydrogen ions, $\left[\mathrm{H}^{+}\right]$. Also, if $\mathrm{H}^{+}$ions are added from an external source then the equilibrium moves in the direction of undissociated acetic acid i.e., in a direction of reducing the concentration of hydrogen ions, $\left[\mathrm{H}^{+}\right]$. This phenomenon is an example of common ion effect. It can be defined as a shift in equilibrium on adding a substance that provides more of an ionic species already present in the dissociation equilibrium. Thus, we can say that common ion effect is a phenomenon based on the Le Chatelier’s principle discussed in section 7.8.
In order to evaluate the $\mathrm{pH}$ of the solution resulting on addition of $0.05 \mathrm{M}$ acetate ion to $0.05 \mathrm{M}$ acetic acid solution, we shall consider the acetic acid dissociation equilibrium once again,
$$ \mathrm{HAc}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Ac}^{-}(\mathrm{aq}) $$
Initial concentration $(\mathrm{M})$
$$ 0.05 \quad \quad\quad 0 \quad \quad\quad 0.05 $$
Let $\mathrm{x}$ be the extent of ionization of acetic acid.
Change in concentration (M)
$$-\mathrm{x} \quad\quad\quad +\mathrm{x}\quad\quad\quad +\mathrm{x}$$
Equilibrium concentration (M)
$$ 0.05-x \quad \quad\quad x \quad\quad\quad 0.05+x $$
Therefore,
$K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{Ac}^{-}\right] /[\mathrm{H} \mathrm{Ac}]={(0.05+\mathrm{x})(\mathrm{x})} /(0.05-\mathrm{x})$
As $K_{\mathrm{a}}$ is small for a very weak acid, $\mathrm{x}«0.05$.
Hence, $(0.05+\mathrm{x}) \approx(0.05-\mathrm{x}) \approx 0.05$
Thus,
$1.8 \times 10^{-5}=(\mathrm{x})(0.05+\mathrm{x}) /(0.05-\mathrm{x})$
$=\mathrm{x}(0.05) /(0.05)=\mathrm{x}=\left[\mathrm{H}^{+}\right]=1.8 \times 10^{-5} \mathrm{M}$
$\mathrm{pH}=-\log \left(1.8 \times 10^{-5}\right)=4.74$
Problem 7.24
Calculate the $\mathrm{pH}$ of a $0.10 \mathrm{M}$ ammonia solution. Calculate the $\mathrm{pH}$ after $50.0 \mathrm{~mL}$ of this solution is treated with $25.0 \mathrm{~mL}$ of $0.10 \mathrm{M} \mathrm{HCl}$. The dissociation constant of ammonia, $K_{\mathrm{b}}=1.77 \times 10^{-5}$
Solution
$$ \mathrm{NH_3} + \mathrm{H_2} \mathrm{O} \rightarrow \mathrm{NH_4}^{+} + \mathrm{OH}^{-} $$
$$ K_{\mathrm{b}}=\left[\mathrm{NH_4}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{NH_3}\right]=1.77 \times 10^{-5} $$
Before neutralization,
$\left[\mathrm{NH_4}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\mathrm{x}$
$\left[\mathrm{NH_3}\right]=0.10-\mathrm{x} \simeq 0.10$
$\mathrm{x}^{2} / 0.10=1.77 \times 10^{-5}$
Thus, $\mathrm{x}=1.33 \times 10^{-3}=\left[\mathrm{OH}^{-}\right]$
Therefore,
$\left[\mathrm{H}^{+}\right]=K_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right] $
$= 10^{-14} / \left(1.33 \times 10^{-3}\right)$
$=7.51 \times 10^{-12}$
$\mathrm{pH} =-\log \left(7.5 \times 10^{-12}\right)=11.12$
On addition of $25 \mathrm{~mL}$ of $0.1 \mathrm{M} \mathrm{HCl}$ solution (i.e., $2.5 \mathrm{mmol}$ of $\mathrm{HCl}$ ) to 50 $\mathrm{mL}$ of $0.1 \mathrm{M}$ ammonia solution (i.e., 5 $\mathrm{mmol}$ of $\mathrm{NH_3}$ ), $2.5 \mathrm{mmol}$ of ammonia molecules are neutralized. The resulting $75 \mathrm{~mL}$ solution contains the remaining unneutralized $2.5 \mathrm{mmol}$ of $\mathrm{NH_3}$ molecules and $2.5 \mathrm{mmol}$ of $\mathrm{NH_4}^{+}$.
$ \underset{2.5}{\mathrm{NH_3}} + \underset{2.5}{\mathrm{HCl}} \rightarrow \underset{0}{\mathrm{NH_4}^{+}} + \underset{0}{\mathrm{Cl}^{-}} $
At equilibrium 0 $\quad \quad \quad $ 0 $\quad \quad \quad $ 2.5 $\quad \quad \quad $ 2.5
The resulting $75 \mathrm{~mL}$ of solution contains $2.5 \mathrm{mmol}$ of $\mathrm{NH_4}^{+}$ions (i.e., $0.033 \mathrm{M}$ ) and $2.5 \mathrm{mmol}$ (i.e., $0.033 \mathrm{M}$ ) of uneutralised $\mathrm{NH_3}$ molecules. This $\mathrm{NH_3}$ exists in the following equilibrium:
$\begin{array}{llcl}\mathrm{NH}_4 \mathrm{OH} & \rightleftharpoons & \mathrm{NH}_4^{+}+ & \mathrm{OH}^{-} \\ 0.033 \mathrm{M}-\mathrm{y} & & \mathrm{y} & \mathrm{y}\end{array}$
where, $\mathrm{y}=\left[\mathrm{OH}^{-}\right]=$ $\left[\mathrm{NH_4}^{+}\right]$
The final $75 \mathrm{~mL}$ solution after neutralisation already contains $2.5 \mathrm{~m} \mathrm{~mol} \mathrm{NH_4}^{+}$ions (i.e. $0.033 \mathrm{M}$ ), thus total concentration of $\mathrm{NH_4}^{+}$ions is given as:
$\left[\mathrm{NH_4}^{+}\right]=0.033+\mathrm{y}$
As $\mathrm{y}$ is small, $\left[\mathrm{NH_4} \mathrm{OH}\right] \simeq 0.033 \mathrm{M}$ and $\left[\mathrm{NH_4}^{+}\right] \simeq 0.033 \mathrm{M}$.
We know,
$$ \begin{aligned} K_{\mathrm{b}} & =\left[\mathrm{NH_4}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{NH_4} \mathrm{OH}\right] \\ & =\mathrm{y}(0.033) /(0.033)=1.77 \times 10^{-5} \mathrm{M} \end{aligned} $$
Thus, $\mathrm{y}=1.77 \times 10^{-5}=\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{H}^{+}\right]=10^{-14} / 1.77 \times 10^{-5}=0.56 \times 10^{-9}$
Hence, $\mathrm{pH}=9.24$
7.11.9 Hydrolysis of Salts and the pH of their Solutions
Salts formed by the reactions between acids and bases in definite proportions, undergo ionization in water. The cations/anions formed on ionization of salts either exist as hydrated ions in aqueous solutions or interact with water to reform corresponding acids/ bases depending upon the nature of salts. The later process of interaction between water and cations/anions or both of salts is called hydrolysis. The $\mathrm{pH}$ of the solution gets affected by this interaction. The cations (e.g., $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}$, etc.) of strong bases and anions (e.g., $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{NO_3}^{-}, \mathrm{ClO_4}^{-}$etc.) of strong acids simply get hydrated but do not hydrolyse, and therefore the solutions of salts formed from strong acids and bases are neutral i.e., their pH is 7 . However, the other category of salts do undergo hydrolysis.
We now consider the hydrolysis of the salts of the following types :
(i) salts of weak acid and strong base e.g., $\mathrm{CH_3} \mathrm{COONa}$.
(ii) salts of strong acid and weak base e.g., $\mathrm{NH_4} \mathrm{Cl}$, and
(iii) salts of weak acid and weak base, e.g., $\mathrm{CH_3} \mathrm{COONH_4}$.
In the first case, $\mathrm{CH_3} \mathrm{COONa}$ being a salt of weak acid, $\mathrm{CH_3} \mathrm{COOH}$ and strong base, $\mathrm{NaOH}$ gets completely ionised in aqueous solution.
$$\mathrm{CH_3} \mathrm{COONa}(\mathrm{aq}) \rightarrow \mathrm{CH_3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{Na}^{+}(\mathrm{aq})$$
Acetate ion thus formed undergoes hydrolysis in water to give acetic acid and $\mathrm{OH}^{-}$ions
$\mathrm{CH_3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H_2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH_3} \mathrm{COOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
Acetic acid being a weak acid $\left(K_{\mathrm{a}}=1.8 \times 10^{-5}\right)$ remains mainly unionised in solution. This results in increase of $\mathrm{OH}^{-}$ion concentration in solution making it alkaline. The $\mathrm{pH}$ of such a solution is more than 7 .
Similarly, $\mathrm{NH_4} \mathrm{Cl}$ formed from weak base, $\mathrm{NH_4} \mathrm{OH}$ and strong acid, $\mathrm{HCl}$, in water dissociates completely.
$\mathrm{NH_4} \mathrm{Cl}(\mathrm{aq}) \rightarrow \mathrm{NH_4}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
Ammonium ions undergo hydrolysis with water to form $\mathrm{NH_4} \mathrm{OH}$ and $\mathrm{H}^{+}$ions
$\mathrm{NH_4}^{+}(\mathrm{aq})+\mathrm{H_2} \mathrm{O}(1) \rightleftharpoons \mathrm{NH_4} \mathrm{OH}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$
Ammonium hydroxide is a weak base $\left(K_{\mathrm{b}}=1.77 \times 10^{-5}\right)$ and therefore remains almost unionised in solution. This results in increased of $\mathrm{H}^{+}$ion concentration in solution making the solution acidic. Thus, the $\mathrm{pH}$ of $\mathrm{NH_4} \mathrm{Cl}$ solution in water is less than 7 .
Consider the hydrolysis of $\mathrm{CH_3} \mathrm{COONH_4}$ salt formed from weak acid and weak base. The ions formed undergo hydrolysis as follow:
$\mathrm{CH_3} \mathrm{COO}^{-}+\mathrm{NH_4}^{+}+\mathrm{H_2} \mathrm{O} \rightleftharpoons \mathrm{CH_3} \mathrm{COOH}+$ $\mathrm{NH_4} \mathrm{OH}$
$\mathrm{CH_3} \mathrm{COOH}$ and $\mathrm{NH_4} \mathrm{OH}$, also remain into partially dissociated form:
$$ \begin{aligned} & \mathrm{CH_3} \mathrm{COOH} \rightleftharpoons \mathrm{CH_3} \mathrm{COO}^{-}+\mathrm{H}^{+} \\ & \mathrm{NH_4} \mathrm{OH} \rightleftharpoons \quad \mathrm{NH_4}^{+}+\mathrm{OH}^{-} \\ & \mathrm{H_2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} \end{aligned} $$
Without going into detailed calculation, it can be said that degree of hydrolysis is independent of concentration of solution, and $\mathrm{pH}$ of such solutions is determined by their $\mathrm{p} K$ values:
$$ \begin{equation*} \mathrm{pH}=7+1 / 2\left(\mathrm{p} K_{\mathrm{a}}-\mathrm{p} K_{\mathrm{b}}\right) \tag{7.38} \end{equation*} $$
The $\mathrm{pH}$ of solution can be greater than 7 , if the difference is positive and it will be less than 7 , if the difference is negative.
Problem 7.25
The $\mathrm{p} K_{\mathrm{a}}$ of acetic acid and $\mathrm{p} K_{b}$ of ammonium hydroxide are 4.76 and 4.75 respectively. Calculate the $\mathrm{pH}$ of ammonium acetate solution.
Solution
$$ \begin{aligned} \mathrm{pH} & =7+1 / 2\left[\mathrm{p} K_{\mathrm{a}}-\mathrm{p} K_{\mathrm{b}}\right] \\ & =7+1 / 2[4.76-4.75] \\ & =7+1 / 2[0.01]=7+0.005=7.005 \end{aligned} $$
7.12 BUFFER SOLUTIONS
Many body fluids e.g., blood or urine have definite $\mathrm{pH}$ and any deviation in their $\mathrm{pH}$ indicates malfunctioning of the body. The control of $\mathrm{pH}$ is also very important in many chemical and biochemical processes. Many medical and cosmetic formulations require that these be kept and administered at a particular $\mathrm{pH}$. The solutions which resist change in $\mathrm{pH}$ on dilution or with the addition of small amounts of acid or alkali are called Buffer Solutions. Buffer solutions of known $\mathrm{pH}$ can be prepared from the knowledge of $\mathrm{p} K_{\mathrm{a}}$ of the acid or $\mathrm{p} K_{\mathrm{b}}$ of base and by controlling the ratio of the salt and acid or salt and base. A mixture of acetic acid and sodium acetate acts as buffer solution around pH 4.75 and a mixture of ammonium chloride and ammonium hydroxide acts as a buffer around $\mathrm{pH}$ 9.25. You will learn more about buffer solutions in higher classes.
7.12.1 Designing Buffer Solution
Knowledge of $\mathrm{p} K_{a}, \mathrm{p} K_{b}$ and equilibrium constant help us to prepare the buffer solution of known $\mathrm{pH}$. Let us see how we can do this.
Preparation of Acidic Buffer
To prepare a buffer of acidic $\mathrm{pH}$ we use weak acid and its salt formed with strong base. We develop the equation relating the $\mathrm{pH}$, the equilibrium constant, $K_{a}$ of weak acid and ratio of concentration of weak acid and its conjugate base. For the general case where the weak acid HA ionises in water,
$$ \mathrm{HA}+\mathrm{H_2} \mathrm{O} \leftrightharpoons \mathrm{H_3} \mathrm{O}^{+}+\mathrm{A}^{-} $$
For which we can write the expression
$$ K_{a}=\frac{\left[\mathrm{H_3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} $$
Rearranging the expression we have,
$$ \left[\mathrm{H_3} \mathrm{O}^{+}\right]=K_{a} \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]} $$
Taking logarithm on both the sides and rearranging the terms we get -
$$ \begin{gather*} \mathrm{pK_a}=\mathrm{pH}-\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\ \text { Or } \\ \mathrm{pH}=\mathrm{pK_a}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \tag{7.39} \end{gather*} $$
$$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\text { Conjugate base, } \mathrm{A}^{-}\right]}{[\text {Acid, } \mathrm{HA}]} \tag{7.40}$$
The expression (7.40) is known as Henderson-Hasselbalch equation. The quantity $\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$ is the ratio of concentration of conjugate base (anion) of the acid and the acid present in the mixture. Since acid is a weak acid, it ionises to a very little extent and concentration of [HA] is negligibly different from concentration of acid taken to form buffer. Also, most of the conjugate base, $\left[\mathrm{A}^{-}\right]$, comes from the ionisation of salt of the acid. Therefore, the concentration of conjugate base will be negligibly different from the concentration of salt. Thus, equation (6.40) takes the form:
$$ p \mathrm{H}=p K_{a}+\log \frac{[\text { Salt }]}{[\text { Acid }]} $$
In the equation (6.39), if the concentration of $\left[\mathrm{A}^{-}\right]$is equal to the concentration of $[\mathrm{HA}]$, then $\mathrm{pH}=\mathrm{p} K_{a}$ because value of $\log 1$ is zero. Thus if we take molar concentration of acid and salt (conjugate base) same, the $\mathrm{pH}$ of the buffer solution will be equal to the $\mathrm{p} K_{a}$ of the acid. So for preparing the buffer solution of the required $\mathrm{pH}$ we select that acid whose $\mathrm{p} K_{a}$ is close to the required $\mathrm{pH}$. For acetic acid $\mathrm{p} K_{\mathrm{a}}$ value is 4.76, therefore $\mathrm{pH}$ of the buffer solution formed by acetic acid and sodium acetate taken in equal molar concentration will be around 4.76.
A similar analysis of a buffer made with a weak base and its conjugate acid leads to the result,
$$ \begin{equation*} \mathrm{pOH}=\mathrm{p} K_{\mathrm{b}}+\log \frac{\left[\text { Conjugate acid, } \mathrm{BH}^{+}\right]}{[\text {Base, } \mathrm{B}]} \tag{7.41} \end{equation*} $$
$\mathrm{pH}$ of the buffer solution can be calculated by using the equation $\mathrm{pH}+\mathrm{pOH}=14$.
We know that $\mathrm{pH}+\mathrm{pOH}=\mathrm{p} K_{\mathrm{w}}$ and $\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=\mathrm{p} K_{\mathrm{w}}$. On putting these values in equation (6.41) it takes the form as follows:
$$ \mathrm{p} K_{\mathrm{w}}-\mathrm{pH}=\mathrm{p} K_{\mathrm{w}}-\mathrm{p} K_{a}+\log \frac{\left[\text { Conjugate acid, } \mathrm{BH}^{+}\right]}{[\text {Base, } \mathrm{B}]} $$
or
$$ \begin{equation*} \mathrm{pH}=\mathrm{p} K_{a}+\log \frac{\left[\text { Conjugate acid, } \mathrm{BH}^{+}\right]}{[\text {Base }, \mathrm{B}]} \tag{7.42} \end{equation*} $$
If molar concentration of base and its conjugate acid (cation) is same then $\mathrm{pH}$ of the buffer solution will be same as $\mathrm{p} K_{a}$ for the base. $\mathrm{p} K_{a}$ value for ammonia is $\mathrm{s} 9.25$; therefore a buffer of pH close to 9.25 can be obtained by taking ammonia solution and ammonium chloride solution of same molar concentration. For a buffer solution formed by ammonium chloride and ammonium hydroxide, equation (6.42) becomes:
$$ \mathrm{pH}=9.25+\log \frac{\left[\text { Conjugate acid, } \mathrm{BH}^{+}\right]}{[\text {Base }, \mathrm{B}]} $$
$\mathrm{pH}$ of the buffer solution is not affected by dilution because ratio under the logarithmic term remains unchanged.
7.13 SOLUBILITY EQUILIBRIA OF SPARINGLY SOLUBLE SALTS
We have already known that the solubility of ionic solids in water varies a great deal. Some of these (like calcium chloride) are so soluble that they are hygroscopic in nature and even absorb water vapour from atmosphere. Others (such as lithium fluoride) have so little solubility that they are commonly termed as insoluble. The solubility depends on a number of factors important amongst which are the lattice enthalpy of the salt and the solvation enthalpy of the ions in a solution. For a salt to dissolve in a solvent the strong forces of attraction between its ions (lattice enthalpy) must be overcome by the ion-solvent interactions. The solvation enthalpy of ions is referred to in terms of solvation which is always negative i.e. energy is released in the process of solvation. The amount of solvation enthalpy depends on the nature of the solvent. In case of a nonpolar (covalent) solvent, solvation enthalpy is small and hence, not sufficient to overcome lattice enthalpy of the salt. Consequently, the salt does not dissolve in non-polar solvent. As a general rule, for a salt to be able to dissolve in a particular solvent its solvation enthalpy must be greater than its lattice enthalpy so that the latter may be overcome by former. Each salt has its characteristic solubility which depends on temperature. We classify salts on the basis of their solubility in the following three categories.
Category I | Soluble | Solubility $>0.1 \mathrm{M}$ |
Category II | Slightly Soluble |
$0.01 \mathrm{M}<$ Solubility $<0.1 \mathrm{M}$ |
Category III | Sparingly Soluble |
Solubility $<0.01 \mathrm{M}$ |
We shall now consider the equilibrium between the sparingly soluble ionic salt and its saturated aqueous solution.
7.13.1 Solubility Product Constant
Let us now have a solid like barium sulphate in contact with its saturated aqueous solution. The equilibrium between the undisolved solid and the ions in a saturated solution can be represented by the equation:
$\mathrm{BaSO}_4(\mathrm{~s}) \stackrel{\text { Saturated solution in water}}{\rightleftharpoons} \mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_4^{2-}(\mathrm{aq})$,
The equilibrium constant is given by the equation:
$$ K=\{\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO_4}^{2-}\right]\} /\left[\mathrm{BaSO_4}\right] $$
For a pure solid substance the concentration remains constant and we can write
$\begin{equation*} K_{\mathrm{sp}}=\mathrm{K}\left[\mathrm{BaSO_4}\right]=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO_4}^{2-}\right] \tag{7.43} \end{equation*}$
We call $K_{\mathrm{sp}}$ the solubility product constant or simply solubility product. The experimental value of $K_{\mathrm{sp}}$ in above equation at $298 \mathrm{~K}$ is $1.1 \times 10^{-10}$. This means that for solid barium sulphate in equilibrium with its saturated solution, the product of the concentrations of barium and sulphate ions is equal to its solubility product constant. The concentrations of the two ions will be equal to the molar solubility of the barium sulphate. If molar solubility is $\mathrm{S}$, then
$$ \begin{aligned} & 1.1 \times 10^{-10}=(\mathrm{S})(\mathrm{S})=\mathrm{S}^{2} \\ & \text { or } \quad \mathrm{S}=1.05 \times 10^{-5} \end{aligned} $$
Thus, molar solubility of barium sulphate will be equal to $1.05 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$.
A salt may give on dissociation two or more than two anions and cations carrying different charges. For example, consider a salt like zirconium phosphate of molecular formula $\left(\mathrm{Zr}^{4+}\right)_3\left(\mathrm{PO_4}{ }^{3-}\right)_4$. It dissociates into 3 zirconium cations of charge +4 and 4 phosphate anions of charge -3 . If the molar solubility of zirconium phosphate is $\mathrm{S}$, then it can be seen from the stoichiometry of the compound that
$$ \begin{aligned} & [\mathrm{Zr}^{4+}]=3 \mathrm{~S} \text { and }[\mathrm{PO_4}^{3-}]=4 \mathrm{S} \\ \end{aligned} $$
$$ \begin{aligned} & \text { and } K_{\mathrm{sp}}=(3 \mathrm{~S})^{3}(4 \mathrm{~S})^{4}=6912(\mathrm{~S})^{7} \\ & \text { or } \mathrm{S}= \{K_{\mathrm{sp}} / \left(3^{3} \times 4^{4}\right)\}^{1 / 7}= \left(K_{\mathrm{sp}} / 6912 \right)^{1 / 7} \end{aligned} $$
A solid salt of the general formula $\mathrm{M_\mathrm{x}}^{\mathrm{p+}} \mathrm{X_\mathrm{y}}^{\mathrm{q}}$ with molar solubility $\mathrm{S}$ in equilibrium with its saturated solution may be represented by the equation:
$$ \begin{aligned} & \mathrm{M_\mathrm{x}} \mathrm{X_\mathrm{y}}(\mathrm{s}) \rightleftharpoons \mathrm{xM}^{\mathrm{p}+}(\mathrm{aq})+\mathrm{yX}^{\mathrm{q}^{-}}(\mathrm{aq}) \\ & \left(\text { where } \mathrm{x} \times \mathrm{p}^{+}=\mathrm{y} \times \mathrm{q}^{-}\right) \end{aligned} $$
And its solubility product constant is given by:
$$ \begin{align*} & K_{\mathrm{sp}}=\left[\mathrm{M}^{\mathrm{p}+}\right]^{\mathrm{x}}\left[\mathrm{X}^{\mathrm{q}-}\right]^{\mathrm{y}}=(\mathrm{xS})^{\mathrm{x}}(\mathrm{yS})^{\mathrm{y}} \tag{7.44} \\ \end{align*} $$
$$ \begin{aligned} & =x^{x} \cdot y^{y} \cdot S^{(x+y)} \\ & \mathrm{S}^{(\mathrm{x}+\mathrm{y})}=K_{\mathrm{sp}} / \mathrm{x}^{\mathrm{x}} \cdot \mathrm{y}^{\mathrm{y}} \\ \end{aligned} $$
$$ \begin{aligned} & \mathrm{S}=\left(K_{\mathrm{sp}} / \mathrm{x}^{\mathrm{x}} \cdot \mathrm{y}^{\mathrm{y}}\right)^{1 / \mathrm{x}+\mathrm{y}} \end{aligned} $$
The term $K_{\mathrm{sp}}$ in equation is given by $Q_{\mathrm{sp}}$ (section 6.6.2) when the concentration of one or more species is not the concentration under equilibrium. Obviously under equilibrium conditions $K_{\mathrm{sp}}=Q_{\mathrm{sp}}$ but otherwise it gives the direction of the processes of precipitation or dissolution. The solubility product constants of a number of common salts at $298 \mathrm{~K}$ are given in Table 7.9.
Problem 7.26
Calculate the solubility of $\mathrm{A_2} \mathrm{X_3}$ in pure water, assuming that neither kind of ion reacts with water. The solubility product of $\mathrm{A_2} \mathrm{X_3}, K_{\mathrm{sp}}=1.1 \times 10^{-23}$.
Solution
$\mathrm{A_2} \mathrm{X_3} \rightarrow 2 \mathrm{~A}^{3+}+3 \mathrm{X}^{2-}$
$K_{\text {sp }}=\left[\mathrm{A}^{3+}\right]^{2}\left[\mathrm{X}^{2-}\right]^{3}=1.1 \times 10^{-23}$
If $\mathrm{S}=$ solubility of $\mathrm{A_2} \mathrm{X_3}$, then
$\left[\mathrm{A}^{3+}\right]=2 \mathrm{~S} ;\left[\mathrm{X}^{2-}\right]=3 \mathrm{~S}$
therefore, $K_{\mathrm{sp}}=(2 \mathrm{~S})^{2}(3 \mathrm{~S})^{3}=108 \mathrm{~S}^{5}$
$=1.1 \times 10^{-23}$
thus, $\mathrm{S}^{5}=1 \times 10^{-25}$
$\mathrm{S}=1.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$.
Table 6.9 The Solubility Product Constants, $K_{sp}$ of Salts at $298K$
Name of the Salt | Formula | $\boldsymbol{K_\text {sp }}$ |
---|---|---|
Silver Bromide | $\mathrm{AgBr}$ | $5.0 \times 10^{-13}$ |
Silver Carbonate | $\mathrm{Ag_2} \mathrm{CO_3}$ | $8.1 \times 10^{-12}$ |
Silver Chromate | $\mathrm{Ag_2} \mathrm{CrO_4}$ | $1.1 \times 10^{-12}$ |
Silver Chloride | $\mathrm{AgCl}$ | $1.8 \times 10^{-10}$ |
Silver Iodide | AgI | $8.3 \times 10^{-17}$ |
Silver Sulphate | $\mathrm{Ag_2} \mathrm{SO_4}$ | $1.4 \times 10^{-5}$ |
Aluminium Hydroxide | $\mathrm{Al}(\mathrm{OH})_{3}$ | $1.3 \times 10^{-33}$ |
Barium Chromate | $\mathrm{BaCrO_4}$ | $1.2 \times 10^{-10}$ |
Barium Fluoride | $\mathrm{BaF_2}$ | $1.0 \times 10^{-6}$ |
Barium Sulphate | $\mathrm{BaSO_4}$ | $1.1 \times 10^{-10}$ |
Calcium Carbonate | $\mathrm{CaCO_3}$ | $2.8 \times 10^{-9}$ |
Calcium Fluoride | $\mathrm{CaF_2}$ | $5.3 \times 10^{-9}$ |
Calcium Hydroxide | $\mathrm{Ca}(\mathrm{OH})_{2}$ | $5.5 \times 10^{-6}$ |
Calcium Oxalate | $\mathrm{CaC_2} \mathrm{O_4}$ | $4.0 \times 10^{-9}$ |
Calcium Sulphate | $\mathrm{CaSO_4}$ | $9.1 \times 10^{-6}$ |
Cadmium Hydroxide | $\mathrm{Cd}(\mathrm{OH})_{2}$ | $2.5 \times 10^{-14}$ |
Cadmium Sulphide | $\mathrm{CdS}$ | $8.0 \times 10^{-27}$ |
Chromic Hydroxide | $\mathrm{Cr}(\mathrm{OH})_{3}$ | $6.3 \times 10^{-31}$ |
Cuprous Bromide | $\mathrm{CuBr}$ | $5.3 \times 10^{-9}$ |
Cupric Carbonate | $\mathrm{CuCO_3}$ | $1.4 \times 10^{-10}$ |
Cuprous Chloride | $\mathrm{CuCl}$ | $1.7 \times 10^{-6}$ |
Cupric Hydroxide | $\mathrm{Cu}(\mathrm{OH})_{2}$ | $2.2 \times 10^{-20}$ |
Cuprous Iodide | CuI | $1.1 \times 10^{-12}$ |
Cupric Sulphide | CuS | $6.3 \times 10^{-36}-1$ |
Ferrous Carbonate | $\mathrm{FeCO_3}$ | $3.2 \times 10^{-11}$ |
Ferrous Hydroxide | $\mathrm{Fe}(\mathrm{OH})_{2}$ | $8.0 \times 10^{-16}$ |
Ferric Hydroxide | $\mathrm{Fe}(\mathrm{OH})_{3}$ | $1.0 \times 10^{-38}$ |
Ferrous Sulphide | $\mathrm{FeS}$ | $6.3 \times 10^{-18}$ |
Mercurous Bromide | $\mathrm{Hg_2} \mathrm{Br_2}$ | $5.6 \times 10^{-23}$ |
Mercurous Chloride | $\mathrm{Hg_2} \mathrm{Cl_2}$ | $1.3 \times 10^{-18}$ |
Mercurous Iodide | $\mathrm{Hg_2} \mathrm{I_2}$ | $4.5 \times 10^{-29}$ |
Mercurous Sulphate | $\mathrm{Hg_2} \mathrm{SO_4}$ | $7.4 \times 10^{-7}$ |
Mercuric Sulphide | HgS | $4.0 \times 10^{-53}$ |
Magnesium Carbonate | $\mathrm{MgCO_3}$ | $3.5 \times 10^{-8}$ |
Magnesium Fluoride | $\mathrm{MgF_2}$ | $6.5 \times 10^{-9}$ |
Magnesium Hydroxide | $\mathrm{Mg}(\mathrm{OH})_{2}$ | $1.8 \times 10^{-11}$ |
Magnesium Oxalate | $\mathrm{MgC_2} \mathrm{O_4}$ | $7.0 \times 10^{-7}$ |
Manganese Carbonate | $\mathrm{MnCO_3}$ | $1.8 \times 10^{-11}$ |
Manganese Sulphide | $\mathrm{MnS}$ | $2.5 \times 10^{-13}$ |
Nickel Hydroxide | $\mathrm{Ni}(\mathrm{OH})_{2}$ | $2.0 \times 10-15$ |
Nickel Sulphide | NiS | $4.7 \times 10^{-5}$ |
Lead Bromide | $\mathrm{PbBr_2}$ | $4.0 \times 10^{-5}$ |
Lead Carbonate | $\mathrm{PbCO_3}$ | $7.4 \times 10^{-14}$ |
Lead Chloride | $\mathrm{PbCl_2}$ | $1.6 \times 10^{-5}$ |
Lead Fluoride | $\mathrm{PbF_2}$ | $7.7 \times 10^{-8}$ |
Lead Hydroxide | $\mathrm{Pb}(\mathrm{OH})_{2}$ | $1.2 \times 10^{-15}$ |
Lead Iodide | $\mathrm{PbI_2}$ | $7.1 \times 10^{-9}$ |
Lead Sulphate | $\mathrm{PbSO_4}$ | $1.6 \times 10^{-8}$ |
Lead Sulphide | $\mathrm{PbS}$ | $8.0 \times 10^{-28}$ |
Stannous Hydroxide | $\mathrm{Sn}(\mathrm{OH})_{2}$ | $1.4 \times 10^{-28}$ |
Stannous Sulphide | $\mathrm{SnS}$ | $1.0 \times 10^{-25}$ |
Strontium Carbonate | $\mathrm{SrCO_3}$ | $1.1 \times 10^{-10}$ |
Strontium Fluoride | $\mathrm{SrF_2}$ | $2.5 \times 10^{-9}$ |
Strontium Sulphate | $\mathrm{SrSO_4}$ | $3.2 \times 10^{-7}$ |
Thallous Bromide | $\mathrm{TlBr}$ | $3.4 \times 10^{-6}$ |
Thallous Chloride | $\mathrm{TlCl}$ | $1.7 \times 10^{-4}$ |
Thallous Iodide | TII | $6.5 \times 10^{-8}$ |
Zinc Carbonate | $\mathrm{ZnCO_3}$ | $1.4 \times 10^{-11}$ |
Zinc Hydroxide | $\mathrm{Zn}(\mathrm{OH})_{2}$ | $1.0 \times 10^{-15}$ |
Zinc Sulphide | $\mathrm{ZnS}$ | $1.6 \times 10^{-24}$ |
Problem 7.27
The values of $K_{\mathrm{sp}}$ of two sparingly soluble salts $\mathrm{Ni}(\mathrm{OH})_{2}$ and $\mathrm{AgCN}$ are $2.0 \times 10^{-15}$ and $6 \times 0^{-17}$ respectively. Which salt is more soluble? Explain.
Solution
$$ \mathrm{AgCN} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{CN}^{-} $$
$$ \begin{aligned} & K_{\mathrm{sp}}= \left[\mathrm{Ag}^{+}\right] \left[\mathrm{CN}^{-} \right]=6 \times 10^{-17} \\ & \mathrm{Ni}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Ni}^{2+}+2 \mathrm{OH}^{-} \\ \end{aligned} $$
$$ \begin{aligned} & K_{\mathrm{sp}}= \left[\mathrm{Ni}^{2+} \right] \left[\mathrm{OH}^{-} \right]^{2}=2 \times 10^{-15} \\ & \text { Let } \left[\mathrm{Ag}^{+} \right]=\mathrm{S_1} \text {, then } \left[\mathrm{CN}^{-} \right]=\mathrm{S_1} \\ & \text { Let } \left[\mathrm{Ni}^{2+} \right]=\mathrm{S_2}, \text { then } \left[\mathrm{OH}^{-} \right]=2 \mathrm{~S_2} \\ & \mathrm{~S_1}^{2}=6 \times 10^{-17}, \mathrm{~S_1}=7.8 \times 10^{-9} \\ & \left(\mathrm{~S_2} \right) \left(2 \mathrm{~S_2} \right)^{2}=2 \times 10^{-15}, \mathrm{~S_2}=0.58 \times 10^{-4} \\ & \mathrm{Ni}(\mathrm{OH})_{2} \text { is more soluble than AgCN. } \end{aligned} $$
7.13.2 Common Ion Effect on Solubility of Ionic Salts
It is expected from Le Chatelier’s principle that if we increase the concentration of any one of the ions, it should combine with the ion of its opposite charge and some of the salt will be precipitated till once again $K_{\mathrm{sp}}=$ $Q_{\mathrm{sp}}$. Similarly, if the concentration of one of the ions is decreased, more salt will dissolve to increase the concentration of both the ions till once again $K_{\mathrm{sp}}=Q_{\mathrm{sp}}$. This is applicable even to soluble salts like sodium chloride except that due to higher concentrations of the ions, we use their activities instead of their molarities in the expression for $Q_{\mathrm{sp}}$. Thus if we take a saturated solution of sodium chloride and pass $\mathrm{HCl}$ gas through it, then sodium chloride is precipitated due to increased concentration (activity) of chloride ion available from the dissociation of $\mathrm{HCl}$. Sodium chloride thus obtained is of very high purity and we can get rid of impurities like sodium and magnesium sulphates. The common ion effect is also used for almost complete precipitation of a particular ion as its sparingly soluble salt, with very low value of solubility product for gravimetric estimation. Thus we can precipitate silver ion as silver chloride, ferric ion as its hydroxide (or hydrated ferric oxide) and barium ion as its sulphate for quantitative estimations.
Problem 7.28
Calculate the molar solubility of $\mathrm{Ni}(\mathrm{OH})_2$ in $0.10 \mathrm{M} \mathrm{NaOH}$. The ionic product of $\mathrm{Ni}(\mathrm{OH})_2$ is $2.0 \times 10^{-15}$.
Solution
Let the solubility of $\mathrm{Ni}(\mathrm{OH})_{2}$ be equal to $\mathrm{S}$.
Dissolution of $\mathrm{S} \mathrm{mol} / \mathrm{L}$ of $\mathrm{Ni}(\mathrm{OH})_{2}$ provides $\mathrm{S} \mathrm{mol} / \mathrm{L}$ of $\mathrm{Ni}^{2+}$ and $2 \mathrm{~S} \mathrm{~mol} / \mathrm{L}$ of $\mathrm{OH}^{-}$, but the total concentration of $\mathrm{OH}^{-}=(0.10+2 \mathrm{~S})$ $\mathrm{mol} / \mathrm{L}$ because the solution already contains $0.10 \mathrm{~mol} / \mathrm{L}$ of $\mathrm{OH}^{-}$from $\mathrm{NaOH}$.
$$ \begin{aligned} K_{\mathrm{sp}}=2.0 \times 10^{-15} & =\left[\mathrm{Ni}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2} \\ & =(\mathrm{S})(0.10+2 \mathrm{~S})^{2} \end{aligned} $$
As $K_{\mathrm{sp}}$ is small, $2 \mathrm{~S}«0.10$, thus, $(0.10+2 \mathrm{~S}) \approx 0.10$
Hence,
$$ \begin{aligned} & 2.0 \times 10^{-15}=\mathrm{S}(0.10)^{2} \\ & \mathrm{~S}=2.0 \times 10^{-13} \mathrm{M}=\left[\mathrm{Ni}^{2+}\right] \end{aligned} $$
The solubility of salts of weak acids like phosphates increases at lower $\mathrm{pH}$. This is because at lower $\mathrm{pH}$ the concentration of the anion decreases due to its protonation. This in turn increase the solubility of the salt so that $K_{\mathrm{sp}}=Q_{\mathrm{sp}}$. We have to satisfy two equilibria simultaneously i.e.,
$$ \begin{aligned} & K_{\mathrm{sp}}=\left[\mathrm{M}^{+}\right]\left[\mathrm{X}^{-}\right], \\ & \mathrm{HX}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}) ; \\ & K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{X}^{-}(\mathrm{aq})\right]}{[\mathrm{HX}(\mathrm{aq})]} \\ & {\left[\mathrm{X}^{-}\right] /[\mathrm{HX}]=K_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]} \end{aligned} $$
Taking inverse of both side and adding 1 we get
$$ \begin{aligned} & \frac{[\mathrm{HX}]}{\left[\mathrm{X}^{-}\right]}+1=\frac{\left[\mathrm{H}^{+}\right]}{K_{\mathrm{a}}}+1 \\ \\ & \frac{[\mathrm{HX}]+\left[\mathrm{H}^{-}\right]}{\left[\mathrm{X}^{-}\right]}=\frac{\left[\mathrm{H}^{+}\right]+K_{\mathrm{a}}}{K_{\mathrm{a}}} \end{aligned} $$
Now, again taking inverse, we get
$ [\mathrm{X}^{-} ] / \{ [\mathrm{X}^{-} ]+[\mathrm{HX}] \}=\mathrm{f}=K_{\mathrm{a}} / (K_{\mathrm{a}}+ [\mathrm{H}^{+} ] )$ and it can be seen that ’ $\mathrm{f}$ ’ decreases as pH decreases. If $S$ is the solubility of the salt at a given $\mathrm{pH}$ then
$$ \begin{align*} & K_{\mathrm{sp}}=[\mathrm{S}][\mathrm{f} \mathrm{~S}]=\mathrm{S}^{2} \{K_a / (K_a+ [\mathrm{H}^{+} ] ) \} \text {and } \\ \end{align*} $$
$$ \begin{align*} & \mathrm{S}= \{K_{\mathrm{sp}} ( [\mathrm{H}^{+} ]+K_{\mathrm{a}} ) / K_{\mathrm{a}} \}^{1 / 2} \tag{7.46} \end{align*} $$
Thus solubility $\mathrm{S}$ increases with increase in $\left[\mathrm{H}^{+}\right]$or decrease in $\mathrm{pH}$.
Summary
When the number of molecules leaving the liquid to vapour equals the number of molecules returning to the liquid from vapour, equilibrium is said to be attained and is dynamic in nature. Equilibrium can be established for both physical and chemical processes and at this stage rate of forward and reverse reactions are equal. Equilibrium constant, $\boldsymbol{K_c}$ is expressed as the concentration of products divided by reactants, each term raised to the stoichiometric coefficient.
$$ \begin{gathered} \text { For reaction, } \mathrm{a} \mathrm{A}+\mathrm{b} \mathrm{B} \rightleftharpoons \mathrm{c} \mathrm{C}+\mathrm{d} \mathrm{D} \\ K_{\mathrm{c}}=[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}} /[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}} \end{gathered} $$
Equilibrium constant has constant value at a fixed temperature and at this stage all the macroscopic properties such as concentration, pressure, etc. become constant. For a gaseous reaction equilibrium constant is expressed as $K_{p}$ and is written by replacing concentration terms by partial pressures in $K_{c}$ expression. The direction of reaction can be predicted by reaction quotient $Q_{c}$ which is equal to $K_{c}$ at equilibrium. Le Chatelier’s principle states that the change in any factor such as temperature, pressure, concentration, etc. will cause the equilibrium to shift in such a direction so as to reduce or counteract the effect of the change. It can be used to study the effect of various factors such as temperature, concentration, pressure, catalyst and inert gases on the direction of equilibrium and to control the yield of products by controlling these factors. Catalyst does not effect the equilibrium composition of a reaction mixture but increases the rate of chemical reaction by making available a new lower energy pathway for conversion of reactants to products and vice-versa.
All substances that conduct electricity in aqueous solutions are called electrolytes. Acids, bases and salts are electrolytes and the conduction of electricity by their aqueous solutions is due to anions and cations produced by the dissociation or ionization of electrolytes in aqueous solution. The strong electrolytes are completely dissociated. In weak electrolytes there is equilibrium between the ions and the unionized electrolyte molecules. According to Arrhenius, acids give hydrogen ions while bases produce hydroxyl ions in their aqueous solutions. Brönsted-Lowry on the other hand, defined an acid as a proton donor and a base as a proton acceptor. When a Brönsted-Lowry acid reacts with a base, it produces its conjugate base and a conjugate acid corresponding to the base with which it reacts. Thus a conjugate pair of acid-base differs only by one proton. Lewis further generalised the definition of an acid as an electron pair acceptor and a base as an electron pair donor. The expressions for ionization (equilibrium) constants of weak acids $\left(K_{\mathrm{a}}\right)$ and weak bases $\left(K_{\mathrm{b}}\right)$ are developed using Arrhenius definition. The degree of ionization and its dependence on concentration and common ion are discussed. The $\mathbf{p H}$ scale $\left(\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]\right)$for the hydrogen ion concentration (activity) has been introduced and extended to other quantities ( $\left.\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]\right) ; \mathrm{p} K_{\mathrm{a}}=-\log \left[\mathrm{K_\mathrm{a}}\right]$; $\mathrm{p} K_{\mathrm{b}}=-\log \left[K_{\mathrm{b}}\right]$; and $\mathrm{p} K_{\mathrm{w}}=-\log \left[K_{\mathrm{w}}\right]$ etc.). The ionization of water has been considered and we note that the equation: $\mathrm{pH}+\mathrm{pOH}=\mathrm{pK_\mathrm{w}}$ is always satisfied. The salts of strong acid and weak base, weak acid and strong base, and weak acid and weak base undergo hydrolysis in aqueous solution. The definition of buffer solutions, and their importance are discussed briefly. The solubility equilibrium of sparingly soluble salts is discussed and the equilibrium constant is introduced as solubility product constant $\left(K_{\mathrm{sp}}\right)$. Its relationship with solubility of the salt is established. The conditions of precipitation of the salt from their solutions or their dissolution in water are worked out. The role of common ion and the solubility of sparingly soluble salts is also discussed.
SUGGESTED ACTIVITIES FOR STUDENTS REGARDING THIS UNIT
(a) The student may use $\mathrm{pH}$ paper in determining the $\mathrm{pH}$ of fresh juices of various vegetables and fruits, soft drinks, body fluids and also that of water samples available.
(b) The $\mathrm{pH}$ paper may also be used to determine the $\mathrm{pH}$ of different salt solutions and from that he/she may determine if these are formed from strong/weak acids and bases.
(c) They may prepare some buffer solutions by mixing the solutions of sodium acetate and acetic acid and determine their $\mathrm{pH}$ using $\mathrm{pH}$ paper.
(d) They may be provided with different indicators to observe their colours in solutions of varying $\mathrm{pH}$.
(e) They may perform some acid-base titrations using indicators.
(f) They may observe common ion effect on the solubility of sparingly soluble salts.
(g) If $\mathrm{pH}$ meter is available in their school, they may measure the $\mathrm{pH}$ with it and compare the results obtained with that of the $\mathrm{pH}$ paper.
Exercise
7.1 A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Show Answer
Answer
(a) If the volume of the container is suddenly increased, then the vapour pressure would decrease initially. This is because the amount of vapour remains the same, but the volume increases suddenly. As a result, the same amount of vapour is distributed in a larger volume.
(b) Since the temperature is constant, the rate of evaporation also remains constant. When the volume of the container is increased, the density of the vapour phase decreases. As a result, the rate of collisions of the vapour particles also decreases. Hence, the rate of condensation decreases initially.
(c) When equilibrium is restored finally, the rate of evaporation becomes equal to the rate of condensation. In this case, only the volume changes while the temperature remains constant. The vapour pressure depends on temperature and not on volume. Hence, the final vapour pressure will be equal to the original vapour pressure of the system.
7.2 What is $K_{\mathrm{c}}$ for the following equilibrium when the equilibrium concentration of each substance is: $\left[\mathrm{SO_2}\right]=0.60 \mathrm{M},\left[\mathrm{O_2}\right]=0.82 \mathrm{M}$ and $\left[\mathrm{SO_3}\right]=1.90 \mathrm{M}$ ?
$$ 2 \mathrm{SO_2}(\mathrm{~g})+\mathrm{O_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO_3}(\mathrm{~g}) $$
Show Answer
Answer
The equilibrium constant $(K_c)$ for the give reaction is:
$ \begin{aligned} K_c & =\frac{[SO_3]^{2}}{[SO_2]^{2}[O_2]} \\ & =\frac{(1.90)^{2} M^{2}}{(0.60)^{2}(0.821) M^{3}} \\ & =12.239 M^{-1} \text{ (approximately) } \end{aligned} $
Hence, $K_c$ for the equilibrium is $12.239 M^{-1}$.
7.3 At a certain temperature and total pressure of $10^{5} \mathrm{~Pa}$, iodine vapour contains $40 %$ by volume of I atoms
$$ \mathrm{I_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{I}(\mathrm{g}) $$
Calculate $K_{p}$ for the equilibrium.
Show Answer
Answer
Partial pressure of I atoms,
$p_1=\frac{40}{100} \times p _{\text{total }}$
$=\frac{40}{100} \times 10^{5}$
$=4 \times 10^{4} Pa$
Partial pressure of $I_2$ molecules,
$ \begin{aligned} & p _{I_2}=\frac{60}{100} \times p _{\text{total }} \\ & =\frac{60}{100} \times 10^{5} \\ & =6 \times 10^{4} Pa \end{aligned} $
Now, for the given reaction,
$ \begin{aligned} K_p & =\frac{(p I)^{2}}{p _{I_2}} \\ & =\frac{(4 \times 10^{4})^{2} Pa^{2}}{6 \times 10^{4} Pa} \\ & =2.67 \times 10^{4} Pa \end{aligned} $
7.4 Write the expression for the equilibrium constant, $K_{c}$ for each of the following reactions:
(i) $2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl_2}(\mathrm{~g})$
(ii) $2 \mathrm{Cu}\left(\mathrm{NO_3}\right)_{2}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{CuO}(\mathrm{s})+4 \mathrm{NO_2}(\mathrm{~g})+\mathrm{O_2}(\mathrm{~g})$
(iii) $\mathrm{CH_3} \mathrm{COOC_2} \mathrm{H_5}(\mathrm{aq})+\mathrm{H_2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH_3} \mathrm{COOH}(\mathrm{aq})+\mathrm{C_2} \mathrm{H_5} \mathrm{OH}(\mathrm{aq})$
(iv) $\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})$
(v) $\mathrm{I_2}(\mathrm{~s})+5 \mathrm{~F_2} \rightleftharpoons 2 \mathrm{IF_5}$
Show Answer
Answer
(i) $\quad K_c=\frac{[NO _{(g)}]^{2}[Cl _{2(g)}]}{[NOCl _{(g)}]^{2}}$
(ii) $\quad K_c=\frac{[CuO _{(s)}]^{2}[NO _{2(g)}]^{4}[O _{2(g)}]}{[Cu(NO_3) _{2(s)}]^{2}}$
$ =[NO _{2(g)}]^{4}[O _{2(g)}] $
(iii) $K_c=\frac{[CH_3 COOH _{(a q)}][C_2 H_5 OH _{(a q)}]}{[CH_3 COOC_2 H _{5(a q)}][H_2 O _{(l)}]}=\frac{[CH_3 COOH _{(a q)}][C_2 H_5 OH _{(a q)}]}{[CH_3 COOC_2 H _{5(a q)}]}$
(iv) $K_c=\frac{[Fe(OH) _{3(s)}]}{[Fe _{(a q)}^{3+}][OH _{(a q)}^{-}]^{3}}$
$ =\frac{1}{[Fe _{(a q)}^{3+}][OH _{(a q)}^{-}]^{3}} $
(v) $\quad K_c=\frac{[IF_5]^{2}}{[I _{2(s)}][F_2]^{5}}$
$=\frac{[IF_5]^{2}}{[F_2]^{5}}$
7.5 Find out the value of $K_{c}$ for each of the following equilibria from the value of $K_{p}$ :
(i) $2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl_2}(\mathrm{~g}) ; K_{p}=1.8 \times 10^{-2}$ at $500 \mathrm{~K}$
(ii) $\mathrm{CaCO_3}$ (s) $\rightleftharpoons \mathrm{CaO}$ (s) $+\mathrm{CO_2}(\mathrm{~g}) ; K_{p}=167$ at $1073 \mathrm{~K}$
Show Answer
Answer
The relation between $K_p$ and $K_c$ is given as:
$K_p=K_c(RT)^{\Delta n}$
(a) Here,
$\Delta n=3-2=1$
$R=0.0831$ barLmol $^{-1} K^{-1}$
$T=500 K$
$K_p=1.8 \times 10^{-2}$
Now,
$K_p=K_c(R T)^{\Delta n}$
$\Rightarrow 1.8 \times 10^{-2}=K_c(0.0831 \times 500)^{1}$
$\Rightarrow K_c=\frac{1.8 \times 10^{-2}}{0.0831 \times 500}$
$ =4.33 \times 10^{-4} \text{ (approximately) } $
(b) Here,
$\Delta n=2$ - $1=1$
$R=0.0831$ barLmol $^{-1} K^{-1}$
$T=1073 K$
$K_p=167$
Now,
$K_p=K_c(R T)^{\Delta n}$
$\Rightarrow 167=K_c(0.0831 \times 1073)^{\Delta n}$
$\Rightarrow K_c=\frac{167}{0.0831 \times 1073}$
$=1.87$ (approximately)
7.6 For the following equilibrium, $K_{c}=6.3 \times 10^{14}$ at $1000 \mathrm{~K}$ $\mathrm{NO}(\mathrm{g})+\mathrm{O_3}(\mathrm{~g}) \rightleftharpoons \mathrm{NO_2}(\mathrm{~g})+\mathrm{O_2}(\mathrm{~g})$
Both the forward and reverse reactions in the equilibrium are elementary bimolecular reactions. What is $K_{c}$, for the reverse reaction?
Show Answer
Answer
It is given that $K_C$ for the forward reaction is $6.3 \times 10^{14}$.
Then, $K_C$ for the reverse reaction will be,
$ \begin{aligned} K_C^{\prime} & =\frac{1}{K_C} \\ & =\frac{1}{6.3 \times 10^{14}} \\ & =1.59 \times 10^{-15} \end{aligned} $
7.7 Explain why pure liquids and solids can be ignored while writing the equilibrium constant expression?
Show Answer
Answer
For a pure substance (both solids and liquids),
$ \begin{aligned} {[\text{ Pure substance }] } & =\frac{\text{ Number of moles }}{\text{ Volume }} \\ & =\frac{\text{ Mass } / \text{ molecular mass }}{\text{ Volume }} \\ & =\frac{\text{ Mass }}{\text{ Volume } \times \text{ Molecular mass }} \\ & =\frac{\text{ Density }}{\text{ Molecular mass }} \end{aligned} $
Now, the molecular mass and density (at a particular temperature) of a pure substance is always fixed and is accounted for in the equilibrium constant. Therefore, the values of pure substances are not mentioned in the equilibrium constant expression.
7.8 Reaction between $\mathrm{N_2}$ and $\mathrm{O_2-}$ takes place as follows:
$$ 2 \mathrm{~N_2}(\mathrm{~g})+\mathrm{O_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N_2} \mathrm{O}(\mathrm{g}) $$
If a mixture of $0.482 \mathrm{~mol} \mathrm{~N_2}$ and $0.933 \mathrm{~mol}$ of $\mathrm{O_2}$ is placed in a $10 \mathrm{~L}$ reaction vessel and allowed to form $\mathrm{N_2} \mathrm{O}$ at a temperature for which $K_{c}=2.0 \times 10^{-37}$, determine the composition of equilibrium mixture.
Show Answer
Answer
Let the concentration of $N_2 O$ at equilibrium be $x$.
The given reaction is:
$2 N _{2(g)}+$ | $O _{2(g)}$ | $\longleftrightarrow$ | |
---|---|---|---|
Initial conc. $\quad 0.482 mol$ | $0.933 mol$ | 0 | |
At equilibrium $(0.482-x) mol$ | $(1.933-x) mol$ | $x$ mol |
Therefore, at equilibrium, in the $10 L$ vessel:
$[N_2]=\frac{0.482-x}{10},[O_2]=\frac{0.933-x / 2}{10},[N_2 O]=\frac{x}{10}$
The value of equilibrium constant i.e., $K_C=2.0 \times 10^{9 a+37}$ is very small. Therefore, the amount of $N_2$ and $O_2$ reacted is also very small. Thus, $x$ can be neglected from the expressions of molar concentrations of $N_2$ and $O_2$.
Then,
$[N_2]=\frac{0.482}{10}=0.0482 mol L^{-1}$ and $[O_2]=\frac{0.933}{10}=0.0933 mol L^{-1}$
Now,
$ \begin{aligned} & K_C=\frac{[N_2 O _{(g)}]^{2}}{[N _{2(g)}]^{2}[O _{2(g)}]} \\ & \Rightarrow 2.0 \times 10^{-37}=\frac{(\frac{x}{10})^{2}}{(0.0482)^{2}(0.0933)} \\ & \Rightarrow \frac{x^{2}}{100}=2.0 \times 10^{-37} \times(0.0482)^{2} \times(0.0933) \\ & \Rightarrow x^{2}=43.35 \times 10^{-40} \\ & \Rightarrow x=6.6 \times 10^{-20} \\ & {[N_2 O]=\frac{x}{10}=\frac{6.6 \times 10^{-20}}{10}} \\ & =6.6 \times 10^{-21} \end{aligned} $
7.9 Nitric oxide reacts with $\mathrm{Br_2}$ and gives nitrosyl bromide as per reaction given below:
$$ 2 \mathrm{NO}(\mathrm{g})+\mathrm{Br_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOBr}(\mathrm{g}) $$
When $0.087 \mathrm{~mol}$ of $\mathrm{NO}$ and $0.0437 \mathrm{~mol}$ of $\mathrm{Br_2}$ are mixed in a closed container at constant temperature, $0.0518 \mathrm{~mol}$ of $\mathrm{NOBr}$ is obtained at equilibrium. Calculate equilibrium amount of $\mathrm{NO}$ and $\mathrm{Br_2}$.
Show Answer
Answer
The given reaction is:
$ 2 NO _{(g)}+Br _{2(g)} \longleftrightarrow 2 NOBr _{(g)} $
$2 mol \quad 1 mol \quad 2 mol$
Now, 2 mol of $NOBr$ are formed from $2 mol$ of $NO$. Therefore, $0.0518 mol$ of $NOBr$ are formed from $0.0518 mol$ of $NO$.
Again, 2 mol of $NOBr$ are formed from $1 mol$ of $Br$.
Therefore, $0.0518 mol$ of $NOBr$ are formed from $\frac{0.0518}{2} mol$ of $Br$, or $0.0259 mol$ of NO.
The amount of $NO$ and $Br$ present initially is as follows:
$[NO]=0.087 mol[Br_2]=0.0437 mol$
Therefore, the amount of NO present at equilibrium is:
$[N O]=0.087$ - 0.0518
$=0.0352 mol$
And, the amount of $Br$ present at equilibrium is:
$[Br_2]=0.0437$ - 0.0259
$=0.0178 mol$
7.10 At $450 \mathrm{~K}, K_{p}=2.0 \times 10^{10} /$ bar for the given reaction at equilibrium. What is $K_{c}$ at this temperature ? $$ 2 \mathrm{SO_2}(\mathrm{~g})+\mathrm{O_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO_3}(\mathrm{~g}) $$
Show Answer
Answer
For the given reaction,
$\Delta n=2$ - 3 = - 1
$T=450 K$
$R=0.0831$ bar $L$ bar $K^{- 1 }$
$K_p=2.0 \times 10^{10} bar^{-1}$
We know that,
$ \begin{aligned} & K_P=K_C(R T) \Delta n \\ & \begin{aligned} & \Rightarrow 2.0 \times 10^{10} bar^{-1}=K_C(0.0831 L bar K^{-1} mol^{-1} \times 450 K)^{-1} \\ & \Rightarrow K_C=\frac{2.0 \times 10^{10} bar^{-1}}{(0.0831 L bar K^{-1} mol^{-1} \times 450 K)^{-1}} \\ &=(2.0 \times 10^{10} bar^{-1})(0.0831 Lbar K^{-1} mol^{-1} \times 450 K) \\ &=74.79 \times 10^{10} L mol^{-1} \\ &=7.48 \times 10^{11} L mol^{-1} \\ &=7.48 \times 10^{11} M^{-1} \end{aligned} \end{aligned} $
7.11 A sample of $\mathrm{HI}(\mathrm{g})$ is placed in flask at a pressure of $0.2 \mathrm{~atm}$. At equilibrium the partial pressure of $\mathrm{HI}(\mathrm{g})$ is $0.04 \mathrm{~atm}$. What is $K_{p}$ for the given equilibrium ?
$$ 2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H_2}(\mathrm{~g})+\mathrm{I_2}(\mathrm{~g}) $$
Show Answer
Answer
The initial concentration of $HI$ is $0.2 atm$. At equilibrium, it has a partial pressure of $0.04 atm$. Therefore, a decrease in the pressure of $HI$ is $0.2 \hat{a} E^{\prime \prime} 0.04=0.16$. The given reaction is:
$ 2 HI _{(g)} \longleftrightarrow H _{2(g)}+I _{2(g)} $
Initial conc. $\quad 0.2 atm$
$0 \quad 0$
At equilibrium $\quad 0.04 atm$
$ \begin{aligned} & \frac{0.16}{2} \quad \frac{2.15}{2} \\ & =0.08 atm=0.08 atm \end{aligned} $
Therefore,
$ \begin{aligned} K_p & =\frac{p _{H_2} \times p _{I_2}}{p_HI^{2}} \\ & =\frac{0.08 \times 0.08}{(0.04)^{2}} \\ & =\frac{0.0064}{0.0016} \\ & =4.0 \end{aligned} $
Hence, the value of $K_p$ for the given equilibrium is 4.0 .
7.12 A mixture of $1.57 \mathrm{~mol}$ of $\mathrm{N_2}, 1.92 \mathrm{~mol}$ of $\mathrm{H_2}$ and $8.13 \mathrm{~mol}$ of $\mathrm{NH_3}$ is introduced into a $20 \mathrm{~L}$ reaction vessel at $500 \mathrm{~K}$. At this temperature, the equilibrium constant, $K_{\mathrm{c}}$ for the reaction $\mathrm{N_2}(\mathrm{~g})+3 \mathrm{H_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH_3}(\mathrm{~g})$ is $1.7 \times 10^{2}$. Is the reaction mixture at equilibrium? If not, what is the direction of the net reaction?
Show Answer
Answer
The given reaction is:
$N _{2(g)}+3 H _{2(g)} \longleftrightarrow 2 NH _{3(g)}$
The given concentration of various species is
$[N_2]=\frac{1.57}{20} mol L^{-1} \quad[H_2]=\frac{1.92}{20} mol L^{-1}$
$[NH_3]=\frac{8.13}{20} mol L^{-1}$
Now, reaction quotient $Q_c$ is:
$ \begin{aligned} Q_C & =\frac{[NH_3]^{2}}{[N_2][H_2]^{3}} \\ & =\frac{(\frac{(8.13)}{20})^{2}}{(\frac{1.57}{20})(\frac{1.92}{20})^{3}} \\ & =2.4 \times 10^{3} \end{aligned} $
Since $Q_C \neq K_C$, the reaction mixture is not at equilibrium.
Again, $Q_C>K_C$. Hence, the reaction will proceed in the reverse direction.
7.13 The equilibrium constant expression for a gas reaction is,
$$ K_{c}=\frac{\left[\mathrm{NH_3}\right]^{4}\left[\mathrm{O_2}\right]^{5}}{[\mathrm{NO}]^{4}\left[\mathrm{H_2} \mathrm{O}\right]^{6}} $$
Write the balanced chemical equation corresponding to this expression.
Show Answer
Answer
The balanced chemical equation corresponding to the given expression can be written as:
$4 NO _{(g)}+6 H_2 O _{(g)} \longleftrightarrow 4 NH _{3(g)}+5 O _{2(g)}$
7.14 One mole of $\mathrm{H_2} \mathrm{O}$ and one mole of $\mathrm{CO}$ are taken in $10 \mathrm{~L}$ vessel and heated to $725 \mathrm{~K}$. At equilibrium $40 %$ of water (by mass) reacts with $\mathrm{CO}$ according to the equation,
$$ \mathrm{H_2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{H_2}(\mathrm{~g})+\mathrm{CO_2}(\mathrm{~g}) $$
Calculate the equilibrium constant for the reaction.
Show Answer
Answer
The given reaction is:
$ \begin{aligned} & H_2 O _{(g)}+CO _{(g)} \longleftrightarrow H _{2(g)}+CO _{2(g)} \\ & \begin{matrix} \text{ Initial conc. } & \frac{1}{10} M & \frac{1}{10} M & 0 & 0 \end{matrix} \\ & \text{ At equilibrium } \quad \frac{1-0.4}{10} M \quad \frac{1-0.4}{10} M \quad \frac{0.4}{10} M \quad \frac{0.4}{10} M \\ & =0.06 M \quad=0.06 M \quad=0.04 M \quad=0.04 M \end{aligned} $
Therefore, the equilibrium constant for the reaction,
$ \begin{aligned} K_C & =\frac{[H_2][CO_2]}{[H_2 O][CO]} \\ & =\frac{0.04 \times 0.04}{0.06 \times 0.06} \\ & =0.444 \text{ (approximately) } \end{aligned} $
7.15 At $700 \mathrm{~K}$, equilibrium constant for the reaction: $$ \mathrm{H_2}(\mathrm{~g})+\mathrm{I_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g}) $$ is 54.8. If $0.5 \mathrm{~mol} \mathrm{~L}^{-1}$ of $\mathrm{HI}(\mathrm{g})$ is present at equilibrium at $700 \mathrm{~K}$, what are the concentration of $\mathrm{H_2}(\mathrm{~g})$ and $\mathrm{I_2}(\mathrm{~g})$ assuming that we initially started with $\mathrm{HI}(\mathrm{g})$ and allowed it to reach equilibrium at $700 \mathrm{~K}$ ?
Show Answer
Answer
It is given that equilibrium constant $K_C$ for the reaction
$H _{2(g)}+I _{2(g)} \longleftrightarrow 2 HI _{(g)}$ is 54.8.
Therefore, at equilibrium, the equilibrium constant $K_C^{\prime}$ for the reaction
$2 HI _{(g)} \longleftrightarrow H _{2(g)}+I _{2(g)}$ will be $\frac{1}{54.8}$.
$[HI]=0.5 molL^{-1}$
Let the concentrations of hydrogen and iodine at equilibrium be $x molL^{-1}$
$[H_2]=[I_2]=x mol L^{-1}$
Therefore, $\frac{[H_2][I_2]}{[HI]^{2}}=K_C^{\prime}$
$\Rightarrow \frac{x \times x}{(0.5)^{2}}=\frac{1}{54.8}$
$\Rightarrow x^{2}=\frac{0.25}{54.8}$
$\Rightarrow x=0.06754$
$x=0.068 molL^{-1}$ (approximately)
Hence, at equilibrium, $[H_2]=[I_2]=0.068 mol L^{-1}$.
7.16 What is the equilibrium concentration of each of the substances in the equilibrium when the initial concentration of $\mathrm{ICl}$ was $0.78 \mathrm{M}$ ?
$2 \mathrm{ICl}(\mathrm{g}) \rightleftharpoons \mathrm{I_2}(\mathrm{~g})+\mathrm{Cl_2}(\mathrm{~g}) ; \quad K_{c}=0.14$
Show Answer
Answer
The given reaction is:
$2 ICl(g)$ | $Cl_{(g)}$ | $I_2(g)+$ | |
---|---|---|---|
Initial conc. | $0.78 M$ | 0 | 0 |
At equilibrium | $(0.78-2 x) M$ | $x M$ | $x M$ |
Now, we can write, $\frac{[I_2][Cl_2]}{[ICl]^{2}}=K_C$
$\Rightarrow \frac{x \times x}{(0.78-2 x)^{2}}=0.14$
$\Rightarrow \frac{x^{2}}{(0.78-2 x)^{2}}=0.14$
$\Rightarrow \frac{x}{0.78-2 x}=0.374$
$\Rightarrow x=0.292-0.748 x$
$\Rightarrow 1.748 x=0.292$
$\Rightarrow x=0.167$
Hence, at equilibrium,
$[ICl]=[I 2]=$
7.17 $K_{p}=0.04 \mathrm{~atm}$ at $899 \mathrm{~K}$ for the equilibrium shown below. What is the equilibrium concentration of $\mathrm{C_2} \mathrm{H_6}$ when it is placed in a flask at $4.0 \mathrm{~atm}$ pressure and allowed to come to equilibrium?
$$ \mathrm{C_2} \mathrm{H_6}(\mathrm{~g}) \rightleftharpoons \mathrm{C_2} \mathrm{H_4}(\mathrm{~g})+\mathrm{H_2}(\mathrm{~g}) $$
Show Answer
Answer
Let $p$ be the pressure exerted by ethene and hydrogen gas (each) at equilibrium.
Now, according to the reaction,
Initial conc.
$ C_2 H _{6(g)} \longleftrightarrow C_2 H _{4(g)}+H _{2(g)} $
At equilibrium 4.0atm 0 0
We can write,
$ \begin{aligned} & \frac{p _{C_2 H_4} \times p _{H_2}}{p _{C_2 H_6}}=K_p \\ & \Rightarrow \frac{p \times p}{4.0-p}=0.04 \\ & \Rightarrow p^{2}+0.16-0.04 p \\ & \Rightarrow p^{2}+0.04 p-0.16=0 \\ & \text{ Now }, p=\frac{-0.04 \pm \sqrt{(0.04)^{2}-4 \times 1 \times(-0.16)}}{2 \times 1} \\ & \quad=\frac{-0.04 \pm 0.80}{2} \\ & \quad=\frac{0.76}{2} \quad(\text{ Taking positive value}) \\ & \quad=0.38 \end{aligned} $
Hence, at equilibrium,
$ \begin{aligned} {[C_2 H_6]-4-p } & =4-0.38 \\ & =3.62 atm \end{aligned} $
7.18 Ethyl acetate is formed by the reaction between ethanol and acetic acid and the equilibrium is represented as:
$$ \mathrm{CH_3} \mathrm{COOH}(1)+\mathrm{C_2} \mathrm{H_5} \mathrm{OH}(1) \rightleftharpoons \mathrm{CH_3} \mathrm{COOC_2} \mathrm{H_5}(1)+\mathrm{H_2} \mathrm{O}(1) $$
(i) Write the concentration ratio (reaction quotient), $Q_{\mathrm{c}}$, for this reaction (note: water is not in excess and is not a solvent in this reaction)
(ii) At $293 \mathrm{~K}$, if one starts with $1.00 \mathrm{~mol}$ of acetic acid and $0.18 \mathrm{~mol}$ of ethanol, there is $0.171 \mathrm{~mol}$ of ethyl acetate in the final equilibrium mixture. Calculate the equilibrium constant.
(iii) Starting with $0.5 \mathrm{~mol}$ of ethanol and $1.0 \mathrm{~mol}$ of acetic acid and maintaining it at $293 \mathrm{~K}, 0.214 \mathrm{~mol}$ of ethyl acetate is found after sometime. Has equilibrium been reached?
Show Answer
Answer
(i) Reaction quotient,
$ Q_C=\frac{[CH_3 COOC_2 H_5][H_2 O]}{[CH_3 COOH][C_2 H_5 OH]} $
(ii) Let the volume of the reaction mixture be $V$. Also, here we will consider that water is a solvent and is present in excess.
The given reaction is:
$ \begin{matrix} \text{ At equilibrium } & \frac{1-0.171}{V} & \frac{0.18-0.171}{V} & \frac{0.171}{V} M & \frac{0.171}{V} M \\ = & \frac{0.829}{V} M & =\frac{0.009}{V} M & \end{matrix} $
Therefore, equilibrium constant for the given reaction is:
$ \begin{aligned} K_C & =\frac{[CH_3 COOC_2 H_5][H_2 O]}{[CH_3 COOH][C_2 H_5 OH]} \\ & =\frac{\frac{0.171}{V} \times \frac{0.171}{V}}{\frac{0.829}{V} \times \frac{0.009}{V}}=3.919 \\ = & 3.92(\text{ approximately }) \end{aligned} $
(iii) Let the volume of the reaction mixture be $V$.
$ \begin{matrix} \text{ After some time } & \frac{10-0.214}{V} & \frac{0.5-0.214}{V} & \frac{0.214}{V} M & \frac{0.214}{V} M \\\ & =\frac{0.786}{V} M & =\frac{0.286}{V} M & \end{matrix} $Therefore, the reaction quotient is,
$ \begin{aligned} Q_C & =\frac{[CH_3 COOC_2 H_5][H_2 O]}{[CH_3 COOH][C_2 H_5 OH]} \\ & =\frac{\frac{0.214}{V} \times \frac{0.214}{V}}{\frac{0.786}{V} \times \frac{0.286}{V}} \\ & =0.2037 \\ & =0204 \text{ (approximately) } \end{aligned} $
Since $Q_C<K_C$, equilibrium has not been reached.
7.19 A sample of pure $\mathrm{PCl_5}$ was introduced into an evacuated vessel at 473 K. After equilibrium was attained, concentration of $\mathrm{PCl_5}$ was found to be $0.5 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1}$. If value of $K_{\mathrm{c}}$ is $8.3 \times 10^{-3}$, what are the concentrations of $\mathrm{PCl_3}$ and $\mathrm{Cl_2}$ at equilibrium?
$$ \mathrm{PCl_5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl_3}(\mathrm{~g})+\mathrm{Cl_2}(\mathrm{~g}) $$
Show Answer
Answer
Let the concentrations of both $PCl_3$ and $Cl_2$ at equilibrium be $x$ molL ${ }^{\hat{e} e^{-1}}$. The given reaction is:
concentration of $PCL_5$ was found to be $ 0.5 \times 10^{-1} molL^{-1} $. If value of $K_c$ is $8.3 \times 10 ^{-3}$, what are the
At equilibrium $0.5 \times 10^{-1} mol L^{-1} \quad x mol L^{-1} \quad x mol L^{-1}$
It is given that the value of equilibrium constant, $K_C$ is $8.3 \times 10^{-3}$.
Now we can write the expression for equilibrium as:
$ \begin{aligned} & \frac{[PCl_2][Cl_2]}{[PCl_5]}=K_C \\ & \Rightarrow \frac{x \times x}{0.5 \times 10^{-1}}=8.3 \times 10^{-3} \\ & \Rightarrow x^{2}=4.15 \times 10^{-4} \\ & \Rightarrow x=2.04 \times 10^{-2} \\ & \quad=0.0204 \\ & \quad=0.02 \text{ (approximately) } \end{aligned} $
Therefore, at equilibrium,
$[PCl_3]=[Cl_2]=0.02 mol L{ }^{-1}$.
7.20 One of the reaction that takes place in producing steel from iron ore is the reduction of iron(II) oxide by carbon monoxide to give iron metal and $\mathrm{CO_2}$.
$\mathrm{FeO}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{Fe}(\mathrm{s})+\mathrm{CO_2}(\mathrm{~g}) ; K_{p}=0.265 \mathrm{~atm}$ at $1050 \mathrm{~K}$
What are the equilibrium partial pressures of $\mathrm{CO}$ and $\mathrm{CO_2}$ at $1050 \mathrm{~K}$ if the initial partial pressures are: $p_{\mathrm{CO}}=1.4 \mathrm{~atm}$ and $p_{\mathrm{CO_2}}=0.80 \mathrm{~atm}$ ?
Show Answer
Answer
For the given reaction,
$ FeO_{(g)} + CO_{(g)} \longleftrightarrow Fe_{(s)} + CO_{2(g)} $
Initialy, $\quad 1.4 atm \quad 0.80 atm$
$ \begin{aligned} Q_p & =\frac{p _{CO_2}}{p _{CO}} \\ & =\frac{0.80}{1.4} \\ & =0.571 \end{aligned} $
It is given that $K_p=0.265$.
Since $Q_P>K_P$, the reaction will proceed in the backward direction.
Therefore, we can say that the pressure of $CO$ will increase while the pressure of $CO_2$ will decrease.
Now, let the increase in pressure of $CO=$ decrease in pressure of $CO_2$ be $p$.
Then, we can write,
$ \begin{aligned} & K_P=\frac{p _{CO_2}}{p _{CO}} \\ & \Rightarrow 0.265=\frac{0.80-p}{1.4+p} \\ & \Rightarrow 0.371+0.265 p=0.80-p \\ & \Rightarrow 1.265 p=0.429 \\ & \Rightarrow p=0.339 atm \end{aligned} $
Therefore, equilibrium partial of $CO_2, p _{CO_2}=0.80-0.339=0.461 atm$.
And, equilibrium partial pressure of $CO, p _{CO}=1.4+0.339=1.739 atm$.
7.21 Equilibrium constant, $K_{c}$ for the reaction $$ \mathrm{N_2}(\mathrm{~g})+3 \mathrm{H_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH_3}(\mathrm{~g}) \text { at } 500 \mathrm{~K} \text { is } 0.061 $$
At a particular time, the analysis shows that composition of the reaction mixture is $3.0 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~N_2}, 2.0 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{H_2}$ and $0.5 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NH_3}$. Is the reaction at equilibrium? If not in which direction does the reaction tend to proceed to reach equilibrium?
Show Answer
Answer
The given reaction is:
$ N _{2(g)}+3 H _{2(g)} \longleftrightarrow \quad 2 NH _{3(g)} $
At a particular time: $3.0 mol L^{-1} \quad 2.0 mol L^{-1} \quad 0.5 mol L^{-1}$
Now, we know that,
$ \begin{aligned} Q_C & =\frac{[NH_3]^{2}}{[N_2][H_2]^{3}} \\ & =\frac{(0.5)^{2}}{(3.0)(2.0)^{3}} \\ & =0.0104 \end{aligned} $
It is given that $K_C=0.061$.
Since $Q_C \neq K_C$, the reaction is not at equilibrium.
Since $Q_C<K_C$, the reaction will proceed in the forward direction to reach equilibrium.
7.22 Bromine monochloride, $\mathrm{BrCl}$ decomposes into bromine and chlorine and reaches the equilibrium:
$$ 2 \mathrm{BrCl}(\mathrm{g}) \rightleftharpoons \mathrm{Br_2}(\mathrm{~g})+\mathrm{Cl_2}(\mathrm{~g}) $$
for which $K_{\mathrm{c}}=32$ at $500 \mathrm{~K}$. If initially pure $\mathrm{BrCl}$ is present at a concentration of $3.3 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$, what is its molar concentration in the mixture at equilibrium?
Show Answer
Answer
Let the amount of bromine and chlorine formed at equilibrium be $x$. The given reaction is:
$2BrCl_{(g)} \longleftrightarrow Br_{2(g)} + Cl_{2(g)} $
Initail conc. $ 3.3 \times 10^{-3} m$
At equilibrium $ 3.3 \times 10 ^{-2} -2a$
Now, we can write,
$ \begin{aligned} & \frac{[Br_2][Cl_2]}{[BrCl^{2}]}=K_C \\ \Rightarrow & \frac{x \times x}{(3.3 \times 10^{-3}-2 x)^{2}}=32 \\ \Rightarrow & \frac{x}{3.3 \times 10^{-3}-2 x}=5.66 \\ \Rightarrow & x=18.678 \times 10^{-3}-11.32 x \\ \Rightarrow & 12.32 x=18.678 \times 10^{-3} \\ \Rightarrow & x=1.5 \times 10^{-3} \end{aligned} $
Therefore, at equilibrium,
$ \begin{aligned} {[BrCl] } & =3.3 \times 10^{-3}-(2 \times 1.5 \times 10^{-3}) \\ & =3.3 \times 10^{-3}-3.0 \times 10^{-3} \\ & =0.3 \times 10^{-3} \\ & =3.0 \times 10^{-4} molL^{-1} \end{aligned} $
7.23 At $1127 \mathrm{~K}$ and $1 \mathrm{~atm}$ pressure, a gaseous mixture of $\mathrm{CO}$ and $\mathrm{CO_2}$ in equilibrium with soild carbon has $90.55 %$ CO by mass
$$ \mathrm{C}(\mathrm{s})+\mathrm{CO_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g}) $$
Calculate $K_{\mathrm{c}}$ for this reaction at the above temperature.
Show Answer
Answer
Let the total mass of the gaseous mixture be $100 g$.
Mass of $CO=90.55 g$
And, mass of $CO_2=(100 a \in " 90.55)=9.45 g$
Now, number of moles of $CO$,
$ n _{CO}=\frac{90.55}{28}=3.234 mol $
Number of moles of $CO_2$
$ n _{CO_2}=\frac{9.45}{44}=0.215 mol $
Partial pressure of $CO$,
$ \begin{aligned} p _{CO} & =\frac{n _{CO}}{n _{CO}+n _{CO_2}} \times p _{\text{total }} \\ & =\frac{3.234}{3.234+0.215} \times 1 \\ & =0.938 atm \end{aligned} $
Partial pressure of $CO_2$,
$ \begin{aligned} p _{CO_2} & =\frac{n _{CO_2}}{n _{CO}+n _{CO_2}} \times p _{\text{total }} \\ & =\frac{0.215}{3.234+0.215} \times 1 \\ & =0.062 atm \end{aligned} $
Therefore, $K_P=\frac{[CO]^{2}}{[CO_2]}$
$ \begin{aligned} & =\frac{(0.938)^{2}}{0.062} \\ & =14.19 \end{aligned} $
For the given reaction,
$\Delta n=2 -1=1$
We know that,
$K_p=K_C(R T)^{\Delta r}$
$\Rightarrow 14.19=K_C(0.082 \times 1127)^{\prime}$
$\Rightarrow K_C=\frac{14.19}{0.082 \times 1127}$
$=0.154$ (approximately)
7.24 Calculate a) $\Delta G^{\ominus}$ and b) the equilibrium constant for the formation of $\mathrm{NO_2}$ from $\mathrm{NO}$ and $\mathrm{O_2}$ at $298 \mathrm{~K}$
$$ \mathrm{NO}(\mathrm{g})+1 / 2 \mathrm{O_2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO_2}(\mathrm{~g}) $$
where
$\Delta_{\mathrm{f}} G^{\ominus}\left(\mathrm{NO_2}\right)=52.0 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{\mathrm{f}} G^{\ominus}(\mathrm{NO})=87.0 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{\mathrm{f}} G^{\ominus}\left(\mathrm{O_2}\right)=0 \mathrm{~kJ} / \mathrm{mol}$
Show Answer
Answer
(a) For the given reaction,
$\Delta G^{\circ}=\Delta G^{\circ}$ ( Products) â $\epsilon^{\prime \prime} \Delta G^{\circ}$ ( Reactants)
$\Delta G^{\circ}=52.0$ - ${87.0+0}$
= - $35.0 kJ mol|^{\hat{\epsilon} e^{\prime \prime}}$
(b) We know that,
$\Delta G^{\circ}=RT \log K_c$
$\Delta G^{\circ}=2.303 RT \log K_c$
$K_c=\frac{-35.0 \times 10^{-3}}{-2.303 \times 8.314 \times 298}$
$=6.134$
$\therefore K_c=$ antilog (6.134)
$=1.36 \times 10^{6}$
Hence, the equilibrium constant for the given reaction $K_c$ is $1.36 \times 10^{6}$
7.25 Does the number of moles of reaction products increase, decrease or remain same when each of the following equilibria is subjected to a decrease in pressure by increasing the volume?
(a) $\mathrm{PCl} 5(\mathrm{~g}) \rightleftharpoons \mathrm{PCl} 3(\mathrm{~g})+\mathrm{Cl} 2(\mathrm{~g})$
(b) $\mathrm{CaO}(\mathrm{s})+\mathrm{CO} 2(\mathrm{~g}) \rightleftharpoons \mathrm{CaCO} 3(\mathrm{~s})$
(c) $3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H_2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{Fe_3} \mathrm{O_4}(\mathrm{~s})+4 \mathrm{H_2}(\mathrm{~g})$
Show Answer
Answer
(a) The number of moles of reaction products will increase. According to Le Chatelier’s principle, if pressure is decreased, then the equilibrium shifts in the direction in which the number of moles of gases is more. In the given reaction, the number of moles of gaseous products is more than that of gaseous reactants. Thus, the reaction will proceed in the forward direction. As a result, the number of moles of reaction products will increase.
(b) The number of moles of reaction products will decrease.
(c) The number of moles of reaction products remains the same.
7.26 Which of the following reactions will get affected by increasing the pressure? Also, mention whether change will cause the reaction to go into forward or backward direction.
(i) $\mathrm{COCl_2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{Cl_2}(\mathrm{~g})$
(ii) $\mathrm{CH} 4(\mathrm{~g})+2 \mathrm{~S} 2(\mathrm{~g}) \rightleftharpoons \mathrm{CS} 2(\mathrm{~g})+2 \mathrm{H} 2 \mathrm{~S}(\mathrm{~g})$
(iii) $\mathrm{CO} 2(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$
(iv) $2 \mathrm{H} 2(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{CH} 3 \mathrm{OH}(\mathrm{g})$
(v) $\mathrm{CaCO} 3(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO} 2(\mathrm{~g})$
(vi) $4 \mathrm{NH_3}(\mathrm{~g})+5 \mathrm{O_2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H_2} \mathrm{O}(\mathrm{g})$
Show Answer
Answer
The reactions given in (i), (iii), (iv), (v), and (vi) will get affected by increasing the pressure.
The reaction given in (iv) will proceed in the forward direction because the number of moles of gaseous reactants is more than that of gaseous products.
The reactions given in (i), (iii), (v), and (vi) will shift in the backward direction because the number of moles of gaseous reactants is less than that of gaseous products.
7.27 The equilibrium constant for the following reaction is $1.6 \times 10^{5}$ at $1024 \mathrm{~K}$ $\mathrm{H_2}(\mathrm{~g})+\mathrm{Br_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HBr}(\mathrm{g})$
Find the equilibrium pressure of all gases if 10.0 bar of $\mathrm{HBr}$ is introduced into a sealed container at $1024 \mathrm{~K}$.
Show Answer
Answer
Given,
$K _{\text{P for the reaction i.e., }} H _{2(g)}+Br _{2(g)} \longleftrightarrow 2 HBr _{(g)}$ is $1.6 \times 10^{5}$.
Therefore, for the reaction $2 HBr _{(g)} \longleftrightarrow H _{2(g)}+Br _{2(g)}$, the equilibrium constant will be,
$ \begin{aligned} K_P^{\prime} & =\frac{1}{K_P} \\ & =\frac{1}{1.6 \times 10^{5}} \\ & =6.25 \times 10^{-6} \end{aligned} $
Now, let $p$ be the pressure of both $H_2$ and $Br_2$ at equilibrium.
$2 HBr _{(g)}$ | $\longleftrightarrow$ | $H _{2(g)}+Br _{2(g)}$ | ||
---|---|---|---|---|
Initial conc. | 10 | 0 | 0 | |
At equilibrium | $10-2 p$ | $p$ | $p$ |
Now, we can write,
$ \begin{aligned} & \frac{p _{HBr} \times p_2}{p_HBr^{2}}=K_P^{\prime} \\ & \frac{p \times p}{(10-2 p)^{2}}=6.25 \times 10^{-6} \end{aligned} $
$\frac{p}{10-2 p}=2.5 \times 10^{-3}$
$p=2.5 \times 10^{-2}-(5.0 \times 10^{-3}) p$
$p+(5.0 \times 10^{-3}) p=2.5 \times 10^{-2}$
$(1005 \times 10^{-3}) p=2.5 \times 10^{-2}$
$p=2.49 \times 10^{-2}$ bar $=2.5 \times 10^{-2}$ bar (approximately)
Therefore, at equilibrium,
$[H_2]=[Br_2]=2.49 \times 10^{-2}$ bar
$[HBr]=10-2 \times(2.49 \times 10^{-2})$ bar
$=9.95 bar=10 bar$ (approximately)
7.28 Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction:
$\mathrm{CH_4}(\mathrm{~g})+\mathrm{H_2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+3 \mathrm{H_2}(\mathrm{~g})$
(a) Write as expression for $\mathrm{Kp}$ for the above reaction.
(b) How will the values of $\mathrm{Kp}$ and composition of equilibrium mixture be affected by
(i) increasing the pressure
(ii) increasing the temperature
(iii) using a catalyst?
Show Answer
Answer
(a) For the given reaction, $K_P = \frac{p_{CO} \times p^3_{H_2}}{p_{CH_4} \times p_{H_2 O}}$
(b) (i) According to Le Chatelier’s principle, the equilibrium will shift in the backward direction.
(ii) According to Le Chatelier’s principle, as the reaction is endothermic, the equilibrium will shift in the forward direction.
(iii) The equilibrium of the reaction is not affected by the presence of a catalyst. A catalyst only increases the rate of a reaction. Thus, equilibrium will be attained quickly.
7.29 Describe the effect of:
a) addition of $\mathrm{H} 2$
b) addition of $\mathrm{CH} 3 \mathrm{OH}$
c) removal of $\mathrm{CO}$
d) removal of $\mathrm{CH_3} \mathrm{OH}$
on the equilibrium of the reaction:
$$ 2 \mathrm{H_2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{CH_3} \mathrm{OH}(\mathrm{g}) $$
Show Answer
Answer
(a) According to Le Chatelier’s principle, on addition of $H_2$, the equilibrium of the given reaction will shift in the forward direction.
(b) On addition of $CH_3 OH$, the equilibrium will shift in the backward direction.
(c) On removing $CO$, the equilibrium will shift in the backward direction.
(d) On removing $CH_3 OH$, the equilibrium will shift in the forward direction.
7.30 At $473 \mathrm{~K}$, equilibrium constant $K_{c}$ for decomposition of phosphorus pentachloride, $\mathrm{PCl_5}$ is $8.3 \times 10^{-3}$. If decomposition is depicted as, $\mathrm{PCl_5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl_3}(\mathrm{~g})+\mathrm{Cl_2}(\mathrm{~g}) \quad \Delta_{\mathrm{r}} H^{\ominus}=124.0 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$
a) write an expression for $\mathrm{Kc}$ for the reaction.
b) what is the value of $\mathrm{Kc}$ for the reverse reaction at the same temperature?
c) what would be the effect on $K_{c}$ if (i) more $\mathrm{PCl_5}$ is added (ii) pressure is increased (iii) the temperature is increased?
Show Answer
Answer (a)
(b) Value of $K_c$ for the reverse reaction at the same temperature is:
$ \begin{aligned} K_c^{\prime} & =\frac{1}{K_c} \\ & =\frac{1}{8.3 \times 10^{-3}}=1.2048 \times 10^{2} \\ & =120-48 \end{aligned} $
(c) (i) $K_c$ would remain the same because in this case, the temperature remains the same.
(ii) $K_c$ is constant at constant temperature. Thus, in this case, $K_c$ would not change.
(iii) In an endothermic reaction, the value of $K_c$ increases with an increase in temperature. Since the given reaction in an endothermic reaction, the value of $K_c$ will increase if the temperature is increased.
7.31 Dihydrogen gas used in Haber’s process is produced by reacting methane from natural gas with high temperature steam. The first stage of two stage reaction involves the formation of $\mathrm{CO}$ and $\mathrm{H_2}$. In second stage, $\mathrm{CO}$ formed in first stage is reacted with more steam in water gas shift reaction,
$\mathrm{CO}(\mathrm{g})+\mathrm{H_2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO_2}(\mathrm{~g})+\mathrm{H_2}(\mathrm{~g})$
If a reaction vessel at $400^{\circ} \mathrm{C}$ is charged with an equimolar mixture of $\mathrm{CO}$ and steam such that $p_{\text {co }}=p_{\mathrm{H_2} \mathrm{O}}=4.0$ bar, what will be the partial pressure of $\mathrm{H_2}$ at equilibrium? $K_{p}=10.1$ at $400^{\circ} \mathrm{C}$
Show Answer
Answer
Let the partial pressure of both carbon dioxide and hydrogen gas be $p$. The given reaction is:
$ CO _{(g)}+H_2 O _{(g)} \longleftrightarrow CO _{2(g)}+H _{2(g)} $
$\begin{matrix} \text{ Initial conc. } & 4.0 bar & 4.0 bar & 0\end{matrix} $
$\begin{matrix} \text{ At equilibrium } & 4.0-p & 4.0-p & p\end{matrix} $
It is given that $K_p=10.1$.
Now,
$ \begin{aligned} & \frac{p _{CO_2} \times p _{H_2}}{p _{COH} \times p_2}=K_P \\ & \Rightarrow \frac{p \times p}{(4.0-p)(4.0-p)}=10.1 \\ & \Rightarrow \frac{p}{4.0-p}=3.178 \\ & \Rightarrow p=12.712-3.178 p \\ & \Rightarrow 4.178 p=12.712 \\ & \Rightarrow p=3.04 \end{aligned} $
Hence, at equilibrium, the partial pressure of $H_2$ will be 3.04 bar.
7.32 Predict which of the following reaction will have appreciable concentration of reactants and products:
a) $\mathrm{Cl} 2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Cl}(\mathrm{g}) \mathrm{Kc}=5 \times 10-39$
b) $\mathrm{Cl} 2(\mathrm{~g})+2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{g}) \quad \mathrm{Kc}=3.7 \times 108$
c) $\mathrm{Cl} 2(\mathrm{~g})+2 \mathrm{NO_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO_2} \mathrm{Cl}(\mathrm{g}) K_{c}=1.8$
Show Answer
Answer
If the value of $K_c$ lies between $10^{-3}$ and $10^{3}$, a reaction has appreciable concentration of reactants and products. Thus, the reaction given in (c) will have appreciable concentration of reactants and products.
7.33 The value of $K_{c}$ for the reaction $3 \mathrm{O_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{O_3}(\mathrm{~g})$ is $2.0 \times 10^{-50}$ at $25^{\circ} \mathrm{C}$. If the equilibrium concentration of $\mathrm{O_2}$ in air at $25^{\circ} \mathrm{C}$ is $1.6 \times 10^{-2}$, what is the concentration of $\mathrm{O_3}$ ?
Show Answer
Answer
The given reaction is: $3 O _{2(g)} \longleftrightarrow 2 O _{3(g)}$
Then, $K_C=\frac{[O _{3(g)}]^{2}}{[O _{2(g)}]^{3}}$
It is given that $K_C=2.0 \times 10^{-50}$ and $[O _{2(g)}]=1.6 \times 10^{-2}$.
Then, we have,
$2.0 \times 10^{-50}=\frac{[O _{3(g)}]^{2}}{[1.6 \times 10^{-2}]^{3}}$
$\Rightarrow[O _{3(g)}]^{2}=2.0 \times 10^{-50} \times(1.6 \times 10^{-2})^{3}$
$\Rightarrow[O _{3(g)}]^{2}=8.192 \times 10^{-56}$
$\Rightarrow[O _{3(g)}]=2.86 \times 10^{-28} M$
Hence, the concentration of $O_3$ is $2.86 \times 10^{-28} M$.
7.34 The reaction, $\mathrm{CO}(\mathrm{g})+3 \mathrm{H_2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH_4}(\mathrm{~g})+\mathrm{H_2} \mathrm{O}(\mathrm{g})$ is at equilibrium at $1300 \mathrm{~K}$ in a $1 \mathrm{~L}$ flask. It also contain $0.30 \mathrm{~mol}$ of $\mathrm{CO}, 0.10 \mathrm{~mol}$ of $\mathrm{H_2}$ and $0.02 \mathrm{~mol}$ of $\mathrm{H_2} \mathrm{O}$ and an unknown amount of $\mathrm{CH_4}$ in the flask. Determine the concentration of $\mathrm{CH_4}$ in the mixture. The equilibrium constant, $K_{c}$ for the reaction at the given temperature is 3.90 .
Show Answer
Answer
Let the concentration of methane at equilibrium be $x$.
$ CO _{(g)}+3 H _{2(g)} \longleftrightarrow CH _{4(g)}+H_2 O _{(g)} $
At equilibrium $\frac{0.3}{1}=0.3 M \quad \frac{0.1}{1}=0.1 M \quad x \quad \frac{0.02}{1}=0.02 M$
It is given that $K_c=3.90$.
Therefore,
$ \begin{gathered} \frac{[CH _{4(g)}][H_2 O _{(g)}]}{[CO _{(g)}][H _{2(g)}]^{3}}=K_c \\ \Rightarrow \frac{x \times 0.02}{0.3 \times(0.1)^{3}}=3.90 \\ \Rightarrow x=\frac{3.90 \times 0.3 \times(0.1)^{3}}{0.02} \\ \quad=\frac{0.00117}{0.02} \\ =0.0585 M \\ =5.85 \times 10^{-2} M \end{gathered} $
Hence, the concentration of $CH_4$ at equilibrium is $5.85 \times 10^{-2} M$.
7.35 What is meant by the conjugate acid-base pair? Find the conjugate acid/base for the following species:
$\mathrm{HNO_2}, \mathrm{CN}^{-}, \mathrm{HClO_4} \mathrm{~F}^{-}, \mathrm{OH}^{-}, \mathrm{CO_3}^{2-}$, and $\mathrm{S}^{2-}$
Show Answer
Answer
A conjugate acid-base pair is a pair that differs only by one proton.
The conjugate acid-base for the given species is mentioned in the table below.
7.36 Which of the followings are Lewis acids? $\mathrm{H_2} \mathrm{O}, \mathrm{BF_3}, \mathrm{H}^{+}$, and $\mathrm{NH_4}^{+}$
Show Answer
Answer
Lewis acids are those acids which can accept a pair of electrons. For example, $BF_3, H^{+}$, and $NH_4^{+}$are Lewis acids.
7.37 What will be the conjugate bases for the Brönsted acids: $\mathrm{HF}, \mathrm{H_2} \mathrm{SO_4}$ and $\mathrm{HCO_3}^{-}$?
Show Answer
Answer
The table below lists the conjugate bases for the given Bronsted acids.
Bronsted acid
$HF$
$H_2 SO_4$
$HCO_3^{-}$
Conjugate base
$Fi$
$HSO_4^{-}$
$CO_3^{2-}$
7.38 Write the conjugate acids for the following Brönsted bases: $\mathrm{NH_2}^{-}, \mathrm{NH_3}$ and $\mathrm{HCOO}^{-}$.
Show Answer
Answer
The table below lists the conjugate acids for the given Bronsted bases.
Bronsted base
$NH_2^{-}$
$NH_3$
$HCOO^{-}$
Conjugate acid
$NH_3$
$NH_4^{+}$
$HCOOH$
7.39 The species: $\mathrm{H_2} \mathrm{O}, \mathrm{HCO_3}^{-}, \mathrm{HSO_4}^{-}$and $\mathrm{NH_3}$ can act both as Brönsted acids and bases. For each case give the corresponding conjugate acid and base.
Show Answer
Answer
The table below lists the conjugate acids and conjugate bases for the given species.
Species
$H_2 O$
$HCO_3^{-}$
$HSO_4^{-}$
$NH_3$
Conjugate acid
$H_3 O^{+}$
$H_2 CO_3$
$H_2 SO_4$
$NH_4^{+}$
Conjugate base
$OH^{-}$
$CO_3^{2-}$
$SO_4^{2-}$
$NH_2^{-}$
7.40 Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base: (a) $\mathrm{OH}^{-}$(b) $\mathrm{F}^{-}$(c) $\mathrm{H}^{+}$(d) $\mathrm{BCl_3}$.
Show Answer
Answer
(a) $OH^{-}$is a Lewis base since it can donate its lone pair of electrons.
(b) $F^{-}$is a Lewis base since it can donate a pair of electrons.
(c) $H^{+}$is a Lewis acid since it can accept a pair of electrons.
(d) $BCl_3$ is a Lewis acid since it can accept a pair of electrons.
7.41 The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} \mathrm{M}$. What is its $\mathrm{pH}$ ?
Show Answer
Answer
Given,
$[H^{+}]=3.8 \times 10^{-3} M$
$\therefore pH$ value of soft drink
$=-\log [H^{+}]$
$ \begin{aligned} & =-\log (3.8 \times 10^{-3}) \\ & =-\log 3.8-\log 10^{-3} \\ & =-\log 3.8+3 \\ & =-0.58+3 \\ & =2.42 \end{aligned} $
7.42 The $\mathrm{pH}$ of a sample of vinegar is 3.76. Calculate the concentration of hydrogen ion in it.
Show Answer
Answer
Given,
$pH=3.76$
It is known that,
$ \begin{aligned} & pH=-\log [H^{+}] \\ & \Rightarrow \log [H^{+}]=-pH \\ & \Rightarrow[H^{+}]=antilog(-pH) \\ & =\text{ antil og }(-3.76) \\ & =1.74 \times 10^{-4} M \end{aligned} $
Hence, the concentration of hydrogen ion in the given sample of vinegar is $1.74 \times 10^{-4} M$.
7.43 The ionization constant of $\mathrm{HF}, \mathrm{HCOOH}$ and $\mathrm{HCN}$ at $298 \mathrm{~K}$ are $6.8 \times 10^{-4}$, $1.8 \times 10^{-4}$ and $4.8 \times 10^{-9}$ respectively. Calculate the ionization constants of the corresponding conjugate base.
Show Answer
Answer
It is known that,
$K_b=\frac{K_w}{K_a}$
Given,
$K_a$ of $HF=6.8 \times 10^{-44}$
Hence, $K_b$ of its conjugate base $F^{-}$ $=\frac{K_w}{K_a}$
$=\frac{10^{-14}}{6.8 \times 10^{-4}}$
$=1.5 \times 10^{-11}$
Given,
$K_a$ of $HCOOH=1.8 \times 10^{-4 }$
Hence, $K_b$ of its conjugate base $HCOO^{-}$
$=\frac{K_w}{K_a}$
$=\frac{10^{-14}}{1.8 \times 10^{-4}}$
$=5.6 \times 10^{-11}$
Given,
$K _{\text{a }}$ of $HCN=4.8 \times 10^{-9}$
Hence, $K_b$ of its conjugate base $CN^{\text{ate- }}$
$=\frac{K_w}{K_a}$
$=\frac{10^{-14}}{4.8} \times 10^{-9}$
$=2.08 \times 10^{-6}$
7.44 The ionization constant of phenol is $1.0 \times 10^{-10}$. What is the concentration of phenolate ion in $0.05 \mathrm{M}$ solution of phenol? What will be its degree of ionization if the solution is also $0.01 \mathrm{M}$ in sodium phenolate?
Show Answer
Answer
Ionization of phenol:
As the value of the ionization constant is very less, $x$ will be very small. Thus, we can ignore $x$ in the denominator.
$ \begin{aligned} \therefore x & =\sqrt{1 \times 10^{-10} \times 0.05} \\ & =\sqrt{5 \times 10^{-12}} \\ & =2.2 \times 10^{-6} M=[H_3 O^{+}] \end{aligned} $
Since $[H_3 O^{+}]=[C_6 H_5 O^{-}]$,
$[C_6 H_5 O^{-}]=2.2 \times 10^{-6} M$.
Now, let $\alpha$ be the degree of ionization of phenol in the presence of $0.01 M C_6 H_5 ONa$.
$ C_6 H_5 ONa \longrightarrow C_6 H_5 O^{-}+Na^{+} $
Conc.
$ 0.01 $
Also,
$ \begin{aligned} & \quad C_6 H_5 OH+H_2 O \longleftrightarrow C_6 H_5 O^{-}+H_3 O^{+} \\ & \text{Conc. } 0.05-0.05 \alpha \\ & {[C_6 H_5 OH]=0.05-0.05 \alpha ; 0.05 M} \end{aligned} $
$ \begin{aligned} & {[C_6 H_5 O^{-}]=0.01+0.05 \alpha ; 0.01 M} \\ & {[H_3 O^{+}]=0.05 \alpha} \\ & K_a=\frac{[C_6 H_5 O^{-}][H_3 O^{+}]}{[C_6 H_5 OH]} \\ & K_a=\frac{(0.01)(0.05 \alpha)}{0.05} \\ & 1.0 \times 10^{-10}=.01 \alpha \\ & \alpha=1 \times 10^{-8} \end{aligned} $
7.45 The first ionization constant of $\mathrm{H_2} \mathrm{~S}$ is $9.1 \times 10^{-8}$. Calculate the concentration of $\mathrm{HS}^{-}$ion in its $0.1 \mathrm{M}$ solution. How will this concentration be affected if the solution is $0.1 \mathrm{M}$ in $\mathrm{HCl}$ also? If the second dissociation constant of $\mathrm{H_2} \mathrm{~S}$ is $1.2 \times 10^{-13}$, calculate the concentration of $\mathrm{S}^{2-}$ under both conditions.
Show Answer
Answer
(i) To calculate the concentration of $HS^{-}$ ion:
Case I (in the absence of $HCl$ ):
Let the concentration of $HS^{-}$ be $x M$.
$ \begin{aligned} & H_2 S \longleftrightarrow H^{+}+HS^{-} \\ & \begin{matrix} C_i & 0.1 & 0 & 0 \end{matrix} \\ & \begin{matrix} C_f & 0.1-x & x & x \end{matrix} \\ & \text{ Then, } K _{a_1}=\frac{[H^{+}][HS^{-}]}{[H_2 S]} \\ & 9.1 \times 10^{-8}=\frac{(x)(x)}{0.1-x} \\ & (9.1 \times 10^{-8})(0.1-x)=x^{2} \end{aligned} $
Taking $0.1-x M ; 0.1 M$, we have $(9.1 \times 10^{-8})(0.1)=x^{2}$.
$ \begin{aligned} & 9.1 \times 10^{-9}=x^{2} \\ & x=\sqrt{9.1 \times 10^{-9}} \\ & \quad=9.54 \times 10^{-5} M \\ & \Rightarrow[HS^{-}]=9.54 \times 10^{-5} M \end{aligned} $
Case II (in the presence of $HCl$ ):
In the presence of $0.1 M$ of $HCl$, let $[HS^{-}]$be $y M$.
Then, $\quad H_2 S \longleftrightarrow HS^{-}+H^{+}$
$\begin{matrix} C_i & 0.1 & 0 & 0\end{matrix} $
$C_f \quad 0.1-y \quad y \quad y$
Also, $\quad HCl \longleftrightarrow H^{+}+Cl^{-}$
$0.1 \quad 0.1$
Now, $K _{a_1}=\frac{[HS^{-}][H^{+}]}{[H_2 S]}$
$K_{a_1}=\frac{[y] (0.1+y)}{(0.1-y)}$
$9.1 \times 10^{-8}=\frac{y \times 0.1}{0.1} \quad(\because 0.1-y ; 0.1 M)$ (and $0.1+y ; 0.1 M$ )
$9.1 \times 10^{-8}=y$
$\Rightarrow[HS^{-}]=9.1 \times 10^{-8}$
(ii) To calculate the concentration of $[S^{2-}]$ :
Case I (in the absence of $0.1 M HCl$ ):
$HS^{-} \longleftrightarrow H^{+}+S^{2-}$
$[HS^{-}]=9.54 \times 10^{-5} M$ (From first ionization, case I)
Let $[S^{2-}]$ be $X$.
Also, $[H^{+}]=9.54 \times 10^{-5} M$ (From first ionization, case I)
$K _{a_2}=\frac{[H^{+}][S^{2-}]}{[HS^{-}]}$
$K _{a_2}=\frac{(9.54 \times 10^{-5})(X)}{9.54 \times 10^{-5}}$
$1.2 \times 10^{-13}=X=[S^{2-}]$
Case II (in the presence of $0.1 M HCl$ ):
Again, let the concentration of $HS^{-}$ be $X^{\prime} M$.
$ \begin{aligned} & {[HS^{-}]=9.1 \times 10^{-8} M \text{ (From first ionization, case II) }} \\ & {[H^{+}]=0.1 M _{(\text{From } HCl, \text{ case II) }}} \end{aligned} $
$ \begin{aligned} & {[S^{2-}]=X^{\prime}} \\ & \text{ Then, } K _{a_2}=\frac{[H^{+}][S^{2-}]}{[HS^{-}]} \\ & 1.2 \times 10^{-13}=\frac{(0.1)(X^{\prime})}{9.1 \times 10^{-8}} \\ & 10.92 \times 10^{-21}=0.1 X^{\prime} \\ & \frac{10.92 \times 10^{-21}}{0.1}=X^{\prime} \\ & X^{\prime}=\frac{1.092 \times 10^{-20}}{0.1} \\ & =1.092 \times 10^{-19} M \\ & \Rightarrow K _{a_1}=1.74 \times 10^{-5} \end{aligned} $
7.46 The ionization constant of acetic acid is $1.74 \times 10^{-5}$. Calculate the degree of dissociation of acetic acid in its $0.05 \mathrm{M}$ solution. Calculate the concentration of acetate ion in the solution and its $\mathrm{pH}$.
Show Answer
Answer
Method 1
- $\quad CH_3 COOH \longleftrightarrow CH_3 COO^{-}+H^{+} \quad K_a=1.74 \times 10^{-5}$
- $H_2 O+H_2 O \longleftrightarrow H_3 O^{+}+OH^{-} \quad K_w=1.0 \times 10^{-14}$
Since $K a \gg K_w$ :
$ \begin{matrix} CH_3 COOH+H_2 O \longleftrightarrow CH_3 COO^{-}+H_3 O^{+} \\ 0.05 & 0 & 0 \\ 0.05-.05 \alpha & 0.05 \alpha & 0.05 \alpha \\ K_a & =\frac{(.05 \alpha)(.05 \alpha)}{(.05-0.05 \alpha)} \\ & =\frac{(.05 \alpha)(0.05 \alpha)}{.05(1-\alpha)} \\ & =\frac{.05 \alpha^{2}}{1-\alpha} \end{matrix} $
$ \begin{aligned} & 1.74 \times 10^{-5}=\frac{0.05 \alpha^{2}}{1-\alpha} \\ & 1.74 \times 10^{-5}-1.74 \times 10^{-5} \alpha=0.05 \alpha^{2} \\ & 0.05 \alpha^{2}+1.74 \times 10^{-5} \alpha-1.74 \times 10^{-5} \\ & D=b^{2}-4 a c \\ & =(1.74 \times 10^{-5})^{2}-4(.05)(1.74 \times 10^{-5}) \\ & =3.02 \times 10^{-25}+.348 \times 10^{-5} \\ & \alpha=\sqrt{\frac{K_a}{c}} \\ & \alpha=\sqrt{\frac{1.74 \times 10^{-5}}{.05}} \\ & =\sqrt{\frac{34.8 \times 10^{-5} \times 10}{10}} \\ & =\sqrt{3.48 \times 10^{-6}} \\ & =CH_3 COOH \longleftrightarrow CH_3 COO^{-}+H^{+} \end{aligned} $
$\alpha \underline{1.86 \times 10^{-3}}$
$ \begin{aligned} {[CH_3 COO^{-}] } & =0.05 \times 1.86 \times 10^{-3} \\ & =\frac{0.93 \times 10^{-3}}{1000} \\ & =.000093 \end{aligned} $
Method 2
Degree of dissociation,
$\alpha=\sqrt{\frac{K_a}{c}}$
$c=0.05 M$
$K_a=1.74 \times 10^{-5}$
Then, $\alpha=\sqrt{\frac{1.74 \times 10^{-5}}{.05}}$
$ \begin{aligned} & \alpha=\sqrt{34.8 \times 10^{-5}} \\ & \alpha=\sqrt{3.48} \times 10^{-4} \\ & \alpha=1.8610^{-2} \end{aligned} $
$CH_3 COOH \longleftrightarrow CH_3 COO^{-}+H^{+}$
Thus, concentration of $CH_3 COO^-=$ c.a
$ \begin{aligned} & =.05 \times 1.86 \times 10^{-2} \\ & =.093 \times 10^{-2} \\ & =.00093 M \\ & \text{ Since }[oAc^{-}]=[H^{+}] \\ & {[H^{+}]=.00093=.093 \times 10^{-2} .} \\ & pH=-\log [H^{+}] \\ & =-\log (.093 \times 10^{-2}) \\ & \therefore pH=3.03 \end{aligned} $
Hence, the concentration of acetate ion in the solution is $0.00093 M$ and its $Ph$ is 3.03 .
7.47 It has been found that the $\mathrm{pH}$ of a $0.01 \mathrm{M}$ solution of an organic acid is 4.15. Calculate the concentration of the anion, the ionization constant of the acid and its $\mathrm{p} K_{\mathrm{a}}$.
Show Answer
Answer
Let the organic acid be HA.
$\Rightarrow HA \longleftrightarrow H^{+}+A^{-}$
Concentration of $HA=0.01 M$
$pH=4.15$
$-\log [H^{+}]=4.15$
$[H^{+}]=7.08 \times 10^{-5}$
$K_a=\frac{[H^{+}][A^{-}]}{[HA]}$
$[H^{+}]=[A^{-}]=7.08 \times 10^{-5}$
$[HA]=0.01$
Then,
$ \begin{aligned} K_a & =\frac{(7.08 \times 10^{-5})(7.08 \times 10^{-5})}{0.01} \\ K_a & =5.01 \times 10^{-7} \\ p K_a & =-\log K_a \\ & =-\log (5.01 \times 10^{-7}) \\ p K_a & =6.3001 \end{aligned} $
7.48 Assuming complete dissociation, calculate the $\mathrm{pH}$ of the following solutions:
(a) $0.003 \mathrm{M} \mathrm{HCl}$
(b) $0.005 \mathrm{M} \mathrm{NaOH}$
(c) $0.002 \mathrm{M} \mathrm{HBr}$
(d) $0.002 \mathrm{M} \mathrm{KOH}$
Show Answer
Answer
(i) $0.003 MHCl$ :
$H_2 O+HCl \longleftrightarrow H_3 O^{+}+Cl^{-}$
Since $HCl$ is completely ionized,
$ \begin{aligned} & {[H_3 O^{+}]=[HCl] .} \\ & \Rightarrow[H_3 O^{+}]=0.003 \end{aligned} $
Now,
$ \begin{aligned} pH & =-\log [H_3 O^{+}]=-\log (.003) \\ & =2.52 \end{aligned} $
Hence, the $pH$ of the solution is 2.52 .
(ii) $0.005 MNaOH$ :
$ \begin{aligned} & NaOH _{(a q)} \longleftrightarrow Na _{(a q)}^{+}+HO _{(a q)}^{-} \\ & {[HO^{-}]=[NaOH]} \\ & \Rightarrow[HO^{-}]=.005 \\ & pOH=-\log [HO^{-}]=-\log (.005) \\ & pOH=2.30 \\ & \therefore pH=14-2.30 \\ & \quad=11.70 \end{aligned} $
Hence, the $pH$ of the solution is 11.70 .
(iii) $0.002 HBr$ :
$ \begin{aligned} & HBr+H_2 O \longleftrightarrow H_3 O^{+}+Br^{-} \\ & {[H_3 O^{+}]=[HBr]} \\ & \Rightarrow[H_3 O^{+}]=.002 \\ & \therefore pH=-\log [H_3 O^{+}] \\ & \quad=-\log (0.002) \\ & \quad=2.69 \end{aligned} $
Hence, the $pH$ of the solution is 2.69 .
(iv) $0.002 M KOH$ :
$ \begin{aligned} & KOH _{(a q)} \longleftrightarrow K _{(a q)}^{+}+OH _{(a q)}^{-} \\ & {[OH^{-}]=[KOH]} \\ & \Rightarrow[OH^{-}]=.002 \\ & \text{ Now, pOH }=-\log [OH^{-}] \\ & \quad=2.69 \\ & \begin{matrix} \therefore pH=14-2.69 \\ =11.31 \end{matrix} \end{aligned} $
Hence, the $pH$ of the solution is 11.31 .
7.49 Calculate the $\mathrm{pH}$ of the following solutions:
a) $2 \mathrm{~g}$ of $\mathrm{T1OH}$ dissolved in water to give 2 litre of solution.
b) $0.3 \mathrm{~g}$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ dissolved in water to give $500 \mathrm{~mL}$ of solution.
c) $0.3 \mathrm{~g}$ of $\mathrm{NaOH}$ dissolved in water to give $200 \mathrm{~mL}$ of solution.
d) $1 \mathrm{~mL}$ of $13.6 \mathrm{M} \mathrm{HCl}$ is diluted with water to give 1 litre of solution.
Show Answer
Answer
(a) For $2 g$ of $TIOH$ dissolved in water to give $2 L$ of solution:
$ \begin{aligned} {[TlOH _{(a q)}] } & =\frac{2}{2} g / L \\ & =\frac{2}{2} \times \frac{1}{221} M \\ & =\frac{1}{221} M \end{aligned} $
$TlOH _{(a q)} \longrightarrow Tl _{(a q)}^{+}+OH _{(a q)}^{-}$
$[OH _{(a q)}^{-}]=[TlOH _{(o q)}]=\frac{1}{221} M$
$K_w=[H^{+}][OH^{-}]$
$10^{-14}=[H^{+}] (\frac{1}{221})$
$221 \times 10^{-14}=[H^{+}]$
$ \begin{aligned} \Rightarrow pH=-\log [H^{+}] & =-\log (221 \times 10^{-14}) \\ & =-\log (2.21 \times 10^{-12}) \\ & =11.65 \end{aligned} $
(b) For $0.3 g$ of $Ca(OH)_2$ dissolved in water to give $500 mL$ of solution:
$ \begin{aligned} & Ca(OH)_2 \longrightarrow Ca^{2+}+2 OH^{-} \\ & {[Ca(OH)_2]=0.3 \times \frac{1000}{500}=0.6 M} \\ & {[OH^{-} _{a q}]=2 \times[Ca(OH) _{2 a q}]=2 \times 0.6} \\ & =1.2 M \\ & {[H^{+}]=\frac{K_w}{[OH _{a q}^{-}]}} \\ & =\frac{10-14}{1.2} M \\ & =0.833 \times 10^{-14} \\ & pH=-\log (0.833 \times 10^{-14}) \\ & =-\log (8.33 \times 10^{-13}) \\ & =(-0.902+13) \\ & =12.098 \end{aligned} $
(c) For $0.3 g$ of $NaOH$ dissolved in water to give $200 mL$ of solution: $NaOH \longrightarrow Na _{(a q)}^{+}+OH _{(a q)}^{-}$
$[NaOH]=0.3 \times \frac{1000}{200}=1.5 M$
$[OH^{-} _{a q}]=1.5 M$
Then, $[H^{+}]=\frac{10^{-14}}{1.5}$
$ =6.66 \times 10^{-13} $
$pH=-\log (6.66 \times 10^{-13})$
$ =12.18 $
(d) For $1 mL$ of $13.6 M HCl$ diluted with water to give $1 L$ of solution:
$13.6 \times 1 mL=M_2 \times 1000 mL$
(Before dilution) (After dilution)
$13.6 \times 10^{-43}=M_2 \times 1 L$
$M_2=1.36 \times 10^{-2}$
$[H^{+}]=1.36 \times 10^{\text{-2 }}$
$pH=- \log (1.36 \times 10^{-2})$
$=(- 0.1335+2)$
$=1.866 - 41.87$
7.50 The degree of ionization of a $0.1 \mathrm{M}$ bromoacetic acid solution is 0.132 . Calculate the $\mathrm{pH}$ of the solution and the $p K_{\mathrm{a}}$ of bromoacetic acid.
Show Answer
Answer
Degree of ionization, $\alpha=0.132$
Concentration, $c=0.1 M$
Thus, the concentration of $H_3 O^{+}=c . \alpha$
$=0.1 \times 0.132$
$=0.0132$
$ \begin{aligned} pH & =-\log [H^{+}] \\ & =-\log (0.0132) \\ & =1.879: 1.88 \end{aligned} $
Now,
$ \begin{aligned} K_a & =C \alpha^{2} \\ & =0.1 \times(0.132)^{2} \\ K_a & =.0017 \\ p K_a & =2.75 \end{aligned} $
7.51 The $\mathrm{pH}$ of $0.005 \mathrm{M}$ codeine $\left(\mathrm{C_18} \mathrm{H_21} \mathrm{NO_3}\right)$ solution is 9.95. Calculate its ionization constant and $\mathrm{p} K_{\mathrm{b}}$.
Show Answer
Answer
$c=0.005$
$pH=9.95$
$pOH=4.05$
$pH=- \log (4.105)$
$4.05=-\log [OH^{-}]$
$[OH^{-}]=8.91 \times 10^{-5}$
$c \alpha=8.91 \times 10^{-5}$
$\alpha=\frac{8.91 \times 10^{-5}}{5 \times 10^{-3}}=1.782 \times 10^{-2}$
Thus, $K_b=c \alpha^{2}$
$ \begin{aligned} & =0.005 \times(1.782)^{2} \times 10^{-4} \\ & =0.005 \times 3.1755 \times 10^{-4} \\ & =0.0158 \times 10^{-4} \end{aligned} $
$K_b=1.58 \times 10^{-6}$
$P k_b=-\log K_b$
$=-\log (1.58 \times 10^{-6})$
$=5.80$
7.52 What is the $\mathrm{pH}$ of $0.001 \mathrm{M}$ aniline solution? The ionization constant of aniline can be taken from Table 6.7. Calculate the degree of ionization of aniline in the solution. Also calculate the ionization constant of the conjugate acid of aniline.
Show Answer
Answer
$K_b=4.27 \times 10^{-10}$
$c=0.001 M$
$pH=$ ?
$\alpha=$ ?
$k_b=c \alpha^{2}$
$4.27 \times 10^{-10}=0.001 \times \alpha^{2}$
$4270 \times 10^{-10}=\alpha^{2}$
$65.34 \times 10^{-5}=\alpha=6.53 \times 10^{-4}$
Then, $[$ anion $]=c \alpha=.001 \times 65.34 \times 10^{-5}$
$ =.065 \times 10^{-5} $
$pOH=-\log (.065 \times 10^{-5})$
$ =6.187 $
$pH=7.813$
Now,
$K_a \times K_b=K_w$
$\therefore 4.27 \times 10^{-10} \times K_a=K_w$
$K_a=\frac{10^{-14}}{4.27 \times 10^{-10}}$
$ =2.34 \times 10^{-5} $
Thus, the ionization constant of the conjugate acid of aniline is $2.34 \times 10^{- 5}$.
7.53 Calculate the degree of ionization of $0.05 \mathrm{M}$ acetic acid if its $\mathrm{p} K_{\mathrm{a}}$ value is 4.74. How is the degree of dissociation affected when its solution also contains (a) $0.01 \mathrm{M}$ (b) $0.1 \mathrm{M}$ in $\mathrm{HCl}$ ?
Show Answer
Answer
$ \begin{aligned} & c=0.05 M \\ & p K_a=4.74 \\ & p K_a=-\log (K_a) \\ & K_a=1.82 \times 10^{-5} \\ & K_a=c \alpha^{2} \quad \alpha=\sqrt{\frac{K_a}{c}} \\ & \alpha=\sqrt{\frac{1.82 \times 10^{-5}}{5 \times 10^{-2}}}=1.908 \times 10^{-2} \end{aligned} $
When $HCl$ is added to the solution, the concentration of $H^{+}$ions will increase. Therefore, the equilibrium will shift in the backward direction i.e., dissociation of acetic acid will decrease.
Case I: When $0.01 M HCl$ is taken.
Let $x$ be the amount of acetic acid dissociated after the addition of $HCl$.
$CH_3 COOH$ | $\longleftrightarrow$ | $H^{+}$ | + | |
---|---|---|---|---|
Initial conc. | $0.05 M$ | 0 | 0 | |
After dissociation | $0.05-x$ | $0.01+x$ | $x$ |
As the dissociation of a very small amount of acetic acid will take place, the values i.e., 0.05 - $x$ and $0.01+x$ can be taken as 0.05 and 0.01 respectively.
$ \begin{aligned} K_a & =\frac{[CH_3 COO^{-}][H^{+}]}{[CH_3 COOH]} \\ \therefore K_a & =\frac{(0.01) x}{0.05} \\ x & =\frac{1.82 \times 10^{-5} \times 0.05}{0.01} \\ x & =1.82 \times 10^{-3} \times 0.05 M \end{aligned} $
Now,
$ \begin{aligned} & =\frac{1.82 \times 10^{-3} \times 0.05}{0.05} \\ & =1.82 \times 10^{-3} \end{aligned} $
$ \alpha=\frac{\text{ Amount of acid dissociated }}{\text{ Amount of acid taken }} $
Case II: When $0.1 M HCl$ is taken.
Let the amount of acetic acid dissociated in this case be $X$. As we have done in the first case, the concentrations of various species involved in the reaction are:
$ \begin{aligned} & {[CH_3 COOH]=0.05-X ; 0.05 M} \\ & {[CH_3 COO^{-}]=X} \\ & {[H^{+}]=0.1+X ; 0.1 M} \\ & K_a=\frac{[CH_3 COO^{-}][H^{+}]}{[CH_3 COOH^{-}]} \\ & \therefore K_a=\frac{(0.1) X}{0.05} \\ & x=\frac{1.82 \times 10^{-5} \times 0.05}{0.1} \\ & x=1.82 \times 10^{-4} \times 0.05 M \end{aligned} $
Now,
$ \begin{aligned} \alpha & =\frac{\text{ Amount of acid dissociated }}{\text{ Amount of acid taken }} \\ & =\frac{1.82 \times 10^{-4} \times 0.05}{0.05} \\ & =1.82 \times 10^{-4} \end{aligned} $
7.54 The ionization constant of dimethylamine is $5.4 \times 10^{-4}$. Calculate its degree of ionization in its $0.02 \mathrm{M}$ solution. What percentage of dimethylamine is ionized if the solution is also $0.1 \mathrm{M}$ in $\mathrm{NaOH}$ ?
Show Answer
Answer
$K_b=5.4 \times 10^{-4}$
$c=0.02 M$
Then, $\alpha=\sqrt{\frac{K_b}{c}}$
$ \begin{aligned} & =\sqrt{\frac{5.4 \times 10^{-4}}{0.02}} \\ & =0.1643 \end{aligned} $
Now, if $0.1 M$ of $NaOH$ is added to the solution, then $NaOH$ (being a strong base) undergoes complete ionization.
$ \begin{aligned} & NaOH _{(a q)} \longleftrightarrow Na _{(a q)}^{+}+OH _{(a q)}^{-} \\ & 0.1 M \quad 0.1 M \end{aligned} $
And, $(CH_3)_2 NH$ $H_2 O$ $\longleftrightarrow$ $(0.02-x)$ $; 0.02 M$ $(CH_3)_2 NH_2^{+}+\overline{O} H$ $x$ $x$ $; 0.1 M$
Then, $[(CH_3)_2 NH_2^{+}]=x$
$[OH^{-}]=x+0.1 ; 0.1$
$\Rightarrow K_b=\frac{[(CH_3)_2 NH_2^{+}][OH^{-}]}{[(CH_3)_2 NH]}$
$5.4 \times 10^{-4}=\frac{x \times 0.1}{0.02}$
$x=0.0054$
It means that in the presence of $0.1 M NaOH, 0.54 %$ of dimethylamine will get dissociated.
7.55 Calculate the hydrogen ion concentration in the following biological fluids whose $\mathrm{pH}$ are given below:
(a) Human muscle-fluid, 6.83
(b) Human stomach fluid, 1.2
(c) Human blood, 7.38
(d) Human saliva, 6.4.
Show Answer
Answer
(a) Human muscle fluid 6.83:
$pH=6.83$
$pH=-\log [H^{+}]$
$\therefore 6.83=-\log [H^{+}]$
$[H^{+}]=1.48 \times 10^{-7} M$
(b) Human stomach fluid, 1.2:
$pH=1.2$
$1.2=-\log [H^{+}]$
$\therefore[H^{+}]=0.063$
(c) Human blood, 7.38:
$pH=7.38=-\log [H^{+}]$ $\therefore[H^{+}]=4.17 \times 10^{-8} M$
(d) Human saliva, 6.4:
$pH=6.4$
$6.4=-\log [H^{+}]$
$[H^{+}]=3.98 \times 10^{-7}$
7.56 The pH of milk, black coffee, tomato juice, lemon juice and egg white are 6.8, 5.0, 4.2, 2.2 and 7.8 respectively. Calculate corresponding hydrogen ion concentration in each.
Show Answer
Answer
The hydrogen ion concentration in the given substances can be calculated by using the given relation:
$pH=-\log [H^{+}]$
(i) $pH$ of milk $=6.8$
Since, $pH=a - \log [H^{+}]$
$6.8=- \log [H^{+}]$
$\log [H^{+}]=$- 6.8
$[H^{+}]=anitlog(-8)$
$=1.5 \times 10^{-7} M$
(ii) $pH$ of black coffee $=5.0$
Since, $pH=a - \log [H^{+}]$
$5.0=\hat{a} - \log [H^{+}]$
$\log [H^{+}]=$- 5.0
$[H^{+}]=anitlog(-5.0)$
$=10^{-5} M$
(iii) $pH$ of tomato juice $=4.2$
Since, $pH=- \log [H^{+}]$
$4.2= - \log [H^{+}]$
$\log [H^{+}]=-{4.2}$
$[H^{+}]=anitlog(4.2)$
$=6.31 \times 10^{-5} M$
(iv) $pH$ of lemon juice $=2.2$
Since, $pH=- \log [H^{+}]$ $2.2=- \log [H^{+}]$
$\log [H^{+}]=- 2.2$
$[H^{+}]=anitlog(- 2)$
$=6.31 \times 10^{-3} M$
(v) $pH$ of egg white $=7.8$
Since, $pH=- \log [H^{+}]$
$7.8=- \log [H^{+}]$
$\log [H^{+}]=- 7.8$
$[H^{+}]=anitlog(-7.8)$
$=1.58 \times 10^{-8} M$
7.57 If $0.561 \mathrm{~g}$ of $\mathrm{KOH}$ is dissolved in water to give $200 \mathrm{~mL}$ of solution at $298 \mathrm{~K}$. Calculate the concentrations of potassium, hydrogen and hydroxyl ions. What is its $\mathrm{pH}$ ?
Show Answer
Answer
$[KOH _{a q}]=\frac{0.561}{\frac{1}{5}} g / L$
$=2.805 g / L$
$=2.805 \times \frac{1}{56.11} M$
$=.05 M$
$KOH _{(a q)} \to K _{(a q)}^{+}+OH^{-} _{(a q)}$
$[OH^{-}]=.05 M=[K^{+}]$
$[H^{+}][H^{-}]=K_w$
$[H^{+}] \frac{K_w}{[OH^{-}]}$
$=\frac{10^{-14}}{0.05}=2 \times 10^{-13} M$
$\therefore pH=12.70$
7.58 The solubility of $\mathrm{Sr}(\mathrm{OH})_{2}$ at $298 \mathrm{~K}$ is $19.23 \mathrm{~g} / \mathrm{L}$ of solution. Calculate the concentrations of strontium and hydroxyl ions and the $\mathrm{pH}$ of the solution.
Show Answer
Answer
Solubility of $Sr(OH)_2=19.23 g / L$
Then, concentration of $Sr(OH)_2$
$=\frac{19.23}{121.63} M$
$=0.1581 M$
$Sr(OH) _{2(a q)} \longrightarrow Sr^{2+} _{(a q)}+2(OH^{-}) _{(a q)}$
$\therefore[Sr^{2+}]=0.1581 M$
$[OH^{-}]=2 \times 0.1581 M=0.3126 M$
Now,
$K_w=[OH^{-}][H^{+}]$
$\frac{10^{-14}}{0.3126}=[H^{+}]$
$\Rightarrow[H^{+}]=3.2 \times 10^{-14}$
$\therefore pH=13.495 \approx 13.50$
7.59 The ionization constant of propanoic acid is $1.32 \times 10^{-5}$. Calculate the degree of ionization of the acid in its $0.05 \mathrm{M}$ solution and also its $\mathrm{pH}$. What will be its degree of ionization if the solution is $0.01 \mathrm{M}$ in $\mathrm{HCl}$ also?
Show Answer
Answer
Let the degree of ionization of propanoic acid be $\alpha$.
Then, representing propionic acid as HA, we have:
$ \begin{aligned} & HA+H_2 O \longleftrightarrow H_3 O^{+}+A^{-} \\ & (.05-0.0 \alpha) \approx .05 \end{aligned} $
$ \begin{gathered} .05 \alpha \\ K_a=\frac{[H_3 O^{+}][A^{-}]}{[HA]} \\ \quad=\frac{(.05 \alpha)(.05 \alpha)}{0.05}=.05 \alpha^{2} \\ \alpha=\sqrt{\frac{K_a}{.05}}=1.63 \times 10^{-2} \\ \text{ Then, }[H_3 O^{+}]=.05 \alpha=.05 \times 1.63 \times 10^{-2}=K_b .15 \times 10^{-4} M \\ \therefore pH=3.09 \end{gathered} $
In the presence of $0.1 M$ of $HCl$, let $\alpha^{\prime}$ be the degree of ionization.
$ \begin{aligned} & \text{ Then, }[H_3 O^{+}]=0.01 \\ & {[A^{-}]=005 \alpha^{\prime}} \\ & {[HA]=.05} \\ & K_a=\frac{0.01 \times .05 \alpha^{\prime}}{.05} \\ & 1.32 \times 10^{-5}=.01 \times \alpha^{\prime} \\ & \alpha^{\prime}=1.32 \times 10^{-3} \end{aligned} $
7.60 The $\mathrm{pH}$ of $0.1 \mathrm{M}$ solution of cyanic acid (HCNO) is 2.34. Calculate the ionization constant of the acid and its degree of ionization in the solution.
Show Answer
Answer
$c=0.1 M$
$pH=2.34$ $-\log [H^{+}]=pH$
$-\log [H^{+}]=2.34$
$[H^{+}]=4.5 \times 10^{-3}$
Also,
$[H^{+}]=c \alpha$
$4.5 \times 10^{-3}=0.1 \times \alpha$
$\frac{4.5 \times 10^{-3}}{0.1}=\alpha$
$\alpha=45 \times 10^{-3}=.045$
Then,
$K_a=c \alpha^{2}$
$=0.1 \times(45 \times 10^{-3})^{2}$
$=202.5 \times 10^{-6}$
$=2.02 \times 10^{-4}$
7.61 The ionization constant of nitrous acid is $4.5 \times 10^{-4}$. Calculate the $\mathrm{pH}$ of $0.04 \mathrm{M}$ sodium nitrite solution and also its degree of hydrolysis.
Show Answer
Answer
$NaNO_2$ is the salt of a strong base $(NaOH)$ and a weak acid $(HNO_2)$.
$NO_2^{-}+H_2 O \longleftrightarrow HNO_2+OH^{-}$
$K_h=\frac{[HNO_2][OH^{-}]}{[NO_2^{-}]}$
$\Rightarrow \frac{K_w}{K_a}=\frac{10^{-14}}{4.5 \times 10^{-4}}=.22 \times 10^{-10}$
Now, If $x$ moles of the salt undergo hydrolysis, then the concentration of various species present in the solution will be: $[NO_2^{-}]=.04-x ; 0.04$
$[HNO_2]=x$
$[OH^{-}]=x$
$K_h=\frac{x^{2}}{0.04}=0.22 \times 10^{-10}$
$x^{2}=.0088 \times 10^{-10}$
$x=.093 \times 10^{-5}$
$\therefore[OH^{-}]=0.093 \times 10^{-5} M$
$[H_3 O^{+}]=\frac{10^{-14}}{.093 \times 10^{-5}}=10.75 \times 10^{-9} M$
$\Rightarrow pH=-\log (10.75 \times 10^{-9})$
$=7.96$
Therefore, degree of hydrolysis
$=\frac{x}{0.04}=\frac{.093 \times 10^{-5}}{.04}=2.325 \times 10^{- 5}$
7.62 A $0.02 \mathrm{M}$ solution of pyridinium hydrochloride has $\mathrm{pH}=3.44$. Calculate the ionization constant of pyridine.
Show Answer
Answer
$pH=3.44$
We know that,
$pH=- \log [H^{+}]$
$\therefore[H^{+}]=3.63 \times 10^{-4}$
Then, $K_h=\frac{(3.63 \times 10^{-4})^{2}}{0.02} \quad(\because$ concentration $=0.02 M)$
$\Rightarrow K_h=6.6 \times 10^{-6}$
Now, $K_h=\frac{K_w}{K_a}$
$\Rightarrow K_a=\frac{K_w}{K_h}=\frac{10^{-14}}{6.6 \times 10^{-6}}$
$=1.51 \times 10^{-9}$
7.63 Predict if the solutions of the following salts are neutral, acidic or basic:
$\mathrm{NaCl}, \mathrm{KBr}, \mathrm{NaCN}, \mathrm{NH_4} \mathrm{NO_3}, \mathrm{NaNO_2}$ and $\mathrm{KF}$
Show Answer
Answer
(i) $NaCl$ :
$ NaCl+H_2 O \longleftrightarrow \underset{\text{ Strong base }}{NaOH}+\underset{\text{ Strong acid }}{HCl} $
Therefore, it is a neutral solution.
(ii) $KBr$ :
$ KBr + H _2O \longleftrightarrow \underset{\text{ Strong base }}{KOH} + \underset{\text{ Strong acid }}{HBr} $
Therefore, it is a neutral solution.
(iii) $NaCN$ :
$ \begin{aligned} & NaCN+H_2 O \longleftrightarrow HCN+NaOH \\ & \text{ Weak acid Strong base } \end{aligned} $
Therefore, it is a basic solution.
(iv) $NH_4 NO_3$
$ NH_4 NO_3+H_2 O \longleftrightarrow \underset{\text{ Weak base }}{NH_4 OH+\underset{\text{ Strong acid }}{HNO_3}} $
Therefore, it is an acidic solution.
(v) $NaNO_2$
$ NaNO_2+H_2 O \longleftrightarrow \underset{\text{ Strong base }}{NaOH}+\underset{\text{ Weak acid }}{HNO_2} $
Therefore, it is a basic solution.
(vi) $KF$
$ \begin{aligned} & KF+H_2 O \longleftrightarrow KOH+HF \\ & \text{ Strong base Weak acid } \end{aligned} $
Therefore, it is a basic solution.
7.64 The ionization constant of chloroacetic acid is $1.35 \times 10^{-3}$. What will be the pH of $0.1 \mathrm{M}$ acid and its $0.1 \mathrm{M}$ sodium salt solution?
Show Answer
Answer
It is given that $K_a$ for $ClCH_2 COOH$ is $1.35 \times 10^{-33}$.
$ \begin{aligned} & \Rightarrow K_a=c \alpha^{2} \\ & \therefore \alpha=\sqrt{\frac{K_a}{c}} \\ & \quad=\sqrt{\frac{1.35 \times 10^{-3}}{0.1}} \quad(\therefore \text{ concentration of acid }=0.1 m) \\ & \begin{aligned} \alpha & =\sqrt{1.35 \times 10^{-2}} \\ & =0.116 \\ \therefore[H^{+}] & =c \alpha=0.1 \times 0.116 \\ \quad & =.0116 \\ \Rightarrow pH & =-\log [H^{+}]=1.94 \end{aligned} \end{aligned} $
$ClCH_2 COONa$ is the salt of a weak acid i.e., $ClCH_2 COOH$ and a strong base i.e., $NaOH$.
$ \begin{aligned} & ClCH_2 COO^{-}+H_2 O \longleftrightarrow ClCH_2 COOH+OH^{-} \\ & K_h=\frac{[ClCH_2 COOH][OH^{-}]}{[ClCH_2 COO^{-}]} \\ & K_h=\frac{K_w}{K_a} \\ & K_h=\frac{10^{-14}}{1.35 \times 10^{-3}} \\ & =0.740 \times 10^{-11} \\ & \text{ Also, } .K_h=\frac{x^{2}}{0.1} \quad (\text{ where } x \text{ is the concentration of } OH^{-} \text{and } ClCH_2 COOH) \\ & 0.740 \times 10^{-11}=\frac{x^{2}}{0.1} \\ & 0.074 \times 10^{-11}=x^{2} \\ & \Rightarrow x^{2}=0.74 \times 10^{-12} \\ & \begin{matrix} x=0.86 \times 10^{-6} \\ {[OH^{-}]=0.86 \times 10^{-6}} \\ \therefore[H^{+}]=\frac{K_w}{0.86 \times 10^{-6}} \\ \quad=\frac{10^{-14}}{0.86 \times 10^{-6}} \\ {[H^{+}]=1.162 \times 10^{-8}} \\ pH=-\log [H^{+}] \\ =7.94 \end{matrix} \end{aligned} $
7.65 Ionic product of water at $310 \mathrm{~K}$ is $2.7 \times 10^{-14}$. What is the $\mathrm{pH}$ of neutral water at this temperature?
Show Answer
Answer
Ionic product, $K_w=[H^{+}][OH^{-}]$
Let $[H^{+}]=x$.
Since $[H^{+}]=[OH^{-}], K_w=x^{2}$.
$\Rightarrow K_w$ at $310 K$ is $2.7 \times 10^{-14}$.
$\therefore 2.7 \times 10^{-14}=x^{2}$
$\Rightarrow x=1.64 \times 10^{-7}$
$\Rightarrow[H^{+}]=1.64 \times 10^{-7}$
$\Rightarrow pH=-\log [H^{+}]$
$=-\log [1.64 \times 10^{-7}]$
$=6.78$
Hence, the $pH$ of neutral water is 6.78 .
7.66 Calculate the $\mathrm{pH}$ of the resultant mixtures:
a) $10 \mathrm{~mL}$ of $0.2 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}+25 \mathrm{~mL}$ of $0.1 \mathrm{M} \mathrm{HCl}$
b) $10 \mathrm{~mL}$ of $0.01 \mathrm{M} \mathrm{H_2} \mathrm{SO_4}+10 \mathrm{~mL}$ of $0.01 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$
c) $10 \mathrm{~mL}$ of $0.1 \mathrm{M} \mathrm{H_2} \mathrm{SO_4}+10 \mathrm{~mL}$ of $0.1 \mathrm{M} \mathrm{KOH}$
Show Answer
Answer
(a)
Moles of $H_3 O^{+}=\frac{25 \times 0.1}{1000}=.0025 mol$
Moles of $OH^{-}=\frac{10 \times 0.2 \times 2}{1000}=.0040 mol$
Thus, excess of $OH^{-}=.0015 mol$
$ \begin{aligned} & {[OH^{-}]=\frac{.0015}{35 \times 10^{-3}} mol / L=.0428} \\ & \begin{aligned} pOH & =-\log [OH] \\ & =1.36 \\ pH & =14-1.36 \\ & =12.63 \quad \text{ (not matched) } \end{aligned} \end{aligned} $
Moles of $H_3 O^{+}=\frac{2 \times 10 \times 0.01}{1000}=.0002 mol$
Moles of $OH^{-}=\frac{2 \times 10 \times .01}{1000}=.0002 mol$
Since there is neither an excess of $H_3 O^{+}$or $OH^{-}$, the solution is neutral. Hence, $pH=7$.
(c)
$ \text{Moles of } H _3O^+ = \frac{2\times 10\times 0.1}{1000} =.002 mol $
Moles of $OH^{-}=\frac{10 \times 0.1}{1000}=0.001 mol$
Excess of $H_3 O^{+}=.001 mol$
Thus, $[H_3 O^{+}]=\frac{.001}{20 \times 10^{-3}}=\frac{10^{-3}}{20 \times 10^{-3}}=.05$
$\therefore pH=-\log (0.05)$
$=1.30$
7.67 Determine the solubilities of silver chromate, barium chromate, ferric hydroxide, lead chloride and mercurous iodide at $298 \mathrm{~K}$ from their solubility product constants given in Table 6.9. Determine also the molarities of individual ions.
Show Answer
Answer
(1) Silver chromate:
$ Ag_2 CrO_4 \longrightarrow 2 Ag^{+}+CrO_4{ }^{2-} $
Then,
$K _{s p}=[Ag^{+}]^{2}[CrO_4{ }^{2-}]$
Let the solubility of $Ag_2 CrO_4$ be s.
$\Rightarrow[Ag^{+}] 2 s$ and $[CrO_4{ }^{2-}]=s$
Then,
$K _{s p}=(2 s)^{2} . s=4 s^{3}$
$\Rightarrow 1.1 \times 10^{-12}=4 s^{3}$
$.275 \times 10^{-12}=s^{3}$
$s=0.65 \times 10^{-4} M$
Molarity of $Ag^{+}=2 s=2 \times 0.65 \times 10^{{-4}}=1.30 \times 10^{{-4}} M$
Molarity of $CrO_4{ }^{2-}=s=0.65 \times 10^{- 4} M$
(2) Barium chromate:
$BaCrO_4 \longrightarrow Ba^{2+}+CrO_4{ }^{2-}$
Then, $K _{s p}=[Ba^{2+}][CrO_4{ }^{2-}]$
Let $s$ be the solubility of $BaCrO_4$.
Thus, $[Ba^{2+}]=s$ and $[CrO_4^{2-}]=s$
$\Rightarrow K _{S P}=s^{2}$
$\Rightarrow 1.2 \times 10^{-10}=s^{2}$
$\Rightarrow s=1.09 \times 10^{-5} M$
Molarity of $Ba^{2+}=$ Molarity of $CrO_4{ }^{2-}=s=1.09 \times 10^{-5} M$
(3) Ferric hydroxide:
$Fe(OH)_3 \longrightarrow Fe^{2+}+3 OH^{-}$
$K _{s p}=[Fe^{2+}][OH^{-}]^{3}$
Let $s$ be the solubility of $Fe(OH)_3$.
Thus, $[Fe^{3+}]=s$ and $[OH^{-}]=3 s$
$\Rightarrow K _{s p}=s .(3 s)^{3}$
$ =s .27 s^{3} $
$K _{s p}=27 s^{4}$
$1.0 \times 10^{-38}=27 s^{4}$
$.037 \times 10^{-38}=s^{4}$
$.00037 \times 10^{-36}=s^{4} \quad \Rightarrow 1.39 \times 10^{-10} M=S$
Molarity of $Fe^{3+}=s=1.39 \times 10^{-10} M$
Molarity of $OH^{-}=3 s=4.17 \times 10^{-10} M$
(4) Lead chloride:
$PbCl_2 \longrightarrow Pb^{2+}+2 Cl^{-}$
$K _{S P}=[Pb^{2+}][Cl^{-}]^{2}$
Let $K _{S P}$ be the solubility of $PbCl_2$. $[PB^{2+}]=s$ and $[Cl^{-}]=2 s$
Thus, $K _{s p}=s .(2 s)^{2}$
$=4 s^{3}$
$\Rightarrow 1.6 \times 10^{-5}=4 s^{3}$
$\Rightarrow 0.4 \times 10^{-5}=s^{3}$
$4 \times 10^{-6}=s^{3} \Rightarrow 1.58 \times 10^{-2} M=S .1$
Molarity of $PB^{2+}=s=1.58 \times 10^{-2} M$
Molarity of chloride $=2 s=3.16 \times 10^{-2} M$
(5) Mercurous iodid
6.68 The solubility product constant of $\mathrm{Ag_2} \mathrm{CrO_4}$ and $\mathrm{AgBr}$ are $1.1 \times 10^{-12}$ and $5.0 \times 10^{-13}$ respectively. Calculate the ratio of the molarities of their saturated solutions
Show Answer
Answer
Let $s$ be the solubility of $Ag_2 CrO_4$.
Then, $Ag_2 CrO_4 \longleftrightarrow Ag^{2+}+2 CrO_4^{-}$
$K _{s p}=(2 s)^{2} . s=4 s^{3}$
$1.1 \times 10^{-12}=4 s^{3}$
$s=6.5 \times 10^{-5} M$
Let $s^{\prime}$ be the solubility of AgBr.
$AgBr _{(s)} \longleftrightarrow Ag^{+}+Br^{-}$
$K _{s p}=s^{\prime 2}=5.0 \times 10^{-13}$
$\therefore s^{\prime}=7.07 \times 10^{-7} M$
Therefore, the ratio of the molarities of their saturated solution is $\frac{s}{s^{\prime}}=\frac{6.5 \times 10^{-5} M}{7.07 \times 10^{-7} M}=91.9$.
7.69 Equal volumes of $0.002 \mathrm{M}$ solutions of sodium iodate and cupric chlorate are mixed together. Will it lead to precipitation of copper iodate? (For cupric iodate $\left.K_{\text {sp }}=7.4 \times 10^{-8}\right)$.
Show Answer
Answer
When equal volumes of sodium iodate and cupric chlorate solutions are mixed together, then the molar concentrations of both solutions are reduced to half i.e., $0.001 M$.
Then,
$ \begin{aligned} & NalO_3 \to Na^{+}+10_3^{-} \\ & 0.001 M \quad 0.001 M \\ & Cu(ClO_3)_2 \to Cu^{2+}+2 ClO_3^{-} \\ & 0.001 M \quad 0.001 M \end{aligned} $
Now, the solubility equilibrium for copper iodate can be written as:
$ Cu(10_3)_2 \to Cu^{2+} _{(aq)}+210 _{3(aq)}^{-} $
Ionic product of copper iodate:
$ \begin{aligned} & =[Cu^{2+}][10_3^{-}]^{2} \\ & =(0.001)(0.001)^{2} \\ & =1 \times 10^{-9} \end{aligned} $
Since the ionic product $(1 \times 10^{{-9}})$ is less than $K _{s p}(7.4 \times 10^{- 8})$, precipitation will not occur.
7.70 The ionization constant of benzoic acid is $6.46 \times 10^{-5}$ and $K_{\mathrm{sp}}$ for silver benzoate is $2.5 \times 10^{-13}$. How many times is silver benzoate more soluble in a buffer of $\mathrm{pH} 3.19$ compared to its solubility in pure water?
Show Answer
Answer
Since $pH=3.19$,
$ [H_3 O^{+}]=6.46 \times 10^{-4} M $
$C_6 H_5 COOH+H_2 O \longleftrightarrow C_6 H_5 COO^{-}+H_3 O$
$K_a \frac{[C_6 H_5 COO^{-}][H_3 O^{+}]}{[C_6 H_5 COOH]}$
$ \frac{[C_6 H_5 COOH]}{[C_6 H_5 COO^{-}]}=\frac{[H_3 O^{+}]}{K_a}=\frac{6.46 \times 10^{-4}}{6.46 \times 10^{-5}}=10 $
Let the solubility of $C_6 H_5 COOAg$ be $x mol / L$.
Then,
$ \begin{aligned} & {[Ag^{+}]=x} \\ & {[C_6 H_5 COOH]+[C_6 H_5 COO^{-}]=x} \\ & 10[C_6 H_5 COO^{-}]+[C_6 H_5 COO^{-}]=x \\ & {[C_6 H_5 COO^{-}]=\frac{x}{11}} \\ & K _{s p}[Ag^{+}][C_6 H_5 COO^{-}] \\ & 2.5 \times 10^{-13}=x(\frac{x}{11}) \\ & x=1.66 \times 10^{-6} mol / L \end{aligned} $
Thus, the solubility of silver benzoate in a pH 3.19 solution is $ 1.66 \times 10^{-6} molL^{-1} $
Now, let the solubility of $C_6 H_5 COOAg$ be $x^{\prime} mol / L$.
Then, $[Ag^{+}]=x^{\prime} M$ and $[CH_3 COO^{-}]=x^{\prime} M$.
$K _{s p}=[Ag^{+}][CH_3 COO^{-}]$
$K _{s p}=(x^{\prime})^{2}$
$x^{\prime}=\sqrt{K _{s p}}=\sqrt{2.5 \times 10^{-13}}=5 \times 10^{-7} mol / L$
$\therefore \frac{x}{x^{\prime}}=\frac{1.66 \times 10^{-6}}{5 \times 10^{-7}}=3.32$
Hence, $C_6 H_5 COOAg$ is approximately 3.317 times more soluble in a low $pH$ solution.
7.71 What is the maximum concentration of equimolar solutions of ferrous sulphate and sodium sulphide so that when mixed in equal volumes, there is no precipitation of iron sulphide? (For iron sulphide, $K_{\mathrm{sp}}=6.3 \times 10^{-18}$ ).
Show Answer
Answer
Let the maximum concentration of each solution be $x mol / L$. After mixing, the volume of the concentrations of each solution will be reduced to half i.e., $\frac{x}{2}$.
$ \therefore[FeSO_4]=[Na_2 S]=\frac{x}{2} M $
Then, $[Fe^{2+}]=[FeSO_4]=\frac{x}{2} M$
Also, $[S^{2-}]=[Na_2 S]=\frac{x}{2} M$
$FeS _{(s)} \longleftrightarrow Fe^{2+} _{(a q)}+S^{2-} _{(a q)}$
$K _{s p}=[Fe^{2+}][S^{2-}]$
$6.3 \times 10^{-18}=(\frac{x}{2})(\frac{x}{2})$
$\frac{x^{2}}{4}=6.3 \times 10^{-18}$
$\Rightarrow x=5.02 \times 10^{-9}$
If the concentrations of both solutions are equal to or less than $5.02 \times 10^{ae 9} M$, then there will be no precipitation of iron sulphide.
7.72 What is the minimum volume of water required to dissolve $1 \mathrm{~g}$ of calcium sulphate at $298 \mathrm{~K}$ ? (For calcium sulphate, $K_{\mathrm{sp}}$ is $9.1 \times 10^{-6}$ ).
Show Answer
Answer
$CaSO _{4(s)} \longleftrightarrow Ca^{2+} _{(aq)}+ SO _{4(aq)}^{2-} $
$K _{s p}=[Ca^{2+}][SO_4^{2-}]$
Let the solubility of $CaSO_4$ be $s$.
Then, $K _{s p}=s^{2}$
$9.1 \times 10^{-6}=s^{2}$
$s=3.02 \times 10^{-3} mol / L$
Molecular mass of $CaSO_4=136 g / mol$
Solubility of $CaSO_4$ in gram $/ L=3.02 \times 10^{-3} \times 136$
$=0.41 g / L$
This means that we need $1 L$ of water to dissolve $0.41 g$ of $CaSO_4$
Therefore, to dissolve $1 g$ of $CaSO_4$ we require $=\frac{1}{0.41} L=2.44 L$ of water.
7.73 The concentration of sulphide ion in $0.1 \mathrm{M} \mathrm{HCl}$ solution saturated with hydrogen sulphide is $1.0 \times 10^{-19} \mathrm{M}$. If $10 \mathrm{~mL}$ of this is added to $5 \mathrm{~mL}$ of $0.04 \mathrm{M}$ solution of the following: $\mathrm{FeSO_4}, \mathrm{MnCl_2}, \mathrm{ZnCl_2}$ and $\mathrm{CdCl_2}$. in which of these solutions precipitation will take place?
Show Answer
Answer
For precipitation to take place, it is required that the calculated ionic product exceeds the $K _{s p}$ value.
Before mixing:
$ [S^{2-}]=1.0 \times 10^{-19} M[M^{2+}]=0.04 M $
volume $=10 mL \quad$ volume $=5 mL$
After mixing:
$ [S^{2-}]=? \quad[M^{2+}]=? $
volume $=(10+5)=15 mL \quad$ volume $=15 mL$
$ \begin{aligned} & {[S^{2-}]=\frac{1.0 \times 10^{-19} \times 10}{15}=6.67 \times 10^{-20} M} \\ & {[M^{2+}]=\frac{0.04 \times 5}{15}=1.33 \times 10^{-2} M} \end{aligned} $
$ \begin{aligned} \text{ Ionic product } & =[M^{2+}][S^{2-}] \\ & =(1.33 \times 10^{-2})(6.67 \times 10^{-20}) \\ & =8.87 \times 10^{-22} \end{aligned} $
This ionic product exceeds the $K _{s p}$ of $Zns$ and $CdS$. Therefore, precipitation will occur in $CdCl_2$ and $ZnCl_2$ solutions.
अनेक जैविक एवं पर्यावरणीय प्रक्रियाओं में रासायनिक साम्य महत्त्वपूर्ण है। उदाहरणार्थ- हमारे फेफड़ों से मांसपेशियों तक $\mathrm{O} _{2}$ के परिवहन एवं वितरण में $\mathrm{O} _{2}$ अणुओं तथा हीमोग्लोबिन के मध्य साम्य की एक निर्णायक भूमिका है। इसी प्रकार $\mathrm{CO}$ अणुओं तथा हीमोग्लोबिन के मध्य साम्य $\mathrm{CO}$ की विषाक्तता का कारण बताता है।
जब किसी बंद पात्र में एक द्रव वाष्पित होता है, तो उच्च गतिज ऊर्जा वाले अणु द्रव की सतह से वाष्प प्रावस्था में चले जाते हैं तथा अनेक जल के अणु द्रव की सतह से टकराकर वाष्प प्रावस्था से द्रव प्रावस्था में समाहित हो जाते हैं। इस प्रकार द्रव एवं वाष्प के मध्य एक गतिज साम्य स्थापित हो जाता है, जिसके परिणामस्वरूप द्रव की सतह पर एक निश्चित वाष्प-दाब उत्पन्न होता है। जब जल का वाष्पन प्रारंभ हो जाता है, तब जल का वाष्प-दाब बढ़ने लगता है और अंत में स्थिर हो जाता है। ऐसी स्थिति में हम कहते हैं कि निकाय (System) में साम्यावस्था स्थापित हो गई है। यद्यपि यह साम्य स्थैतिक नहीं है तथा द्रव की सतह पर द्रव एवं वाष्प के बीच अनेक क्रियाकलाप होते रहते हैं। इस प्रकार साम्यावस्था पर वाष्पन की दर संघनन-दर के बराबर हो जाती है। इसे इस प्रकार दर्शाया जाता है
$$ \mathrm{H} _{2} \mathrm{O}(\text { द्रव }) \rightleftharpoons \mathrm{H} _{2} \mathrm{O} \text { (वाष्प) } $$
यहाँ दो अर्ध तीर इस बात को दर्शाते हैं कि दोनों दिशाओं में प्रक्रियाएँ साथ-साथ होती हैं तथा अभिक्रियकों एवं उत्पादों के साम्यावस्था पर मिश्रण को ‘साम्य मिश्रण’ कहते हैं।
भौतिक प्रक्रमों तथा रासायनिक अभिक्रियाओं दोनों में साम्यावस्था स्थापित हो सकती है। अभिक्रिया का तीव्र अथवा मंद होना उसकी प्रकृति एवं प्रायोगिक परिस्थितियों पर निर्भर करता है। जब स्थिर ताप पर एक बंद पात्र में अभिक्रियक क्रिया कर के उत्पाद बनाते हैं, तो उनकी सांद्रता धीरे-धीरे कम होती जाती है तथा उत्पादों की सांद्रता बढ़ती रहती है। किंतु कुछ समय पश्चात् न तो अभिक्रियकों के सांद्रण में और न ही उत्पादों के सांद्रण में कोई परिवर्तन होता है। ऐसी स्थिति में निकाय में गतिक साम्य (Dynamic Equilibrium) स्थापित हो जाता है तथा अग्र एवं पश्चगामी अभिक्रियाओं की दरें समान हो जाती हैं। इसी कारण इस अवस्था में अभिक्रिया-मिश्रण में उपस्थित विभिन्न घटकों के सांद्रण में कोई परिवर्तन नहीं होता है। इस आधार पर कि साम्यावस्था पहुँचने तक कितनी अभिक्रिया पूर्ण हो चुकी है, समस्त रासायनिक अभिक्रियाओं को निम्नलिखित तीन समूहों में वर्गीकृत किया जाता है-
(i) प्रथम समूह में वे अभिक्रियाएँ आती हैं, जो लगभग पूर्ण हो जाती हैं तथा अभिक्रियकों की सांद्रता नगण्य रह जाती है। कुछ अभिक्रियाओं में तो अभिक्रियकों की सांद्रता इतनी कम हो जाती है कि उनका परीक्षण प्रयोग द्वारा संभव नहीं हो पाता है।
(ii) द्वितीय समूह में वे अभिक्रियाएँ आती हैं, जिनमें बहुत कम मात्रा में उत्पाद बनते हैं तथा साम्यावस्था पर अभिक्रियकों का अधिकतर भाग अपरिवर्तित रह जाता है।
(iii) तृतीय समूह में उन अभिक्रियाओं को रखा गया है, जिनमें अभिक्रियकों एवं उत्पादों की सांद्रता साम्यावस्था में तुलना योग्य हो।
साम्यावस्था पर अभिक्रिया किस सीमा तक पूर्ण होती है यह उसकी प्रायोगिक परिस्थितियों जैसे-अभिक्रियकों की सांद्रता, ताप आदि) पर निर्भर करती है। उद्योग तथा प्रयोगशाला में परिचालन परिस्थितियों (Operational Conditions) का इष्टतमीकरण (Optimize) करना बहुत महत्त्वपूर्ण होता है, ताकि साम्यावस्था का झुकाव इच्छित उत्पाद की दिशा में हो। इस एकक में हम भौतिक तथा रासायनिक प्रक्रमों में साम्य के कुछ महत्त्वपूर्ण पहलुओं के साथ-साथ जलीय विलयन में आयनों के साम्य, जिसे आयनिक साम्य कहते हैं, को भी सम्मिलित करेंगे।
6.1 भौतिक प्रक्रमों में साम्यावस्था
भौतिक प्रक्रमों के अध्ययन द्वारा साम्यावस्था में किसी निकाय के अभिलक्षणों को अच्छी तरह समझा जा सकता है। प्रावस्था रूपांतरण प्रक्रम (Phase Transformation Processes) इसके सुविदित उदाहरण हैं। उदाहरणार्थ-
$$ \begin{aligned} \text { ठोस } & \rightleftharpoons \text { द्रव } \\ \text { द्रव } & \rightleftharpoons \text { गैस } \\ \text { ठोस } & \rightleftharpoons \text { गैस } \end{aligned} $$
6.1.1 ठोस-द्रव साम्यावस्था
पूर्णरूपेण रोधी (Insulated) थर्मस फ्लास्क में रखी बर्फ़ एवं जल (यह मानते हुए कि फ्लास्क में रखे पदार्थ एवं परिवेश में ऊष्मा का विनिमय नहीं होता है $273 \mathrm{~K}$ तथा वायुमंडलीय दाब पर साम्यावस्था में होते हैं। यह निकाय रोचक अभिलक्षणों को दर्शाता है। हम यहाँ देखते हैं कि समय के साथ-साथ बर्फ तथा जल के द्रव्यमानों का कोई परिवर्तन नहीं होता है तथा ताप स्थिर रहता है, परंतु साम्यावस्था स्थैतिक नहीं है। बर्फ़ एवं जल के मध्य अभी भी तीव्र प्रतिक्रियाएँ होती हैं। द्रव जल के अणु बर्फ से टकराकर उसमें समाहित हो जाते हैं तथा बर्फ़ के कुछ अणु द्रव प्रावस्था में चले जाते हैं। बर्फ एवं जल के द्रव्यमानों में कोई परिवर्तन नहीं होता है, क्योंकि जल-अणुओं की बर्फ से जल में स्थानांतरण की दर तथा जल से बर्फ में स्थानांतरण की दर $273 \mathrm{~K}$ और एक वायुमंडलीय दाब पर बराबर होती है।
यह स्पष्ट है कि बर्फ एवं जल केवल किसी विशेष ताप एवं दाब पर ही साम्यावस्था में होते हैं। वायुमंडलीय दाब पर किसी शुद्ध पदार्थ के लिए वह ताप, जिसपर ठोस एवं द्रव प्रावस्थाएँ साम्यावस्था में होती हैं, पदार्थ का ‘मानक गलनांक’ या ‘मानक हिमांक’ कहलाता है। यह निकाय दाब के साथ केवल थोड़ा-सा ही परिवर्तित होता है। इस प्रकार यह निकाय गतिक साम्यावस्था में होता है। इससे निम्नलिखित निष्कर्ष प्राप्त होते हैं -
(i) दोनों विरोधी प्रक्रियाएँ साथ-साथ होती हैं।
(ii) दोनों प्रक्रियाएँ समान दर से होती हैं। इससे बर्फ़ एवं जल का द्रव्यमान स्थिर रहता है।
6.1.2 द्रव-वाष्प साम्यावस्था
इस तथ्य को निम्नलिखित प्रयोग के माध्यम से समझा जा सकता है। एक $\mathrm{U}$ आकार की नलिका, जिसमें पारा भरा हो ( मैनोमीटर), को एक काँच (या प्लास्टिक) के पारदर्शी बॉक्स से जोड़ देते हैं। बॉक्स में एक वाच ग्लास या पैट्री डिश में निर्जलीय कैल्सियम क्लोराइड (या फॉस्फोरस पेंटाऑक्साइड) जैसा जलशोषक रखकर बॉक्स की वायु को कुछ घंटों तक सुखाया जाता है। इसके पश्चात् जलशोषक को बाहर निकाल लिया जाता है। बॉक्स को एक तरफ टेढ़ाकर उसमें जलसहित एक वाच ग्लास (या पेट्री डीश) को शीघ्र रख दिया जाता है। मैनोमीटर को देखने पर पता चलता है कि कुछ समय पश्चात् इसकी दाईं भुजा में पारा धीरे-धीरे बढ़ता है और अंततः स्थिर हो जाता है, अर्थात् बॉक्स में दाब पहले बढ़ता है और फिर स्थिर हो जाता है। वाच ग्लास में लिये गए जल का आयतन भी कम हो जाता है (चित्र 6.1)। प्रारंभ में बॉक्स में जलवाष्प नहीं होती है या थोड़ी सी हो सकती है, किंतु जब जल का वाष्पन होने से गैसीय प्रावस्था में जल-अणुओं के बदलने के कारण वाष्प-दाब बढ़ जाता है, तब वाष्पन होने की दर स्थिर रहती है। समय के साथ-साथ दाब की वृद्धि-दर में कमी होने लगती है। जब साम्य स्थापित हो जाता है तो प्रभावी-वाष्पन नहीं होता है।
चित्र 6.1: स्थिर ताप पर जल की साम्यावस्था का वाष्प-दाब मापन
इसका तात्पर्य यह है, कि जैसे-जैसे जल के अणुओं की संख्या गैसीय अवस्था में बढ़ने लगती है, वैसे-वैसे गैसीय अवस्था से जल के अणुओं की द्रव-अवस्था में संघनन की दर साम्यावस्था स्थापित होने तक बढ़ती रहती है। अर्थात-
सामयावस्था पर : वाष्पन की दर $\rightleftharpoons$ संघनन की दर
$$ \mathrm{H} _{2} \mathrm{O}(\text { जल }) \rightleftharpoons \mathrm{H} _{2} \mathrm{O} \text { (वाष्प) } $$
साम्यावस्था में जल-अणुओं द्वारा उत्पत्र दाब किसी दिए ताप पर स्थिर रहता है, इसे जल का साम्य वाष्प दाब, (या जल का वाष्प-दाब) कहते हैं। द्रव का वाष्प-दाब ताप के साथ बढ़ता है। यदि यह प्रयोग मेथिल ऐल्कोहॉल, ऐसीटोन तथा ईथर के साथ दोहराया जाए, तो यह प्रेक्षित होता है कि इनके साम्य वाष्प-दाब विभिन्न होते हैं। अपेक्षाकृत उच्च वाष्प दाब वाला द्रव अधिक वाष्पशील होता है एवं उसका क्वथानांक कम होता है।
यदि तीन वाच-ग्लासों में ऐसीटोन, एथिल ऐल्कोहॉल एवं जल में प्रत्येक का $1 \mathrm{~mL}$ वायुमंडल में खुला रखा जाए तथा इस प्रयोग को एक गरम कमरे में इन द्रवों के भिन्न-भिन्न आयतनों के साथ दोहराया जाए तो हम यह पाएँगे कि इन सभी प्रयोगों में द्रव का पूर्ण वाष्पीकरण हो जाता है। पूर्ण वाष्पन का समय (i) द्रव की प्रकृति, (ii) द्रव की मात्रा तथा (iii) ताप पर निर्भर करता है। जब वाच ग्लास को वायुमंडल में खुला रखा जाता है। तो वाष्पन की दर तो स्थिर रहती है, परंतु वाष्प के अणु कमरे के पूरे आयतन में फैल जाते हैं। अतः वाष्प से द्रव-अवस्था में संघनन की दर वाष्पन की दर से कम होती है। इसके परिणामस्वरूप संपूर्ण द्रव वाष्पित हो जाता है। यह एक खुले निकाय का उदाहरण है। खुले निकाय में साम्यावस्था की स्थापना होना संभव नहीं है।
बंद पात्र में जल एवं जल-वाष्प एक वायुमंडलीय दाब (1.013 bar) तथा $100^{\circ} \mathrm{C}$ ताप पर साम्य स्थिति में हैं। $1.013 \mathrm{bar}$ दाब पर जल का सामान्य क्वथनांक $100^{\circ} \mathrm{C}$ है। किसी शुद्ध द्रव के लिए एक वायुमंडलीय दाब ( 1.013 bar) पर वह ताप, जिसपर द्रव एवं वाष्प साम्यावस्था में हों, ‘द्रव का सामान्य क्वथनांक’ कहलाता है। द्रव का क्वथनांक वायुमंडलीय दाब पर निर्भर करता है। यह स्थान के उन्नतांश (ऊँचाई) पर भी निर्भर करता है। अधिक उन्नतांश पर द्रव का क्वथनांक घटता है।
6.1.3 ठोस-वाष्प साम्यावस्था
अब हम ऐसे निकायों पर विचार करेंगे, जहाँ ठोस वाष्प अवस्था में ऊर्ध्वपातित होते हैं। यदि हम आयोडीन को एक बंद पात्र में रखें, तो कुछ समय पश्चात् पात्र बैगनी वाष्प से भर जाता है तथा समय के साथ-साथ रंग की तीव्रता में वृद्धि होती है। परंतु कुछ समय पश्चात् रंग की तीव्रता स्थिर हो जाती है। इस स्थिति में साम्यावस्था स्थापित हो जाती है। अतः ठोस आयोडीन ऊर्ध्वपातित होकर आयोडीन वाष्प देती है तथा साम्यावस्था को इस रूप में दर्शाया जा सकता है -
$\left.\mathrm{I} _{2} \text { ( ठोस }\right) \rightleftharpoons \mathrm{I} _{2} \text { ( वाष्प) }$
इस प्रकार के साम्य के अन्य उदाहरण हैं:
$\text{कपूर (ठोस)} \rightleftharpoons \text{कपूर (वाष्प)}$
$\mathrm{NH} _{4} \mathrm{Cl}\left(\text { ठोस) } \rightleftharpoons \mathrm{NH} _{4} \mathrm{Cl}\right. \text { (वाष्प) }$
6.1.4 द्रव में ठोस अथवा गैस की घुलनशीलता- संबंधी साम्य
द्रवों में ठोस
हम अपने अनुभव से यह जानते हैं कि दिए गए जल की एक निश्चित मात्रा में सामान्य ताप पर लवण या चीनी की एक सीमित मात्रा ही घुलती है। यदि हम उच्च ताप पर चीनी की चाशनी बनाएं और उसे ठंडा करें, तो चीनी के क्रिस्टल पृथक् हो जाएंगे। किसी ताप पर दिए गए विलयन में यदि और अधिक विलेय न घुल सके, तो ऐसे विलयन को ‘संतृप्त विलयन, (Saturated) कहते हैं। विलेय की विलेयता ताप पर निर्भर करती है। संतृप्त विलयन में अणुओं की ठोस अवस्था एवं विलेय के विलयन में अणुओं के बीच गतिक साम्यावस्था रहती है।
चीनी (विलयन) $\rightleftharpoons$ चीनी (ठोस)
तथा साम्यावस्था में,
चीनी के घुलने की दर $=$ चीनी के क्रिस्टलन की दर
रेडियोऐक्टिवतायुक्त चीनी की सहायता से उपरोक्त दरों एवं साम्यावस्था की गतिक प्रकृति को सिद्ध किया गया है। यदि हम रेडियोएक्टिवताहीन (Non-radioactive) चीनी के संतृप्त विलयन में रेडियेक्टिवता युक्त चीनी की कुछ मात्रा डाल दें, तो कुछ समय बाद हमें दोनों विलयन एवं ठोस चीनी, जिसमें प्रारंभ में रेडियोऐक्टिवता युक्त चीनी के अणु नहीं थे, किंतु साम्यावस्था की गतिक प्रकृति के कारण रेडियोऐक्टिवतायुक्त एवं रेडियोऐक्टिवताहीन चीनी के अणुओं का विनियम दोनों प्रावस्थाओं में होता है। इसलिए रेडियोऐक्टिव एवं रेडियोऐक्टिवतायुक्त चीनी अणुओं का अनुपात तब तक बढ़ता रहता है, जब तक यह एक स्थिर मान तक नहीं पहुँच जाता।
द्रवों में गैसें
जब सोडा-वाटर की बोतल खोली जाती है, तब उसमें घुली हुई कार्बन डाइऑक्साइड गैस की कुछ मात्रा तेजी से बाहर निकलने लगती है। भिन्न दाब पर जल में कार्बन डाइऑक्साइड की भिन्न विलेयता के कारण ऐसा होता है। स्थिर ताप एवं दाब पर गैस के अविलेय अणुओं एवं द्रव में घुले अणुओं के बीच साम्यावस्था स्थापित रहती है। उदाहरणार्थ-
$$ \mathrm{CO} _{2} \text { (गैस) } \rightleftharpoons \mathrm{CO} _{2} \text { (विलयन में) } $$
यह साम्यावस्था हेनरी के नियमानुसार है। जिसके अनुसार, “किसी ताप पर दी एक गई मात्रा के विलायक में घुली हुई गैस की मात्रा विलायक के ऊपर गैस के दाब के समानुपाती होती है।” ताप बढ़ने के साथ-साथ यह मात्रा घटती जाती है। $\mathrm{CO} _{2}$ गैस को सोडा-वाटर की बोतल में अधिक दाब पर सीलबंद किया है। इस दाब पर गैस के बहुत अधिक अणु द्रव में विलेय हो जाते हैं। जैसे ही बोतल खोली जाती है। वैसे ही बोतल के द्रव की सतह पर दाब अचानक कम हो जाता है, जिससे जल में घुली हुई कार्बन डाइऑक्साइड निकलकर निम्न वायुमंडलीय दाब पर नई साम्यावस्था की ओर अग्रसर होती है। यदि सोडा-वाटर की इस बोतल को कुछ समय तक हवा में खुला छोड़ दिया जाए, तो इसमें से लगभग सारी गैस निकल जाएगी। यह सामान्य रूप से कहा जा सकता है कि-
(i) ठोस $\rightleftharpoons$ द्रव, साम्यावस्था के लिए वायुमंडलीय दाब पर (1.013 bar) एक ही ताप (गलनांक) ऐसा होता है, जिसपर दोनों प्रावस्थाएँ पाई जाती हैं। यदि परिवेश से ऊष्मा का विनिमय न हो, तो दोनों प्रावस्थाओं के द्रव्यमान स्थिर होते हैं।
(i) वाष्प $\rightleftharpoons$ द्रव, साम्यावस्था के लिए किसी निश्चित ताप पर वाष्प-दाब स्थिर होता है।
(iii) द्रव में ठोस की घुलनशीलता के लिए किसी निश्चित ताप पर द्रव में ठोस की विलेयता निश्चित होती है।
(iv) द्रव में गैस की विलेयता द्रव के ऊपर गैस के दाब (सांद्रता) के समानुपाती होती है। इन निष्कर्षों को सारणी 6.1 में दिया गया है -
सारणी 6.1 भौतिक साम्यावस्था की कुछ विशेषताएँ
6.1.5 भौतिक प्रक्रमों में साम्यावस्था के सामान्य अभिलक्षण
उपरोक्त भौतिक प्रक्रमों में सभी निकाय-साम्यावस्था के सामान्य अभिलक्षण निम्नलिखित हैं:
(i) निश्चित ताप पर केवल बंद निकाय (Closed System) में ही साम्यावस्था संभव है।
(ii) साम्यावस्था पर दोनों विरोधी अभिक्रियाएँ बराबर वेग से होती हैं। इनमें गतिक, किंतु स्थायी अवस्था होती है।
(iii) निकाय के सभी मापने योग्य गुण-धर्म स्थिर होते हैं।
(iv) जब किसी भौतिक प्रक्रम में साम्यावस्था स्थापित हो जाती है, तो सारणी 6.1 में वर्णित मापदंडों में से किसी एक का मान निश्चित ताप पर स्थिर होना वर्णित साम्यावस्था की पहचान है।
(v) किसी भी समय इन राशियों का मान यह दर्शाता है कि साम्यावस्था तक पहुँचने के पूर्व भौतिक प्रक्रम किस सीमा तक आगे बढ़ चुका है।
6.2 रासायनिक प्रक्रमों में साम्यावस्था-गतिक साम्य
यह पहले ही बताया जा चुका है कि बंद निकाय में की जाने वाली रासायनिक अभिक्रियाएँ अंततः साम्यावस्था की स्थिति में पहुँच जाती हैं। ये अभिक्रियाएँ भी अग्रिम तथा प्रतीप दिशाओं में संपन्न हो सकती हैं। जब अग्रिम एवं प्रतीप अभिक्रियाओं की दरें समान हो जाती हैं, तो अभिकारकों तथा उत्पादों की सांद्रताएँ स्थिर रहती हैं। यह रासायनिक साम्य की अवस्था है। यह गतिक साम्यावस्था अग्र अभिक्रिया (जिसमें अभिकारक उत्पाद में बदल जाते हैं) तथा प्रतीप अभिक्रिया (जिसमें उत्पाद मूल अभिकारक में बदल जाते हैं) से मिलकर उत्पत्र होती है।
इसे समझने के लिए हम निम्नलिखित उत्क्रमणीय अभिक्रिया पर विचार करें (चित्र 6.2)-
$$ \mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D} $$
समय बीतने के साथ अभिकारकों ( $A$ तथा $B$ ) की सांद्रता घटती है तथा उत्पादों (C तथा $D$ ) का संचयन होता है। अग्र अभिक्रिया की दर घटती जाती है और प्रतीप अभिक्रिया की दर बढ़ती जाती है। फलस्वरूप एक ऐसी स्थिति आती है, जब दोनों अभिक्रियाओं की दर समान हो जाती है। ऐसी स्थिति में निकाय में साम्यावस्था स्थापित हो जाती है। यही साम्यावस्था $\mathrm{C}$ तथा $\mathrm{D}$ के बीच अभिक्रिया कराकर भी प्राप्त की जा सकती है। दोनों में से किसी भी दिशा से इस साम्यावस्था की प्राप्यता संभव है। $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$ या $\mathrm{C}+\mathrm{D} \rightleftharpoons \mathrm{A}+\mathrm{B}$
चित्र 6.2 : रासायनिक साम्यावस्था की प्राप्ति
हाबर-विधि द्वारा अमोनिया के संश्लेषण में रासायनिक साम्यावस्था की गतिक प्रकृति को दर्शाया जा सकता है। हाबर ने उच्च ताप तथा दाब पर डाइनाइट्रोजन तथा डाइहाइड्रोजन की विभिन्न ज्ञात मात्राओं के साथ अभिक्रिया कराकर नियमित अंतराल पर अमोनिया की मात्रा ज्ञात की। इसके आधार पर उन्होंने अभिक्रिया में शेष डाइनाइट्रोजन तथा डाइहाइड्रोजन की सांद्रता ज्ञात की। चित्र 6.4, (पेज 173) दर्शाता है कि एक निश्चित समय के बाद कुछ अभिकारकों के शेष रहने पर भी अमोनिया का सांद्रण एवं मिश्रण का संघटन वही बना रहता है। मिश्रण के संघटन की स्थिरता इस बात का संकेत देती है कि साम्यावस्था स्थापित हो गई है। अभिक्रिया की गतिक प्रकृति को समझने के लिए अमोनिया का संश्लेषण उन्हें करीब-करीब प्रारंभिक परिस्थितियों (उसी आंशिक दाब एवं ताप पर), किंतु $\mathrm{H} _{2}$ की जगह $\mathrm{D} _{2}$ (Deuterium) लेकर किया गया। $\mathrm{H} _{2}$ या $\mathrm{D} _{2}$ के साथ अभिक्रिया कराने पर साम्यावस्था पर समान संघटनवाला अभिक्रिया-मिश्रण प्राप्त होता है, किंतु अभिक्रिया-मिश्रण में $\mathrm{H} _{2}$ एवं $\mathrm{NH} _{3}$ के स्थान पर क्रमशः $\mathrm{D} _{2}$ एवं $\mathrm{ND} _{3}$ मौज़द रहते हैं। साम्यावस्था स्थापित होने के बाद दोनों मिश्रण (जिसमें $\mathrm{H} _{2}, \mathrm{~N} _{2}, \mathrm{NH} _{3}$ तथा $\mathrm{D} _{2}, \mathrm{~N} _{2}, \mathrm{ND} _{3}$ होते हैं) को आपस में मिलाकर कुछ समय के लिए छोड़ देते हैं। बाद में इस मिश्रण का विश्लेषण करने पर पता चलता है कि अमोनिया की सांद्रता अपरिवर्तित रहती है।
चित्र 6.4: अभिक्रिया $\mathrm{N} _{2}(\mathrm{~g})+3 \mathrm{H} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH} _{3}(\mathrm{~g})$ की साम्यावस्था का निरूपण
हालाँकि जब इस मिश्रण का विश्लेषण द्रव्यमान स्पेक्ट्रोमीटर (Mass Spectrometer) द्वारा किया जाता है, तो इसमें ड्यूटीरियमयुक्त विभिन्न अमोनिया अणु $\left(\mathrm{NH} _{3}, \mathrm{NH} _{2} \mathrm{D}, \mathrm{NHD} _{2}\right.$ तथा $\left.\mathrm{ND} _{3}\right)$ एवं डाइहाइड्रोजन अणु $\left(\mathrm{H} _{2}, \mathrm{HD}\right.$ तथा $\left.\mathrm{D} _{2}\right)$ पाए जाते हैं। इससे यह निष्कर्ष निकलता है कि साम्यावस्था के बाद भी मिश्रण में अग्रिम एवं प्रतीप अभिक्रियाएँ होते रहने के कारण अणुओं में $\mathrm{H}$ तथा $\mathrm{D}$ परमाणुओं का व्यामिश्रण (Scrambling) होता रहता है। साम्यावस्था स्थापित होने के बाद यदि अभिक्रिया समाप्त हो जाती है, तो इस प्रकार का मिश्रण प्राप्त होना संभव नहीं होता।
अमोनिया के संश्लेषण में समस्थानिक (Deuterium) के प्रयोग से यह स्पष्ट होता है कि रासायनिक अभिक्रियाओं में गतिक साम्यावस्था स्थापित होने पर अग्रिम एवं प्रतीप अभिक्रियाओं की दर समान होती है तथा इसके मिश्रण के संघटन में कोई प्रभावी परिवर्तन नहीं होता है।
साम्यावस्था दोनों दिशाओं द्वारा स्थापित की जा सकती है, चाहे $\mathrm{H} _{2}(\mathrm{~g})$ तथा $\mathrm{N} _{2}(\mathrm{~g})$ की अभिक्रिया कराकर $\mathrm{NH} _{3}(\mathrm{~g})$ प्राप्त की जाए या $\mathrm{NH} _{3}(\mathrm{~g})$ का विघटन कराकर $\mathrm{N} _{2}(\mathrm{~g})$ एवं $\mathrm{H} _{2}(\mathrm{~g})$ प्राप्त की जाए।
$$ \mathrm{N_2}(\mathrm{~g})+3 \mathrm{H_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH_3}(\mathrm{~g}) $$
$$ 2 \mathrm{NH_3}(\mathrm{~g}) \rightleftharpoons \mathrm{N_2}(\mathrm{~g})+3 \mathrm{H_2}(\mathrm{~g}) $$
इसी प्रकार हम अभिक्रिया $\mathrm{H} _{2}(\mathrm{~g})+\mathrm{I} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ पर विचार करें। यदि हम $\mathrm{H} _{2}$ एवं $\mathrm{I} _{2}$ के बराबर-बराबर प्रारंभिक सांद्रण से अभिक्रिया शुरू करें, तो अभिक्रिया अग्रिम दिशा में अग्रसर होगी। $\mathrm{H} _{2}$ एवं $\mathrm{I} _{2}$ की सांद्रता कम होने लगेगी है एवं $\mathrm{HI}$ का सांद्रता बढ़ने लगेगी, जब तक साम्यावस्था स्थापित न हो जाए (चित्र 6.5)। अगर हम $\mathrm{HI}$ से शुरू कर अभिक्रिया को विपरीत दिशा में होने दें, तो $\mathrm{HI}$ की सांद्रता कम होने लगेगी। तथा $\mathrm{H} _{2}$ एवं $\mathrm{I} _{2}$ की सांद्रता तब तक बढ़ती रहेगी जब तक साम्यावस्था स्थापित न हो जाए (चित्र 6.5)। यदि निश्चित आयतन में $\mathrm{H}$ एवं $\mathrm{I}$ के परमाणुओं की कुल संख्या वही हो, तो चाहे हम शुद्ध अभिकर्मकों से अभिक्रिया शुरू करें, या शुद्ध उत्पादों से वही साम्यावस्था मिश्रण प्राप्त होता है।
चित्र 6.5: $\mathrm{H} _{2}(\mathrm{~g})+\mathrm{I} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ अभिक्रिया में रासायनिक साम्यावस्था किसी भी दिशा से स्थापित हो सकती है।
गतिक साम्यावस्था-छात्रों के लिए एक प्रयोग
भौतिक या रासायनिक अभिक्रियाओं में साम्यावस्था की प्रकृति हमेशा गतिक होती है। रेडियोऐक्टिव समस्थानिकों के प्रयोग द्वारा इस तथ्य को प्रदर्शित किया जा सकता है। किंतु किसी विद्यालय की प्रयोगशाला में इसे प्रदर्शित करना संभव नहीं है। निम्नलिखित प्रयोग करके इस तथ्य को 5-6 विद्यार्थियों के समूह को आसानी से दिखाया जा सकता है -
$100 \mathrm{~mL}$ के दो मापन सिलिंडर (जिनपर 1 तथा 2 लिखा हो) एवं $30 \mathrm{~cm}$ लंबी काँच की दो नलियाँ लीजिए। नलियों का व्यास या तो समान हो सकता है या उनमें 3 से $5 \mathrm{~mm}$ तक भिन्नता हो सकती है। मापन सिलिंडर- 1 के आधे भाग में रंगीन जल (जल में पोटैशियम परमैंगनेट का एक क्रिस्टल डालकर रंगीन जल बनाएँ) भरते हैं तथा सिलिंडर- 2 को खाली रखते हैं।
सिलिंडर- 1 में एक नली तथा सिलिंडर- 2 में दूसरी नली रखते हैं। सिलिंडर- 1 वाली नली के ऊपरी छिद्र को अंगुली से बंद करें एवं इसके निचले हिस्से में भरे गए जल को सिलिंडर- 2 में डालें। सिलिंडर- 2 में रखी नली का प्रयोग करते हुए उसी प्रकार सिलिंडर- 2 से सिलिंडर- 1 में जल स्थानांतरित करें। इस प्रकार दोनों नलियों की सहायता से सिलिंडर- 1 से सिलिंडर- 2 में एवं सिलिंडर- 2 से सिलिंडर- 1 में रंगीन जल बार-बार तब तक स्थानांतरित करते हैं। जब तक दोनों सिलिंडरों में रंगीन जल का स्तर समान हो जाए।
यदि इन दो सिलिंडरों में रंगीन विलयन का स्थानांतरण एक से दूसरे में करते, तो इन सिलिंडरों में रंगीन जल के स्तर में अब कोई परिवर्तन नहीं होगा। यदि इन दो सिलिंडरों में रंगीन जल के स्तर को हम क्रमशः अभिकारकों एवं उत्पादों के सांद्रण के रूप में देखें तो हम कह सकते हैं कि यह प्रक्रिया इस प्रक्रिया की गतिक प्रकृति को इंगित करती है, जो रंगीन जल का स्तर स्थायी होने पर भी जारी रहती है। यदि हम इस प्रयोग को विभिन्न व्यासवाली दो नलियों की सहायता से दोहराएँ, तो हम देखंगे कि इन दो सिलिंडरों में रंगीन जल के स्तर भिन्न होंगे। इन दो सिलिंडरों में रंगीन जल के स्तर में अंतर भिन्न व्यास की नलियों के कारण होता है।
चित्र 6.3 गतिक साम्यावस्था का प्रदर्शन (क) प्रारंभिक अवस्था (ख) अंतिम अवस्था
6.3 रासायनिक साम्यावस्था का नियम तथा साम्यावस्था स्थिरांक
साम्यावस्था में अभिकारकों एवं उत्पादों के मिश्रण को ‘साम्य मिश्रण’ कहते हैं। एकक के इस भाग में साम्य मिश्रण के संघटन के संबंध में अनेक प्रश्नों पर हम विचार करेंगे। एक साम्य मिश्रण में अभिकारकों तथा उत्पादों की सांद्रताओं में क्या संबंध है? प्रारंभिक सांद्रताओं से साम्य सांद्रताओं को कैसे ज्ञात किया जा सकता है? साम्य मिश्रण के संघटन को कौन से कारक परिवर्तित कर सकते हैं? औद्योगिक दृष्टि से उपयोगी रसायन जैसे - $\left(\mathrm{H} _{2}, \mathrm{NH} _{3}\right.$ तथा $\left.\mathrm{CaO}\right)$ के संश्लेषण के लिए आवश्यक शर्तों का निर्धारण कैसे किया जाता है?
इन प्रश्नों के उत्तर के लिए हम निम्नलिखित सामान्य उत्क्रमणीय अभिक्रिया पर विचार करेंगे -
$$ \mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D} $$
यहाँ इस संतुलित समीकरण में $\mathrm{A}$ तथा $\mathrm{B}$ अभिकारक एवं $\mathrm{C}$ तथा $\mathrm{D}$ उत्पाद हैं। अनेक उत्क्रमणी अभिक्रियाओं के प्रायोगिक अध्ययन के आधार पर नॉर्वे के रसायनज्ञों कैटो मैक्सिमिलियन गुलबर्ग (Cato Maximillian Guldberg) एवं पीटर वाजे (Peter Waage) ने सन् 1864 में प्रतिपादित किया कि किसी मिश्रण में सांद्रताओं को निम्नलिखित साम्य-समीकरण द्वारा दर्शाया जा सकता है-
$$ \begin{equation*} K_{c}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]} \tag{6.1} \end{equation*} $$
यहाँ $K_{c}$ साम्य स्थिरांक है तथा दाईं ओर का व्यंजक ‘साम्य स्थिरांक व्यंजक’ कहलाता है। इस साम्य-समीकरण को ‘द्रव्य अनुपाती क्रिया का नियम’ (Law of Mass Action) भी कहते हैं।
गुलबर्ग तथा वाजे द्वारा प्रतिपादित सुझावों को अच्छी तरह समझने के लिए एक मुँहबंद पात्र (Sealed Vessel) में 731 $\mathrm{K}$ पर गैसीय $\mathrm{H} _{2}$ एवं गैसीय $\mathrm{I} _{2}$ के बीच अभिक्रिया पर विचार करें।
$$ \begin{aligned} & \mathrm{H} _{2}(\mathrm{~g})+\mathrm{I} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g}) \\ & 1 \text { मोल } \quad 1 \text { मोल } \quad 2 \text { मोल } \end{aligned} $$
इस अभिक्रिया का अध्ययन विभिन्न प्रायोगिक परिस्थितियों में छः प्रयोगों द्वारा किया गया - पहले चार $(1,2,3$ तथा 4$)$ प्रयोगों में प्रारंभ में बंद पात्रों में केवल गैसीय $\mathrm{H} _{2}$ एवं गैसीय $\mathrm{I} _{2}$ थे। प्रत्येक प्रयोग हाइड्रोजन एवं आयोडीन के भिन्न-भिन्न सांद्रण के साथ किया गया। कुछ समय बाद बंद पात्र में मिश्रण के रंग की तीव्रता स्थिर हो गई, अर्थात्-साम्यावस्था स्थापित हो गई। अन्य दो प्रयोग (सं. 5 एवं 6) केवल गैसीय $\mathrm{HI}$ लेकर प्रारंभ किए गए। इस प्रकार विपरीत अभिक्रिया से साम्यावस्था स्थापित हुई।
सारणी 6.2 में इन सभी छः प्रयोगों के आँकड़े दिए गए हैं।
प्रयोग-संख्या $1,2,3$ एवं 4 से यह देखा जा सकता है कि- अभिकृत $\mathrm{H} _{2}$ के मोल की संख्या = अभिकृत $\mathrm{I} _{2}$ के मोल की संख्या $=1 / 2$ (उत्पाद $\mathrm{HI}$ के मोल की संख्या) प्रयोग-संख्या 5 तथा 6 में हम देखते हैं कि-
$ [H_2 (g)] _{eq} = [I_2 (g)] _{eq} $
साम्यावस्था पर अभिकारकों एवं उत्पादों की सांद्रता के बीच संबंध स्थापित करने के लिए हम कई संभावनाओं के विषय में सोच सकते हैं। नीचे दिए गए सामान्य व्यंजक पर हम विचार करें-
$$ [\mathrm{HI}(\mathrm{g})] _{\mathrm{eq}} /\left[\mathrm{H _2}(\mathrm{~g})\right] _{\mathrm{eq}}\left[\mathrm{I _2}(\mathrm{~g})\right] _{\mathrm{eq}} $$
सारणी 6.2 प्रारंभिक एवं साम्यावस्था पर $\mathrm{H} _{2}, \mathrm{I} _{2}$, एवं $\mathbf{H I}$ की सांद्रताएँ
सारणी 6.3 अभिकर्मकों के साम्य सांद्रता-संबंधी व्यंजक $H_2 (g) + I_2 (g) \rightleftharpoons 2HI (g)$
सारणी 6.3 में दिए गए आँकड़ों की सहायता से यदि हम अभिकारकों एवं उत्पादों की साम्यावस्था-सांद्रता को उपरोक्त व्यंजक में रखें, तो उस व्यंजक का मान स्थिर नहीं, बल्कि भिन्न-भिन्न होगा (सारणी 6.3)। यदि हम निम्नलिखित व्यंजक लें-
$$ [\mathrm{HI}(\mathrm{g})] _{\mathrm{eq}}^{2} /\left[\mathrm{H _2}(\mathrm{~g})\right] _{\mathrm{eq}}\left[\mathrm{I _2}(\mathrm{~g})\right] _{\mathrm{eq}} $$
तो हम पाएँगे कि सभी छः, प्रयोगों में यह व्यंजक स्थिर मान देता है (जैसा सारणी 6.3 में दिखाया गया है)। यह देखा जा सकता है कि इस व्यंजक में अभिकारकों एवं उत्पाद के सांद्रणों में घात (Power) का मान वही है, जो रासायनिक अभिक्रिया के समीकरण में लिखे उनके रससमीकरणमितीय गुणांक (Stoichiometric Coefficients) हैं। साम्यावस्था में इस व्यंजक के मान को ‘साम्यावस्था स्थिरांक’ कहा जाता है तथा इसे ’ $K_c$ प्रतीक द्वारा दर्शाया जाता है। इस प्रकार अभिक्रिया $\mathrm{H} _{2}(\mathrm{~g})+\mathrm{I} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ के लिए $K _{c}$, अर्थात् साम्यावस्था स्थिरांक को इस रूप में लिखा जाता है-
$$ \begin{equation*} K _{c}=[\mathrm{HI}(\mathrm{g})] _{\mathrm{eq}}^{2} /\left[\mathrm{H _2}(\mathrm{~g})\right] _{\mathrm{eq}}\left[\mathrm{I _2}(\mathrm{~g})\right] _{\mathrm{eq}} \tag{7.2} \end{equation*} $$
ऊपर दिए गए व्यंजक, सांद्रता के पादांक के रूप में जो ’eq’ लिखा गया है, वह सामान्यतः नहीं लिखा जाता है, क्योंकि यह माना जाता है कि $K_{c}$ के व्यंजक में सांद्रता का मान साम्यावस्था पर ही है। अतः हम लिखते हैं-
$$ \begin{equation*} K_{c}=[\mathrm{HI}(\mathrm{g})]^{2} /\left[\mathrm{H_2}(\mathrm{~g})\right]\left[\mathrm{I_2}(\mathrm{~g})\right] \tag{7.3} \end{equation*} $$
पदांक ‘c’ इंगित करता है कि $K_{c}$ का मान सांद्रण के मात्रक $\mathrm{mol} \mathrm{L}^{-1}$ में व्यक्त किया जाता है।
दिए गए किसी ताप पर अभिक्रिया-उत्पादों की सांद्रता एवं अभिकारकों की सांद्रता के गुणनफल का अनुपात स्थिर रहता है। ऐसा करते समय सांद्रता व्यक्त करने के लिए संतुलित रासायनिक समीकरण में अभिकारकों एवं उत्पादों के रस समीकरणमितीय गुणांक को उनकी सांद्रता के घातांक के रूप में व्यक्त किया जाता है।
इस प्रकार एक सामान्य अभिक्रिया $\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+$ $\mathrm{cD}$ के लिए साम्यावस्था स्थिरांक को निम्नलिखित व्यंजक से व्यक्त किया जाता है-
$K_{c}=[\mathrm{C}]^{c}[\mathrm{D}]^{\mathrm{d}} /[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}$
अभिक्रिया उत्पाद (C या $\mathrm{D})$ अंश में तथा अभिकारक $(\mathrm{A}$ तथा $\mathrm{B}$ ) हर में होते हैं। प्रत्येक सांद्रता (उदाहरणार्थ- $[\mathrm{C}]$, [D] आदि) को संतुलित अभिक्रिया में रससमीकरणमितीय अनुपात गुणांक के घातांक के रूप में व्यक्त किया जाता है।
जैसे- $4 \mathrm{NH} _{3}+5 \mathrm{O} _{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H} _{2} \mathrm{O}(\mathrm{g})$ अभिक्रिया के लिए साम्यावस्था स्थिरांक को हम इस रूप में व्यक्त करते हैं-
$$ K_{c}=[\mathrm{NO}]^{4}\left[\mathrm{H_2} \mathrm{O}\right]^{6} /\left[\mathrm{NH_3}\right]^{4}\left[\mathrm{O_2}\right]^{5} $$
विभिन्न अवयवों (Species) की मोलर-सांद्रता को उन्हें वर्गाकार कोष्ठक में रखकर दर्शाया जाता है तथा यह माना जाता है कि ये साम्यावस्था सांद्रताएँ हैं। जब तक बहुत आवश्यक न हो, तब तक साम्यावस्था स्थिरांक के व्यंजक में प्रावस्थाएँ (ठोस, द्रव या गैस) नहीं लिखी जाती हैं।
हम रससमीकरणमितीय अनुपात गुणांक बदल देते हैं, जैसे- यदि पूरे अभिक्रिया समीकरण को किसी घटक (Factor) से गुणा करें, तो साम्यावस्था स्थिरांक के लिए व्यंजक लिखते समय यह सुनिश्चित करना चाहिए कि वह व्यंजक उस परिवर्ततन को भी व्यक्त करे।
अभिक्रिया $\mathrm{H} _{2}(\mathrm{~g})+\mathrm{I} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ के साम्यावस्था व्यंजक को इस प्रकार लिखते हैं-
$$ \begin{equation*} \text { as, } K_{c}=[\mathrm{HI}]^{2} /\left[\mathrm{H_2}\right]\left[\mathrm{I_2}\right]=\mathrm{x} \tag{7.6} \end{equation*} $$
तो प्रतीप अभिक्रिया $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H} _{2}(\mathrm{~g})+\mathrm{I} _{2}(\mathrm{~g})$ के लिए साम्यावस्था-स्थिरांक उसी ताप पर इस प्रकार होगा-
$$K_{c}=\left[\mathrm{H_2}\right]\left[\mathrm{I_2}\right] /[\mathrm{HI}]^{2}=1 / \mathrm{x}=1 / K_{c} \tag{7.7}$$
$$\text{इस प्रकार,} \quad \quad K_{c}=1 / K_{c} \tag{7.8}$$
उत्क्रम अभिक्रिया का साम्यावस्था स्थिरांक अग्रिम अभिक्रिया के साम्यावस्था स्थिरांक के व्युत्क्रम होता है। उपरोक्त अभिक्रिया को इस रूप में लिखने पर
$$ \begin{equation*} 1 / 2 \mathrm{H} _{2}(\mathrm{~g})+1 / 2 \mathrm{I} _{2}(\mathrm{~g}) \rightleftharpoons \mathrm{HI}(\mathrm{g}) \tag{6.9} \end{equation*} $$
साम्यावस्था स्थिरांक का मान होगा-
$$ \begin{aligned} K _{c} ^{1/2}=[\mathrm{HI}] / \left[\mathrm{H _2} \right] ^{1 / 2}\left[\mathrm{I _2}\right] ^{1 / 2} & =\left\{[\mathrm{HI}]^{2} /\left[\mathrm{H _2}\right]\left[\mathrm{I _2}\right]\right\} ^{1 / 2} \\ = & \mathrm{x} ^{1 / 2}=K _{c} ^{1 / 2}(6.10) \end{aligned} $$
इस प्रकार यदि हम समीकरण 6.5 को $n$ से गुणा करें, तो अभिक्रिया $\mathrm{nH_2}(\mathrm{~g})+\mathrm{nI_2}(\mathrm{~g}) \mathrm{D} \rightleftharpoons 2 \mathrm{nHI}(\mathrm{g})$प्राप्त होगी तथा इसके साम्यावस्था-स्थिरांक का मान $K_{c}{ }^{n}$ होगा। इन परिणामों को सारणी 6.4 में सारांशित किया गया है। यहाँ यह ध्यान रखना चाहिए कि $K_{c}$ व $K_{c}^{\prime} $ के आंकिक मान भिन्न होते हैं। इसलिए यह आवश्यक है कि साम्य-अवस्था स्थिरांक का मान लिखते समय संतुलित रासायनिक समीकरण का उल्लेख करें।
सारणी 6.4 एक सामान्य उत्क्रमणीय अभिक्रिया के साम्यावस्था स्थिरांकों एवं उनके गुणकों में संबंध
रासायनिक समीकरण | साम्यावस्था स्थिरांक |
---|---|
$\mathrm{a} \mathrm{A}+\mathrm{b} \mathrm{B} \quad \mathrm{c} \mathrm{C}+\mathrm{dD}$ | $K_{c}$ |
$\mathrm{c} \mathrm{C}+\mathrm{d} \mathrm{D} \quad \mathrm{a} \mathrm{A}+\mathrm{b} \mathrm{B}$ | $K_{c}^{\prime}=\left(1 / K_{c}\right)$ |
$\mathrm{na} \mathrm{A}+\mathrm{nb} \mathrm{B} \quad \mathrm{ncC}+\mathrm{ndD}$ | $K_{c}^{\prime \prime \prime}=\left(K_{c}^{n}\right)$ |
उदाहरण 6.1
$500 \mathrm{~K}$ पर $\mathrm{N} _{2}$ तथा $\mathrm{H} _{2}$ से $\mathrm{NH} _{3}$ बनने के दौरान साम्यावस्था में निम्नलिखित सांद्रताएँ प्राप्त हुईं: $\left[\mathrm{N} _{2}\right]=1.5 \times 10^{-2} \mathrm{M},\left[\mathrm{H} _{2}\right]=3.0 \times 10^{-2} \mathrm{M}$ तथा $\left[\mathrm{NH} _{3}\right]=1.2 \times 10^{-2} \mathrm{M}$. साम्यावस्था स्थिरांक की गणना कीजिए।
हल
अभिक्रिया $\mathrm{N} _{2}(\mathrm{~g})+3 \mathrm{H} _{2}(\mathrm{~g}) \quad 2 \mathrm{NH} _{3}(\mathrm{~g})$ के लिए साम्य स्थिरांक इस रूप में लिखा जा सकता है-
$$ \begin{aligned} K_{c} & =\frac{\left[\mathrm{NH} _{3}(\mathrm{~g})\right]^{2}}{\left[\mathrm{~N} _{2}(\mathrm{~g})\right]\left[\mathrm{H} _{2}(\mathrm{~g})\right]^{3}} \\ & =\frac{\left(1.2 \times 10^{-2}\right)^{2}}{\left(1.5 \times 10^{-2}\right)\left(3.0 \times 10^{-2}\right)^{3}} \\ & =0.106 \times 10^{4}=1.06 \times 10^{3} \end{aligned} $$
उदाहरण 6.2
$800 \mathrm{~K}$ पर अभिक्रिया $ \mathrm{N} _{2}(\mathrm{~g})+\mathrm{O} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g}) $ के लिए साम्यावस्था सांद्रताएँ निम्नलिखित हैं- $\mathrm{N _2}=3.0 \times 10^{-3} \mathrm{M}, \mathrm{O _2}=4.2 \times 10^{-3} \mathrm{M}$ तथा $\mathrm{NO}=2.8 \times 10^{-3} \mathrm{M}$ अभिक्रिया के लिए $K _{c}$ का मान क्या होगा?
हल
अभिक्रिया के लिए साम्य स्थिरांक इस प्रकार लिखा जा सकता है-
$$ \begin{aligned} K_{c} & =\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N} _{2}\right]\left[\mathrm{O} _{2}\right]} \\ & =\frac{\left(2.8 \times 10^{-3} \mathrm{M}\right)^{2}}{\left(3.0 \times 10^{-3} \mathrm{M}\right)\left(4.2 \times 10^{-3} \mathrm{M}\right)}=0.622 \end{aligned} $$
6.4 समांग साम्यावस्था
किसी समांग निकाय में सभी अभिकारक एवं उत्पाद एक समान प्रावस्था में होते हैं। उदाहरण के लिए-गैसीय अभिक्रिया $\mathrm{N} _{2}(\mathrm{~g})+3 \mathrm{H} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH} _{3}(\mathrm{~g})$ में अभिकारक तथा उत्पाद सभी समांग गैस-प्रावस्था में हैं। इसी प्रकार
$\mathrm{CH} _{3} \mathrm{COOC} _{2} \mathrm{H} _{5}(\mathrm{aq})+\mathrm{H} _{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH} _{3} \mathrm{COOH}(\mathrm{aq})$ $+\mathrm{C} _{2} \mathrm{H} _{5} \mathrm{OH}(\mathrm{aq})$
तथा $\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{Fe}(\mathrm{SCN})^{2+}(\mathrm{aq})$
अभिक्रियाओं में सभी अभिकारक तथा उत्पाद संमाग विलयन-प्रावस्था में हैं। अब हम कुछ समांग अभिक्रियाओं के साम्यावस्था-स्थिरांक के बारे में पढ़ेंगे।
6.4.1 गैसीय निकाय में साम्यावस्था स्थिरांक $\left(K_{p}\right)$
हमने अभी तक अभिकारकों एवं उत्पादों के मोलर सांद्रण के रूप में साम्यावस्था स्थिरांक को व्यक्त किया है तथा इसे प्रतीक $K_{c}$ द्वारा दर्शाया है। गैसीय अभिक्रियाओं के लिए साम्यावस्था स्थिरांक को आंशिक दाब के रूप में प्रदर्शित करना अधिक सुविधाजनक है।
आदर्श गैस-समीकरण (एकक-2) को हम इस रूप में व्यक्त करते हैं- $p V=n R T$
$\Rightarrow p=\frac{n}{V} \mathrm{R} T$
यहाँ दाब $(p)$ को bar में, गैस की मात्रा को मोलों की संख्या ’ $n$ ’ द्वारा आयतन, ’ $V$ ’ को लिटर (L) में तथा ताप को केल्विन (K) में व्यक्त करने पर
$p=c \mathrm{R} T\left(\frac{n}{v}=c\right)$
स्थिरांक ’ $R$ ’ का मान 0.0831 bar $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ होता है। जब $n / V$ को हम $\mathrm{mol} / \mathrm{L}$ में व्यक्त करते हैं, तो यह सांद्रण ‘c’ दर्शाता है। अत: $p=c \mathrm{R} T$
स्थिर ताप पर गैस का दाब उसके सांद्रण के समानुपाती होता है, अर्थात् $p \alpha$ [गैस] अतः उक्त संबंध को $p=$ [गैस] $R \mathrm{~T}$ के रूप में भी लिखा जा सकता है।
साम्यावस्था में अभिक्रिया
$\mathrm{H} _{2}(\mathrm{~g})+\mathrm{I} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ के लिए
$K_{\mathrm{c}}=\frac{[\mathrm{HI}(\mathrm{g})]^{2}}{\left[\mathrm{H} _{2}(\mathrm{~g})\right]\left[\mathrm{I} _{2}(\mathrm{~g})\right]}$
अथवा $\mathrm{K} _{\mathrm{c}}=\frac{\left(\mathrm{p} _{\mathrm{HI}}\right)^{2}}{\left(\mathrm{p} _{\mathrm{H} _{2}}\right)\left(\mathrm{p} _{\mathrm{I} _{2}}\right)} \quad \quad \quad \quad$ (6.12)
चूँकि $p_{\mathrm{HI}}=[\mathrm{HI}(\mathrm{g})] \mathrm{R} T p_{\mathrm{H} _{2}}=\left[\mathrm{H} _{2}(\mathrm{~g})\right] \mathrm{R} T$
$$ \begin{aligned} p_{\mathrm{I_2}} & =\left[\mathrm{I_2}(\mathrm{~g})\right] \mathrm{R} T \\ p_{\mathrm{H_2}} & =\left[\mathrm{H_2}(\mathrm{~g})\right] \mathrm{R} T \end{aligned} $$
इसलिए
$$ \begin{align*} K _{p} & =\frac{\left(p _{\mathrm{HI}}\right)^{2}}{\left(p _{\mathrm{H} _{2}}\right)\left(p _{\mathrm{I} _{2}}\right)}=\frac{[\mathrm{HI}(\mathrm{g})]^{2}[\mathrm{R} T]^{2}}{\left[\mathrm{H} _{2}(\mathrm{~g})\right] \mathrm{R} T \cdot\left[\mathrm{I} _{2}(\mathrm{~g})\right] \mathrm{R} T} \\ & =\frac{[\mathrm{HI}(\mathrm{g})]^{2}}{\left[\mathrm{H} _{2}(\mathrm{~g})\right]\left[\mathrm{I} _{2}(\mathrm{~g})\right]}=K _{c} \tag{6.13} \end{align*} $$
उपरोक्त उदाहरण में $K_{p}=K_{c}$, हैं अर्थात् दोनों साम्यावस्था स्थिरांकों के मान बराबर हैं, किंतु यह हमेशा सत्य नहीं होता है। उदाहरण के लिए - अभिक्रिया $\mathrm{N} _{2}(\mathrm{~g})+3 \mathrm{H} _{2}(\mathrm{~g}) \rightleftharpoons$ $2 \mathrm{NH} _{3}(\mathrm{~g})$ में
$$ \begin{aligned} K_{p} & =\frac{\left(p_{\mathrm{NH_3}}\right)^{2}}{\left(p_{N_{2}}\right)\left(p_{\mathrm{H_2}}\right)^{3}} \\ & =\frac{\left[\mathrm{NH_3}(\mathrm{~g})\right]^{2}[\mathrm{R} T]^{2}}{\left[\mathrm{~N_2}(\mathrm{~g})\right] \mathrm{R} T \cdot\left[H_{2}(\mathrm{~g})\right]^{3}(\mathrm{R} T)^{3}} \end{aligned} $$
$$ \begin{equation*} =\frac{\left[\mathrm{NH_3}(\mathrm{~g})\right]^{2}[\mathrm{R} T]^{-2}}{\left[\mathrm{~N_2}(\mathrm{~g})\right]\left[H_{2}(\mathrm{~g})\right]^{3}}=K_{c}(\mathrm{R} T)^{-2} \tag{7.14} \end{equation*} $$
अर्थात् $\mathrm{K} _{\mathrm{p}}=\mathrm{K} _{\mathrm{c}}(\mathrm{RT})^{-2}$ होगा। $\quad \quad \quad \quad \quad$
इस प्रकार एक समांगी गैसीय अभिक्रिया
$$ \mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD} $$
$$ \begin{align*} K_{p}= & \frac{\left(p_{C}^{c}\right)\left(p_{D}^{d}\right)}{\left(p_{\mathrm{A}}^{a}\right)\left(p_{B}^{b}\right)}=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}(\mathrm{R} T)^{(c+d)}}{[\mathrm{A}]^{a}[\mathrm{~B}]^{b}(\mathrm{R} T)^{(a+b)}} \\ & =\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}(\mathrm{R} T)^{(c+d)-(a+b)} \\ & =\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}(\mathrm{R} T)^{\Delta n}=K_{c}(\mathrm{R} T)^{\Delta n} \tag{7.15} \end{align*} $$
यहाँ संतुलित रासायनिक समीकरण में $\Delta \mathrm{n}=$ [(गैसीय उत्पादों के मोलों की संख्या)-(गैसीय अभिक्रियकों के मोलों की संख्या)] है। यह आवश्यक है कि $K_{p}$ की गणना करते समय दाब का मान bar में रखना चाहिए, क्योंकि दाब की प्रामाणिक अवस्था $1 \mathrm{bar}$ है। एकक 1 से हमें ज्ञात है कि
1 pascal, $\mathrm{Pa}=1 \mathrm{Nm}^{-2}$ तथा $1 \mathrm{bar}=10^{5} \mathrm{~Pa}$ ।
सारणी 6.5 में कुछ चयनित अभिक्रियाओं के लिए $K_{p}$ के मान दिए गए हैं।
सारणी 6.5 में कुछ चयनित अभिक्रियाओं के साम्यावस्था स्थिरांक $\mathbf{K} _{p}$ के मान
अभिक्रिया | ताप $/ \mathbf{K}$ | $\mathbf{K} _{\boldsymbol{p}}$ |
---|---|---|
$\mathrm{N} _{2}(\mathrm{~g})+3 \mathrm{H} _{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{NH} _{3}$ | 298 | $6.8 \times 10^{5}$ |
400 | 41 | |
500 | $3.6 \times 10^{-2}$ | |
$2 \mathrm{SO} _{2}(\mathrm{~g})+\mathrm{O} _{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{SO} _{3}(\mathrm{~g})$ | 298 | $4.0 \times 10^{24}$ |
500 | $2.5 \times 10^{10}$ | |
700 | $3.0 \times 10^{4}$ | |
$\mathrm{~N} _{2} \mathrm{O} _{4}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{NO} _{2}(\mathrm{~g})$ | 298 | 0.98 |
400 | 47.9 | |
500 | 1700 |
उदाहरण 6.3
$500 \mathrm{~K}$ पर $\mathrm{PCl} _{5}, \mathrm{PCl} _{3}$ और $\mathrm{Cl} _{2}$ साम्यावस्था में हैं तथा सांद्रताएँ क्रमशः $1.41 \mathrm{M}, 1.59 \mathrm{M}$ एवं $1.59 \mathrm{M}$ हैं।
अभिक्रिया $\mathrm{PCl} _{5} \rightleftharpoons \mathrm{PCl} _{3}+\mathrm{Cl} _{2}$ के लिए $\mathrm{K} _{\mathrm{c}}$ की गणना कीजिए।
हल
उपरोक्त अभिक्रिया के लिए साम्यावस्था स्थिरांक इस रूप में प्रकट किया जा सकता है-
$$ K_{\mathrm{c}}=\frac{\left[\mathrm{PCl} _{3}\right]\left[\mathrm{Cl} _{2}\right]}{\left[\mathrm{PCl} _{5}\right]}=\frac{(1.59)^{2}}{(1.41)}=1.79 $$
उदाहरण 6.4
इस अभिक्रिया के लिए $800 \mathrm{~K}$ पर $K_{c}=4.24$ है-
$\mathrm{CO}(\mathrm{g})+\mathrm{H} _{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO} _{2}(\mathrm{~g})+\mathrm{H} _{2}(\mathrm{~g})$
$800 \mathrm{~K}$ पर $\mathrm{CO} _{2}$ एवं $\mathrm{H} _{2}, \mathrm{CO}$ तथा $\mathrm{H} _{2} \mathrm{O}$ के साम्य पर सांद्रताओं की गणना कीजिए, यदि प्रारंभ में केवल $\mathrm{CO}$ तथा $\mathrm{H} _{2} \mathrm{O}$ ही उपस्थित हों तथा प्रत्येक की सांद्रता $0.1 \mathrm{M}$ हो।
हल
निम्नलिखित अभिक्रिया के लिए:
$$\mathrm{CO}(\mathrm{g})+\mathrm{H} _{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO} _{2}(\mathrm{~g})+\mathrm{H} _{2}(\mathrm{~g})$$
प्रारंभ में :
$$ \begin{array}{llll} 0.1 \mathrm{M} & 0.1 \mathrm{M} & 0 & 0 \end{array} $$
#missing
साम्य पर
$$ \begin{array}{llll} (0.1-x) M & (0.1-x) M & x M & x M \end{array} $$
जहाँ साम्य पर $\mathrm{CO} _{2}$ तथा $\mathrm{H} _{2}$ की मात्रा $\mathrm{x} \mathrm{mol} \mathrm{L}^{-1}$ है।
अतः साम्य स्थिरांक को इस प्रकार लिखा जा सकता है-
$K_{c}=\mathrm{x}^{2} /(0.1-\mathrm{x})^{2}=4.24$
$\mathrm{x}^{2}=4.24\left(0.01+\mathrm{x}^{2}-0.2 \mathrm{x}\right)$
$\mathrm{x}^{2}=0.0424+4.24 \mathrm{x}^{2}-0.848 \mathrm{x}$
$3.24 x^{2}-0.848 x+0.0424=0$
$\mathrm{a}=3.24, \mathrm{~b}=-0.848, \mathrm{c}=0.0424$
एक द्विघात समीकरण के लिए $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$,
$$ x=\frac{\left(-b \pm \sqrt{b^{2}-4 a c}\right)}{2 a} $$
$x=0.848 \pm \sqrt{ }(0.848)^{2}-4(3.24)(0.0424) / (3.24 \times 2)$
$x=(0.848 \pm 0.4118) / 6.48$
$x_{1}=(0.848-0.4118) / 6.48=0.067$
$\mathrm{x_2}=(0.848+0.4118) / 6.48=0.194$
मान 0.194 की उपेक्षा की जा सकती है, क्योंकि यह अभिकारकों की सांद्रता बतलाएगा, जो प्रारंभिक सांद्रता से अधिक है।
अतः साम्यावस्था पर सांद्रताएँ ये हैं,
$$ \begin{aligned} & {\left[\mathrm{CO} _{2}\right]=\left[\mathrm{H} _{2}\right]=\mathrm{x}=0.067 \mathrm{M}} \\ & {[\mathrm{CO}]=\left[\mathrm{H} _{2} \mathrm{O}\right]=0.1-0.067=0.033 \mathrm{M}} \end{aligned} $$
उदाहरण 6.5
इस साम्य
$2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g}) + \mathrm{Cl} _2 (\mathrm{~g})$ हेतु
$1069 \mathrm{~K}$ ताप पर साम्य स्थिरारांक $K _{c}$ का मान $3.75 \times$ $10^{-6}$ है। इस ताप पर उक्त अभिक्रिया के लिए $K _{p}$ की गणना कीजिए।
हल
हम जानते हैं कि
$K_{p}=K_{c}(\mathrm{R} T)^{\Delta n}$
उपरोक्त अभिक्रिया के लिए,
$\Delta n=(2+1)-2=1$
$K_{p}=3.75 \times 10^{-6}(0.0831 \times 1069)$
$K_{p}=0.033$
6.5 विषमांग साम्यावस्था
एक से अधिक प्रावस्था वाले निकाय में स्थापित साम्यावस्था को ‘विषमांग साम्यावस्था’ कहा जाता है। उदाहरण के लिए-एक बंद पात्र में जल-वाष्प एवं जल-द्रव के बीच स्थापित साम्यावस्था ‘विषमांग साम्यावस्था’ है।
$$ \mathrm{H} _{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H} _{2} \mathrm{O}(\mathrm{g}) $$
इस उदाहरण में एक गैस प्रावस्था तथा दूसरी द्रव प्रावस्था है। इसी तरह ठोस एवं इसके संतृप्त विलयन के बीच स्थापित साम्यावस्था भी विषमांग साम्यावस्था है। जैसे-
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+(\mathrm{aq}) \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
विषमांग साम्यावस्थाओं में अधिकतर शुद्ध ठोस या शुद्ध द्रव भाग लेते हैं। विषमांग साम्यावस्था (जिसमें शुद्ध ठोस या शुद्ध द्रव हो) के साम्यावस्था-व्यंजक को सरल बनाया जा सकता है, क्योंकि शुद्ध ठोस एवं शुद्ध द्रव का मोलर सांद्रण उनकी मात्रा पर निर्भर नहीं होता, बल्कि स्थिर होता है। दूसरे शब्दों में-साम्यावस्था पर एक पदार्थ ’ $X$ ’ की मात्रा कुछ भी हो, $[X(s)]$ एवं $[X(1)]$ के मान स्थिर होते हैं। इसके विपरीत यदि ’ $\mathrm{X}$ ’ की मात्रा किसी निश्चित आयतन में बदलती है, तो $[\mathrm{X}(\mathrm{g})]$ तथा $[X(\mathrm{aq})]$ के मान भी बदलते हैं। यहाँ हम एक रोचक एवं महत्त्वपूर्ण विषमांग रासायनिक साम्यावस्था केल्सियम कार्बोनेट के तापीय वियोजन पर विचार करेंगे-
$\mathrm{CaCO} _{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO} _{2}(\mathrm{~g})$ (6.16)
उपरोक्त समीकरण के आधार पर हम लिख सकते हैं कि
$$ K_{c}=\frac{[\mathrm{CaO}(\mathrm{s})]\left[\mathrm{CO} _{2}(\mathrm{~g})\right]}{\left[\mathrm{CaCO} _{3}(\mathrm{~s})\right]} $$
चूँकि $\left[\mathrm{CaCO} _{3}(\mathrm{~s})\right]$ एवं $[\mathrm{CaO}(\mathrm{s})]$ दोनों स्थिर हैं। इसलिए उपरोक्त अभिक्रिया के लिए सरलीकृत साम्यावस्था स्थिरांक
$$ \begin{align*} & K_{c}^{\prime}=\left[\mathrm{CO_2}(\mathrm{~g})\right] \tag{7.17}\\ & \text { या } K_{p}=p_{\mathrm{CO_2}} \tag{7.18} \end{align*} $$
इससे स्पष्ट होता है कि एक निश्चित ताप पर $\mathrm{CO} _{2}(\mathrm{~g})$ की एक निश्चित सांद्रता या दाब $\mathrm{CaO}(\mathrm{s})$ तथा $\mathrm{CaCO} _{3}(\mathrm{~s})$ के साथ साम्यावस्था में रहता है। प्रयोग करने पर यह पता चलता है कि $1100 \mathrm{~K}$ पर $\mathrm{CaCO} _{3}(\mathrm{~s})$ एवं $\mathrm{CaO}(\mathrm{s})$ के साथ साम्यावस्था में उपस्थित $\mathrm{CO} _{2}$ का दाब $2.0 \times 10^{5} \mathrm{~Pa}$ है। इसलिए उपरोक्त अभिक्रिया के लिए साम्यावस्था स्थिरांक का मान इस प्रकार होगा-
$$ K_{p}=p_{\mathrm{CO} _{2}}=2 \times 10^{5} \mathrm{~Pa} / 10^{5} \mathrm{~Pa}=2.00 $$
इसी प्रकार निकैल, कार्बन मोनोऑक्साइड एवं निकैल कार्बोनिल के बीच स्थापित विषमांग साम्यावस्था (निकैल के शुद्धिकरण में प्रयुक्त) समीकरण -
$$ \mathrm{Ni}(\mathrm{s})+4 \mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{~g}) $$
में साम्यावस्था स्थिरांक का मान इस रूप में लिखा जाता है-
$$ K_{c}=\frac{\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]}{[\mathrm{CO}]^{4}} $$
यह ध्यान रहे कि साम्यावस्था स्थापित होने के लिए शुद्ध पदार्थों की उपस्थिति आवश्यक है ( भले ही उनकी मात्रा थोड़ी हो), किंतु उनके सांद्रण या दाब, साम्यावस्था-स्थिरांक के व्यंजक में नहीं होंगे। अतः सामान्य स्थिति में शुद्ध द्रव एवं शुद्ध ठोस को साम्यावस्था-स्थिरांक के व्यंजक में नहीं लिखा जाता है।
अभिक्रिया - में साम्यावस्था स्थिरांक का मान इस रूप में लिखा जाता है-
$$ \begin{gathered} \mathrm{Ag_2} \mathrm{O}(\mathrm{s})+2 \mathrm{HNO_3}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{AgNO_3}(\mathrm{aq})+\mathrm{H_2} \mathrm{O}(\mathrm{l}) \\ \mathrm{K_c}=\frac{\left[\mathrm{AgNO_3}\right]^{2}}{\left[\mathrm{HNO_3}\right]^{2}} \end{gathered} $$
साम्यावस्था स्थिरांक के मात्रक
साम्यावस्था $K_{c}$ का मान निकालते समय सांद्रण को $\mathrm{mol} \mathrm{L}^{-1}$ में तथा $K_{p}$ का मान निकालते समय आंशिक दाब को $\mathrm{Pa}$, $\mathrm{kPa}$, bar अथवा atm में व्यक्त किया जाता है। इस प्रकार साम्यावस्था स्थिरांक का मात्रक सांद्रता या दाब के मात्रक पर आधारित है। यदि साम्यावस्था व्यंजक के अंश में घातांकों का योग हर में घातांकों के योग के बराबर हो।
अभिक्रिया $\mathrm{H} _{2}(\mathrm{~g})+\mathrm{I} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}, K _{\mathrm{c}}$ तथा $K _{p}$ में कोई मात्रक नहीं होता। $\mathrm{N} _{2} \mathrm{O} _{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO} _{2}(\mathrm{~g}), K _{\mathrm{c}}$ का मात्रक $\mathrm{mol} / \mathrm{L}$ तथा $K _{p}$ का मात्रक $\mathrm{bar}$ है।
यदि अभिकारकों एवं उत्पादों को प्रमाणिक अवस्था में लिया जाए तो सम्यावस्था स्थिरांकों को विमाहीन (Dimensionless) मात्राओं में व्यक्त करते हैं। अभिकारकों एवं उत्पादों को प्रामाणिक अवस्था में शुद्ध गैस की प्रामाणिक अवस्था एक bar होती है। इस प्रकार $4 \mathrm{bar}$ दाब प्रामाणिक अवस्था के सापेक्ष में $4 \mathrm{bar} / 1 \mathrm{bar}=4$ होता है, जो विमाहीन है। एक विलेय के लिए प्रामाणिक अवस्था ${C} _O $ 1 मोलर विलयन है तथा अन्य सांद्रताएँ इसी के सापेक्ष में मापी जाती हैं। साम्यस्थिरांक का आंकित मान चुनी हुई प्रामाणिक अवस्था पर निर्भर करता है। इस प्रकार इस प्रणाली में $K _{p}$ तथा $K _{c}$ दोनों विमाहीन राशियाँ हैं किंतु उनका आंकिक मान भिन्न प्रमाणिक अवस्था होने के कारण भिन्न हो सकता है।
उदाहरण 6.6
अभिक्रिया $\mathrm{CO} _{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$, के लिए $1000 \mathrm{~K}$ पर $K _{p}$ का मान 3.0 है। यदि प्रारंभ में $p _{\mathrm{CO} _{2}}=0.48 \mathrm{bar}$ तथा $p _{\mathrm{CO}}=0 \mathrm{bar}$ हो तथा शुद्ध ग्रेफाइट उपस्थित हो, तो $\mathrm{CO}$ तथा $\mathrm{CO} _{2}$ के साम्य पर आंशिक दाबों की गणना कीजिए।
हल
इस अभिक्रिया के लिए-
यदि $\mathrm{CO} _{2}$ दाब में कमी $\mathrm{x}$ हो तो-
$$ \mathrm{CO} _{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g}) $$
प्रारंभ में : 0.48 bar 0
साम्य पर :
$$ (0.48-x) \text { bar } \quad 2 x \text { bar } $$
$$ \begin{aligned} & K_{p}=\frac{p_{C O}^{2}}{p_{\mathrm{CO_2}}} \\ & K_{p}=(2 \mathrm{x})^{2} /(0.48-\mathrm{x})=3 \\ & 4 \mathrm{x}^{2}=3(0.48-\mathrm{x}) \\ & 4 \mathrm{x}^{2}=1.44-\mathrm{x} \\ & 4 \mathrm{x}^{2}+3 \mathrm{x}-1.44=0 \\ & \mathrm{a}=4, \mathrm{~b}=3, \mathrm{c}=-1.44 \end{aligned} $$
$\mathrm{x}=\frac{\left(-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}\right)}{2 \mathrm{a}}$
$=\left[-3 \pm \sqrt{ }(3)^{2}-4(4)(-1.44)\right] / 2 \times 4$
$=(-3 \pm 5.66) / 8$
$=(-3+5.66) / 8$ ( चूँकि $\mathrm{x}$ का मान ऋणात्मक नहीं होता, अतः इस मान की उपेक्षा कर देते हैं।)
$\mathrm{x}=2.66 / 8=0.33$
साम्य पर आंशिक दाबों के मान इस प्रकार होंगे-
$p_{\mathrm{CO_2}}=2 \mathrm{x}=2 \times 0.33=0.66$ bar
$p_{\mathrm{CO_2}}=0.48-\mathrm{x}=0.48-0.33=0.15$ bar
6.6 साम्यावस्था स्थिरांक के अनुप्रयोग
साम्यावस्था-स्थिरांक के अनुप्रयोगों पर विचार करने से पहले हम इसके निम्नलिखित महत्त्वपूर्ण लक्षणों पर ध्यान दें-
क. साम्यावस्था-स्थिरांक का व्यंजक तभी उपयोगी होता है, जब अभिकारकों एवं उत्पादों की सांद्रता साम्यावस्था पर स्थिर हो जाए।
ख. साम्यावस्था-सिथरांक का मान अभिकारकों एवं उत्पादों की प्रारंभिक सांद्रता पर निर्भर नहीं करता है।
ग. स्थिरांक का मान एक संतुलित समीकरण द्वारा व्यक्त रासायनिक क्रिया के लिए निश्चित ताप पर विशिष्ट होता है, जो ताप बदलने के साथ बदलता है।
घ. उत्क्रम अभिक्रिया का साम्यावस्था-स्थिरांक अग्रवर्ती अभिक्रिया के साम्यावस्था-स्थिरांक के मान का व्युत्क्रम होता है।
ङ. किसी अभिक्रिया का साम्यावस्था-स्थिरांक $\mathrm{K}$ उस संगत अभिक्रिया के साम्यावस्था स्थिरांक से संबंधित होता है जिसका समीकरण मूल अभिक्रिया के समीकरण में किसी छोटे पूर्णांक से गुणा या भाग देने पर प्राप्त होता है।
अब हम साम्यावस्था स्थिरांक के अनुप्रयोगों पर विचार करेंगे तथा इसका प्रयोग निम्नलिखित बिंदुओं से संबंधित प्रश्नों के उत्तर देने में करेंगे।
-
साम्यावस्था-स्थिरांक के परिमाण की सहायता से अभिक्रिया की सीमा का अनुमान लगाना।
-
अभिक्रिया की दिशा का पता लगाना एवं
-
साम्यावस्था-सांद्रण की गणना करना।
6.6.1 अभिक्रिया की सीमा का अनुमान लगाना
साम्यावस्था-स्थिरांक का आंकिक मान अभिक्रिया की सीमा को दर्शाता है, परंतु यह जानना महत्त्वपूर्ण है कि साम्यावस्था स्थिरांक यह नहीं बतलाता कि साम्यावस्था किस दर से प्राप्त हुई है। $K_{c}$ या $K_{p}$ का परिमाण उत्पादों की सांद्रता के समानुपाती होता है ( क्योंकि यह साम्यावस्था-स्थिरांक व्यंजक के अंश (Numerator) में लिखा जाता है) तथा क्रियाकारकों की सांद्रता के व्युत्क्रमानुपाती होता है ( क्योंकि यह व्यंजक के हर (Denominator) में लिखी जाती है)। साम्यावस्था स्थिरांक $\mathrm{K}$ का उच्च मान उत्पादों की उच्च सांद्रता का द्योतक है। इसी प्रकार $\mathrm{K}$ का निम्न मान उत्पादों के निम्न मान को दर्शाता है।
साम्य मिश्रणों के संघटन से संबंधित निम्नलिखित सामान्य नियम बना सकते हैं:
- यदि $K_{\mathrm{c}}>10^{3}$ हो, तो उत्पाद अभिकारक की तुलना में ज्यादा बनेंगे। यदि $\mathrm{K}$ का मान काफी ज्यादा है, तो अभिक्रिया लगभग पूर्णता के निकट होती है। उदाहरणार्थ-
$\qquad$ (क) $500 \mathrm{~K}$ पर $\mathrm{H} _{2}$ तथा $\mathrm{O} _{2}$ की अभिक्रिया साम्यावस्था हेतु स्थिरांक $K _{\mathrm{c}}=2.4 \times 10^{47}$ ।
$\qquad$ (ख) $300 \mathrm{~K}$ पर $\mathrm{H} _{2}$ (g) $+\mathrm{Cl} _{2}$ (g) $\rightarrow 2 \mathrm{HCl}(\mathrm{g})$; $K _{\mathrm{c}}=4.0 \times 10^{31}$
$\qquad$ ( ग) $300 \mathrm{~K}$ पर $\mathrm{H} _{2}$ (g) $+\mathrm{Br} _{2}$ (g) $\rightarrow 2 \mathrm{HBr}(\mathrm{g})$; $K _{\mathrm{c}}=5.4 \times 10^{18}$
- यदि $K_{c}<10^{-3}$, अभिकारक की तुलना में उत्पाद कम होंगे। यदि $K_{c}$ का मान अल्प है, तो अभिक्रिया दुर्लभ अवस्था में ही संपत्न होती है। निम्नलिखित उदाहरणों द्वारा यह स्पष्ट हो जाता है-
$\qquad$ (क) $500 \mathrm{~K}$ पर $\mathrm{H} _{2} \mathrm{O}$ का $\mathrm{H} _{2}$ तथा $\mathrm{O} _{2}$ में विघटन का साम्य-स्थिरांक बहुत कम है $K _{c}=4.1 \times 10^{-48}$
$\qquad$ (ख) $298 \mathrm{~K}$ पर $\mathrm{N} _{2}(\mathrm{~g})+\mathrm{O} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$; $K _{c}=4.8 \times 10^{-31}$
- यदि $K_{c} 10^{-3}$ से $10^{3}$ की परास (Range) में होता है, तो उत्पाद तथा अभिकारक दोनों की सांद्रताएँ संतोषजनक होती हैं। निम्नलिखित उदाहरण पर विचार करने पर-
$\qquad$ (क) $700 \mathrm{~K}$ पर $\mathrm{H} _{2}$ तथा $\mathrm{I} _{2}$ से $\mathrm{HI}$ बनने पर $K _{c}=57.0$ है।
$\qquad$ (ख) इसी प्रकार एक अन्य अभिक्रिया $\mathrm{N} _{2} \mathrm{O} _{4}$ का $\mathrm{NO} _{2}$ में विघटन है, जिसके लिए $25^{\circ} \mathrm{C}$ पर $K _{c}=4.64 \times 10^{-3}$, जो न तो कम है और न ज्यादा। अतः साम्य मिश्रण में $\mathrm{N} _{2} \mathrm{O} _{4}$ तथा $\mathrm{NO} _{2}$ की सांद्रताएँ संतोषजनक होंगी। इस सामान्यीकरण को चित्र 6.7 में दर्शाया गया है।
चित्र 6.6 $\mathrm{~K} _{\mathrm{c}}$ पर अभिक्रिया की सीमा का निर्भर करना
6.6.2 अभिक्रिया की दिशा का बोध
अभिकारक एवं उत्पादों के किसी अभिक्रिया-मिश्रण में अभिक्रिया की दिशा का पता लगाने में भी साम्यावस्था स्थिरांक का उपयोग किया जाता है। इसके लिए हम अभिक्रिया भागफल (Reaction Quotient) ’ $\mathrm{Q}$ ’ की गणना करते हैं। साम्यावस्था स्थिरांक की ही तरह अभिक्रिया भागफल को भी अभिक्रिया की किसी भी स्थिति के लिए परिभाषित (मोलर सांद्रण से $Q_{c}$ तथा आंशिक दाब से $Q_{p}$ ) किया जा सकता है। किसी सामान्य अभिक्रिया के लिए
$$\mathrm{a} \mathrm{A}+\mathrm{bB} \rightleftharpoons \mathrm{c} \mathrm{C}+\mathrm{d} \mathrm{D} \tag{6.19}$$
$$Q_{c}=[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}} /[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}\tag{6.20}$$
तब
यदि $Q_{c}>K_{c}$ हो, तो अभिक्रिया अभिकारकों की ओर अग्रसरित होगी (विपरीत अभिक्रिया)
यदि $Q_{c}<K_{c}$ हो, तो अभिक्रिया उत्पादों की ओर अग्रसरित होगी,
यदि $Q_{c}=K_{c}$ हो, तो अभिक्रिया मिश्रण साम्यावस्था में है। करते हैं-
$\mathrm{H} _{2}$ के साथ $\mathrm{I} _{2}$ की गैसीय अभिक्रिया पर विचार
$\mathrm{H_2}(\mathrm{~g})+\mathrm{I_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g}) ; K_{c}=57.0$ at $700 \mathrm{~K}$.
माना कि हमने $\left[\mathrm{H} _{2}\right] _{\mathrm{t}}=0.10 \mathrm{M},\left[\mathrm{I} _{2}\right] _{\mathrm{t}}=0.20 \mathrm{M}$ और $[\mathrm{HI}] _{\mathrm{t}}=0.40 \mathrm{M}$. लिया (सांद्रता संकेत पर पादांक $\mathrm{t}$ का तात्पर्य यह है कि सांद्रताओं का मापन किसी समय $\mathrm{t}$ पर किया गया है, न कि साम्य पर।)
इस प्रकार, अभिक्रिया भागफल $Q_{c}$ अभिक्रिया की इस स्थिति में दिया गया है-
$Q _{c}=[\mathrm{HI}] _{\mathrm{t}}^{2} /\left[\mathrm{H} _{2}\right] _{\mathrm{t}}\left[\mathrm{I} _{2}\right] _{\mathrm{t}}=(0.40)^{2} /(0.10) \times(0.20)=8.0$
इस समय $\Theta _{c}$ (8.0), $K _{c}$ (57.0) के बराबर नहीं है। अत: $\mathrm{H} _{2}(\mathrm{~g}), \mathrm{I} _{2}(\mathrm{~g})$ तथा $\mathrm{HI}(\mathrm{g})$ का मिश्रण साम्य में नहीं है। इसीलिए $\mathrm{H} _{2}(\mathrm{~g})$ व $\mathrm{I} _{2}(\mathrm{~g})$ अभिक्रिया करके और अधिक $\mathrm{HI}(\mathrm{g})$ बनाएँगे तथा उनके सांद्रण तब तक घटेंगे, जब तक $Q _{c}=K _{c}$ न हो जाए।
अभिक्रिया-भागफल $Q_{c}$, तथा $K_{c}$ के मानों की तुलना करके अभिक्रिया-दिशा का बोध करने में उपयोगी हैं।
इस प्रकार, अभिक्रिया की दिशा के संबंध में हम निम्नलिखित सामान्य धारणा बना सकते हैं-
चित्र : 6.7 अभिक्रिया की दिशा का बोध
- यदि $Q_{c}<K_{c}$ हो, तो नेट अभिक्रिया बाईं से दाईं ओर अग्रसरित होती है।
- यदि $B_{c}>K_{c}$ हो, तो नेट अभिक्रिया दाईं से बाईं ओर अग्रसरित होती है।
- यदि $\Theta_{c}=K_{c}$ हो, तो नेट अभिक्रिया नहीं होती है।
उदाहरण 6.7
$2 \mathrm{~A} \rightleftharpoons \mathrm{B}+\mathrm{C}$ अभिक्रिया के लिए $K_{c}$ का मान $2 \times 10^{-3}$ है। दिए गए समय में अभिक्रिया-मिश्रण का संघटन $[\mathrm{A}]=$ $[\mathrm{B}]=[\mathrm{C}]=3 \times 10^{-4} \mathrm{M}$ है। अभिक्रिया कौन सी दिशा में अग्रसित होगी?
हल
अभिक्रिया के लिए अभिक्रिया भागफल
$Q_{c}=[\mathrm{B}][\mathrm{C}] /[\mathrm{A}]^{2}$
$[\mathrm{A}]=[\mathrm{B}]=[\mathrm{C}]=3 \times 10^{-4} \mathrm{M}$
$Q_{c}=\left(3 \times 10^{-4}\right)\left(3 \times 10^{-4}\right) /\left(3 \times 10^{-4}\right)^{2}=1$
इस प्रकार $Q_{c}>K_{c}$ इसलिए अभिक्रिया विपरीत दिशा में अग्रसित होती है।
6.6.3 साम्य सांद्रताओं की गणना
यदि प्रारंभिक सांद्रता ज्ञात हो, लेकिन साम्य सांद्रता ज्ञात नहीं हो, तो निम्नलिखित तीन पदों से उसे प्राप्त करेंगे-
पद 1 : अभिक्रिया के लिए संतुलित समीकरण लिखो।
पद 2 : संतुलित समीकरण के लिए एक सारणी बनाएँ, जिसमें अभिक्रिया में सत्रिहित प्रत्येक पदार्थ को सूचीबद्ध किया हो:
(क) प्रारंभिक सांद्रता
(ख) साम्यावस्था पर जाने के लिए सांद्रता में परिवर्तन और
(ग) साम्यावस्था सांद्रता
सारणी बनाने में किसी एक अभिकारक की सांद्रता को $x$ के रूप में, जो साम्यावस्था पर है को परिभाषित करें और फिर अभिक्रिया की रससमीकरणमितीय से अन्य पदार्थों की सांद्रता को $x$ के रूप में व्यक्त करें।
पद $3: x$ को हल करने के लिए साम्य समीकरण में साम्य सांद्रताओं को प्रतिस्थापित करते हैं। यदि आपको वर्ग समीकरण हल करना हो, तो वह गणितीय हल चुनें, जिसका रासायनिक अर्थ हो।
पद 4 : परिकलित मान के आधार पर साम्य सांद्रताओं की गणना करें।
पद 5 : इन्हें साम्य समीकरण में प्रतिस्थापित कर अपने परिणाम की जाँच करें।
उदाहरण 6.8
13.8 ग्राम $\mathrm{N} _{2} \mathrm{O} _{4}$ को $1 \mathrm{~L}$ पात्र में रखा जाता है तो इस प्रकार साम्य स्थापित होता है-
$\mathrm{N_2} \mathrm{O_4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO_2}(\mathrm{~g})$ यदि सम्यावस्था पर कुल दाब 9.15 bar पाया गया, तो $K_{c}, K_{p}$ तथा साम्यावस्था पर आंशिक दाब की गणना कीजिए।
हल
हम जानते हैं कि $p V=n R T$
कुल आयतन $(\mathrm{V})=1 \mathrm{~L}$
अणुभार $\mathrm{N_2} \mathrm{O_4}=92 \mathrm{~g}$
गैस के मोल ( $n$ ) $=13.8 \mathrm{~g} / 92 \mathrm{~g}=0.15$
गैस-स्थिरांक $(\mathrm{R})=0.083$ bar $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
ताप $(T)=400 \mathrm{~K}$
$p V=n \mathrm{R} T$
$p \times 1 \mathrm{~L}=0.15 \mathrm{~mol} \times 0.083$ bar $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~K}^{-1} \times 400 \mathrm{~K}$
$p=4.98$ bar
$$ \begin{equation*} \mathrm{N_2} \mathrm{O_4} \rightleftharpoons 2 \mathrm{NO_2} \end{equation*} $$
प्रारंभ में 4.98 bar 0
साम्य पर $(4.98-\mathrm{x})$ bar $2 \mathrm{x}$ bar
अतः साम्य पर $p _{\text {कुल }}=p _{\mathrm{N} _{2} \mathrm{O} _{4}}+p _{\mathrm{NO} _{2}}$
$9.15=(4.98-\mathrm{x})+2 \mathrm{x}$
$9.15=4.98+\mathrm{x}$
$\mathrm{x}=9.15-4.98=4.17$ bar
साम्यावस्था पर आंशिक दाब,
$p_{\mathrm{N} _{2} \mathrm{O} _{4}}=4.98-4.17=0.81 \mathrm{bar}$
$p_{\mathrm{NO} _{2}}=2 \mathrm{x}=2 \times 4.17=8.34 \mathrm{bar}$
$K _{p}=(p _{\mathrm{NO} _{2}})^{2} / p _{\mathrm{N} _{2} \mathrm{O} _{4}}$
$=(8.34)^{2} / 0.81=85.87$
$K_{p}=K_{\mathrm{c}}(\mathrm{R} T)^{\Delta n}$
$85.87=K_{c}(0.083 \times 400)^{1}$
$K_{c}=2.586=2.6$
उदाहरण 6.9
$380 \mathrm{~K}$ पर 3.00 मोल $\mathrm{PCl} _{5}$ को $1 \mathrm{~L}$ बंद पात्र में रखा जाता है। साम्यावस्था पर मिश्रण का संघटन ज्ञात कीजिए यदि $K _{c}=1.80$ है।
हल
$$ \mathrm{PCl} _{5} \rightleftharpoons \mathrm{PCl} _{3}+\mathrm{Cl} _{2} $$
$ \quad \text{ प्रारंभ में } \quad \quad \quad \quad 3.0 \quad\quad\quad 0 \quad\quad\quad 0$
मान लीजिए $\mathrm{PCl} _{5}$ के प्रति मोल में से $x \mathrm{~mol}$ वियोजित होते हैं। तब- साम्य पर
$$ (3-x) \quad \quad \quad \mathrm{x} \quad \quad \quad \mathrm{x} $$
$K_{c}=\left[\mathrm{PCl_3}\right]\left[\mathrm{Cl_2}\right] /\left[\mathrm{PCl_5}\right]$
$1.8=\mathrm{x}^{2} /(3-\mathrm{x})$
$\mathrm{x}^{2}+1.8 \mathrm{x}-5.4=0$
$x=\left[-1.8 \pm \sqrt{ }(1.8)^{2}-4(-5.4)\right] / 2$
$x=[-1.8 \pm \sqrt{ } 3.24+21.6] / 2$
$\mathrm{x}=[-1.8 \pm 4.98] / 2$
$\mathrm{x}=[-1.8+4.98] / 2=1.59$
$\left[\mathrm{PCl_5}\right]=3.0-\mathrm{x}=3-1.59=1.41 \mathrm{M}$
$\left[\mathrm{PCl_3}\right]=\left[\mathrm{Cl_2}\right]=\mathrm{x}=1.59 \mathrm{M}$
6.7 साम्यावस्था स्थिरांक $\mathrm{K}$, अभिक्रिया भागफल 9 तथा गिबज़ ऊर्जा $G$ में संबंध
किसी अभिक्रिया के लिए $K_{c}$ का मान अभिक्रिया की गतिकी पर निर्भर नहीं करता है। जैसा कि आप एकक-6 में पढ़ चुके हैं, यह अभिक्रिया की ऊष्मागतिकी, विशेषतः गिब्ज़ ऊर्जा में परिवर्तन पर निर्भर करता है-
- यदि $\Delta \mathrm{G}$ ॠणात्मक है, तब अभिक्रिया स्वतः प्रवर्तित मानी जाती है तथा अग्र दिशा में संपत्र होती है।
- यदि $\Delta \mathrm{G}$ धनात्मक है, तब अभिक्रिया स्वतः प्रवर्तित नहीं होगी। इसकी बजाय प्रतीप अभिक्रिया हेतु $\Delta \mathrm{G}$ ॠणात्मक होगा। अतः अग्र अभिक्रिया के उत्पाद अभिकारक में परिवर्तित हो जाएँगे।
- यदि $\Delta G$ शून्य हो तो, अभिक्रिया साम्यावस्था को प्राप्त करेगी।
इस ऊष्मागतिक तथ्य की व्याख्या इस समीकरण से की जा सकती है-
$$\Delta G=\Delta G^{\ominus}+\mathrm{RT} \ln Q \tag{7.21}$$
जबकि $\Delta G^{\ominus}$ मानक गिब्ज़ ऊर्जा है।
साम्यावस्था पर जब $\Delta G=0$ तथा $Q=K_{c}$ हो, तो समीकरण (6.21) इस प्रकार होगी-
$$ \Delta G=\Delta G^{\ominus}+\mathrm{R} T \ln K=0 ( K_{c} \text { के स्थान पर } K \text { मानते हुए } ) $$
$$ \begin{equation*} \Delta G^{\ominus}=-\mathrm{R} T \ln K \tag{6.22} \end{equation*} $$
$\ln K=-\Delta G^{\ominus} / \mathrm{R} T$ दोनों ओर प्रतिलघु गुणक लेने पर-
$$ \begin{equation*} K=\mathrm{e}^{-\Delta G^{\ominus} / \mathrm{R} T} \tag{6.23} \end{equation*} $$
अतः समीकरण 6.23 का उपयोग कर, $\Delta \mathrm{G}^{\ominus}$ के पदों के रूप में अभिक्रिया की स्वतः प्रवर्तिता को समझाया जा सकता है-
- यदि $\Delta G^{\ominus}<0$ हो, तो $-\Delta G^{\ominus} / \mathrm{R} T$ धनात्मक होगा। अतः $e^{-\Delta G^{\ominus}}>1$ होने से $\mathrm{K}>1$ होगा, जो अभिक्रिया की स्वतः प्रवर्तिता को दर्शाता है अथवा अग्र दिशा में उस सीमा तक होती है जिससे कि उत्पाद आधिक्य में बने।
- यदि $\Delta G^{\ominus}>0$ हो, तो $-\Delta G^{\ominus} / \mathrm{R} T$ ॠणात्मक होगा। अतः $e^{-\Delta G^{\ominus} / R T}<1$, होने से $K<1$ होगा। जो अभिक्रिया की अस्वतः प्रवर्तिता दर्शाता है या अभिक्रिया अग्र दिशा में उस सीमा तक होती है, जिससे उत्पाद न्यूनतम बने।
उदाहरण 6.10
ग्लाइकोलाइसिस में ग्लूकोस के फॉस्फोराइलेशन के लिए $\Delta G^{\ominus}$ का मान $13.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ है। $298 \mathrm{~K}^{\text {पर }}$ $K_{c}$ का मान ज्ञात करें।
हल
$\Delta G^{\ominus}=13.8 \mathrm{~kJ} / \mathrm{mol}=13.8 \times 10^{3} \mathrm{~J} / \mathrm{mol}$
$\Delta G^{\ominus}=-\mathrm{RT} \ln K_{c}$
$\ln K_{c}=-13.8 \times 10^{3} \mathrm{~J} / \mathrm{mol}$
(8.314 $\left.\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1} \times 298 \mathrm{~K}\right)$
$\ln K_{\mathrm{c}}=-5.569$
$K_{\text {c }}=\mathrm{e}^{-5.569}$
$K_{\mathrm{c}}=3.81 \times 10^{-3}$
उदाहरण 6.11
सूक्रोस के जल-अपघटन से ग्लूकोस और फ्रक्टोस निम्नलिखित अभिक्रिया के अनुसार मिलता है-
सूक्रोस $+\mathrm{H} _{2} \mathrm{O} \rightleftharpoons$ ग्लूकोस + फ्रक्टोस
$300 \mathrm{~K}$ पर अभिक्रिया के लिए साम्यावस्था स्थिरांक $K_{c}, 2 \times 10^{13}$ है। $300 \mathrm{~K}$ पर $\Delta \mathrm{G}^{\ominus}$ के मान की गणना कीजिए।
हल
$$ \begin{aligned} \Delta G^{\ominus} & =-\mathrm{R} T \ln K_{c} \\ \Delta G^{\ominus} & =-8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & \times 300 \mathrm{~K} \times \ln \left(2 \times 10^{13}\right) \\ \Delta G^{\ominus} & =-7.64 \times 10^{4} \mathrm{~J} \mathrm{~mol}^{-1} \end{aligned} $$
6.8 साम्य को प्रभावित करने वाले कारक
रासायनिक संश्लेषण के प्रमुख उद्देश्यों में से एक यह है कि न्यूनतम ऊर्जा के व्यय के साथ अभिकारकों का उत्पादों में अधिकतम परिवर्तन हो, जिसका अर्थ है- उत्पादों की अधिकतम लब्धि ताप तथा दाब की मध्यम परिस्थितियों में हो। यदि ऐसा नहीं होता है, तो प्रायोगिक परिस्थितियों में परिवर्तन की आवश्यकता है। उदाहरणार्थ- $\mathrm{N} _{2}$ तथा $\mathrm{H} _{2}$ से अमोनिया के संश्लेषण के हाबर प्रक्रम में प्रायोगिक परिस्थितियों का चयन वास्तव में आर्थिक रूप से महत्त्वपूर्ण है। विश्व में अमोनिया का वार्षिक उत्पादन 100 मिलियन टन है। इसका मुख्य उपयोग उर्वरकों के रूप में होता है।
साम्यावस्था स्थिरांक $K_{c}$ प्रारंभिक सांद्रताओं पर निर्भर नहीं करता है। परंतु यदि साम्यावस्थावाले किसी निकाय में अभिकारकों या उत्पादों में से किसी एक के सांद्रण में परिवर्तन किया जाए, तो निकाय में साम्यावस्था नहीं रह पाती है तथा नेट अभिक्रिया पुनः तब तक होती रहती है, जब तक निकाय में पुन: साम्यावस्था स्थापित न हो जाए। प्रावस्था साम्यावस्था पर ताप का प्रभाव एवं ठोसों की विलेयता के बारे में हम पहले ही पढ़ चुके हैं। हम यह भी देख चुके हैं कि ताप का परिवर्तन किस प्रकार होता है। यह भी बताया जा चुका है कि किसी ताप पर यदि अभिक्रिया के साम्यावस्था-स्थिरांक का मान ज्ञात हो तो किसी प्रारंभिक सांद्रण से उस अभिक्रिया के अभिकारकों एवं उत्पादों के साम्यावस्था में सांद्रण की गणना की जा सकती है। यहाँ तक कि हमें यदि साम्यावस्था स्थिरांक का ताप के साथ परिवर्तन नहीं भी ज्ञात हो, तो नीचे दिए गए ला-शातेलिए सिद्धांत की मदद से परिस्थितियों के परिवर्तन से साम्यावस्था पर पड़नेवाले प्रभाव के बारे में गुणात्मक निष्कर्ष हम प्राप्त कर सकते हैं। इस सिद्धांत के अनुसार किसी निकाय की साम्यावस्था परिस्थितियों को निर्धारित करनेवाले कारकों (सांद्रण, दाब एवं ताप) में से किसी में भी परिवर्तन होने पर साम्यावस्था उस दिशा में अग्रसर होती है। जिससे निकाय पर लगाया हुआ प्रभाव कम अथवा समाप्त हो जाए। यह भी भौतिक एवं रासायनिक साम्यावस्थाओं में लागू होता है। एक साम्य मिश्रण के संघटन को परिवर्तित करने के लिए अनेक कारकों का उपयोग किया जा सकता है-
निम्नलिखित उपखंडों में हम साम्यावस्था पर सांद्रण, दाब, ताप एवं उत्प्रेरक के प्रभाव पर विचार करेंगे-
6.8.1 सांद्रता-परिवर्तन का प्रभाव
सामान्यतया जब किसी अभिकारक/उत्पाद को अभिक्रिया में मिलाने या निकालने से साम्यावस्था परिवर्तित होती है, तो इसका अनुमान ‘ला-शातेलिए सिद्धांत’ के आधार पर लगाया जा सकता है-
- अभिकारक/उत्पाद को मिलाने से सांद्रता पर पड़े दबाव को कम करने के लिए अभिक्रिया उस दिशा की ओर अग्रसर होती है, ताकि मिलाए गए पदार्थ का उपभोग हो सके।
- अभिकारक/उत्पाद के निष्कासन से सांद्रता पर दबाव को कम करने के लिए अभिक्रिया उस दिशा की ओर अग्रसर होती है ताकि अभिक्रिया से निकाले गए पदार्थ की पूर्ति हो सकें अन्य शब्दों में- “जब किसी अभिक्रिया के अभिकारकों या उत्पादों में से किसी एक का भी सांद्रण साम्यावस्था पर बदल दिया जाता है, तो साम्यावस्था मिश्रण के संघटन में इस प्रकार परिवर्तन होता है कि सांद्रण परिवर्तन के कारण पड़नेवाला प्रभाव कम अथवा शून्य हो जाए।”
आइए, अभिक्रिया पर विचार करें।
$$ \mathrm{H} _{2}(\mathrm{~g})+\mathrm{I} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g}) $$
यदि साम्यावस्था पर अभिक्रिया मिश्रण में बाहर से $\mathrm{H} _{2}$ गैस डाली जाए, तो साम्यवस्था के पुनः स्थापन के लिए अभिक्रिया उस दिशा में अग्रसर होगी जिस में $\mathrm{H} _{2}$ उपभोगित हो अर्थात् और अधिक $\mathrm{H} _{2}$ एवं $\mathrm{I} _{2}$ क्रिया कर $\mathrm{HI}$ विरचित करगी तथा अंततः साम्यावस्था दाईं (अग्रिम) दिशा में विस्थापित होगी (चित्र 6.8)। यह ला-शातेलिए के सिद्धांत के अनुरुप है जिसके अनुसार अधिकारक/उत्पाद के योग की स्थिति में नई साम्यावस्था स्थापित होगी जिसमें अभिकारक/उत्पाद की सांद्रता उसके योग करने के समय से कम तथा मूल मिश्रण से अधिक होनी चाहिए।
चित्र 6.8 $\quad \mathrm{H} _{2}(\mathrm{~g})+\mathrm{I} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ अभिक्रिया में साम्यावस्था पर $\mathrm{H} _{2}$ के डालने पर अभिकारकों एवं उत्पादों के सांद्रण में परिवर्तन
निम्नलिखित अभिक्रिया भागफल के आधार पर भी हम इसी निष्कर्ष पर पहुँच सकते हैं-
$$ Q_{c}=[\mathrm{HI}]^{2} /\left[\mathrm{H} _{2}\right]\left[\mathrm{I} _{2}\right] $$
यदि साम्यावस्था पर $\mathrm{H} _{2}$ मिलाया जाता है, तो $\left[\mathrm{H} _{2}\right]$ बढ़ता है और $\mathrm{Q} _{\mathrm{c}}$ का मान $\mathrm{K} _{\mathrm{c}}$ से कम हो जाता है। इसलिए अभिक्रिया दाईं (अग्र) दिशा की ओर से अग्रसर होती है। अर्थात् $\left[\mathrm{H} _{2}\right]$ तथा $\left[\mathrm{I} _{2}\right]$ घटता है और $[\mathrm{HI}]$ तब तक बढ़ता है, जब तक $\mathrm{Q} _{\mathrm{c}}=\mathrm{K} _{\mathrm{c}}$ न हो जाए। अर्थात् नई साम्यावस्था स्थापित न हो जाए। औद्योगिक प्रक्रमों में उत्पाद को अलग करना अधिकतर बहुत महत्त्वपूर्ण होता है। जब साम्यावस्था पर किसी उत्पाद को अलग कर दिया जाता है, तो अभिक्रिया, जो पूर्ण हुए बिना साम्यावस्था पर पहुँच गई है, पुनः अग्रिम दिशा में चलने लगती है। जब उत्पादों में से कोई गैस हो या वाष्पीकृत होने वाला पदार्थ हो, तो उत्पाद का अलग करना आसान होता है। अमोनिया के औद्योगिक निर्माण में अमोनिया का द्रवीकरण कर के, उसे अलग कर लिया जाता है जिससे अभिक्रिया अग्रिम दिशा में होती रहती है। इसी प्रकार $\mathrm{CaCO} _{3}$ से $\mathrm{CaO}$ जो भवन उद्योग की एक महत्त्वपूर्ण सामग्री है, के औद्योगिक निर्माण में भट्टी से $\mathrm{CO} _2$ को लगातार हटाकर अभिक्रिया पूर्ण कराई जाती है। यह याद रखना चाहिए कि उत्पाद लगातार हटाते रहने से $Q _{c}$ का मान $\mathrm{K} _{\mathrm{c}}$ से हमेशा कम बना रहता है, जिससे अभिक्रिया अग्रिम दिशा में होती रहती है।
सांद्रता का प्रभाव-एक प्रयोग
इसे निम्नलिखित अभिक्रिया द्वारा प्रदर्शित किया जा सकता है-
$$\underset{\text{पीला}}{\mathrm{Fe}^{3+}(\mathrm{aq})}+\underset{\text{रंगहीन}}{\mathrm{SCN}^{-}(\mathrm{aq})} \rightleftharpoons\underset{\text{गाढ़ा लाल}}{[\mathrm{Fe}(\mathrm{SCN})]^{2+}(\mathrm{aq})} \tag{7.24}$$
$$K_{c}=\frac{\left[\mathrm{Fe}(\mathrm{SCN})^{2+}(\mathrm{aq})\right]}{\left[\mathrm{Fe}^{3+}(\mathrm{aq})\right]\left[\mathrm{SCN}^{-}(\mathrm{aq})\right]} \tag{7.25}$$
एक परखनली में आयरन (III) नाइट्रेट विलयन का $1 \mathrm{~mL}$ लेकर उसमें दो बूँद पोटैशियम थायोसाइनेट विलयन डालकर परखनली को हिलाने पर विलयन का रंग लाल हो जाता है, जो $[\mathrm{Fe}(\mathrm{SCN})]^{2+}$ बनने के कारण होता है। साम्यावस्था स्थापित होने पर रंग की तीव्रता स्थिर हो जाती है। अभिकारक या उत्पाद को अभिक्रिया की साम्यावस्था पर मिलाने से साम्यावस्था को अग्रिम या प्रतीप दिशाओं में अपनी इच्छानुसार विस्थापित कर सकते हैं। $\left[\mathrm{Fe}^{3+}\right] /\left[\mathrm{SCN}^{-}\right]$आयनों की कमी करने वाले अभिकारकों को मिलाने पर साम्य विपरीत दिशा में विस्थापित कर सकते हैं। जैसे-ऑक्जेलिक अम्ल $\left(\mathrm{H} _{2} \mathrm{C} _{2} \mathrm{O} _{4}\right), \mathrm{Fe}^{3+}$ आयन से क्रिया करके स्थायी संकुल आयन $\left[\mathrm{Fe}\left(\mathrm{C} _{2} \mathrm{O} _{4}\right) _{3}\right]^{3-}$ बनाते हैं। अतः मुक्त $\mathrm{Fe}^{3+}$ आयन की सांद्रता कम हो जाती है। ला-शातेलिए सिद्धांत के अनुसार $\mathrm{Fe}^{3+}$ आयन को हटाने से उत्पन्न सांद्रता दबाव को $[\mathrm{Fe}(\mathrm{SCN})]^{2+}$ के वियोजन द्वारा $\mathrm{Fe}^{3+}$ आयनों की पूर्ति कर मुक्त किया जाता है। चूँकि $[\mathrm{Fe}(\mathrm{SCN})]^{2+}$ की सांद्रता घटती है, अतः लाल रंग की तीव्रता कम हो जाती है।
जलीय $\mathrm{HgCl_2}$ मिलाने पर भी लाल रंग की तीव्रता कम होती है। क्योंकि $\mathrm{Hg}^{2+}$ आयन, $\mathrm{SCN}^{-}$ आयनों के साथ अभिक्रिया कर स्थायी संकुल आयन $\left[\mathrm{Hg}(\mathrm{SCN})_{4}\right]^{-2}$ बनाते हैं। मुक्त $\mathrm{SCN}^{-}$आयनों की कमी समीकरण [6.24] में साम्य को बाईं से दाईं ओर $\mathrm{SCN^-}$ आयनों की पूर्ति हेतु विस्थापित करती है। पोटैशियम थायोसाइनेट मिलाने पर $ \mathrm{SCN^-}$ का सांद्रण बढ़ जाता है। अतः इसलिए साम्यावस्था अग्र दिशा में (दाईं तरफ) बढ़ जाती है तथा विलयन के रंग की तीव्रता बढ़ जाती है।
6.8.2 दाब-परिवर्तन का प्रभाव
किसी गैसीय अभिक्रिया में आयतन परिवर्तन द्वारा दाब बदलने से उत्पाद की मात्रा प्रभावित होती है। यह तभी होता है, जब अभिक्रिया को दर्शाने वाले रासायनिक समीकरण में गैसीय अभिकारकों के मोलों की संख्या तथा गैसीय उत्पादों के मोलों की संख्या में भिन्नता होती है। विषमांगी साम्य पर ला-शातेलिए सिद्धांत, के प्रयुक्त करने पर ठोसों एवं द्रवों पर दाब के परिवर्तन की उपेक्षा की जा सकती है। क्योंकि ठोस/द्रव का आयतन (एवं सांद्रता) दाब पर निर्भर नहीं करता है।
निम्नलिखित अभिक्रिया में-
$$ \mathrm{CO}(\mathrm{g})+3 \mathrm{H} _{2}(\mathrm{~g}) \quad \mathrm{CH} _{4}(\mathrm{~g})+\mathrm{H} _{2} \mathrm{O}(\mathrm{g}) $$
गैसीय अभिकर्मकों $\left(\mathrm{CO}+3 \mathrm{H} _{2}\right)$ के चार मोल से उत्पादों $\left(\mathrm{CH} _{4}+\mathrm{H} _{2} \mathrm{O}\right)$ के दो मोल बनते हैं। उपरोक्त अभिक्रिया में साम्यावस्था मिश्रण को एक निश्चित ताप पर पिस्टन लगे एक सिलिंडर में रखकर दाब दोगुना कर उसके मूल आयतन को आधा कर दिया गया। इस प्रकार अभिकारकों एवं उत्पादों का आंशिक दाब एवं इसके फलस्वरूप उनका सांद्रण बदल गया है। अब मिश्रण साम्यावस्था में नहीं रह गया है। ला-शातेलिए सिद्धांत, लागू करके अभिक्रिया जिस दिशा में जाकर पुन: साम्यावस्था स्थापित करती है, उसका पता लगाया जा सकता है। चूँकि दाब दुगुना हो गया है, अतः साम्यावस्था अग्र दिशा (जिसमें मोलों की संख्या एवं दाब कम होता है) में अग्रसर होता है। (हम जानते हैं कि दाब गैस के मोलों की संख्या के समानुपाती होता है)। इसे अभिक्रिया भागफल $\mathrm{Q} _{\mathrm{c}}$ द्वारा समझा जा सकता है। ऊपर दी गई मेथेन बनाने की अभिक्रिया में $[\mathrm{CO}],\left[\mathrm{H} _{2}\right],\left[\mathrm{CH} _{4}\right]$ एवं $\left[\mathrm{H} _{2} \mathrm{O}\right]$ क्रियाभिकारकों की साम्यावस्था के सांद्रण को प्रदर्शित करते हैं। जब अभिक्रिया मिश्रण का आयतन आधा कर दिया जाता है, तो उनके आंशिक दाब एवं सांद्रण दुगुने हो जाते हैं। अब हम अभिक्रिया भागफल का मान साम्यावस्था का दुगुना मान रखकर प्राप्त कर सकते हैं।
$$ Q_{c}=\frac{\left[\mathrm{CH_4}(\mathrm{~g})\right]\left[\mathrm{H_2} \mathrm{O}(\mathrm{g})\right]}{[\mathrm{CO}(\mathrm{g})]\left[\mathrm{H_2}(\mathrm{~g})\right]^{3}} $$
चूँकि $\mathrm{Q} _{\mathrm{c}}<\mathrm{K} _{\mathrm{c}}$ है, अतः अभिक्रिया अग्र दिशा में अग्रसर होती है।
$\mathrm{C}(\mathrm{s})+\mathrm{CO} _{2}(\mathrm{~g}) \quad 2 \mathrm{CO}(\mathrm{g})$ अभिक्रिया में जब दाब बढ़ाया जाता है तो अभिक्रिया विपरीत (या उत्क्रम) दिशा में होती है, क्योंकि अग्र दिशा में मोलों की संख्या बढ़ जाती है।
6.8.3 अक्रिय गैस के योग का प्रभाव
यदि आयतन स्थिर रखते हैं और एक अक्रिय गैस (जैसेऑर्गन) जो अभिक्रिया में भाग नहीं लेती है, को मिलाते हैं तो साम्य अपरिवर्तित रहता है। क्योंकि स्थिर आयतन पर अक्रिय गैस मिलाने पर अभिक्रिया में भाग लेने वाले पदार्थ की मोलर सांद्रताओं अथवा दाबों में कोई परिवर्तन नहीं होता है। अभिक्रिया भागफल में परिवर्तन केवल तभी होता है जब मिलाई गई गैस अभिक्रिया में भाग लेने वाला अभिकारक या उत्पाद हो।
6.8.4 ताप-परिवर्तन का प्रभाव
जब कभी दाब या आयतन में परिवर्तन के कारण साम्य सांद्रता विक्षुब्ध होती है, तब साम्य मिश्रण का संघटन परिवर्तित होता है, क्योंकि अभिक्रिया भागफल (Q) साम्यावस्था स्थिरांक $\left(K_{c}\right)$ के बराबर नहीं रह पाता, लेकिन जब तापक्रम में परिवर्तन होता है, साम्यावस्था स्थिरांक $(K)$ का मान परिवर्तित हो जाता है।
सामान्यतः तापक्रम पर स्थिरांक की निर्भरता अभिक्रिया के $\triangle \mathrm{H}$ के चिह्न पर निर्भर करती है।
- ऊष्माक्षेपी अभिक्रिया ( $\triangle \mathrm{H}$ ॠणात्मक) का साम्यावस्था स्थिरांक तापक्रम के बढ़ने पर घटता है।
- ऊष्माशेषी अभिक्रिया ( $\triangle \mathrm{H}$ धनात्मक) का साम्यावस्था स्थिरांक तापक्रम के बढ़ने पर बढ़ता है।
तापक्रम में परिवर्तन साम्यावस्था स्थिरांक एवं अभिक्रिया के वेग में परिवर्तन लाता है। निम्नलिखित अभिक्रिया के अनुसार अमोनिया का उत्पादन
$$ \begin{aligned} & \mathrm{N_2}(\mathrm{~g})+3 \mathrm{H_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH_3}(\mathrm{~g}) ; \\ & \Delta H=-92.38 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$
एक उष्माक्षेपी प्रक्रम है। ‘ला-शातालिए सिद्धांत’ के अनुसार, तापक्रम बढ़ने पर साम्यावस्था बाई दिशा में स्थानान्तरित हो जाती है एवं अमोनिया की साम्यावस्था सांद्रता कम हो जाती है। अन्य शब्दों में, कम तापक्रम अमोनिया की उच्च लब्धि के लिए उपयुक्त है, लेकिन प्रायोगिक रूप से अत्यधिक कम ताप पर अभिक्रिया की गति धीमी हो जाती है, अतः उत्प्रेरक प्रयोग में लिया जाता है।
ताप का प्रभाव - एक प्रयोग
$\mathrm{NO} _{2}$ गैस ( भूरी) का $\mathrm{N} _{2} \mathrm{O} _{4}$ गैस में द्वितयन (Dimerization) की अभिक्रिया के द्वारा साम्यावस्था पर ताप का प्रभाव प्रदर्शित किया जा सकता है।
$$ 2 \mathrm{NO_2}(\mathrm{~g}) \rightleftharpoons \mathrm{N_2} \mathrm{O_4}(\mathrm{~g}) ; \Delta H=-57.2 \mathrm{~kJ} \mathrm{~mol}^{-1} $$
सांद्र $\mathrm{HNO} _{3}$ में ताँबे की छीलन डालकर हम $\mathrm{NO} _{2}$ गैस तैयार करते हैं तथा इसे एक निकासनली की सहायता से $5 \mathrm{~mL}$ वाली दो परखनलियों में इकट्ठा करते हैं। दोनों परखनलियों में रंग की तीव्रता समान होनी चाहिए। अब एरल्डाइट (araldit) की सहायता से परखनली के स्टॉपर (stopper) को बन्द कर देते हैं। $250 \mathrm{~mL}$ के तीन बीकर इनपर क्रमशः 1,2 एवं 3 अंकित करते हैं। बीकर नं. 1 को हिमकारी मिश्रण (Freezing mixture) से बीकर नं. 2 को कमरे के तापवाले जल से एवं बीकर न. 3 को गरम (363K) जल से भर दीजिए। जब दोनों परखनलियों को बीकर नं. 2 में रखा जाता है, तब गैस के भूरे रंग की तीव्रता एक समान दिखाई देती है। कमरे के ताप वाले पानी में 8 - 10 मिनट तक परखनलियों को रखने के बाद उसे निकालकर एक परखनली को बीकर नं. 1 के जल में तथा दूसरी परखनली को बीकर नं. 3 के जल में रखिए। अभिक्रिया की दिशा पर ताप का प्रभाव इस प्रयोग से चित्रित किया जा सकता है। कम ताप पर बीकर नं. 1 में ऊष्माशोषी अग्र अभिक्रिया द्वारा $\mathrm{N} _{2} \mathrm{O} _{4}$ बनने को तरजीह मिलती है तथा $\mathrm{NO} _{2}$ की कमी होने के कारण भूरे रंग की तीव्रता घटती है, जबकि बीकर नं. 3 में उच्च ताप पर उत्क्रम अभिक्रिया को तरजीह मिलती है, जिससे $\mathrm{NO} _{2}$ बनता है। परिणामतः भूरे रंग की तीव्रता बढ़ जाती है।
चित्र 6.9 : अभिक्रिया $2 \mathrm{NO} _{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N} _{2} \mathrm{O} _{4}(\mathrm{~g})$ की साम्यावस्था पर ताप का प्रभाव
साम्यावस्था पर ताप का प्रभाव एक दूसरी ऊष्माशोषी अभिक्रिया से भी समझा जा सकता है।
$$ \begin{aligned} & {\underset{\text{गुलाबी}}{\left[\mathrm{Co}\left(\mathrm{H_2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})} + \underset{\text{रंगहीन}}{4 \mathrm{Cl}^{-}(\mathrm{aq})} \rightleftharpoons \underset{\text{नीला}}{\left[\mathrm{CoCl_4}\right]^{2-}(\mathrm{aq})} + } 6 \mathrm{H_2} \mathrm{O}(1) \\ \end{aligned} $$
कमरे के ताप पर $\left[\mathrm{CoCl} _{4}\right]^{2-}$ के कारण साम्यावस्था मिश्रण का रंग नीला हो जाता है। जब इसे हिमकारी मिश्रण में ठंडा किया जाता जाता है, तो मिश्रण का रंग $\left[\mathrm{Co}\left(\mathrm{H} _{2} \mathrm{O}\right) _{6}\right]^{3+}$ के कारण गुलाबी हो जाता है।
6.8.5 उत्प्रेरक का प्रभाव
उत्प्रेरक क्रियाकारकों के उत्पादों में परिवर्तन हेतु कम ऊर्जा वाला नया मार्ग उपलब्ध करवाकर अभिक्रिया के वेग को बढ़ा देता है। यह एक ही संक्रमण-अवस्था में गुजरने वाली अग्र एवं प्रतीप अभिक्रियाओं के वेग को बढ़ा देता है, जबकि साम्यावस्था को परिवर्तित नहीं करता। उत्प्रेरक अग्र एवं प्रतीप अभिक्रिया के लिए संक्रियण ऊर्जा को समान मात्रा में कम कर देता है। उत्प्रेरक अग्र एवं प्रतीप अभिक्रिया मिश्रण पर साम्यावस्था संघटन को परिवर्तित नहीं करता है। यह संतुलित समीकरण में या साम्यावस्था स्थिरांक समीकरण में प्रकट नहीं होता है।
$\mathrm{NH} _{3}$ के नाइट्रोजन एवं हाइड्रोजन से निर्माण पर विचार करें, जो एक अत्यंत ऊष्माक्षेपी अभिक्रिया है इसमें उत्पाद के कुल मोलों की संख्या अभिकारकों के मोलों से कम होती है। साम्यावस्था स्थिरांक तापक्रम को बढ़ाने से घटता है। कम ताप पर अभिक्रिया वेग घटता है एवं साम्यावस्था पर पहुँचने में अधि क समय लगता है, जबकि उच्च ताप पर क्रिया की दर संतोषजनक होती है, परंतु लब्धि कम होती है।
जर्मन रसायनज्ञ फ्रीस हाबर ने दर्शाया है कि लौह उत्प्रेरक की उपस्थिति में अभिक्रिया संतोषजनक दर से होती है, जबकि $\mathrm{NH} _{3}$ की साम्यावस्था सांद्रता संतोषजनक होती है। चूँकि उत्पाद के मोलो की संख्या अभिकारकों के मोलों की संख्या से कम है। अतः $\mathrm{NH} _{3}$ का उत्पादन दाब बढ़ाकर अधिक किया जा सकता है।
$\mathrm{NH} _{3}$ के संश्लेषण हेतु ताप एवं दाब की अनुकूलतम परिस्थितियाँ $500^{\circ} \mathrm{C}$ एवं 200 वायुमंडलीय दाब होती है। इसी प्रकार, संपर्क विधि द्वारा सल्फ्यूरिक अम्ल के निर्माण में
$2 \mathrm{SO} _{2}(\mathrm{~g})+\mathrm{O} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO} _{3}(\mathrm{~g}) ; \mathrm{K} _{\mathrm{c}}=1.7 \times 10^{26}$
साम्यावस्था स्थिरांक के परिणाम के अनुसार अभिक्रिया को लगभग पूर्ण हो जाना चाहिए, किंतु $\mathrm{SO} _{2}$ का $\mathrm{SO} _{3}$ में ऑक्सीकरण बहुत धीमी दर से होता है। प्लेटिनम अथवा डाइवैनेडियम पेन्टॉक्साईड $\left(\mathrm{V} _{2} \mathrm{O} _{5}\right)$ उत्प्रेरक की उपस्थिति में अभिक्रिया वेग काफी बढ़ जाता है।
नोटः यदि किसी अभिक्रिया के साम्यावस्था स्थिरांक का मान काफी कम होता हो, तो उसमें उत्प्रेरक बहुत कम सहायता कर पाता है।
6.9 विलयन में आयनिक साम्यावस्था
साम्य की दिशा पर सांद्रता परिवर्तन के प्रभाव वाले प्रसंग में आप निम्नलिखित आयनिक साम्य के संपर्क में आए हैं-
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \rightleftharpoons[\mathrm{Fe}(\mathrm{SCN})]^{2+}(\mathrm{aq})$
ऐसे अनेक साम्य हैं, जिनमें केवल आयन सम्मिलित होते हैं यहाँ हम उन साम्यों का अध्ययन करेंगे। यह सर्वविदित है कि चीनी के जलीय विलयन में विद्युत् धारा प्रवाहित नहीं होती है, जबकि जल में साधारण नमक (सोडियम क्लोराइड) मिलाने पर इसमें विद्युत् धारा का प्रवाह होता है तथा लवण की सांद्रता बढ़ने के साथ विलयन की चालकता बढ़ती है। माइकल फैराडे ने पदार्थों को उनकी विद्युत् चालकता क्षमता के आधार पर दो वर्गों में वर्गीकृत किया- एक वर्ग के पदार्थ जलीय विलयन में विद्युत् धारा प्रवाहित करते हैं, ये ‘विद्युत् अपघट्य’ कहलाते हैं, जबकि दूसरे जो ऐसा नहीं करते, वैद्युत अन अपघट्य कहलाते हैं। फैराडे ने विद्युत् अपघट्यों को पुनः प्रबल एवं दुर्बल वैद्युत अपघट्यों में वर्गीकृत किया। प्रबल वैद्युत अपघट्य जल में विलेय होकर लगभग पूर्ण रूप से आयनित होते हैं, जबकि दुर्बल अपघट्य आंशिक रूप से आयनित होते हैं। उदाहरणार्थ-सोडियम क्लोराइड के जलीय विलयन में मुख्य रूप से सोडियम आयन एवं क्लोराइड आयन पाए जाते हैं, जबकि ऐसीटिक अम्ल में एसीटेट आयन एवं हाइड्रोनियम आयन होते हैं। इसका कारण यह है कि सोडियम क्लोराइड का लगभग $100 %$ आयनन होता है, जबकि ऐसीटिक अम्ल, जो दुर्बल, विद्युत्-अपघट्य है, $5 %$ ही आयनित होता है। यह ध्यान रहे कि दुर्बल विद्युत् अपघट्यों में आयनों तथा अनायनित अणुओं के मध्य साम्य स्थापित होता है। इस प्रकार का साम्य, जिसमें जलीय विलयन में आयन पाए जाते हैं, आयनिक साम्य कहलाता है। अम्ल, क्षारक तथा लवण वैद्युत् अपघट्यों के वर्ग में आते हैं। ये प्रबल अथवा दुर्बल वैद्युत अपघट्यों की तरह व्यवहार करते हैं।
6.10 अम्ल, क्षारक एवं लवण
अम्ल, क्षारक एवं लवण प्रकृति में व्यापक रूप से पाए जाते हैं। जठर रस, जिसमें हाइड्रोक्लोरिक अम्ल पाया जाता है, हमारे आमाशय द्वारा प्रचुर मात्रा (1.2-1.5 L/दिन) में स्रावित होता है। यह पाचन प्रक्रिया के लिए अति आवश्यक है। सिरके का मुख्य अवयव एसीटिक अम्ल है। नीबू एवं संतरे के रस में सिट्रिक अम्ल एवं एस्कॉर्बिक अम्ल तथा इमली में टार्टरिक अम्ल पाया जाता है। अधिकांश अम्ल स्वाद में खट्टे होते हैं, लैटिन शब्द Acidus से बना ‘एसिड’ शब्द इनके लिए प्रयुक्त होता है, जिसका अर्थ है खट्टा। अम्ल नीले लिटमस को लाल कर देते हैं तथा कुछ धातुओं से अभिक्रिया करके डाइहाइड्रोजन उत्पन्न करते हैं। इसी प्रकार क्षारक लाल लिटमस को नीला करते हैं तथा स्वाद में कड़वे और स्पर्श में साबुनी होते हैं। क्षारक का एक सामान्य उदाहरण कपड़े धोने का सोडा है, जो धुलाई के लिए प्रयुक्त होता है। जब अम्ल एवं क्षारक को सही अनुपात में मिलाते हैं, तो वे आपस में अभिक्रिया कर के लवण देते हैं। लवणों के कुछ सामान्य उदाहरण सोडियम क्लोराइड, बेरियम सल्फेट, सोडियम नाइट्रेट आदि है। सोडियम क्लोराइड (साधारण नमक) हमारे भोजन का एक मुख्य घटक है, जो हाइड्रोक्लोरिक अम्ल एवं सोडियम हाइड्रॉक्साइड की क्रिया से प्राप्त होता है। यह ठोस अवस्था में पाया जाता है, जिसमें धनावेशित सोडियम तथा ऋणावेशित क्लोराइड आयन आपस में विपरीत आवेशित स्पीशीज़ के मध्य स्थिर वैद्युत आकर्षण के कारण गुच्छे बना लेते हैं। दो आवेशों के मध्य स्थिर वैद्युत बल माध्यम के परावैद्युतांक के व्युत्क्रमानुपाती होता है। जल सार्वत्रिक विलायक है, जिसका परावैद्युतांक 80 है। इस प्रकार जब सोडियम क्लोराइड को जल में घोला जाता है, तब आयनों के मध्य स्थित वैद्युत आकर्षण बल 80 के गुणक में दुर्बल हो जाते है, जिससे आयन विलयन में मुक्त रूप से गमन करते हैं। ये जल-अणुओं के साथ जलयोजित होकर पृथक् हो जाते हैं।
चित्र 6.10 जल में सोडियम क्लोराइड का वियोजन। $\mathrm{Na}^{+}$तथा $\mathrm{Cl}$ आयन ध्रुवीय जल-अणु के साथ जलयोजित होकर स्थायी हो जाते हैं।
जल में हाइड्रोक्लोरिक अम्ल के आयनन की तुलना ऐसीटिक अम्ल के आयनन से करने पर हमें ज्ञात होता है कि यद्यपि दोनों ही ध्रुवी अणु हैं, फिर भी हाइड्रोक्लोरिक अम्ल अपने अवयवी आयनों में पूर्ण रूप से आयनित होता है, परंतु ऐसीटिक अम्ल आंशिक रूप से $(<5 %)$ ही आयनित होता है। आयनन की मात्रा इनके मध्य उपस्थित बंधों की सामर्थ्य तथा आयनों के जलयोजन की मात्रा पर निर्भर करती है। पूर्व में वियोजन तथा आयनन पद भिन्न-भिन्न अर्थों में प्रयुक्त किए जाते रहे हैं। विलेय के आयन, जो उसकी ठोस अवस्था में भी विद्यमान रहते हैं, के जल में पृथक्करण की प्रक्रिया को ‘वियोजन’ कहते हैं (उदाहरणार्थ-सोडियम क्लोराइड), जबकि आयनन वह प्रक्रिया है, जिसमें उदासीन अणु विलयन में टूटकर आवेशित आयन देते हैं। यहाँ हम इन दोनों पदों को अंतर्बदल कर प्रयुक्त करेंगे।
माईकल फैराडे (1791-1867)
फैराडे का जन्म लंदन के पास एक सीमित साधन वाले परिवार में हुआ था। 14 वर्ष की उम्र में वह एक दयालु जिल्दसाज (Book binder) के यहाँ काम सीखने लगे। उसने उन्हें उन किताबों को पढ़ने की छूट दे दी थी। जिनकी जिल्द वह बाँधता था। भाग्यवश डेवी वह (Davy) का प्रयोगशाला सहायक बन गए तथा सन् 1813-1814 में फैराडे उनके साथ महाद्वीप की यात्रा पर चले गए। उस यात्रा के दौरान वे उस समय के कई अग्रणी वैज्ञानिकों के संपर्क में आए और उनके अनुभवों से बहुत सीखा। सन् 1825 में डेवी के बाद वे रॉयल संस्थान प्रयोगशालाओं (Royal Institute Laboratories) के निदेशक बनें तथा सन् 1833 में वे रसायन शास्त्र के प्रथम फुलेरियन आचार्य (First Fullerian Professor) बने। फैराडे का पहला महत्त्वपूर्ण कार्य-विश्लेषण रसायन में था। सन् 1821 के बाद उनका अधिकतर कार्य विद्युत् एवं चुंबकत्व तथा अन्य वैद्युत चुम्बकत्व सिद्धांतों से संबंधित थे। उन्हीं के विचारों के आधार पर ‘आधुनिक क्षेत्र सिद्धांत’ का प्रतिपादन हुआ। सन् 1834 में उन्होंने विद्युत् अपघटन से संबंधित दो नियमों की खोज की। फैराडे एक बहुत ही अच्छे एवं दयालु प्रकृति के व्यक्ति थे उन्होंने सभी सम्मानों को लेने से इंकार कर दिया। वे सभी वैज्ञानिक विवादों से दूर रहे। वे हमेशा अकेले काम करना पसंद करते थे। उन्होंने कभी भी सहायक नहीं रखा। उन्होंने विज्ञान को भिन्न-भित्र तरीकों से प्रसारित (Disseminated) किया, जिसमें उनके द्वारा रॉयल संस्थान में प्रारंभ की गई प्रत्येक शुक्रवार के शाम की भाषणमाला सम्मिलित है। ‘मोमबत्ती के रासायनिक इतिहास’ विषय पर अपने क्रिसमस व्याख्यान के लिए वे प्रख्यात थे। उन्होंने लगभग 450 वैज्ञानिक शोधपत्र प्रकाशित किए।
6.10.1 अम्ल तथा क्षारक की आरेनियस धारणा-
आरेनियस के सिद्धांतानुसार अम्ल वे पदार्थ हैं, जो जल में अपघटित होकर हाइड्रोजन आयन $\mathrm{H} _{(\mathrm{aq})}^{+}$देते हैं तथा क्षारक वे पदार्थ हैं, जो हाइड्रॉक्सिल आयन $\mathrm{OH} _{(\mathrm{aq})}^{-}$देते हैं। इस प्रकार जल में एक अम्ल $\mathrm{HX}$ का आयनन निम्नलिखित समीकरणों में से किसी एक के द्वारा प्रदर्शित किया जा सकता है-
$$ \begin{gathered} \mathrm{HX}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}) \\ या \quad \mathrm{HX}(\mathrm{aq})+\mathrm{H_2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H_3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}) \end{gathered} $$
एक मुक्त प्रोट्रॉन, $\mathrm{H}^{+}$अत्यधिक क्रियाशील होता है। स्वतंत्र रूप से जलीय विलयन में इसका अस्तित्व नहीं है। यह विलायक जल अणु के ऑक्सीजन से बंधित होकर त्रिकोणीय पिरामिडी हाइड्रोनियम आयन, $\mathrm{H} _{3} \mathrm{O}^{+}$देता है (बॉक्स देखें)। हम $\mathrm{H}^{+}(\mathrm{aq})$ तथा $\mathrm{H} _{3} \mathrm{O}^{+}(\mathrm{aq})$ दोनों को ही जलयोजित हाइड्रोजन आयन, जो जल अणुओं से घिरा हुआ एक प्रोटॉन है, के रूप में प्रयोग में लाते हैं। इस अध्याय में इसे साधारणतः $\mathrm{H}^{+}(\mathrm{aq})$ या $\mathrm{H} _{3} \mathrm{O}^{+}(\mathrm{aq})$ को अंतर्बदल कर प्रयोग करेंगे। इसका अर्थ जलयोजित प्रोटॉन है।
इसी प्रकार $\mathrm{MOH}$ सदृश्य किसी क्षारक का अणु जलीय विलयन में निम्नलिखित समीकरण के अनुसार आयनित होता है-
$$ \mathrm{MOH}(\mathrm{aq}) \rightarrow \mathrm{M}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) $$
हाइड्रोक्सिल आयन भी जलीय विलयन में जलयोजित रूप से रहता है ( बॉक्स देखें)। परंतु आरेनियस की अम्ल-क्षारक धारणा की अनेक सीमाएँ हैं। यह केवल पदार्थों के जलीय विलयन पर ही लागू होती है। यह अमोनिया जैसे पदार्थों के क्षारीय गुणों की स्पष्ट नहीं कर पाती है, जिनमें हाइड्रॉक्सिल समूह नहीं है।
हाइड्रोनियम एवं हाइड्रॉक्सिल आयन
हाइड्रोजन आयन, जो स्वयं एक प्रोटॉन है, बहुत छोटा (व्यास $=10^{-13} \mathrm{~cm}$ ) होने एवं जल अणु पर गहन विद्युत् क्षेत्र होने के कारण स्वयं को जल-अणु पर उपस्थित दो एकाकी युग्मों में किसी एक के साथ जुड़कर $\mathrm{H} _{3} \mathrm{O}^{+}$देता है। इस स्पीशीज़ को कई यौगिकों (उदाहरणार्थ- $\mathrm{H} _{3} \mathrm{O}^{+} \mathrm{Cl}^{-}$) में ठोस अवस्था में पहचाना गया है। जलीय विलयन में हाइड्रोनियम आयन फिर से जलयोजित होकर $\mathrm{H} _{5} \mathrm{O} _{2}^{+}, \mathrm{H} _{7} \mathrm{O} _{3}^{+}$एवं $\mathrm{H} _{9} \mathrm{O} _{4}^{+}$ सदृश स्पीशीज़ बनाती है। इसी प्रकार हाइड्रॉक्सिल आयन जलयोजित होकर कई ऋणात्मक स्पीशीज़ $\mathrm{H} _{3} \mathrm{O} _{2}^{-}, \mathrm{H} _{5} \mathrm{O} _{3}^{-}$ तथा $\mathrm{H} _{7} \mathrm{O} _{4}^{-}$आदि बनाता है।
6.10.2 ब्रन्टेद लोरी अम्ल एवं क्षारक
डेनिश रसायनज्ञ जोहान्स ब्रन्सेद (1874-1936) तथा अंग्रेज रसायनज्ञ थॉमस एम. लोरी (1874-1936) ने अम्लों एवं क्षारकों की एक अधिक व्यापक परिभाषा दी। ब्रान्स्टेद-लोरी सिद्धांत के अनुसार वे पदार्थ, जो विलयन में प्रोटॉन $\mathrm{H}^{+}$देने में सक्षम हैं, अम्ल हैं तथा वे पदार्थ, जो विलयन से प्रोटॉन $\mathrm{H}^{+}$ ग्रहण करने में सक्षम हैं, क्षारक हैं।
संक्षेप में अम्ल प्रोटॉनदाता तथा क्षारक प्रोटॉन ग्राही यहाँ हम $\mathrm{NH} _{3}$ के $\mathrm{H} _{2} \mathrm{O}$ में विलयन के उदाहरण पर विचार करें, जिसे निम्नलिखित समीकरण में दर्शाया गया है,
हाइड्रॉक्सिल आयनों की उपस्थिति के कारण क्षारीय विलयन बनता है। उपरोक्त अभिक्रिया में जल प्रोटॉन दाता है तथा अमोनिया प्रोटॉनग्राही है। इसलिए इन्हें क्रमशः ब्रन्टेद अम्ल तथा क्षारक कहते हैं। उत्क्रम अभिक्रिया में प्रोटॉन $\mathrm{NH} _{4}^{+}$ से $\mathrm{OH}^{-}$को स्थानांतरित होता है। यहाँ $\mathrm{NH} _{4}^{+}$ब्रन्सेद अम्ल एवं $\mathrm{OH}^{-}$ब्रस्टेद क्षारक का कार्य करते हैं। $\mathrm{H} _{2} \mathrm{O}$ एवं $\mathrm{OH}^{-}$अथवा $\mathrm{NH} _{4}^{+}$एवं $\mathrm{NH} _{3}$ सदृश अम्ल और क्षार के युग्म, जो क्रमश: एक प्रोटॉन की उपस्थिति या अनुपस्थिति के कारण दूसरे भिन्न हैं, संयुग्मी अम्ल-क्षारक युग्म कहलाते हैं। इस प्रकार $\mathrm{H} _{2} \mathrm{O}$ का संयुग्मी क्षारक $\mathrm{OH}^{-}$है तथा क्षारक $\mathrm{NH} _{3}$ का संयुग्मी अम्ल $\mathrm{NH} _{4}^{+}$है। यदि ब्रन्सेद अम्ल प्रबल है तो इसका संयुग्मी क्षारक दुर्बल होगा तथा यदि ब्रन्स्टेद अम्ल दुर्बल है, तो इसका संयुग्मी क्षारक प्रबल होगा। यहाँ ध्यान देने योग्य बात यह है कि संयुग्मी अम्ल में एक अतिरिक्त प्रोटॉन होता है तथा प्रत्येक संयुग्मी क्षार में एक प्रोट्रॉन कम होता है।
जल में हाइड्रोक्लोरिक अम्ल के अन्य उदाहरण पर विचार करें। $\mathrm{HCl}(\mathrm{aq}), \mathrm{H} _{2} \mathrm{O}$ अणु को प्रोटॉन देकर अम्ल की भाँति एवं $\mathrm{H} _{2} \mathrm{O}$ क्षारक की भाँति व्यवहार करता है।
उपरोक्त समीकरण से देखा जा सकता है कि जल भी एक क्षारक की भाँति व्यवहार करता है, क्योंकि यह प्रोटॉन ग्रहण करता है। जब जल $\mathrm{HCl}$ से प्रोटॉन ग्रहण करता है, तो $\mathrm{H} _{3} \mathrm{O}^{+}$स्पीशीज़ का निर्माण होता है। अतः $\mathrm{Cl}^{-}$आयन $\mathrm{HCl}$ अम्ल का संयुग्मी क्षारक है एवं $\mathrm{HCl}, \mathrm{Cl}^{-}$क्षारक का संयुग्मी अम्ल है। इसी प्रकार, $\mathrm{H} _{2} \mathrm{O}$ भी $\mathrm{H} _{3} \mathrm{O}^{+}$अम्ल का संयुग्मी क्षारक एवं $\mathrm{H} _{3} \mathrm{O}^{+}, \mathrm{H} _{2} \mathrm{O}$ क्षारक का संयुग्मी अम्ल है।
यह रोचक तथ्य है कि जल एक अम्ल तथा एक क्षारक की तरह दोहरी भूमिका दर्शाता है। $\mathrm{HCl}$ के साथ अभिक्रिया में जल क्षार की तरह व्यवहार करता है, जबकि अमोनिया के साथ प्रोटॉन त्यागकर एक अम्ल की भाँति व्यवहार करता है।
स्वांटे आरेनियस (1859-1927)
आरेनियस का जन्म स्वीडन में उपसाला के निकट हुआ था। सन् 1884 में उन्होंने उपसाला विश्वविद्यालय में विद्युत् अपघट्य विलयन की चालकताओं पर शोध ग्रंथ (Thesis) प्रस्तुत किया। अगले 5 वर्षों तक उन्होंने बहुत यात्राएँ कीं तथा यूरोप के शोध केंद्रों पर गए। सन् 1895 में वे नव स्थापित स्टॉकहोम विश्वविद्यालय में भौतिकी के आचार्य पद पर नियुक्त किए गए सन् 1897 से 1902 तक वे इसके रेक्टर भी रहे। सन् 1905 से अपनी मृत्यु तक वे स्टॉकहोम के नोबेल संस्थान में भौतिकी रसायन के निदेशक पद पर काम करते रहे। वे कई वर्षों तक विद्युत्-अपघट्य विलयनों पर काम करते रहे। 1899 में उन्होंने एक समीकरण, जो आज सामान्यतः आरेनियस समीकरण, कहलाता है, के आधार पर अभिक्रिया-दर की ताप पर निर्भरता का वर्णन किया।
उन्होंने कई क्षेत्रों में काम किया। प्रतिरक्षा रसायन (Immuno Chemistry), ब्रह्मांड विज्ञान (Cosmology), जीवन का स्रोत (Origin In Life) तथा हिम-युग के कारण (Cause Of Ice Age) संबंधी क्षेत्रों में उनका महत्त्वपूर्ण योगदान रहा। वे ऐसे प्रथम व्यक्ति थे, जिन्होंने ‘ग्रीन हाउस प्रभाव’ को यह नाम देकर इसकी विवेचना की। सन् 1903 में विद्युत्-अपघट्यों के विघटन के सिद्धांत एवं रसायन विज्ञान के विकास में इसकी उपयोगिता पर उन्हें रसायन विज्ञान का नोबेल पुरस्कार मिला।
उदाहरण 6.12
निम्नलिखित ब्रन्स्टेद अम्लों के लिए संयुग्मी क्षारक क्या है? $\mathrm{HF}, \mathrm{H} _{2} \mathrm{SO} _{4}$ तथा $ \mathrm{HCO} _{3}^{-}$
हल
प्रत्येक के संयुग्मी क्षारकों में एक प्रोटॉन कम होना चाहिए। अतः संगत संयुग्मी क्षारक क्रमशः $\mathrm{F}^{-}, \mathrm{HSO} _{4}^{-}$ तथा $\mathrm{HCO} _{3}^{-}$हैं।
उदाहरण 6.13
ब्रन्स्टेद क्षारकों $\mathrm{NH} _{2}^{-}, \mathrm{NH} _{3}$ तथा $\mathrm{HCOO}^{-}$के लिए संगत ब्रन्स्टेद अम्ल लिखिए।
हल
संयुग्मी अम्ल के पास क्षारक की अपेक्षा एक प्रोटॉन अधिक होना चाहिए। अतः संगत संयुग्मी अम्ल क्रमशः $\mathrm{NH} _{3}, \mathrm{NH} _{4}^{+}$तथा $\mathrm{HCOOH}$ हैं।
उदाहरण 6.14
$\mathrm{H} _{2} \mathrm{O}, \mathrm{HCO} _{3}^{-}, \mathrm{HSO} _{4}^{-}$तथा $\mathrm{NH} _{3}$ ब्रन्स्टेदअम्ल तथा ब्रन्स्टेद क्षारक-दोनों प्रकार से काम कर सकते हैं। प्रत्येक के लिए संगत संयुग्मी अम्ल तथा क्षारक लिखिए।
हल
उत्तर निम्नलिखित सारणी में दिया गया है-
स्पीशीज़ | संयुग्मी अम्ल | संयुग्मी क्षारक |
---|---|---|
$\mathrm{H} _{2} \mathrm{O}$ | $\mathrm{H} _{3} \mathrm{O}^{+}$ | $\mathrm{OH}^{-}$ |
$\mathrm{HCO} _{3}^{-}$ | $\mathrm{H} _{2} \mathrm{CO} _{3}$ | $\mathrm{CO} _{3}^{2-}$ |
$\mathrm{HSO} _{4}^{-}$ | $\mathrm{H} _{2} \mathrm{SO} _{4}$ | $\mathrm{SO} _{4}^{2-}$ |
$\mathrm{NH} _{3}$ | $\mathrm{NH} _{4}^{+}$ | $\mathrm{NH} _{2}^{-}$ |
6.10.3 लूइस अम्ल एवं क्षारक
जी.एन. लूइस ने सन् 1923 में अम्ल को ‘इलेक्ट्रॉनयुग्मग्राही’ तथा क्षारक को ‘इलेक्ट्रॉन युग्मदाता’ के रूप में पारिभाषित किया। जहाँ तक क्षारकों का प्रश्न है, ब्रन्स्टेद-लोरी क्षारक तथा लूइस क्षारक में कोई विशेष अंतर नहीं है, क्योंकि दोनों ही सिद्धांतों में क्षारक एकाकी इलेक्ट्रॉन युग्म देता है, परंतु लूइस अम्ल सिद्धांत के अनुसार, बहुत से ऐसे पदार्थ भी अम्ल हैं, जिनमें प्रोटॉन नहीं है। कम इलेक्ट्रॉन वाले $\mathrm{BF} _{3}$ की $\mathrm{NH} _{3}$ से अभिक्रिया इसका एक विशिष्ट उदाहरण है।
इस प्रकार प्रोटॉनरहित एवं इलेक्ट्रॉन की कमी वाला $\mathrm{BF} _{3}$ यौगिक $\mathrm{NH} _{3}$ के साथ क्रिया कर उसका एकाकी इलेक्ट्रॉन युग्म लेकर अम्ल का कार्य करता है। इस अभिक्रिया को निम्नलिखित समीकरण द्वारा प्रदर्शित किया जा सकता है-
$$ \mathrm{BF} _{3}+: \mathrm{NH} _{3} \rightarrow \mathrm{BF} _{3}: \mathrm{NH} _{3} $$
इलेक्ट्रॉन क्षुद्र स्पीशीज़, जैसे $-\mathrm{AlCl} _{3}, \mathrm{Co}^{3+}, \mathrm{Mg}^{2+}$ आदि लूइस अम्ल की भाँति व्यवहार करती हैं, जबकि $\mathrm{H} _{2} \mathrm{O}$, $\mathrm{NH} _{3}, \mathrm{OH}^{-}$स्पीशीज़ जो एक इलेक्ट्रॉन युग्म दान कर सकती है, लूइस क्षारक की तरह व्यवहार करती है।
उदाहरण 6.15
निम्नलिखित को लूइस अम्लों तथा क्षारकों में वर्गीकृत कीजिए और बताइए कि ये ऐसा व्यवहार क्यों दर्शाते हैं?
(क) $\mathrm{HO}^{-}$ (ख) $\mathrm{F}^{-}$ ( ग) $\mathrm{H}^{+}$ (घ) $\mathrm{BCl} _{3}$
हल
(क) चूँकि हाइड्रॉक्सिल आयन एक लूइस क्षारक है, अतः यह इलेक्ट्रॉन युग्म दान कर सकता है।
(ख) चूँकि फ्लुओराइड आयन लूइस क्षारक है, अतः यह चारों इलेक्ट्रॉन युग्म में से किसी एक का दान कर सकता है।
(ग) चूँकि प्रोटॉन लूइस अम्ल है, अतः हाइड्रॉक्सिल आयन तथा फ्लुओराइड आयनों, जैसे- क्षारकों से इलेक्ट्रॉन युग्म ले सकता है।
(घ) चूँकि बोरोन ट्राइक्लोराइड $\mathrm{BCl} _{3}$ लूइस अम्ल है, अतः अमोनिया अथवा अमीन अणुओं आदि क्षारकों से इलेक्ट्रॉन युग्म ले सकता है।
6.11 अम्लों एवं क्षारकों का आयनन
अधिकतर रासायनिक एवं जैविक अभिक्रियाएं जलीय माध्यम में होती हैं। इन्हें समझने के लिए आर्रेनियस की परिभाषा के अनुसार अम्लों एवं क्षारकों के आयनन की विवेचना उपयोगी होगी। परक्लोरिक अम्ल $\left(\mathrm{HClO} _{4}\right)$ हाइड्रोक्लोरिक अम्ल $(\mathrm{HCl})$, हाइड्रोत्रोमिक अम्ल $(\mathrm{HBr})$ हाइड्रोआयोडिक अम्ल $(\mathrm{HI})$, नाइट्रिक अम्ल $\left(\mathrm{HNO} _{3}\right)$ एवं सल्फ्यूरिक अम्ल $\left(\mathrm{H} _{2} \mathrm{SO} _{4}\right)$ आदि अम्ल ‘प्रबल’ कहलाते हैं, क्योंकि यह जलीय माध्यम में संगत आयनों में लगभग पूर्णतः वियोजित होकर प्रोटॉनदाता के समान कार्य करते हैं। इसी प्रकार लीथियम हाइड्रॉक्साइड $(\mathrm{LiOH})$, सोडियम हाइड्रॉक्साइड $(\mathrm{NaOH})$, पोटैशियम हाइड्रॉक्साइड $(\mathrm{KOH})$, सीज़ियम हाइड्रॉक्साइड $(\mathrm{CsOH})$ एवं बेरियम हाइड्रॉक्साइड $\mathrm{Ba}(\mathrm{OH}) _{2}$, जलीय माध्यम में संगत आयनों में लगभग पूर्णतः वियोजित होकर $\mathrm{H} _{3} \mathrm{O}$ तथा $\mathrm{OH}^{-}$आयन देते हैं। आरेनियस सिद्धांत के अनुसार, ये प्रबल क्षारक हैं, क्योंकि ये माध्यम में पूर्णतः वियोजित होकर क्रमशः $\mathrm{OH}^{-}$आयन प्रदान करते हैं। विकल्पतः अम्ल या क्षार का सामर्थ्य अम्लों एवं क्षारकों के ब्रन्स्टेदलौरी सिद्धांत के अनुसार मापा जा सकता है। इसके अनुसार, ‘प्रबल अम्ल’ से तात्पर्य ‘एक उत्तम प्रोटॉनदाता’ एवं प्रबल क्षारक से तात्पर्य ‘उत्तम प्रोटॉनग्राही’ है। दुर्बल अम्ल HA के अम्ल-क्षार वियोजन साम्य पर विचार करें-
$\underset{\text { अम्ल }}{\mathrm{HA}(\mathrm{aq})}+\underset{\text { क्षारक }}{\mathrm{H} _{2} \mathrm{O}(\mathrm{l})} \rightleftharpoons \underset{\text { संयुग्मी अम्ल }} {\mathrm{H} _{3} \mathrm{O}^{+}(\mathrm{aq})}+ \underset{\text { संयुग्मी क्षारक }} {\mathrm{A} ^- (eq)}$
खंड 6.10 .2 में हमने देखा कि अम्ल (या क्षारक) वियोजन साम्य एक प्रोटॉन के अग्र एवं प्रतीप दिशा में स्थानांतरण से युक्त एक गतिक अवस्था है। अब यह प्रश्न उठता है कि यदि साम्य गतिक है, तो वह समय के साथ किस दिशा में अग्रसर होगा? इसे प्रभावित करनेवाला प्रेरक बल कौन सा है? इन प्रश्नों के उत्तर देने के लिए हम वियोजन साम्य में सम्मिलित दो अम्लों (या क्षारकों) के सामर्थ्य की तुलना के संदर्भ में विचार करेंगे। उपरोक्त वर्णित अम्ल-वियोजन साम्य में उपस्थित दो अम्लों $\mathrm{HA}$ एवं $\mathrm{H} _{3} \mathrm{O}^{+}$पर विचार करें। हमें यह देखना होगा कि इनमें से कौन-सा प्रबल प्रोटॉनदाता है। प्रोटॉन देने की जिसकी भी प्रवृत्ति अन्य से अधिक होगी, वह ‘प्रबल अम्ल’ कहलाएगा एवं साम्य दुर्बल अम्ल की दिशा में अग्रसर होगा। जैसे, यदि $\mathrm{HA}, \mathrm{H} _{3} \mathrm{O}^{+}$से प्रबल अम्ल है, तो $\mathrm{HA}$ प्रोटॉन दान करेगा, $\mathrm{H} _{3} \mathrm{O}^{+}$नहीं। विलयन में मुख्य रूप से $\mathrm{A}^{-}$एवं $\mathrm{H} _{3} \mathrm{O}^{+}$आयन होंगे। साम्य दुर्बल अम्ल एवं क्षार की दिशा में अग्रसर होता है, क्योंकि प्रबल अम्ल प्रबल क्षार को प्रोटॉन देते हैं।
इसके अनुसार, प्रबल अम्ल जल में पूर्णतः आयनित होता है। परिणामी क्षारक अत्यंत दुर्बल होगा, अर्थात् प्रबल अम्लों के संयुग्मी क्षारक अत्यंत दुर्बल होते हैं। प्रबल अम्ल जैसे परक्लोरिक अम्ल $\mathrm{HClO} _{4}$, हाइड्रोक्लोरिक अम्ल $\mathrm{HCl}$, हाइड्रोब्रामिक अम्ल $\mathrm{HBr}$, हाइड्रोआयोडिक अम्ल $\mathrm{HI}$, नाइट्रिक अम्ल $\mathrm{HNO} _{3}$, सल्फ्यूरिक अम्ल $\mathrm{H} _{2} \mathrm{SO} _{4}$ आदि प्रबल अम्लों के संयुग्मी क्षारक $\mathrm{ClO} _{4}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{NO} _{3}^{-}$आयन होंगे, जो $\mathrm{H} _{2} \mathrm{O}$ से अधिक दुर्बल क्षारक है। इसी प्रकार अत्यंत प्रबल क्षार, अत्यंत दुर्बल अम्ल देगा, जबकि एक दुर्बल अम्ल, जैसे- HA अणु उपस्थित रहेंगे। नाइट्रस अम्ल $\left(\mathrm{HNO} _{2}\right)$, हाइड्रोफ्लुओरिक अम्ल (HF) एवं एसिटिक अम्ल $\left(\mathrm{CH} _{3} \mathrm{COOH}\right)$ प्रतीकात्मक दुर्बल अम्ल हैं। यह बात ध्यान रखने योग्य है कि दुर्बल अम्लों के संयुग्मी क्षारक अत्यंत प्रबल होते हैं। उदाहरण के लिए, $\mathrm{NH}^{-}$ ${ } _{2}, \mathrm{O}^{2-}$ एवं $\mathrm{H}^{-}$उत्तम प्रोटॉनग्राही है। अतः $\mathrm{H} _{2} \mathrm{O}$ से अत्यंत प्रबल क्षारक है।
फिनाफ्थालीन, ब्रोमोथाइमोल ब्लू आदि जल में विलेय कार्बनिक यौगिक दुर्बल अम्लों की भाँति व्यवहार करते हैं। इनके अम्ल (HIn) तथा संयुक्त क्षार ( $\left.\mathrm{In}^{-}\right)$भिन्न रंग दर्शाते हैं।
$\underset{\substack{\text{अम्ल सूचक} \\ \text{रंग-क}}}{Hln(aq)} + H_2 O (l) \rightleftharpoons \underset{\text{संयुग्मी अम्ल }}{H_3O^+ \text{(aq)}} + \underset{\substack{\text{संयुग्मी क्षार } \\ \text{रंग-ख}}}{ln^- \text{(aq)}}$
ऐसे यौगिकों का उपयोग अम्ल क्षार अनुमापन में सूचकों के रूप में $\mathrm{H}^{+}$आयनों की सांद्रता निकालने के लिए किया जाता है।
6.11.1 जल का आयनन स्थिरांक एवं इसका आयनिक गुणनफल
हमने खंड 6.10 .2 में यह देखा कि कुछ पदार्थ (जैसे जल) अपने विशिष्ट गुणों के कारण अम्ल एवं क्षारक- दोनों की तरह व्यवहार कर सकते हैं। अम्ल HA की उपस्थिति में यह प्रोटॉन ग्रहण करता है एवं क्षारक की तरह व्यवहार करता है, जबकि क्षारक $\mathrm{B}^{-}$की उपस्थिति में यह प्रोटॉन देकर अम्ल की तरह व्यवहार करता है। शुद्ध जल $\mathrm{H} _{2} \mathrm{O}$ का एक अणु प्रोटॉन देता है एवं अम्ल की तरह व्यवहार करता है तथा जल का दूसरा अणु एक प्रोटॉन ग्रहण करता है एवं उसी समय क्षारक की तरह व्यवहार करता है। निम्नलिखित साम्यावस्था स्थापित होती है-
$$ \begin{aligned} & \mathrm{H} _{2} \mathrm{O}(\mathrm{l})+\mathrm{H} _{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H} _{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\ & \text { अम्ल } \quad \quad \text { क्षारक } \quad \quad \text {संयुग्मी अम्ल } \quad \text {संयुग्मी क्षारक } \end{aligned} $$
वियोजन स्थिरांक को हम इस तरह प्रदर्शित करते हैं-
$$ \begin{equation*} K=\left[\mathrm{H} _{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{H} _{2} \mathrm{O}\right] \tag{6.26} \end{equation*} $$
जल की सांद्रता को हर से हटा देते हैं, क्योंकि इसकी सांद्रता स्थिर रहती है। $\left[\mathrm{H} _{2} \mathrm{O}\right]$ को साम्य स्थिरांक सम्मिलित करने पर नया स्थिरांक $K _{\mathrm{w}}$ प्राप्त होता है, जिसे जल का आयनिक गुणनफल कहते हैं।
$$ \begin{equation*} K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \tag{6.27} \end{equation*} $$
$298 \mathrm{~K}$ पर प्रायोगिक रूप $\mathrm{H}^{+}$आयन की सांद्रता $1.0 \times 10^{-7} \mathrm{M}$ पाई गई है और जल के वियोजन से उत्पन्न $\mathrm{H}^{+}$ और $\mathrm{OH}^{-}$आयनों की संख्या बराबर होती है, हाइड्रॉक्सिल आयनों की सांद्रता, $\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]=$ $1.0 \times 10^{-7} \mathrm{M}$ इस प्रकार, $298 \mathrm{~K}$ पर
$$K_{\mathrm{w}}=\left[\mathrm{H_3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\left(1 \times 10^{-7}\right)^{2}=1 \times 10^{-14} \mathrm{M}^{2} \tag{7.28}$$
$K_{\mathrm{w}}$ का मान ताप पर निर्भर करता है, क्योंकि यह साम्यावस्था स्थिरांक है।
शुद्ध जल का घनत्व $1000 \mathrm{~g} / \mathrm{L}$ है और इसका मोलर द्रव्यमान $18.0 \mathrm{~g} / \mathrm{mol}$ है। इससे शुद्ध जल की मोलरता हम इस तरह निकाल सकते हैं-
$\left[\mathrm{H} _{2} \mathrm{O}\right]=(1000 \mathrm{~g} / \mathrm{L})(1 \mathrm{~mol} / 18.0 \mathrm{~g})=55.55 \mathrm{M}.$ इस प्रकार, वियोजित एवं अवियोजित योजित जल का अनुपात- $10^{-7} /(55.55)=1.8 \times 10^{-9}$ or $\sim 2$ in $10^{-9}$ (इस प्रकार साम्य मुख्यतः अवियोजित जल के अणुओं की ओर रहता है।)
अम्लीय, क्षारीय और उदासीन जलीय विलयनों को $\mathrm{H} _{3} \mathrm{O}^{+}$एवं $\mathrm{OH}^{-}$की सांद्रताओं के सापेक्षिक मानों द्वारा विभेदित किया जा सकता है-
$$ \begin{aligned} & \text { अम्लीय: }\left[\mathrm{H_3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right] \\ & \text {उदासीन: }\left[\mathrm{H_3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right] \\ & \text {क्षारीय : }\left[\mathrm{H_3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right] \end{aligned} $$
6.11.2 $\mathrm{pH}$ स्केल
हाइड्रोनियम आयन की मोलरता में सांद्रता को एक लघुगुणकीय मापक्रम (Logarithmic Scale) में सरलता से प्रदर्शित किया जाता है, जिसे $\mathbf{p H}$ स्केल कहा जाता है। हाइड्रोजन आयन की सक्रियता $\left(\mathrm{a} _{\mathrm{H}^{+}}\right)$के ॠणात्मक 10 आधारीय लघुगुणकीय मान को $\mathrm{pH}$ कहते हैं। कम सांद्रता (<0.01M) पर हाइड्रोजन आयन की सक्रियता, संख्यात्मक रूप से इसकी मोलरता, जो $\left(\mathrm{H}^{+}\right)$द्वारा प्रदर्शित की जाती है, के तुल्य होती है। हाइड्रोजन आयन की सक्रियता की कोई इकाई नहीं होती है, इसे इस समीकरण द्वारा परिभाषित किया जा सकता है-
$$ \mathrm{a} _{\mathrm{H}^{+}}=\left[\mathrm{H}^{+}\right] / \mathrm{mol} \mathrm{L}^{-1} $$
निम्नलिखित समीकरण $\mathrm{pH}$ एवं हाइड्रोजन आयन सांद्रता में संबंध दर्शाता है-
$$ \mathrm{pH}= - \log \mathrm{a} _{\mathrm{H}^{+}}= - \log {[\mathrm{H}^{+}] / \mathrm{mol} \mathrm{L}^{-1}} $$
इस प्रकार $\mathrm{HCl}$ के अम्लीय विलयन $\left(10^{-2} \mathrm{M}\right)$ के $\mathrm{pH}$ का मान $=2$ होता है। इसी तरह $\mathrm{NaOH}$ के एक क्षारीय विलयन, जिसमें $\left[\mathrm{OH}^{-}\right]=10^{-4}$ तथा $\left[\mathrm{H} _{3} \mathrm{O}^{+}\right]=10^{-10} \mathrm{M}$ की $\mathrm{pH}=10$ होगी। शुद्ध तथा उदासीन जल में $298 \mathrm{~K}$ पर हाइड्रोजन आयन की सांद्रता $10^{-7} \mathrm{M}$ होती है, इसलिए इसका $\mathrm{pH}=-\log \left(10^{-7}\right)=7$ होगा।
यदि कोई जलीय विलयन अम्लीय है, तो उसका $\mathrm{pH} 7$ से कम एवं यदि वह क्षारीय है, तो उसका $\mathrm{pH} 7$ से अधिक होगा।
इस प्रकार,
अम्लीय विलयन की $\mathrm{pH}<7$
क्षारीय विलयन की $\mathrm{pH}<7$
उदासीन विलयन की $\mathrm{pH}=7$
अब $298 \mathrm{~K}$ पर पुनर्विचार समीकरण 6.28 पर करें-
$$ K_{\mathrm{w}}=\left[\mathrm{H} _{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14} $$
समीकरण के दोनों ओर का ऋणात्मक लघुगुणक लेने पर:
$$ \begin{align*} -\log K _{\mathrm{w}} & =-\log {[\mathrm{H} _{3} \mathrm{O}^{+}][\mathrm{OH}^{-}]} \\ & =-\log [\mathrm{H} _{3} \mathrm{O}^{+}]-\log [\mathrm{OH}^{-}] \\ & =-\log 10^{-14} \\ \mathrm{p} K _{\mathrm{w}} & =\mathrm{pH}+\mathrm{pOH}=14 \tag{6.29} \end{align*} $$
ध्यान देने योग्य बात यह है कि यद्यपि $K_{w}$ का मान तापक्रम के साथ परिवर्तित होता है। तथापि तापक्रम के साथ $\mathrm{pH}$ के मान में परिवर्तन इतने कम होते हैं कि हम अकसर उसकी उपेक्षा कर देते हैं।
$p K_{\mathrm{w}}$ जलीय विलयनों के लिए महत्त्वपूर्ण राशि होती है। यह हाइड्रोजन तथा हाइड्रोक्सिल आयनों की सांद्रता को नियंत्रित करती है, चूँकि इनका गुणनफल स्थिरांक होता है। अतः यह ध्यानवत रहे कि $\mathrm{pH}$ मापक्रम लघुगुणक होता है। $\mathrm{pH}$ के मान में एक इकाई परिवर्तन का अर्थ है $\left[\mathrm{H}^{+}\right]$की सांद्रता में गुणक 10 का परिवर्तन। इसी प्रकार यदि हाइड्रोजन आयन सांद्रता $\left[\mathrm{H}^{+}\right]$में 100 गुणक का परिवर्तन हो, तो $\mathrm{pH}$ के मान में 2 इकाई का परिवर्तन होगा। अब आप समझ गए होंगे कि क्यों ताप द्वारा $\mathrm{pH}$ में परिवर्तन की उपेक्षा हम कर देते हैं।
जैविक एवं प्रसाधन-संबंधी अनुप्रयोगों में विलयन के $\mathrm{pH}$ का मापन अत्यधिक आवश्यक है। $\mathrm{pH}$ पेपर, जो विभिन्न $\mathrm{pH}$ वाले विलयन में भिन्न-भिन्न रंग देता है, की सहायता से $\mathrm{pH}$ के लगभग मान का पता लगाया जा सकता है। आजकल चार पट्टीवाला $\mathrm{pH}$ पेपर मिलता है। एक ही पर भिन्न-भिन्न पट्टियाँ भिन्न-भिन्न रंग देती हैं (चित्र 6.11) $\mathrm{pH}$ पेपर द्वारा 114 तक के $\mathrm{pH}$ मान लगभग 0.5 की यथार्थता तक ज्ञात किया जा सकता है।
चित्र 6.11: समान $\mathrm{pH}$ पर भित्र रंग देनेवाली $\mathrm{pH}$ पेपर की चार पट्टियाँ
उच्च यथार्थता के लिए $\mathrm{pH}$ मीटर का उपयोग किया जाता है। $\mathrm{pH}$ मीटर एक ऐसा यंत्र है, जो परीक्षण-विलयन के विद्युत्-विभव पर आधारित $\mathrm{pH}$ का मापन 0.001 यथार्थता तक करता है। आजकल बाजार में कलम के बराबर आकारवाले $\mathrm{pH}$ मीटर उपलब्ध हो गए हैं। कुछ सामान्य पदार्थों की $\mathrm{pH}$ सारणी 6.5 में दी गई है-
उदाहरण 6.16
पेय पदार्थ के नमूने में हाइड्रोजन आयन की सांद्रता $3.8 \times 10^{-3} \mathrm{M}$ है। इसका $\mathrm{pH}$ क्या होगा?
हल
$\mathrm{pH}=-\log \left[3.8 \times 10^{-3}\right]$
$=-\{\log [3.8]+\log \left[10^{-3}\right]\}$
$=-{(0.58)+(-3.0)}=-{-2.42}=2.42$
अतः पेय पदार्थ का $\mathrm{pH}$ 2.42 है यह अम्लीय है।
सारणी 6.5 कुछ सामान्य पदार्थों की $\mathrm{pH}$ के मान
द्रव के नाम | $\mathbf{p H}$ | द्रव के नाम | $\mathbf{p H}$ |
---|---|---|---|
$\mathrm{NaOH}$ का संतृप्त विलयन | $\sim 15$ | काली कॉफी | 5.0 |
$0.1 \mathrm{M} \mathrm{NaOH}$ विलयन | 13 | टमाटर का रस | $\sim 4.2$ |
चूने का पानी | 10.5 | मृदु पेय पदार्थ तथा सिरका | $\sim 3.0$ |
मिल्क ऑफ मैग्नीशिया | 10 | नीबू-पानी | $\sim 2.2$ |
अंडे का सफेद भाग, समुद्री जल | 7.8 | जठर-रस | $\sim 1.2$ |
मानव-रुधिर | 7.4 | $1 \mathrm{M} \mathrm{HCl}$ विलयन | $\sim 0 $ |
दूध | 6.8 | सांद्र $\mathrm{HCl}$ | $\sim-1.0$ |
मानव-श्लेष्मा | 6.4 |
उदाहरण 6.17
$1.0 \times 10^{-8} \mathrm{M} \mathrm{HCl}$ विलयन के $\mathrm{pH}$ की गणना करें।
हल
$$ \begin{aligned} & 2 \mathrm{H_2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H_3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\ & K_{\mathrm{w}}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H_3} \mathrm{O}^{+}\right] \\ & \quad=10^{-14} \end{aligned} $$
माना $\mathrm{x}=\left[\mathrm{OH}^{-}\right]=$जल से प्राप्त $\mathrm{H} _{3} \mathrm{O}^{+}$। $\mathrm{H} _{3} \mathrm{O}^{+}$सांद्रता (i) जो घुलित $\mathrm{HCl}$ से प्राप्त होती है जैसे
$\mathrm{HCl}(\mathrm{aq})+\mathrm{H} _{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H} _{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$ तथा (ii) जल के आयनीकरण से प्राप्त होती है। यहाँ दोनों $\mathrm{H} _{3} \mathrm{O}^{+}$उद्गमों पर विचार करना होगा-
$\left[\mathrm{H} _{3} \mathrm{O}^{+}\right]=10^{-8}+\mathrm{x}$
$K_{\mathrm{w}}=\left(10^{-8}+\mathrm{x}\right)(\mathrm{x})=10^{-14}$
अथवा $\mathrm{x}^{2}+10^{-8} \mathrm{x}-10^{-14}=0$
$\left[\mathrm{OH}^{-}\right]=\mathrm{x}=9.5 \times 10^{-8}$
अत: $\mathrm{pOH}=7.02$ तथा $\mathrm{pH}=6.98$
6.11.3 दुर्बल अम्लों के आयनन स्थिरांक
आइए, जलीय विलयन में आंशिक रूप से आयनित एक दुर्बल अम्ल HX पर विचार करें। निम्नलिखित समीकरणों में से किसी भी समीकरण द्वारा अवियोजित $\mathrm{HX}$ एवं आयनों $\mathrm{H}^{+}(\mathrm{aq})$ तथा $\mathrm{X}$ (aq) के मध्य स्थापित साम्यावस्था को प्रदर्शित किया जा सकता है।
$ \mathrm{HX}(\mathrm{aq})+\mathrm{H} _{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H} _{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}) $
माना $\alpha$ आयनीकरण की मात्रा है।
सांद्रता में परिवर्तन (M)
$-\mathrm{c} \alpha+\mathrm{c} \alpha+\mathrm{c} \alpha$
साम्य सांद्रता (M)
$\mathrm{C}-\mathrm{c} \alpha \quad \mathrm{c} \alpha \quad \mathrm{c} \alpha$
जहाँ $\mathrm{c}=$ अवियोजित अम्ल $\mathrm{HX}$ की प्रारंभिक सांद्रता तथा $\alpha=\mathrm{HX}$ के आयनन की मात्रा है। इन संकेतकों का उपयोग कर के हम उपर्युक्त अम्ल वियोजन साम्य के लिए साम्यावस्था स्थिरांक व्युत्पन्न कर सकते हैं।
$$ K_{\mathrm{a}}=\mathrm{c}^{2} \alpha^{2} / \mathrm{c}(1-\alpha)=\mathrm{c} \alpha^{2} /(1-\alpha) $$
$K_{\mathrm{a}}$ को अम्ल HX का वियोजन या आयनन स्थिरांक कहते हैं। इसे वैकल्पिक रूप से हम इस प्रकार मोलरता के रूप में प्रदर्शित कर सकते हैं-
$$ \begin{equation*} K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{-}\right] /[\mathrm{HX}] \tag{6.30} \end{equation*} $$
किसी निश्चित ताप पर $\mathrm{K} _{a}$ का मान अम्ल $\mathbf{H X}$ की प्रबलता का माप है, अर्थात् $\mathbf{K} _{a}$ का मान जितना अधिक होगा, अम्ल उतना ही अधिक प्रबल होगा। $\mathbf{K} _{a}$ विमारहित राशि है, जिसमें सभी स्पीशीज़ की सांद्रता की मानक-अवस्था $1 \mathrm{M}$ है।
कुछ चुने हुए अम्लों के आयनन-स्थिरांक सारणी 6.6 में दिए गए हैं।
सारणी 6.6: $298 \mathrm{~K}$ पर कुछ चुने हुए दुर्बल अम्लों के आयनन स्थिरांक के मान
अम्ल | आयनन स्थिरांक (Ka) |
---|---|
हाइड्रोफ्लुरिक अम्ल $(\mathrm{HF})$ | $3.5 \times 10^{-4}$ |
नाइट्रस अम्ल $\left(\mathrm{HNO} _{2}\right)$ | $4.5 \times 10^{-4}$ |
फार्मिक अम्ल $(\mathrm{HCOOH})$ | $1.8 \times 10^{-4}$ |
नियासीन $\left(\mathrm{C} _{5} \mathrm{H} _{4} \mathrm{NCOOH}\right)$ | $1.5 \times 10^{-5}$ |
ऐसीटिक अम्ल $\left(\mathrm{CH} _{3} \mathrm{COOH}\right)$ | $1.74 \times 10^{-5}$ |
बेन्जोइक अम्ल $\left(\mathrm{C} _{6} \mathrm{H} _{5} \mathrm{COOH}\right)$ | $6.5 \times 10^{-5}$ |
हाइपोक्लोरस अम्ल $(\mathrm{HCIO})$ | $3.0 \times 10^{-8}$ |
हाइड्रोसायनिक अम्ल $(\mathrm{HCN})$ | $4.9 \times 10^{-10}$ |
फीनॉल $\left(\mathrm{C} _{6} \mathrm{H} _{5} \mathrm{OH}\right)$ | $1.3 \times 10^{-10}$ |
हाइड्रोजन आयन सांद्रता के लिए $\mathrm{pH}$ मापक्रम इतना उपयोगी है कि इसे $p K_{\mathrm{w}}$ के अतिरिक्त अन्य स्पीशीज़ एवं राशियों के लिए भी प्रयुक्त किया गया है। इस प्रकार,
$$ \begin{equation*} p K_{a}=-\log \left(K_{a}\right) \tag{6.31} \end{equation*} $$
अम्ल के आयनन स्थिरांक $K_{a}$ तथा प्रारंभिक सांद्रता $\mathrm{c}$ ज्ञात होने पर समस्त स्पीशीज़ की साम्य सांद्रता तथा अम्ल के आयनन की मात्रा से विलयन की $\mathrm{pH}$ की गणना संभव है।
दुर्बल वैद्युत्अपघट्य की $\mathrm{pH}$ इन पदों से निकाली जा सकती है-
पद-1 वियोजन से पूर्व उपस्थित स्पीशीज़ को ब्रॅन्सेद लोरी अम्ल/क्षारक के रूप में ज्ञात किया जाता है।
पद-2 सभी संभावित अभिक्रियाओं के लिए संतुलित समीकरण लिखे जाते हैं, जैसे-स्पीशीज़, जो अम्ल एवं क्षारक दोनों के रूप में कार्य करती है।
पद-3 उच्च $K_{a}$ वाली अभिक्रिया को प्राथमिक अभिक्रिया के रूप में चिह्नित किया जाता है, जबकि अन्य अभिक्रियाएं पूरक अभिक्रियाएं होती हैं।
पद-4 प्राथमिक अभिक्रिया की सभी स्पीशीज़ के निम्न मानों को सारणी के रूप में सूचीबद्ध किया जाता है-
(क) प्रारंभिक सांद्रता, c
(ख) साम्य की ओर अग्रसर होने पर आयनन की मात्रा $\alpha$ के रूप में सांद्रता में परिवर्तन
(ग) साम्य सांद्रता
पद-5 मुख्य अभिक्रिया के लिए साम्यावस्था स्थिरांक समीकरण में साम्य सांद्रताओं को रखकर $\alpha$ के लिए हल करते हैं।
पद-6 मुख्य अभिक्रिया की स्पीशीज़ की सांद्रता की गणना करते हैं।
पद-7 $\mathrm{pH}$ की गणना $\mathrm{pH}=-\log \left[\mathrm{H} _{3} \mathrm{O}^{+}\right]$
उपर्युक्त विधि को इस उदाहरण से समझाया गया है-
उदाहरण 6.18
$\mathrm{HF}$ का आयनन स्थिरांक $3.2 \times 10^{-4}$ है। $0.22 \mathrm{M}$ विलयन में $\mathrm{HF}$ की आयनन की मात्रा की और विलयन में उपस्थित समस्त स्पीशीज़ $\left(\mathrm{H} _{3} \mathrm{O}^{+}, \mathrm{F}^{-}\right.$तथा $\left.\mathrm{HF}\right)$ की सांद्रता तथा $\mathrm{pH}$ की गणना कीजिए।
हल
निम्नलिखित प्रोटॉन स्थानांतरण अभिक्रियाएं संभव हैं-
- $\mathrm{HF}+\mathrm{H_2} \mathrm{O} \rightleftharpoons \mathrm{H_3} \mathrm{O}^{+}+\mathrm{F}^{-}$
$$ K_{\mathrm{a}}=3.2 \times 10^{-4} $$
- $\mathrm{H_2} \mathrm{O}+\mathrm{H_2} \mathrm{O} \rightleftharpoons \mathrm{H_3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
$$ K_{\mathrm{w}}=1.0 \times 10^{-14} $$
क्योंकि $K _{\mathrm{a}}> >K _{\mathrm{w}}$, मुख्य अभिक्रिया
$$ \mathrm{HF}+\mathrm{H} _{2} \mathrm{O} \rightleftharpoons \mathrm{H} _{3} \mathrm{O}^{+}+\mathrm{F}^{-} $$
प्रारंभिक सांद्रता (M)
$$ 0.02 \quad \quad 0 \quad \quad 0 \quad \quad (0) $$
सांद्रता परिवर्तन (M)
$$ -0.02 \alpha \quad +0.02 \alpha \quad +0.02 \alpha $$
साम्य सांद्रता (M)
$$0.02 - 0.02 \alpha \quad 0.02 \alpha \quad 0.02 \alpha$$
साम्य अभिक्रिया के लिए साम्य सांद्रताओं को प्रतिस्थापित करने पर
$K_{\mathrm{a}}=(0.02 \alpha)^{2} /(0.02-0.02 \alpha)$
$=0.02 \alpha^{2} /(1-\alpha)=3.2 \times 10^{-4}$
हमें निम्नलिखित द्विघात समीकरण प्राप्त होता है- $\alpha^{2}+1.6 \times 10^{-2} \alpha-1.6 \times 10^{-2}=0$
द्विघात-समीकरण को हल करने पर $\alpha$ के दो मान प्राप्त होते हैं-
$\alpha=+0.12$ और -0.12
$\alpha$ का ॠणात्मक मान संभव नहीं है। अतः
$\alpha=0.12$
स्पष्ट है कि आयनन मात्रा, $\alpha=0.12$ हो तो अन्य स्पीशीज़ (जैसे- $\mathrm{HF}, \mathrm{F}^{-}$तथा $\mathrm{H} _{3} \mathrm{O}^{+}$) की साम्य सांद्रताएँ इस प्रकार हैं-
$$ \begin{aligned} {\left[\mathrm{H_3} \mathrm{O}^{+}\right]=\left[\mathrm{F}^{-}\right]=\mathrm{c} \alpha } & =0.02 \times 0.12 \\ & =2.4 \times 10^{-3} \mathrm{M} \end{aligned} $$
$[\mathrm{HF}]=\mathrm{c}(1-\alpha)=0.02(1-0.12)$
$=17.6 \times 10^{-3} \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(2.4 \times 10^{-3}\right)=2.62$
उदाहरण 6.19
$0.1 \mathrm{M}$ एकल क्षारीय अम्ल का $\mathrm{pH} 4.50$ है। साम्यावस्था पर $\mathrm{H}^{+}, \mathrm{A}^{-}$तथा $\mathrm{HA}$ की सांद्रता की गणना कीजिए। साथ ही एकल क्षारीय अम्ल के $\mathrm{K} _{\mathrm{a}}$ तथा $\mathrm{pK} _{\mathrm{a}}$ के मान की भी गणना कीजिए।
हल
$ \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] $
$\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-4.50}$
$$=3.16 \times 10^{-5}$$
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]=3.16 \times 10^{-5}$
$K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$
$[\mathrm{HA}]_{\text {साम्य }}=0.1-\left(3.16 \times 10^{-5}\right)=0.1$
$K_{\mathrm{a}}=\left(3.16 \times 10^{-5}\right)^{2} / 0.1=1.0 \times 10^{-8}$
$\mathrm{p} K_{\mathrm{a}}=-\log \left(10^{-8}\right)=8$
वैकल्पिक रूप से ‘वियोजन प्रतिशतता’ किसी दुर्बल अम्ल की सामर्थ्य की गणना का उपयोगी मापक्रम है।
इसे इस प्रकार दिया गया है-
$$ \begin{equation*} =[\mathrm{HA}] _{\text {वियोजित }} /[\mathrm{HA}] _{\text {आरंभिक }} \times 100 % \tag{6.32} \end{equation*} $$
उदाहरण 6.20
$0.08 \mathrm{M}$ हाइपोक्लोरस अम्ल $(\mathrm{HOCl})$ के विलयन के $\mathrm{pH}$ की गणना कीजिए। अम्ल का आयनन स्थिरांक $2.5 \times 10^{-5}$ है। $\mathrm{HOCl}$ की वियोजन-प्रतिशतता ज्ञात कीजिए।
हल
$\mathrm{HOCl}(\mathrm{aq})+\mathrm{H} _{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H} _{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{ClO}^{-}(\mathrm{aq})$
प्रारंभिक सांद्रता (M)
$ \quad \quad \quad $ 0.08 $ \quad \quad \quad $ 0 $ \quad \quad \quad $ 0
साम्यावस्था के लिए परिवर्तन (M)
$$ -\mathrm{x} \quad \quad \quad +\mathrm{x} \quad \quad \quad +\mathrm{x} $$
साम्य सांद्रता (M)
$$\begin{array}{lll}0.08-\mathrm{x} \quad \quad \quad & \mathrm{x} \quad \quad \quad & \mathrm{x}\end{array}$$
$K _{\mathrm{a}}={[\mathrm{H} _{3} \mathrm{O}^{+}][\mathrm{ClO}^{-}] /[\mathrm{HOCl}]}$
$=\mathrm{x}^{2} /(0.08-\mathrm{x})$
$\mathrm{x}^{2} / 0.08=2.5 \times 10^{-5}$
$\mathrm{x}^{2}=2.0 \times 10^{-6}$, इस प्रकार, $\mathrm{x}=1.41 \times 10^{-3}$
$\left[\mathrm{H}^{+}\right]=1.41 \times 10^{-3} \mathrm{M}$.
अत:
वियोजन प्रतिशतता
$$={[\mathrm{HOCl}] _{\text {वियोजित }} /[\mathrm{HOCl}] _{\text {आरंभिक }}} \times 100$$
$$ \begin{aligned} & =1.41 \times 10^{-3} \times 10^{2} / 0.08=1.76 \% \\ & \mathrm{pH}=-\log \left(1.41 \times 10^{-3}\right)=2.85 \end{aligned} $$
6.11.4 दुर्बल क्षारकों का आयनन
क्षारक $\mathrm{MOH}$ का आयनन निम्नलिखित समीकरण द्वारा प्रदर्शित किया जा सकता है-
$$ \mathrm{MOH}(\mathrm{aq}) \rightleftharpoons \mathrm{M}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) $$
अम्ल आयनन साम्यावस्था की तरह दुर्बल क्षारक $(\mathrm{MOH})$ आंशिक रूप से धनायन $\mathrm{M}^{+}$एवं ऋणायन $\mathrm{OH}^{-}$में आयनित होता है। क्षारक आयनन के साम्यावस्था-स्थिरांक को क्षारक आयनन-स्थिरांक कहा जाता है। इसे हम $K_{b}$ से प्रदर्शित करते हैं। सभी स्पीशीज़ की साम्यावस्था सांद्रता मोलरता में निम्नलिखित समीकरण द्वारा प्रदर्शित की जाती है-
$$ \begin{equation*} K_{\mathrm{b}}=\left[\mathrm{M}^{+}\right]\left[\mathrm{OH}^{-}\right] /[\mathrm{MOH}] \tag{6.33} \end{equation*} $$
विकल्पत: यदि $c=$ क्षारक की प्रारंभिक सांद्रता और $\alpha=$ क्षारक के आयनन की मात्रा जब साम्यावस्था प्राप्त होती है, तब साम्य स्थिरांक निम्नलिखित रूप से लिखा जा सकता है-
$K_{b}=(\mathrm{c} \alpha)^{2} / \mathrm{c}(1-\alpha)=\mathrm{c} \alpha^{2} /(1-\alpha)$
कुछ चुने हुए क्षारकों के आयनन-स्थिरांक $K_{b}$ के मान सारणी 6.7 में दिए गए हैं।
सारणी 6.7: $ 298 \mathrm{~K}$ पर कुछ दुर्बल क्षारकों के आयनन-स्थिरांक के मान
क्षारक | $\mathbf{K} _{\mathbf{b}}$ |
---|---|
डाइमेथिलऐमिन $\left(\mathrm{CH} _{3}\right) _{2} \mathrm{NH}$ | $5.4 \times 10^{-4}$ |
ट्राइएथिलऐमिन $\left(\mathrm{C} _{2} \mathrm{H} _{5}\right) _{3} \mathrm{~N}$ | $6.45 \times 10^{-5}$ |
अमोनिया $\mathrm{NH} _{3}$ or $\mathrm{NH} _{4} \mathrm{OH}$ | $1.77 \times 10^{-5}$ |
क्विनीन $($ एक वानस्पतिक उत्पाद) | $1.10 \times 10^{-6}$ |
पिरीडीन $\mathrm{C} _{5} \mathrm{H} _{5} \mathrm{~N}$ | $1.77 \times 10^{-9}$ |
ऐनिलीन $\mathrm{C} _{6} \mathrm{H} _{5} \mathrm{NH} _{2}$ | $4.27 \times 10^{-10}$ |
यूरिया $\mathrm{CO}\left(\mathrm{NH} _{2}\right) _{2}$ | $1.3 \times 10^{-14}$ |
कई कार्बनिक यौगिक ऐमीन्स की तरह दुर्बल क्षारक हैं। ऐमीन्स अमोनिया के व्युत्पन्न हैं, जिनमें एक या अधिक हाइड्रोजन परमाणु अन्य समूहों द्वारा प्रतिस्थापित होते हैं। जैसेमेथिलऐमीन, कोडीन, क्विनीन तथा निकोटिन, सभी बहुत दुर्बल क्षारक हैं। इसलिए इनके $K_{b}$ के मान बहुत छोटे होते हैं। अमोनिया जल में निम्नलिखित अभिक्रिया के फलस्वरूप $\mathrm{OH}^{-}$ आयन उत्पन्न करती है-
$\mathrm{NH} _{3}(\mathrm{aq})+\mathrm{H} _{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH} _{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
हाइड्रोजन आयन सांद्रता हेतु $\mathrm{pH}$ स्केल इतना उपयोगी है कि इसे अन्य स्पीशीज़ एवं राशियों के लिए भी प्रयुक्त किया गया है। इस प्रकार
$$ \begin{equation*} \mathrm{p} K_{b}=-\log \left(K_{b}\right) \tag{6.34} \end{equation*} $$
उदाहरण 6.21
$0.004 \mathrm{M}$ हाइड्रेजीन विलयन का $\mathrm{pH} 9.7$ है। इसके $K_{b}$ तथा $p K_{b}$ की गणना कीजिए।
हल
$\mathrm{NH} _{2} \mathrm{NH} _{2}+\mathrm{H} _{2} \mathrm{O} \rightleftharpoons \mathrm{NH} _{2} \mathrm{NH} _{3}{ }^{+}+\mathrm{OH}^{-}$
हम $\mathrm{pH}$ से हाइड्रोजन आयन सांद्रता की गणना कर सकते हैं। हाइड्रोजन आयन सांद्रता ज्ञात करके और जल के आयनिक गुणनफल से हम हाइड्रॉक्सिल आयन की सांद्रता की गणना करते हैं। इस प्रकार,
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})$
$=\operatorname{antilog}(-9.7)=1.67 \times 10^{-10}$
$\left[\mathrm{OH}^{-}\right]=K_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]=1 \times 10^{-14} / 1.67 \times 10^{-10}$
$$ =5.98 \times 10^{-5} $$
संगत हाइड्रेजीनियम आयन की सांद्रता का मान भी हाइड्रॉक्सिल आयन की सांद्रता के समान होगा। इन दोनों आयनों की सांद्रता बहुत कम है। अतः अवियोजित क्षारक की सांद्रता $0.004 \mathrm{M}$ ली जा सकती है।
इस प्रकार,
$K _{\mathrm{b}}=\left[\mathrm{NH} _{2} \mathrm{NH} _{3}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{NH} _{2} \mathrm{NH} _{2}\right]$
$=\left(5.98 \times 10^{-5}\right)^{2} / 0.004=8.96 \times 10^{-7}$
$p K_{\mathrm{b}}=-\log K _{\mathrm{b}}=-\log \left(8.96 \times 10^{-7}\right)=6.04$.
उदाहरण 6.22
$0.2 \mathrm{M} \mathrm{NH} _{4} \mathrm{Cl}$ तथा $0.1 \mathrm{M} \mathrm{NH} _{3}$ के मिश्रण से बने विलयन के $\mathrm{pH}$ की गणना कीजिए। $\mathrm{NH} _{3}$ विलयन की $\mathrm{pK} _{\mathrm{b}}=4.75$ है।
हल
$\mathrm{NH} _{3}+\mathrm{H} _{2} \mathrm{O} \rightleftharpoons \mathrm{NH} _{4}^{+}+\mathrm{OH}^{-}$
$\mathrm{NH} _{3}$ का आयनन स्थिरांक
$K_{\mathrm{b}}=\operatorname{antilog}\left(-\mathrm{p} K_{\mathrm{b}}\right)$ अर्थात्,
$K_{\mathrm{b}}=10^{-4.75}=1.77 \times 10^{-5} \mathrm{M}$
$\mathrm{NH} _{3}+\mathrm{H} _{2} \mathrm{O} \rightleftharpoons \mathrm{NH} _{4}^{+}+\mathrm{OH}^{-}$
प्रारंभिक सांद्रता (M)
$$ \begin{equation*} 0.10 \quad \quad \quad \quad 0.20 \quad \quad \quad \quad 0 \end{equation*} $$
साम्यावस्था पर परिवर्तन (M)
$$ \begin{equation*} -x \quad \quad \quad \quad +x \quad \quad \quad \quad +x \end{equation*} $$
साम्यावस्था पर (M)
$$ \begin{equation*} 0.10-x \quad \quad \quad \quad 0.20+x \quad \quad \quad \quad +x \end{equation*} $$
$K_{\mathrm{b}}=\left[\mathrm{NH} _{4}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{NH} _{3}\right]$
$=(0.20+\mathrm{x})(\mathrm{x}) /(0.1-\mathrm{x})=1.77 \times 10^{-5}$
$K_{\mathrm{b}}$ का मान कम है। $0.1 \mathrm{M}$ एवं $0.2 \mathrm{M}$ की तुलना में $\mathrm{x}$ को हम उपेक्षित कर सकते हैं।
$\left[\mathrm{OH}^{-}\right]=\mathrm{x}=0.88 \times 10^{-5}$
इसलिए $\left[\mathrm{H}^{+}\right]=1.12 \times 10^{-9}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=8.95$
6.11.5 $K_{a}$ तथा $K_{b}$ में संबंध
इस अभ्यास में हम पढ़ चुके हैं कि $K_{a}$ तथा $K_{b}$ क्रमशः अम्ल और क्षारक की सामर्थ्य को दर्शाते हैं। संयुग्मी अम्ल-क्षार युग्म में ये एक-दूसरे से सरलतम रूप से संबंधित होते हैं। यदि एक का मान ज्ञात है, तो दूसरे को ज्ञात किया जा सकता है। $\mathrm{NH} _{4}^{+}$ तथा $\mathrm{NH} _{3}$ के उदाहरण की विवेचना करते हैं-
$$ \begin{aligned} & \mathrm{NH} _{4}^{+}(\mathrm{aq})+\mathrm{H} _{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H} _{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NH} _{3}(\mathrm{aq}) \\ & K _{\mathrm{a}}=\left[\mathrm{H} _{3} \mathrm{O}^{+}\right]\left[\mathrm{NH} _{3}\right] /\left[\mathrm{NH} _{4}^{+}\right]=5.6 \times 10^{-10} \\ & \mathrm{NH} _{3}(\mathrm{aq})+\mathrm{H} _{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH} _{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\ & \mathrm{K} _{\mathrm{b}}=\left[\mathrm{NH} _{4}^{+}\right]\left[\mathrm{OH}^{-}\right] / \mathrm{NH} _{3}=1.8 \times 10^{-5} \\ & \text { नेट: } 2 \mathrm{H} _{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H} _{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\ & K _{\mathrm{w}}=\left[\mathrm{H} _{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \mathrm{M} \end{aligned} $$
$K _{a} \mathrm{NH} _{4}^{+}$का अम्ल के रूप में तथा $K _{b}, \mathrm{NH} _{3}$ की क्षार के रूप में सामर्थ्य दर्शाता है।
नेट अभिक्रिया में ध्यान देने योग्य बात यह है कि जोड़ी गई अभिक्रिया में साम्य स्थिरांक का मान $K _{a}$ तथा $K _{b}$ के गुणनफल के बराबर होता है-
$$ \begin{aligned} K_{\mathrm{a}} \times & K_{\mathrm{b}}=\{\left[\mathrm{H_3} \mathrm{O}^{+}\right]\left[\mathrm{NH_3}\right] /\left[\mathrm{NH_4}^{+}\right]\} \times\{\left[\mathrm{NH_4}^{+}\right] \left[\mathrm{OH}^{-}\right] /\left[\mathrm{NH_3}\right]\} \\ \end{aligned} $$
$$ \begin{aligned} = & {\left[\mathrm{H_3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=K_{\mathrm{w}} } \\ & =\left(5.6 \times 10^{-10}\right) \times\left(1.8 \times 10^{-5}\right)=1.0 \times 10^{-14} \mathrm{M} \end{aligned} $$
इसे इस सामान्यीकरण द्वारा बताया जा सकता है- दो या ज्यादा अभिक्रियाओं को जोड़ने पर उनकी नेट या अभिक्रिया का साम्यावस्था-स्थिरांक प्रत्येक अभिक्रिया वे साम्यावस्था-स्थिरांक के गुणनफल के बराबर होता है।
$$ \begin{equation*} K_{\text {नेट }}=K_{1} \times K_{2} \times \ldots \ldots \tag{6.35} \end{equation*} $$
इसी प्रकार संयुग्मी क्षार युग्म के लिए
$$ \begin{equation*} K_{\mathrm{a}} \times K_{\mathrm{b}}=K_{\mathrm{w}} \tag{6.36} \end{equation*} $$
यदि एक का मान ज्ञात हो, तो अन्य को ज्ञात किया जा सकता है। यह ध्यान देना चाहिए कि प्रबल अम्ल का संयुग्मी क्षार दुर्बल तथा दुर्बल अम्ल का संयुग्मी क्षार प्रबल होता है।
वैकल्पिक रूप से उपर्युक्त समीकरण $K_{\mathrm{w}}=K_{\mathrm{a}} \times K_{\mathrm{b}}$ को क्षारक-वियोजन साम्यावस्था अभिक्रिया से भी हम प्राप्त कर सकते हैं-
$$ \begin{aligned} & \mathrm{B}(\mathrm{aq})+\mathrm{H} _{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{BH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\ & K _{\mathrm{b}}=\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right] /[\mathrm{B}] \end{aligned} $$
चूँकि जल की सांद्रता स्थिर रहती है, अतः इसे हर से हटा दिया गया है और वियोजन स्थिरांक में सम्मिलित कर दिया गया है। उपयुक्त समीकरण को $\left[\mathrm{H}^{+}\right]$से गुणा करने तथा भाग देने पर-
$$ \begin{aligned} K_{\mathrm{b}} & = \left[\mathrm{BH}^{+}\right] \left[\mathrm{OH}^{-}\right] \left[\mathrm{H}^{+}\right] / [\mathrm{B}] \left[\mathrm{H}^{+} \right] \\ \end{aligned} $$
$$ \begin{aligned} & =\{ \left[\mathrm{OH}^{-}\right] \left[\mathrm{H}^{+} \right]\}\{ \left[\mathrm{BH}^{+} \right] /[\mathrm{B}] \left[\mathrm{H}^{+} \right]\} \\ & =K_{\mathrm{w}} / K_{\mathrm{a}} \\ \text { य } & K_{\mathrm{a}} \times K_{\mathrm{b}}=K_{\mathrm{w}} \end{aligned} $$
यह ध्यान देने याग्य बात है कि यदि दोनों ओर लघुगुणक लिया जाए, तो संयुग्मी अम्ल तथा क्षार के मानों को संबंधित किया जा सकता है-
$$ \mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=\mathrm{p} K_{\mathrm{w}}=14 \text { (298K पर) } $$
उदाहरण 6.23
$0.05 \mathrm{M}$ अमोनिया विलयन की आयनन मात्रा तथा $\mathrm{pH}$ ज्ञात कीजिए। अमोनिया के आयनन-स्थिरांक का मान तालिका 6.7 में दिया गया है। अमोनिया के संयुग्मी अम्ल का आयनन स्थिरांक भी ज्ञात कीजिए।
हल
जल में $\mathrm{NH} _{3}$ का आयनन इस प्रकार दर्शाया जा सकता है-
$$ \mathrm{NH} _{3}+\mathrm{H} _{2} \mathrm{O} \rightleftharpoons \mathrm{NH} _{4}^{+}+\mathrm{OH}^{-} $$
(6.33) समीकरण का उपयोग कर के हम हाइड्रोक्सिल आयन की सांद्रता की गणना कर सकते हैं-
$\left[\mathrm{OH}^{-}\right]=\mathrm{c} \alpha=0.05 \alpha$
$K_{\mathrm{b}}=0.05 \alpha^{2} /(1-\alpha)$
$\alpha$ का मान कम है, अतः समीकरण में दाईं ओर के हर 1 की तुलना में $\alpha$ को नगण्य मान सकते हैं।
अत:
$$ \begin{aligned} K_{\mathrm{b}}=\mathrm{c} \alpha^{2} \text { or } \alpha & =\sqrt{ }\left(1.77 \times 10^{-5} / 0.05\right) \\ & =0.018 . \end{aligned} $$
$\left[\mathrm{OH}^{-}\right]=\mathrm{c} \alpha=0.05 \times 0.018=9.4 \times 10^{-4} \mathrm{M}$.
$\left[\mathrm{H}^{+}\right]=K_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=10^{-14} /\left(9.4 \times 10^{-4}\right)$
$$ =1.06 \times 10^{-11} $$
$\mathrm{pH}=-\log \left(1.06 \times 10^{-11}\right)=10.97$.
संयुग्मी अम्ल क्षार युग्म के लिए संबंध प्रयुक्त करने पर
$K_{\mathrm{a}} \times K_{\mathrm{b}}=K_{\mathrm{w}}$
तालिका 6.7 से प्राप्त $\mathrm{NH} _{3}$ के $K _{b}$ का मान रखने पर
हम $\mathrm{NH} _{4}^{+}$के संयुग्मी अम्ल की सांद्रता निकाल सकते हैं।
$$ \begin{aligned} K_{\mathrm{a}}=K_{\mathrm{w}} / K_{\mathrm{b}} & =10^{-14} / 1.77 \times 10^{-5} \\ & =5.64 \times 10^{-10} . \end{aligned} $$
6.11.6 द्वि एवं बहु क्षारकी अम्ल तथा द्वि एवं बहु अम्लीय क्षारक
ऑक्सेलिक अम्ल, सल्फ्यूरिक अम्ल एवं फास्फोरिक अम्ल आदि कुछ अम्लों में प्रति अणु एक से अधिक आयनित होने वाले प्रोटॉन होते हैं। ऐसे अम्लों को बहु-क्षारकी या पॉलिप्रोटिक अम्ल के नाम से जाना जाता है।
उदाहरणार्थ-द्विक्षारकीय अम्ल $\mathrm{H} _{2} \mathrm{X}$ के लिए आयनन अभिक्रिया निम्नलिखित समीकरणों द्वारा दर्शाई जाती है-
$$ \begin{array}{ll} \mathrm{H} _{2} \mathrm{X}(\mathrm{aq}) & \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HX}^{-}(\mathrm{aq}) \\ \mathrm{HX}^{-}(\mathrm{aq}) & \mathrm{H}^{+}(\mathrm{aq})+\mathrm{X}^{2-}(\mathrm{aq}) \end{array} $$
तथा संगत साम्यावस्था समीकरण निम्नलिखित है-
$$ K_{a_{1}}=\{\left[\mathrm{H}^{+}\right]\left[\mathrm{HX}^{-}\right]\} /\left[\mathrm{H_2} \mathrm{X}\right] \text { तथा } $$
$$ K_{\mathrm{a_2}}=\{\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{2-}\right]\} / \left[\mathrm{HX}^{-}\right] $$
$K _{\mathrm{a} _{1}}$ एवं $K _{\mathrm{a} _{2}}$ को अम्ल $\mathrm{H} _{2} \mathrm{X}$ का प्रथम एवं द्वितीय आयनन-स्थिरांक कहते हैं। इसी प्रकार $\mathrm{H} _{3} \mathrm{PO} _{4}$ जैसे त्रिक्षारकीय अम्ल के लिए तीन आयनन-स्थिरांक हैं। कुछ पॉलीप्रोटिक अम्लों के आयनन-स्थिरांकों के मान सारणी 6.8 में अंकित हैं।
सारणी $6.8298 \mathrm{~K}$ पर कुछ सामान्य पॉलीप्रोटिक अम्लों के आयनन-स्थिरांक
अम्ल | $\mathrm{Ka} _{1}$ | $\boldsymbol{K} _{\mathrm{a} _{2}}$ | $\mathrm{Ka} _{3}$ |
---|---|---|---|
ऑक्सेलिक अम्ल | $5.9 \times 10^{-2}$ | $6.4 \times 10^{-5}$ | |
एस्कार्बिक अम्ल | $7.4 \times 10^{-4}$ | $1.6 \times 10^{-12}$ | |
सल्फ्यूरस अम्ल | $1.7 \times 10^{-2}$ | $6.4 \times 10^{-8}$ | |
सल्फ्यूरिक अम्ल | अत्यधिक | $1.2 \times 10^{-2}$ | |
कार्बोनिक अम्ल | $4.3 \times 10^{-7}$ | $5.6 \times 10^{-11}$ | |
साइट्रिक अम्ल | $7.4 \times 10^{-4}$ | $1.7 \times 10^{-5}$ | $4.0 \times 10^{-7}$ |
फास्फोरिक अम्ल | $7.5 \times 10^{-3}$ | $6.2 \times 10^{-8}$ | $4.2 \times 10^{-13}$ |
इस प्रकार देखा जा सकता है कि बहु प्रोटिक अम्ल के उच्च कोटि के आयनन $\left(K _{\mathrm{a} _{2}}, K _{\mathrm{a} _{3}}\right)$ स्थिरांकों का मान निम्न कोटि के आयनन-स्थिरांक $\left(K _{a}\right)$ से कम होते हैं। इसका कारण यह है कि स्थिर विद्युत्-बलों के कारण ऋणात्मक आयन से धनात्मक प्रोटॉन निष्कासित करना मुश्किल है। इसे अनावेशित $\mathrm{H} _{2} \mathrm{CO} _{3}$ तथा आवेशित $\mathrm{HCO} _{3}^{-}$से प्रोटॉन निष्कासन से देखा जा सकता है। इसी प्रकार द्विआवेशित $\mathrm{HPO} _{4}^{2-}$ ॠणायन से $\mathrm{H} _{2} \mathrm{PO} _{4}^{-}$ की तुलना में प्रोटॉन का निष्कासन कठिन होता है।
बहु प्रोटिक अम्ल विलयन में अम्लों का मिश्रण होता है $\mathrm{H} _{2} \mathrm{~A}$ जैसे द्विप्रोटिक अम्ल के लिए, $\mathrm{H} _{2} \mathrm{~A}, \mathrm{HA}^{-}$और $\mathrm{A}^{2-}$ का मिश्रण होता है। प्राथमिक अभिक्रिया में $\mathrm{H} _{2} \mathrm{~A}$ का वियोजन तथा $\mathrm{H} _{3} \mathrm{O}^{+}$सम्मिलित होता है, जो वियोजन के प्रथम चरण से प्राप्त होता है।
6.11.7 अम्ल-सामर्थ्य को प्रभावित करनेवाले कारक
अम्ल तथा क्षारकों की मात्रात्मक सामर्थ्य की विवेचना के पश्चात् हम किसी दिए हुए अम्ल को $\mathrm{pH}$ मान की गणना कर सकते हैं। परंतु यह जिज्ञासा उत्पन्न होती है कि कुछ अम्ल अन्य की तुलना में प्रबल क्यों होते हैं? इन्हें अधिक प्रबल बनानेवाले कारक क्या हैं? इसका उत्तर एक जटिल तथ्य है। लेकिन मुख्य रूप से हम यह कह सकते हैं कि एक अम्ल की वियोजन की सीमा $\mathrm{H}-\mathrm{A}$ बंध की सामर्थ्य एवं ध्रुवणता पर निर्भर करती है।सामान्यतः जब $\mathrm{H}-\mathrm{A}$ बंध की सामर्थ्य घटती है, अर्थात् बंध के वियोजन में आवश्यक ऊर्जा घटती है, तो HA का अम्ल-सामर्थ्य बढ़ता है। इसी प्रकार जब HA आबंध अधिक ध्रुवीय होता है, अर्थात् $H$ तथा $A$ परमाणुओं के मध्य विद्युत्-ऋणता का अंतर बढ़ता है और आवेश पृथक्करण दृष्टिगत होता है, तो आबंध का वियोजन सरल हो जाता है, जो अम्लीयता में वृद्धि करता है।
परंतु यह ध्यान देने योग्य बात यह है कि जब तत्त्व $\mathrm{A}$ आवर्त सारणी के उसी समूह के तत्त्व हों, तो बंध की ध्रुवीय प्रकृति की तुलना में $\mathrm{H}-\mathrm{A}$ आबंध सामर्थ्य अम्लीयता के निर्धारण में प्रमुख कारक होता है। वर्ग में नीचे की ओर जाने पर ज्यों-ज्यों $\mathrm{A}$ का आकार बढ़ता है, त्यों-त्यों $\mathrm{H}-\mathrm{A}$ आबंध सामर्थ्य घटती है तथा अम्ल सामर्थ्य बढ़ती है। उदाहरणार्थ-
इसी प्रकार $\mathrm{H} _{2} \mathrm{~S}, \mathrm{H} _{2} \mathrm{O}$ से प्रबलतर अम्ल है।
परंतु जब हम आवर्त सारणी के एक ही आवर्त के तत्त्वों की विवेचना करते हैं तो $\mathrm{H}-\mathrm{A}$ आबंध की ध्रुवणता अम्ल-सामर्थ्य को निर्धारित करने में महत्त्वपूर्ण कारक हो जाती है। ज्यों-ज्यों $A$ की विद्युत्ऋणता बढ़ती है, त्यों-त्यों अम्ल की सामर्थ्य भी बढ़ती है। उदाहरणार्थ-
6.11.8 अम्लों एवं क्षारकों के आयनन में सम आयन प्रभाव
आइए, ऐसीटिक अम्ल का उदाहरण लें, जिसका वियोजन इस साम्यावस्था द्वारा प्रदर्शित किया जा सकता है-
$\mathrm{CH_3} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH_3} \mathrm{COO}^{-}(\mathrm{aq})$
अथवा $\mathrm{HAc}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Ac}^{-}(\mathrm{aq})$
$K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{Ac}^{-}\right] /[\mathrm{HAc}]$
ऐसीटिक अम्ल के विलयन में ऐसीटेट आयन को मिलाने पर हाइड्रोजन आयनों की सांद्रता घटती है। इसी प्रकार यदि बाह्य स्रोत से $\mathrm{H}^{+}$आयन मिलाए जाएँ, तो साम्यावस्था अवियोजित ऐसीटिक अम्ल की तरफ विस्थापित हो जाती है, अर्थात् उस दिशा में अग्रसर होती है, जिससे हाइड्रोजन आयन सांद्रता $\left[\mathrm{H}^{+}\right]$घटती है। यह घटना सम आयन प्रभाव का उदाहरण है। किसी ऐसे पदार्थ के मिलने से जो विघटन साम्य में पूर्व से उपस्थित आयनिक स्पीशीज़ को और उपलब्ध करवाकर साम्यावस्था को विस्थापित करता है, वह ‘सम आयन प्रभाव’ कहलाता है। अतः हम कह सकते हैं कि सम आयन प्रभाव ला-शातेलिये सिद्धांत पर आधारित है, जिसे हम खंड 6.8 में पढ़ चुके हैं।
$0.05 \mathrm{M}$ ऐसीटेट आयन को $0.05 \mathrm{M}$ ऐसीटिक अम्ल में मिलाने पर $\mathrm{pH}$ की गणना हम इस प्रकार कर सकते हैं-
$\mathrm{HAc}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Ac}^{-}(\mathrm{aq})$
प्रारंभिक सांद्रता (M)
$$ 0.05 \quad \quad\quad 0 \quad \quad\quad 0.05 $$
यदि $\mathrm{x}$ ऐसीटिक अम्ल में आयनन की मात्रा हों,
तो सांद्रता में परिवर्तन (M)
$$-\mathrm{x} \quad\quad\quad +\mathrm{x}\quad\quad\quad +\mathrm{x}$$
साम्य सांद्रता (M)
$$ 0.05-x \quad \quad\quad x \quad\quad\quad 0.05+x $$
इस प्रकार
$K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{Ac}^{-}\right] /[\mathrm{H} \mathrm{Ac}]={(0.05+\mathrm{x})(\mathrm{x})} /(0.05-\mathrm{x})$
दुर्बल अम्ल के लिए $K_{\mathrm{a}}$ कम होता है $\mathrm{x}«0.05$
अतः $(0.05+\mathrm{x}) \approx(0.05-\mathrm{x}) \approx 0.05$
इस प्रकार
$1.8 \times 10^{-5}=(\mathrm{x})(0.05+\mathrm{x}) /(0.05-\mathrm{x})$
$=\mathrm{x}(0.05) /(0.05)=\mathrm{x}=\left[\mathrm{H}^{+}\right]=1.8 \times 10^{-5} \mathrm{M}$
$\mathrm{pH}=-\log \left(1.8 \times 10^{-5}\right)=4.74$
उदाहरण 6.24
$0.10 \mathrm{M}$ अमोनिया विलयन की $\mathrm{pH}$ की गणना कीजिए। इस विलयन के $50 \mathrm{~mL}$ को $0.10 \mathrm{M}$ के $\mathrm{HCl}$ के $25.0 \mathrm{~mL}$ से अभिक्रिया करवाने पर $\mathrm{pH}$ की गणना कीजिए। अमोनिया का वियोजन स्थिरांक $K_{\mathrm{b}}=1.77 \times$ $10^{-5}$ है।
हल
$\mathrm{NH} _{3}+\mathrm{H} _{2} \mathrm{O} \rightarrow \mathrm{NH} _{4}^{+}+\mathrm{OH}^{-}$
$K_{\mathrm{b}}=\left[\mathrm{NH} _{4}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{NH} _{3}\right]=1.77 \times 10^{-5}$
उदासीनीकरण से पूर्व
$\left[\mathrm{NH} _{4}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\mathrm{x}$
$\left[\mathrm{NH} _{3}\right]=0.10-\mathrm{x} \simeq 0.10$
$\mathrm{x}^{2} / 0.10=1.77 \times 10^{-5}$
$\mathrm{x}=1.33 \times 10^{-3}=\left[\mathrm{OH}^{-}\right]$
इसलिए
$\left[\mathrm{H}^{+}\right]=K_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right] $
$= 10^{-14} / \left(1.33 \times 10^{-3}\right)$
$=7.51 \times 10^{-12}$
$\mathrm{pH} =-\log \left(7.5 \times 10^{-12}\right)=11.12$
$25 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{HCl}$ विलयन (अर्थात् 2.5 मिली मोल $\mathrm{HCl}$ ) को $50 \mathrm{~mL} 0.1 \mathrm{M}$ अमोनिया विलयन (अर्थात् $5 \mathrm{~mL}$ मोल $\mathrm{NH} _{3}$ ) में मिलाने पर 2.5 मिली मोल अमोनिया अणु उदासीनीकृत हो जाते हैं। शेष $75 \mathrm{~mL}$ विलयन में अनुदासीनीकृत 2.5 मिलीमोल $\mathrm{NH} _{3}$ अणु तथा 2.5 मिलीमोल $\mathrm{NH} _{4}^{+}$रह जाते हैं।
$ \underset{2.5}{\mathrm{NH_3}} + \underset{2.5}{\mathrm{HCl}} \rightarrow \underset{0}{\mathrm{NH_4}^{+}} + \underset{0}{\mathrm{Cl}^{-}} $
साम्यावस्था पर 0 $\quad \quad \quad $ 0 $\quad \quad \quad $ 2.5 $\quad \quad \quad $ 2.5
परिणामी $75 \mathrm{~mL}$ विलयन में 2.5 मिलीमोल $\mathrm{NH} _{4}^{+}$ आयन $(0.033 \mathrm{M})$ तथा 2.5 मिलीमोल अनुदासीनीकृत $\mathrm{NH} _{3}$ अणु $(0.033 \mathrm{M})$ रह जाते हैं। साम्यावस्था में यह $\mathrm{NH} _{3}$ इस प्रकार रहता है-
$\begin{array}{llcl}\mathrm{NH}_4 \mathrm{OH} & \rightleftharpoons & \mathrm{NH}_4^{+}+ & \mathrm{OH}^{-} \\ 0.033 \mathrm{M}-\mathrm{y} & & \mathrm{y} & \mathrm{y}\end{array}$
जहाँ $\mathrm{y}=\left[\mathrm{OH}^{-}\right]=\left[\mathrm{NH} _{4}^{+}\right]$
परिणामी $75 \mathrm{~mL}$ विलयन, उदासीनीकरण के पश्चात् 2.5 मिलीमोल $\mathrm{NH} _{4}^{+}$आयन $(0.033 \mathrm{M})$ से युक्त होता है। अत: $\mathrm{NH} _{4}^{+}$की कुल सांद्रता इस प्रकार दी जाती है
$\left[\mathrm{NH} _{4}^{+}\right]=0.033+\mathrm{y}$
चूँकि $\mathrm{y}$ कम है, $\left[\mathrm{NH} _{4} \mathrm{OH}\right] \simeq 0.033 \mathrm{M}$ तथा $\left[\mathrm{NH} _{4}{ }^{+}\right]$ $\simeq 0.033 \mathrm{M}$.
हम जानते हैं कि
$$ \begin{aligned} K_{\mathrm{b}} & =\left[\mathrm{NH_4}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{NH_4} \mathrm{OH}\right] \\ & =\mathrm{y}(0.033) /(0.033)=1.77 \times 10^{-5} \mathrm{M} \end{aligned} $$
अत: $\mathrm{y}=1.77 \times 10^{-5}=\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{H}^{+}\right]=10^{-14} / 1.77 \times 10^{-5}=0.56 \times 10^{-9}$
$\mathrm{pH}=9.24$
6.11.9 लवणों का जल-अपघटन एवं इनके विलयन का $\mathrm{pH}$
अम्लों तथा क्षारकों के निश्चित अनुपात में अभिक्रिया द्वारा बनाए गए लवणों का जल में आयनन होता है। आयनन द्वारा बने धनायन, ॠणायन जलीय विलयन में जलयोजित होते हैं या जल से अभिक्रिया करके अपनी प्रकृति के अनुसार अम्ल या क्षार का पुर्नरूत्पादन करते हैं। जल तथा धनायन अथवा ऋणायन या दोनों से होने वाली अन्योन्य प्रक्रिया को ‘जल-अपघटन’ कहते हैं। इस अन्योन्य क्रिया से $\mathrm{pH}$ प्रभावित होती है। प्रबल क्षारकों द्वारा दिए गए धनायन (उदाहरणार्थ- $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}$ आदि) तथा प्रबल अम्लों द्वारा दिए गए ऋणायन (उदाहरणार्थ- $\mathrm{Cl}^{-}, \mathrm{Br}^{-}$, $\mathrm{NO} _{3}^{-}, \mathrm{ClO} _{4}^{-}$आदि) केवल जल-योजित होते हैं, जल-अपघटित नहीं होते हैं। इसलिए प्रबल अम्लों तथा प्रबल क्षारों से बने लवणों के घोल उदासीन होते हैं। यानी उनका $\mathrm{pH} 7$ होती है। यद्यपि अन्य प्रकार के लवणों का जल अपघटन होता है।
अब हम निम्नलिखित लवणों के जल-अपघटन पर विचार करते हैं:
(i) दुर्बल अम्लों एवं प्रबल क्षारकों के लवण, उदाहरणार्थ- $\mathrm{CH} _{3} \mathrm{COONa}$
(ii) प्रबल अम्लों एवं दुर्बल क्षारकों के लवण, उदाहरणार्थ- $\mathrm{NH} _{4} \mathrm{Cl}$, तथा
(iii) दुर्बल अम्लों एवं दुर्बल क्षारकों के लवण, उदाहरणार्थ- $\mathrm{CH} _{3} \mathrm{COONH} _{4}$
प्रथम उदाहरण में $\mathrm{CH} _{3} \mathrm{COONa}$, दुर्बल अम्ल $\mathrm{CH} _{3} \mathrm{COOH}$ तथा प्रबल क्षार $\mathrm{NaOH}$ का लवण है, जो जलीय विलयन में पूर्णतया आयनित हो जाता है।
$$ \mathrm{CH} _{3} \mathrm{COONa}(\mathrm{aq}) \rightarrow \mathrm{CH} _{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{Na}^{+}(\mathrm{aq}) $$
इस प्रकार बने ऐसीटेट आयन जल के साथ जल अपघटित होकर ऐसीटिक अम्ल तथा $\mathrm{OH}^{-}$आयनों का निर्माण करते हैं-
$\mathrm{CH} _{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H} _{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH} _{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
ऐसीटिक अम्ल एक दुर्बल अम्ल है $\left(K_{a}=1.8 \times 10^{-5}\right)$, जो विलयन में अनायनित ही रहता है। इसके कारण विलयन में $\mathrm{OH}^{-}$आयनों की सांद्रता में वृद्धि हो जाती है, जो विलयन को क्षारीय बनाती है। इस प्रकार बने विलयन की $\mathrm{pH} 7$ से ज्यादा होती है।
इसी प्रकार दुर्बल क्षारक $\mathrm{NH} _{4} \mathrm{OH}$ तथा प्रबल अम्ल $\mathrm{HCl}$ से बना $\mathrm{NH} _{4} \mathrm{Cl}$ जल में पूर्णतया आयनित हो जाता है।
$\mathrm{NH} _{4} \mathrm{Cl}(\mathrm{aq}) \rightarrow \mathrm{NH} _{4}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
अमोनियम आयनों का जल अपघटन होने से $\mathrm{NH} _{4} \mathrm{OH}$ और $\mathrm{H}^{+}$आयन बनते हैं।
$\mathrm{NH} _{4}^{+}(\mathrm{aq})+\mathrm{H} 2 \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH} _{4} \mathrm{OH}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$
अमोनियम हाइड्रॉक्साइड $\left(K_{\mathrm{b}}=1.77 \times 10^{-5}\right)$ एक दुर्बल क्षारक है। यह विलयन में अनायनित रहता है। इसके परिणामस्वरूप विलयन में $\mathrm{H}^{+}$आयन सांद्रता बढ़ जाती है और विलयन को अम्लीय बना देती है। अतः $\mathrm{NH} _{4} \mathrm{Cl}$ के जल में विलयन का $\mathrm{pH} 7$ से कम होगा।
दुर्बल अम्ल तथा दुर्बल क्षारक द्वारा बनाए गए लवण $\mathrm{CH} _{3} \mathrm{COONH} _{4}$ के जल-अपघटन को देखें। इसके द्वारा दिए गए आयनों का अपघटन इस प्रकार होता है-
$\mathrm{CH} _{3} \mathrm{COO}^{-}+\mathrm{NH} _{4}^{+}+\mathrm{H} _{2} \mathrm{O} \leftrightharpoons \mathrm{CH} _{3} \mathrm{COOH}+$ $\mathrm{NH} _{4} \mathrm{OH}$
$\mathrm{CH} _{3} \mathrm{COOH}$ तथा $\mathrm{NH} _{4} \mathrm{OH}$ आंशिक रूप से इस प्रकार आयनीकृत रहते हैं-
$$ \begin{aligned} & \mathrm{CH_3} \mathrm{COOH} \rightleftharpoons \mathrm{CH_3} \mathrm{COO}^{-}+\mathrm{H}^{+} \\ & \mathrm{NH_4} \mathrm{OH} \rightleftharpoons \quad \mathrm{NH_4}^{+}+\mathrm{OH}^{-} \\ & \mathrm{H_2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} \end{aligned} $$
विस्तार से गणना किए बिना कहा जा सकता है कि जल-अपघटन की मात्रा विलयन की सांद्रता से स्वतंत्र होती है। अतः विलयन का $\mathrm{pH}$ है-
$$ \begin{equation*} \mathrm{pH}=7+1 / 2\left(p K_{\mathrm{a}}-p K_{\mathrm{b}}\right) \tag{6.38} \end{equation*} $$
विलयन का $\mathrm{pH} 7$ से ज्यादा होगा, यदि अंतरधनात्मक हो तथा $\mathrm{pH} 7$ से कम होगा, यदि अंतर ॠणात्मक हो-
उदाहरण 6.25
ऐसीटिक अम्ल का $p K_{\mathrm{a}}$ तथा अमोनियम हाइड्रॉक्साइड का $p K_{b}$ क्रमशः 4.76 और 4.75 है। अमोनियम ऐसीटेट विलयन की $\mathrm{pH}$ की गणना कीजिए।
हल
$$ \begin{aligned} \mathrm{pH} & =7+1 / 2\left[p K_{\mathrm{a}}-p K_{\mathrm{b}}\right] \\ & =7+1 / 2[4.76-4.75] \\ & =7+1 / 2[0.01]=7+0.005=7.005 \end{aligned} $$
6.12 बफ़र-विलयन
शरीर में उपस्थित कई तरल (उदाहरणार्थ-रक्त या मूत्र) के निश्चित $\mathrm{pH}$ होते हैं। इनके $\mathrm{pH}$ में हुआ परिवर्तन शरीर के ठीक से काम न करने (Malfunctioning) का सूचक है। कई रासायनिक एवं जैविक अभिक्रियाओं में भी $\mathrm{pH}$ का नियंत्रण बहुत महत्त्वपूर्ण होता है। कई औषधीय एवं प्रसाधनीय संरूपणों (Consmetic Formulation) को किसी विशेष $\mathrm{pH}$ पर रखा जाता है एवं शरीर में प्रविष्ट कराया जाता है। ऐसे विलयन, जिनका $\mathrm{pH}$ तनु करने अथवा अम्ल या क्षारक की थोड़ी सी मात्रा मिलाने के बाद भी अपरिवर्तित रहता है, ‘बफर-विलयन’ कहलाते हैं। ज्ञात $\mathrm{pH}$ के विलयन के अम्ल को $\mathrm{p} K_{\mathrm{a}}$ तथा क्षारक के $\mathrm{p} K_{\mathrm{b}}$ के विदित मानों तथा अम्लों और लवणों के अनुपात या अम्लों तथा क्षारकों के अनुपात के नियंत्रण द्वारा बनाते हैं। ऐसिटिक अम्ल तथा सोडियम एसिटेट का मिश्रण लगभग $\mathrm{pH}, 4.75$ का बफ़र विलयन देता है तथा अमोनियम क्लोराइड एवं अमोनियम हाइड्रॉक्साइड का मिश्रण $\mathrm{pH}, 9.25$ देता है। बफ़र विलयनों के बारे में उच्च कक्षाओं में हम और अधिक पढ़ेंगे।
6.12.1. बफ़र विलयन बनाना
$\mathrm{p} K_{a}, \mathrm{p} K_{b}$ और साम्यस्थिरांक का ज्ञान हमें ज्ञात $\mathrm{pH}$ का बफ्रर विलयन बनाने में सहायता करता है। आइए देखें कि हम यह कैसे कर सकते हैं।
अम्लीय-बफ़र बनाना
अम्लीय $\mathrm{pH}$ का बफ़र बनाने के लिए हम दुर्बल अम्ल और इसके द्वारा प्रबल क्षार के साथ बनाए जाने वाले लवण का उपयोग करते हैं। हम $\mathrm{pH}$, दुर्बल अम्ल के साम्य स्थिरांक $K_{\mathrm{b}}$ और दुर्बल अम्ल और इसके संयुग्मित क्षारक की सांद्रताओं के अनुपात में सम्बंध स्थापित करने वाला समीकरण स्थापित करते हैं। एक सामान्य स्थिति में जहाँ दुर्बल अम्ल $\mathrm{HA}$ जल में आयनीकृत होता है,
$$ \mathrm{HA}+\mathrm{H} _{2} \mathrm{O} \rightleftharpoons \mathrm{H} _{3} \mathrm{O}^{+}+\mathrm{A}^{-} $$
इसके लिए हम निम्नलिखित व्यंजक लिख सकते हैं-
$$ K_{a}=\frac{\left[\mathrm{H} _{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} $$
उपरोक्त व्यंजक को पुर्नव्यवस्थित करने पर
$$ \left[\mathrm{H} _{3} \mathrm{O}^{+}\right]=K _{a} \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]} $$
दोनों ओर का लघुगणक लेने के बाद पदों को पुनर्व्यवस्थित करने पर हमें प्राप्त होता है-
$$ \begin{gather*} \mathrm{pK_a}=\mathrm{pH}-\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\ \text { अथवा } \\ \mathrm{pH}=\mathrm{pK_a}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \tag{7.39} \end{gather*} $$
$$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\text { संयुग्मित क्षारक,, } \mathrm{A}^{-}\right]}{[\text {अम्ल, } \mathrm{HA}]} \tag{7.40}$$
व्यंजक (6.40) हेन्डर्सन-हासेलबल्ख समीकरण कहलाता है। $\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$, संयुग्मित क्षारक (ऋणायन) और मिश्रण में उपस्थित अम्ल की सांद्रताओं का अनुपात है। अम्ल दुर्बल होने के कारण बहुत कम आयनीकृत होता है और सांद्रता [HA], बफ़र बनाने को लिए गए अम्ल की सांद्रता से लेशमात्र ही भिन्न होती है। साथ ही, अधिकतर संयुग्मित क्षारक, $\left[\mathrm{A}^{-}\right]$, अम्ल के लवण के आयनीकृत होने से प्राप्त होता है। इसलिए संयुग्मित क्षारक की सांद्रता लवण की सांद्रता से केवल लेशमात्र भिन्न होगी। इसलिए समीकरण (6.40) निम्नलिखित प्रकार से रूपांतरित हो जाता है-
$$ \mathrm{pH}=\mathrm{pK} _{a}+\log \frac{[\text { लवण }]}{\text { [अम्ल] }} $$
यदि समीकरण (6.39) में, $\left[\mathrm{A}^{-}\right]$की सांद्रता [HA] की सांद्रता के बराबर हो तो $\mathrm{pH}=\mathrm{pK}$ होगा, क्योंकि $\log 1$ का मान शून्य होता है। इसलिए यदि हम अम्ल और लवण (संयुग्मित क्षारक) की मोलर सांद्रता बराबर लें तो बफ़र का $\mathrm{pH}$ अम्ल के $\mathrm{p} K_{\mathrm{a}}$ के बराबर होगा। अतः अपेक्षित $\mathrm{pH}$ का बफ़र बनाने के लिए हम ऐसे अम्ल का चयन करते हैं जिसका $\mathrm{p} K_{\mathrm{a}}$ अपेक्षित $\mathrm{pH}$ के बराबर होता है। ऐसीटिक अम्ल का $\mathrm{p} K_{\mathrm{a}}$ मान 4.76 होता है, इसलिए ऐसीटिक अम्ल और सोडियम ऐसीटेट को बराबर मात्रा में लेकर बनाए गए बफ़र का $\mathrm{pH}$ लगभग 4.76 होगा।
दुर्बल क्षारक और इसके संयुग्मित अम्ल से बने बफ़र का ऐसा ही विश्लेषण निम्नलिखित परिणाम देगा,
$$ \begin{equation*} \mathrm{pOH}=\mathrm{p} K_{b}+\log \frac{\left[\text { संयुग्मित अम्ल, } \mathrm{BH}^{+}\right]}{[\text {क्षारक, } \mathrm{B}]} \tag{6.41} \end{equation*} $$
बफ़र विलयन के $\mathrm{pH}$ का परिकलन, समीकरण $\mathrm{pH}$ $+\mathrm{pOH}=14$ का उपयोग करके किया जा सकता है।
हमें ज्ञात है कि $\mathrm{pH}+\mathrm{pOH}=\mathrm{pK} _{\mathrm{w}}$ और $\mathrm{p} K _{\mathrm{a}}+\mathrm{p} K _{\mathrm{b}}=\mathrm{p} K _{\mathrm{w}}$ । इन मानों को समीकरण (6.41) में रखने पर इसका निम्नलिखित रूपांतरण प्राप्त होता है-
$$ \begin{gather*} \mathrm{p} K_{\mathrm{w}}-\mathrm{pH}=\mathrm{p} K_{\mathrm{w}}-\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\text { संयुग्मित अम्ल, } \mathrm{BH}^{+}\right]}{\text {[क्षारक, } \mathrm{B}]} \end{gather*} $$
अथवा
$$ \begin{gather*} \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\text { संयुग्मित अम्ल, } \mathrm{BH}^{+}\right]}{[\text {क्षारक, } \mathrm{B}]} \tag{6.42} \end{gather*} $$
यदि क्षारक और इसके संयुग्मित अम्ल (धनायन) की सांद्रता बराबर हो तो बफ़र विलयन का $\mathrm{pH}$ क्षारक के $\mathrm{p} K_{\mathrm{a}}$ के बराबर होगा। अमोनिया का $\mathrm{p} K_{\mathrm{a}}$ मान 9.25 होता है, अतः $9.25 \mathrm{pH}$ का बफ़र एक समान सांद्रता वाले अमोनिया विलयन और अमोनियम क्लोराइड विलयन से बनाया जा सकता है। अमोनियम क्लोराइड और अमोनियम हाइड्रॉक्साइड से बने बफ़र विलयन के लिए समीकरण (6.42) का स्वरूप होगा-
$$ \mathrm{pH}=9.25+\log \frac{\left[\text { संयुग्मित अम्ल, } \mathrm{BH}^{+}\right]}{[\text {क्षारक, } \mathrm{B}]} $$
बफ़र विलयन के $\mathrm{pH}$ पर तनुकरण का असर नहीं पड़ता क्योंकि लघुगणक के अंतर्गत आने वाला पद अपरिवर्तित रहता है।
6.13 अल्पविलेय लवणों की विलेयता साम्यावस्था
हमें ज्ञात है कि जल में आयनिक ठोसों की विलेयता में बहुत अंतर रहता है। इनमें से कुछ तो इतने अधिक विलेय (जैसे कैल्सियम क्लोराइड) हैं कि वे प्रकृति में आर्द्रताग्राही होते हैं तथा वायुमंडल से जल-वाष्प शोषित कर लेते हैं। कुछ अन्य (जैसे लीथियम फ्लुओराइड) की विलेयता इतनी कम है कि इन्हें सामान्य भाषा में ‘अविलेय’ कहते हैं। विलेयता कई बातों पर निर्भर करती है, जिनमें से मुख्य है, लवण की जालक ऊष्मा (Lattice Enthalpy) तथा विलयन में आयनों की विलायक एंथैल्पी है। एक लवण को विलायक में घोलने के लिए आयनों के मध्य प्रबल आकर्षण बल (जालक एंथैल्पी) से आयन-विलायक अन्योन्य क्रिया अधिक होनी चाहिए। आयनों की विलायक एंथैल्पी को विलायकीयन के रूप में निरूपित करते हैं, जो सदैव ॠणात्मक होती है। अतः विलायकीय प्रक्रिया में ऊर्जा मुक्त होती है। विलायकीयन ऊर्जा की मात्रा विलायक की प्रकृति पर निर्भर होती है। अध्रुवीय (सहसंयोजक) विलायक में विलायकीयन एंथैल्पी की मात्रा कम होती है, जो लवण की जालक ऊर्जा को पराथव (Overcome) करने में सक्षम नहीं है। परिणामस्वरूप लवण अध्रुवी विलायक में नहीं घुलता है। यदि कोई लवण एक सामान्य नियम से जल में घुल सकता है, तो इसकी विलायकीयन एंथैल्पी लवण की जालक एंथैल्पी से अधिक होनी चाहिए। प्रत्येक लवण की एक अभिलाक्षणीय विलेयता होती है, जो ताप पर निर्भर करती है। प्रत्येक लवण की अपनी विशिष्ट विलेयता होती है। यह ताप पर निर्भर करती है। हम इन लवणों को इनकी विलेयता के आधार पर तीन वर्गों में विभाजित करते हैं-
वर्ग I | विलेय | विलेयता $>0.1 \mathrm{M}$ |
वर्ग II | कुछ कम विलेय | $0.01<$ विलेयता $<0.1 \mathrm{M}$ |
वर्ग III | अल्प विलेय | विलेयता $<0.01 \mathrm{M}$ |
अब हम अन्य विलेय आयनिक लवण तथा इसके संतृप्त जलीय विलयन के बीच साम्यावस्था पर विचार करेंगे।
6.13.1 विलेयता गुणनफल स्थिरांक
आइए, बेरियम सल्फेट सदृश ठोस लवण, जो इसके संतृप्त जलीय विलयन के संपर्क में है, पर विचार करें। अघुलित ठोस तथा इसके संतृप्त विलयन के आयन के मध्य साम्यावस्था को निम्नलिखित समीकरण द्वारा प्रदर्शित किया जाता है-
$\mathrm{BaSO}_4(\mathrm{~s}) \stackrel{\text { जल }}{\rightleftharpoons} \mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_4^{2-}(\mathrm{aq})$,
साम्यावस्था स्थिरांक निम्नलिखित समीकरण द्वारा प्रदर्शित किया जाता है-
$$ K={\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO} _{4}^{2-}\right]} /\left[\mathrm{BaSO} _{4}\right] $$
शुद्ध ठोस पदार्थ की सांद्रता स्थिर होती है।
अतः $K_{\mathrm{sp}}=\mathrm{K}\left[\mathrm{BaSO} _{4}\right]=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO} _{4}^{2-}\right]$
$K_{\mathrm{sp}}$ को ‘विलेयता गुणनफल-स्थिरांक’ या ‘विलेयता गुणनफल’ कहते हैं। उपरोक्त समीकरण में $K_{\mathrm{sp}}$ का प्रायोगिक मान $298 \mathrm{~K}$ पर $1.1 \times 10^{-10}$ है। इसका अर्थ यह है कि ठोस बेरियम सल्फेट, जो अपने संतृप्त विलयन के साथ साम्यावस्था में है, के लिए बेरियम तथा सल्फेट आयनों की सांद्रताओं का गुणनफल इसके विलेयता-गुणनफल स्थिरांक के तुल्य होता है। इन दोनों आयनों की सांद्रता बेरियम सल्फेट की मोलर-विलेयता के बराबर होगी। यदि मोलर विलेयता ’ $\mathrm{S}$ ’ हो, तो
$$ \begin{aligned} & 1.1 \times 10^{-10}=(\mathrm{S})(\mathrm{S})=\mathrm{S}^{2} \\ & \text { or } \quad \mathrm{S}=1.05 \times 10^{-5} \end{aligned} $$
इस प्रकार बेरियम सल्फेट की मोलर-विलेयता $1.05 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$ होगी।
कोई लवण वियोजन के फलस्वरूप भिन्न-भिन्न आवेशों वाले दो या दो से अधिक ऋणायन या धनायन दे सकता है। उदाहरण के लिए- आइए, हम जिर्कोनियम फॉस्फेट $\left(\mathrm{Zr}^{4+}\right) _{3}$ $\left(\mathrm{PO} _{4}{ }^{3-}\right) _{4}$ सदृश लवण पर विचार करें, जो चार धनावेशवाले तीन जिर्कोनियम आयनों एवं तीन ऋण आवेशवाले 4 फास्फेट ॠणायनों में वियोजित होता है। यदि जिर्कोनियम फास्फेट की मोलर-विलेयता ’ $\mathrm{S}$ ’ हो, तो इस यौगिक के रससमीकरणमितीय अनुपात के अनुसार
$$ \begin{aligned} & [\mathrm{Zr}^{4+}]=3 \mathrm{~S} \text { तथा }[\mathrm{PO_4}^{3-}]=4 \mathrm{S} \\ \end{aligned} $$
$$ \begin{aligned} & \text { तथा } K_{\mathrm{sp}}=(3 \mathrm{~S})^{3}(4 \mathrm{~S})^{4}=6912(\mathrm{~S})^{7} \\ & \text { या } \mathrm{S}= \{K_{\mathrm{sp}} / \left(3^{3} \times 4^{4}\right)\}^{1 / 7}= \left(K_{\mathrm{sp}} / 6912 \right)^{1 / 7} \end{aligned} $$
यदि किसी ठोस लवण, जिसका सामान्य सूत्र $\mathrm{M} _{\mathrm{x}}^{\mathrm{p}+} \mathrm{X} _{\mathrm{y}}^{\mathrm{q}-}$ हो, जो अपने संतृप्त विलयन के साथ साम्यावस्था में हो तथा जिसकी मोलर-विलेयता ’ $\mathrm{S}$ ’ ही, को निम्नलिखित समीकरण द्वारा व्यक्त किया जा सकता है-
$$ \begin{gathered} \mathrm{M} _{\mathrm{x}} \mathrm{X} _{\mathrm{y}}(\mathrm{s}) \rightleftharpoons \mathrm{xM}^{\mathrm{p}}(\mathrm{aq})+\mathrm{yX}^{\mathrm{q}}(\mathrm{aq}) \\ \left(\text { यहाँ } \mathrm{x} \times \mathrm{p}^{+}=\mathrm{y} \times \mathrm{q}^{-}\right) \end{gathered} $$
तथा इसका विलेयता-गुणनफल स्थिरांक निम्नलिखित समीकरण द्वारा व्यक्त किया जाता है-
$$ \begin{align*} & K_{\mathrm{sp}}=\left[\mathrm{M}^{\mathrm{p}+}\right]^{\mathrm{x}}\left[\mathrm{X}^{\mathrm{q}-}\right]^{\mathrm{y}}=(\mathrm{xS})^{\mathrm{x}}(\mathrm{yS})^{\mathrm{y}} \tag{7.44} \\ \end{align*} $$
$$ \begin{aligned} & =x^{x} \cdot y^{y} \cdot S^{(x+y)} \\ & \mathrm{S}^{(\mathrm{x}+\mathrm{y})}=K_{\mathrm{sp}} / \mathrm{x}^{\mathrm{x}} \cdot \mathrm{y}^{\mathrm{y}} \\ \end{aligned} $$
इसलिए $\mathrm{S}=\left(\mathrm{K} _{\mathrm{sp}} / \mathrm{x}^{\mathrm{x}} \cdot \mathrm{y}^{\mathrm{y}}\right)^{1 / \mathrm{x}+\mathrm{y}}$
समीकरण में जब एक या अधिक स्पीशीज़ की सांद्रता उनकी साम्यावस्था सांद्रता नहीं होती है, तब $K_{\mathrm{sp}}$ को $Q_{\mathrm{sp}}$ से व्यक्त किया जाता है (देखें इकाई $7-6-2$ )। स्पष्ट है कि साम्यावस्था पर $K_{\mathrm{sp}}=Q_{\mathrm{sp}}$ होता है, किंतु अन्य परिस्थितियों में यह अवक्षेपण या विलयन (Dissolution) प्रक्रियाओं का संकेत देता है। सारणी 6.9 में $298 \mathrm{~K}$ पर कुछ सामान्य लवणों के विलेयता-गुणनफल स्थिरांकों के मान दिए गए हैं।
उदाहरण 6.26
यह मानते हुए कि किसी भी प्रकार के आयन जल से अभिक्रिया नहीं करते, शुद्ध जल में $\mathrm{A} _{2} \mathrm{X} _{3}$ की विलेयता की गणना कीजिए। $\mathrm{A} _{2} \mathrm{X} _{3}$ का विलेयता गुणनफल $K _{\mathrm{sp}}$ $=1.1 \times 10^{-23}$ है।
हल
$\mathrm{A} _{2} \mathrm{X} _{3} \rightarrow 2 \mathrm{~A}^{3+}+3 \mathrm{X}^{2-}$
$\mathrm{K} _{\mathrm{sp}}=\left[\mathrm{A}^{3+}\right]^{2}\left[\mathrm{X}^{2-}\right]^{3}=1.1 \times 10^{-23}$
यदि $\mathrm{S}=\mathrm{A} _{2} \mathrm{X} _{3}$, की विलेयता, तो
$\left[\mathrm{A}^{3+}\right]=2 \mathrm{~S} ;\left[\mathrm{X}^{2-}\right]=3 \mathrm{~S}$
इस प्रकार $K_{\mathrm{sp}}=(2 \mathrm{~S})^{2}(3 \mathrm{~S})^{3}=108 \mathrm{~S}^{5}$
$=1.1 \times 10^{-23}$
अत: $\mathrm{S}^{5}=1 \times 10^{-25}$
$\mathrm{S}=1.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$.
सारणी $6.9298 \mathrm{~K}$ पर कुछ सामान्य आयनिक लवणों के विलेयता-गुणनफल स्थिरांक $\boldsymbol{K} _{\mathrm{sp}}$ के मान
लवण का नाम | सूत्र | $\boldsymbol{K} _{\text {sp }}$ |
---|---|---|
सिल्वर ब्रोमाइड | $\mathrm{AgBr}$ | $5.0 \times 10^{-13}$ |
सिल्वर कार्बोनेट | $\mathrm{Ag} _{2} \mathrm{CO} _{3}$ | $8.1 \times 10^{-12}$ |
सिल्वर क्रोमेट | $\mathrm{Ag} _{2} \mathrm{CrO} _{4}$ | $1.1 \times 10^{-12}$ |
सिल्वर क्लोराइड | $\mathrm{AgCl}$ | $1.8 \times 10^{-10}$ |
सिल्वर सल्फेट | AgI | $8.3 \times 10^{-17}$ |
ऐलुमिनियम हाइड्रॉक्साइड | $\mathrm{Ag} _{2} \mathrm{SO} _{4}$ | $1.4 \times 10^{-5}$ |
बेरियम क्रोमेट | $\mathrm{Al}(\mathrm{OH})_{3}$ | $1.3 \times 10^{-33}$ |
बेरियम फ्लुओराइड | $\mathrm{BaCrO} _{4}$ | $1.2 \times 10^{-10}$ |
बेरियम सल्फेट | $\mathrm{BaF} _{2}$ | $1.0 \times 10^{-6}$ |
कैल्सियम कार्बोनेट | $\mathrm{BaSO} _{4}$ | $1.1 \times 10^{-10}$ |
कैल्सियम फ्लुओराइड | $\mathrm{CaCO} _{3}$ | $2.8 \times 10^{-9}$ |
कैल्सियम हाइड्रॉक्साइड | $\mathrm{CaF} _{2}$ | $5.3 \times 10^{-9}$ |
कैल्सियम ऑक्सेलेट | $\mathrm{Ca}(\mathrm{OH})_{2}$ | $5.5 \times 10^{-6}$ |
कैल्सियम सल्फेट | $\mathrm{CaC} _{2} \mathrm{O} _{4}$ | $4.0 \times 10^{-9}$ |
कैडमियम हाइड्रॉक्साइड | $\mathrm{CaSO} _{4}$ | $9.1 \times 10^{-6}$ |
कैडमियम सल्फाइड | $\mathrm{Cd}(\mathrm{OH})_{2}$ | $2.5 \times 10^{-14}$ |
क्रोमियम हाइड्रॉक्साइड | CdS | $8.0 \times 10^{-27}$ |
क्यूप्रस ब्रोमाइड | $\mathrm{Cr}(\mathrm{OH})_{3}$ | $6.3 \times 10^{-31}$ |
क्यूप्रिक कार्बोनेट | $\mathrm{CuBr}$ | $5.3 \times 10^{-9}$ |
क्यूप्रस क्लोराइड | $\mathrm{CuCO} _{3}$ | $1.4 \times 10^{-10}$ |
क्यूप्रिक हाइड्रॉक्साइड | $\mathrm{CuCl}$ | $1.7 \times 10^{-6}$ |
क्यूप्रस आयोडाइड | $\mathrm{Cu}(\mathrm{OH})_{2}$ | $2.2 \times 10^{-20}$ |
क्यूप्रिक सल्फाइड | CuI | $1.1 \times 10^{-12}$ |
फेरस कार्बोनेट | CuS | $6.3 \times 10^{-36}$ |
फेरस हाइड्रॉक्साइड | $\mathrm{FeCO} _{3}$ | $3.2 \times 10^{-11}$ |
फेरिक हाइड्रॉक्साइड | $\mathrm{Fe}(\mathrm{OH})_{2}$ | $8.0 \times 10-16$ |
फेरस सल्फाइड | $\mathrm{Fe}(\mathrm{OH})_{3}$ | $1.0 \times 10^{-38}$ |
मरक्यूरस ब्रोमाइड | $\mathrm{FeS}$ | $6.3 \times 10^{-18}$ |
मरक्यूरस क्लोराइड | $\mathrm{Hg} _{2} \mathrm{Br} _{2}$ | $5.6 \times 10^{-23}$ |
मरक्यूरस आयोडाइड | $\mathrm{Hg} _{2} \mathrm{Cl} _{2}$ | $1.3 \times 10^{-18}$ |
मरक्यूरस सल्फेट | $\mathrm{Hg} _{2} \mathrm{I} _{2}$ | $4.5 \times 10^{-29}$ |
मरक्यूरिक सल्फाइड | $\mathrm{Hg} _{2} \mathrm{SO} _{4}$ | $7.4 \times 10^{-7}$ |
मैग्नीशियम कार्बोनेट | HgS | $4.0 \times 10^{-53}$ |
मैग्नीशियम फ्लओराइड | $\mathrm{MgCO} _{3}$ | $3.5 \times 10^{-8}$ |
मैग्नीशियम हाइड्राँक्साइड | $\mathrm{MgF} _{2}$ | $6.5 \times 10^{-9}$ |
मैग्नीशियम ऑक्सेलेट | $\mathrm{Mg}(\mathrm{OH})_{2}$ | $1.8 \times 10^{-11}$ |
मैग्नीज कार्बोनेट | $\mathrm{MgC} _{2} \mathrm{O} _{4}$ | $7.0 \times 10^{-7}$ |
मैग्नीज सल्फाइड | $\mathrm{MnCO} _{3}$ | $1.8 \times 10^{-11}$ |
मैग्नीज सल्फाइड | $\mathrm{MnS}$ | $2.5 \times 10^{-13}$ |
निकैल हाइड्रॉक्साइड | $\mathrm{Ni}(\mathrm{OH})_{2}$ | $2.0 \times 10^{-15}$ |
निकैल सल्फाइड | $\mathrm{NiS}$ | $4.7 \times 10^{-5}$ |
लेड ब्रोमाइड | $\mathrm{PbBr} _{2}$ | $4.0 \times 10^{-5}$ |
लेड कार्बोनेट | $\mathrm{PbCO} _{3}$ | $7.4 \times 10^{-14}$ |
लेड क्लोराइड | $\mathrm{PbCl} _{2}$ | $1.6 \times 10^{-5}$ |
लेड फ्लुओराइड | $\mathrm{PbF} _{2}$ | $7.7 \times 10^{-8}$ |
लेड हाइड्रॉक्साइड | $\mathrm{Pb}(\mathrm{OH})_{2}$ | $1.2 \times 10^{-15}$ |
लेड आयोडाइड | $\mathrm{PbI} _{2}$ | $7.1 \times 10^{-9}$ |
लेड सल्फेट | $\mathrm{PbSO} _{4}$ | $1.6 \times 10^{-8}$ |
लेड सल्फाइड | $\mathrm{PbS}$ | $8.0 \times 10^{-28}$ |
स्टेनस हाइड्रॉक्साइड | $\mathrm{Sn}(\mathrm{OH})_{2}$ | $1.4 \times 10^{-28}$ |
स्टेनस सल्फाइड | $\mathrm{SnS}$ | $1.0 \times 10^{-25}$ |
स्ट्रॉन्शियम कार्बोनेट | $\mathrm{SrCO} _{3}$ | $1.1 \times 10^{-10}$ |
स्ट्रॉन्शियम फ्जुओराइड | $\mathrm{SrF} _{2}$ | $2.5 \times 10^{-9}$ |
स्ट्रॉन्शियम सल्फेट | $\mathrm{SrSO} _{4}$ | $3.2 \times 10^{-7}$ |
थैलस ब्रोमाइड | $\mathrm{TlBr}$ | $3.4 \times 10^{-6}$ |
थैलस क्लोराइड | $\mathrm{TlCl}$ | $1.7 \times 10^{-4}$ |
थैलस आयोडाइड | TII | $6.5 \times 10^{-8}$ |
जिंक कार्बोनेट | $\mathrm{ZnCO} _{3}$ | $1.4 \times 10^{-11}$ |
जिक हाइड्रांक्साइड | $\mathrm{Zn}(\mathrm{OH})_{2}$ | $1.0 \times 10^{-15}$ |
जिंक सल्फाइड | $\mathrm{ZnS}$ | $1.6 \times 10^{-24}$ |
उदाहरण 6.27
दो अल्प विलेय लवणों $\mathrm{Ni}(\mathrm{OH})_{2}$ एवं $\mathrm{AgCN}$ के विलेयता-गुणनफल के मान क्रमशः $2.0 \times 10^{-15}$ एवं 6 $\times 10^{-17}$ हैं। कौन सा लवण अधिक विलेय है?
हल
$$ \mathrm{AgCN} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{CN}^{-} $$
$$ \begin{aligned} & K_{\mathrm{sp}}= \left[\mathrm{Ag}^{+}\right] \left[\mathrm{CN}^{-} \right]=6 \times 10^{-17} \\ & \mathrm{Ni}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Ni}^{2+}+2 \mathrm{OH}^{-} \\ \end{aligned} $$
$$ \begin{aligned} & K_{\mathrm{sp}}= \left[\mathrm{Ni}^{2+} \right] \left[\mathrm{OH}^{-} \right]^{2}=2 \times 10^{-15} \\ & \text { Let } \left[\mathrm{Ag}^{+} \right]=\mathrm{S_1} \text {, then } \left[\mathrm{CN}^{-} \right]=\mathrm{S_1} \\ & \text { Let } \left[\mathrm{Ni}^{2+} \right]=\mathrm{S_2}, \text { then } \left[\mathrm{OH}^{-} \right]=2 \mathrm{~S_2} \\ & \mathrm{~S_1}^{2}=6 \times 10^{-17}, \mathrm{~S_1}=7.8 \times 10^{-9} \\ & \left(\mathrm{~S_2} \right) \left(2 \mathrm{~S_2} \right)^{2}=2 \times 10^{-15}, \mathrm{~S_2}=0.58 \times 10^{-4} \\ & \mathrm{AgCN} \text {से} \mathrm{Ni}(\mathrm{OH})_{2} \text { की विलेयता अधिक है।} \end{aligned} $$
6.13.2 आयनिक लवणों की विलेयता पर सम आयन प्रभाव
ला-शातलिए सिद्धांत के अनुसार, यह आशा की जाती है कि यदि किसी लवण विलयन में किसी एक आयन की सांद्रता बढ़ाने पर आयन अपने विपरीत आवेश के आयन के साथ संयोग करेगा तथा विलयन से कुछ लवण तब तक अवक्षेपित होगा, जब तक एक बार पुन: $\mathrm{K} _{\mathrm{sp}}=\mathrm{Q} _{\mathrm{sp}}$ न हो जाए। यदि किसी आयन की सांद्रता घटा दी जाए, तो कुछ और लवण घुलकर दोनों आयनों की सांद्रता बढ़ा देंगे, ताकि फिर $\mathrm{K} _{\mathrm{sp}}=\mathrm{Q} _{\mathrm{sp}}$ हो जाए। यह विलेय लवणों के लिए भी लागू हैं, सिवाय इसके कि आयनों की उच्च सांद्रता के कारण $\mathrm{Q} _{\mathrm{sp}}$ व्यंजक में मोलरता के स्थान पर हम सक्रियता (activities) का प्रयोग करते हैं। इस प्रकार सोडियम क्लोराइड के संतृप्त विलयन में $\mathrm{HCI}$ के वियोजन से प्राप्त क्लोराइड आयन की सांद्रता (सक्रियता) बढ़ जाने के कारण सोडियम क्लोराइड का अवक्षेपण हो जाता है। इस विधि से प्राप्त सोडियम क्लोराइड बहुत ही शुद्ध होता है। इस प्रकार हम सोडियम अथवा मैग्नीशियम सल्फेट जैसी अशुद्धियाँ दूर कर लेते हैं। भारात्मक विश्लेषण में किसी आयन को बहुत कम विलेयता वाले उसके अल्प विलेय लवण के रूप में पूर्णरूपेण अवक्षेपित करने में भी सम आयन प्रभाव का प्रयोग किया जाता है। इस प्रकार हम भारात्मक विश्लेषण में सिल्वर आयन का अवक्षेपण सिल्वर क्लोराइड के रुप में, फेरिक अम्ल का अवक्षेपण फेरिक हाइड्रॉक्साइड के रुप में तथा अवक्षेपण बेरियम आयन का बेरियम सल्फेट के रूप में कर सकते हैं।
उदाहरण 6.28
$0.10 \mathrm{M} \mathrm{NaOH}$ में $\mathrm{Ni}(\mathrm{OH}) _{2}$ की मोलर विलेयता की गणना कीजिए। $\mathrm{Ni}(\mathrm{OH}) _{2}$ का आयनिक गुणनफल $2.0 \times 10^{-15}$ है।
हल
माना कि $\mathrm{Ni}(\mathrm{OH}) _{2}$ की विलेयता $\mathrm{S} $
S $ \mathrm{mol} \mathrm{L}^{-1}$ के विलेय होने से $\mathrm{Ni} ^{2+}$ के $(\mathrm{S})$ मोल एवं $\mathrm{OH} ^{-}$के $2 \mathrm{~S} \mathrm{~mol} \mathrm{~L} ^{-1}$ मोल लिटर बनते हैं, लेकिन $\mathrm{OH}^{-}$ की कुल सांद्रता $\mathrm{OH}$ $(0.10+2 \mathrm{~S}) \mathrm{mol} \mathrm{L}^{-1}$ होगी, क्योंकि विलयन में पहले से ही $\mathrm{NaOH}$ से प्राप्त $0.10 \mathrm{~mol} \mathrm{~L}^{-1}$ उपस्थित है।
$K_{\mathrm{sp}}=2.0 \times 10^{-15}=\left[\mathrm{Ni}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=(\mathrm{S})(0.10+2 \mathrm{~S})^{2}$
चूँकि $\mathrm{K} _{\mathrm{sp}}$ का मान कम है। $2 \mathrm{~S} < 0.10$ अतः $(0.10+$ $2 \mathrm{~S}) \approx 0.10$
अर्थात्
$$ \begin{aligned} & 2.0 \times 10^{-15}=\mathrm{S}(0.10)^{2} \\ & \mathrm{~S}=2.0 \times 10^{-13} \mathrm{M}=\left[\mathrm{Ni}^{2+}\right] \end{aligned} $$
दुर्बल अम्ल के लवणों की विलेयता कम $\mathrm{pH}$ पर बढ़ती है, क्योंकि कम $\mathrm{pH}$ पर ऋणायन की सांद्रता इसके प्रोटॉनीकरण के कारण घटती है, जो लवण की विलेयता को बढ़ा देता है। इससे $K _{\mathrm{sp}}= Q _{\mathrm{sp}}$ हमें दो साम्यों को एक साथ संतुष्ट करना होता है, अर्थात् $K _{\mathrm{sp}}=\left[\mathrm{M}^{+}\right]\left[\mathrm{X}^{-}\right]$,
$$ \begin{aligned} & K_{\mathrm{sp}}=\left[\mathrm{M}^{+}\right]\left[\mathrm{X}^{-}\right], \\ & \mathrm{HX}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}) ; \\ & K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{X}^{-}(\mathrm{aq})\right]}{[\mathrm{HX}(\mathrm{aq})]} \\ & {\left[\mathrm{X}^{-}\right] /[\mathrm{HX}]=K_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]} \end{aligned} $$
दोनों तरफ का व्युत्क्रम लेकर 1 जोड़ने पर हमें प्राप्त होगा
$$ \begin{aligned} & \frac{[\mathrm{HX}]}{\left[\mathrm{X}^{-}\right]}+1=\frac{\left[\mathrm{H}^{+}\right]}{K_{\mathrm{a}}}+1 \\ & \frac{[\mathrm{HX}]+\left[\mathrm{X}^{-}\right]}{\left[\mathrm{X}^{-}\right]}=\frac{\left[\mathrm{H}^{+}\right]+K_{\mathrm{a}}}{K_{\mathrm{a}}} \end{aligned} $$
पुन: व्युत्क्रम लेने पर हमें प्राप्त होगा
$[X ^{-}] /{[X} ^{-}]$ + $[HX]=f=K _{a} /(K _{a}+[H ^{+}])$। यह देखा जा सकता है कि $\mathrm{pH}$ के घटने पर ’ $\mathrm{f}$ ’ भी घटता है। यदि दी गई $\mathrm{pH}$ पर लवण की विलेयता $\mathrm{S}$ हो, तो
$$ \begin{align*} & K_{\mathrm{sp}}=[\mathrm{S}][\mathrm{f} \mathrm{~S}]=\mathrm{S}^{2} \{K_a / (K_a+ [\mathrm{H}^{+} ] ) \} \text {and } \\ \end{align*} $$
$$ \begin{align*} & \mathrm{S}= \{K_{\mathrm{sp}} ( [\mathrm{H}^{+} ]+K_{\mathrm{a}} ) / K_{\mathrm{a}} \}^{1 / 2} \tag{7.46} \end{align*} $$
अत: $\mathrm{S},\left[\mathrm{H}^{+}\right]$के बढ़ने या $\mathrm{pH}$ के घटने पर विलेयता बढ़ती है।
सारांश
यदि द्रव से निकलनेवाले अणुओं की संख्या वाष्प से द्रव में लौटनेवाले अणुओं की संख्या के बराबर हो, तो साम्य स्थापित हो जाता है। यह गतिशील प्रकृति का होता है। साम्यावस्था भौतिक एवं रासायनिक, दोनों प्रक्रमों द्वारा स्थापित हो सकती है। इस अवस्था में अग्र एवं पश्च अभिक्रिया की दर समान होती है। उत्पादों की सांद्रता को अभिकारकों की सांद्रता से भाग देने पर हम प्रत्येक पद को रससमीकरणमितीय स्थिरांक के घात के रूप में साम्य स्थिरांक $K_{c}$ को व्यक्त करते हैं।
$$ \begin{gathered} \text { अभिक्रिया , } \mathrm{a} \mathrm{A}+\mathrm{b} \mathrm{B} \rightleftharpoons \mathrm{c} \mathrm{C}+\mathrm{d} \mathrm{D} \\ K_{\mathrm{c}}=[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}} /[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}} \end{gathered} $$
नियत ताप पर साम्यावस्था स्थिरांक का मान नियत रहता है। इस अवस्था में सभी स्थूल गुण जैसे सांद्रता, दाब आदि स्थिर रहते हैं। गैसीय अभिक्रिया के लिए साम्यावस्था स्थिरांक को $K_{p}$ से व्यक्त करते हैं। इसमें साम्यावस्था स्थिरांक पद में सांद्रता के स्थान पर हम आंशिक दाब लिखते हैं। अभिक्रिया की दिशा का अनुमान अभिक्रिया भागफल $Q_{c}$ से लगाया जाता है, जो साम्यावस्था पर $K_{c}$ के बराबर होता है। ‘ला-शातेलीए सिद्धांत’, के अनुसार ताप, दाब, सांद्रता आदि कारकों में से किसी एक में परिवर्तन के कारण साम्यावस्था उसी दिशा में विस्थापित होती है, जो परिवर्तन के प्रभाव को कम या नष्ट कर सकें उसका उपयोग विभिन्न कारकों जैसे ताप, सांद्रता, दाब, उत्प्रेरक और अक्रिय गैसों के साम्य की दिशा पर प्रभाव के अध्ययन में किया जाता है तथा उत्पाद की मात्रा का नियंत्रण इन कारकों को नियंत्रित करके किया जा सकता है। अभिक्रिया मिश्रण के साम्यावस्था संगठन को उत्प्रेरक प्रभावित नहीं करता, किंतु अभिक्रिया की गति को नए निम्न ऊर्जा-पथ में अभिकारक से उत्पाद तथा विलोमतः उत्पाद से अभिकारक में बदलकर बढ़ाता है।
वे सभी पदार्थ, जो जलीय विलयन में विद्युत् का चालन करते हैं, ‘विद्युत् अपघट्य’ कहलाते हैं। अम्ल, क्षारक तथा लवण ‘विद्युत् अपघट्य’ हैं। ये जलीय विलयन में वियोजन या आयनन द्वारा धनायन एवं ऋणायन के उत्पादन के कारण विद्युत् का चालन करते हैं। प्रबल विद्युत् अपघट्य पूर्णतः वियोजित हो जाते हैं। दुर्बल विद्युत् अपघट्य में आयनित एवं अनायनित अणुओं के मध्य साम्य होता है। आरेनियस के अनुसार, जलीय विलयन में अम्ल, हाइड्रोजन आयन तथा क्षारक, हाइड्रॉक्सिल आयन देते हैं। संगत संयुग्मी अम्ल देता है। दूसरी ओर ब्रान्सटेड-लोरी ने अम्ल को प्रोटॉनदाता के कप में एवं क्षारक प्रोटॉनग्राही के कप में परिभाषित किया। जब एक ब्रान्स्टेड-लोरी अम्ल एक क्षारक से अभिक्रिया करता है, तब यह इसका संगत संयुग्मी क्षारक एवं क्रिया करने वाले क्षारक के संगत संयुग्मी अम्ल को बनाता है। इस प्रकार संयुग्मी अम्ल-क्षार में केवल एक प्रोटॉन का अंतर होता है। आगे, लूइस ने अम्ल को सामान्य रूप में इलेक्ट्रॉन युग्मग्राही एवं क्षारक को इलेक्ट्रॉन युग्मदाता के रूप में परिभाषित किया। आरेनियस की परिभाषा के अनुसार, दुर्बल अम्ल के वियोजन के लिए स्थिरांक $\left(K_{\mathrm{a}}\right)$ तथा दुर्बल क्षार के वियोजन के लिए स्थिरांक $\left(K_{b}\right)$ के व्यंजक को विकसित किया गया। आयनन की मात्रा एवं उसकी सांद्रता पर निर्भरता तथा सम आयन का विवेचन किया गया है। हाइड्रोजन आयन की सांद्रता (सक्रियता) के लिए $\mathrm{pH}$ मापक्रम $\left(\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]\right.$) प्रस्तुत किया गया है। तथा उसे अन्य राशियों के लिए विस्तारित किया $\left(p \mathrm{OH}=-\log \left[\mathrm{OH}^{-}\right]\right) ; p K_{\mathrm{a}}=-\log \left[K_{\mathrm{a}}\right] ; p K_{\mathrm{b}}=$ $-\log \left[K_{\mathrm{b}}\right.$ तथा $p K_{\mathrm{w}}=-\log \left[K_{\mathrm{w}}\right]$ आदि) गया है। जल के आयनन का अध्ययन करने पर हम देखते हैं कि समीकरण $\mathrm{pH}+$ $\mathrm{pOH}=\mathrm{pK}$ हमेशा संतुष्ट होती है। प्रबल अम्ल एवं दुर्बल क्षार, दुर्बल अम्ल एवं प्रबल क्षार और दुर्बल अम्ल एवं दुर्बल क्षार के लवणों का जलीय विलयन में जल-अपघटन होता है। बफर विलयन की परिभाषा तथा उसके महत्त्व का संक्षिप्त वर्णन किया गया है। अल्प विलेय लवणों के विलेयता संबंधी साम्यों का वर्णन एवं विलेयता गुणांक स्थिरांक $\left(K_{\mathrm{sp}}\right)$ की व्युत्पत्ति करते हैं। इसका संबंध लवणों की विलेयता से स्थापित किया गया। विलयन से लवण के अवक्षेपण या उसके जल में विलेयता की शर्तों का निर्धारण किया गया है। सम आयन एवं अल्प विलेय लवणों की विलयेता के महत्त्व की भी विवेचना की गई है।
विद्यार्थियों के लिए इस एकक से संबंधित निर्देशित क्रियाएँ
(क) विद्यार्थी विभित्र ताजा फलों एवं सब्जियों के रसों, मृदु पेय, शरीर पदार्थों द्रवों एवं उपलब्ध जल के नमूनों का $\mathrm{pH}$ ज्ञात करने के लिए $\mathrm{pH}$ पेपर का उपयोग कर सकते हैं।
(ख) $\mathrm{pH}$ पेपर का उपयोग विभिन्न लवणों का विलयन की $\mathrm{pH}$ ज्ञात करने में भी किया जा सकता है। वह यह पता कर सकता/सकती है कि ये प्रबल/दुर्बल अम्लों या क्षारों से बनाए गए हैं।
(ग) वे सोडियम एसीटेट एवं एसीटिक अम्ल को मिश्रित कर कुछ बफर विलयन बना सकते हैं एवं $\mathrm{pH}$ पेपर का उपयोग कर उनका $\mathrm{pH}$ ज्ञात कर सकते हैं।
(घ) उन्हें विभित्र $\mathrm{pH}$ के विलयनों में विभित्र रंग प्रेक्षित करने के लिए सूचक दिए जा सकते हैं।
(ङ) सूचकों का उपयोग कर कुछ अम्ल क्षार अनुमापन कर सकते हैं।
(च) वे अल्प विलेय लवणों की विलेयता पर सम आयन प्रभाव को देख सकते हैं।
(छ) यदि विद्यालय में $\mathrm{pH}$ मीटर उपलब्ध हो, तो वे इससे $\mathrm{pH}$ माप कर उसकी $\mathrm{pH}$ पेपर से प्राप्त परिणामों से तुलना कर सकते हैं।
अभ्यास
6.1 एक द्रव को सीलबंद पात्र में निश्चित ताप पर इसके वाष्प के साथ साम्य में रखा जाता है। पात्र का आयतन अचानक बढ़ा दिया जाता है।
(क) वाष्प-दाब परिवर्तन का प्रारंभिक परिणाम क्या होगा?
(ख) प्रारंभ में वाष्पन एवं संघनन की दर केसे बदलती है?
(ग) क्या होगा, जब कि साम्य पुनः अंतिम रूप से स्थापित हो जाएगा तब अंतिम वाष्प दाब क्या होगा?
Show Answer
Answer
/#missing
6.2 निम्न साम्य के लिए $\mathrm{K}_{\mathrm{c}}$ क्या होगा, यदि साम्य पर प्रत्येक पदार्थ की सांद्रताएँ हैं $\left[\mathrm{SO}_2\right]=0.60 \mathrm{M}$,$\left[\mathrm{O_2}\right]=0.82 \mathrm{M}$ एवं $\left[\mathrm{SO_3}\right]=1.90 \mathrm{M}$ ?
$$ 2 \mathrm{SO_2}(\mathrm{~g})+\mathrm{O_2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO_3}(\mathrm{~g}) $$
Show Answer
Answer
/#missing
6.3 एक निश्चित ताप एवं कुल दाब $10^5 \mathrm{~Pa}$ पर आयोडीन वाष्प में आयतनानुसार $40 %$ आयोडीन परमाणु होते हैं।
$ \mathrm{I}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{I}(\mathrm{g}) $
साम्य के लिए $K_p$ की गणना कीजिए।
Show Answer
Answer
/#missing
6.4 निम्नलिखित में से प्रत्येक अभिक्रिया के लिए साम्य स्थिरांक $K_c$ का व्यंजक लिखिए-
(i) $2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_2(\mathrm{~g})$
(ii) $2 \mathrm{Cu}\left(\mathrm{NO}_3\right)_2$ (s) $\rightleftharpoons 2 \mathrm{CuO}$ (s) $+4 \mathrm{NO}_2$ (g) $+\mathrm{O}_2$ (g)
(iii) $\mathrm{CH}_3 \mathrm{COOC}_2 \mathrm{H}_5$ (aq) $+\mathrm{H}_2 \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH}_3 \mathrm{COOH}$ (aq) $+\mathrm{C}_2 \mathrm{H}_5 \mathrm{OH}$ (aq)
(iv) $\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq})^{\circ} \rightleftharpoons \mathrm{Fe}(\mathrm{OH})_3(\mathrm{~s})$
(v) $\mathrm{I}_2$ (s) $+5 \mathrm{~F}_2 \rightleftharpoons 2 \mathrm{IF}_5$
Show Answer
Answer
/#missing
6.5 $K_{p}$ के मान से निम्नलिखित में से प्रत्येक साम्य के लिए $K_{c}$ का मान ज्ञात कीजिए-
(i) $2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl} _{2}(\mathrm{~g}) ; K _{p}=1.8 \times 10^{-2}$ at $500 \mathrm{~K}$
$ \text { (ii) } \quad \mathrm{CaCO} _{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO} _{2}(\mathrm{~g}) ; K _{p}=167 \text { at } 1073 \mathrm{~K} $
Show Answer
Answer
/#missing
6.6 साम्य $\mathrm{NO}(\mathrm{g})+\mathrm{O} _{3}(\mathrm{~g}) \rightleftharpoons \mathrm{NO} _{2}(\mathrm{~g})+\mathrm{O} _{2}(\mathrm{~g})$ के लिए $1000 \mathrm{~K}$ पर $\mathrm{K} _{\mathrm{c}}=6.3 \times 10^{14}$ है।
साम्य में अग्र एवं प्रतीप दोनों अभिक्रियाएँ प्राथमिक रूप से द्विअणुक हैं। प्रतीप अभिक्रिया के लिए $\mathrm{K} _{\mathrm{c}}$ क्या है?
Show Answer
Answer
/#missing
6.7 साम्य स्थिरांक का व्यंजक लिखते समय समझाइए कि शुद्ध द्रवों एवं ठोसों को उपेक्षित क्यों किया जा सकता है?
Show Answer
Answer
/#missing
6.8 $\mathrm{N} _{2}$ एवं $\mathrm{O} _{2-}$ के मध्य निम्नलिखित अभिक्रिया होती है-
$2 \mathrm{~N} _{2}(\mathrm{~g})+\mathrm{O} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N} _{2} \mathrm{O}(\mathrm{g})$
यदि एक $10 \mathrm{~L}$ के पात्र में 0.482 मोल $\mathrm{N} _{2}$ एवं 0.933 मोल $\mathrm{O} _{2}$ रखें जाएँ तथा एक ताप, जिसपर $\mathrm{N} _{2} \mathrm{O}$ बनने दिया जाए तो साम्य मिश्रण का संघटन ज्ञात कीजिए $K _{\mathrm{c}}=2.0 \times 10^{-37}$ ।
Show Answer
Answer
/#missing
6.9 निम्नलिखित अभिक्रिया के अनुसार नाइट्रिक ऑक्साइड $\mathrm{Br} _{2}$ से अभिक्रिया कर नाइट्रोसिल ब्रोमाइड बनाती है-
$2 \mathrm{NO}(\mathrm{g})+\mathrm{Br} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOBr}(\mathrm{g})$
जब स्थिर ताप पर एक बंद पात्र में 0.087 मोल $\mathrm{NO}$ एवं 0.0437 मोल $\mathrm{Br} _{2}$ मिश्रित किए जाते हैं, तब 0.0518 मोल $\mathrm{NOBr}$ प्राप्त होती है। $\mathrm{NO}$ एवं $\mathrm{Br} _{2}$ की साम्य मात्रा ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.10 साम्य $2 \mathrm{SO} _{2}(\mathrm{~g})+\mathrm{O} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO} _{3}(\mathrm{~g})$ के लिए $450 \mathrm{~K}$ पर $K _{p}=2.0 \times 10^{10}$ bar है। इस ताप पर $K _{c}$ का मान ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.11 $\mathrm{HI}(\mathrm{g})$ का एक नमूना $0.2 \mathrm{~atm}$ दाब पर एक फ्लास्क में रखा जाता है। साम्य पर $\mathrm{HI}(\mathrm{g})$ का आंशिक दाब $0.04 \mathrm{~atm}$ है। यहाँ दिए गए साम्य के लिए $K_{p}$ का मान क्या होगा?
$2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H} _{2}(\mathrm{~g})+\mathrm{I} _{2}(\mathrm{~g})$
Show Answer
Answer
/#missing
6.12 $500 \mathrm{~K}$ ताप पर एक $20 \mathrm{~L}$ पात्र में $\mathrm{N} _{2}$ के 1.57 मोल, $\mathrm{H} _{2}$ के 1.92 मोल एवं $\mathrm{NH} _{3}$ के 8.13 मोल का मिश्रण लिया जाता है। अभिक्रिया $\mathrm{N} _{2}(\mathrm{~g})+3 \mathrm{H} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH} _{3}(\mathrm{~g})$ के लिए $\mathrm{K} _{\mathrm{c}}$ का मान $1.7 \times 10^{2}$ है। क्या अभिक्रिया-मिश्रण साम्य में है? यदि नहीं, तो नेट अभिक्रिया की दिशा क्या होगी?
Show Answer
Answer
/#missing
6.13 एक गैस अभिक्रिया के लिए
$$ K_{c}=\frac{\left[\mathrm{NH} _{3}\right]^{4}\left[\mathrm{O} _{2}\right]^{5}}{[\mathrm{NO}]^{4}\left[\mathrm{H} _{2} \mathrm{O}\right]^{6}} \text { है, तो } $$
इस व्यंजक के लिए संतुलित रासायनिक समीकरण लिखिए।
Show Answer
Answer
/#missing
6.14 $\mathrm{H} _{2} \mathrm{O}$ का एक मोल एवं $\mathrm{CO}$ का एक मोल $725 \mathrm{~K}$ ताप पर $10 \mathrm{~L}$ के पात्र में लिए जाते हैं। साम्य पर $40 %$ जल (भारात्मक) $\mathrm{CO}$ के साथ निम्नलिखित समीकरण के अनुसार अभिक्रिया करता है-
$\mathrm{H} _{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{H} _{2}(\mathrm{~g})+\mathrm{CO} _{2}(\mathrm{~g})$
अभिक्रिया के लिए साम्य स्थिरांक की गणना कीजिए।
Show Answer
Answer
/#missing
6.15 $700 \mathrm{~K}$ ताप पर अभिक्रिया $\mathrm{H} _{2}(\mathrm{~g})+\mathrm{I} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ के लिए साम्य स्थिरांक 54.8 है। यदि हमने शुरू में $\mathrm{HI}(\mathrm{g})$ लिया हो, $700 \mathrm{~K}$ ताप साम्य स्थापित हो, तथा साम्य पर $0.5 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HI}(\mathrm{g})$ उपस्थित हो, तो साम्य पर $\mathrm{H} _{2}(\mathrm{~g})$ एवं $\mathrm{I} _{2}(\mathrm{~g})$ की सांद्रताएँ क्या होंगी?
Show Answer
Answer
/#missing
6.16 ICI, जिसकी सांद्रता प्रारंम्भ में $0.78 \mathrm{M}$ है, को यदि साम्य पर आने दिया जाए, तो प्रत्येक की साम्य पर सांद्रताएँ क्या होंगी?
$2 \mathrm{ICl}(\mathrm{g}) \rightleftharpoons \mathrm{I} _{2}(\mathrm{~g})+\mathrm{Cl} _{2}(\mathrm{~g}) ; \quad K _{c}=0.14$
Show Answer
Answer
/#missing
6.17 नीचे दर्शाए गए साम्य में $899 \mathrm{~K}$ पर $\mathrm{K} _{\mathrm{P}}$ का मान $0.04 \mathrm{~atm}$ है। $\mathrm{C} _{2} \mathrm{H} _{6}$ की साम्य पर सांद्रता क्या होगी यदि $4.0 \mathrm{~atm}$ दाब पर $\mathrm{C} _{2} \mathrm{H} _{6}$ को एक फ्लास्क में रखा गया है एवं साम्यावस्था पर आने दिया जाता है?
$\mathrm{C} _{2} \mathrm{H} _{6}(\mathrm{~g}) \rightleftharpoons \mathrm{C} _{2} \mathrm{H} _{4}(\mathrm{~g})+\mathrm{H} _{2}(\mathrm{~g})$
Show Answer
Answer
/#missing
6.18 एथेनॉल एवं ऐसीटिक अम्ल की अभिक्रिया से एथिल ऐसीटेट बनाया जाता है एवं साम्य को इस प्रकार दर्शाया जा सकता है-
$\mathrm{CH} _{3} \mathrm{COOH}(\mathrm{l})+\mathrm{C} _{2} \mathrm{H} _{5} \mathrm{OH}(\mathrm{l}) \rightleftharpoons \mathrm{CH} _{3} \mathrm{COOC} _{2} \mathrm{H} _{5}(\mathrm{l})+\mathrm{H} _{2} \mathrm{O}$ (l)
(i) इस अभिक्रिया के लिए सांद्रता अनुपात (अभिक्रिया-भागफल) $Q_{\mathrm{c}}$ लिखिए (टिप्पणी : यहाँ पर जल आधिक्य में नहीं हैं एवं विलायक भी नहीं है)
(ii) यदि $293 \mathrm{~K}$ पर 1.00 मोल ऐसीटिक अम्ल एवं 0.18 मोल एथेनॉल प्रारंभ में लिये जाएं तो अंतिम साम्य मिश्रण में 0.171 मोल एथिल ऐसीटेट है। साम्य स्थिरांक की गणना कीजिए।
(iii) 0.5 मोल एथेनॉल एवं 1.0 मोल ऐसीटिक अम्ल से प्रारंभ करते हुए $293 \mathrm{~K}$ ताप पर कुछ समय पश्चात् एथिल ऐसीटेट के 0.214 मोल पाए गए तो क्या साम्य स्थापित हो गया?
Show Answer
Answer
/#missing
6.19 $437 \mathrm{~K}$ ताप पर निर्वात में $\mathrm{PCl} _{5}$ का एक नमूना एक फ्लास्क में लिया गया। साम्य स्थापित होने पर $\mathrm{PCl} _{5}$ की सांद्रता $0.5 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1}$ पाई गई, यदि $\mathrm{K} _{\mathrm{c}}$ का मान $8.3 \times 10^{-3}$ है, तो साम्य पर $\mathrm{PCl} _{3}$ एवं $\mathrm{Cl} _{2}$ की सांद्रताएं क्या होंगी?
$\mathrm{PCl} _{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl} _{3}(\mathrm{~g})+\mathrm{Cl} _{2}(\mathrm{~g})$
Show Answer
Answer
/#missing
6.20 लोह अयस्क से स्टील बनाते समय जो अभिक्रिया होती है, वह आयरन (II) ऑक्साइड का कार्बन मोनोक्साइड के द्वारा अपचयन है एवं इससे धात्विक लोह एवं $\mathrm{CO} _{2}$ मिलते हैं।
$\mathrm{FeO}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{Fe}(\mathrm{s})+\mathrm{CO} _{2}(\mathrm{~g}) ; K _{p}=0.265 \mathrm{~atm}$ at $1050 \mathrm{~K}$
$1050 \mathrm{~K}$ पर $\mathrm{CO}$ एवं $\mathrm{CO} _{2}$ के साम्य पर आंशिक दाब क्या होंगे, यदि उनके प्रारंभिक आंशिक दाब हैं- $p _{\mathrm{CO}}=1.4 \mathrm{~atm}$ एवं $p _{\mathrm{CO} _{2}}=0.80 \mathrm{~atm}$
Show Answer
Answer
/#missing
6.21 अभिक्रिया $\mathrm{N} _{2}(\mathrm{~g})+3 \mathrm{H} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH} _{3}(\mathrm{~g})$ के लिए ( $500 \mathrm{~K}$ पर) साम्य स्थिरांक $K _{c}=$ 0.061 है। एक विशेष समय पर मिश्रण का संघटन इस प्रकार है-
$3.0 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~N} _{2}, 2.0 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{H} _{2}$ एवं $0.5 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NH} _{3}$ क्या अभिक्रिया साम्य में है? यदि नहीं, तो साम्य स्थापित करने के लिए अभिक्रिया किस दिशा में अग्रसर होगी?
Show Answer
Answer
/#missing
6.22 ब्रोमीन मोनोक्लोराइड $\mathrm{BrCl}$ विघटित होकर ब्रोमीन एवं क्लोरीन देता है तथा साम्य स्थापित होता है:
$2 \mathrm{BrCl}(\mathrm{g}) \rightleftharpoons \mathrm{Br} _{2}(\mathrm{~g})+\mathrm{Cl} _{2}(\mathrm{~g})$
इसके लिए $500 \mathrm{~K}$ पर $K_{\mathrm{c}}=32$ है। यदि प्रारंभ में $\mathrm{BrCl}$ की सांद्रता $3.3 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ हो, तो साम्य पर मिश्रण में इसकी सांद्रता क्या होगी?
Show Answer
Answer
/#missing
6.23 $1127 \mathrm{~K}$ एवं $1 \mathrm{~atm}$ दाब पर $\mathrm{CO}$ तथा $\mathrm{CO} _{2}$ के गैसीय मिश्रण में साम्यावस्था पर ठोस कार्बन में $90.55 %$ ( भारात्मक) $\mathrm{CO}$ है।
$\mathrm{C}(\mathrm{s})+\mathrm{CO} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$
उपरोक्त ताप पर अभिक्रिया के लिए $\mathrm{K} _{\mathrm{c}}$ के मान की गणना कीजिए।
Show Answer
Answer
/#missing
6.24 $298 \mathrm{~K}$ पर $\mathrm{NO}$ एवं $\mathrm{O} _{2}$ से $\mathrm{NO} _{2}$ बनती है-
$\mathrm{NO}(\mathrm{g})+1 / 2 \mathrm{O} _{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO} _{2}(\mathrm{~g})$
अभिक्रिया के लिए (क) $\Delta G^{\ominus}$ एवं (ख) साम्य स्थिरांक की गणना कीजिए-
$\Delta_{\mathrm{f}} G^{\ominus}\left(\mathrm{NO_2}\right)=52.0 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{\mathrm{f}} G^{\ominus}(\mathrm{NO})=87.0 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{\mathrm{f}} G^{\ominus}\left(\mathrm{O_2}\right)=0 \mathrm{~kJ} / \mathrm{mol}$
Show Answer
Answer
/#missing
6.25 निम्नलिखित में से प्रत्येक साम्य में जब आयतन बढ़ाकर दाब कम किया जाता है, तब बतलाइए कि अभिक्रिया के उत्पादों के मोलों की संख्या बढ़ती है या घटती है या समान रहती है?
(क) $\mathrm{PCl} _{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl} _{3}(\mathrm{~g})+\mathrm{Cl} _{2}(\mathrm{~g})$
(ख) $\mathrm{CaO}(\mathrm{s})+\mathrm{CO} _{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CaCO} _{3}(\mathrm{~s})$
(ग) $3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H} _{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{Fe} _{3} \mathrm{O} _{4}$ (s) $+4 \mathrm{H} _{2}$ (g)
Show Answer
Answer
/#missing
6.25 निम्नलिखित में से दाब बढ़ाने पर कौन-कौन सी अभिक्रियाएँ प्रभावित होगी? यह भी बताएँ कि दाब परिवर्तन करने पर अभिक्रिया अग्र या प्रतीप दिशा में गतिमान होगी?
(i) $\quad \mathrm{COCl} _{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{Cl} _{2}(\mathrm{~g})$
(ii) $\mathrm{CH} _{4}(\mathrm{~g})+2 \mathrm{~S} _{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CS} _{2}(\mathrm{~g})+2 \mathrm{H} _{2} \mathrm{~S}(\mathrm{~g})$
(iii) $\mathrm{CO} _{2}$ (g) $+\mathrm{C}$ (s) $\rightleftharpoons 2 \mathrm{CO}$ (g)
(iv) $2 \mathrm{H} _{2}$ (g) $+\mathrm{CO}$ (g) $\rightleftharpoons \mathrm{CH} _{3} \mathrm{OH}$ (g)
(v) $\mathrm{CaCO} _{3}$ (s) $\rightleftharpoons \mathrm{CaO}$ (s) $+\mathrm{CO} _{2}$ (g)
(vi) $4 \mathrm{NH} _{3}(\mathrm{~g})+5 \mathrm{O} _{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H} _{2} \mathrm{O}(\mathrm{g})$
Show Answer
Answer
/#missing
6.27 निम्नलिखित अभिक्रिया के लिए $1024 \mathrm{~K}$ पर साम्य स्थिरांक $1.6 \times 10^{5}$ है। $\mathrm{H} _{2}(\mathrm{~g})+\mathrm{Br} _{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HBr}(\mathrm{g})$
यदि $\mathrm{HBr}$ के 10.0 bar सीलयुक्त पात्र में डाले जाएँ, तो सभी गैसों के $1024 \mathrm{~K}$ पर साम्य दाब ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.28 निम्नलिखित ऊष्माशोषी अभिक्रिया के अनुसार ऑक्सीकरण द्वारा डाइहाइड्रोजन गैस प्राकृतिक गैस से प्राप्त की जाती है-
$\mathrm{CH} _{4}(\mathrm{~g})+\mathrm{H} _{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+3 \mathrm{H} _{2}(\mathrm{~g})$
(क) उपरोक्त अभिक्रिया के लिए $\mathrm{K} _{\mathrm{p}}$ का व्यंजक लिखिए।
(ख) $\mathrm{K} _{\mathrm{p}}$ एवं अभिक्रिया मिश्रण का साम्य पर संघटन किस प्रकार प्रभावित होगा, यदि।
(i) दाब बढ़ा दिया जाए
(ii) ताप बढ़ा दिया जाए
(iii) उत्प्रेरक प्रयुक्त किया जाए
Show Answer
Answer
/#missing
6.29 इसके प्रभाव का वर्णन करें:
(क) $\mathrm{H} _{2}$ मिलाने पर
(ख) $\mathrm{CH} _{3} \mathrm{OH}$ मिलाने पर
(ग) $\mathrm{CO}$ हटाने पर
(घ) $\mathrm{CH} _{3} \mathrm{OH}$ हटाने पर
प्रतिक्रिया के संतुलन पर:
$2 \mathrm{H} _{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{CH} _{3} \mathrm{OH}(\mathrm{g})$
Show Answer
Answer
/#missing
6.30 $473 \mathrm{~K}$ पर फॉस्फोरस पेंटाक्लोराइड $\mathrm{PCl} _{5}$ के विघटन के लिए $K _{c}$ का मान $8.3 \times 10^{-3}$ है। यदि विघटन इस प्रकार दर्शाया जाए, तो $\mathrm{PCl} _{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl} _{3}(\mathrm{~g})+\mathrm{Cl} _{2}(\mathrm{~g}) \quad \Delta _{\mathrm{r}} H ^{\ominus}=124.0 \mathrm{~kJ} \mathrm{~mol} ^{-1}$
(क) अभिक्रिया के लिए $K _{c}$ का व्यंजक लिखिए।
(ख) प्रतीप अभिक्रिया के लिए समान ताप पर $K _{c}$ का मान क्या होगा?
(ग) यदि (i) और अधिक $\mathrm{PCl} _{5}$ मिलाया जाए, (ii) दाब बढ़ाया जाए तथा (iii) ताप बढ़ाया जाए, तो $K _{c}$ पर क्या प्रभाव होगा?
Show Answer
Answer
/#missing
6.31 हाबर विधि में प्रयुक्त हाइड्रोजन को प्राकृतिक गैस से प्राप्त मेथैन को उच्च ताप की भाप से क्रिया कर बनाया जाता है। दो पदोंवाली अभिक्रिया में प्रथम पद में $\mathrm{CO}$ एवं $\mathrm{H}_2$ बनती हैं। दूसरे पद में प्रथम पद में बनने वाली $\mathrm{CO}$ और अधिक भाप से अभिक्रिया करती है।
$$ \mathrm{CO}(\mathrm{g})+\mathrm{H}_2 \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_2(\mathrm{~g})+\mathrm{H}_2(\mathrm{~g}) $$
यदि $400^{\circ} \mathrm{C}$ पर अभिक्रिया पात्र में $\mathrm{CO}$ एवं भाप का सममोलर मिश्रण इस प्रकार लिया जाए कि $p _{\mathrm{CO}}=p _{\mathrm{H}_2 \mathrm{O}}=4.0 \mathrm{bar}, \mathrm{H} _2$ का साम्यावस्था पर आंशिक दाब क्या होगा? $400^{\circ} \mathrm{C}$ पर $K _p=10.1$
Show Answer
Answer
/#missing
6.32 बताइए कि निम्नलिखित में से किस अभिक्रिया में अभिकारकों एवं उत्पादों की सांद्रता सुप्रेक्ष्य होगी-
(क) $\mathrm{Cl} _2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Cl}(\mathrm{g}) K _{\mathrm{c}}=5 \times 10^{-39}$
(ख) $\mathrm{Cl} _2$ (g) $+2 \mathrm{NO}(\mathrm{g})^{\circ} \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{g}) K _{\mathrm{c}}=3.7 \times 10^8$
(ग) $\mathrm{Cl} _2$ (g) $+2 \mathrm{NO} _2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO} _2 \mathrm{Cl}$ (g) $K _{\mathrm{c}}=1.8$
Show Answer
Answer
/#missing
6.33 $25^{\circ} \mathrm{C}$ पर अभिक्रिया $3 \mathrm{O}_2(\mathrm{~g})^{\circ} \rightleftharpoons 2 \mathrm{O}_3(\mathrm{~g})$ के लिए $K_c$ का मान $2.0 \times 10^{-50}$ है। यदि वायु में $25^{\circ} \mathrm{C}$ ताप पर $\mathrm{O}_2$ की साम्यावस्था सांद्रता $1.6 \times 10^{-2}$ है, तो $\mathrm{O}_3$ की सांद्रता क्या होगी?
Show Answer
Answer
/#missing
6.34 $\mathrm{CO}(\mathrm{g})+3 \mathrm{H} _2(\mathrm{~g}) \rightleftharpoons \mathrm{CH} _4(\mathrm{~g})+\mathrm{H} _2 \mathrm{O}(\mathrm{g})$ अभिक्रिया एक लिटर फ्लास्क में $1300 \mathrm{~K}$ पर साम्यावस्था में है। इसमें $\mathrm{CO}$ के 0.3 मोल, $\mathrm{H} _2$ के 0.01 मोल, $\mathrm{H} _2 \mathrm{O}$ के 0.02 मोल एवं $\mathrm{CH} _4$ की अज्ञात मात्रा है। दिए गए ताप पर अभिक्रिया के लिए $\mathrm{K} _{\mathrm{c}}$ का मान 3.90 है। मिश्रण में $\mathrm{CH} _4$ की मात्रा ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.35 संयुग्मी अम्ल-क्षार युग्म का क्या अर्थ है? निम्नलिखित स्पीशीज़ के लिए संयुग्मी अम्ल / क्षार बताइए
$\mathrm{HNO} _2, \mathrm{CN}^{-}, \mathrm{HClO} _4 \mathrm{~F}-, \mathrm{OH}^{-}, \mathrm{CO} _3^{2-}$ एवं $\mathrm{S}^{2-}$
Show Answer
Answer
/#missing
6.36 निम्नलिखित में से कौन से लूइस अम्ल है? $$ \mathrm{H} _2 \mathrm{O}, \mathrm{BF} _3, \mathrm{H}^{+} \text {एवं } \mathrm{NH} _4^{+} $$
Show Answer
Answer
/#missing
6.37 निम्नलिखित ब्रन्सेदअम्लों के लिए संयुग्मी क्षारकों के सूत्र लिखिए- $$ \mathrm{HF}, \mathrm{H} _2 \mathrm{SO} _4 \text { एवं } \mathrm{HCO} _3^{-} $$
Show Answer
Answer
/#missing
6.38 ब्रन्सेदक्षारकों $\mathrm{NH} _2^{-}, \mathrm{NH} _3$ तथा $\mathrm{HCOO}^{-}$ के संयुग्मी अम्ल लिखिए-
Show Answer
Answer
/#missing
6.39 स्पीशीज़ $\mathrm{H} _2 \mathrm{O}, \mathrm{HCO} _3^{-}, \mathrm{HSO} _4^{-}$ तथा $\mathrm{NH} _3$ ब्रन्टेदअम्ल तथा क्षारक-दोनों की भाँति व्यवहार करते हैं। प्रत्येक के संयुग्मी अम्ल तथा क्षारक बताइए।
Show Answer
Answer
/#missing
6.40 निम्नलिखित स्पीशीज़ को लूइस अम्ल तथा क्षारक में वर्गीकृत कीजिए तथा बताइए कि ये किस प्रकार लुई अम्ल-क्षारक के समान कार्य करते है- (क) $\mathrm{OH}^{-}$(ख) $\mathrm{F}^{-}$(ग) $\mathrm{H}^{+}$(घ) $\mathrm{BCl} _{3}$
Show Answer
Answer
/#missing
6.41 एक मृदु पेय के नमूने में हाइड्रोजन आयन की सांद्रता $3.8 \times 10^{-3} \mathrm{M}$ है। उसकी $\mathrm{pH}$ परिकलित कीजिए।
Show Answer
Answer
/#missing
6.42 सिरके के एक नमूने की $\mathrm{pH}, 3.76$ है, इसमें हाइड्रोजन आयन की सांद्रता ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.43 $\mathrm{HF}, \mathrm{HCOOH}$ तथा $\mathrm{HCN}$ का $298 \mathrm{~K}$ पर आयनन स्थिरांक क्रमशः $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ तथा $4.8 \times 10^{-9}$ है। इनके संगत संयुग्मी क्षारकों के आयनन स्थिरांक ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.44 फीनॉल का आयनन स्थिरांक $1.0 \times 10^{-10}$ है। $0.05 \mathrm{M}$ फीनॉल के विलयन में फीनॉलेट आयन की सांद्रता तथा $0.01 \mathrm{M}$ सोडियम फीनेट विलयन में उसके आयनन की मात्रा ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.45 $\mathrm{H} _{2} \mathrm{~S}$ का प्रथम आयनन स्थिरांक $9.1 \times 10^{-8}$ है। इसके $0.1 \mathrm{M}$ विलयन में $\mathrm{HS}^{-}$आयनों की सांद्रता की गणना कीजिए तथा बताइए कि यदि इसमें $0.1 \mathrm{M} \mathrm{HCl}$ भी उपस्थित हो, तो सांद्रता किस प्रकार प्रभावित होगी, यदि $\mathrm{H} _{2} \mathrm{~S}$ का द्वितीय वियोजन स्थिरांक $1.2 \times 10^{-13}$ हो, तो सल्फाइड $\mathrm{S}^{2-}$ आयनों की दोनों स्थितियों में सांद्रता की गणना कीजिए।
Show Answer
Answer
/#missing
6.46 एसिटिक अम्ल का आयनन स्थिरांक $1.74 \times 10^{-5}$ है। इसके $0.05 \mathrm{M}$ विलयन में वियोजन की मात्रा, ऐसीटेट आयन सांद्रता तथा $\mathrm{pH}$ का परिकलन कीजिए।
Show Answer
Answer
/#missing
6.47 $0.01 \mathrm{M}$ कार्बनिक अम्ल $(\mathrm{HA})$ के विलयन की $\mathrm{pH}, 4.15$ है। इसके ॠणायन की सांद्रता, अम्ल का आयनन स्थिरांक तथा $\mathrm{pK} _{\mathrm{a}}$ मान परिकलित कीजिए।
Show Answer
Answer
/#missing
6.48 पूर्ण वियोजन मानते हुए निम्नलिखित विलियनों के $\mathrm{pH}$ ज्ञात कीजिए।
(क) $0.003 \mathrm{M} \mathrm{HCl} \quad$
(ख) $0.005 \mathrm{M} \mathrm{NaOH}$
(ग) $0.002 \mathrm{M} \mathrm{HBr} \quad$
(घ) $0.002 \mathrm{M} \mathrm{KOH}$
Show Answer
Answer
/#missing
6.49 निम्नलिखित विलयनों के $\mathrm{pH}$ ज्ञात कीजिए-
(क) 2 ग्राम $\mathrm{TlOH}$ को जल में घोलकर 2 लिटर विलयन बनाया जाए।
(ख) 0.3 ग्राम $\mathrm{Ca}(\mathrm{OH})_{2}$ को जल में घोलकर $500 \mathrm{~mL}$ विलयन बनाया जाए।
(ग) 0.3 ग्राम $\mathrm{NaOH}$ को जल में घोलकर $200 \mathrm{~mL}$ विलयन बनाया जाए।
(घ) $13.6 \mathrm{M} \mathrm{HCl}$ के $1 \mathrm{~mL}$ को जल से तनुकरण करके कुल आयतन 1 लिटर किया जाए।
Show Answer
Answer
/#missing
6.50 ब्रोमोएसीटिक अम्ल की आयनन की मात्रा 0.132 है। $0.1 \mathrm{M}$ अम्ल की $\mathrm{pH}$ तथा $p K_{\mathrm{a}}$ का मान ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.51 $0.005 \mathrm{M}$ कोडीन $\left(\mathrm{C} _{18} \mathrm{H} _{21} \mathrm{NO} _{3}\right)$ विलयन की $\mathrm{pH} 9.95$ है। इसका आयनन स्थिरांक ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.52 $0.001 \mathrm{M}$ एनीलीन विलयन का $\mathrm{pH}$ क्या है? एनीलीन का आयनन स्थिरांक सारणी 7.7 से ले सकते हैं। इसके संयुग्मी अम्ल का आयनन स्थिरांक ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.53 यदि $0.05 \mathrm{M}$ ऐसीटिक अम्ल के $\mathrm{pK} _{\mathrm{a}}$ का मान 4.74 है, तो आयनन की मात्रा ज्ञात कीजिए। यदि इसे (अ) $0.01 \mathrm{M}$ (ब) $0.1 \mathrm{M} \mathrm{HCl}$ विलयन में डाला जाए, तो वियोजन की मात्रा किस प्रकार प्रभावित होती है?
Show Answer
Answer
/#missing
6.54 डाइमेथिल एमीन का आयनन स्थिरांक $5.4 \times 10^{-4}$ है। इसके $0.02 \mathrm{M}$ विलयन की आयनन की मात्रा की गणना कीजिए। यदि यह विलयन $\mathrm{NaOH}$ प्रति $0.1 \mathrm{M}$ हो तो डाईमोथिल एमीन का प्रतिशत आयनन क्या होगा?
Show Answer
Answer
/#missing
6.55 निम्नलिखित जैविक द्रवों, जिनमें $\mathrm{pH}$ दि गई है, की हाइड्रोजन आयन सांद्रता परिकलित कीजिए-
(क) मानव पेशीय द्रव, 6.83 $\quad$
(ख) मानव उदर द्रव, 1.2
(ग) मानव रुधिर, 7.38 $\quad$
(घ) मानव लार, 6.4
Show Answer
Answer
/#missing
6.56 दूध, कॉफी, टमाटर रस, नीबू रस तथा अंडे की सफेदी के $\mathrm{pH}$ का मान क्रमशः 6.8, 5.0, 4.2, 2.2 तथा 7.8 है। प्रत्येक के संगत $\mathrm{H}^{+}$आयन की सांद्रता ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.57 $298 \mathrm{~K}$ पर $0.561 \mathrm{~g}, \mathrm{KOH}$ जल में घोलने पर प्राप्त $200 \mathrm{~mL}$ विलयन की है $\mathrm{pH}$, पोटैशियम, हाइड्रोजन तथा हाइड्रॉक्सिल आयनों की सांद्रताएँ ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.58 $298 \mathrm{~K}$ पर $\mathrm{Sr}(\mathrm{OH})_{2}$ विलयन की विलेयता $19.23 \mathrm{~g} / \mathrm{L}$ है। स्ट्रांशियम तथा हाइड्रॉक्सिल आयन की सांद्रता तथा विलयन की $\mathrm{pH}$ ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.59 प्रोपेनोइक अम्ल का आयन स्थिरांक $1.32 \times 10^{-5}$ है। $0.05 \mathrm{M}$ अम्ल विलयन के आयनन की मात्रा तथा $\mathrm{pH}$ ज्ञात कीजिए। यदि विलयन में $0.01 \mathrm{M} \mathrm{HCl}$ मिलाया जाए तो उसके आयनन की मात्रा ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.60 यदि साइनिक अम्ल $(\mathrm{HCNO})$ के $0.1 \mathrm{M}$ विलयन की $\mathrm{pH}, 2.34$ हो, तो अम्ल के आयनन स्थिरांक तथा आयनन की मात्रा ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.61 यदि नाइट्रस अम्ल का आयनन स्थिरांक $4.5 \times 10^{-4}$ है, तो $0.04 \mathrm{M}$ सोडियम नाइट्राइट विलयन की $\mathrm{pH}$ तथा जलयोजन की मात्रा ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.62 यदि पीरीडिनीयम हाइड्रोजन क्लोराइड के $0.02 \mathrm{M}$ विलयन का $\mathrm{pH} 3.44$ है, तो पीरीडीन का आयनन स्थिरांक ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.63 निम्नलिखित लवणों के जलीय विलयनो के उदासीन, अम्लीय तथा क्षारीय होने की प्रागुक्ति कीजिए-
$\mathrm{NaCl}, \mathrm{KBr}, \mathrm{NaCN}, \mathrm{NH} _{4} \mathrm{NO} _{3}, \mathrm{NaNO} _{2}$ तथा $\mathrm{KF}$
Show Answer
Answer
/#missing
6.64 क्लोरोएसीटिक अम्ल का आयनन स्थिरांक $1.35 \times 10^{-3}$ है। $0.1 \mathrm{M}$ अम्ल तथा इसके $0.1 \mathrm{M}$ सोडियम लवण की $\mathrm{pH}$ ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.65 $310 \mathrm{~K}$ पर जल का आयनिक गुणनफल $2.7 \times 10^{-14}$ है। इसी तापक्रम पर उदासीन जल की $\mathrm{pH}$ ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.66 निम्नलिखित मिश्रणों की $\mathrm{pH}$ परिकलित कीजिए-
(क) $0.2 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ का $10 \mathrm{~mL}+$ का $0.1 \mathrm{M} \mathrm{HCl}$ का $25 \mathrm{~mL}$
(ख) $0.01 \mathrm{M} \mathrm{H} _{2} \mathrm{SO} _{4}$ का $10 \mathrm{~mL}+0.01 \mathrm{M} \mathrm{Ca}(\mathrm{OH}) _{2}$ का $10 \mathrm{~mL}$
(ग) $0.1 \mathrm{M} \mathrm{H} _{2} \mathrm{SO} _{4}$ का $10 \mathrm{~mL}+0.1 \mathrm{M} \mathrm{KOH}$ का $10 \mathrm{~mL}$
Show Answer
Answer
/#missing
6.67 सिल्वर क्रोमेट, बेरियम क्रोमेट, फेरिक हाइड्रॉक्साइड, लेड क्लोराइड तथा मर्क्युरस आयोडाइड विलयन की सारणी 6.9 में दिए गए विलेयता गुणनफल स्थिरांक की सहायता से विलेयता ज्ञात कीजिए तथा प्रत्येक आयन की मोलरता भी ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.68 $\mathrm{Ag} _{2} \mathrm{CrO} _{4}$ तथा $\mathrm{AgBr}$ का विलेयता गुणनफल स्थिरांक क्रमशः $1.1 \times 10^{-12}$ तथा $5.0 \times 10^{-13}$ है। उनके संतृप्त विलयन की मोलरता का अनुपात ज्ञात कीजिए।
Show Answer
Answer
/#missing
6.69 यदि $0.002 \mathrm{M}$ सांद्रतावाले सोडियम आयोडेट तथा क्यूप्रिक क्लोरेट विलयन के समान आयतन को मिलाया जाए, तो क्या कॉपर आयोडेट का अवक्षेपण होगा? (कॉपर आयोडेट के लिए $K_{\mathrm{sp}}=7.4 \times 10^{-8}$ )
Show Answer
Answer
/#missing
6.70 बेन्जोईक अम्ल का आयनन स्थिरांक $6.46 \times 10^{-5}$ तथा सिल्वर बेन्जोएट का $K_{\mathrm{sp}} 2.5 \times 10^{-13}$ है। $3.19 \mathrm{pH}$ वाले बफर विलयन में सिल्वर बेन्जोएट जल की तुलना में कितना गुना विलेय होगा?
Show Answer
Answer
/#missing
6.71 फैरस सल्फेट तथा सोडियम सल्फाइड के सममोलर विलयनों की अधिकतम सांद्रता बताइए जब उनके समान आयतन मिलाने पर आयरन सल्फाइड अवक्षेपित न हो। (आयरन सल्फाइड के लिए $K_{s p}=6.3 \times 10^{-18}$ )
Show Answer
Answer
/#missing
6.72 1 ग्राम कैल्सियम सल्फेट को घोलने के लिए कम से कम कितने आयतन जल की आवश्यकता होगी? (केल्सियम सल्फेट के लिए $K_{\mathrm{sp}}=9.1 \times 10^{-6}$ )
Show Answer
Answer
/#missing
6.73 $0.1 \mathrm{M} \mathrm{HCl}$ में हाइड्रोजन सल्फाइड से संतृप्त विलयन की सांद्रता $1.0 \times 10^{-19} \mathrm{M}$ है। यदि इस विलयन का $10 \mathrm{~mL}$ निम्नलिखित $0.04 \mathrm{M}$ विलयन के $5 \mathrm{~mL}$ डाला जाए, तो किन विलयनों से अवक्षेप प्राप्त होगा? $\mathrm{FeSO} _{4}, \mathrm{MnCl} _{2}, \mathrm{ZnCl} _{2}$, एवं $\mathrm{CdCl} _{2}$.
Show Answer
Answer
/#missing