Chapter-06 Thermodynamics
“It is the only physical theory of universal content concerning which I am convinced that, within the framework of the applicability of its basic concepts, it will never be overthrown.”
Albert Einstein
Chemical energy stored by molecules can be released as heat during chemical reactions when a fuel like methane, cooking gas or coal burns in air. The chemical energy may also be used to do mechanical work when a fuel burns in an engine or to provide electrical energy through a galvanic cell like dry cell. Thus, various forms of energy are interrelated and under certain conditions, these may be transformed from one form into another. The study of these energy transformations forms the subject matter of thermodynamics. The laws of thermodynamics deal with energy changes of macroscopic systems involving a large number of molecules rather than microscopic systems containing a few molecules. Thermodynamics is not concerned about how and at what rate these energy transformations are carried out, but is based on initial and final states of a system undergoing the change. Laws of thermodynamics apply only when a system is in equilibrium or moves from one equilibrium state to another equilibrium state. Macroscopic properties like pressure and temperature do not change with time for a system in equilibrium state. In this unit, we would like to answer some of the important questions through thermodynamics, like:
How do we determine the energy changes involved in a chemical reaction/process? Will it occur or not?
What drives a chemical reaction/process?
To what extent do the chemical reactions proceed?
6.1 THERMODYNAMIC TERMS
We are interested in chemical reactions and the energy changes accompanying them. For this we need to know certain thermodynamic terms. These are discussed below.
6.1.1 The System and the Surroundings
A system in thermodynamics refers to that part of universe in which observations are made and remaining universe constitutes the surroundings. The surroundings include everything other than the system. System and the surroundings together constitute the universe.
The universe $=$ The system + The surroundings
However, the entire universe other than the system is not affected by the changes taking place in the system. Therefore, for all practical purposes, the surroundings are that portion of the remaining universe which can interact with the system. Usually, the region of space in the neighbourhood of the system constitutes its surroundings.
For example, if we are studying the reaction between two substances A and B kept in a beaker, the beaker containing the reaction mixture is the system and the room where the beaker is kept is the surroundings (Fig. 6.1).
Fig. 6.1 System and the surroundings
Note that the system may be defined by physical boundaries, like beaker or test tube, or the system may simply be defined by a set of Cartesian coordinates specifying a particular volume in space. It is necessary to think of the system as separated from the surroundings by some sort of wall which may be real or imaginary. The wall that separates the system from the surroundings is called boundary. This is designed to allow us to control and keep track of all movements of matter and energy in or out of the system.
6.1.2 Types of the System
We, further classify the systems according to the movements of matter and energy in or out of the system.
1. Open System
In an open system, there is exchange of energy and matter between system and surroundings [Fig. 6.2 (a)]. The presence of reactants in an open beaker is an example of an open system[^0]. Here the boundary is an imaginary surface enclosing the beaker and reactants.
2. Closed System
In a closed system, there is no exchange of matter, but exchange of energy is possible between system and the surroundings [Fig. 6.2 (b)]. The presence of reactants in a closed vessel made of conducting material e.g., copper or steel is an example of a closed system.
Fig. 6.2 Open, closed and isolated systems.
3. Isolated System
In an isolated system, there is no exchange of energy or matter between the system and the surroundings [Fig. 6.2 (c)]. The presence of reactants in a thermos flask or any other closed insulated vessel is an example of an isolated system.
6.1.3 The State of the System
The system must be described in order to make any useful calculations by specifying quantitatively each of the properties such as its pressure $(p)$, volume $(V)$, and temperature $(T)$ as well as the composition of the system. We need to describe the system by specifying it before and after the change. You would recall from your Physics course that the state of a system in mechanics is completely specified at a given instant of time, by the position and velocity of each mass point of the system. In thermodynamics, a different and much simpler concept of the state of a system is introduced. It does not need detailed knowledge of motion of each particle because, we deal with average measurable properties of the system. We specify the state of the system by state functions or state variables.
The state of a thermodynamic system is described by its measurable or macroscopic (bulk) properties. We can describe the state of a gas by quoting its pressure ( $p$ ), volume $(V)$, temperature ( $T$ ), amount ( $n$ ) etc. Variables like $p, V, T$ are called state variables or state functions because their values depend only on the state of the system and not on how it is reached. In order to completely define the state of a system it is not necessary to define all the properties of the system; as only a certain number of properties can be varied independently. This number depends on the nature of the system. Once these minimum number of macroscopic properties are fixed, others automatically have definite values. The state of the surroundings can never be completely specified; fortunately it is not necessary to do so.
6.1.4 The Internal Energy as a State Function
When we talk about our chemical system losing or gaining energy, we need to introduce a quantity which represents the total energy of the system. It may be chemical, electrical, mechanical or any other type of energy you may think of, the sum of all these is the energy of the system. In thermodynamics, we call it the internal energy, $U$ of the system, which may change, when
- heat passes into or out of the system,
- work is done on or by the system,
- matter enters or leaves the system.
These systems are classified accordingly as you have already studied in section 5.1.2.
(a) Work
Let us first examine a change in internal energy by doing work. We take a system containing some quantity of water in a thermos flask or in an insulated beaker. This would not allow exchange of heat between the system and surroundings through its boundary and we call this type of system as adiabatic. The manner in which the state of such a system may be changed will be called adiabatic process. Adiabatic process is a process in which there is no transfer of heat between the system and surroundings. Here, the wall separating the system and the surroundings is called the adiabatic wall (Fig. 6.3).
Fig. 6.3 An adiabatic system which does not permit the transfer of heat through its boundary
Let us bring the change in the internal energy of the system by doing some work on it. Let us call the initial state of the system as state $\mathrm{A}$ and its temperature as $T_{\mathrm{A}}$. Let the internal energy of the system in state A be called $U_{\mathrm{A}}$. We can change the state of the system in two different ways.
One way: We do some mechanical work, say $1 \mathrm{~kJ}$, by rotating a set of small paddles and thereby churning water. Let the new state be called $B$ state and its temperature, as $T_{\mathrm{B}}$. It is found that $T_{\mathrm{B}}>T_{\mathrm{A}}$ and the change in temperature, $\Delta T=T_{\mathrm{B}}-T_{\mathrm{A}}$. Let the internal energy of the system in state $\mathrm{B}$ be $U_{\mathrm{B}}$ and the change in internal energy, $\Delta U=U_{\mathrm{B}}-U_{\mathrm{A}}$.
Second way: We now do an equal amount (i.e., $1 \mathrm{~kJ}$ ) electrical work with the help of an immersion rod and note down the temperature change. We find that the change in temperature is same as in the earlier case, say, $T_{\mathrm{B}}-T_{\mathrm{A}}$.
In fact, the experiments in the above manner were done by J. P. Joule between 1840-50 and he was able to show that a given amount of work done on the system, no matter how it was done (irrespective of path) produced the same change of state, as measured by the change in the temperature of the system.
So, it seems appropriate to define a quantity, the internal energy $U$, whose value is characteristic of the state of a system, whereby the adiabatic work, $\mathrm{w_\text {ad }}$ required to bring about a change of state is equal to the difference between the value of $U$ in one state and that in another state, $\Delta U$ i.e.,
$$ \Delta U=U_{2}-U_{1}=\mathrm{w_\mathrm{ad}} $$
Therefore, internal energy, $U$, of the system is a state function.
By conventions of IUPAC in chemical thermodynamics. The positive sign expresses that $w_{ad}$ is positive when work is done on the system and the internal energy of system increases. Similarly, if the work is done by the system, $w_{ad}$ will be negative because internal energy of the system decreases.
Can you name some other familiar state functions? Some of other familiar state functions are $V, p$, and $T$. For example, if we bring a change in temperature of the system from $25^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$, the change in temperature is $35^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}=+10^{\circ} \mathrm{C}$, whether we go straight up to $35^{\circ} \mathrm{C}$ or we cool the system for a few degrees, then take the system to the final temperature. Thus, $T$ is a state function and the change in temperature is independent of the route taken. Volume of water in a pond, for example, is a state function, because change in volume of its water is independent of the route by which water is filled in the pond, either by rain or by tubewell or by both.
(b) Heat
We can also change the internal energy of a system by transfer of heat from the surroundings to the system or vice-versa without expenditure of work. This exchange of energy, which is a result of temperature difference is called heat, $q$. Let us consider bringing about the same change in temperature (the same initial and final states as before in section 5.1 .4 (a) by transfer of heat through thermally conducting walls instead of adiabatic walls (Fig. 6.4).
Fig. 6.4 A system which allows heat transfer through its boundary.
We take water at temperature, $T_{\mathrm{A}}$ in a container having thermally conducting walls, say made up of copper and enclose it in a huge heat reservoir at temperature, $T_{\mathrm{B}}$. The heat absorbed by the system (water), $q$ can be measured in terms of temperature difference, $T_{\mathrm{B}}-T_{\mathrm{A}}$. In this case change in internal energy, $\Delta U=q$, when no work is done at constant volume.
By conventions of IUPAC in chemical thermodynamics. The $q$ is positive, when heat is transferred from the surroundings to the system and the internal energy of the system increases and $q$ is negative when heat is transferred from system to the surroundings resulting in decrease of the internal energy of the system.
- Earlier negative sign was assigned when the work is done on the system and positive sign when the work is done by the system. This is still followed in physics books, although IUPAC has recommended the use of new sign convention.
(c) The general case
Let us consider the general case in which a change of state is brought about both by doing work and by transfer of heat. We write change in internal energy for this case as:
$$ \begin{equation*} \Delta U=q+\mathrm{w} \tag{6.1} \end{equation*} $$
For a given change in state, $q$ and $\mathrm{w}$ can vary depending on how the change is carried out. However, $q+\mathrm{w}=\Delta U$ will depend only on initial and final state. It will be independent of the way the change is carried out. If there is no transfer of energy as heat or as work (isolated system) i.e., if $\mathrm{w}=0$ and $q=0$, then $\Delta U=0$.
The equation 5.1 i.e., $\Delta U=q+\mathrm{w}$ is mathematical statement of the first law of thermodynamics, which states that “The energy of an isolated system is constant”.
It is commonly stated as the law of conservation of energy i.e., energy can neither be created nor be destroyed.
Note: There is considerable difference between the character of the thermodynamic property energy and that of a mechanical property such as volume. We can specify an unambiguous (absolute) value for volume of a system in a particular state, but not the absolute value of the internal energy. However, we can measure only the changes in the internal energy, $\Delta U$ of the system.
Problem 6.1
Express the change in internal energy of a system when
(i) No heat is absorbed by the system from the surroundings, but work (w) is done on the system. What type of wall does the system have?
(ii) No work is done on the system, but $q$ amount of heat is taken out from the system and given to the surroundings. What type of wall does the system have?
(iii) $\mathrm{w}$ amount of work is done by the system and $q$ amount of heat is supplied to the system. What type of system would it be?
Solution
(i) $\Delta U=\mathrm{w_\text {ad }}$, wall is adiabatic
(ii) $\Delta U=-q$, thermally conducting walls
(iii) $\Delta U=q-\mathrm{w}$, closed system.
6.2 APPLICATIONS
Many chemical reactions involve the generation of gases capable of doing mechanical work or the generation of heat. It is important for us to quantify these changes and relate them to the changes in the internal energy. Let us see how!
6.2.1 Work
First of all, let us concentrate on the nature of work a system can do. We will consider only mechanical work i.e., pressure-volume work.
For understanding pressure-volume work, let us consider a cylinder which contains one mole of an ideal gas fitted with a frictionless piston. Total volume of the gas is $V_{i}$ and pressure of the gas inside is $p$. If external pressure is $p_{\text {ex }}$ which is greater than $p$, piston is moved inward till the pressure inside becomes equal to $p_{\text {ex }}$. Let this change be achieved in a single step and the final volume be $V_{f}$. During this compression, suppose piston moves a distance, $l$ and is cross-sectional area of the piston is A [Fig. 6.5(a)].
Fig. 6.5 (a) Work done on an ideal gas in a cylinder when it is compressed by a constant external pressure, pex (in single step) is equal to the shaded area.
then, volume change $=l \times \mathrm{A}=\Delta V=\left(V_{f}-V_{i}\right)$
We also know, pressure $=\frac{\text { force }}{\text { area }}$
Therefore, force on the piston $=p_{\text {ex }}$. A
If $\mathrm{w}$ is the work done on the system by movement of the piston then
$$ \begin{align*} & \mathrm{w}=\text { force } \times \text { distance }=p_{e x} \cdot \text { A } \cdot l \\ & \quad=p_{e x} \cdot(-\Delta V)=-p_{\text {ex }} \Delta V=-p_{\text {ex }}\left(V_{f}-V_{i}\right) \tag{6.2} \end{align*} $$
The negative sign of this expression is required to obtain conventional sign for $\mathrm{w}$, which will be positive. It indicates that in case of compression work is done on the system. Here $\left(V_{f}-V_{i}\right)$ will be negative and negative multiplied by negative will be positive. Hence the sign obtained for the work will be positive.
If the pressure is not constant at every stage of compression, but changes in number of finite steps, work done on the gas will be summed over all the steps and will be equal to $-\Sigma p \Delta V$ [Fig. 6.5 (b)]
Fig.6.5 (b) pV-plot when pressure is not constant and changes in finite steps during compression from initial volume, Vi to final volume, Vf . Work done on the gas is represented by the shaded area.
If the pressure is not constant but changes during the process such that it is always infinitesimally greater than the pressure of the gas, then, at each stage of compression, the volume decreases by an infinitesimal amount, $d V$. In such a case we can calculate the work done on the gas by the relation
$$ \begin{equation*} \mathrm{w}=-\int_{V_{i}}^{V_{f}} p_{e x} d V \tag{6.3} \end{equation*} $$
Here, $p_{e x}$ at each stage is equal to $\left(p_{i n}+d p\right)$ in case of compression [Fig. 6.5(c)]. In an expansion process under similar conditions, the external pressure is always less than the pressure of the system i.e., $p_{e x}=\left(p_{i n}-d p\right)$. In general case we can write, $p_{e x}=\left(p_{i n} \pm d p\right)$. Such processes are called reversible processes.
A process or change is said to be reversible, if a change is brought out in such a way that the process could, at any moment, be reversed by an infinitesimal change. A reversible process proceeds infinitely slowly by a series of equilibrium states such that system and the surroundings are always in near equilibrium with each other.
Fig.5.5 (c) pV-plot when pressure is not constant and changes in infinite steps (reversible conditions) during compression from initial volume, Vi to final volume, Vf . Work done on the gas is represented by the shaded area.
Processes other than reversible processes are known as irreversible processes.
In chemistry, we face problems that can be solved if we relate the work term to the internal pressure of the system. We can relate work to internal pressure of the system under reversible conditions by writing equation 5.3 as follows:
$$ w_{r e v}=-\int\limits_{V_i}^{V_f} p_{e x} d V=-\int\limits_{V_i}^{V_f}\left(p_{i n} \pm d p\right) d V $$
Since $d p \times d V$ is very small we can write
$$ \begin{equation*} w_{\text {rev }}=-\int\limits_{V_{i}}^{V_{f}} p_{\text {in }} d V \tag{6.4} \end{equation*} $$
Now, the pressure of the gas $\left(p_{i n}\right.$ which we can write as $p$ now) can be expressed in terms of its volume through gas equation. For $n \mathrm{~mol}$ of an ideal gas i.e., $p V=n R T$
$$ \Rightarrow p=\frac{n \mathrm{R} T}{V} $$
Therefore, at constant temperature (isothermal process),
$$ \begin{align*} & w_{\text {rev }}=-\int_{V_{i}}^{V_{f}} n \mathrm{R} T \frac{d V}{V}=-n \mathrm{R} T \ln \frac{V_{f}}{V_{i}} \\ & =-2.303 n \mathrm{R} T \log \frac{V_{f}}{V_{i}} \tag{6.5} \end{align*} $$
Free expansion: Expansion of a gas in vacuum $\left(p_{e x}=0\right)$ is called free expansion. No work is done during free expansion of an ideal gas whether the process is reversible or irreversible (equation 5.2 and 5.3).
Now, we can write equation 5.1 in number of ways depending on the type of processes.
Let us substitute $\mathrm{w}=-p_{e x} \Delta V$ (eq. 5.2) in equation 5.1, and we get
$$ \Delta U=q-p_{e x} \Delta V $$
If a process is carried out at constant volume $(\Delta V=0)$, then
$$ \Delta U=q_{V} $$
the subscript $V$ in $q_{V}$ denotes that heat is supplied at constant volume.
Isothermal and free expansion of an ideal gas
For isothermal ( $T=$ constant) expansion of an ideal gas into vacuum; $\mathrm{w}=0$ since $p_{e x}=0$. Also, Joule determined experimentally that $q=0$; therefore, $\Delta U=0$
Equation 5.1, $\Delta U=q+w$ can be expressed for isothermal irreversible and reversible changes as follows:
1. For isothermal irreversible change
$$ q=-\mathrm{w}=p_{e x}\left(V_{f}-V_{i}\right) $$
2. For isothermal reversible change
$$ q=-\mathrm{w}=n \mathrm{R} T \ln \frac{V_{f}}{V_{i}}=2.303 n \mathrm{R} T \log \frac{V_{f}}{V_{i}} $$
For adiabatic change, $q=0$,
$$\Delta U=\mathrm{w_\mathrm{ad}}$$
Problem 6.2
Two litres of an ideal gas at a pressure of 10 atm expands isothermally at $25^{\circ} \mathrm{C}$ into a vacuum until its total volume is 10 litres. How much heat is absorbed and how much work is done in the expansion?
Solution
We have $q=-\mathrm{w}=p_{\text {ex }}(10-2)=0(8)=0$ No work is done; no heat is absorbed.
Problem 6.3
Consider the same expansion, but this time against a constant external pressure of $1 \mathrm{~atm}$.
Solution
We have $q=-\mathrm{w}=p_{\text {ex }}(8)=8$ litre-atm
Problem 6.4
Consider the expansion given in Problem 6.2 , for $1 \mathrm{~mol}$ of an ideal gas conducted reversibly.
Solution
We have $q=-\mathrm{w}=2.303 \mathrm{nRT} \log \frac{V_{f}}{V_{\mathrm{s}}}$
$$ =2.303 \times 1 \times 0.8206 \times 298 \times \log \frac{10}{2} $$
$=2.303 \times 0.8206 \times 298 \times \log 5$
$=2.303 \times 0.8206 \times 298 \times 0.6990$
$=393.66 \mathrm{~L} \mathrm{~atm}$
5.2.2 Enthalpy, $H$
(a) A Useful New State Function
We know that the heat absorbed at constant volume is equal to change in the internal energy i.e., $\Delta U=q_{V}$. But most of chemical reactions are carried out not at constant volume, but in flasks or test tubes under constant atmospheric pressure. We need to define another state function which may be suitable under these conditions.
We may write equation (6.1) as $\Delta U=q_{p}-p \Delta V$ at constant pressure, where $q_{p}$ is heat absorbed by the system and $-p \Delta V$ represent expansion work done by the system.
Let us represent the initial state by subscript 1 and final state by 2
We can rewrite the above equation as
$$ U_{2}-U_{1}=q_{p}-p\left(V_{2}-V_{1}\right) $$
On rearranging, we get
$$ \begin{equation*} q_{p}=\left(U_{2}+p V_{2}\right)-\left(U_{1}+p V_{1}\right) \tag{6.6} \end{equation*} $$
Now we can define another thermodynamic function, the enthalpy $H$ [Greek word enthalpien, to warm or heat content] as :
$$ \begin{equation*} H=U+p V \tag{6.7} \end{equation*} $$
so, equation (6.6) becomes
$$ q_{p}=H_{2}-H_{1}=\Delta H $$
Although $q$ is a path dependent function, $H$ is a state function because it depends on $U, p$ and $V$, all of which are state functions. Therefore, $\Delta H$ is independent of path. Hence, $q_{p}$ is also independent of path.
For finite changes at constant pressure, we can write equation 5.7 as
$$ \Delta H=\Delta U+\Delta p V $$
Since $p$ is constant, we can write
$$ \begin{equation*} \Delta H=\Delta U+p \Delta V \tag{6.8} \end{equation*} $$
It is important to note that when heat is absorbed by the system at constant pressure, we are actually measuring changes in the enthalpy.
Remember $\Delta H=q_{p}$, heat absorbed by the system at constant pressure.
$\Delta H$ is negative for exothermic reactions which evolve heat during the reaction and $\Delta H$ is positive for endothermic reactions which absorb heat from the surroundings.
At constant volume $(\Delta V=0), \Delta U=q_{V}$, therefore equation 5.8 becomes
$$ \Delta H=\Delta U=q_{V} $$
The difference between $\Delta H$ and $\Delta U$ is not usually significant for systems consisting of only solids and / or liquids. Solids and liquids do not suffer any significant volume changes upon heating. The difference, however, becomes significant when gases are involved. Let us consider a reaction involving gases. If $V_{\mathrm{A}}$ is the total volume of the gaseous reactants, $V_{\mathrm{B}}$ is the total volume of the gaseous products, $n_{\mathrm{A}}$ is the number of moles of gaseous reactants and $n_{\mathrm{B}}$ is the number of moles of gaseous products, all at constant pressure and temperature, then using the ideal gas law, we write,
$$ \begin{aligned} & p V_{\mathrm{A}}=n_{\mathrm{A}} \mathrm{R} T \\ \text { and } \quad \quad \quad & p V_{\mathrm{B}}=n_{\mathrm{B}} \mathrm{R} T \end{aligned} $$
Thus, $p V_{\mathrm{B}}-p V_{\mathrm{A}}=n_{\mathrm{B}} \mathrm{R} T-n_{\mathrm{A}} \mathrm{R} T=\left(n_{\mathrm{B}}-n_{\mathrm{A}}\right) \mathrm{R} T$
$\quad p\left(V_{\mathrm{B}}-V_{\mathrm{A}}\right)=\left(n_{\mathrm{B}}-n_{\mathrm{A}}\right) \mathrm{R} T$
$$ p \Delta V=\Delta n_{g} \mathrm{R} T \tag{6.9}$$
Here, $\Delta n_{g}$ refers to the number of moles of gaseous products minus the number of moles of gaseous reactants.
Substituting the value of $p \Delta V$ from equation 5.9 in equation 5.8, we get
$$\Delta H=\Delta U+\Delta n_{g} \mathrm{R} T\tag{6.10}$$
The equation 5.10 is useful for calculating $\Delta H$ from $\Delta U$ and vice versa.
Problem 6.5
If water vapour is assumed to be a perfect gas, molar enthalpy change for vapourisation of $1 \mathrm{~mol}$ of water at 1 bar and $100^{\circ} \mathrm{C}$ is $41 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the internal energy change, when $1 \mathrm{~mol}$ of water is vapourised at $1 \mathrm{bar}$ pressure and $100^{\circ} \mathrm{C}$.
Solution
(i) The change $\mathrm{H}_2 \mathrm{O}(l) \rightarrow \mathrm{H}_2 \mathrm{O}(\mathrm{g})$
$\Delta H=\Delta U+\Delta n g R T$
or $\Delta U=\Delta H-\Delta n_{g} R T$, substituting the values, we get
$\Delta U=41.00 \mathrm{~kJ} \mathrm{~mol}^{-1}-1 \times 8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 373 \mathrm{~K}$
$=41.00 \mathrm{~kJ} \mathrm{~mol}^{-1}-3.096 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$=37.904 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) Extensive and Intensive Properties
In thermodynamics, a distinction is made between extensive properties and intensive properties. An extensive property is a property whose value depends on the quantity or size of matter present in the system. For example, mass, volume, internal energy, enthalpy, heat capacity, etc. are extensive properties.
Those properties which do not depend on the quantity or size of matter present are known as intensive properties. For example temperature, density, pressure etc. are intensive properties. A molar property, $\chi_{m}$, is the value of an extensive property $\chi$ of the system for $1 \mathrm{~mol}$ of the substance. If $n$ is the amount of matter, $\chi_{\mathrm{m}}=\frac{\chi}{n}$ is independent of the amount of matter. Other examples are molar volume, $V_{\mathrm{m}}$ and molar heat capacity, $C_{\mathrm{m}}$. Let us understand the distinction between extensive and intensive properties by considering a gas enclosed in a container of volume $V$ and at temperature $T$ [Fig. 6.6(a)]. Let us make a partition such that volume is halved, each part [Fig. 6.6 (b)] now has one half of the original volume, $\frac{V}{2}$, but the temperature will still remain the same i.e., $T$. It is clear that volume is an extensive property and temperature is an intensive property.
Fig. 6.6(a) A gas at volume V and temperature T
Fig. 6.6 (b) Partition, each part having half the volume of the gas
(c) Heat Capacity
In this sub-section, let us see how to measure heat transferred to a system. This heat appears as a rise in temperature of the system in case of heat absorbed by the system.
The increase of temperature is proportional to the heat transferred
$$ q=\text { coeff } \times \Delta T $$
The magnitude of the coefficient depends on the size, composition and nature of the system. We can also write it as $q=C \Delta T$
The coefficient, $C$ is called the heat capacity.
Thus, we can measure the heat supplied by monitoring the temperature rise, provided we know the heat capacity.
When $C$ is large, a given amount of heat results in only a small temperature rise. Water has a large heat capacity i.e., a lot of energy is needed to raise its temperature.
$C$ is directly proportional to amount of substance. The molar heat capacity of a substance, $C_{m}=\left(\frac{C}{n}\right)$, is the heat capacity for one mole of the substance and is the quantity of heat needed to raise the temperature of one mole by one degree celsius (or one kelvin). Specific heat, also called specific heat capacity is the quantity of heat required to raise the temperature of one unit mass of a substance by one degree celsius (or one kelvin). For finding out the heat, $q$, required to raise the temperatures of a sample, we multiply the specific heat of the substance, $\mathrm{c}$, by the mass $\mathrm{m}$, and temperatures change, $\Delta T$ as
$$ \begin{equation*} q=c \times m \times \Delta T=C \Delta T \tag{6.11} \end{equation*} $$
(d) The Relationship between $C_{p}$ and $C_{V}$ for an Ideal Gas
At constant volume, the heat capacity, $C$ is denoted by $C_{V}$ and at constant pressure, this is denoted by $C_{p}$. Let us find the relationship between the two.
We can write equation for heat, $q$ at constant volume as
$$q_{V}=C_{V} \Delta T=\Delta U$$
at constant pressure as $q_{p}=C_{p} \Delta T=\Delta H$
The difference between $C_{p}$ and $C_{V}$ can be derived for an ideal gas as:
For a mole of an ideal gas, $\Delta H=\Delta U+\Delta(p V)$
$$=\Delta U+\Delta(\mathrm{R} T)$$
$$=\Delta U+\mathrm{R} \Delta T$$
$$\therefore \Delta H=\Delta U+\mathrm{R} \Delta T\tag{6.12}$$
On putting the values of $\Delta H$ and $\Delta U$, we have
$$ \begin{align*} & C_{p} \Delta T=C_{V} \Delta T+\mathrm{R} \Delta T \\ & C_{p}=C_{V}+\mathrm{R} \\ & C_{p}-C_{V}=\mathrm{R} \tag{6.13} \end{align*} $$
6.3 MEASUREMENT OF $\triangle U$ AND $\Delta H$ : CALORIMETRY
We can measure energy changes associated with chemical or physical processes by an experimental technique called calorimetry. In calorimetry, the process is carried out in a vessel called calorimeter, which is immersed in a known volume of a liquid. Knowing the heat capacity of the liquid in which calorimeter is immersed and the heat capacity of calorimeter, it is possible to determine the heat evolved in the process by measuring temperature changes. Measurements are made under two different conditions:
i) at constant volume, $q_{V}$
ii) at constant pressure, $q_{p}$
(a) $\Delta U$ Measurements
For chemical reactions, heat absorbed at constant volume, is measured in a bomb calorimeter (Fig. 6.7). Here, a steel vessel (the bomb) is immersed in a water bath. The whole device is called calorimeter. The steel vessel is immersed in water bath to ensure that no heat is lost to the surroundings.
Fig. 6.7 Bomb calorimeter
A combustible substance is burnt in pure dioxygen supplied in the steel bomb. Heat evolved during the reaction is transferred to the water around the bomb and its temperature is monitored. Since the bomb calorimeter is sealed, its volume does not change i.e., the energy changes associated with reactions are measured at constant volume. Under these conditions, no work is done as the reaction is carried out at constant volume in the bomb calorimeter. Even for reactions involving gases, there is no work done as $\Delta V=0$. Temperature change of the calorimeter produced by the completed reaction is then converted to $q_{V}$, by using the known heat capacity of the calorimeter with the help of equation 5.11.
(B) $\Delta \boldsymbol{H}$ Measurements
Measurement of heat change at constant pressure (generally under atmospheric pressure) can be done in a calorimeter shown in Fig. 6.8. We know that $\Delta \mathrm{H}=q_{p}$ (at constant $p$ ) and, therefore, heat absorbed or evolved, $q_{p}$ at constant pressure is also called the heat of reaction or enthalpy of reaction, $\Delta_{r} H$.
In an exothermic reaction, heat is evolved, and system loses heat to the surroundings. Therefore, $q_{p}$ will be negative and $\Delta_{r} H$ will also be negative. Similarly in an endothermic reaction, heat is absorbed, $q_{p}$ is positive and $\Delta_{r} H$ will be positive.
Fig. 6.8 Calorimeter for measuring heat changes at constant pressure (atmospheric pressure).
Problem 6.6
$1 \mathrm{~g}$ of graphite is burnt in a bomb calorimeter in excess of oxygen at $298 \mathrm{~K}$ and 1 atmospheric pressure according to the equation
$\mathrm{C}$ (graphite) $+\mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}_2(\mathrm{~g})$
During the reaction, temperature rises from $298 \mathrm{~K}$ to $299 \mathrm{~K}$. If the heat capacity of the bomb calorimeter is $20.7 \mathrm{~kJ} / \mathrm{K}$, what is the enthalpy change for the above reaction at $298 \mathrm{~K}$ and $1 \mathrm{~atm}$ ?
Solution
Suppose $q$ is the quantity of heat from the reaction mixture and $C_{V}$ is the heat capacity of the calorimeter, then the quantity of heat absorbed by the calorimeter.
$q=C_{V} \times \Delta T$
Quantity of heat from the reaction will have the same magnitude but opposite sign because the heat lost by the system (reaction mixture) is equal to the heat gained by the calorimeter.
$$ \begin{gathered} q=-C_{V} \times \Delta T=-20.7 \mathrm{~kJ} / \mathrm{K} \times(299-298) \mathrm{K} \\ =-20.7 \mathrm{~kJ} \end{gathered} $$
(Here, negative sign indicates the exothermic nature of the reaction)
Thus, $\Delta U$ for the combustion of the $1 \mathrm{~g}$ of graphite $=-20.7 \mathrm{kJK}^{-1}$
For combustion of $1 \mathrm{~mol}$ of graphite,
$$ \begin{aligned} & =\frac{12.0 \mathrm{~g} \mathrm{~mol}^{-1} \times(-20.7 \mathrm{~kJ})}{1 \mathrm{~g}} \\ & =-2.48 \times 10^{2} \mathrm{~kJ} \mathrm{~mol}^{-1}, \quad \text { Since } \Delta n_{g}=0, \\ & \Delta H=\Delta U=-2.48 \times 10^{2} \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$
6.4 ENTHALPY CHANGE, $\Delta_{r} H$ OF A REACTION - REACTION ENTHALPY
In a chemical reaction, reactants are converted into products and is represented by,
Reactants $\rightarrow$ Products
The enthalpy change accompanying a reaction is called the reaction enthalpy. The enthalpy change of a chemical reaction, is given by the symbol $\Delta_{r} H$
$\Delta_{r} H=$ (sum of enthalpies of products) - (sum of enthalpies of reactants)
$$=\sum_i a_i H_{\text {products }}-\sum_i b_i H_{\text {reactants }}\tag{6.14}$$
Here symbol $\sum$ (sigma) is used for summation and $\mathrm{a}_i$ and $\mathrm{b}_i$ are the stoichiometric coefficients of the products and reactants respectively in the balanced chemical equation. For example, for the reaction
$$ \begin{aligned} & \mathrm{CH}_4(\mathrm{~g})+2 \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}_2(\mathrm{~g})+2 \mathrm{H_2} \mathrm{O}(l) \\ \end{aligned} $$
$$ \begin{aligned} & \Delta_r H = \sum_i a_i H_\text {Products } - \sum b_i H_\text {reactants } \\ \end{aligned} $$
$$ = [H_m(CO_2, ~g) + 2H_m(H_2O, ~l)] - [H_m (CH_4, ~g) + 2H_m (O_2,~g)]$$
where $H_{\mathrm{m}}$ is the molar enthalpy.
Enthalpy change is a very useful quantity. Knowledge of this quantity is required when one needs to plan the heating or cooling required to maintain an industrial chemical reaction at constant temperature. It is also required to calculate temperature dependence of equilibrium constant.
(a) Standard Enthalpy of Reactions
Enthalpy of a reaction depends on the conditions under which a reaction is carried out. It is, therefore, necessary that we must specify some standard conditions. The standard enthalpy of reaction is the enthalpy change for a reaction when all the participating substances are in their standard states.
The standard state of a substance at a specified temperature is its pure form at 1 bar. For example, the standard state of liquid ethanol at $298 \mathrm{~K}$ is pure liquid ethanol at 1 bar; standard state of solid iron at $500 \mathrm{~K}$ is pure iron at 1 bar. Usually data are taken at $298 \mathrm{~K}$.
Standard conditions are denoted by adding the superscript $\ominus$ to the symbol $\Delta H$, e.g., $\Delta H^{\ominus}$
(b) Enthalpy Changes during Phase Transformations
Phase transformations also involve energy changes. Ice, for example, requires heat for melting. Normally this melting takes place at constant pressure (atmospheric pressure) and during phase change, temperature remains constant (at $273 \mathrm{~K}$ ).
$H_2 O(s) \rightarrow H_2O(l) ; \Delta_{\text {fus }} H^\ominus=6.00 ~kJ ~mol^{-1}$
Here $\Delta_{\text {fus }} H^{\ominus}$ is enthalpy of fusion in standard state. If water freezes, then process is reversed and equal amount of heat is given off to the surroundings.
The enthalpy change that accompanies melting of one mole of a solid substance in standard state is called standard enthalpy of fusion or molar enthalpy of fusion, $\Delta_{\text {fus }} \boldsymbol{H}^{\ominus}$.
Table 6.1 Standard Enthalpy Changes of Fusion and Vaporisation
Substance | $\mathbf{T_f} / \mathbf{K}$ | $\Delta_{\text {fus }} \mathbf{H}^{\ominus} /\left(\mathbf{k J} \mathbf{~ m o l}^{-\mathbf{1}}\right)$ | $\mathbf{T_\mathbf{b}} / \mathbf{K}$ | $\Delta_{\text {vap }} \mathbf{H}^{\ominus} /\left(\mathbf{k J} \mathbf{m o l}^{-\mathbf{1}}\right)$ |
---|---|---|---|---|
$\mathrm{N_2}$ | 63.15 | 0.72 | 77.35 | 5.59 |
$\mathrm{NH_3}$ | 195.40 | 5.65 | 239.73 | 23.35 |
$\mathrm{HCl}$ | 159.0 | 1.992 | 188.0 | 16.15 |
$\mathrm{CO}$ | 68.0 | 6.836 | 82.0 | 6.04 |
$\mathrm{CH}_3 \mathrm{COCH}_3$ | 177.8 | 5.72 | 329.4 | 29.1 |
$\mathrm{CCl_4}$ | 250.16 | 2.5 | 349.69 | 30.0 |
$\mathrm{H_2} \mathrm{O}$ | 273.15 | 6.01 | 373.15 | 40.79 |
$\mathrm{NaCl}^{2}$ | 1081.0 | 28.8 | 1665.0 | 170.0 |
$\mathrm{C_6}$ | 278.65 | 9.83 | 353.25 | 30.8 |
Melting of a solid is endothermic, so all enthalpies of fusion are positive. Water requires heat for evaporation. At constant temperature of its boiling point $T_{\mathrm{b}}$ and at constant pressure:
$H_2 O(l) \rightarrow H_2 O(\mathrm{g}) ; \Delta_\text {vap } H^\ominus=+40.79 ~kJ mol^{-1}$ $\Delta_\text {vap } H^\ominus$ is the standard enthalpy of vaporisation.
Amount of heat required to vaporize one mole of a liquid at constant temperature and under standard pressure ( $1 \mathrm{bar}$ ) is called its standard enthalpy of vaporization or molar enthalpy of vaporization, $\Delta_{v a p} \mathbf{H}^{\ominus}$.
Sublimation is direct conversion of a solid into its vapour. Solid $\mathrm{CO_2}$ or ‘dry ice’ sublimes at $195 \mathrm{~K}$ with $\Delta_{\text {sub }} H^{\ominus}=25.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$; naphthalene sublimes slowly and for this $\Delta_{\text {sub }} H^{\ominus}=73.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Standard enthalpy of sublimation, $\Delta_{\text {sub }} H^{\ominus}$ is the change in enthalpy when one mole of a solid substance sublimes at a constant temperature and under standard pressure (1bar).
The magnitude of the enthalpy change depends on the strength of the intermolecular interactions in the substance undergoing the phase transfomations. For example, the strong hydrogen bonds between water molecules hold them tightly in liquid phase. For an organic liquid, such as acetone, the intermolecular dipole-dipole interactions are significantly weaker. Thus, it requires less heat to vaporise $1 \mathrm{~mol}$ of acetone than it does to vaporize $1 \mathrm{~mol}$ of water. Table 6.1 gives values of standard enthalpy changes of fusion and vaporisation for some substances.
Problem 6.7
A swimmer coming out from a pool is covered with a film of water weighing about $18 \mathrm{~g}$. How much heat must be supplied to evaporate this water at 298 K ? Calculate the internal energy of vaporisation at $298 \mathrm{~K}$.
$\Delta_{\text {vap }} H^{\ominus}$ for water at $298 \mathrm{~K}=44.01 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Solution
We can represent the process of evaporation as
$$ \begin{aligned} & \mathrm{H_2} \mathrm{O}(\mathrm{l}) \xrightarrow{\text { vaporisation }} \mathrm{H_2} \mathrm{O}(\mathrm{g}) \\ & 1 \mathrm{~mol} \quad \quad \quad \quad \quad \quad 1 \mathrm{~mol} \end{aligned} $$
No. of moles in $18 \mathrm{~g} \mathrm{H_2} \mathrm{O}(1)$ is
$ =\frac{18 \mathrm{~g}}{18 \mathrm{~g} \mathrm{~mol}}=1 \mathrm{~mol} $
Heat supplied to evaporate $18 \mathrm{~g}$ water at $298 \mathrm{~K}$
$$ \begin{aligned} & =\mathrm{n} \times \Delta_{\text {vap }} H^{\ominus} \\ & =(1 \mathrm{~mol}) \times\left(44.01 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & =44.01 \mathrm{~kJ} \end{aligned} $$
(assuming steam behaving as an ideal gas).
$\Delta_{\text {vap }} U=\Delta_{v a p} H^{\ominus}-p \Delta V=\Delta_{v a p} H^{\ominus}-\Delta n_{g} R T$
$\Delta_{v a p} H^{V}-\Delta \mathrm{n}_{\mathrm{g}} \mathrm{R} T=44.01 \mathrm{~kJ}$
$-(1)\left(8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)(298 \mathrm{~K})\left(10^{-3} \mathrm{~kJ} \mathrm{~J}^{-1}\right)$
$\Delta_{\text {vap }} U^{V}=44.01 \mathrm{~kJ}-2.48 \mathrm{~kJ}$
$$ =41.53 \mathrm{~kJ} $$
Problem 6.8
Assuming the water vapour to be a perfect gas, calculate the internal energy change when $1 \mathrm{~mol}$ of water at $100^{\circ} \mathrm{C}$ and 1 bar pressure is converted to ice at $0^{\circ} \mathrm{C}$. Given the enthalpy of fusion of ice is $6.00 \mathrm{~kJ}$ $\mathrm{mol}^{-1}$ heat capacity of water is $4.2 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
Solution
The change take place as follows:
Step-1 $1 \mathrm{~mol} \mathrm{H_2} \mathrm{O}\left(1,100^{\circ} \mathrm{C}\right) \rightarrow 1$ mol $\left(1,0^{\circ} \mathrm{C}\right)$ Enthalpy change $\Delta \mathrm{H_1}$
Step-2 $1 \mathrm{~mol} \mathrm{H_2} \mathrm{O}\left(1,0^{\circ} \mathrm{C}\right) \rightarrow 1 \mathrm{~mol}$ $\mathrm{H_2} \mathrm{O}\left(\mathrm{S}, \mathrm{O}^{\circ} \mathrm{C}\right)$ Enthalpy change $\Delta \mathrm{H_2}$
Total enthalpy change will be -
$$ \begin{aligned} \Delta \mathrm{H} & =\Delta \mathrm{H_1}+\Delta \mathrm{H_2} \\ \Delta \mathrm{H_1} & =-(18 \times 4.2 \times 100) \mathrm{J} \mathrm{mol}^{-1} \\ & =-7560 \mathrm{~J} \mathrm{~mol}^{-1}=-7.56 \mathrm{k} \mathrm{J} \mathrm{mol}^{-1} \\ \Delta \mathrm{H_2} & =-6.00 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$
Therefore,
$$ \begin{aligned} \Delta \mathrm{H} & =-7.56 \mathrm{~kJ} \mathrm{~mol}^{-1}+\left(-6.00 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & =-13.56 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$
There is negligible change in the volume during the change form liquid to solid state.
Therefore, $\mathrm{p} \Delta \mathrm{v}=\Delta \mathrm{ng} \mathrm{RT}=0$
$\Delta \mathrm{H}=\Delta \mathrm{U}=-13.56 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Table 6.2 Standard Molar Enthalpies of Formation $\left(\Delta_{f} H^{\ominus}\right)$ at $298 \mathrm{~K}$ of a Few Selected Substances
Substance | $\Delta_{f} \mathbf{H}^{\ominus} /\left(\mathbf{k J ~ m o l} \mathbf{l}^{-1}\right)$ | Substance | $\Delta_{f} \mathbf{H}^{\ominus} /\left(\mathbf{k J ~ m o l} \mathbf{l}^{-1}\right)$ |
---|---|---|---|
$\mathrm{Al_2} \mathrm{O_3}(\mathrm{~s})$ | -1675.7 | $\mathrm{HI}(\mathrm{g})$ | +26.48 |
$\mathrm{BaCO_3}(\mathrm{~s})$ | -1216.3 | $\mathrm{KCl}(\mathrm{s})$ | -436.75 |
$\mathrm{Br_2}(\mathrm{l})$ | 0 | $\operatorname{KBr}(\mathbf{s})$ | -393.8 |
$\mathrm{Br_2}(\mathrm{~g})$ | +30.91 | MgO(s) | -601.70 |
$\mathrm{CaCO_3}(\mathrm{~s})$ | -1206.92 | $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$ | -924.54 |
C (diamond) | +1.89 | $\mathrm{NaF}(\mathrm{s})$ | -573.65 |
C (graphite) | 0 | $\mathrm{NaCl}(\mathrm{s})$ | -411.15 |
$\mathrm{CaO}(\mathrm{s})$ | -635.09 | $\mathrm{NaBr}(\mathrm{s})$ | -361.06 |
$\mathrm{CH_4}(\mathrm{~g})$ | -74.81 | $\mathrm{NaI}(\mathrm{s})$ | -287.78 |
$\mathrm{C_2} \mathrm{H_4}(\mathrm{~g})$ | 52.26 | $\mathrm{NH_3}(\mathrm{~g})$ | -46.11 |
$\mathrm{CH_3} \mathrm{OH}(\mathrm{l})$ | -238.86 | $\mathrm{NO}(\mathrm{g})$ | +90.25 |
$\mathrm{C_2} \mathrm{H_5} \mathrm{OH}(\mathrm{l})$ | -277.69 | $\mathrm{NO_2}(\mathrm{~g})$ | +33.18 |
$\mathrm{C_6} \mathrm{H_6}(\mathrm{l})$ | +49.0 | $\mathrm{PCl_3}(1)$ | -319.70 |
$\mathrm{CO}(\mathrm{g})$ | -110.53 | $\mathrm{PCl_5}(\mathrm{~s})$ | -443.5 |
$\mathrm{CO_2}(\mathrm{~g})$ | -393.51 | $\mathrm{SiO_2}(\mathrm{~s})$ (quartz) | -910.94 |
$\mathrm{C_2} \mathrm{H_6}(\mathrm{~g})$ | -84.68 | $\mathrm{SnCl_2}(\mathrm{~s})$ | -325.1 |
$\mathrm{Cl_2}(\mathrm{~g})$ | 0 | $\mathrm{SnCl_4}(1)$ | -511.3 |
$\mathrm{C_3} \mathrm{H_8}(\mathrm{~g})$ | -103.85 | $\mathrm{SO_2}(\mathrm{~g})$ | -296.83 |
$\mathrm{n}-\mathrm{C_4} \mathrm{H_10}(\mathrm{~g})$ | -126.15 | $\mathrm{SO_3}(\mathrm{~g})$ | -395.72 |
$\mathrm{HgS}(\mathrm{s})$ red | -58.2 | $\mathrm{SiH_4}(\mathrm{~g})$ | +34 |
$\mathrm{H_2}(\mathrm{~g})$ | 0 | $\mathrm{SiCl_4}(\mathrm{~g})$ | -657.0 |
$\mathrm{H_2} \mathrm{O}(\mathrm{g})$ | -241.82 | $\mathrm{C}(\mathrm{g})$ | +716.68 |
$\mathrm{H_2} \mathrm{O}(1)$ | -285.83 | $\mathrm{H}(\mathrm{g})$ | +217.97 |
$\mathrm{HF}(\mathrm{g})$ | -271.1 | $\mathrm{Cl}(\mathrm{g})$ | +121.68 |
$\mathrm{HCl}(\mathrm{g})$ | -92.31 | $\mathrm{Fe_2} \mathrm{O_3}(\mathrm{~s})$ | -824.2 |
$\operatorname{HBr}(\mathrm{g})$ | -36.40 |
(c) Standard Enthalpy of Formation
The standard enthalpy change for the formation of one mole of a compound from its elements in their most stable states of aggregation (also known as reference states) is called Standard Molar Enthalpy of Formation. Its symbol is $\Delta_{f} \mathbf{H}^{\ominus}$, where the subscript ’ $f$ ’ indicates that one mole of the compound in question has been formed in its standard state from its elements in their most stable states of aggregation. The reference state of an element is its most stable state of aggregation at $25^{\circ} \mathrm{C}$ and 1 bar pressure. For example, the reference state of dihydrogen is $\mathrm{H_2}$ gas and those of dioxygen, carbon and sulphur are $\mathrm{O_2}$ gas, $\mathrm{C_\text {graphite }}$ and $\mathrm{S_\text {rhombic }}$ respectively. Some reactions with standard molar enthalpies of formation are as follows.
$\mathrm{H_2}(\mathrm{~g})+1 / 2 \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{H_2} \mathrm{O}(1) ;$
$\Delta_{f} H^{\ominus}=-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{C}$ (graphite, $\mathrm{s})+2 \mathrm{H_2}(\mathrm{~g}) \rightarrow \mathrm{Ch_4}(\mathrm{~g})$;
$\Delta_{f} H^{\ominus}=-74.81 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$2 \mathrm{C}$ (graphite, $\mathrm{s}$ ) $+3 \mathrm{H_2}(\mathrm{~g})+1 \frac{1}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{C_2} \mathrm{H_5} \mathrm{OH}(1)$;
$$ \Delta_{f} H^{\ominus}=-277.7 \mathrm{~kJ} \mathrm{~mol}^{-1} $$
It is important to understand that a standard molar enthalpy of formation, $\Delta_{f} H^{\ominus}$, is just a special case of $\Delta_{r} H^{\ominus}$, where one mole of a compound is formed from its constituent elements, as in the above three equations, where $1 \mathrm{~mol}$ of each, water, methane and ethanol is formed. In contrast, the enthalpy change for an exothermic reaction:
$\mathrm{CaO}(\mathrm{s})+\mathrm{CO_2}(\mathrm{~g}) \rightarrow \mathrm{CaCo_3}(\mathrm{~s}) $;
$\Delta_{r} H^{\ominus}=-178.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$ is not an enthalpy of formation of calcium carbonate, since calcium carbonate has been formed from other compounds, and not from its constituent elements. Also, for the reaction given below, enthalpy change is not standard enthalpy of formation, $\Delta_{f} H^{\ominus}$ for $\mathrm{HBr}(\mathrm{g})$.
$\mathrm{H_2}(\mathrm{~g})+\mathrm{Br_2}(\mathrm{l}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$;
$$ \Delta_{r} H^{\ominus}=-178.3 \mathrm{~kJ} \mathrm{~mol}^{-1} $$
Here two moles, instead of one mole of the product is formed from the elements, i.e.,
$\Delta_{r} H^{\ominus}=2 \Delta_{f} H^{\ominus}$
Therefore, by dividing all coefficients in the balanced equation by 2 , expression for enthalpy of formation of $\mathrm{HBr}(\mathrm{g})$ is written as
$$1 / 2 \mathrm{H_2}(\mathrm{~g})+1 / 2 \mathrm{Br_2}(1) \rightarrow \mathrm{HBr}(\mathrm{g})$$
$$ \Delta_{f} H^{\ominus}=-36.4 \mathrm{~kJ} \mathrm{~mol}^{-1} $$
Standard enthalpies of formation of some common substances are given in Table 6.2.
By convention, standard enthalpy for formation, $\Delta_{f} H^{\ominus}$, of an element in reference state, i.e., its most stable state of aggregation is taken as zero.
Suppose, you are a chemical engineer and want to know how much heat is required to decompose calcium carbonate to lime and carbon dioxide, with all the substances in their standard state.
$$ \mathrm{CaCO_3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO_2}(\mathrm{~g}) ; \Delta_{r} H^{\ominus}=? $$
Here, we can make use of standard enthalpy of formation and calculate the enthalpy change for the reaction. The following general equation can be used for the enthalpy change calculation.
$$\Delta_r H^{\ominus}=\sum_i \mathrm{a_i} \Delta_f H^{\ominus} \text{(products)} -\sum_i \mathrm{~b_i} \Delta_{f} H^{\ominus} \text{(reactants)} \tag{6.15}$$
where $a$ and $b$ represent the coefficients of the products and reactants in the balanced equation. Let us apply the above equation for decomposition of calcium carbonate. Here, coefficients ’ $a$ ’ and ’ $b$ ’ are 1 each. Therefore,
$$ \begin{array}{r} \Delta_{r} H^{\ominus}=\Delta_{f} H^{\ominus}=[\mathrm{CaO}(\mathrm{s})]+\Delta_{f} H^{\ominus}\left[\mathrm{CO_2}(\mathrm{~g})\right] \\ -\Delta_{f} H^{\ominus}=\left[\mathrm{CaCO_3}(\mathrm{~s})\right] \\ =1\left(-635.1 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)+1\left(-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ -1\left(-1206.9 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ =178.3 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{array} $$
Thus, the decomposition of $\mathrm{CaCO_3}(\mathrm{~s})$ is an endothermic process and you have to heat it for getting the desired products.
(d) Thermochemical Equations
A balanced chemical equation together with the value of its $\Delta_{r} H$ is called a thermochemical equation. We specify the physical state (alongwith allotropic state) of the substance in an equation. For example:
$$ \begin{aligned} \mathrm{C_2} \mathrm{H_5} \mathrm{OH}(l)+3 \mathrm{O_2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO_2}(\mathrm{~g})+3 \mathrm{H_2} \mathrm{O}(l) ; \\ \Delta_{r} H^{\ominus}=-1367 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$
The above equation describes the combustion of liquid ethanol at constant temperature and pressure. The negative sign of enthalpy change indicates that this is an exothermic reaction.
It would be necessary to remember the following conventions regarding thermochemical equations.
1. The coefficients in a balanced thermochemical equation refer to the number of moles (never molecules) of reactants and products involved in the reaction.
2. The numerical value of $\Delta_{r} H^{\ominus}$ refers to the number of moles of substances specified by an equation. Standard enthalpy change $\Delta_{r} H^{\ominus}$ will have units as $\mathrm{kJ} \mathrm{mol}^{-1}$.
To illustrate the concept, let us consider the calculation of heat of reaction for the following reaction :
$\mathrm{Fe_2} \mathrm{O_3}(\mathrm{~s})+3 \mathrm{H_2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H_2} \mathrm{O}(\mathrm{l})$,
From the Table (6.2) of standard enthalpy of formation $\left(\Delta_{f} H^{\ominus}\right)$, we find :
$\Delta_{f} H^{\ominus}\left(\mathrm{H_2} \mathrm{O}, l\right)=-285.83 \mathrm{~kJ} \mathrm{~mol}^{-1} ;$
$\Delta_{f} H^{\ominus}\left(\mathrm{Fe_2} \mathrm{O_3}, \mathrm{~s}\right)=-824.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$;
Also $\Delta_{f} H^{\ominus}(\mathrm{Fe}, \mathrm{s})=0$ and
$\Delta_{f} H^{\ominus}\left(\mathrm{H_2}, \mathrm{~g}\right)=0$ as per convention
Then,
$$ \begin{aligned} \Delta_{f} H_{1}^{\ominus} & =3\left(-285.83 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & -1\left(-824.2 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ = & (-857.5+824.2) \mathrm{kJ} \mathrm{mol}^{-1} \\ = & -33.3 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$
Note that the coefficients used in these calculations are pure numbers, which are equal to the respective stoichiometric coefficients. The unit for $\Delta_{r} H^{\ominus}$ is $\mathrm{kJ} \mathrm{mol}^{-1}$, which means per mole of reaction. Once we balance the chemical equation in a particular way, as above, this defines the mole of reaction. If we had balanced the equation differently, for example,
$\frac{1}{2} \mathrm{Fe_2} \mathrm{O_3}(\mathrm{~s})+\frac{3}{2} \mathrm{H_2}(\mathrm{~g}) \rightarrow \mathrm{Fe}(\mathrm{s})+\frac{3}{2} \mathrm{H_2} \mathrm{O}(\mathrm{l})$
then this amount of reaction would be one mole of reaction and $\Delta_{r} H^{\ominus}$ would be
$\Delta_{f} H_{2}^{\ominus}=\frac{3}{2}\left(-285.83 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
$-\frac{1}{2}\left(-824.2 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
$=(-428.7+412.1) \mathrm{kJ} \mathrm{mol}^{-1}$
$=-16.6 \mathrm{~kJ} \mathrm{~mol}^{-1}=1 / 2 \Delta_{r} H_{1}^{\ominus}$
It shows that enthalpy is an extensive quantity.
3. When a chemical equation is reversed, the value of $\Delta_{r} H^{\ominus}$ is reversed in sign. For example
$\mathrm{N_2}(\mathrm{~g})+3 \mathrm{H_2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH_3}(\mathrm{~g})$;
$$ \Delta_{r} H^{\ominus}=-91.8 \mathrm{~kJ} . \mathrm{mol}^{-1} $$
$2 \mathrm{NH_3}(\mathrm{~g}) \rightarrow \mathrm{N_2}(\mathrm{~g})+3 \mathrm{H_2}(\mathrm{~g})$;
$$ \Delta_{r} H^{\ominus}=+91.8 \mathrm{~kJ} \mathrm{~mol}^{-1} $$
(e) Hess’s Law of Constant Heat Summation
We know that enthalpy is a state function, therefore the change in enthalpy is independent of the path between initial state (reactants) and final state (products). In other words, enthalpy change for a reaction is the same whether it occurs in one step or in a series of steps. This may be stated as follows in the form of Hess’s Law.
If a reaction takes place in several steps then its standard reaction enthalpy is the sum of the standard enthalpies of the intermediate reactions into which the overall reaction may be divided at the same temperature.
Let us understand the importance of this law with the help of an example.
Consider the enthalpy change for the reaction
$\mathrm{C}$ (graphite,s) $+\frac{1}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) ; \Delta_{r} H^{\ominus}=$ ?
Although $\mathrm{CO}(\mathrm{g})$ is the major product, some $\mathrm{CO_2}$ gas is always produced in this reaction. Therefore, we cannot measure enthalpy change for the above reaction directly. However, if we can find some other reactions involving related species, it is possible to calculate the enthalpy change for the above reaction.
Let us consider the following reactions:
$\mathrm{C}$ (graphite,s) $+\mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{CO_2}(\mathrm{~g}) ;$
$$ \Delta_{r} H^{\ominus}=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \text{ (i) } $$
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{CO_2}(\mathrm{~g});$
$$ \Delta_{r} H^{\ominus}=-283.0 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { (ii) } $$
We can combine the above two reactions in such a way so as to obtain the desired reaction. To get one mole of $\mathrm{CO}(\mathrm{g})$ on the right, we reverse equation (ii). In this, heat is absorbed instead of being released, so we change sign of $\Delta_{r} H^{\ominus}$ value
$$ \begin{aligned} & \mathrm{CO_2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O_2}(\mathrm{~g}); \\ & \Delta_{r} H^{\ominus}=+283.0 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { (iii) } \end{aligned} $$
Adding equation (i) and (iii), we get the desired equation,
$$ \mathrm{C}(\text { graphite, } \mathrm{s})+\frac{1}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}); $$
for which $\Delta_{r} H^{\ominus}=(-393.5+283.0)$
$$ =-110.5 \mathrm{~kJ} \mathrm{~mol}^{-1} $$
In general, if enthalpy of an overall reaction $\mathrm{A} \rightarrow \mathrm{B}$ along one route is $\Delta_{r} H$ and $\Delta_{r} H_{1}, \Delta_{r} H_{2}, \Delta_{r} H_{3} \ldots .$. representing enthalpies of reactions leading to same product, $\mathrm{B}$ along another route, then we have
$$\Delta_{r} H=\Delta_{r} H_{1}+\Delta_{r} H_{2}+\Delta_{r} H_{3} \ldots \tag{6.16}$$
It can be represented as:
6.5 ENTHALPIES FOR DIFFERENT TYPES OF REACTIONS
It is convenient to give name to enthalpies specifying the types of reactions.
(a) Standard Enthalpy of Combustion (symbol : $\Delta_{c} \mathbf{H}^{\ominus}$ )
Combustion reactions are exothermic in nature. These are important in industry, rocketry, and other walks of life. Standard enthalpy of combustion is defined as the enthalpy change per mole (or per unit amount) of a substance, when it undergoes combustion and all the reactants and products being in their standard states at the specified temperature.
Cooking gas in cylinders contains mostly butane $\left(\mathrm{C_4} \mathrm{H_{10}}\right)$. During complete combustion of one mole of butane, $2658 \mathrm{~kJ}$ of heat is released. We can write the thermochemical reactions for this as:
$$ \begin{aligned} & \mathrm{C_4} \mathrm{H_{10}}(\mathrm{~g})+\frac{13}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO_2}(\mathrm{~g})+5 \mathrm{H_2} \mathrm{O}(\mathrm{l}) \\ & \Delta_{C} H^{\ominus}=-2658.0 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$
Similarly, combustion of glucose gives out $2802.0 \mathrm{~kJ} / \mathrm{mol}$ of heat, for which the overall equation is :
$$ \begin{array}{r} \mathrm{C_6} \mathrm{H_{12}} \mathrm{O_6}(\mathrm{~g})+6 \mathrm{O_2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO_2}(\mathrm{~g})+6 \mathrm{H_2} \mathrm{O}(1) ; \\ \Delta_{C} H^{\ominus}=-2802.0 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{array} $$
Our body also generates energy from food by the same overall process as combustion, although the final products are produced after a series of complex bio-chemical reactions involving enzymes.
Problem 6.9
The combustion of one mole of benzene takes place at $298 \mathrm{~K}$ and $1 \mathrm{~atm}$. After combustion, $\mathrm{CO_2}(\mathrm{~g})$ and $\mathrm{H_2} \mathrm{O}(1)$ are produced and $3267.0 \mathrm{~kJ}$ of heat is liberated. Calculate the standard enthalpy of formation, $\Delta_{f} H^{\ominus}$ of benzene. Standard enthalpies of formation of $\mathrm{CO_2}(\mathrm{~g})$ and $\mathrm{H_2} \mathrm{O}(\mathrm{l})$ are $-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $-285.83 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.
Solution
The formation reaction of benezene is given by :
$$ \begin{aligned} 6 \mathrm{C}(\text { graphite })+3 \mathrm{H_2}(\mathrm{~g}) \rightarrow & \mathrm{C_6} \mathrm{H_6}(\mathrm{l}) \\ & \Delta_{f} H^{\ominus}=? \ldots \text { (i) } \end{aligned} $$
The enthalpy of combustion of $1 \mathrm{~mol}$ of benzene is :
$$ \begin{align*} \mathrm{C_6} \mathrm{H_6}(\mathrm{l})+\frac{15}{2} \mathrm{O_2} & \rightarrow 6 \mathrm{CO_2}(\mathrm{~g})+3 \mathrm{H_2} \mathrm{O}(\mathrm{l}) ; \\ \Delta_{C} H^{\ominus} & =-3267 \mathrm{~kJ} \mathrm{~mol}^{-1} \ldots \tag{ii} \end{align*} $$
The enthalpy of formation of $1 \mathrm{~mol}$ of $\mathrm{CO_2}(\mathrm{~g})$ :
$$ \begin{align*} \mathrm{C}(\text { graphite }) & +\mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{CO_2}(\mathrm{~g}) \\ \Delta_{f} H^{\ominus} & =-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \ldots \tag{iii} \end{align*} $$
The enthalpy of formation of $1 \mathrm{~mol}$ of $\mathrm{H_2} \mathrm{O}(1)$ is :
$$ \begin{aligned} & \mathrm{H_2}(\mathrm{~g})+\frac{1}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{H_2} \mathrm{O}(\mathrm{l}) \\ & \Delta_{C} H^{\ominus}=-285.83 \mathrm{~kJ} \mathrm{~mol}^{-1} \ldots \text { (iv) } \end{aligned} $$
multiplying eqn. (iii) by 6 and eqn. (iv) by 3 we get:
$$ \begin{gathered} 6 \mathrm{C}(\text { graphite })+6 \mathrm{O_2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO_2}(\mathrm{~g}) ; \\ \Delta_{f} H^{\ominus}=-2361 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ 3 \mathrm{H_2}(\mathrm{~g})+\frac{3}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow 3 \mathrm{H_2} \mathrm{O}(1) ; \\ \Delta_{f} H^{\ominus}=-857.49 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{gathered} $$
Summing up the above two equations :
$$ \begin{aligned} 6 \mathrm{C}(\text { graphite })+3 \mathrm{H_2}(\mathrm{~g})+\frac{15}{2} \mathrm{O_2}(\mathrm{~g}) & \rightarrow 6 \mathrm{CO_2}(\mathrm{~g})+3 \mathrm{H_2} \mathrm{O}(\mathrm{l}); \end{aligned} $$
$$ \Delta_{f} H^{\ominus}=-3218.49 \mathrm{~kJ} \mathrm{~mol}^{-1} \ldots(\mathrm{v}) $$
Reversing equation (ii);
$$ \begin{array}{r} 6 \mathrm{CO_2}(\mathrm{~g})+3 \mathrm{H_2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C_6} \mathrm{H_6}(\mathrm{l})+\frac{15}{2} \mathrm{O_2} ; \\ \Delta_{f} H^{\ominus}=-3267.0 \mathrm{~kJ} \mathrm{~mol}{ }^{-1} \ldots \text { (vi) } \end{array} $$
Adding equations (v) and (vi), we get
$$ \begin{aligned} & 6 \mathrm{C}(\text { graphite })+3 \mathrm{H_2}(\mathrm{~g}) \rightarrow \mathrm{C_6} \mathrm{H_6}(\mathrm{l}) \\ & \Delta_{f} H^{\ominus}=-48.51 \mathrm{~kJ} \mathrm{~mol}^{-1} \ldots \text { (iv) } \end{aligned} $$
(b) Enthalpy of Atomization (symbol: $\Delta_{a} \boldsymbol{H}^{\ominus}$ )
Consider the following example of atomization of dihydrogen
$\mathrm{H_2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g}) ; \Delta_{a} H^{\ominus}=435.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
You can see that $\mathrm{H}$ atoms are formed by breaking $\mathrm{H}-\mathrm{H}$ bonds in dihydrogen. The enthalpy change in this process is known as enthalpy of atomization, $\Delta_{a} H^{\ominus}$. It is the enthalpy change on breaking one mole of bonds completely to obtain atoms in the gas phase.
In case of diatomic molecules, like dihydrogen (given above), the enthalpy of atomization is also the bond dissociation enthalpy. The other examples of enthalpy of atomization can be
$\mathrm{CH_4}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g}) ; \Delta_{a} H^{\ominus}=1665 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Note that the products are only atoms of $\mathrm{C}$ and $\mathrm{H}$ in gaseous phase. Now see the following reaction:
$\mathrm{Na}(\mathrm{s}) \rightarrow \mathrm{Na}(\mathrm{g}) ; \Delta_{a} H^{\ominus}=108.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
In this case, the enthalpy of atomization is same as the enthalpy of sublimation.
(c) Bond Enthalpy (symbol: $\Delta_{\text {bond }} \mathbf{H}^{\ominus}$ )
Chemical reactions involve the breaking and making of chemical bonds. Energy is required to break a bond and energy is released when a bond is formed. It is possible to relate heat of reaction to changes in energy associated with breaking and making of chemical bonds. With reference to the enthalpy changes associated with chemical bonds, two different terms are used in thermodynamics.
(i) Bond dissociation enthalpy
(ii) Mean bond enthalpy
Let us discuss these terms with reference to diatomic and polyatomic molecules.
Diatomic Molecules: Consider the following process in which the bonds in one mole of dihydrogen gas $\left(\mathrm{H_2}\right)$ are broken:
$\mathrm{H_2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g}) ; \Delta_{\mathrm{H}-\mathrm{H}} H^{\ominus}=435.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The enthalpy change involved in this process is the bond dissociation enthalpy of $\mathrm{H}-\mathrm{H}$ bond. The bond dissociation enthalpy is the change in enthalpy when one mole of covalent bonds of a gaseous covalent compound is broken to form products in the gas phase.
Note that it is the same as the enthalpy of atomization of dihydrogen. This is true for all diatomic molecules. For example:
$\mathrm{Cl_2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}(\mathrm{g}) ; \Delta_{\mathrm{Cl}-\mathrm{Cl}} \mathrm{H}^{\ominus}=242 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{O_2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}(\mathrm{g}) ; \Delta_{\mathrm{O}=\mathrm{O}} \mathrm{H}^{\ominus}=428 \mathrm{~kJ} \mathrm{~mol}^{-1}$
In the case of polyatomic molecules, bond dissociation enthalpy is different for different bonds within the same molecule.
Polyatomic Molecules: Let us now consider a polyatomic molecule like methane, $\mathrm{CH_4}$. The overall thermochemical equation for its atomization reaction is given below:
$\mathrm{CH_4}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g}) ;$
$$ \Delta_{a} H^{\ominus}=1665 \mathrm{~kJ} \mathrm{~mol}^{-1} $$
In methane, all the four $\mathrm{C}-\mathrm{H}$ bonds are identical in bond length and energy. However, the energies required to break the individual $\mathrm{C}-\mathrm{H}$ bonds in each successive step differ :
$\mathrm{CH_4}(\mathrm{~g}) \rightarrow \mathrm{CH_3}(\mathrm{~g})+\mathrm{H}(\mathrm{g}) ; \Delta_{\text {bond }} \mathrm{H}^{\ominus}=+427 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{CH_3}(\mathrm{~g}) \rightarrow \mathrm{CH_2}(\mathrm{~g})+\mathrm{H}(\mathrm{g}) ; \Delta_{\text {bond }} \mathrm{H}^{\ominus}=+439 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{CH_2}(\mathrm{~g}) \rightarrow \mathrm{CH}(\mathrm{g})+\mathrm{H}(\mathrm{g}) ; \Delta_{\text {bond }} H^{\ominus}=+452 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{CH}(\mathrm{g}) \rightarrow \mathrm{C}(\mathrm{g})+\mathrm{H}(\mathrm{g}) ; \Delta_{\text {bond }} \mathrm{H}^{\ominus}=+347 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Therefore,
$\mathrm{CH_4}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g}) ; \Delta_{a} H^{\ominus}=1665 \mathrm{~kJ} \mathrm{~mol}^{-1}$
In such cases we use mean bond enthalpy of $\mathbf{C} \mathbf{-} \mathbf{H}$ bond. For example in $\mathrm{CH_4}, \Delta_{\mathrm{C}-\mathrm{H}} \mathrm{H}^{\ominus}$ is calculated as:
$\Delta_{\mathrm{C}-\mathrm{H}} H^{\ominus}=1 / 4\left(\Delta_{a} H^{\ominus}\right)=1 / 4\left(1665 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
$$ =416 \mathrm{~kJ} \mathrm{~mol}^{-1} $$
We find that mean $\mathrm{C}-\mathrm{H}$ bond enthalpy in methane is $416 \mathrm{~kJ} / \mathrm{mol}$. It has been found that mean $\mathrm{C}-\mathrm{H}$ bond enthalpies differ slightly from compound to compound, as in $\mathrm{CH_3} \mathrm{CH_2} \mathrm{Cl}, \mathrm{CH_3} \mathrm{NO_2}$, etc., but it does not differ in a great deal[^1]. Using Hess’s law, bond enthalpies can be calculated. Bond enthalpy values of some single and multiple bonds are given in Table 6.3. The reaction enthalpies are very important quantities as these arise from the changes that accompany the breaking of old bonds and formation of the new bonds. We can predict enthalpy of a reaction in gas phase, if we know different bond enthalpies. The standard enthalpy of reaction, $\Delta_{r} H^{\ominus}$ is related to bond enthalpies of the reactants and products in gas phase reactions as:
$$ \begin{align*} & \Delta_r H^\ominus=\sum \text { bond enthalpies}_{reactants} \\ \end{align*} $$
$$ \begin{align*} &-\sum \text { bond enthalpies}_{products} \tag{6.17} \\ \end{align*} $$
This relationship is particularly more useful when the required values of $\Delta_{f} H^{\ominus}$ are not available. The net enthalpy change of a reaction is the amount of energy required to break all the bonds in the reactant molecules minus the amount of energy required to break all the bonds in the product molecules. Remember that this relationship is approximate and is valid when all substances (reactants and products) in the reaction are in gaseous state.
Table 6.3(a) Some Mean Single Bond Enthalpies in $\mathrm{kJ} \mathrm{mol}^{-1}$ at $298 \mathrm{~K}$
$\mathrm{H}$ | $\mathrm{C}$ | $\mathrm{N}$ | $\mathrm{O}$ | $\mathrm{F}$ | $\mathrm{Si}$ | $\mathrm{P}$ | $\mathrm{S}$ | $\mathrm{Cl}$ | $\mathrm{Br}$ | $\mathrm{I}$ | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
435.8 | 414 | 389 | 464 | 569 | 293 | 318 | 339 | 431 | 368 | 297 | $\mathrm{H}$ | |
347 | 293 | 351 | 439 | 289 | 264 | 259 | 330 | 276 | 238 | $\mathrm{C}$ | ||
159 | 201 | 272 | - | 209 | - | 201 | 243 | - | $\mathrm{N}$ | |||
138 | 184 | 368 | 351 | - | 205 | - | 201 | $\mathrm{O}$ | ||||
155 | 540 | 490 | 327 | 255 | 197 | - | $\mathrm{F}$ | |||||
176 | 213 | 226 | 360 | 289 | 213 | $\mathrm{Si}$ | ||||||
213 | 230 | 331 | 272 | 213 | $\mathrm{P}$ | |||||||
213 | 251 | 213 | - | $\mathrm{S}$ | ||||||||
243 | 218 | 209 | $\mathrm{CI}$ | |||||||||
192 | 180 | $\mathrm{Br}$ | ||||||||||
151 | $\mathrm{I}$ |
Table 6.3(b) Some Mean Multiple Bond Enthalpies in $\mathrm{kJ} \mathrm{mol}^{-1}$ at $298 \mathrm{~K}$
$\mathrm{N}=\mathrm{N}$ | 418 | $\mathrm{C}=\mathrm{C}$ | 611 | $\mathrm{O}=\mathrm{O} \quad 498$ | |
$\mathrm{~N} \equiv \mathrm{N}$ | 946 | $\mathrm{C} \equiv \mathrm{C}$ | 837 | ||
$\mathrm{C}=\mathrm{N}$ | 615 | $\mathrm{C}=\mathrm{O}$ | 741 | ||
$\mathrm{C} \equiv \mathrm{N}$ | 891 | $\mathrm{C} \equiv \mathrm{O}$ | 1070 |
(d) Lattice Enthalpy
The lattice enthalpy of an ionic compound is the enthalpy change which occurs when one mole of an ionic compound dissociates into its ions in gaseous state.
$\mathrm{Na}^{+} \mathrm{Cl}^{-}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) ;$
$$ \Delta_{\text {lattice }} H^{\ominus}=+788 \mathrm{~kJ} \mathrm{~mol}^{-1} $$
Since it is impossible to determine lattice enthalpies directly by experiment, we use an indirect method where we construct an enthalpy diagram called a Born-Haber Cycle (Fig. 6.9).
Let us now calculate the lattice enthalpy of $\mathrm{Na}^{+} \mathrm{Cl}^{-}(\mathrm{s})$ by following steps given below :
1. $\mathrm{Na}(\mathrm{s}) \rightarrow \mathrm{Na}(\mathrm{g})$, sublimation of sodium metal, $\Delta_{\text {sub }} H^{\ominus}=108.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Fig. 6.9 Enthalpy diagram for lattice enthalpy of NaCl
2. $\mathrm{Na}(\mathrm{g}) \rightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{e}^{-1}(\mathrm{~g})$, the ionization of sodium atoms, ionization enthalpy $\Delta_{i} H^{\ominus}=496 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3. $\frac{1}{2} \mathrm{Cl_2}(\mathrm{~g}) \rightarrow \mathrm{Cl}(\mathrm{g})$, the dissociation of chlorine, the reaction enthalpy is half the bond dissociation enthalpy.
$\quad \quad \quad \quad \frac{1}{2} \Delta_{\text {bond }} H^{\ominus}=121 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4. $\mathrm{Cl}(\mathrm{g})+\mathrm{e}^{-1}(\mathrm{~g}) \rightarrow \mathrm{Cl}(\mathrm{g})$ electron gained by chlorine atoms. The electron gain enthalpy, $\Delta_{e g} H^{\ominus}=-348.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
You have learnt about ionization enthalpy and electron gain enthalpy in Unit 3. In fact, these terms have been taken from thermodynamics. Earlier terms, ionization energy and electron affinity were in practice in place of the above terms (see the box for justification).
Ionization Energy and Electron Affinity
Ionization energy and electron affinity are defined at absolute zero. At any other temperature, heat capacities for the reactants and the products have to be taken into account. Enthalpies of reactions for
$\mathrm{M}(\mathrm{g}) \rightarrow \mathrm{M}^{+}(\mathrm{g})+\mathrm{e}^{-}$(for ionization)
$\mathrm{M}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{M}^{-}(\mathrm{g})$ (for electron gain)
at temperature, $T$ is
$\Delta_{r} H^{\ominus}(T)=\Delta_{r} H^{\ominus}(0)+\int_{0}^{T} \Delta_{r} C_{P}^{\ominus} d T$
The value of $C_{p}$ for each species in the above reaction is $5 / 2 \mathrm{R}\left(C_{V}=3 / 2 \mathrm{R}\right)$
So, $\Delta_{r} C_{p}^{\ominus}=+5 / 2 \mathrm{R}$ (for ionization)
$\Delta_{r} C_{p}{ }^{\ominus}=-5 / 2 \mathrm{R}$ (for electron gain)
Therefore,
$\Delta_{r} H^{\ominus}$ (ionization enthalpy)
$=E_{0}$ (ionization energy) $+5 / 2 \mathrm{R} T$
$\Delta_{r} H^{\ominus}$ (electron gain enthalpy)
$=-\mathrm{A}$ ( electron affinity) $-5 / 2 \mathrm{R} T$
5. $\mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \rightarrow \mathrm{Na}^{+} \mathrm{Cl}^{-}(\mathrm{s})$
The sequence of steps is shown in Fig. 6.9, and is known as a Born-Haber cycle. The importance of the cycle is that, the sum of the enthalpy changes round a cycle is zero. Applying Hess’s law, we get,
$\Delta_{\text {lattice }} H^{\ominus}=411.2+108.4+121+496-348.6$
$\Delta_{\text {lattice }} H^{\ominus}=+788 \mathrm{~kJ}$
for $\mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g})$
Internal energy is smaller by 2RT (because $\Delta n_{g}$ $=2$ ) and is equal to $+783 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Now we use the value of lattice enthalpy to calculate enthalpy of solution from the expression:
$$\Delta_{\text {sol }} H^{\ominus}=\Delta_{\text {lattice }} H^{\ominus}+\Delta_{\text {hyd }} H^{\ominus}$$
For one mole of $\mathrm{NaCl}(\mathrm{s})$,
lattice enthalpy $=+788 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta_{\text {hyd }} H^{\ominus}=-784 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (from the literature)
$\Delta_{\text {sol }} H^{\ominus}=+788 \mathrm{~kJ} \mathrm{~mol}^{-1}-784 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$=+4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The dissolution of $\mathrm{NaCl}(\mathrm{s})$ is accompanied by very little heat change.
(e) Enthalpy of Solution (symbol : $\Delta_{\text {sol }} \mathbf{H}^{\ominus}$ )
Enthalpy of solution of a substance is the enthalpy change when one mole of it dissolves in a specified amount of solvent. The enthalpy of solution at infinite dilution is the enthalpy change observed on dissolving the substance in an infinite amount of solvent when the interactions between the ions (or solute molecules) are negligible.
When an ionic compound dissolves in a solvent, the ions leave their ordered positions on the crystal lattice. These are now more free in solution. But solvation of these ions (hydration in case solvent is water) also occurs at the same time. This is shown diagrammatically, for an ionic compound, $\mathrm{AB}(\mathrm{s})$
The enthalpy of solution of $\mathrm{AB}(\mathrm{s}), \Delta_{\text {sol }} H^{\ominus}$, in water is, therefore, determined by the selective values of the lattice enthalpy, $\Delta_{\text {lattice }} H^{\ominus}$ and enthalpy of hydration of ions, $\Delta_{\text {hyd }} H^{\ominus}$ as
$\Delta_{\text {sol }} H^{\ominus}=\Delta_{\text {lattice }} H^{\ominus}+\Delta_{\text {hyd }} H^{\ominus}$
For most of the ionic compounds, $\Delta_{\text {sol }}$ $H^{\ominus}$ is positive and the dissociation process is endothermic. Therefore the solubility of most salts in water increases with rise of temperature. If the lattice enthalpy is very high, the dissolution of the compound may not take place at all. Why do many fluorides tend to be less soluble than the corresponding chlorides? Estimates of the magnitudes of enthalpy changes may be made by using tables of bond energies (enthalpies) and lattice energies (enthalpies).
(f) Enthalpy of Dilution
It is known that enthalpy of solution is the enthalpy change associated with the addition of a specified amount of solute to the specified amount of solvent at a constant temperature and pressure. This argument can be applied to any solvent with slight modification. Enthalpy change for dissolving one mole of gaseous hydrogen chloride in $10 \mathrm{~mol}$ of water can be represented by the following equation. For convenience we will use the symbol aq. for water
$\mathrm{HCl}(\mathrm{g})+10$ aq. $\rightarrow \mathrm{HCl} .10$ aq.
$$ \Delta \mathrm{H}=-69.01 \mathrm{~kJ} / \mathrm{mol} $$
Let us consider the following set of enthalpy changes:
(S-1) $\mathrm{HCl}(\mathrm{g})+25$ aq. $\rightarrow \mathrm{HCl} .25$ aq.
$\Delta \mathrm{H}=-72.03 \mathrm{~kJ} / \mathrm{mol}$
(S-2) $\mathrm{HCl}(\mathrm{g})+40$ aq. $\rightarrow \mathrm{HCl} .40$ aq.
$\Delta \mathrm{H}=-72.79 \mathrm{~kJ} / \mathrm{mol}$
(S-3) $\mathrm{HCl}(\mathrm{g})+\infty$ aq. $\rightarrow$ HCl. $\infty$ aq.
$\Delta \mathrm{H}=-74.85 \mathrm{~kJ} / \mathrm{mol}$
The values of $\Delta \mathrm{H}$ show general dependence of the enthalpy of solution on amount of solvent. As more and more solvent is used, the enthalpy of solution approaches a limiting value, i.e, the value in infinitely dilute solution. For hydrochloric acid this value of $\Delta \mathrm{H}$ is given above in equation (S-3).
If we subtract the first equation (equation $\mathrm{S}-1$ ) from the second equation (equation $\mathrm{S}-2$ ) in the above set of equations, we obtain-
$$ \begin{aligned} & \mathrm{HCl} .25 \text { aq. }+15 \text { aq. } \rightarrow \mathrm{HCl} .40 \text { aq. } \\ & \begin{aligned} \Delta \mathrm{H} & =[-72.79-(-72.03)] \mathrm{kJ} / \mathrm{mol} \\ & =-0.76 \mathrm{~kJ} / \mathrm{mol} \end{aligned} \end{aligned} $$
This value $(-0.76 \mathrm{~kJ} / \mathrm{mol})$ of $\Delta \mathrm{H}$ is enthalpy of dilution. It is the heat withdrawn from the surroundings when additional solvent is added to the solution. The enthalpy of dilution of a solution is dependent on the original concentration of the solution and the amount of solvent added.
6.6 SPONTANEITY
The first law of thermodynamics tells us about the relationship between the heat absorbed and the work performed on or by a system. It puts no restrictions on the direction of heat flow. However, the flow of heat is unidirectional from higher temperature to lower temperature. In fact, all naturally occurring processes whether chemical or physical will tend to proceed spontaneously in one direction only. For example, a gas expanding to fill the available volume, burning carbon in dioxygen giving carbon dioxide.
But heat will not flow from colder body to warmer body on its own, the gas in a container will not spontaneously contract into one corner or carbon dioxide will not form carbon and dioxygen spontaneously. These and many other spontaneously occurring changes show unidirectional change. We may ask ‘what is the driving force of spontaneously occurring changes? What determines the direction of a spontaneous change? In this section, we shall establish some criterion for these processes whether these will take place or not.
Let us first understand what do we mean by spontaneous reaction or change ? You may think by your common observation that spontaneous reaction is one which occurs immediately when contact is made between the reactants. Take the case of combination of hydrogen and oxygen. These gases may be mixed at room temperature and left for many years without observing any perceptible change. Although the reaction is taking place between them, it is at an extremely slow rate. It is still called spontaneous reaction. So spontaneity means ‘having the potential to proceed without the assistance of external agency’. However, it does not tell about the rate of the reaction or process. Another aspect of spontaneous reaction or process, as we see is that these cannot reverse their direction on their own. We may summarise it as follows:
A spontaneous process is an irreversible process and may only be reversed by some external agency.
(a) Is Decrease in Enthalpy a Criterion for Spontaneity?
If we examine the phenomenon like flow of water down hill or fall of a stone on to the ground, we find that there is a net decrease in potential energy in the direction of change. By analogy, we may be tempted to state that a chemical reaction is spontaneous in a given direction, because decrease in energy has taken place, as in the case of exothermic reactions. For example:
$$ \begin{aligned} & \frac{1}{2} \mathrm{~N_2}(\mathrm{~g})+-\mathrm{H_2}(\mathrm{~g})= \mathrm{NH_3}(\mathrm{~g}) ; \\ & \Delta_{r} H^{\ominus}=-46.1 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \frac{1}{2} \mathrm{H_2}(\mathrm{~g})+\frac{1}{2} \mathrm{Cl_2}(\mathrm{~g})=\mathrm{HCl}(\mathrm{g}) ; \\ & \Delta_{r} H^{\ominus}=-92.32 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \mathrm{H_2}(\mathrm{~g})+\frac{1}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{H_2} \mathrm{O}(\mathrm{l}) ; \\ & \Delta_{r} H^{\ominus}=-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$
The decrease in enthalpy in passing from reactants to products may be shown for any exothermic reaction on an enthalpy diagram as shown in Fig. 6.10(a).
Thus, the postulate that driving force for a chemical reaction may be due to decrease in energy sounds ‘reasonable’ as the basis of evidence so far!
Now let us examine the following reactions:
$$ \begin{gathered} \frac{1}{2} \mathrm{~N_2}(\mathrm{~g})+\mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{NO_2}(\mathrm{~g}) ; \\ \Delta_{r} H^{\ominus}=+33.2 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ \text { C(graphite, s) }+2 \mathrm{~S}(1) \rightarrow \mathrm{CS_2}(1) ; \\ \Delta_{r} H^{\ominus}=+128.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{gathered} $$
Fig. 6.10 (a) Enthalpy diagram for exothermic reactions
These reactions though endothermic, are spontaneous. The increase in enthalpy may be represented on an enthalpy diagram as shown in Fig. 6.10(b).
Fig. 6.10 (b) Enthalpy diagram for endothermic reactions
Therefore, it becomes obvious that while decrease in enthalpy may be a contributory factor for spontaneity, but it is not true for all cases.
(b) Entropy and Spontaneity
Then, what drives the spontaneous process in a given direction ? Let us examine such a case in which $\Delta H=0$ i.e., there is no change in enthalpy, but still the process is spontaneous.
Let us consider diffusion of two gases into each other in a closed container which is isolated from the surroundings as shown in Fig. 6.11.
The two gases, say, gas A and gas B are represented by black dots and white dots respectively and separated by a movable partition [Fig. 6.11 (a)]. When the partition is withdrawn [Fig. 6.11(b)], the gases begin to diffuse into each other and after a period of time, diffusion will be complete.
Fig. 6.11 Diffusion of two gases
Let us examine the process. Before partition, if we were to pick up the gas molecules from left container, we would be sure that these will be molecules of gas A and similarly if we were to pick up the gas molecules from right container, we would be sure that these will be molecules of gas B. But, if we were to pick up molecules from container when partition is removed, we are not sure whether the molecules picked are of gas A or gas B. We say that the system has become less predictable or more chaotic.
We may now formulate another postulate: in an isolated system, there is always a tendency for the systems’ energy to become more disordered or chaotic and this could be a criterion for spontaneous change!
At this point, we introduce another thermodynamic function, entropy denoted as $S$. The above mentioned disorder is the manifestation of entropy. To form a mental picture, one can think of entropy as a measure of the degree of randomness or disorder in the system. The greater the disorder in an isolated system, the higher is the entropy. As far as a chemical reaction is concerned, this entropy change can be attributed to rearrangement of atoms or ions from one pattern in the reactants to another (in the products). If the structure of the products is very much disordered than that of the reactants, there will be a resultant increase in entropy. The change in entropy accompanying a chemical reaction may be estimated qualitatively by a consideration of the structures of the species taking part in the reaction. Decrease of regularity in structure would mean increase in entropy. For a given substance, the crystalline solid state is the state of lowest entropy (most ordered), The gaseous state is state of highest entropy.
Now let us try to quantify entropy. One way to calculate the degree of disorder or chaotic distribution of energy among molecules would be through statistical method which is beyond the scope of this treatment. Other way would be to relate this process to the heat involved in a process which would make entropy a thermodynamic concept. Entropy, like any other thermodynamic property such as internal energy $U$ and enthalpy $H$ is a state function and $\Delta S$ is independent of path.
Whenever heat is added to the system, it increases molecular motions causing increased randomness in the system. Thus heat $(q)$ has randomising influence on the system. Can we then equate $\Delta S$ with $q$ ? Wait! Experience suggests us that the distribution of heat also depends on the temperature at which heat is added to the system. A system at higher temperature has greater randomness in it than one at lower temperature. Thus, temperature is the measure of average chaotic motion of particles in the system. Heat added to a system at lower temperature causes greater randomness than when the same quantity of heat is added to it at higher temperature. This suggests that the entropy change is inversely proportional to the temperature. $\Delta S$ is related with $q$ and $T$ for a reversible reaction as :
$$ \begin{equation*} \Delta \mathrm{S}=\frac{q_{r e v}}{T} \tag{6.18} \end{equation*} $$
The total entropy change $\left(\Delta S_{\text {total }}\right)$ for the system and surroundings of a spontaneous process is given by
$$ \Delta S_{\text {total }}=\Delta S_{\text {system }}+\Delta S_{\text {surr }} > \tag{6.19}$$
When a system is in equilibrium, the entropy is maximum, and the change in entropy, $\Delta S=0$.
We can say that entropy for a spontaneous process increases till it reaches maximum and at equilibrium the change in entropy is zero. Since entropy is a state property, we can calculate the change in entropy of a reversible process by
$\Delta \mathrm{S_\text {sys }}=\frac{q_{\text {sys }, \text { rev }}}{T}$
We find that both for reversible and irreversible expansion for an ideal gas, under isothermal conditions, $\Delta U=0$, but $\Delta S_{\text {total }}$ i.e., $\Delta S_{\text {sys }}+\Delta S_{\text {surr }}$ is not zero for irreversible process. Thus, $\Delta U$ does not discriminate between reversible and irreversible process, whereas $\Delta S$ does.
Problem 6.10
Predict in which of the following, entropy increases/decreases :
(i) A liquid crystallizes into a solid.
(ii) Temperature of a crystalline solid is raised from $0 \mathrm{~K}$ to $115 \mathrm{~K}$.
(iii) $2 \mathrm{NaHCO_3}(\mathrm{~s}) \rightarrow \mathrm{Na_2} \mathrm{CO_3} (s) + \mathrm{CO_2}(\mathrm{~g})+\mathrm{H_2} \mathrm{O}(\mathrm{g})$
(iv) $\mathrm{H_2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g})$
Solution
(i) After freezing, the molecules attain an ordered state and therefore, entropy decreases.
(ii) At $0 \mathrm{~K}$, the contituent particles are static and entropy is minimum. If temperature is raised to $115 \mathrm{~K}$, these begin to move and oscillate about their equilibrium positions in the lattice and system becomes more disordered, therefore entropy increases.
(iii) Reactant, $\mathrm{NaHCO_3}$ is a solid and it has low entropy. Among products there are one solid and two gases. Therefore, the products represent a condition of higher entropy.
(iv) Here one molecule gives two atoms i.e., number of particles increases leading to more disordered state. Two moles of $\mathrm{H}$ atoms have higher entropy than one mole of dihydrogen molecule.
Problem 6.11
For oxidation of iron,
$$ 4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O_2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe_2} \mathrm{O_3}(\mathrm{~s}) $$
entropy change is - $549.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ at $298 \mathrm{~K}$. Inspite of negative entropy change of this reaction, why is the reaction spontaneous?
$\left(\Delta_{r} H^{\ominus}\right.$ for this reaction is $\left.-1648 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}\right)$
Solution
One decides the spontaneity of a reaction by considering
$\Delta S_{\text {total }}\left(\Delta S_{\text {sys }}+\Delta S_{\text {surr }}\right)$. For calculating $\Delta S_{\text {surr }}$ we have to consider the heat absorbed by the surroundings which is equal to $-\Delta_{r} H^{\ominus}$. At temperature $\mathrm{T}$, entropy change of the surroundings is
$\Delta S_{\text {surr }}=-\frac{\Delta_{r} H^{\ominus}}{T}($ at constant pressure $)$
$=-\frac{\left(-1648 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}\right)}{298 \mathrm{~K}}$
$=5530 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Thus, total entropy change for this reaction
$$ \begin{aligned} \Delta_{r} S_{\text {total }} & =5530 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}+ \ & \left(-549.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right) \end{aligned} $$
$=4980.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
This shows that the above reaction is spontaneous.
(c) Gibbs Energy and Spontaneity
We have seen that for a system, it is the total entropy change, $\Delta S_{\text {total }}$ which decides the spontaneity of the process. But most of the chemical reactions fall into the category of either closed systems or open systems. Therefore, for most of the chemical reactions there are changes in both enthalpy and entropy. It is clear from the discussion in previous sections that neither decrease in enthalpy nor increase in entropy alone can determine the direction of spontaneous change for these systems.
For this purpose, we define a new thermodynamic function the Gibbs energy or Gibbs function, $G$, as
$$ \begin{equation*} G=H-T S \tag{6.20} \end{equation*} $$
Gibbs function, $G$ is an extensive property and a state function.
The change in Gibbs energy for the system, $\Delta G_{\text {sys }}$ can be written as
$$ \Delta G_{\text {sys }}=\Delta H_{\text {sys }}-T \Delta S_{\text {sys }}-S_{\text {sys }} \Delta T $$
At constant temperature, $\Delta T=0$
$$ \therefore \Delta G_{\text {sys }}=\Delta H_{\text {sys }}-T \Delta S_{\text {sys }} $$
Usually the subscript ‘system’ is dropped and we simply write this equation as
$$ \begin{equation*} \Delta G=\Delta H-T \Delta S \tag{6.21} \end{equation*} $$
Thus, Gibbs energy change $=$ enthalpy change - temperature $\times$ entropy change, and is referred to as the Gibbs equation, one of the most important equations in chemistry. Here, we have considered both terms together for spontaneity: energy (in terms of $\Delta H$ ) and entropy ( $\Delta S$, a measure of disorder) as indicated earlier. Dimensionally if we analyse, we find that $\Delta G$ has units of energy because, both $\Delta H$ and the $T \Delta S$ are energy terms, since $T \Delta S=(\mathrm{K})(\mathrm{J} / \mathrm{K})=\mathrm{J}$.
Now let us consider how $\Delta G$ is related to reaction spontaneity.
We know, $\Delta S_{\text {total }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}$
If the system is in thermal equilibrium with the surrounding, then the temperature of the surrounding is same as that of the system. Also, increase in enthalpy of the surrounding is equal to decrease in the enthalpy of the system.
Therefore, entropy change of surroundings,
$$ \begin{aligned} \Delta S_{\text {surr }} & =\frac{\Delta H_{\text {surr }}}{T}=-\frac{\Delta H_{\text {sys }}}{T} \\ \Delta S_{\text {total }} & =\Delta S_{\text {sys }}+\left(-\frac{\Delta H_{\text {sys }}}{T}\right) \end{aligned} $$
Rearranging the above equation:
$T \Delta S_{\text {total }}=T \Delta S_{\text {sys }}-\Delta H_{\text {sys }}$
For spontaneous process, $\Delta S_{\text {total }}>0$, so $T \Delta S_{\text {sys }}-\Delta H_{\text {sys }}>\mathrm{O}$
$\Rightarrow-\left(\Delta H_{\text {sys }}-T \Delta S_{\text {sys }}\right)>0$
Using equation 5.21, the above equation can be written as
$-\Delta G>\mathrm{O}$
$\Delta G=\Delta H-T \Delta S<0$
$\Delta H_{\text {sys }}$ is the enthalpy change of a reaction, $T \Delta S_{\text {sys }}$ is the energy which is not available to do useful work. So $\Delta G$ is the net energy available to do useful work and is thus a measure of the ‘free energy’. For this reason, it is also known as the free energy of the reaction.
$\Delta G$ gives a criteria for spontaneity at constant pressure and temperature.
(i) If $\Delta G$ is negative $(<0)$, the process is spontaneous.
(ii) If $\Delta G$ is positive ( $>0$ ), the process is non spontaneous.
Note : If a reaction has a positive enthalpy change and positive entropy change, it can be spontaneous when $T \Delta S$ is large enough to outweigh $\Delta H$. This can happen in two ways; (a) The positive entropy change of the system can be ‘small’ in which case $T$ must be large. (b) The positive entropy change of the system can be ’large’, in which case $T$ may be small. The former is one of the reasons why reactions are often carried out at high temperature. Table 6.4 summarises the effect of temperature on spontaneity of reactions.
(d) Entropy and Second Law of Thermodynamics
We know that for an isolated system the change in energy remains constant. Therefore, increase in entropy in such systems is the natural direction of a spontaneous change. This, in fact is the second law of thermodynamics. Like first law of thermodynamics, second law can also be stated in several ways. The second law of thermodynamics explains why spontaneous exothermic reactions are so common. In exothermic reactions heat released by the reaction increases the disorder of the surroundings and overall entropy change is positive which makes the reaction spontaneous.
(e) Absolute Entropy and Third Law of Thermodynamics
Molecules of a substance may move in a straight line in any direction, they may spin like a top and the bonds in the molecules may stretch and compress. These motions of the molecule are called translational, rotational and vibrational motion respectively. When temperature of the system rises, these motions become more vigorous and entropy increases. On the other hand when temperature is lowered, the entropy decreases. The entropy of any pure crystalline substance approaches zero as the temperature approaches absolute zero. This is called third law of thermodynamics. This is so because there is perfect order in a crystal at absolute zero. The statement is confined to pure crystalline solids because theoretical arguments and practical evidences have shown that entropy of solutions and super cooled liquids is not zero at $0 \mathrm{~K}$. The importance of the third law lies in the fact that it permits the calculation of absolute values of entropy of pure substance from thermal data alone. For a pure substance, this can be done by summing $\frac{q_{\text {rev }}}{T}$ increments from 0 K to 298 K. Standard entropies can be used to calculate standard entropy changes by a Hess’s law type of calculation.
6.7 GIBBS ENERGY CHANGE AND EQUILIBRIUM
We have seen how a knowledge of the sign and magnitude of the free energy change of a chemical reaction allows:
(i) Prediction of the spontaneity of the chemical reaction.
(ii) Prediction of the useful work that could be extracted from it.
So far we have considered free energy changes in irreversible reactions. Let us now examine the free energy changes in reversible reactions.
‘Reversible’ under strict thermodynamic sense is a special way of carrying out a process such that system is at all times in perfect equilibrium with its surroundings. When applied to a chemical reaction, the term ‘reversible’ indicates that a given reaction can proceed in either direction simultaneously, so that a dynamic equilibrium is set up. This means that the reactions in both the directions should proceed with a decrease in free energy, which seems impossible. It is possible only if at equilibrium the free energy of the system is minimum. If it is not, the system would spontaneously change to configuration of lower free energy.
So, the criterion for equilibrium
$\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D} ; \quad$ is
$\Delta_{r} G=0$
Gibbs energy for a reaction in which all reactants and products are in standard state, $\Delta_{r} G^{\ominus}$ is related to the equilibrium constant of the reaction as follows:
$$ 0=\Delta_{r} G^{\ominus}+\mathrm{R} T \ln K $$
or $\Delta_{r} G^{\ominus}=-\mathrm{R} T \ln K$
$$ \text{or}\quad \quad \Delta_{r} G^{\ominus}=-2.303 \mathrm{R} T \log K \tag{6.23}$$
We also know that
$$\begin{equation*} \Delta_{r} G^{\ominus}=\Delta_{r} H^{\ominus}-T \Delta_{r} S^{\ominus}=-\mathrm{R} T \ln K \tag{6.24} \end{equation*}$$
For strongly endothermic reactions, the value of $\Delta_{r} H^{\ominus}$ may be large and positive. In such a case, value of $K$ will be much smaller than 1 and the reaction is unlikely to form much product. In case of exothermic reactions, $\Delta_{r} H^{\ominus}$ is large and negative, and $\Delta_{r} G^{\ominus}$ is likely to be large and negative too. In such cases, $K$ will be much larger than 1 . We may expect strongly exothermic reactions to have a large $K$, and hence can go to near completion. $\Delta_{r} G^{\ominus}$ also depends upon $\Delta_{r} S^{\ominus}$, if the changes in the entropy of reaction is also taken into account, the value of $K$ or extent of chemical reaction will also be affected, depending upon whether $\Delta_{r} S^{\ominus}$ is positive or negative.
Using equation (6.24),
Table 6.4 Effect of Temperature on Spontaneity of Reactions
$\Delta_{r} H^{\ominus}$ | $\Delta_{r} S^{\ominus}$ | $\Delta_{r} G^{\ominus}$ | Description $^{*}$ |
---|---|---|---|
- | + | - | Reaction spontaneous at all temperatures |
- | - | $-($ at low $T)$ | Reaction spontaneous at low temperature |
- | - | $+($ at high $T)$ | Reaction nonspontaneous at high temperature |
+ | + | $+($ at low $T)$ | Reaction nonspontaneous at low temperature |
+ | + | $-($ at high $T)$ | Reaction spontaneous at high temperature |
+ | - | $+($ at all $T)$ | Reaction nonspontaneous at all temperatures |
- The term low temperature and high temperature are relative. For a particular reaction, high temperature could even mean room temperature.
(i) It is possible to obtain an estimate of $\Delta G^{\ominus}$ from the measurement of $\Delta H^{\ominus}$ and $\Delta S^{\ominus}$, and then calculate $K$ at any temperature for economic yields of the products.
(ii) If $\mathrm{K}$ is measured directly in the laboratory, value of $\Delta G^{\ominus}$ at any other temperature can be calculated.
Using equation (6.24),
Problem 6.12
Calculate $\Delta_{r} G^{\ominus}$ for conversion of oxygen to ozone, $3 / 2 \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{O_3}(\mathrm{~g})$ at $298 \mathrm{~K}$. if $K_{p}$ for this conversion is $2.47 \times 10^{-29}$.
Solution
We know $\Delta_{r} G^{\ominus}=-2.303 \mathrm{R} T \log K_{p}$ and $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Therefore,
$\Delta_{r} G^{\ominus}= -2.303 (8.314 J K \left.{ }^{-1} \mathrm{~mol}^{-1}\right) \times(298 \mathrm{~K})\left(\log 2.47 \times 10^{-29}\right)$
$=163000 \mathrm{~J} \mathrm{~mol}^{-1}$
$=163 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Problem 6.13
Find out the value of equilibrium constant for the following reaction at $298 \mathrm{~K}$.
$$ \begin{array}{r} 2 \mathrm{NH_3}(\mathrm{~g})+\mathrm{CO_2}(\mathrm{~g}) \leftrightharpoons \mathrm{NH_2} \mathrm{CONH_2}(\mathrm{aq}) +\mathrm{H_2} \mathrm{O}(\mathrm{l}) \end{array} $$
Standard Gibbs energy change, $\Delta_{r} G^{\ominus}$ at the given temperature is $-13.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Solution
We know, $\log K=\frac{-\Delta_{r} G^{\ominus}}{2.303 \mathrm{R} T}$
$$ \begin{aligned} & =\frac{\left(-13.6 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}\right)}{2.303\left(8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)(298 \mathrm{~K})} \\ & =2.38 \end{aligned} $$
Hence $K=$ antilog $2.38=2.4 \times 10^{2}$.
Problem 6.14
At $60^{\circ} \mathrm{C}$, dinitrogen tetroxide is 50 per cent dissociated. Calculate the standard free energy change at this temperature and at one atmosphere.
Solution
$\mathrm{N_2} \mathrm{O_4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO_2}(\mathrm{~g})$
If $\mathrm{N_2} \mathrm{O_4}$ is $50 %$ dissociated, the mole fraction of both the substances is given by
$$ \begin{aligned} & x_{\mathrm{N_2} \mathrm{O_4}}= \frac{1-0.5}{1+0.5}: x_{\mathrm{NO_2}}=\frac{2 \times 0.5}{1+0.5} \\ & p_{\mathrm{N_2} \mathrm{O_4}}=\frac{0.5}{1.5} \times 1 \mathrm{~atm}, p_{\mathrm{NO_2}}= \\ & \frac{1}{1.5} \times 1 \mathrm{~atm} . \end{aligned} $$
The equilibrium constant $K_{p}$ is given by $K_{p}=\frac{\left(p_{\mathrm{NO_2}}\right)^{2}}{p_{\mathrm{N_2} \mathrm{O_4}}}=\frac{1.5}{(1.5)^{2}(0.5)}$
$=1.33 \mathrm{~atm}$.
Since
$$ \begin{aligned} & \Delta_{r} G^{\ominus}=-\mathrm{R} T \ln K_{p} \\ & \Delta_{r} G^{\ominus}=\left(-8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right) \times(333 \mathrm{~K}) \\ & \times(2.303) \times(0.1239) \\ & =-763.8 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$
Summary
Thermodynamics deals with energy changes in chemical or physical processes and enables us to study these changes quantitatively and to make useful predictions. For these purposes, we divide the universe into the system and the surroundings. Chemical or physical processes lead to evolution or absorption of heat (q), part of which may be converted into work (w). These quantities are related through the first law of thermodynamics via $\Delta U=q+w . \Delta U$, change in internal energy, depends on initial and final states only and is a state function, whereas $q$ and $\mathrm{w}$ depend on the path and are not the state functions. We follow sign conventions of $q$ and $\mathrm{w}$ by giving the positive sign to these quantities when these are added to the system. We can measure the transfer of heat from one system to another which causes the change in temperature. The magnitude of rise in temperature depends on the heat capacity $(C)$ of a substance. Therefore, heat absorbed or evolved is $q=C \Delta T$. Work can be measured by $\mathrm{w}=-p_{e x} \Delta V$, in case of expansion of gases. Under reversible process, we can put $p_{e x}=p$ for infinitesimal changes in the volume making $\mathrm{w_\mathrm{rev}}=-p \mathrm{~d} V$. In this condition, we can use gas equation, $p V=n R T$.
At constant volume, $\mathrm{w}=0$, then $\Delta U=q_{\mathrm{V}}$, heat transfer at constant volume. But in study of chemical reactions, we usually have constant pressure. We define another state function enthalpy. Enthalpy change, $\Delta H=\Delta U+\Delta n_{g} \mathrm{R} T$, can be found directly from the heat changes at constant pressure, $\Delta H=q_{p}$.
There are varieties of enthalpy changes. Changes of phase such as melting, vaporization and sublimation usually occur at constant temperature and can be characterized by enthalpy changes which are always positive. Enthalpy of formation, combustion and other enthalpy changes can be calculated using Hess’s law. Enthalpy change for chemical reactions can be determined by
$$ \Delta_{r} H=\sum_{f}\left(a_{i} \Delta_{f} H_{\text {products }}\right)-\sum_{i}\left(b_{i} \Delta_{f} H_{\text {reactions }}\right) $$
and in gaseous state by
$\Delta_{r} H^{\ominus}=\sum$ bond enthalpies of the reactants $-\Sigma$ bond enthalpies of the products
First law of thermodynamics does not guide us about the direction of chemical reactions i.e., what is the driving force of a chemical reaction. For isolated systems, $\Delta U=0$. We define another state function, $S$, entropy for this purpose. Entropy is a measure of disorder or randomness. For a spontaneous change, total entropy change is positive. Therefore, for an isolated system, $\Delta U=0, \Delta S>0$, so entropy change distinguishes a spontaneous change, while energy change does not. Entropy changes can be measured by the equation $\Delta S=\frac{q_{\mathrm{rev}}}{T}$ for a reversible process. $\frac{q_{\mathrm{rev}}}{T}$ is independent of path.
Chemical reactions are generally carried at constant pressure, so we define another state function Gibbs energy, $G$, which is related to entropy and enthalpy changes of the system by the equation:
$\Delta_{r} G=\Delta_{r} H-T \Delta_{r} S$
For a spontaneous change, $\Delta G_{\text {sys }}<0$ and at equilibrium, $\Delta G_{\text {sys }}=0$.
Standard Gibbs energy change is related to equilibrium constant by $\Delta_{r} G^{\ominus}=-\mathrm{R} T \ln K$.
$\mathrm{K}$ can be calculated from this equation, if we know $\Delta_{r} G^{\ominus}$ which can be found from $\Delta_{r} G^{\ominus}=\Delta_{r} H^{\ominus}-T \Delta_{r} S^{\ominus}$. Temperature is an important factor in the equation. Many reactions which are non-spontaneous at low temperature, are made spontaneous at high temperature for systems having positive entropy of reaction.
Exercise
6.1 Choose the correct answer.
A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
Show Answer
Answer
A thermodynamic state function is a quantity whose value is independent of a path.
Functions like $p, V$, Tetc. depend only on the state of a system and not on the path.
Hence, alternative (ii) is correct.
6.2 For the process to occur under adiabatic conditions, the correct condition is:
(i) $\Delta T=0$
(ii) $\Delta p=0$
(iii) $q=0$
(iv) $\mathrm{w}=0$
Show Answer
Answer
A system is said to be under adiabatic conditions if there is no exchange of heat between the system and its surroundings. Hence, under adiabatic conditions, $q=0$.
Therefore, alternative (iii) is correct.
6.3 The enthalpies of all elements in their standard states are:
(i) unity
(ii) zero
(iii) $<0$
(iv) different for each element
Show Answer
Answer
The enthalpy of all elements in their standard state is zero.
Therefore, alternative (ii) is correct.
6.4 $\Delta U^{\ominus}$ of combustion of methane is $-\mathrm{X} \mathrm{kJ} \mathrm{mol}^{-1}$. The value of $\Delta H^{\ominus}$ is
(i) $=\Delta U^{\ominus}$
(ii) $>\Delta U^{\ominus}$
(iii) $<\Delta U^{\ominus}$
(iv) $=0$
Show Answer
Answer
Since $ \Delta H^{\ominus} = \Delta U^{\ominus} + \Delta n_gRT \text{ and } \Delta U^{\ominus} = -X KJmol^{-1} $
$\Delta H^{\ominus}=(-X)+\Delta n_g R T$.
$\Rightarrow \Delta H^{\ominus}<\Delta U^{\ominus}$
Therefore, alternative (iii) is correct.
6.5 The enthalpy of combustion of methane, graphite and dihydrogen at $298 \mathrm{~K}$ are, $-890.3 \mathrm{~kJ} \mathrm{~mol}^{-1}-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and $-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Enthalpy of formation of $\mathrm{CH_4}(\mathrm{~g})$ will be
(i) $\quad-74.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(ii) $-52.27 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(iii) $+74.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(iv) $+52.26 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Show Answer
Answer
According to the question, (i) $\quad CH _{4(g)}+2 O _{2(g)} \longrightarrow CO _{2(g)}+2 H_2 O _{(g)}$
$ \Delta H=-890.3 kJ mol^{-1} $
(ii) $C _{(s)}+O _{2(g)} \longrightarrow CO _{2(g)}$
$ \Delta H=-393.5 kJ mol^{-1} $
(iii) $2 H _{2(g)}+O _{2(g)} \longrightarrow 2 H_2 O _{(g)}$
$ \Delta H=-285.8 kJ mol^{-1} $
Thus, the desired equation is the one that represents the formation of $CH_4$ (g).e.,
$C _{(s)}+2 H _{2(g)} \longrightarrow CH _{4(g)}$
$\Delta_f H _{CH_4}=\Delta_c H_c+2 \Delta_c H _{H_2}-\Delta_c H _{CO_2}$
$=[-393.5+2(-285.8)-(-890.3)] kJ mol^{-1}$
$=-74.8 kJ mol^{-1}$
$\therefore$ Enthalpy of formation of $CH _{4(g)}=- 74.8 kJ$ mol
Hence, alternative (i) is correct.
6.6 A reaction, $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}+\mathrm{q}$ is found to have a positive entropy change. The reaction will be
(i) possible at high temperature
(ii) possible only at low temperature
(iii) not possible at any temperature
(v) possible at any temperature
Show Answer
Answer
For a reaction to be spontaneous, $\Delta G$ should be negative.
$\Delta G=\Delta H-T \Delta S$
According to the question, for the given reaction,
$\Delta S=$ positive
$\Delta H=$ negative (since heat is evolved)
$\Rightarrow \Delta G=$ negative
Therefore, the reaction is spontaneous at any temperature.
Hence, alternative (iv) is correct.
6.7 In a process, $701 \mathrm{~J}$ of heat is absorbed by a system and $394 \mathrm{~J}$ of work is done by the system. What is the change in internal energy for the process?
Show Answer
Answer
According to the first law of thermodynamics,
$\Delta U=q+W(i)$
Where,
$\Delta U=$ change in internal energy for a process
$q=$ heat
$W=$ work
Given,
$q=+701 J$ (Since heat is absorbed)
W= $-394 J$ (Since work is done by the system)
Substituting the values in expression (i), we get
$\Delta U=701 J+(-394 J)$
$\Delta U=307 J$
Hence, the change in internal energy for the given process is $307 J$.
6.8 The reaction of cyanamide, $\mathrm{NH_2} \mathrm{CN}$ (s), with dioxygen was carried out in a bomb calorimeter, and $\Delta U$ was found to be $-742.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $298 \mathrm{~K}$. Calculate enthalpy change for the reaction at $298 \mathrm{~K}$.
$\mathrm{NH_2} \mathrm{CN}(\mathrm{g})+\frac{3}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{N_2}(\mathrm{~g})+\mathrm{CO_2}(\mathrm{~g})+\mathrm{H_2} \mathrm{O}(\mathrm{l})$
Show Answer
Answer
Enthalpy change for a reaction $(\Delta H)$ is given by the expression,
$\Delta H=\Delta U+\Delta n_g R T$
Where,
$\Delta U=$ change in internal energy
$\Delta n_g=$ change in number of moles
For the given reaction,
$\Delta n_g=\sum n_g$ (products) - $\sum n_g$ (reactants)
=(2 - 1.5) moles
$\Delta n_g=0.5$ moles
And,
$\Delta U=-742.7 kJ mol^{-1}$
$T=298 K$
$R=8.314 \times 10^{-3} kJ mol^{-1} K^{-1}$
Substituting the values in the expression of $\Delta H$ :
$\Delta H=(-742.7 kJ mol^{-1})+(0.5 mol)(298 K)(8.314 \times 10^{-3} kJ mol^{-1} K^{-1})$
$=-742.7+1.2$
$\Delta H=-741.5 kJ mol^{-1}$
6.9 Calculate the number of $\mathrm{kJ}$ of heat necessary to raise the temperature of $60.0 \mathrm{~g}$ of aluminium from $35^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. Molar heat capacity of $\mathrm{Al}$ is $24 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.
Show Answer
Answer
From the expression of heat $(q)$,
$q=m . c . \Delta T$
Where,
$c=$ molar heat capacity
$m=$ mass of substance
$\Delta T=$ change in temperature
Substituting the values in the expression of $q$ :
$q=(\frac{60}{27} mol)(24 J mol^{-1} K^{-1})(20 K)$
$q=1066.7 J$
$q=1.07 kJ$
6.10 Calculate the enthalpy change on freezing of $1.0 \mathrm{~mol}$ of water at $10.0^{\circ} \mathrm{C}$ to ice at $-10.0^{\circ} \mathrm{C}$. $\Delta_{\text {fus }} H=6.03 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $0^{\circ} \mathrm{C}$.
$$ \begin{aligned} & C_p\left[\mathrm{H}_2 \mathrm{O}(\mathrm{l})\right]=75.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & C_p\left[\mathrm{H}_2 \mathrm{O}(\mathrm{s})\right]=36.8 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned} $$
Show Answer
Answer
Total enthalpy change involved in the transformation is the sum of the following changes: (a) Energy change involved in the transformation of $1 mol$ of water at $10^{\circ} C$ to $1 mol$ of water at $0^{\circ} C$.
(b) Energy change involved in the transformation of $1 mol$ of water at $0^{\circ}$ to $1 mol$ of ice at $0^{\circ} C$.
(c) Energy change involved in the transformation of $1 mol$ of ice at $0^{\circ} C$ to $1 mol$ of ice at $-10^{\circ} C$.
Total $\Delta H=C_p[H_2 OCl] \Delta T+\Delta H _{\text{freezing }}+C_p[H_2 O _{(s)}] \Delta T$
=$ (75.3 J mol^{-1}K^{-1})(0-10)K + (-6.03 \times 10^3J mol^{-1} ) + (36.8 Jmol^{-1}K^{-1})(-10-0)K $
=$ 75.3 J mol^{-1}-6.03 \times 10^3J mol^{-1} -36.8 Jmol^{-1}$
$=-7151 Jmol^{-1}$
Hence, the enthalpy change involved in the transformation is -$7.151 kJ mol^{- 1}$.
6.11 Enthalpy of combustion of carbon to $\mathrm{CO_2}$ is $-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the heat released upon formation of $35.2 \mathrm{~g}$ of $\mathrm{CO_2}$ from carbon and dioxygen gas.
Show Answer
Answer
Formation of $CO_2$ from carbon and dioxygen gas can be represented as:
$C _{(s)}+O _{2(g)} \longrightarrow CO _{2(g)} \quad \Delta_f H=-393.5 kJ mol^{-1}$
$(1$ mole $=44 g)$
Heat released on formation of $44 g CO_2=- 393.5 kJmol^{-1}$
$\therefore$ Heat released on formation of $35.2 g CO_2$
$=\frac{-393.5 kJ mol^{-1}}{44 g} \times 35.2 g$
$=- 314.8 kJ mol^{-1}$
6.12 Enthalpies of formation of $\mathrm{CO}(\mathrm{g}), \mathrm{CO_2}(\mathrm{~g}), \mathrm{N_2} \mathrm{O}(\mathrm{g})$ and $\mathrm{N_2} \mathrm{O_4}(\mathrm{~g})$ are $-110,-393,81$ and $9.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Find the value of $\Delta_{r} H$ for the reaction: $\mathrm{N_2} \mathrm{O_4}(\mathrm{~g})+3 \mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{N_2} \mathrm{O}(\mathrm{g})+3 \mathrm{CO_2}(\mathrm{~g})$
Show Answer
Answer
$\Delta_i H$ for a reaction is defined as the difference between $\Delta_i$ Hvalue of products and $\Delta_i H$ value of reactants.
$\Delta_r H=\sum \Delta_f H$ (products) $-\sum \Delta_f H$ (reactants)
For the given reaction,
$N_2 O _{4(g)}+3 CO _{(g)} \longrightarrow N_2 O _{(g)}+3 CO _{2(g)}$
$\Delta_r H=[{\Delta_f H(N_2 O)+3 \Delta_f H(CO_2)}-{\Delta_f H(N_2 O_4)+3 \Delta_f H(CO)}]$
Substituting the values of $\Delta_4 H$ for $N_2 O, CO_2, N_2 O_4$ and $CO$ from the question, we get:
$\Delta_r H=[{81 kJ mol^{-1}+3(-393) kJ mol^{-1}}-{9.7 kJ mol^{-1}+3(-110) kJ mol^{-1}}]$
$\Delta_r H=-777.7 kJ mol^{-1}$
Hence, the value of $\Delta_r H$ for the reaction is $-777.7 kJ mol^{-1}$.
6.13 Given $\mathrm{N_2}(\mathrm{~g})+3 \mathrm{H_2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH_3}(\mathrm{~g}) ; \Delta_{r} H^{\ominus}=-92.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ What is the standard enthalpy of formation of $\mathrm{NH_3}$ gas?
Show Answer
Answer
Standard enthalpy of formation of a compound is the change in enthalpy that takes place during the formation of 1 mole of a substance in its standard form from its constituent elements in their standard state.
Re-writing the given equation for 1 mole of $NH _{3(g)}$.
$\frac{1}{2} N _{2(g)}+\frac{3}{2} H _{2(g)} \longrightarrow NH _{3(g)}$
$\therefore$ Standard enthalpy of formation of $NH _{3(g)}$
$=1 / 2 \Delta_r H^{\theta}$
$=1 / 2(-92.4 kJ mol^{- 1})$
$=- 46.2 kJ mol^{-1}$
6.14 Calculate the standard enthalpy of formation of $\mathrm{CH_3} \mathrm{OH}(1)$ from the following data:
$\mathrm{CH_3} \mathrm{OH}(\mathrm{l})+\frac{3}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{CO_2}(\mathrm{~g})+2 \mathrm{H_2} \mathrm{O}(\mathrm{l}) ; \Delta_{r} H^{\ominus}=-726 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{C}$ (graphite) $+\mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{CO_2}(\mathrm{~g}) ; \Delta_{c} H^{\ominus}=-393 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{H_2}(\mathrm{~g})+\frac{1}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{H_2} \mathrm{O}(1) ; \Delta_{f} H^{\ominus}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Show Answer
Answer
The reaction that takes place during the formation of $CH_3 OH _{(1)}$ can be written as:
$C _{(s)}+2 H_2 O _{(g)}+\frac{1}{2} O _{2(g)} \longrightarrow CH_3 OH _{()(1)}$
The reaction (1) can be obtained from the given reactions by following the algebraic calculations as:
Equation (ii) $+2 \times$ equation (iii) - equation (i)
$ \Delta _f H^{\ominus} [CH_3OH _{(l)}] = \Delta _cH^{\ominus} + 2\Delta _fH^{\ominus} [H _2O _{(l)}] - \Delta _r H^{\ominus} $
$ = (-393 KJmol^{-1})+2(-286 KJ mol^{-1})- (-726 KJ mol^{-1}) $
$=(-393$ -$572+726) kJ mol^{-1}$
$\therefore \Delta_i H^{\oplus}[CH_3 OH _{(0)}]=-239 kJmol^{-1}$
6.15 Calculate the enthalpy change for the process $\mathrm{CCl_4}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{g})+4 \mathrm{Cl}(\mathrm{g})$ and calculate bond enthalpy of $\mathrm{C}-\mathrm{Cl}$ in $\mathrm{CCl_4}(\mathrm{~g})$.
$\Delta_{\text {vap }} H^{\ominus}\left(\mathrm{CCl_4}\right)=30.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
$\Delta_{f} H^{\ominus}\left(\mathrm{CCl_4}\right)=-135.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
$\Delta_{a} H^{\ominus}(\mathrm{C})=715.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, where $\Delta_{a} H^{\ominus}$ is enthalpy of atomisation
$\Delta_{a} H^{\ominus}\left(\mathrm{Cl_2}\right)=242 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Show Answer
Answer
The chemical equations implying to the given values of enthalpies are:
(i) $CCl _{4(l)} \longrightarrow CCl _{4(g)} \Delta _{vap} H^{ \ominus }=30.5 kJ mol^{-1 }$
(ii) $C _{(s)} \longrightarrow C _{(g)} \Delta _a H^{ \ominus }=715.0 kJ mol^{-1}$
(iii) $Cl _{2(g)} \longrightarrow 2 Cl _{(g)} \Delta _a H^{ \ominus }=242 kJ mol^{{-1}}$
(iv) $C _{(g)}+4 Cl _{(g)} \longrightarrow CCl _{4(g)} \Delta_i H=- 135.5 kJ mol^{{-1}}$
Enthalpy change for the given process $CCl _{4(g)} \longrightarrow C _{(g)}+4 Cl _{(g)}$, can be calculated using the following algebraic calculations as:
Equation (ii) +2 × Equation (iii) -Equation (i) - Equation (iv)
$\Delta H=\Delta _a H^{ \ominus }(C)+2 \Delta _a H^{ \ominus }(Cl_2) - \Delta _{\text{vap }} H^{\ominus} - \Delta_i H$
$ \Delta _fH^{\ominus} [CH _3OH _{(l)}] = \Delta _cH^{\ominus} + 2\Delta _fH^{\ominus} [H _2O _{(l)}]- \Delta _r H^{\ominus}$
$\therefore \Delta H=1304 kJ mol^{-1}$
Bond enthalpy of $C - Cl$ bond in $CCl _{4(g)}$
$=\frac{1304}{4} kJ mol^{-1}$
$=326 kJ mol^{- 1}$
6.16 For an isolated system, $\Delta U=0$, what will be $\Delta S$ ?
Show Answer
Answer
$\Delta S$ will be positive i.e., greater than zero
Since $\Delta U=0, \Delta$ Swill be positive and the reaction will be spontaneous.
6.17 For the reaction at $298 \mathrm{~K}$, $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}$
$\Delta H=400 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S=0.2 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
At what temperature will the reaction become spontaneous considering $\Delta H$ and $\Delta S$ to be constant over the temperature range.
Show Answer
Answer
From the expression,
$\Delta G=\Delta H- T \Delta S$
Assuming the reaction at equilibrium, $\Delta T$ for the reaction would be:
$T=(\Delta H-\Delta G) \frac{1}{\Delta S}$
$=\frac{\Delta H}{\Delta S} _{(\Delta G=0 \text{ at equilibrium })}$
$=\frac{400 kJ mol^{-1}}{0.2 kJ K^{-1} mol^{-1}}$
$T=2000 K$
For the reaction to be spontaneous, $\Delta$ Gmust be negative. Hence, for the given reaction to be spontaneous, Tshould be greater than $2000 K$.
6.18 For the reaction, $2 \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{Cl_2}(\mathrm{~g})$, what are the signs of $\Delta H$ and $\Delta S$ ?
Show Answer
Answer
$\Delta H$ and $\Delta S$ are negative
The given reaction represents the formation of chlorine molecule from chlorine atoms. Here, bond formation is taking place. Therefore, energy is being released. Hence, $\Delta$ His negative.
Also, two moles of atoms have more randomness than one mole of a molecule. Since spontaneity is decreased, $\Delta$ Sis negative for the given reaction.
6.19 For the reaction $2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{g}) \rightarrow 2 \mathrm{D}(\mathrm{g})$ $\Delta U^{\ominus}=-10.5 \mathrm{~kJ}$ and $\Delta S^{\ominus}=-44.1 \mathrm{JK}^{-1}$. Calculate $\Delta G^{\ominus}$ for the reaction, and predict whether the reaction may occur spontaneously.
Show Answer
Answer
For the given reaction,
$2 A _{(g)}+B _{(g)} \to 2 D _{(g)}$
$\Delta n_g=2$ - (3)
$=-1$ mole
Substituting the value of $\Delta U^{\ominus}$, in the expression of $\Delta H$ :
$\Delta H^{\ominus}=\Delta U^{\ominus}+\Delta n_g R T$
$=(-10.5 kJ)-(-1)(8.314 \times 10^{-3} kJ K^{-1} mol^{-1})(298 K)$
$=-10.5 kJ-2.48 kJ$
$\Delta H^{\ominus}=-12.98 kJ$
Substituting the values of $\Delta H^{\ominus}$, and $\Delta S^{\ominus}$, in the expression of $\Delta G^{\ominus}$ :
$ \Delta G^{\ominus} = \Delta H^{\ominus} - T \Delta S^{\ominus} $
$=-12.98 kJ-(298 K)(-44.1 J K^{-1})$
$=-12.98 kJ+13.14 kJ$
$\Delta G^{\ominus}=+0.16 kJ$
Since $\Delta G^{\ominus}$, for the reaction is positive, the reaction will not occur spontaneously.
6.20 The equilibrium constant for a reaction is 10 . What will be the value of $\Delta G^{\ominus}$ ? $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \mathrm{~T}=300 \mathrm{~K}$.
Show Answer
Answer
From the expression,
$\Delta G^{\ominus}=-2.303 R T \log K _{e q}$
$\Delta G^{\ominus}$ for the reaction,
$=(2.303)(8.314 JK^{-1} mol^{-1})(300 K) \log 10$
$=-5744.14 Jmol^{-1}$
$=-5.744 kJ mol^{-1}$
6.21 Comment on the thermodynamic stability of $\mathrm{NO}(\mathrm{g})$, given
$\frac{1}{2} \mathrm{~N_2}(\mathrm{~g})+\frac{1}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g}) ; \quad \Delta_{r} H^{\ominus}=90 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{NO_2}(\mathrm{~g}): \Delta_{r} H^{\ominus}=-74 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Show Answer
Answer
The positive value of $\Delta_r H$ indicates that heat is absorbed during the formation of $NO _{(g)}$. This means that $NO _{(g)}$ has higher energy than the reactants ($N_2.$ and $O_2$ ). Hence, $NO _{(g)}$ is unstable.
The negative value of $\Delta_r H$ indicates that heat is evolved during the formation of $NO _{2(g)}$ from $NO _{(g)}$ and $O _{2(g)}$. The product, $NO _{2(g)}$ is stabilized with minimum energy.
Hence, unstable $NO _{(g)}$ changes to stable $NO _{2(g)}$.
6.22 Calculate the entropy change in surroundings when $1.00 \mathrm{~mol}$ of $\mathrm{H_2} \mathrm{O}(1)$ is formed under standard conditions. $\Delta_{f} H^{\ominus}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Show Answer
Answer
It is given that $286 kJ mol^{{-1}}$ of heat is evolved on the formation of $1 mol$ of $H_2 O _{(\jmath)}$. Thus, an equal amount of heat will be absorbed by the surroundings.
$q _{\text{surr }}=+286 kJ mol^{- 1}$
Entropy change $(\Delta S _{\text{surr }})$ for the surroundings $=\frac{q _{\text{surr }}}{7}$ $=\frac{286 kJ mol^{-1}}{298 k}$ $\therefore \Delta S _{\text{surr }}=959.73 J mol^{-1} K^{-1}$
“यह सार्वत्रिक अंतर्वस्तु का केवल भौतिक सिद्धांत है, जिसके लिए में संतुष्ट हूँ कि इसके मौलिक सिद्धांतों को उनकी उपयुक्तता के प्राधार में कभी नकारा नहीं जा सकता है।”
अल्बर्ट आइस्टीन
जब ईंधन जैसे मेथेन गैस, रसोई गैस या कोयला हवा में जलते हैं, तो रासायनिक अभिक्रिया के दौरान अणुओं में संग्रहीत रासायनिक ऊर्जा ऊष्मा के रूप में निर्मुक्त होती है। जब एक इंजन में ईंधन जलता है, तब रासायनिक ऊर्जा यांत्रिक कार्य करने में प्रयुक्त हो सकती है या गैल्वनी सेल (शुष्क सेल) विद्युत् ऊर्जा प्रदान करती है। इस प्रकार ऊर्जा के विभिन्न रूप विशेष परिस्थितयों में एकदूसरे से परस्पर संबंधित होते हैं एवं एक रूप से दूसरे रूप में बदले जा सकते हैं। इन ऊर्जा-रूपांतरणों का अध्ययन ही ऊष्मागतिकी की विषय-वस्तु है। ऊष्मागतिकी के नियम स्थूल निकायों, जिनमें बहुत-से अणु होते हैं, से संबंधित होते हैं, न कि सूक्ष्म निकायों से, जिनमें बहुत कम अणु होते हैं। ऊष्मागतिकी इस बात से संबंधित नहीं है कि ये परिवर्तन कैसे एवं किस दर से कार्यान्वित होते हैं। यह परिवर्तनकारी निकाय की प्रारंभिक एवं अन्तिम अवस्था से संबंधित हैं। ऊष्मागतिकी के नियम तभी लागू होते हैं, जब निकाय साम्यावस्था में होता है या एक साम्यावस्था से दूसरी साम्यावस्था में जाता है। किसी निकाय के स्थूल गुण (जैसे- दाब एवं ताप) साम्यावस्था में समय के साथ परिवर्तित नहीं होते हैं। इस एकक में हम ऊष्मागतिकी के माध्यम से कुछ महत्वपूर्ण प्रश्नों के उत्तर देने का प्रयास करेंगे। जैसे-
एक रासायनिक अभिक्रिया/प्रक्रम में हम ऊर्जा-परिर्वतन कैसे निर्धारित करते हैं ?
यह परिवर्तन होगा अथवा नहीं? एक रासायनिक अभिक्रिया/प्रक्रम कैसे प्रेरित होता है?
रासायनिक अभिक्रिया किस सीमा तक चलती है?
5.1 ऊष्मागतिकी के तकनीकी शब्द
हमारी उत्सुकता रासायनिक अभिक्रियाओं एवं उनमें होनेवाले ऊर्जा-परिवर्तनों को जानने की होती है इसके लिए हमें उष्मागतिकी में प्रयुक्त होने वाले कुछ तकनीकी शब्दों को जानना होगा इनका वर्णन नीचे दिया गया है-
5.1.1 निकाय एवं परिवेश
ऊष्मागतिकी में निकाय का अर्थ ब्रह्मांड के उस भाग से है, जिसपर प्रेक्षण किए जाते हैं तथा इसका शेष भाग ‘परिवेश’ कहलाता है। परिवेश में निकाय को छोड़कर सब कुछ सम्मिलित है। निकाय एवं परिवेश- दोनों मिलकर ब्रह्मांड बनता है।
निकाय + परिवेश $=$ ब्रह्मांड
निकाय से अतिरिक्त संपूर्ण ब्रह्मांड निकाय में होनेवाले परिवर्तनों से प्रभावित नहीं होता है। इसीलिए प्रायोगिक कार्यों के लिए ब्रह्मांड का वही भाग, जो निकाय से अंतर्क्रिया करता है, परिवेश के रूप में लिया जाता है। सामान्यतः समष्टि का वह क्षेत्र, जो निकाय के आसपास होता है, परिवेश के अंतर्गत लिया जाता है।
उदाहरण के लिए- यदि हम एक बीकर में उपस्थित दो पदार्थों $\mathrm{A}$ एवं $\mathrm{B}$ की अभिक्रिया का अध्ययन कर रहे हों, तो बीकर (जिसमें अभिक्रिया-मिश्रण है) निकाय होगा एवं कमरा (जिसमें बीकर है) परिवेश का कार्य करेगा (चित्र 5.1)।
चित्र 5.1 परिवेश एवं निकाय
ध्यान रहे कि निकाय भौतिक सीमाओं (जैसे-बीकर या परखनली) से परिभाषित किया जा सकता है या समष्टि में एक निश्चित आयतन के कार्तीय निर्देशांकों (Cartesian coordinates) के समुच्चय (set) से परिभाषित किया जा सकता है। यह आवश्यक है कि निकाय को वास्तविक या काल्पनिक दीवार या सीमा के द्वारा परिवेश से पृथक् सोचा जाए। वह दीवार, जो निकाय एवं परिवेश को पृथक् करती है, ‘परिसीमा’ (Boundary) कहलाती है। परिसीमा द्वारा हम निकाय के अंदर और बाहर द्रव्य तथा ऊर्जा के संचरण को नियंत्रित एवं प्रेक्षित कर सकते हैं।
5.1.2 निकाय के प्रकार
अब हम द्रव्य एवं ऊर्जा के संचरण के आधार पर निकाय को वर्गीकृत करते हैं-
1. खुला निकाय (Open System)
एक खुले निकाय में ऊर्जा एवं द्रव्य-दोनों का निकाय एवं परिवेश के मध्य विनिमय (Exchange) हो सकता है। उदाहरणार्थ-अभिकारक एक खुले बीकर में लिये जाएँ।
2. बंद निकाय (Closed system)
बंद निकाय में निकाय एवं परिवेश के मध्य द्रव्य का विनिमय संभव नहीं है, परंतु ऊर्जा का विनिमय हो सकता है। जैसेअभिकारक बंद बीकर में लिये जाएँ।
चित्र 5.2 : खुला, बंद एवं विलगित निकाय
3. विलगित निकाय (Isolated system)
एक विलगित निकाय में निकाय एवं परिवेश के मध्य द्रव्य एवं ऊर्जा- दोनों का ही विनिमय संभव नहीं होता है। उदाहरणार्थअभिकारक एक थर्मस फ्लास्क में लिये जाएँ। चित्र 5.2 में विभिन्न प्रकार के निकाय दर्शाए गए हैं।!
5.1.3 निकाय की अवस्था
किसी भी ऊष्मागतिकी निकाय का वर्णन कुछ गुणों, जैसेदाब $(p)$, आयतन $(V)$, ताप $(T)$ एवं निकाय के संघटन (Composition) को निर्दिष्ट (Specify) करके किया जाता है। हमें निकाय को वर्णित करने के लिए इन गुणों को परिवर्तन से पूर्व एवं पश्चात् निर्दिष्ट करना पड़ता है। आपने भौतिक शास्त्र में पढ़ा होगा कि यांत्रिकी में किसी निकाय की क्षणिक अवस्था की व्याख्या निकाय के सभी द्रव्य-बिंदुओं के उस क्षण पर स्थिति एवं वेग के आधार पर की जाती है। ऊष्मागतिकी में अवस्था का एक अलग एवं सरल रूप प्रस्तावित किया गया है। इससे प्रत्येक कण की गति के विस्तृत ज्ञान की आवश्यकता नहीं है, क्योंकि यहाँ हम निकाय के औसत मापन योग्य गुणों का प्रयोग करते हैं हम निकाय की अवस्था को ‘अवस्था-फलनों’ या ‘अवस्था-चरों’ के द्वारा व्यक्त करते हैं।
ऊष्मागतिकीय में निकाय की अवस्था का वर्णन उसके मापनयोग्य अथवा स्थूल गुणों के द्वारा किया जाता है। हम एक गैस की अवस्था का उसके दाब ( $p$ ), आयतन (V), ताप ( $T$ ), मात्रा $(n)$ आदि से वर्णन कर सकते हैं। $p, V, T$ को अवस्था चर अथवा फलन कहते हैं, क्योंकि इनका मान निकाय की अवस्था पर निर्भर करता है, न कि इसको प्राप्त करने के तरीके पर। किसी निकाय की अवस्था को पूर्ण रूप से परिभाषित करने के लिए निकाय के सभी गुणों का वर्णन करने की आवश्यकता नहीं होती, क्योंकि कुछ गुण ही स्वतंत्र रूप में परिवर्तित हो सकते हैं। इन गुणों की संख्या निकाय की प्रकृति पर निर्भर करती है। एक बार कम से कम संख्या में इन स्थूल गुणों को तय कर दिया जाए, तो बाकी सारे गुणों का मान स्वतः निश्चित हो जाता है।
5.1.4 आंतरिक ऊर्जा : एक अवस्था-फलन
जब हम उन रासायनिक निकायों की चर्चा करते हैं, जिनमें ऊर्जा का निकास या प्रवेश होता है, तब हमें एक ऐसे गुण की आवश्यकता होती है, जो निकाय की ऊर्जा का प्रतिनिधित्व करता हो। यह ऊर्जा रासायनिक, वैद्युत या यांत्रिक ऊर्जा हो सकती है। इन सबका योग ही निकाय की ऊर्जा होती है। ऊष्मागतिकी में इसे आंतरिक ऊर्जा $U$ कहते हैं। यह परिवर्तित होती है, जबकि
- ऊष्मा का निकाय में प्रवेश या निकास होता हो,
- निकाय पर या निकाय द्वारा कार्य किया गया हो,
- निकाय में द्रव्य का प्रवेश या निकास होता हो।
#missing
(क) कार्य
सबसे पहले हम कार्य करने पर निकाय की आंतरिक ऊर्जा में होने वाले परिवर्तन की जाँच करेंगे। हम एक ऐसा निकाय लेते हैं, जिसमें एक थर्मस फ्लास्क या ऊष्मारोधी बीकर में जल की कुछ मात्रा है। इसमें निकाय एवं परिवेश के मध्य ऊष्मा का प्रवाह नहीं है, ऐसे निकाय को हम रुद्धोष्म (Adiabatic) निकाय कहते हैं। ऐसे निकाय में अवस्था-परिवर्तन को रुद्धोष्म प्रक्रम कहते हैं। इसमें निकाय एवं परिवेश के मध्य कोई ऊष्मा-विनिमय नहीं होती। यहाँ पर निकाय एवं परिवेश को पृथक् करनेवाली दीवार ‘रुद्धोष्म दीवार’ कहलाती है (चित्र 5.3)।
चित्र 5.3: एक रुद्धोष्म निकाय, जिसमें परिसीमा से ऊष्मा-विनिमय संभव नहीं है।
अब हम निकाय पर कुछ कार्य करके इसकी आंतरिक ऊर्जा में परिवर्तन करते हैं। माना कि निकाय की प्रांरभिक अवस्था $\mathrm{A}$ है एवं इसका ताप $T_{\mathrm{A}}$ तथा आंतरिक ऊर्जा $U_{\mathrm{A}}$ है। निकाय की अवस्था को दो प्रकार से परिवर्तित कर सकते हैं
प्रथम प्रकार - माना कि छोटे पैडल से जल को मथकर हम $1 \mathrm{~kJ}$ कार्य करते हैं, जिससे निकाय की नई अवस्था माना $\mathrm{B}$ एवं उसका ताप $T_{\mathrm{B}}$ हो जाता है। यह देखा गया कि $T_{\mathrm{B}}>T_{\mathrm{A}}$ अतः ताप में परिवर्तन $\Delta T=T_{\mathrm{B}}-T_{\mathrm{A}}$ । माना अवस्था $\mathrm{B}$ में आंतरिक ऊर्जा $U_{\mathrm{B}}$ है, तो आंतरिक ऊर्जा में परिवर्तन, $\Delta U=U_{\mathrm{B}}-U_{\mathrm{A}}$
द्वितीय प्रकार - अब हम जल में एक निमज्जन छड़ (Immersion Rod) डालकर उतना ही वैद्युत कार्य ( $1 \mathrm{~kJ})$ करते हैं एवं निकाय में ताप-परिवर्तन नोट करते हैं। हम देखते हैं कि ताप-परितर्वन पूर्व के समान $T_{\mathrm{B}}-T_{\mathrm{A}}$ ही रहता है।
यथार्थ में उपरोक्त प्रयोग जे.पी. जूल द्वारा सन् 1845 के आसपास किया गया था। उन्होंने पाया कि निकाय पर किया गया निश्चित कार्य निकाय की अवस्था में समान परिवर्तन लाता है, चाहे कार्य किसी भी प्रकार (प्रक्रम) द्वारा किया जाए, जैसा यहाँ पर ताप के परिवर्तन द्वारा देखा गया है।
अतः यह उपयुक्त दिखता है कि एक ऐसी राशि, आंतरिक ऊर्जा $U$, को परिभाषित किया जाए, जिसका मान निकाय की अवस्था का अभिलाक्षणिक हो, जहाँ रुद्धोष्म प्रक्रम में किया गया कार्य $\mathrm{w} _{ad}$ दो अवस्थाओं में $\Delta U$ परिवर्तन के तुल्य, अर्थात्
$$\Delta U=U_{2}-U_{1}=\mathrm{w} _{\mathrm{ad}}$$
अतः निकाय की आंतरिक ऊर्जा एक अवस्था-फलन है।
रासायनिक ऊष्मागतिकी में IUPAC परंपरा के अनुसार धनात्मक चिह्न बताता है कि कार्य $\mathrm{w} _{\mathrm{ad}}$ निकाय पर किया गया है तथा निकाय की आंतरिक ऊर्जा बढ़ जाती है। इसी प्रकार से यदि निकाय द्वारा कार्य किया जाए, तो $\mathrm{w} _{\mathrm{ad}}$ ॠणात्मक होगा क्योंकि निकाय की आंतरिक ऊर्जा कम हो जाती है।
क्या आप किन्हीं अन्य परिचित अवस्था-फलनों के नाम बता सकते हैं? $V, p$ एवं $T$ कुछ अन्य परिचित अवस्था-फलन हैं। उदाहरण के लिए- यदि हम किसी निकाय के ताप में $25^{\circ} \mathrm{C}$ से $35^{\circ} \mathrm{C}$ तक परिवर्तन करें, तो ताप-परिवर्तन $35^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}=+10^{\circ} \mathrm{C}$ होगा। चाहे हम सीधे ही $35^{\circ} \mathrm{C}$ तक जाएँ या निकाय को पहले कुछ अंशों (Degree) तक ठंडा करें और फिर निकाय को अंतिम ताप $\left(35^{\circ} \mathrm{C}\right)$ तक ले जाएँ। इस प्रकार $\mathrm{T}$ एक अवस्था-फलन है। ताप में परिवर्तन पथ पर निर्भर नहीं करता है। एक तालाब में पानी का आयतन एक अवस्था-फलन है, क्योंकि इसके जल के आयतन में परिवर्तन इस बात पर निर्भर नहीं करता है कि तालाब कैसे भरा गया है- बारिश द्वारा, नलकूप द्वारा या दोनों द्वारा।
(ख) ऊष्मा
हम बिना कार्य किए भी परिवेश से ऊष्मा लेकर या परिवेश को ऊष्मा देकर एक निकाय की आंतरिक ऊर्जा में परिवर्तन कर सकते हैं। यह ऊर्जा-विनिमय, जो तापांतर का परिणाम है, ऊष्मा $\mathrm{q}$ कहलाता है। अब हम समान तापांतर लाने के लिए [पूर्व में खंड 5.14 (क) में बताए अनुसार वही प्रारंभिक एवं अंतिम ताप] जो रूद्धोष्म दीवारों की अपेक्षा ऊष्मीय चालक दीवारों (चित्र 5.4) द्वारा ऊष्मा के चालन से होता है, पर विचार करेंगे।
चित्र 5.4 : एक निकाय, जिसमें परिसीमा के आर-पार ऊष्मा का प्रवाह संभव है।
माना कि ताँबे का एक पात्र (जिसकी दीवारें ऊष्मीय चालक हैं) में $T_{\mathrm{A}}$ ताप पर जल लिया गया है। इसे एक बड़े कुंड, जिसका ताप $T_{\mathrm{B}}$ है। में रखते हैं। निकाय (जल) द्वारा अवशोषित ऊष्मा $q$ को ताप-परिवर्तन $T_{\mathrm{B}}-T_{\mathrm{A}}$ द्वारा मापा जा सकता है। यहाँ पर भी आंतरिक ऊर्जा में परिवर्तन, $\Delta U=q$ है, जबकि स्थिर आयतन पर कोई कार्य नहीं किया गया है।
रासायनिक ऊष्मागतिकी में IUPAC परंपरा के अनुसार परिवेश से ऊष्मा का स्थानांतरण निकाय में होने पर $q$ धनात्मक होता है और निकाय की ऊर्जा बढ़ती है एवं ऊष्मा के निकाय से परिवेश की ओर स्थानांतिरित होने पर $q$ ॠणात्मक होता है परिणामतः निकाय की ऊर्जा कम हो जाती है।
- पहले निकाय पर किए जाने वाले कार्य को ॠणात्मक चिन्ह और निकाय द्वारा किए जाने वाले कार्य को धनात्मक चिन्ह दिया गया था। भौतिकी की पुस्तकों में अब भी इसी परंम्परा का अनुसरण हो रहा है यद्यपि IUPAP ने भी नयी चिन्ह परंम्परा की सिफ़ारिश की है।
(ग) सामान्य स्थिति
हम एक सामान्य स्थिति पर विचार करें, जबकि आंतरिक ऊर्जा में परिवर्तन दोनों ही प्रकारों (कार्य करके एवं ऊष्मा-स्थानांतरण) द्वारा हो। उस स्थिति में हम आंतरिक ऊर्जा में परिवर्तन को इस प्रकार लिख सकते हैं-
$$ \begin{equation*} \Delta U=q+\mathrm{w} \tag{5.1} \end{equation*} $$
एक विशिष्ट अवस्था-परिवर्तन में परिवर्तन के प्रकार के अनुसार $\mathrm{q}$ एवं $\mathrm{w}$ के मान भिन्न हो सकते हैं, परंतु $q+\mathrm{w}=$ $\Delta U$ केवल प्रारंभिक एवं अंतिम अवस्था पर निर्भर करेगा। यह परिवर्तन के प्रकार से स्वतंत्र है। यदि ऊष्मा या कार्य के रूप में ऊर्जा-परिवर्तन न हो (विलगित निकाय) अर्थात् यदि $\mathrm{w}=0$ एवं $q=0$, तब $\Delta U=0$ है।
समीकरण 5.1 अर्थात् $\Delta U=q+\mathrm{w}$, ऊष्मागतिकी के प्रथम नियम का गणितीय कथन है। प्रथम नियम के अनुसार, “एक विलगित निकाय की ऊर्जा अपरिवर्तनीय होती है।”
बह्मांड भी एक विलगित निकाय है अतः नियम को निम्न प्रकार से भी कहा जा सकता है- ‘बह्मांड की ऊर्जा अपरिवर्तनीय है।’ सामान्यतया इसे ‘ऊर्जा के संरक्षण का सिद्धांत’ कहते हैं, अर्थात् ऊर्जा न तो नष्ट की जा सकती है और न ही इसका सृजन किया जा सकता है।
नोट : एक ऊष्मागतिकीय गुण (जैसे-ऊर्जा) एवं एक यांत्रिक गुण (जैसे-आयतन) में अंतर होता है। हम किसी विशेष अवस्था में आयतन का तो निरपेक्ष (Absolute) मान निर्दिष्ट कर सकते हैं, परंतु आंतरिक ऊर्जा का निरपेक्ष मान निर्दिष्ट नहीं कर सकते हैं, यद्यपि आंतरिक ऊर्जा में परिवर्तन $\Delta \mathrm{U}$ ज्ञात किया जा सकता है।
उदाहरण 5.1
एक निकाय की आंतरिक ऊर्जा में परिवर्तन बताइए, यदि-
(i) निकाय द्वारा परिवेश से ऊष्मा अवशोषित नहीं हो, परंतु निकाय पर $(w)$ कार्य किया जाए। निकाय की दीवारें किस प्रकार की होंगी?
(ii) निकाय पर कोई कार्य नहीं किया जाए, परंतु ऊष्मा की मात्रा $q$ निकाय से परिवेश को दे दी जाए। निकाय की दीवारें किस प्रकार की होंगी?
(iii) निकाय द्वारा $\mathrm{w}$ मात्रा का कार्य किया जाए एवं $q$ मात्रा की ऊष्मा निकाय को दी जाए। यह किस प्रकार का निकाय होगा?
हल
(i) $\Delta U=\mathrm{w} _{\text {ad }}$ दीवारें रुद्धोष्म होंगी।
(ii) $\Delta U=-q$, दीवारें ऊष्मीय सुचालक होंगी।
(iii) $\Delta U=q-\mathrm{w}$ यह बंद निकाय है।
5.2 अनुप्रयोग
कई रासायनिक अभिक्रियाओं में गैसें उत्पत्न होती हैं, जो यांत्रिक कार्य करने या ऊष्मा उत्पन्न करने में सक्षम होती हैं। इन परिवर्तनों के परिमाण की गणना एवं इन्हें आंतरिक ऊर्जा-परिवर्तनों से संबद्ध करना महत्त्वपूर्ण है। देखें कि यह कैसे होता है।
5.2.1 कार्य
सर्वप्रथम एक निकाय द्वारा किए गए कार्य की प्रकृति पर हम प्रकाश डालते हैं। हम केवल यांत्रिक कार्य, अर्थात् दाब-आयतन कार्य पर विचार करेंगे।
दाब-आयतन कार्य को समझने के लिए हम घर्षणरहित पिस्टनयुक्त सिलिंडर पर विचार करते हैं, जिसमें एक मोल आदर्श गैस भरी हुई है। गैस का कुल आयतन $V_{i}$ एवं सिलिंडर में गैस का दाब $p$ है। यदि बाह्य दाब $p_{e x}$ है, जो $p$ से अधिक हो, तो पिस्टन अंदर की ओर तब तक गति करेगा, जब तक आंतरिक दाब $p_{e x}$ के बराबर हो जाए। माना कि यह परिवर्तन एक पद में होता है तथा अंतिम आयतन $V_{f}$ है। माना कि इस संकुचन में पिस्टन $l$ दूरी तय करता है एवं पिस्टन का अनुप्रस्थ क्षेत्रफल $\mathrm{A}$ है (चित्र 5.5 क)।
चित्र 5.5 (क) सिलिंडर में स्थित आदर्श गैस पर एक पद में स्थिर बाह्य दाब $P_{e x}$ द्वारा किया गया संकुचन कार्य छायादार क्षेत्र द्वारा दर्शाया गया है।
तब आयतन में परिवर्तन $=l \times \mathrm{A}=\Delta V=\left(V_{f}-V_{i}\right)$
हम यह भी जानते हैं कि दाब $=\frac{\text { बल }}{\text { क्षेत्रफल }}$
अतः पिस्टन पर बल $=p_{\mathrm{ex}}$. A
यदि पिस्टन चलाने से निकाय पर किया गया कार्य $\mathrm{w}$ हो, तो
$$ \begin{align*} \mathrm{w} & =\text { बल } \mathrm{x} \text { विस्थापन }=p_{e x} \text { A.l } \\ & =p_{e x} \cdot(-\Delta V)=-p_{\text {ex }} \Delta V=-p_{\text {ex }}\left(V_{f}-V_{i}\right) \tag{5.2} \end{align*} $$
यहाँ ऋणात्मक चिह्न देना इसलिए आवश्यक है कि परिपाटी (Convention) के अनुसार संपीडन में निकाय पर कार्य हो रहा है, जो धनात्मक होगा। यहाँ $\left(V_{f}-V_{i}\right)$ का मान ॠणात्मक होगा। जब ॠणात्मक से ॠणात्मक का गुणा होगा, तो $\mathrm{w}$ का मान धनात्मक हो जाएगा।
यदि संकुचन के प्रत्येक पद पर दाब स्थिर न हो एवं कई परिमित पदों में बदलता रहे, तो कुल कार्य समस्त पदों में हुए कार्यों का योग होगा एवं $-\sum p \Delta V$ के तुल्य होगा [चित्र 5.5(ख) ]।
चित्र 5.5 (ख) छायादार क्षेत्र परिमित पदों में बदलते हुए अस्थिर दाब पर प्रारंभिक आयतन से अंतिम आयतन तक संकुचन में किया गया कार्य दर्शाता है।
यदि दाब स्थिर न हो एवं इस प्रकार बदलता हो कि यह हमेशा ही गैस के दाब से अनंतसूक्ष्म अधिक हो, तब संकुचन के प्रत्येक पद में आयतन अनंतसूक्ष्म मात्रा $d V$ घटेगा। इस स्थिति में गैस द्वारा किए गए कार्य की गणना हम निम्नलिखित संबंध से ज्ञात कर सकते हैं-
$$ \begin{equation*} \mathrm{w}=-\int_{V_{i}}^{V_{f}} p_{e x} d V \tag{5.3} \end{equation*} $$
संकुचन में $p_{e x}$ प्रत्येक पद पर $\left(p_{i n}+d p\right)$ के तुल्य होगा [चित्र 5.5-ग]। समान परिस्थितियों में प्रसरण में बाह्य दाब आंतरिक दाब से हमेशा कम होगा, अर्थात् $p_{e x}=p_{\text {in }}-d p$ व्यापक रूप में हम लिख सकते हैं कि $p_{e x}=\left(p_{i n} \pm d p\right)$ ऐसे प्रक्रम ‘उत्क्रमणीय प्रक्रम’ कहलाते हैं।
एक प्रक्रम या परिवर्तन तभी ‘उत्क्रमणीय प्रक्रम’ कहलाता है, जब इसे किसी भी क्षण अनंतसूक्ष्म परिवर्तन के द्वारा उत्क्रमित (Reversed) किया जा सके। एक उत्क्रमणीय प्रक्रम कई साम्यावस्थाओं में अनंतसूक्ष्म गति से इस प्रकार आगे बढ़ता है कि निकाय एवं परिवेश हमेशा लगभग साम्यावस्था में रहते हैं। उत्क्रमणीय प्रक्रम के अतिरिक्त अन्य सारे प्रक्रमों को अनुत्क्रमणीय प्रक्रम कहते हैं।
चित्र 5.5 (ग) $p \mathrm{~V}$ वक्र जब प्रारंभिक आयतन $V_{i}$ से $V_{f}$ तक पहुँचने के लिए उत्क्रमणीय परिस्थितियों में लगातार बदलते हुए अस्थिर दाब पर अनंत पदों में किया गया कार्य छायादार क्षेत्र से दर्शाया गया है।
रसायन शास्त्र में बहुत सी ऐसी समस्याएँ आती हैं, जिन्हें हल करने के लिए कार्य, पद और निकाय के आंतरिक दाब के पारस्परिक संबंध की आवश्यक्ता पड़ती है।
हम समीकरण 5.3 को निम्नलिखित प्रकार से लिखकर उत्क्रमणीय परिस्थितियों में कार्य को आंतरिक दाब से संबद्ध कर सकते हैं-
$\mathrm{w} _{\text {rev }}=-\int\limits _{V _{i}}^{V _{f}} p _{\text {ex }} d V=-\int\limits _{V _{i}}^{V _{f}}\left(p _{\text {in }} \pm d p\right) d V=-\int\limits _{V _{i}}^{V _{f}} p _{\text {in }} d V$
( चूँकि $d p \times d V$ का मान नगण्य है)
$$ \begin{equation*} \mathrm{w} _{\text {rev }}=-\int\limits _{V _{i}}^{V _{f}} p _{i n} d V \tag{5.4} \end{equation*} $$
अब गैस के दाब $p_{i n}$ को आदर्श गैस समीकरण द्वारा इसके आयतन के पदों में व्यक्त किया जा सकता है। किसी आदर्श गैस के $n$ मोल के लिए ( $p V=\mathrm{R} T)$
$$ \Rightarrow p=\frac{n \mathrm{R} T}{V} $$
अतः एक स्थिर ताप (समतापीय प्रक्रम) पर
$$ \begin{align*} & \mathrm{w} _{\mathrm{rev}} =-\int\limits _{V _{i}}^{V _{f}} n \mathrm{R} T \frac{d V}{V}=-n \mathrm{R} T \ln \frac{V _{f}}{V _{i}} \\ & =-2.303 n \mathrm{R} T \log \frac{V _{f}}{V _{i}} \tag{5.5} \end{align*} $$
मुक्तप्रसरण : गैस का निर्वात में प्रसरण $\left(p_{e x}=0\right)$ मुक्त प्रसरण कहलाता है। आदर्श गैसों के मुक्त प्रसरण में कोई कार्य नहीं होता भले ही प्रक्रिया उत्क्रमणीय हो या अनुत्क्रमणीय, (समीकरण 5.2 एवं 5.3 )।
अब हम समीकरण 5.1 को विभिन्न प्रक्रमों के अनुसार कई प्रकार से लिख सकते हैं-
$\mathrm{w}=-p_{e x} \Delta V$ (समीकरण 5.2) को समीकरण 5.1 में स्थापित करने पर
$$ \Delta U=q-p_{e x} \Delta V $$
यदि प्रक्रम स्थिर आयतन पर होता है $(\Delta V=0)$, तब
$\Delta U =q_{V}$,
$q_{V}$ में पादांक ${ } _{v}$ $v$ दर्शाता है कि ऊष्मा स्थिर आयतन पर प्रदान की गई है।
आदर्श गैस का मुक्त एवं समतापीय प्रसरण
एक आदर्श गैस का मुक्त एवं समतापीय प्रसरण एक ( $T=$ स्थिरांक) में, $\mathrm{w}=0$ है, क्योंकि $p_{e x}=0$ है। जूल ने प्रयोगों द्वारा निर्धारित किया कि $q=0$ है, इसलिए $\Delta U=0$ होगा।
समीकरण 5.1, $(\Delta U=q+w)$, को समतापीय उत्क्रमणीय एवं अनुत्क्रमणीय प्रक्रमों के लिए इस प्रकार व्यक्त किया जा सकता है-
- समतापीय अनुत्क्रमणीय प्रक्रम के लिए
$$ q=-\mathrm{w}=p_{e x}\left(V_{f}-V_{i}\right) $$
- समतापीय उत्क्रमणीय प्रक्रम के लिए
$$ q=-\mathrm{w}=n \mathrm{R} T \ln \frac{V_{f}}{V_{i}}=2.303 n \mathrm{R} T \log \frac{V_{f}}{V_{i}} $$
- रुद्धोष्म प्रक्रम के लिए, $q=0$
$$ \Delta U=\mathrm{w} _{\mathrm{ad}} $$
उदाहरण 5.2
$10 \mathrm{~atm}$ दाब और $25^{\circ} \mathrm{C}$ ताप पर किसी आदर्श गैस के दो लिटर समतापीय रूप से निर्वात में तब तक प्रसरित होते हैं, जब तक इसका कुल आयतन 10 लिटर न हो जाए। इस प्रसरण में कितनी ऊष्मा अवशोषित होती है एवं कितना कार्य किया जाता है?
हल
हम जानते हैं कि $q=-\mathrm{w}=p_{\text {ex }}(10-2)=0(8)=0$ कोई कार्य नहीं होता है एवं कोई ऊष्मा अवशोषित नहीं होती है।
उदाहरण 5.3
यदि इसी प्रसरण में स्थिर बाह्य दाब $1 \mathrm{~atm}$ हो, तो क्या होगा?
हल
हम जानते हैं कि $q=-\mathrm{w}=p_{e x}(8)=1 \times 8 = 8 \mathrm{~L} \mathrm{~atm}$
उदाहरण 5.4
यदि उदाहरण 5.2 में दिया प्रसरण उत्क्रमणीय रूप से हो तो क्या होगा?
हल
हम जानते हैं कि $q=-\mathrm{w}=2.303 \times \mathrm{nRT} \log \frac{V_{f}}{V_{i}}$
$$ =2.303 \times 1 \times 0.8206 \times 298 \times \log \frac{10}{2} $$
$=2.303 \times 1 \times 0.8206 \times 298 \times \log 5$
$=2.303 \times 0.8206 \times 298 \times 0.6990$
$=393.66 \mathrm{~L} \mathrm{~atm}$
5.2.2 एन्थैल्पी Enthalpy $(\mathrm{H})$
(क) एक उपयोगी नया अवस्था-फलन
हम जानते हैं कि स्थिर आयतन पर अवशोषित ऊष्मा आंतरिक ऊर्जा में परिवर्तन के तुल्य, अर्थात् $\Delta U=q_{V}$ होती है, परंतु अधिकांश रासायनिक अभिक्रियाएं स्थिर आयतन पर न होकर फ्लास्क, परखनली आदि में स्थिर वायुमंडलीय दाब पर होती हैं। इन परिस्थितियों के लिए हमें एक नए अवस्था-फलन की आवश्यकता होगी।
हम समीकरण (5.1) को स्थिर दाब पर $\Delta U=q_{p}-p \Delta V$ के रूप में लिख सकते हैं, जहाँ $\mathrm{q} _{\mathrm{p}}$ निकाय द्वारा अवशोषित ऊष्मा एवं $-p \Delta V$ निकाय द्वारा किया गया प्रसरण-कार्य है।
प्रारंभिक अवस्था को पादांक 1 से एवं अंतिम अवस्था को 2 से दर्शाते हैं।
हम उपरोक्त समीकरण को इस प्रकार लिख सकते हैं-
$$ U_{2}-U_{1}=q_{p}-p\left(V_{2}-V_{1}\right) $$
पुनः व्यवस्थित करने पर
$$ \begin{equation*} q_{p}=\left(U_{2}+p V_{2}\right)-\left(U_{1}+p V_{1}\right) \tag{5.6} \end{equation*} $$
अब हम एक और ऊष्मागतिकी फलन को परिभाषित कर सकते हैं, जिसे एन्थैल्पी (ग्रीक शब्द ‘एन्थैल्पियन’, जिसका अर्थ ‘गरम करना’ या ‘अंतर्निहित ऊष्मा’ होता है) कहते हैं।
$$ \begin{equation*} H=U+p V \tag{5.7} \end{equation*} $$
अतः समीकरण (5.6) हो जाती है:
$$ q_{p}=H_{2}-H_{1}=\Delta H $$
यद्यपि $q$ एक पथ आश्रित फलन है, तथापि $q_{p}$ पथ से स्वतंत्र है। स्पष्टतः $H$ एक अवस्था-फलन है (H.U, $p$ एवं $V$ का फलन है। ये सभी अवस्था-फलन है)। इस प्रकार $\Delta H$ पथ स्वतंत्र राशि है।
स्थिर दाब पर परिमित परिवर्तनों के लिए समीकरण 5.7 को लिखा जा सकता है।
$\Delta H=\Delta U+\Delta p V$
क्योंकि $p$ स्थिरांक है, अतः हम लिख सकते हैं-
$$ \begin{equation*} \Delta H=\Delta U+p \Delta V \tag{5.8} \end{equation*} $$
उल्लेखनीय है कि जब स्थिर दाब पर ऊष्मा अवशोषित होती है, तो यथार्थ में हम एन्थैल्पी में परिवर्तन माप रहे होते हैं।
याद रखें कि $\Delta H=q_{p}$ स्थिर दाब पर अवशोषित ऊष्मा है।
ऊष्माक्षेपी अभिक्रियाओं के लिए $\Delta H$ ॠणात्मक होता है, जहाँ अभिक्रिया के दौरान ऊष्मा उत्सर्जित होती है एवं ऊष्माशोषी अभिक्रियाओं के लिए $\Delta H$ धनात्मक होता है, जहाँ परिवेश से ऊष्मा का अवशोषण होता है।
स्थिर आयतन $(\Delta V=0)$ पर $\Delta U=q_{V}$, अतः समीकरण 5.8 हो जाती है।
$$\Delta H=\Delta U=q_{V}$$
वे निकाय, जिनमें केवल ठोस या द्रव प्रावस्थाएँ होती हैं में $\Delta H$ एवं $\Delta U$ के मध्य अंतर सार्थक नहीं होता, क्योंकि ठोस एवं द्रवों में गरम करने पर आयतन में कोई विशेष परिवर्तन नहीं होता। यदि गैसीय अवस्था हो, तो इनमें अंतर सार्थक हो जाता है। हम एक ऐसी अभिक्रिया पर विचार करते हैं, जिसमें गैसे शामिल हैं। स्थिर दाब एवं ताप पर $V_{\mathrm{A}}$ गैसीय अभिक्रियकों का एवं $V_{\mathrm{B}}$ गैसीय उत्पादों का कुल आयतन हो तथा $n_{\mathrm{A}}$ गैसीय अभिक्रियकों एवं $n_{\mathrm{B}}$ गैसीय उत्पादों के मोलों की संख्या हो, तो आदर्श गैस समीकरण के अनुसार-
$$ \begin{aligned} & p V_{\mathrm{A}}=n_{\mathrm{A}} \mathrm{R} T \\ \text { and } \quad \quad \quad & p V_{\mathrm{B}}=n_{\mathrm{B}} \mathrm{R} T \end{aligned} $$
इस प्रकार, $p V_{\mathrm{B}}-p V_{\mathrm{A}}=n_{\mathrm{B}} \mathrm{R} T-n_{\mathrm{A}} \mathrm{R} T=\left(n_{\mathrm{B}}-n_{\mathrm{A}}\right) \mathrm{R} T$
$\quad p\left(V_{\mathrm{B}}-V_{\mathrm{A}}\right)=\left(n_{\mathrm{B}}-n_{\mathrm{A}}\right) \mathrm{R} T$
$$p \Delta V=\Delta n_{g} \mathrm{R} T \tag{5.9}$$
यहाँ $\Delta n_{g}$ गैसीय उत्पादों के मोलों की संख्या एवं गैसीय अभिक्रियकों के मोलों की संख्या का अंतर है।
समीकरण (5.9) से $p \Delta V$ का मान समीकरण (5.8) में रखने पर
$$ \begin{equation*} \Delta H=\Delta U+\Delta n_{g} \mathrm{R} T \tag{5.10} \end{equation*} $$
समीकरण 5.10 का उपयोग $\Delta H$ से $\Delta U$ या $\Delta U$ से $\Delta H$ का मान ज्ञात करने में किया जाता है।
उदाहरण 5.5
जलवाष्प को आदर्श गैस मानने पर $100^{\circ} \mathrm{C}$ एवं 1 bar दाब पर एक मोल जल के वाष्पीकरण में परिवर्तन $41 \mathrm{~kJ} \mathrm{~mol}^{-1}$ पाया गया। आंतरिक ऊर्जा-परिवर्तन की गणना कीजिए, जब 1 मोल जल को $1 \mathrm{bar}$ दाब एवं $100^{\circ} \mathrm{C}$ पर वाष्पीकृत किया जाए।
हल
$\mathrm{H} _{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H} _{2} \mathrm{O}(\mathrm{g})$ परिवर्तन के लिए
$\Delta H=\Delta U+\Delta n_{g} \mathrm{R} T$
या $\Delta U=\Delta H-\Delta n_{g} \mathrm{R} T$ मान रखने पर
$\Delta U=41.00 \mathrm{~kJ} \mathrm{~mol}^{-1}-1 \times 8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 373 \mathrm{~K}$
$=41.00 \mathrm{~kJ} \mathrm{~mol}^{-1}-3.096 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$=37.904 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(ख) विस्तीर्ण एवं गहन गुण
विस्तीर्ण एवं गहन गुणों में भेद किया गया है। विस्तीर्ण गुण वह गुण है, जिसका मान निकाय में उपस्थित द्रव्य की मात्रा/आमाप (साइज़) पर निर्भर करता है। उदाहरण के लिए-द्रव्यमान, आयतन, आंतरिक ऊर्जा, एन्थैल्पी, ऊष्माधारिता आदि विस्तीर्ण गुण हैं।
वे गुण, जो निकाय में उपस्थित द्रव्य की मात्रा/आकार (साइज़) पर निर्भर नहीं करते हैं, गहन गुण कहलाते हैं। उदाहरण के लिए- ताप, घनत्व, दाब आदि गहन गुण हैं। मोलर गुण $C_{\mathrm{m}}$ किसी निकाय के एक मोल के गुण के मान के तुल्य होती है। यदि द्रव्य की मात्रा $n$ हो, तो $\chi_{\mathrm{m}}=\frac{\chi}{n}$, जो द्रव्य की मात्रा से स्वतंत्र है। अन्य उदाहरण मोलर आयतन $V_{\mathrm{m}}$ एवं मोलर ऊष्माधारिता $C_{\mathrm{m}}$ है। विस्तीर्ण एवं गहन गुणों में अंतर हम एक गैस को आयतन $\mathrm{V}$ के पात्र में $\mathrm{T}$ ताप पर लेकर कर सकते हैं (चित्र 5.6 क)। अब यदि विभाजक के द्वारा आयतन आधा कर दिया जाए (चित्र 5.6-ख), जिससे अब आयतन $V / 2$ हो जाता है, परंतु यह ताप समान ही रहता है। अतः स्पष्ट है कि आयतन विस्तीर्ण गुण है, जबकि ताप गहन गुण है।
चित्र 5.6 (क) आयतन $V$ एवं ताप $T$ पर एक गैस,
चित्र 5.6 (ख) विभाजक के द्वारा आयतन का आधा होना
(ग) ऊष्माधारिता
इस उपखंड में हम देखते हैं कि निकाय को अंतरित ऊष्मा कैसे मापी जाती है। यदि निकाय द्वारा ऊष्मा ग्रहण की जाए, तो यह ताप में वृद्धि के रूप में परिलक्षित होती है।
ताप में वृद्धि अंतरित ऊष्मा के समानुपाती होती है।
$$q= \text{गुणांक} \times \Delta T$$
गुणांक का मान निकाय के आकार, संघटन एवं प्रकृति पर निर्भर करता है। इसे हम इस प्रकार भी लिख सकते हैं, ’ $q=C \Delta T$
यहाँ गुणांक $C$ को ‘ऊष्माधारिता’ कहते हैं।
इस प्रकार ऊष्माधारिता ज्ञात होने पर हम तापीय वृद्धि को नाप कर प्रदत्त ऊष्मा ज्ञात कर सकते हैं।
यदि $C$ ज्यादा है, तो ऊष्मा से तापीय वृद्धि अल्प होती है। जल की ऊष्माधारिता अधिक है, इसका अर्थ यह है कि इसका ताप बढ़ाने के लिए बहुत अधिक ऊर्जा चाहिए।
$C$ पदार्थ की मात्रा के समानुपाती होती है। किसी पदार्थ की मोलर ऊष्माधारिता $\mathrm{Cm}=\frac{C}{n}$ एक मोल की ऊष्माधारिता है। यह ऊष्मा की वह मात्रा है, जो एक मोल पदार्थ का ताप एक डिग्री सेल्सियस (या एक केल्विन) बढ़ाने के लिए आवश्यक होती है। विशिष्ट ऊष्मा, जिसे ‘विशिष्ट ऊष्माधारिता’ भी कहते हैं, वह ऊष्मा है, जो इकाई द्रव्यमान के किसी पदार्थ का ताप एक डिग्री सेल्सियस (या एक केल्विन) बढ़ाने के लिए आवश्यक होती है। किसी पदार्थ का ताप बढ़ाने के उद्देश्य से आवश्यक ऊष्मा $q$ ज्ञात करने के लिए पदार्थ की विशिष्ट ऊष्मा $C$ को हम द्रव्यमान $m$ एवं ताप-परिवर्तन $\Delta T$ से गुणा करते हैं, अर्थात्
$$ \begin{equation*} q=c \times m \times \Delta T=C \Delta T \tag{5.11} \end{equation*} $$
(घ) एक आदर्श गैस के लिए $\mathrm{C} _{\mathrm{p}}$ एवं $\mathrm{C} _{\mathrm{v}}$ में संबंध
ऊष्माधारिता को स्थिर आयतन पर $C_{V}$ से एवं स्थिर दाब पर $C_{p}$ से अंकित करते हैं। अब हम दोनों में संबंध ज्ञात करते हैं।
$q$ के लिए स्थिर आयतन पर समीकरण लिख सकते हैं-
$$ q_{V}=C_{V} \Delta T=\Delta U $$
एवं स्थिर दाब पर $q_{p}=C_{p} \Delta T=\Delta H$
आदर्श गैस के लिए $C_{p}$ एवं $C_{V}$ के बीच अंतर इस प्रकार ज्ञात किया जा सकता है-
एक मोल आदर्श गैस के लिए $\Delta H=\Delta U+\Delta(p V)$
$$=\Delta U+\Delta(\mathrm{R} T)$$
$$=\Delta U+\mathrm{R} \Delta T$$
$$\therefore \Delta H=\Delta U+\mathrm{R} \Delta T$$
$\Delta H$ एवं $\Delta U$ के मान रखने पर
$$ \begin{gather*} C_{p} \Delta T=C_{V} \Delta T+\mathrm{R} \Delta T \\ C_{p}=C_{V}+\mathrm{R} \\ C_{p}-C_{V}=\mathrm{R} \tag{5.13} \end{gather*} $$
5.3 $\Delta U$ एवं $\Delta H$ का मापन : वैलोरीमिति
रासायनिक एवं भौतिक प्रक्रमों से संबंधित ऊर्जा, परिवर्तन को जिस प्रायोगिक तकनीक द्वारा ज्ञात करते हैं, उसे ‘कैलोरीमीटर’ (Calorimetry) कहते हैं। कैलोरीमिति में प्रक्रम एक पात्र में किया जाता है, जिसे ‘कैलोरीमीटर’ कहते हैं। कैलोरीमीटर एक द्रव के ज्ञात आयतन में डूबा रहता है। द्रव की ऊष्माधारिता एवं कैलोरीमीटर की ऊष्माधारिता ज्ञात होने पर ताप-परिवर्तन के आधार पर प्रक्रम में उत्पन्न ऊष्मा ज्ञात की जा सकती है। मापन दो स्थितियों में किए जाते हैं-
(i) स्थिर-आयतन पर, $q_{V}$
(ii) स्थिर दाब पर, $q_{p}$
(क) $\Delta \mathrm{U}$ का मापन
रासायनिक अभिक्रियाओं के लिए स्थिर आयतन पर अवशोषित ऊष्मा का मापन बम कैलोरीमीटर (Bomb calorimeter) में किया जाता है (चित्र 5.7) यहाँ एक स्टील का पात्र (बम कैलोरीमीटर) जल में डुबोया जाता है।
चित्र 5.7: बम कैलोरीमीटर
स्टील बम में ऑक्सीजन प्रवाहित कर ज्वलनशील प्रतिदर्श (Sample) को जलाया जाता है। अभिक्रिया में उत्पन्न ऊष्मा जल को अंतरित हो जाती है। उसके बाद जल का ताप ज्ञात कर लिया जाता है। चूँकि बम कैलोरीमीटर पूर्णतया बंद, है अतः इसके आयतन में कोई परिवर्तन नहीं होता। और कोई कार्य नहीं किया जाता है। यहाँ तक कि गैसों से संबंधित रासायनिक अभिक्रियाओं में भी कोई कार्य नहीं होता क्योंकि $\Delta V=0$ होता है। समीकरण 5.11 की सहायता से कैलोरीमीटर की ऊष्माधारिता ज्ञात होने पर ताप-परिवर्तन को $q_{V}$ में परिवर्तित कर लिया जाता है।
(ख) $\Delta \mathrm{H}$ का मापन
स्थिर दाब (सामान्यतया वायुमंडलीय दाब) पर ऊष्मा-परिवर्तन चित्र 5.8 में दर्शाए गए कैलोरीमीटर द्वारा मापा जा सकता है। हम जानते हैं कि $\Delta H=q_{p}$ (स्थिर दाब पर)। अतः स्थिर दाब पर उत्सर्जित अथवा अवशोषित ऊष्मा $q_{p}$ अभिक्रिया ऊष्मा अथवा अभिक्रिया एन्थैल्पी $\Delta_{\mathrm{r}} H$ कहलाती है।
ऊष्माक्षेपी अभिक्रियाओं में ऊष्मा निर्मुक्त होती है तथा निकाय से परिवेश में ऊष्मा का प्रवाह होता है। इसलिए $q_{p}$ ॠणात्मक होगा तथा $\Delta_{\mathrm{r}} H$ भी ऋणात्मक होगा। इसी तरह ऊष्माशोषी अभिक्रियाओं में ऊष्मा अवशोषित होगी। अतः $q_{p}$ और $\Delta_{\mathrm{r}} H$ दोनों धनात्मक होंगे।
चित्र 5.8: स्थिर दाब (वायुमंडलीय दाब) पर ऊष्मा-परिवर्तन मापने के लिए कैलोरीमीटर
उदाहरण 5.6
निम्नलिखित समीकरण के अनुसार, $1 \mathrm{~g}$ ग्रैफाइट को ऑक्सीजन की अधिकता में $1 \mathrm{~atm}$ दाब एवं $298 \mathrm{~K}$ पर बम कैलोरीमीटर में दहन करवाया जाता है।
$\mathrm{C}($ ग्रैफाइट $)+\mathrm{O} _{2}(\mathrm{~g}) \rightarrow \mathrm{CO} _{2}(\mathrm{~g})$
अभिक्रिया के दौरान ताप $298 \mathrm{~K}$ से $299 \mathrm{~K}$ तक बढ़ता है। यदि बम कैलोरीमीटर की ऊष्माधारिता $20.7 \mathrm{~kJ} / \mathrm{K}$ हो, तो उपरोक्त अभिक्रिया के लिए $1 \mathrm{~atm}$ दाब एवं $298 \mathrm{~K}$ पर एन्थैल्पी परिवर्तन क्या होगा?
हल
माना अभिक्रिया से प्राप्त ऊष्मा $q$ एवं कैलोरीमीटर की ऊष्माधारिता $C_{V}$ है, तब कैलोरीमीटर द्वारा अवशोषित ऊष्मा,
$q=C_{V} \times \Delta T$
अभिक्रिया से प्राप्त ऊष्मा का मान समान होगा, परंतु चिह्न ॠणात्मक होगा, क्योंकि निकाय (अभिक्रिया-मिश्रण) द्वारा प्रदत्त ऊष्मा कैलोरीमीटर द्वारा ग्रहण की गई ऊष्मा के तुल्य होगी।
$$ \begin{aligned} q=-C_{V} \times \Delta T & =-20.7 \mathrm{~kJ} / \mathrm{K} \times(299-298) \mathrm{K} \\ & =-20.7 \mathrm{~kJ} \end{aligned} $$
(यहाँ ऋणात्मक चिह्न अभिक्रिया के ऊष्माक्षेपी होने को इंगित करता है)
अतः $1 \mathrm{~g}$ ग्रैफाइट के दहन के लिए $\Delta U=-20.7 \mathrm{kJK}^{-1}$
1 मोल ग्रैफाइट के दहन के लिए
$$ \begin{aligned} & =\frac{12.0 \mathrm{~g} \mathrm{~mol}^{-1} \times(-20.7 \mathrm{~kJ})}{1 \mathrm{~g}} \\ & =-2.48 \times 10^{2} \mathrm{~kJ} \mathrm{~mol}^{-1}, \quad \text { Since } \Delta n_{g}=0, \\ & \Delta H=\Delta U=-2.48 \times 10^{2} \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$
5.4 अभिक्रिया के लिए एन्थैल्पी परिवर्तन, $\Delta_{\mathrm{r}} H$ अभिक्रिया एन्थैल्पी
रासायनिक अभिक्रिया में अभिक्रियक उत्पाद में बदलते हैं। इस प्रक्रिया को इस प्रकार दर्शाते हैं-
अभिक्रियक $\rightarrow$ उत्पाद
अभिक्रिया के दौरान एन्थैल्पी-परिवर्तन अभिक्रिया-एन्थैल्पी कहलाता है। रासायनिक अभिक्रिया में एन्थैल्पी-परिवर्तन $\Delta_{\mathrm{r}} H$ चिह्न से दर्शाया जाता है।
$\Delta_{\mathrm{r}} H=$ (उत्पादों की एन्थैल्पियों का योग) - (अभिक्रियकों की एन्थैल्पियों का योग)
$$=\sum _{i} \mathrm{a} _{i} H _{\text {उत्पाद }}-\sum _{i} b _{i} H _{\text {अभिक्रियक }}$$
यहाँ $\Sigma$ (सिग्मा) चिह्न का उपयोग जोड़ने के लिए किया जाता है एवं $a_{i}$ तथा $b_{i}$ संतुलित समीकरण में क्रमशः अभिक्रियकों एवं उत्पादों के स्टाइकियोमीट्री गुणांक हैं। उदाहरण के लिए- निम्नलिखित अभिक्रिया में-
$$\mathrm{CH} _{4}(\mathrm{~g})+2 \mathrm{O} _{2}(\mathrm{~g}) \rightarrow \mathrm{CO} _{2}(\mathrm{~g})+2 \mathrm{H} _{2} \mathrm{O}(l)$$
$$\Delta _{r} H=\sum _{i} \mathrm{a} _{i} H _{\text {उत्पाद }}-\sum _{i} \mathrm{~b} _{i} H _{\text {अभिक्रियक }}$$
$$ = [H_m(CO_2, ~g) + 2H_m(H_2O, ~l)] - [H_m (CH_4, ~g) + 2H_m (O_2,~g)]$$
जहाँ $H_{m}$ मोलर एन्थैल्पी है।
एन्थैल्पी-परिवर्तन एक बहुत उपयोगी राशि है। इसका ज्ञान स्थिर ताप पर किसी औद्योगिक रासायनिक अभिक्रिया में ऊष्मन या शीतलन की योजना बनाने में आवश्यक है। इसकी आवश्यकता साम्य स्थिरांक की तापीय निर्भरता की गणना करने में भी पड़ती है।
(क)अभिक्रिया की मानक एन्थैल्पी
किसी रासायनिक अभिक्रिया की एन्थैल्पी परिस्थितियों पर निर्भर करती है। अतः यह आवश्यक है कि हम कुछ मानक परिस्थितियों को निर्दिष्ट करें। किसी रासायनिक अभिक्रिया की मानक एन्थैल्पी वह एन्थैल्पी परिवर्तन है, जब अभिक्रिया में भाग लेनेवाले सभी पदार्थ अपनी मानक अवस्थाओं में हों।
किसी पदार्थ की मानक अवस्था किसी निर्दिष्ट ताप पर उसका वह शुद्ध रूप है, जो $298 \mathrm{~K} 1 \mathrm{bar}$ दाब पर पाया जाता है। उदाहरण के लिए- द्रव एथेनॉल की मानक अवस्था $298 \mathrm{~K}$ एवं $1 \mathrm{bar}$ पर शुद्ध द्रव होती है। लोहे की मानक-अवस्था $500 \mathrm{~K}$ एवं 1 बार (bar) पर शुद्ध ठोस होती है। आँकड़े प्रायः $298 \mathrm{~K}$ पर लिए जाते हैं।
मानक परिस्थितियों को $\Delta H$ पर मूर्धांक $\ominus$ (Superscript) रखकर व्यक्त किया जाता है। उदाहरण के लिए- $\Delta H^{\ominus}$
(ख) प्रावस्था रूपांतरण में एन्थैल्पी-परिवर्तन
प्रावस्था परिवर्तन में ऊर्जा-परिवर्तन भी होता है। उदाहरण के लिए बर्फ़ को पिघलाने के लिए ऊष्मा की आवश्यकता होती है। साधारणतया बर्फ़ का पिघलना स्थिर दाब (वायुमंडलीय दाब) पर होता है तथा प्रावस्था-परिर्वतन होते समय ताप स्थिर रहता है।
$ \mathrm{H} _{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H} _{2} \mathrm{O}(l) ; \Delta _{f u s} H^{\ominus}=6.00 \mathrm{~kJ} \mathrm{~mol}^{-1} $
यहाँ $\Delta_{f u s} H^{\ominus}$ मानक अवस्था में गलन एन्थैल्पी है। यदि जल बर्फ़ में बदलता है, तो इसके विपरीत प्रक्रम होता है तथा उतनी ही मात्रा में ऊष्मा परिवेश में चली जाती है।
प्रति मोल ठोस पदार्थ के गलन में होनेवाले एन्थैल्पी परिवर्तन को पदार्थ की गलन एन्थैल्पी या मोलर गलन एन्थैल्पी $\Delta_{f u s} H^{\ominus}$ कहा जाता है।
सारणी 5.1 गलन एवं वाष्पन के लिए मानक एन्थैल्पी परिवर्तन मान
Substance | $T_{f} / K$ | $\Delta_{\text {fus }} \mathrm{H}^{\ominus} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ | $T_{b} / K$ | $\Delta_{v a p} \mathrm{HO} /\left(\mathrm{kJ} \mathrm{mol}{ }^{-1}\right)$ |
---|---|---|---|---|
$\mathrm{N} _{2}$ | 63.15 | 0.72 | 77.35 | 5.59 |
$\mathrm{NH} _{3}$ | 195.40 | 5.65 | 239.73 | 23.35 |
$\mathrm{HCl}$ | 159.0 | 1.992 | 188.0 | 16.15 |
$\mathrm{CO}$ | 68.0 | 6.836 | 82.0 | 6.04 |
$\mathrm{CH} _{3} \mathrm{COCH} _{3}$ | 177.8 | 5.72 | 329.4 | 29.1 |
$\mathrm{CCl} _{4}$ | 250.16 | 2.5 | 349.69 | 30.0 |
$\mathrm{H} _{2} \mathrm{O}$ | 273.15 | 6.01 | 373.15 | 40.79 |
$\mathrm{NaCl}$ | 108.10 | 28.8 | 1665.0 | 170.0 |
$\mathrm{C} _{6} \mathrm{H} _{6}$ | 278.65 | 9.83 | 353.25 | 30.8 |
ठोसों का गलन ऊष्माशोषी होता है, अतः सभी गलन एन्थैल्पियाँ धनात्मक होती हैं। जल के वाष्पीकरण में ऊष्मा की आवश्यकता होती है। इसके क्वथनांक $T_{b}$ एवं स्थिर दाब पर:
$H_2 O(l) \rightarrow H_2 O(\mathrm{g}) ; \Delta_\text {vap } H^\ominus=+40.79 ~kJ mol^{-1}$ $\Delta_\text {vap } H^\ominus$ वाष्पीकरण की मानक एन्थैल्पी है। ( $T_{f}$ और $T_{b}$ क्रमशः गलनांक एवं क्वथनांक है।)
किसी द्रव के एक मोल को स्थिर ताप एवं मानक दाब (1बार) पर वाष्पीकृत करने के लिए आवश्यक ऊष्मा को उसकी वाष्पन एन्थैल्पी या मोलर वाष्पन एन्थैल्पी $\Delta_{v a p} H^{\ominus}$ कहते हैं।
ऊर्ध्वपातन में ठोस सीधे ही गैस में बदल जाता है। ठोस कार्बन डाइऑक्साइड या शुष्क बर्फ (dry ice) $\Delta_{\text {sub }} H^{\ominus}=$ $25.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ के साथ $195 \mathrm{~K}$ पर ऊर्ध्वपातित होती है। नेफ्थलीन वायु में धीरे-धीरे ऊर्ध्वपातित होती है, जिसके लिए $\Delta_{\text {sub }} H^{\ominus}=73.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
किसी ठोस के एक मोल को स्थिर ताप एवं मानक दाब ( 1 बार) पर ऊर्ध्वपातन में होने वाली एन्थैल्पी परिवर्तन को उसकी मानक ऊर्ध्वपातन एन्थैल्पी कहते हैं।
एन्थैल्पी-परिवर्तन का मान उस पदार्थ के अंतर-आणविक बलों की क्षमता पर निर्भर करता है, जिसका प्रावस्था-परिवर्तन हो रहा है। उदाहरण के लिए- जल के अणुओं के मध्य उपस्थित प्रबल हाइड्रोजन बंध इसकी द्रव अवस्था में जल के अणुओं को प्रबलता से बांधे रहते हैं। कार्बनिक द्रव (जैसे- ऐसीटोन) में अंतर-आण्विक द्विध्रुव-द्विध्रुव अन्योन्य क्रिया विशेष रूप से दुर्बल होती है। इस प्रकार इसके 1 मोल के वाष्पीकृत होने में जल के 1 मोल को वाष्पीकृत होने की अपेक्षा कम ऊष्मा की आवश्यकता होती है। सारणी 5.1 में कुछ पदार्थों की गलन एवं वाष्पीकरण की मानक एन्थैल्पी दी गई है।
उदाहरण 5.7
एक ताल (Pool) से निकला तैराक करीब $18 \mathrm{~g}$ पानी की परत से ढका (गीला) है। इस पानी को $298 \mathrm{~K}$ पर वाष्पित होने के लिए कितनी ऊष्मा आवश्यक होगी? $298 \mathrm{~K}$ पर वाष्पीकरण की आंतरिक ऊर्जा की गणना कीजिए।
जल के लिए $298 \mathrm{~K}$ पर $\Delta_{\text {Vap }} H^{\ominus}=44.01 \mathrm{~kJ} \mathrm{~mol}^{-1}$
हल
वाष्पीकरण के प्रक्रम को हम इस प्रकार प्रदर्शित कर सकते हैं-
$$ \begin{aligned} & \mathrm{H_2} \mathrm{O}(\mathrm{l}) \xrightarrow{\text { वाष्पीकरण }} \mathrm{H_2} \mathrm{O}(\mathrm{g}) \\ & 1 \mathrm{~mol} \quad \quad \quad \quad \quad \quad 1 \mathrm{~mol} \end{aligned} $$
$18 \mathrm{~g} \mathrm{H} _{2} \mathrm{O}$ (1) में मोलों की संख्या
$=\frac{18 \mathrm{~g}}{18 \mathrm{~g} \mathrm{~mol}^{-1}}$ $=1 \mathrm{~mol}$
$1 \mathrm{~mol}$ जल के $298 \mathrm{~K}$ पर वाष्पन के लिए दी जाने वाली ऊर्जा
$$ \begin{aligned} & =\mathrm{n} \times \Delta_{\text {vap }} H^{\ominus} \\ & =(1 \mathrm{~mol}) \times\left(44.01 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & =44.01 \mathrm{~kJ} \end{aligned} $$
(यह मानते हुए कि वाष्प आदर्श गैस के समान व्यवहार करती है।)
$\Delta_{\text {vap }} U=\Delta_{v a p} H^{\ominus}-p \Delta V=\Delta_{v a p} H^{\ominus}-\Delta n_{g} R T$
$\Delta_{v a p} H^{V}-\Delta \mathrm{n}_{\mathrm{g}} \mathrm{R} T=44.01 \mathrm{~kJ}$
$-(1)\left(8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)(298 \mathrm{~K})\left(10^{-3} \mathrm{~kJ} \mathrm{~J}^{-1}\right)$
$\Delta_{\text {vap }} U^{V}=44.01 \mathrm{~kJ}-2.48 \mathrm{~kJ}$
$$ =41.53 \mathrm{~kJ} $$
उदाहरण 5.8
जल वाष्प को आदर्श गैस मानते हुए गणना कीजिए कि $100^{\circ} \mathrm{C}$ ताप और $1 \mathrm{bar}$ दाब पर $1 \mathrm{~mol}$ जल-वाष्प को $0^{\circ} \mathrm{C}$ ताप की बर्फ में बदलने में आन्तरिक ऊर्जा में कितना परिवर्तन होगा? दिया है कि बर्फ की गलन एन्थैल्पी $6.00 \mathrm{~kJ} \mathrm{~mol}^{-1}$ और जल की ऊष्माधारिता $4.2 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ है।
हल
परिवर्तन निम्न प्रकार से होता है-
चरण-1 $1 \mathrm{~mol} \mathrm{H} _{2} \mathrm{O}\left(\mathrm{g}, 0^{\circ} \mathrm{C}\right) \rightarrow 1 \mathrm{~mol} \mathrm{H} _{2} \mathrm{O}\left(1,0^{\circ} \mathrm{C}\right)$ एन्थैल्पी परिवर्तन $\Delta H _{1}$
चरण-2 $1 \mathrm{~mol} \mathrm{H} _{2} \mathrm{O}\left(1,0^{\circ} \mathrm{C}\right) \rightarrow 1 \mathrm{~mol} \mathrm{H} _{2} \mathrm{O}\left(\mathrm{s}, 0^{\circ} \mathrm{C}\right)$ एन्थैल्पी परिवर्तन $\Delta \mathrm{H} _{2}$
कुल एन्थैल्पी परिवर्तन होगा
$$ \begin{aligned} \Delta \mathrm{H} & =\Delta \mathrm{H_1}+\Delta \mathrm{H_2} \\ \Delta \mathrm{H_1} & =-(18 \times 4.2 \times 100) \mathrm{J} \mathrm{mol}^{-1} \\ & =-7560 \mathrm{~J} \mathrm{~mol}^{-1}=-7.56 \mathrm{k} \mathrm{J} \mathrm{mol}^{-1} \\ \Delta \mathrm{H_2} & =-6.00 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$
अतः
$$ \begin{aligned} \Delta \mathrm{H} & =-7.56 \mathrm{~kJ} \mathrm{~mol}^{-1}+\left(-6.00 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & =-13.56 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$
द्रव अवस्था से ठोस अवस्था में परिवर्तन होने पर आयतन में नगण्य परिवर्तन होता है
अतः, $\mathrm{p} \Delta \mathrm{v}=\Delta \mathrm{ng} \mathrm{RT}=0$
$\Delta \mathrm{H}=\Delta \mathrm{U}=-13.56 \mathrm{~kJ} \mathrm{~mol}^{-1}$
सारणी 5.2 कुछ चुने हुए पदार्थों की $298 \mathrm{~K}$ पर मानक मोलर विरचन एन्थैल्पी, $\Delta_{f} H^{\ominus}$
पदार्थ | $\Delta_f H^{\prime} /\left(\mathbf{k J ~ m o l}^{-1}\right)$ | पदार्थ | $\Delta_f H^{\circ} /\left(\mathbf{k J} \mathrm{mol}^{-1}\right)$ |
---|---|---|---|
$\overline{\mathrm{Al}_2 \mathrm{O}_3(\mathrm{~s})}$ | -167.5 | $\mathrm{HI}(\mathrm{g})$ | +26.48 |
$\mathrm{BaCO}_3(\mathrm{~s})$ | -1216.3 | $\mathrm{KCl}(\mathrm{s})$ | -436.75 |
$\mathrm{Br}_2(\mathrm{l})$ | 0 | $\mathrm{KBr}(\mathrm{s})$ | -393.8 |
$\mathrm{Br}_2(\mathrm{~g})$ | +30.91 | $\mathrm{MgO}(\mathrm{s})$ | -601.70 |
$\mathrm{CaCO}_3(\mathrm{~s})$ | -1206.92 | $\mathrm{Mg}(\mathrm{OH})_2(\mathrm{~s})$ | -924.54 |
$\mathrm{C}$ (हीरा) | +1.89 | $\mathrm{NaF}(\mathrm{s})$ | -573.65 |
$\mathrm{C}$ (ग्रैफाइट) | 0 | $\mathrm{NaCl}(\mathrm{s})$ | -411.15 |
$\mathrm{CaO}(\mathrm{s})$ | -635.09 | $\mathrm{NaBr}(\mathrm{s})$ | -361.06 |
$\mathrm{CH}_4(\mathrm{~g})$ | -74.81 | $\mathrm{NaI}(\mathrm{s})$ | -287.78 |
$\mathrm{C}_2 \mathrm{H}_4(\mathrm{~g})$ | 52.26 | $\mathrm{NH}_3(g)$ | -46.11 |
$\mathrm{CH}_3 \mathrm{OH}(\mathrm{l})$ | -238.86 | $\mathrm{NO}(\mathrm{g})$ | +90.25 |
$\mathrm{C}_2 \mathrm{H}_5 \mathrm{OH}(\mathrm{l})$ | -277.69 | $\mathrm{NO}_2(\mathrm{~g})$ | +33.18 |
$\mathrm{C}_6 \mathrm{H}_6(\mathrm{l})$ | +49.03 | $\mathrm{PCl}_3(1)$ | -319.70 |
$\mathrm{CO}(\mathrm{g})$ | -110.525 | $\mathrm{PCl}_5(\mathrm{~s})$ | -443.5 |
$\mathrm{CO}_2(\mathrm{~g})$ | -393.51 | $\mathrm{SiO}_2$ (s) (क्वार्ट्ज़) | -910.94 |
$\mathrm{C}_2 \mathrm{H}_6(\mathrm{~g})$ | -84.68 | $\mathrm{SnCl}_2(\mathrm{~s})$ | -325.1 |
$\mathrm{Cl}_2(\mathrm{~g})$ | 0 | $\mathrm{SnCl}_4(1)$ | -511.3 |
$\mathrm{C}_3 \mathrm{H}_8(\mathrm{~g})$ | -103.85 | $\mathrm{SO}_2(\mathrm{~g})$ | -296.83 |
$\mathrm{n}-\left[\mathrm{C} _4 \mathrm{H} _{10}(\mathrm{~g})\right]$ | -126.15 | $\mathrm{SO}_3(\mathrm{~g})$ | -395.72 |
$\mathrm{HgS}(\mathrm{s})$ | -58.2 | $\mathrm{SiH}_4(\mathrm{~g})$ | +34 |
$\mathrm{H}_2(\mathrm{~g})$ | 0 | $\mathrm{SiCl}_4(\mathrm{~g})$ | -657.0 |
$\mathrm{H}_2 \mathrm{O}(\mathrm{g})$ | -241.82 | $\mathrm{C}(\mathrm{g})$ | +715.0 |
$\mathrm{H}_2 \mathrm{O}(\mathrm{l})$ | -285.83 | $\mathrm{H}(\mathrm{g})$ | +218.0 |
$\mathrm{HF}(\mathrm{g})$ | -271.1 | $\mathrm{Cl}(\mathrm{g})$ | +121.3 |
$\mathrm{HCl}(\mathrm{g})$ | -92.31 | $\mathrm{Fe}_2 \mathrm{O}_3(\mathrm{~s})$ | -824.2 |
$\operatorname{HBr}(\mathrm{g})$ | -36.40 |
(ग) मानक विरचन एन्थैल्पी $\Delta_{f} H^{\ominus}$
किसी यौगिक के एक मोल को उसके ही तत्त्वों, जो अपने सबसे स्थायी रूपों में लिये गए हों (ऐसे रूप को ‘संदर्भ-अवस्था’ भी कहते हैं ), में से विरचित करने पर होनेवाले मानक एन्थैल्पी परिवर्तन को उसकी मानक मोलर विरचन एन्थैल्पी $\Delta_{f} H^{\ominus}$ कहा जाता है। जहाँ पादांक ’ $f$ ’ बताता है कि संबंधित यौगिक का 1 मोल उसके तत्त्वों, जो अपने सबसे स्थायी रूप में हैं, से प्राप्त किया जाता है। नीचे कुछ अभिक्रियाएं उनकी मानक विरचन मोलर एन्थैल्पी के साथ दी गई हैं-
$\mathrm{H_2}(\mathrm{~g})+1 / 2 \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{H_2} \mathrm{O}(1) ;$
$\Delta_{f} H^{\ominus}=-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{C}$ (ग्रैफाइट, $\mathrm{s})+2 \mathrm{H_2}(\mathrm{~g}) \rightarrow \mathrm{Ch_4}(\mathrm{~g})$;
$\Delta_{f} H^{\ominus}=-74.81 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$2 \mathrm{C}$ (ग्रैफाइट, $\mathrm{s}$ ) $+3 \mathrm{H_2}(\mathrm{~g})+1 \frac{1}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{C_2} \mathrm{H_5} \mathrm{OH}(1)$;
$$ \Delta_{f} H^{\ominus}=-277.7 \mathrm{~kJ} \mathrm{~mol}^{-1} $$
यहाँ यह समझना महत्त्वपूर्ण है कि मानक विरचन एन्थैल्पी, $\Delta_f H^{\ominus}, \Delta_{\mathrm{r}} H^{\ominus}$ की एक विशेष स्थिति है, जिसमें 1 मोल यौगिक अपने तत्त्वों से बनता है। जैसे उपरोक्त तीन अभिक्रियाओं में जल, मेथेन एवं एथेनॉल में से प्रत्येक का 1 मोल बनता है।
$\mathrm{CaO}(\mathrm{s})+\mathrm{CO_2}(\mathrm{~g}) \rightarrow \mathrm{CaCo_3}(\mathrm{~s}) ;$
$\Delta_{r} H^{\ominus}=-178.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$ इसके विपरीत एक ऊष्माक्षेपी अभिक्रिया में एथ्थैल्पी-परिवर्तन कैल्सियम कार्बोनेट की विरचन एन्थैल्पी नहीं है, क्योंकि इसमें कैल्सियम कार्बोनेट अपने तत्त्वों से न बनकर दूसरे यौगिकों से बना है। निम्नलिखित अभिक्रिया के लिए भी एन्थैल्पी-परिवर्तन $\mathrm{HBr}(\mathrm{g})$ की मानक एन्थैल्पी विरचन एन्थैलपी $\Delta_f H^{\ominus}$ नहीं है, बल्कि मानक अभिक्रिया एन्थैल्पी है।
$\mathrm{H_2}(\mathrm{~g})+\mathrm{Br_2}(\mathrm{l}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$;
$$ \Delta_{r} H^{\ominus}=-178.3 \mathrm{~kJ} \mathrm{~mol}^{-1} $$
यहाँ पर उत्पाद के एक मोल की अपेक्षा दो मोल अपने तत्त्वों से बनते हैं,
$\Delta_r H^{\ominus}=2 \Delta_f H^{\ominus}$
संतुलित समीकरण में समस्त गुणांकों को 2 से विभाजित कर $\operatorname{HBr}(\mathrm{g})$ के विरचन एन्थैल्पी के लिए समीकरण इस प्रकार लिखा जा सकता है-
$$1 / 2 \mathrm{H_2}(\mathrm{~g})+1 / 2 \mathrm{Br_2}(1) \rightarrow \mathrm{HBr}(\mathrm{g})$$
$$ \Delta_{f} H^{\ominus}=-36.4 \mathrm{~kJ} \mathrm{~mol}^{-1} $$
कुछ पदार्थों की $298 \mathrm{~K}$ पर मानक मोलर विरचन एन्थैल्पी $\Delta_{f} H^{P}$ सारणी 5.2 में दी गई है।
परिपाटी के अनुसार, एक तत्त्व के सबसे अधिक स्थायित्व की अवस्था में (संदर्भ-अवस्था) मानक विरचन एन्थैल्पी $\Delta_{f} H^{P}$ का मान शून्य लिया जाता है।
मान लीजिए कि आप एक केमिकल इंजीनियर हैं और जानना चाहते हैं कि यदि सारे पदार्थ अपनी मानक अवस्था में हैं तो कैल्सियम कार्बोनेट को चूना एवं कार्बन डाइऑक्साइड में विघटित करने के लिए कितनी ऊष्मा की आवश्यकता होगी,
$$\mathrm{CaCO} _{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO} _{2}(\mathrm{~g}) ; \Delta _{r} H^{\ominus}=?$$
यहाँ हम मानक विरचन एन्थैल्पी का उपयोग कर सकते हैं एवं अभिक्रिया का एन्थैल्पी परिवर्तन परिकलित कर सकते हैं। एन्थैल्पी परिवर्तन की गणना करने के लिए हम निम्नलिखित सामान्य समीकरण का उपयोग कर सकते हैं-
$\Delta_{r} H^{\ominus}=\sum _{i} \mathrm{a} _{i} \Delta _{f} H^{\mathrm{V}}$ ( उत्पाद) $-\sum _{i} \mathrm{~b} _{i} \Delta _{f} H^{\mathrm{V}}$ (अभिक्रियक)
जहाँ संतुलित समीकरण मे $\mathrm{a}$ एवं $\mathrm{b}$ क्रमश: अभिक्रियकों एवं उत्पादों के गुणांक है। उपरोक्त समीकरण को कैल्सियम कार्बोनेट के विघटन पर लागू करते हैं। यहाँ $\mathrm{a}$ एवं $\mathrm{b}$ दोनों 1 हैं। अत:
$$ \begin{array}{r} \Delta_{r} H^{\ominus}=\Delta_{f} H^{\ominus}=[\mathrm{CaO}(\mathrm{s})]+\Delta_{f} H^{\ominus}\left[\mathrm{CO_2}(\mathrm{~g})\right] \\ -\Delta_{f} H^{\ominus}=\left[\mathrm{CaCO_3}(\mathrm{~s})\right] \\ =1\left(-635.1 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)+1\left(-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ -1\left(-1206.9 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ =178.3 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{array} $$
अतः $\mathrm{CaCO} _{3}(\mathrm{~s})$ का विघटन ऊष्माशोषी अभिक्रिया है। अतः इच्छित उत्पाद प्राप्त करने के लिए आपको इसे गरम करना होगा।
(घ) ऊष्मरासायनिक समीकरण
एक संतुलित रासायनिक समीकरण, जिसमें उसके $\Delta_{r} H$ का मान भी दिया गया हो, ‘ऊष्मरासायनिक समीकरण’ कहलाता है। हम एक समीकरण में पदार्थों की भौतिक अवस्थाएँ (अपररूप अवस्था के साथ) भी निर्दिष्ट करते हैं। उदाहरण के लिए-
$$ \begin{array}{r} \mathrm{C} _{2} \mathrm{H} _{5} \mathrm{OH}(l)+3 \mathrm{O} _{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO} _{2}(\mathrm{~g})+3 \mathrm{H} _{2} \mathrm{O}(l): \\ \Delta _{r} H^{\ominus}=-1367 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{array} $$
उपरोक्त समीकरण निश्चित ताप एवं दाब पर द्रव एथेनॉल का दहन दर्शाता है। एन्थैल्पी परिवर्तन का ऋणात्मक चिह्न दर्शाता है कि यह एक ऊष्माक्षेपी अभिक्रिया है।
ऊष्मरासायनिक समीकरणों के संदर्भ में निम्नलिखित परिपाटियों को याद रखना आवश्यक है-
1. संतुलित रासायनिक समीकरण में गुणांक अभिक्रियकों एवं उत्पादों के मोलों (अणुओं को नहीं) को निर्देशित करते हैं।
2. $\Delta_{r} H^{\ominus}$ का गणितीय मान समीकरण द्वारा पदार्थों के मोलों की संख्या के संदर्भ में होता है। मानक एन्थैल्पी परिवर्तन $\Delta_{r} H^{\ominus}$ की इकाई $\mathrm{kJ} \mathrm{mol}^{-1}$ होती है।
उपरोक्त धारणा को समझाने के लिए हम निम्नलिखित अभिक्रिया के लिए अभिक्रिया-ऊष्मा की गणना करते हैं-
$\mathrm{Fe} _{2} \mathrm{O} _{3}(\mathrm{~s})+3 \mathrm{H} _{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H} _{2} \mathrm{O}(\mathrm{l})$,
मानक विरचन एन्थैल्पी की सारणी (5.2) से हम पाते हैं-
$\Delta_{f} H^{\ominus}\left(\mathrm{H} _{2} \mathrm{O}, l\right)=-285.83 \mathrm{~kJ} \mathrm{~mol}^{-1}$;
$\Delta_{f} H^{\ominus}\left(\mathrm{Fe} _{2} \mathrm{O} _{3}, \mathrm{~s}\right)=-824.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$;
$\Delta_{f} H^{0}(\mathrm{Fe}, \mathrm{s})=0$ एवं
$\Delta_{f} \mathrm{H}^{0}\left(\mathrm{H} _{2}, \mathrm{~g}\right)=0$, परिपाटी के अनुसार
तब,
$$ \begin{aligned} \Delta_{f} H_{1}^{\ominus} & =3\left(-285.83 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & -1\left(-824.2 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ = & (-857.5+824.2) \mathrm{kJ} \mathrm{mol}^{-1} \\ = & -33.3 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$
ध्यान रहे कि इन गणनाओं में प्रयुक्त गुणांक शुद्ध संख्याएं हैं, जो उचित स्टोकियोमिति गुणांकों (Stoichiometric coefficients) के तुल्य हैं। $\Delta_{f} H^{P}$ की इकाई $\mathrm{kJ} \mathrm{mol}^{-1}$ है, जिसका अर्थ अभिक्रिया का प्रति मोल है। जब हम उपरोक्त प्रकार से रासायनिक समीकरण को संतुलित कर लेते हैं, तब यह अभिक्रिया के एक मोल को परिभाषित करता है। हम समीकरण को भिन्न प्रकार से संतुलित करते हैं। उदाहरणार्थ-
$ \frac{1}{2} \mathrm{Fe} _{2} \mathrm{O} _{3}(\mathrm{~s})+\frac{3}{2} \mathrm{H} _{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}(\mathrm{s})+\frac{3}{2} \mathrm{H} _{2} \mathrm{O}(\mathrm{l}) $
तब अभिक्रिया की यह मात्रा एक मोल अभिक्रिया होगी एवं $\Delta_{r} H^{\Theta}$ होगा
$\Delta_{f} H_{2}^{\ominus}=\frac{3}{2}\left(-285.83 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
$-\frac{1}{2}\left(-824.2 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
$=(-428.7+412.1) \mathrm{kJ} \mathrm{mol}^{-1}$
$=-16.6 \mathrm{~kJ} \mathrm{~mol}^{-1}=1 / 2 \Delta_{r} H_{1}^{\ominus}$
इससे स्पष्ट होता है कि एन्थैल्पी एक विस्तीर्ण राशि है।
3. जब किसी रासायनिक समीकरण को उलटा लिखा जाता है, तब $\Delta_{r} H^{\Theta}$ के मान का चिह्न भी बदल जाता है। उदाहरण के लिए-
$\mathrm{N_2}(\mathrm{~g})+3 \mathrm{H_2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH_3}(\mathrm{~g})$;
$$ \Delta_{r} H^{\ominus}=-91.8 \mathrm{~kJ} . \mathrm{mol}^{-1} $$
$2 \mathrm{NH_3}(\mathrm{~g}) \rightarrow \mathrm{N_2}(\mathrm{~g})+3 \mathrm{H_2}(\mathrm{~g})$;
$$ \Delta_{r} H^{\ominus}=+91.8 \mathrm{~kJ} \mathrm{~mol}^{-1} $$
(च) हेस का नियम
चूँकि एन्थैल्पी एक अवस्था-फलन है, अतः एन्थैल्पी परिवर्तन प्रारंभिक अवस्था (अभिकारकों) अंतिम अवस्था (उत्पादों) को प्राप्त करने के पथ से स्वतंत्र होती है। दूसरे शब्दों में- एक अभिक्रिया चाहे एक पद में हो या कई पदों की शृंखला में, एन्थैल्पी परिवर्तन समान रहता है। इसे ‘हेस नियम’ के रूप में इस प्रकार कह सकते हैं-
अनेक पदों में होने वाली किसी रासायनिक अभिक्रिया की मानक एन्थैल्पी उन सभी अभिक्रियाओं की समान ताप पर मानक एन्थैल्पियों का योग होती है, जिनमें इस संपूर्ण अभिक्रिया को विभाजित किया जा सकता है।
आइए, हम इस नियम का महत्त्व एक उदाहरण के द्वारा समझें।
निम्नलिखित अभिक्रिया में एन्थैल्पी-परिवर्तन पर विचार करिये करें-
$ \mathrm{C}(\text { ग्रैफाइट })+\frac{1}{2} \mathrm{O} _{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) ; \Delta _{r} H^{\ominus}=? $
यद्यपि $\mathrm{CO}(\mathrm{g})$ प्रमुख उत्पाद है, परंतु इस अभिक्रिया में कुछ $\mathrm{CO} _{2}$ गैस हमेशा उत्पन्न होती है। अतः उपरोक्त अभिक्रिया के लिए हम एन्थैल्पी-परिवर्तन को सीधे माप कर ज्ञात् नहीं कर सकते। यदि हम अन्य ऐसी अभिक्रियाएं ढूँढ सकें, जिनमें संबंधित स्पशीज हों, तो उपरोक्त समीकरण में एन्थैल्पी-परिवर्तन का परिकलन किया जा सकता है।
अब हम निम्नलिखित अभिक्रियाओं पर विचार करते हैं-
$\mathrm{C}$ (ग्रैफाइट,) $+\mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{CO_2}(\mathrm{~g}) ;$
$$ \Delta_{r} H^{\ominus}=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \text{ (i) } $$
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O} _{2}(\mathrm{~g}) \rightarrow \mathrm{CO} _{2}(\mathrm{~g}) ;$
$$ \Delta_{r} H^{\ominus}=-283.0 \mathrm{~kJ} \mathrm{~mol}^{-1} $$
हम उपरोक्त समीकरणों को इस प्रकार संयुक्त करते हैं कि इच्छित अभिक्रिया प्राप्त हो जाए। दाईं ओर एक मोल $\mathrm{CO}(\mathrm{g})$ प्राप्त करने के लिए समीकरण (ii) को हम उल्टा करते हैं, जिसमें ऊर्जा निर्मुक्त होने की बजाय अवशोषित होती है। अतः हम $\Delta_{\mathrm{r}} \mathrm{H}^{\ominus}$ के मान का चिह्न बदल देते हैं।
$$ \begin{aligned} & \mathrm{CO_2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O_2}(\mathrm{~g}); \\ & \Delta_{r} H^{\ominus}=+283.0 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { (iii) } \end{aligned} $$
समीकरण (i) एवं (iii) को जोड़कर हम इच्छित समीकरण प्राप्त करते हैं।
$$ \mathrm{C}(\text { ग्रैफाइट, } \mathrm{s})+\frac{1}{2} \mathrm{O} _{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) \text {; } $$
इसके लिए $\quad \Delta_{r} H^{\ominus}=(-393.5+283.0)$
$$ =-110.5 \mathrm{~kJ} \mathrm{~mol}^{-1} $$
व्यापक रूप में यदि एक अभिक्रिया $\mathrm{A} \rightarrow \mathrm{B}$ के लिए एक मार्ग से कुल एन्थैल्पी परिवर्तन $\Delta_{r} H$ हो एवं दूसरे मार्ग से $\Delta_{r} H_{1}, \Delta_{r} H_{2}, \Delta_{r} H_{3} \ldots$ समान उत्पाद $\mathrm{B}$ के बनने में विभिन्न एन्थैल्पी-परिवर्तनों का प्रतिनिधित्व करते हों, तो
$$\Delta_{r} H=\Delta_{r} H_{1}+\Delta_{r} H_{2}+\Delta_{r} H_{3} \cdots$$
इसे इस रूप में प्रदर्शित किया जा सकता है-
5.5 विभिन्न प्रकार की अभिक्रियाओं के लिए एन्थैल्पी
अभिक्रियाओं के प्रकार को निर्दिष्ट करते हुए एन्थैल्पी का नामकरण करना सुविधाजनक होता है।
(क) मानक दहन एन्थैल्पी $\Delta_{c} H^{\ominus}$
दहन अभिक्रियाएं प्रकृति से ऊष्माक्षेपी होती हैं। ये उद्योग, रॉकेट, विमान एवं जीवन के अन्य पहलुओं में महत्त्वपूर्ण होती हैं। मानक दहन एन्थैल्पी को इस प्रकार परिभाषित किया जाता है कि यह किसी पदार्थ की प्रति मोल वह एन्थैल्पी परिवर्तन है, जो इसके दहन के फलस्वरूप होता है, जब समस्त अभिक्रियक एवं उत्पाद एक विशिष्ट ताप पर अपनी मानक अवस्थाओं में होते हैं।
खाना पकाने वाली गैस के सिलिंडर में मुख्यतः ब्यूटेन $\left(\mathrm{C} _{4} \mathrm{H} _{10}\right)$ गैस होती है। ब्यूटेन के एक मोल के दहन से 2658 $\mathrm{kJ}$ ऊष्मा निर्मुक्त होती है। इसके लिए हम ऊष्मरासायनिक अभिक्रिया को इस प्रकार लिख सकते हैं-
$$ \begin{aligned} & \mathrm{C_4} \mathrm{H_{10}}(\mathrm{~g})+\frac{13}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO_2}(\mathrm{~g})+5 \mathrm{H_2} \mathrm{O}(\mathrm{l}) \\ & \Delta_{C} H^{\ominus}=-2658.0 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$
इसी प्रकार ग्लूकोस के दहन से $2802.0 \mathrm{~kJ} / \mathrm{mol}$ ऊष्मा निर्मुक्त होती है, जिसके लिए समीकरण है-
$$ \begin{array}{r} \mathrm{C} _{6} \mathrm{H} _{12} \mathrm{O} _{6}(\mathrm{~g})+6 \mathrm{O} _{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO} _{2}(\mathrm{~g})+6 \mathrm{H} _{2} \mathrm{O}(1) ; \\ \Delta _{c} H^{\ominus}=-2802.0 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{array} $$
हमारे शरीर में भी दहन के प्रक्रम की तरह भोजन से ऊर्जा उत्पत्न होती है, यद्यपि अंतिम उत्पाद कई प्रकार के जटिल जैव-रासायनिक अभिक्रियाओं की श्रेणी से बनते हैं, जिनमें एन्ज़ाइम का उपयोग होता है।
उदाहरण 5.9
बेन्ज़ीन के 1 मोल का दहन $298 \mathrm{~K}$ एवं $1 \mathrm{~atm}$ पर होता है। दहन के उपरांत $\mathrm{CO} _{2}(\mathrm{~g})$ एवं $\mathrm{H} _{2} \mathrm{O}(1)$ बनते हैं तथा $3267.0 \mathrm{~kJ}$ ऊष्मा निर्मुक्त होती है। बेन्ज्रीन के लिए मानक विरचन एन्थैल्पी की गणना कीजिए। $\mathrm{CO} _{2}(\mathrm{~g})$ एवं $\mathrm{H} _{2} \mathrm{O}$ (1) के लिए मानक विरचन एन्थैल्पी के मान क्रमशः $-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ एवं $-285.83 \mathrm{~kJ}$ $\mathrm{mol}^{-1}$ हैं।
हल
बेन्ज्जीन का विरचन निम्नलिखित समीकरण से दिया जाता है-
$$ \begin{aligned} 6 \mathrm{C}(\text { ग्रैफाइट })+3 \mathrm{H_2}(\mathrm{~g}) \rightarrow & \mathrm{C_6} \mathrm{H_6}(\mathrm{l}) \\ & \Delta_{f} H^{\ominus}=? \ldots \text { (i) } \end{aligned} $$
1 मोल बेन्ज्रीन के लिए दहन एन्थैल्पी है-
$$ \begin{align*} \mathrm{C_6} \mathrm{H_6}(\mathrm{l})+\frac{15}{2} \mathrm{O_2} & \rightarrow 6 \mathrm{CO_2}(\mathrm{~g})+3 \mathrm{H_2} \mathrm{O}(\mathrm{l}) ; \\ \Delta_{C} H^{\ominus} & =-3267 \mathrm{~kJ} \mathrm{~mol}^{-1} \ldots \tag{ii} \end{align*} $$
1 मोल $\mathrm{CO} _{2}(\mathrm{~g})$ के लिए विरचन एन्थैल्पी है-
$$ \begin{align*} \mathrm{C}(\text { graphite }) & +\mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{CO_2}(\mathrm{~g}) \\ \Delta_{f} H^{\ominus} & =-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \ldots \tag{iii} \end{align*} $$
1 मोल $\mathrm{H} _{2} \mathrm{O}(1)$ के लिए विरचन एन्थैल्पी है-
$$ \begin{aligned} & \mathrm{H_2}(\mathrm{~g})+\frac{1}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{H_2} \mathrm{O}(\mathrm{l}) \\ & \Delta_{C} H^{\ominus}=-285.83 \mathrm{~kJ} \mathrm{~mol}^{-1} \ldots \text { (iv) } \end{aligned} $$
समीकरण iii को 6 से एवं iv को 3 से गुणा करने पर
$$ \begin{gathered} 6 \mathrm{C}(\text { graphite })+6 \mathrm{O_2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO_2}(\mathrm{~g}) ; \\ \Delta_{f} H^{\ominus}=-2361 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ 3 \mathrm{H_2}(\mathrm{~g})+\frac{3}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow 3 \mathrm{H_2} \mathrm{O}(1) ; \\ \Delta_{f} H^{\ominus}=-857.49 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{gathered} $$
उपरोक्त दोनों समीकरणों को जोड़ने पर
$$ \begin{aligned} 6 \mathrm{C}(\text { graphite })+3 \mathrm{H_2}(\mathrm{~g})+\frac{15}{2} \mathrm{O_2}(\mathrm{~g}) & \rightarrow 6 \mathrm{CO_2}(\mathrm{~g})+3 \mathrm{H_2} \mathrm{O}(\mathrm{l}); \end{aligned} $$
$$ \Delta_{f} H^{\ominus}=-3218.49 \mathrm{~kJ} \mathrm{~mol}^{-1} \ldots(\mathrm{v}) $$
समीकरण ii को उलटा करने पर
$$ \begin{array}{r} 6 \mathrm{CO_2}(\mathrm{~g})+3 \mathrm{H_2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C_6} \mathrm{H_6}(\mathrm{l})+\frac{15}{2} \mathrm{O_2} ; \\ \Delta_{f} H^{\ominus}=-3267.0 \mathrm{~kJ} \mathrm{~mol}{ }^{-1} \ldots \text { (vi) } \end{array} $$
समीकरणों $v$ एवं $v i$ को जोड़ने पर हम पाते हैं :
$$ \begin{aligned} & 6 \mathrm{C}(\text { graphite })+3 \mathrm{H_2}(\mathrm{~g}) \rightarrow \mathrm{C_6} \mathrm{H_6}(\mathrm{l}) \\ & \Delta_{f} H^{\ominus}=-48.51 \mathrm{~kJ} \mathrm{~mol}^{-1} \ldots \text { (iv) } \end{aligned} $$
(ख) कणन एन्थैल्पी $\Delta_{a} H^{\ominus}$
आइए, डाइहाइड्रोजन के कणन के इस उदाहरण पर विचार करें-
$\mathrm{H} _{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g}) ; \Delta _{a} H^{\ominus}=435.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
आप देख सकते हैं कि इस प्रक्रिया में डाइहाइड्रोजन के $\mathrm{H}-\mathrm{H}$ बंधों के टूटने से $\mathrm{H}$ परमाणु प्राप्त होते हैं। इस प्रक्रिया में होने वाले एन्थैल्पी-परिवर्तन को कणन एन्थैल्पी, $\Delta_{a} H^{\ominus}$ कहते हैं। यह गैसीय अवस्था में किसी भी पदार्थ के एक मोल में उपस्थित आबंधों को पूर्णतः तोड़कर परमाणुओं में बदलने पर होने वाला एन्थैल्पी-परिवर्तन है।
ऊपर दर्शाए गए डाइहाइड्रोजन जैसे द्विपरमाणुक अणुओं की कणन एन्थैल्पी इनकी आबंध वियोजन एन्थैल्पी भी होती है। कणन एन्थैल्पी के कुछ अन्य उदाहरण निम्नलिखित हैं-
$\mathrm{CH} _{4}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g}) ; \Delta _{a} H^{\ominus}=1665 \mathrm{~kJ} \mathrm{~mol}^{-1}$
यह ध्यान देने योग्य बात है कि यहाँ उत्पाद केवल गैसीय अवस्था में $\mathrm{C}$ और $\mathrm{H}$ परमाणु हैं।
$\mathrm{Na}(\mathrm{s}) \rightarrow \mathrm{Na}(\mathrm{g}) ; \Delta_{a} \mathrm{H}^{\ominus}=108.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
इस उदाहरण में कणन एन्थैल्पी और ऊधर्व्वपातन एन्थैल्पी एक समान हैं।
(ग) आबंध एन्थैल्पी $\Delta_{\text {bond }} H^{\ominus}$
सामान्य अभिक्रियाओं में रासायनिक आबंध टूटते एवं बनते हैं। आबंध टूटने के लिए ऊर्जा की आवश्यकता होती है और आबंध बनने में ऊर्जा निर्मुक्त होती है। किसी भी अभिक्रिया की ऊष्मा को रासायनिक आबंधों के टूटने एवं बनने में होने वाले ऊर्जापरिवर्तनों से जोड़ा जा सकता है। रासायनिक आबंधों से जुड़े एन्थैल्पी-परिवर्तनों के लिए ऊष्मागतिकी में दो अलग पद प्रयुक्त होते हैं-
(i) आबंध वियोजन एन्थैल्पी
(ii) माध्य आबंध एन्थैल्पी
आइए हम उनकी चर्चा द्विपरमाणुक एवं बहुपरमाणुक अणुओं के संदर्भ में करें।
द्विपरमाणुक अणु : में निम्नलिखित प्रक्रिया पर विचार करें एक मोल डाइहाइड्रोजन में विद्यमान सभी आबंध टूटते हैं-
$\mathrm{H} _{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g}) ; \Delta _{\mathrm{H}-\mathrm{H}} H^{\ominus}=435.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
इस प्रक्रिया में होने वाला एन्थैल्पी-परिवर्तन $\mathrm{H}-\mathrm{H}$ आबंध की आबंध वियोजन एन्थैल्पी (Bond Dissociation Enthalpy) है। आबंध वियोजन एन्थैल्पी उस प्रक्रिया में होने वाला एन्थैल्पी-परिवर्तन है, जिसमें किसी गैसीय सहसंयोजक यौगिक के एक मोल आबंध टूटकर गैसीय उत्पाद बनें।
ध्यान दें कि यह एन्थैल्पी-परिवर्तन और डाइहाड्रोजन की कणन एन्थैल्पी एक समान हैं। अन्य सभी द्विपरमाणुक अणुओं के लिए भी यह सत्य है। उदाहरणार्थ-
$\mathrm{Cl} _{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}(\mathrm{g}) ; \Delta _{\mathrm{Cl}-\mathrm{Cl}} \mathrm{H}^{\ominus}=242 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{O} _{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}(\mathrm{g}) ; \Delta _{\mathrm{O}=\mathrm{O}} \mathrm{H}^{\ominus}=428 \mathrm{~kJ} \mathrm{~mol}^{-1}$
बहुपरमाणुक अणु में आबंध वियोजन ऊर्जा का मान एक अणु में भिन्न बंधों के लिए भिन्न होता है।
बहुपरमाणुक अणु (Polyatomic Molecules) : हम एक बहुपरमाणुक अणु ( जैसे- $\mathrm{CH} _{4}$ ) पर विचार करते हैं। इसके कणन के लिए ऊष्मरासायनिक अभिक्रिया इस प्रकार दी जाती है-
$\mathrm{CH_4}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g}) ;$
$$ \Delta_{a} H^{\ominus}=1665 \mathrm{~kJ} \mathrm{~mol}^{-1} $$
मेथेन में चारों $\mathrm{C}-\mathrm{H}$ आबंध समान हैं। इसलिए मेथेन अणु में सभी $\mathrm{C}-\mathrm{H}$ आबंधों की आबंध-दूरी एवं आबंध-ऊर्जा भी एक समान है, तथापि प्रत्येक $\mathrm{C}-\mathrm{H}$ आबंध को तोड़ने के लिए आवश्यक ऊर्जा भिन्न-भिन्न हैं, जो नीचे दी गई हैं-
$\mathrm{CH} _{4}(\mathrm{~g}) \rightarrow \mathrm{CH} _{3}(\mathrm{~g})+\mathrm{H}(\mathrm{g}) ; \Delta _{\text {bond }} H^{\ominus}=+427 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{CH} _{3}(\mathrm{~g}) \rightarrow \mathrm{CH} _{2}(\mathrm{~g})+\mathrm{H}(\mathrm{g}) ; \Delta _{\text {bond }} H^{\ominus}=+439 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{CH} _{2}(\mathrm{~g}) \rightarrow \mathrm{CH}(\mathrm{g})+\mathrm{H}(\mathrm{g}) ; \Delta _{\text {bond }} H^{\ominus}=+452 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{CH}(\mathrm{g}) \rightarrow \mathrm{C}(\mathrm{g})+\mathrm{H}(\mathrm{g}) ; \Delta _{\text {bond }} H^{\ominus}=+347 \mathrm{~kJ} \mathrm{~mol}^{-1}$
अतः
$\mathrm{CH} _{4}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g}) ; \Delta _{a} H^{\ominus}=+1665 \mathrm{~kJ} \mathrm{~mol}^{-1}$
अब हम $\mathrm{CH} _{4}$ में $\mathrm{C}-\mathrm{H}$ बंध की औसत आबंध एन्थैल्पी परिभाषित करते हैं-
$\Delta_{\mathrm{C}-\mathrm{H}} H^{\ominus}=1 / 4\left(\Delta_{a} H^{\ominus}\right)=1 / 4\left(1665 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
$$ =416 \mathrm{~kJ} \mathrm{~mol}^{-1} $$
हम देखते हैं कि मेथेन में $\mathrm{C}-\mathrm{H}$ बंध की औसत आबंध एन्थैल्पी $416 \mathrm{KJ} / \mathrm{mol}$ है। यह पाया गया कि विभिन्न यौगिकों, जैसे- $\mathrm{CH} _{3} \mathrm{CH} _{2} \mathrm{Cl}, \mathrm{CH} _{3} \mathrm{NO} _{2}$ आदि में $\mathrm{C}-\mathrm{H}$ बंध का औसत आबंध एन्थैल्पी मान एक-दूसरे से थोड़ा भिन्न होता है। परंतु इन मानों में अधिक अंतर नहीं होता। हेस के नियम का उपयोग कर के आबंध एन्थैल्पी की गणना की जा सकती है। कुछ एकल और बहुआबंधों की एन्थैल्पी सारणी 5.3 में उपलब्ध है। अभिक्रिया एन्थैल्पी बहुत महत्त्वपूर्ण होती है, क्योंकि यह पुराने आबंधों के टूटने एवं नए आबंधों के बनने के कारण ही उत्पत्र होती है। यदि हमें विभिन्न आबंध एन्थैल्पियाँ ज्ञात हों तो गैसीय अवस्था में किसी भी अभिक्रिया की एन्थैल्पी ज्ञात की जा सकती है। गैसीय अवस्था में अभिक्रिया की मानक एन्थैल्पी $\Delta _{\mathrm{r}} \mathrm{H}^{\ominus}$ उत्पादों एवं अभिक्रियकों की आबंध एन्थैल्पियों से इस प्रकार संबंधित होती है-
$$ \begin{align*} & \Delta_r H^\ominus=\sum \text { आबंध एन्थैल्पी}_{अभिक्रियक} \\ \end{align*} $$
$$ \begin{align*} &-\sum \text { आबंध एन्थैल्पी}_{उत्पाद} \tag{5.17} \\ \end{align*} $$
यह संबंध उस समय विशेष उपयोगी होता है, जब $\Delta_{f} H^{\ominus}$ का मान ज्ञात न हो। किसी अभिक्रिया का कुल एन्थैल्पी-परिवर्तन उस अभिक्रिया में अभिक्रियक अणुओं के सभी आबंधों को तोड़ने के लिए आवश्यक ऊर्जा एवं उत्पादों के अणुओं के सभी आबंधों को तोड़ने के लिए आवश्यक ऊर्जा का अंतर होता है। ध्यान रहे कि यह संबंध लगभग सही है। यह उसी समय लागू होगा, जब अभिक्रिया में सभी पदार्थ (अभिक्रियक एवं उत्पाद) गैसीय अवस्था में हों।
सारणी 5.3 (क ) $298 \mathrm{~K}$ पर कुछ एकल आबंधों के औसत एन्थैल्पी मान ( $\mathrm{kJ} \mathrm{mol}^{-1}$ में)
H | C | N | O | F | Si | P | S | Cl | Br | I | |
---|---|---|---|---|---|---|---|---|---|---|---|
435.8 | 414 | 389 | 464 | 569 | 293 | 318 | 339 | 431 | 368 | 297 | $\mathrm{H}$ |
347 | 293 | 351 | 439 | 289 | 264 | 259 | 330 | 276 | 238 | $\mathrm{C}$ | |
159 | 201 | 272 | - | 209 | - | 201 | 243 | - | $\mathrm{N}$ | ||
138 | 184 | 368 | 351 | - | 205 | - | 201 | $\mathrm{O}$ | |||
155 | 540 | 490 | 327 | 255 | 197 | - | $\mathrm{F}$ | ||||
176 | 213 | 226 | 360 | 289 | 213 | Si | |||||
213 | 230 | 331 | 272 | 213 | $\mathrm{P}$ | ||||||
213 | 251 | 213 | - | S | |||||||
243 | 218 | 209 | $\mathrm{Cl}$ | ||||||||
192 | 180 | $\mathrm{Br}$ |
सारणी 5.3 (ख) $298 \mathrm{~K}$ पर कुछ औसत बहुआबंध एन्थैल्पी मान $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right.$ में )
$\mathrm{N}=\mathrm{N}$ | 418 | $\mathrm{C}=\mathrm{C}$ | 611 | $\mathrm{O}=\mathrm{O} \quad 498$ | |
$\mathrm{~N} \equiv \mathrm{N}$ | 946 | $\mathrm{C} \equiv \mathrm{C}$ | 837 | ||
$\mathrm{C}=\mathrm{N}$ | 615 | $\mathrm{C}=\mathrm{O}$ | 741 | ||
$\mathrm{C} \equiv \mathrm{N}$ | 891 | $\mathrm{C} \equiv \mathrm{O}$ | 1070 |
(घ) जालक एन्थैल्पी
एक आयनिक यौगिक की जालक एन्थैल्पी वह एन्थैल्पी परिवर्तन है, जब एक मोल आयनिक यौगिक गैसीय अवस्था में अपने आयनों में वियोजित होता है।
$\mathrm{Na}^{+} \mathrm{Cl}^{-}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) ;$
$$ \Delta_{\text {जालक }} H^{\ominus}=+788 \mathrm{~kJ} \mathrm{~mol}^{-1} $$
चूँकि जालक एन्थैल्पी को प्रयोगों द्वारा सीधे ज्ञात करना असंभव है, अतः हम एक परोक्ष विधि का उपयोग करते हैं, जहाँ एक एन्थैल्पी आरेख बनाते हैं। उसे बॉर्न-हेबर चक्र (Born-Haber cycle) कहा जाता है (चित्र 5.9)।
आइए, हम निम्नलिखित पदों में $\mathrm{Na}^{+} \mathrm{Cl}^{-}$की जालक एन्थैल्पी की गणना करते हैं-
- $\mathrm{Na}(\mathrm{s}) \rightarrow \mathrm{Na}(\mathrm{g})$ सोडियम धातु का ऊधर्वपातन, $\Delta_{\text {sub }} H^{\ominus}=108.4 \mathrm{kJmol}^{-1}$
चित्र 5.9 $\mathrm{NaCl}$ की जालक एन्थैल्पी के लिए एन्थैल्पी आरेख
2. $\mathrm{Na}(\mathrm{g}) \rightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{e}^{-1}(\mathrm{~g})$ सोडियम परमाणु का आयनन एन्थैल्पी $\Delta_{i} H^{\ominus}=496 \mathrm{kJmol}^{-1}$
3. $\frac{1}{2} \mathrm{Cl} _{2}(\mathrm{~g}) \rightarrow \mathrm{Cl}(\mathrm{g})$ क्लोरीन का वियोजन। इस अभिक्रिया की एन्थैल्पी आबंध वियोजन एन्थैल्पी की आधी है।
$\frac{1}{2} \Delta_{\text {bond }} H^{\ominus}=121 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4. $\mathrm{Cl}(\mathrm{g})+\mathrm{e}^{-1}(\mathrm{~g}) \rightarrow \mathrm{Cl}^{-}(\mathrm{g})$ क्लोरीन परमाणुओं द्वारा ग्राह्य इलेक्ट्रॉन लब्धि। इस प्रक्रिया में इलेक्टॉन लब्धि एन्थैल्पी $\Delta_{e g} H^{\ominus}=348.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
आपने एकक 3 में आयनन एन्थैल्पी तथा इलेक्ट्रॉन लब्धि एन्थैल्पी के बारे में पढ़ा है। वास्तव में ये पद ऊष्मागतिकी से ही लिये गए हैं। पहले इन पदों की जगह आयनन ऊर्जा एवं इलेक्ट्रॉन बंधुता पदों का प्रयोग किया जाता था। (बॉक्स देखिए)
आयनन ऊर्जा एवं इलेक्ट्रॉनबंधुता
आयनन ऊर्जा एवं इलेक्ट्रॉनबंधुता पदों को परम शून्य तापमान पर परिभाषित किया गाया है। किसी अन्य तापमान पर इनका मान अभिकारकों तथा उत्पादों की ऊष्माधारिता की सहायता से परिकलित किया जा सकता है। निम्नलिखित अभिक्रिया में
$\mathbf{M}(\mathrm{g}) \rightarrow \mathbf{M}^{+}(\mathrm{g})+\mathrm{e}^{-}$(आयनन के लिए)
$\mathrm{M}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{M}^{-}(\mathrm{g})$ (इलेक्ट्रॉन के लिए)
तापमान $T$ पर एन्थैल्पी परिवर्तन नीचे लिखे समीकरण की सहायता से परिकलित किया जा सकता है-
$\Delta_{r} H^{\ominus}(\mathrm{T})=\Delta_{r} H^{\ominus}(\mathrm{O})+\int_{0}^{\mathrm{T}} \Delta_{r} C_{P}^{\ominus} \mathrm{d} T$
उपरोक्त अभिक्रियाओं में भाग ले रहे प्रत्येक पदार्थ की ऊष्माधारिता $C_{P}, 5 / 2 \mathrm{R}\left(C_{v}, 3 / 2 \mathrm{R}\right)$ है। इसलिए
$\Delta_{r} C_{P}^{\ominus}=+5 / 2 \mathrm{R}$ (आयनन के लिए)
$\Delta_{r} C_{P}^{\ominus}=-5 / 2 \mathrm{R}$ (इलेक्ट्रॉन लब्धता के लिए)
इस प्रकार
$\Delta_{r} H^{\ominus}$ (आयनन एन्थैल्पी)
$=E_{0}$ (आयनन ऊर्जा) $+5 / 2 \mathrm{R} T $
$\Delta_{r} H^{\ominus}$
$=-\mathrm{A}$ (इण्लेक्ट्रॉनबंधुता) $-5 / 2 \mathrm{R} T$
5. $\mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \rightarrow \mathrm{Na}^{+} \mathrm{Cl}^{-}(\mathrm{s})$
इन विभिन्न पदों का क्रम चित्र 5.9 में दर्शाया गया है। इस क्रम को ‘बॉर्न-हेबर चक्र’ कहते हैं। इस चक्र का महत्त्व यह है कि इस पूरे चक्र में एन्थैल्पी-परिवर्तन शून्य होता है। हेस नियम के अनुसार
$\Delta_{\text {lattice }} \mathrm{H}^{\ominus}=411.2+108.4+121+496-348.6$
$\Delta_{\text {lattice }} \mathrm{H}^{\ominus}=+788 \mathrm{~kJ}$
$\mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \mathrm{NaCl}$ के लिए,
इस प्रक्रिया के लिए आंतरिक ऊर्जा इससे $2 \mathrm{R} T$ कम होगी (क्योकि $\Delta \mathrm{n} _{\mathrm{g}}=2$ ), जो $+783 \mathrm{~kJ} \mathrm{~mol}^{-1}$. के बराबर होगी।
अब हम इस जालक एन्थैल्पी के मान की सहायता से विलयन एन्थैल्पी का परिकलन कर सकते हैं।
$$ \Delta_{\text {sol }} H^{\ominus}=\Delta_{\text {lattice }} H^{\ominus}+\Delta_{\text {hyd }} H^{\ominus} $$
$\mathrm{NaCl}(\mathrm{s})$ के एक मोल के लिए
जालक एन्थैल्पी $\Delta_{\text {lattice }} H^{\ominus}=-784 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (संदर्भ-पुस्तक से)
$\Delta_{\text {sol }} H^{\ominus}=+788 \mathrm{~kJ} \mathrm{~mol}^{-1}-784 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$=+4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
इस प्रकार $\mathrm{NaCl}(\mathrm{s})$ की विलय-प्रक्रिया में बहुत कम ऊर्जा-परिवर्तन होता है।
(च) विलयन-एन्थैल्पी $\Delta_{\text {Sol }} \mathrm{H}^{\ominus}$
किसी पदार्थ की विलयन-एन्थैल्पी वह एन्थैल्पी-परिवर्तन है, जो इसके एक मोल को विलायक की निर्दिष्ट मात्रा में घोलने पर होता है। अनंत तनुता पर विलयन-एन्थैल्पी वह एन्थैल्पी-परिवर्तन है, जब पदार्थ को विलायक की अनंत मात्रा में घोला जाता है, जबकि आयनों के (या विलेय के अणुओं के) मध्य अन्योन्य क्रिया नगण्य हो।
जब एक आयनिक यौगिक को विलायक में घोला जाता है, तब इसके आयन क्रिस्टल जालक में अपनी नियमित स्थिति को छोड़ देते हैं। तब ये विलयन में अधिक स्वतंत्र होते हैं, परंतु उसी समय इन आयनों का विलायकीकरण (विलायक जल में जलीयकरण) भी होता है। इसे एक आयनिक यौगिक $\mathrm{AB}(\mathrm{s})$ के लिए आरेखीय रूप में दर्शाया गया है।
अतः जल में $\mathrm{AB}(\mathrm{s})$ की विलयन एन्थैल्पी $\Delta_{s o l} H$ एवं जलीयकरण एन्थैल्पी, $\Delta_{\text {hyd }} H$ के मानों द्वारा इस प्रकार ज्ञात की जा सकती है-
$\Delta_{\text {sol }} H=\Delta_{\text {lattice }} H+\Delta_{\text {hyd }} H$
अधिकांश आयनिक यौगिकों के लिए $\Delta_{s o l} H$ धनात्मक होता है। इसीलिए अधिकांश यौगिकों की जल में विलेयता ताप बढ़ाने पर बढ़ती है। यदि जालक एन्थैल्पी बहुत ज्यादा है, तो यौगिक का विलयन नहीं बनता है। बहुत से फ्लुओराइड क्लोराइडों की अपेक्षा कम विलेय क्यों होते हैं? एन्थैल्पी परिवर्तनों के अनुमान आबंध ऊर्जाओं (एन्थैल्पियों) एवं जालक ऊर्जाओं (एन्थैल्पियों) की सारणियों के उपयोग द्वारा किए जा सकते हैं।
(छ) तनुकरण की एन्थैल्पी
यह ज्ञात है कि विलयन-एन्थैल्पी, स्थिर ताप व दाब पर विलेय की किसी विशिष्ट मात्रा को विलायक की किसी विशिष्ट मात्रा में घोलने से होने वाला एन्थैल्पी परिवर्तन होता है। यह कथन थोड़े से संशोधन के बाद किसी भी विलायक के लिए लाग किया जा सकता है। गैसीय हाइड्रोजन के $10 \mathrm{~mol}$ को $10 \mathrm{~mol}$ जल में घोलने से होने वाला एन्थैल्पी परितर्वन निम्नलिखित समीकरण द्वारा लिखा जा सकता है। सुविधा के लिए हम जल को aq. से प्रदर्शित करेंगे।
$\mathrm{HCl}(\mathrm{g})+10$ aq. $\rightarrow \mathrm{HCl} .10$ aq.
$$ \Delta \mathrm{H}=-69.01 \mathrm{~kJ} / \mathrm{mol} $$
आइए हम निम्नलिखित एन्थैल्पी परिवर्तनों के समूह की ओर ध्यान दें।
(S-1) $\mathrm{HCl}(\mathrm{g})+25$ aq. $\rightarrow \mathrm{HCl} .25$ aq.
$\Delta \mathrm{H}=-72.03 \mathrm{~kJ} / \mathrm{mol}$
(S-2) $\mathrm{HCl}(\mathrm{g})+40$ aq. $\rightarrow \mathrm{HCl} .40$ aq.
$\Delta \mathrm{H}=-72.79 \mathrm{~kJ} / \mathrm{mol}$
(S-3) $\mathrm{HCl}(\mathrm{g})+\infty$ aq. $\rightarrow$ HCl. $\infty$ aq.
$\Delta \mathrm{H}=-74.85 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}$ के मान यह प्रदर्शित करते हैं कि विलयन-एन्थैल्पी की सामान्य निर्भरता विलयन की मात्रा होती है। जैसे-जैसे विलयन की अधिक मात्रा इस्तेमाल की जाती है, विलयन-एन्थैल्पी सीमान्त मान तक पहुँचती जाती है यानि अनन्त मात्रा तक तनुकरण वाला मान। हाइड्रोक्लोरिक अम्ल के लिए यह उपरोक्त समीकरण (S-3) में दिया गया $\Delta \mathrm{H}$ का मान है।
यदि हम दूसरे समीकरण (S-2) में से पहला समीकरण (S-1) घटा दें तो हमें प्राप्त होता है-
$$ \begin{aligned} & \mathrm{HCl} .25 \text { aq. }+15 \text { aq. } \rightarrow \mathrm{HCl} .40 \text { aq. } \\ & \triangle H=[-72.79-(-72.03)] \mathrm{kJ} / \mathrm{mol} \\ & =-0.76 \mathrm{~kJ} / \mathrm{mol} \end{aligned} $$
$\Delta H$ का यह मान $(-0.76 \mathrm{~kJ} / \mathrm{mol})$ तनुकरण की एन्थैल्पी है। यह वह ऊष्मा है जो विलयन में और अधिक विलायक मिलने पर वातावरण से ली जाती है। विलयन के तनुकरण की एन्थैल्पी विलयन की मूल सांद्रता और मिलाई गई विलायक की मात्रा पर निर्भर करती है।
5.6 स्वतः प्रवर्तिता
ऊष्मागतिकी का प्रथम नियम हमें किसी निकाय द्वारा अवशोषित ऊष्मा एवं उस पर अथवा उसके द्वारा किए गए कार्य में संबंध बताता है। यह ऊष्मा के प्रवाह की दिशा पर कोई प्रतिबंध नहीं लगाता है, बल्कि ऊष्मा का प्रवाह उच्च ताप से निम्न ताप की ओर एकदिशीय होता है। वास्तव में प्राकृतिक रूप से होनेवाले सभी रासायनिक या भौतिक प्रक्रम एक ही दिशा की ओर जिसमें साम्य स्थापित हो, स्वतःप्रवर्तित होंगे। उदाहरण के लिए- एक गैस का उपलब्ध स्थान को भरने के लिए प्रसरण, कार्बन का ऑक्सीजन में जलकर कार्बन डाइऑक्साइड बनना आदि।
परंतु ऊष्मा ठंडी वस्तु से गरम वस्तु की ओर स्वतः नहीं बहेगी। एक पात्र में रखी गैस किसी कोने में स्वतः संकुचित नहीं होगी या कार्बन डाइऑक्साइड स्वतः कार्बन और ऑक्सीजन में परिवर्तित नहीं होगी। इसी प्रकार के अन्य स्वतःप्रक्रम एकदिशीय परिवर्तन दर्शाते हैं। अब प्रश्न उठता है कि स्वतः होनेवाले परिवर्तनों के लिए प्रेरक बल (Driving Force) क्या है? एक स्वतः प्रक्रम की दिशा कैसे निर्धारित होती है? इस खंड में हम इन प्रक्रमों के लिए मापदंड निर्धारित करेंगे कि ये संभव हो सकते हैं या नहीं।
पहले हमें समझना चाहिए कि स्वतःप्रवर्तित प्रक्रम क्या है? आप सामान्य रूप से सोच सकते हैं कि स्वतःप्रवर्तित रासायनिक अभिक्रिया वह है, जो अभिकारकों के संपर्क से तुरंत ही होने लगती है। हम ऑक्सीजन एवं हाइड्रोजन के संयोग की स्थिति को लेते हैं। इन गैसों को कमरे के ताप पर मिश्रित करके अनेक वर्षों तक बिना किसी उल्लेखनीय परिवर्तन के रखा जा सकता है। यद्यपि इनके मध्य अभिक्रिया हो रही है, परंतु बहुत ही धीमी गति से। इसे तब भी ‘स्वतःप्रवर्तित अभिक्रिया’ ही कहते हैं। अतः स्वतःप्रवर्तित प्रक्रम का अर्थ है किसी बाह्य साधन (Agency) की बिना सहायता के किसी प्रक्रम के होने की प्रवृत्ति होना। यद्यपि इससे अभिक्रिया या प्रक्रम के होने की दर का पता नहीं चलता है। स्वतःप्रवर्तित प्रक्रमों के दूसरे पहलू में हम देखते हैं कि ये स्वतः अपनी दिशा से उत्क्रमित नहीं हो सकते हैं। स्वतःप्रवर्तित प्रक्रमों के लिए हम संक्षेप में कह सकते हैं कि -
स्वतःप्रवर्तित प्रक्रम एक अनुत्क्रमणीय प्रक्रम होता है। यह किसी बाह्य साधन (Agency) के द्वारा ही उत्क्रमित किया जा सकता है।
(क) क्या एन्थैल्पी का कम होना स्वतःप्रवर्तिता की कसौटी है?
यदि हम ऐसी घटनाओं जैसे - पहाड़ी से जल गिरने या जमीन पर पत्थर गिरने की प्रक्रियाओं पर विचार करें, तब देखेंगे कि प्रक्रम की दिशा में निकाय की स्थितिज ऊर्जा में कमी होती है। इस प्रकार हम कह सकते हैं कि एक रासायनिक अभिक्रिया उस दिशा में स्वतःप्रवर्तित होगी, जिस दिशा में ऊर्जा में कमी हो, जैसा ऊष्माक्षेपी अभिक्रियाओं में होता है। उदाहरण के लिए-
$$ \begin{aligned} & \frac{1}{2} \mathrm{~N_2}(\mathrm{~g})+-\mathrm{H_2}(\mathrm{~g})= \mathrm{NH_3}(\mathrm{~g}) ; \\ & \Delta_{r} H^{\ominus}=-46.1 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \frac{1}{2} \mathrm{H_2}(\mathrm{~g})+\frac{1}{2} \mathrm{Cl_2}(\mathrm{~g})=\mathrm{HCl}(\mathrm{g}) ; \\ & \Delta_{r} H^{\ominus}=-92.32 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \mathrm{H_2}(\mathrm{~g})+\frac{1}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{H_2} \mathrm{O}(\mathrm{l}) ; \\ & \Delta_{r} H^{\ominus}=-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$
किसी भी ऊष्माक्षेपी अभिक्रिया के लिए अभिकारकों से उत्पादों के बनने पर एन्थैल्पी में आई कमी को एक एन्थैल्पी आरेख (चित्र 5.10 (क)) से दर्शाया जा सकता है।
अब तक प्राप्त प्रमाणों के आधार पर हम यह अवधारणा बना सकते हैं कि किसी रासायनिक अभिक्रिया के लिए एन्थैल्पी में आई कमी उसका प्रेरक बल (Driving force) है।
अब हम निम्नलिखित अभिक्रियाओं पर विचार करते हैं$\frac{1}{2} \mathrm{~N} _{2}(\mathrm{~g})+\mathrm{O} _{2}(\mathrm{~g}) \rightarrow \mathrm{NO} _{2}(\mathrm{~g})$;
$$ \begin{gathered} \frac{1}{2} \mathrm{~N_2}(\mathrm{~g})+\mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{NO_2}(\mathrm{~g}) ; \\ \Delta_{r} H^{\ominus}=+33.2 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ \text { C(graphite, s) }+2 \mathrm{~S}(1) \rightarrow \mathrm{CS_2}(1) ; \\ \Delta_{r} H^{\ominus}=+128.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{gathered} $$
चित्र 5.10 (क) ऊष्माक्षेपी अभिक्रिया के लिए एन्थैल्पी-आरेख
ये अभिक्रियाएं स्वतःप्रवर्तित प्रक्रम एवं ऊष्माशोषी हैं। एन्थैल्पी में वृद्धि को एक एन्थैल्पी-आरेख द्वारा दर्शाया गया है (चित्र 5.10 (ख) )
चित्र 5.10 (ख) ऊष्माशोषी अभिक्रिया के लिए एन्थैल्पी-आरेख
इन उदाहरणों से यह स्पष्ट होता है कि एन्थैल्पी में कमी स्वतःप्रवर्तिता के लिए एक प्रतिसहायक कारक है, परंतु यह सभी प्रक्रमों के लिए सत्य नहीं है।
(ख) एन्ट्रॉपी एवं स्वतःप्रवर्तिता
एक स्वतःप्रवर्तिता प्रक्रम दी गई दिशा में कैसे प्रेरित होती है? आइए, हम एक ऐसी स्थिति का अध्ययन करें, जिसमें $\Delta \mathrm{H}=0$, अर्थात् एन्थैल्पी में कोई परिवर्तन नहीं है, फिर भी अभिक्रिया या प्रक्रम स्वतःप्रेरित है।
हम एक बंद पात्र जो परिवेश से विलगित (Isolated) है, में दो गैसों को विसरित करते हैं, जैसा चित्र 5.11 में दर्शाया गया है।
दो गैसें $\mathrm{A}$ एवं $\mathrm{B}$, जिन्हें क्रमशः काले एवं श्वेत बिंदुओं से दर्शाया गया है तथा एक विभाजक से पृथक् किया गया है (चित्र 5.11 क)। जब विभाजक हटाया जाता है (चित्र 5.11 ख), तब गैसें आपस में विसरित होने लगती हैं। कुछ समय पश्चात् विसरण पूर्ण हो जाता है।
चित्र 5.11 दो गैसों का विसरण
अब हम इस प्रक्रम का अध्ययन करते हैं। विसरण से पूर्व यदि हम बाईं ओर के हिस्से से गैस के अणुओं को निकालते, तो निश्चित रूप से ये गैस $\mathrm{A}$ के होंगे। इसी प्रकार यदि हम दाईं ओर के हिस्से से अणु निकालते, तो ये गैस $\mathrm{B}$ के अणु होंगे। परंतु यदि विभाजक हटाने के बाद अणु निकाले जाएं, तो हम निश्चित तौर पर नहीं कह सकते हैं कि निकाला गया अणु गैस $\mathrm{A}$ का है या गैस $\mathrm{B}$ का। हम कह सकते हैं कि निकाय कम प्रागुक्त या अधिक अव्यवस्थित हो गया है।
अब हम दूसरी अवधारणा बनाते हैं: एक विलगित निकाय में निकाय की ऊर्जा में हमेशा अधिक अव्यवस्थित होने की प्रवृत्ति होती है। यह स्वतःप्रवर्तिता की एक कसौटी हो सकती है।
यहाँ हम एक अन्य ऊष्मागतिकी फलन की बात करते हैं, जिसे ‘एन्ट्रॉपी $\mathbf{S}$ ’ कहते हैं। उपरोक्त अव्यवस्था एन्ट्रॉपी की अभिव्यक्ति है। एक मानसिक दृश्य बनाने के लिए एक व्यक्ति सोच सकता है कि एन्ट्रॉपी किसी निकाय में अव्यवस्था का मापन है। एक विलगित निकाय में जितनी अधिक अव्यवस्था होगी, उतनी ही अधिक उसकी एन्ट्रॉपी होगी। जहाँ तक एक रासायनिक अभिक्रिया का प्रश्न है, एन्ट्रॉपी परिवर्तन परमाणुओं अथवा आयनों के एक पैटर्न (अभिक्रियक) में से दूसरे (उत्पाद) में पुनः व्यवस्थित होना है। यदि उत्पादों की संरचना क्रियाकारकों की संरचना से अधिक अव्यवस्थित होगी, तो एन्ट्रॉपी में परिणामतः वृद्धि होगी। एक रासायनिक अभिक्रिया में एन्ट्रॉपी में गुणात्मक परिवर्तन अभिक्रिया में प्रयुक्त पदार्थों की संरचना के आधार पर अनुमानित किया जाता है। संरचना में नियमितता के घटने का अर्थ है एन्ट्रॉपी का बढ़ना। एक पदार्थ के लिए ठोस अवस्था न्यूनतम एन्ट्रॉपी (सर्वाधिक नियमित) की अवस्था है, जबकि गैस अवस्था अधिकतम एन्ट्रॉपी की अवस्था है।
अब हम एन्ट्रॉपी को मात्रात्मक (Guantify) रूप देते हैं। अणुओं में ऊर्जा के वितरण से अव्यवस्था की गणना करने के लिए एक विधि सांख्यिकी है, जो इस पुस्तक की सीमा से परे हैं। दूसरी विधि इस अभिक्रिया में होने वाले ऊष्मा-परिवर्तनों से जोड़ने की विधि है, जो एन्ट्रॉपी को ऊष्मागतिकी फलन बनाती है। अन्य ऊष्मागतिकी फलनों, जैसे-आंतरिक ऊर्जा $U$ या एन्थैल्पी $H$ की तरह एन्ट्रॉपी भी एक ऊष्मागतिकी अवस्था फलन है। वह $\Delta \mathrm{S}$ प्रक्रिया के पथ पर निर्भर नहीं होता।
जब भी किसी निकाय को ऊष्मा दी जाती है, तब यह आणविक गति को बढ़ाकर निकाय की अव्यवस्था बढ़ा देती है। इस प्रकार ऊष्मा (q) निकाय में अव्यवस्था बढ़ाने का प्रभाव रखती है। क्या हम $\Delta \mathrm{S}$ को $\mathrm{q}$ से संबंधित सकते हैं? अनुभव दर्शाता है कि ऊर्जा का वितरण उस ताप पर निर्भर करता है, जिसपर ऊष्मा दी जाती है। एक उच्च ताप के निकाय में निम्न ताप के निकाय की तुलना में अधिक अव्यवस्था होती है। अतः किसी निकाय का ताप उसके कणों की अनियमित गति का मापन है। निम्न ताप पर किसी निकाय को दी गई ऊष्मा उसी निकाय को उच्च ताप पर दी गई उतनी ही ऊष्मा की तुलना में अधिक अव्यवस्था का कारण बनती है। इससे पता चलता है कि एन्ट्रॉपी परिवर्तन ताप के व्युत्क्रमानुपाती होता है। उत्क्रमणीय प्रक्रमों के लिए हम $\Delta \mathrm{S}$ को $\mathrm{q}$ एवं ताप $\mathrm{T}$ से इस प्रकार संबंधित कर सकते हैं:
$$ \begin{equation*} \Delta \mathrm{S}=\frac{\mathrm{q} _{\mathrm{rev}}}{\mathrm{T}} \tag{5.18} \end{equation*} $$
किसी स्वतः प्रवर्तित प्रक्रम के लिए निकाय एवं परिवेश का कुल एन्ट्रॉपी परिवर्तन $\left(\Delta \mathrm{S} _{\text {total }}\right)$ निम्नलिखित समीकरण द्वारा दिया जा सकता है।
$$ \begin{equation*} \Delta \mathrm{S} _{\text {total }}=\Delta \mathrm{S} _{\text {system }}+\Delta \mathrm{S} _{\text {surr }}>0 \tag{5.19} \end{equation*} $$
जब एक निकाय साम्यावस्था में हो, तो एन्ट्रॉपी अधिकतम होती है एवं एन्ट्रॉपी में परिवर्तन $\Delta \mathrm{S}=0$ है।
हम कह सकते हैं कि एक स्वतःप्रवर्तित प्रक्रम की एन्ट्रॉपी में वृद्धि तब तक होती रहती है, जब तक यह अधिकतम न हो जाए साम्यावस्था पर एन्ट्रॉपी में परिवर्तन शून्य होता है। चूँकि एन्ट्रॉपी एक अवस्था गुण है, अतः एक उत्क्रमणीय प्रक्रम के दौरान हम एन्ट्रॉपी-परिवर्तन की गणना निम्नलिखित समीकरण से हम कर सकते हैं-
$\Delta \mathrm{S_\text {sys }}=\frac{q_{\text {sys }, \text { rev }}}{T}$
हम जानते हैं कि समतापीय परिस्थितियों में उत्क्रमणीय एवं अनुत्क्रमणीय-दोनों प्रक्रमों के लिए $\Delta \mathrm{U}=0$ होता है, परंतु $\Delta \mathrm{S} _{\text {total }}$ अर्थात् $\left(\Delta \mathrm{S} _{\mathrm{sys}}+\Delta \mathrm{S} _{\text {surr }}\right)$ अनुत्क्रमणीय प्रक्रम के लिए शून्य नहीं है। इस प्रकार $\Delta \mathrm{U}$, अनुत्क्रमणीय एवं उत्क्रमणीय प्रक्रम में विभेद नहीं करती है, जबकि $\Delta \mathrm{S}$ विभेद करती है।
उदाहरण 5.10
बताइए कि निम्नलिखित में से किसमें एन्ट्रॉपी बढ़ती / घटती है-
(i) एक द्रव का ठोस अवस्था में परिवर्तन होता है।
(ii) एक क्रिस्टलीय ठोस का ताप $0 \mathrm{~K}$ से $115 \mathrm{~K}$ तक बढ़ाया जाता है।
(iii) $2 \mathrm{NaHCO} _{3}$ (s) $\rightarrow \mathrm{Na} _{2} \mathrm{CO} _{3} (s) + \mathrm{CO} _{2}(\mathrm{~g})+\mathrm{H} _{2} \mathrm{O}(\mathrm{g})$
(iv) $\mathrm{H_2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g})$
हल
(i) ठोस अवस्था में परिवर्तन होने के बाद अणु व्यवस्थित अवस्था प्राप्त करते हैं, अतः एन्ट्रॉपी घटती है।
(ii) ताप $0 \mathrm{~K}$ पर सभी अणु स्थिर होते हैं। अतः एन्ट्रॉपी न्यूनतम होती है। यदि ताप $115 \mathrm{~K}$ तक बढ़ाया जाए, तब अणु गति करना आरंभ कर देते हैं एवं अपनी साम्यावस्था से दोलन करते हैं और निकाय अधिक अव्यवस्थित हो जाता है। अतः एन्ट्रॉपी बढ़ जाती है।
(iii) अभिकारक $\mathrm{NaHCO} _{3}$ ठोस है एवं इसकी एन्ट्रॉपी कम है। उत्पादों में एक ठोस और दो गैसें हैं। अतः उत्पाद उच्च एन्ट्रॉपी की स्थिति का प्रतिनिधित्व करते हैं।
(iv) यहाँ एक अणु दो परमाणु देता है, अर्थात् कणों की संख्या बढ़ती है, जो अधिक अव्यवस्था की ओर ले जाती है। $H$ परमाणुओं के दो मोल हाइड्रोजन अणु के एक मोल की तुलना में अधिक एन्ट्रॉपी रखते हैं।
उदाहरण 5.11
लोहे के ऑक्सीकरण
$$ 4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O} _{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe} _{2} \mathrm{O} _{3}(\mathrm{~s}) $$
एन्ट्रॉपी परिवर्तन $-549.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ है $(298 \mathrm{~K}$ ताप पर) इस अभिक्रिया में एन्ट्रॉपी परिवर्तन ऋणात्मक होने के उपरांत भी अभिक्रिया स्वतः प्रवर्तित क्यों है?
(इस अभिक्रिया के लिए $\left.\Delta _{\mathrm{r}} \mathrm{H}^{\ominus}=-1648 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}\right)$
हल
एक अभिक्रिया की स्वतःप्रवर्तिता
$\Delta \mathrm{S} _{\text {total }}=\Delta \mathrm{S} _{\text {sys }}+\Delta \mathrm{S} _{\text {surr }}$ के आधार पर होती है। $\Delta \mathrm{S} _{\text {surr }}$ की गणना करने के लिए हमें परिवेश द्वारा अवशोषित ऊष्मा पर विचार करना होगा, जो $-\Delta _{\mathrm{r}} \mathrm{H}^{\ominus}$ के तुल्य है। $T$ ताप पर परिवेश की एन्ट्रॉपी में परिवर्तन है
$\Delta \mathrm{S} _{\text {surr }}=\frac{-\Delta _{\mathrm{r}} \mathrm{H}^{\ominus}}{\mathrm{T}}$ (स्थिर दाब पर)
$=-\frac{\left(-1648 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}\right)}{298 \mathrm{~K}}$
$=5530 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
अतः अभिक्रिया के लिए कुल एन्ट्रॉपी-परिवर्तन
$$ \begin{aligned} \Delta_{r} S_{\text {total }} & =5530 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}+ \ & \left(-549.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right) \end{aligned} $$
$=4980.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
इससे प्रकट होता है कि अभिक्रिया स्वतःप्रवर्तित है।
(ग) गिब्ज़ ऊर्जा एवं स्वतःप्रवर्तिता
हम देख चुके हैं कि किसी निकाय के लिए एन्ट्रॉपी में कुल परिवर्तन $\Delta \mathrm{S} _{\text {total }}$ किसी प्रक्रम की स्वतःप्रवर्तिता का निर्णय करता है। परंतु अधिकांश रासायनिक अभिक्रियाएँ बंद निकाय या खुले निकाय की श्रेणी में आती हैं। अतः अधिकांश अभिक्रियाओं में एन्ट्रॉपी एवं एन्थैल्पी - दोनों में परिवर्तन आते हैं। पूर्व खंड में की गई विवेचना से यह स्पष्ट है कि न तो केवल एन्थैल्पी में कमी और न ही एन्ट्रॉपी में वृद्धि स्वत: प्रवर्तित प्रक्रमों की दिशा निर्धारित कर सकती है।
इस प्रयोजन हेतु हम एक नए ऊष्मागतिकी फलन गिब्ज़ ऊर्जा या गिब्ज़ फलन $\mathrm{G}$ को इस प्रकार परिभाषित करते हैं-
$$ \begin{equation*} \mathrm{G}=\mathrm{H}-\mathrm{TS} \tag{5.20} \end{equation*} $$
गिब्ज़ ऊर्जा, $G$ एक विस्तीर्ण एवं अवस्था गुण है।
निकाय की गिब्ज़ ऊर्जा में परिवर्तन $\Delta \mathrm{G} _{s y s}$ को इस प्रकार लिखा जा सकता है-
$$ \Delta G_{\text {sys }}=\Delta H_{\text {sys }}-T \Delta S_{\text {sys }}-S_{\text {sys }} \Delta T $$
स्थिर ताप पर $\Delta \mathrm{T}=0$
$$ \therefore \Delta G_{\text {sys }}=\Delta H_{\text {sys }}-T \Delta S_{\text {sys }} $$
सामान्यतया पादांक (subscript) निकाय को छोड़ते हुए समीकरण को इस प्रकार लिखते हैं-
$$ \begin{equation*} \Delta G=\Delta H-T \Delta S \tag{5.21} \end{equation*} $$
इस प्रकार गिब्ज़ ऊर्जा में परिवर्तन = एन्थैल्पी में परिवर्तन - तापमान $\times$ एन्ट्रॉपी में परिवर्तन यह समीकरण ‘गिब्ज़ समीकरण’ के रूप में जाना जाता है, जो रसायन शास्त्र के अति महत्त्वपूर्ण समीकरणों में से एक है। यहाँ हमने स्वतःप्रवर्तिता के लिए दोनों पदों को साथ-साथ लिया है : ऊर्जा ( $\Delta \mathrm{H}$ के पदों में) एवं एन्ट्रॉपी $\Delta \mathrm{S}$ (अव्यवस्था का मापन)। जैसा पूर्व में बताया गया है। विमीय आधार पर विश्लेषण करने पर हम पाते हैं कि $\Delta \mathrm{G}$ की इकाई ऊर्जा की इकाई होती है, क्योंकि $\Delta \mathrm{H}$ एवं $\mathrm{T} \Delta \mathrm{S}$ दोनों ऊर्जा पद हैं [चूँकि $\mathrm{T} \Delta \mathrm{S}=(\mathrm{K})(\mathrm{J} / \mathrm{K})=\mathrm{J}$]
अब हम विचार करते हैं कि $\Delta \mathrm{G}$ किस प्रकार अभिक्रिया की स्वतः:्रवर्तिता से संबंधित है।
हम जानते हैं कि $\Delta S_{\text {total }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}$
यदि निकाय, परिवेश के साथ तापीय साम्य में है, तो परिवेश का ताप, निकाय के ताप के समान ही होगा। अत: परिवेश की एन्थैल्पी में वृद्धि निकाय की एन्थैल्पी में कमी के तुल्य होगी।
अत : परिवेश की एन्ट्रॉपी में परिवर्तन
$$ \begin{gathered} \Delta S_{\text {surr }}=\frac{\Delta H_{\text {surr }}}{T}=-\frac{\Delta H_{\text {sys }}}{T} \\ \Delta S_{\text {total }}=\Delta S_{\text {sys }}+\left(-\frac{\Delta H_{\text {sys }}}{T}\right) \end{gathered} $$
उपरोक्त समीकरण को पुनः व्यवस्थित करने पर
$T \Delta S_{\text {total }}=T \Delta S_{\text {sys }}-\Delta H_{\text {sys }}$
स्वतः प्रक्रम के लिए $\Delta S_{\text {total }}>0$ अतः
$$ -\left(\Delta H_{s y s}-T \Delta S_{s y s}\right)>0 $$
समीकरण 5.21 का उपयोग करने पर उपरोक्त समीकरण इस प्रकार लिखी जा सकती है-
$-\Delta \mathrm{G}>0$
$\therefore \Delta G=\Delta H-T \Delta S<0$
$\Delta H_{s y s}$ अभिक्रिया की एन्थैल्पी में परिवर्तन है $\mathrm{T} \Delta \mathrm{S}$ वह ऊर्जा है, जो उपयोगी कार्य के लिए उपलब्ध नहीं है। इस प्रकार $\Delta \mathrm{G}$ उपयोगी कार्य के लिए नेट ऊर्जा है एवं इस प्रकार ‘मुक्त ऊर्जा’ का मापन है। इस कारण इसे अभिक्रिया की मुक्त ऊर्जा भी कहा जाता है।
$\Delta \mathrm{G}$ स्थिर दाब एवं ताप पर स्वतःप्रवर्तिता की कसौटी है।
(i) यदि $\Delta \mathrm{G}$ ॠणात्मक $(<0)$ है, तब प्रक्रम स्वतः प्रवर्तित होता है।
(ii) यदि $\Delta \mathrm{G}$ धनात्मक $(>0)$ तब प्रक्रम अस्वतः प्रवर्तित होगा।
टिप्पणी- यदि अभिक्रिया के लिए एन्थैल्पी परिवर्तन धनात्मक हो एवं एन्ट्रॉपी परिवर्तन भी धनात्मक हो, तो अभिक्रिया तभी स्वतः होगी, जब $\mathrm{T} \Delta \mathrm{S}$ का मान $\Delta \mathrm{H}$ के मान से अधिक हो जाए। यह दो प्रकार से हो सकता है- (क) धनात्मक एन्ट्रॉपी परिवर्तन कम हो, तो इस स्थिति में $T$ अधिक होना चाहिए। (ख) धनात्मक एन्ट्रॉपी परिवर्तन अधिक हो, तो इस स्थिति में $T$ कम होना चाहिए। पहले वाला कारण यह बताता है कि अधिकांश अभिक्रियाएं उच्च ताप पर क्यों संपादित की जाती हैं। सारणी 5.4 में अभिक्रियाओं की स्वतः प्रवर्तिता पर ताप के प्रभाव को संक्षेपित (Summarise) किया गया है।
(घ) एन्ट्रॉपी और ऊष्मागतिकी का दूसरा नियम
हम जानते हैं कि किसी विलगित निकाय के लिए ऊर्जा परिवर्तन निश्चित रहता है। इसलिए, इस प्रकार के निकाय में एन्ट्रॉपी का बढ़ना स्वतः परिवर्तन की स्वाभाविक दिशा बतलता है। वास्तव में यह ऊष्मागतिकी का दूसरा नियम है। प्रथम नियम के समान दूसरे नियम को भी विभिन्न प्रकार से लिखा जा सकता है। ऊष्मागतिकी का दूसरा नियम स्पष्ट करता है कि स्वतः प्रवर्ती ऊष्माक्षेपी अभिक्रियाएँ इतनी आम क्यों होती हैं। ऊष्माक्षेपी अभिक्रियाओं से निकली ऊर्जा वातवरण में अव्यवस्था बढ़ा देती है और कुल मिलाकर एन्ट्रॉपी परिवर्तन धनात्मक होता है जो अभिक्रिया को स्वतः प्रवर्तित बना देता है।
(च) निरपेक्ष एन्ट्रॉपी और ऊष्मागतिकी का तीसरा नियम
किसी पदार्थ के अणु सीधी रेखा में किसी भी ओर गति कर सकते हैं, वह लट्टू की तरह घूर्णन कर सकते हैं और अणुओं के आबंध खिंच और सिकुड़ सकते हैं। अणुओं की यह गतियाँ क्रमशः स्थानान्तरण गति, घूर्णनी गति एवं कंपमान गति कहलाती हैं। जब निकाय का तापमान बढ़ता है तो यह गतियाँ अधिक उग्र हो जाती हैं और एन्ट्रॉपी बढ़ जाती है। दूसरी ओर जब ताप घटाया जाता है तो एन्ट्रॉपी कम हो जाती है। किसी शुद्ध क्रिस्टलित पदार्थ का ताप जैसे-जैसे परम शून्य की ओर बढ़ता है वैसे-वैसे एन्ट्रॉपी भी शून्य की ओर बढ़ती है। इसे ऊष्मागतिकी का तीसरा नियम कहते हैं। ऐसा इसलिए होता है क्योंकि परम शून्य पर क्रिस्टल में संपूर्ण क्रम होता है। यह कथन केवल शुद्ध क्रिस्टलित ठोसों तक सीमित है क्योंकि सैद्धांतिक तर्क और प्रायोगिक प्रमाण दर्शाते हैं कि विलयनों और अतिशीतलित द्रवों की एन्ट्रॉपी $\mathrm{OK}$ पर शून्य नहीं होती। तीसरे नियम का महत्व इसलिए है कि यह केवल ऊष्मीय आंकड़ों के आधार पर शुद्ध पदार्थों के निरपेक्ष एन्ट्रॉपी मान परिकलित करने में सहायक होता है। शुद्ध पदार्थ के लिए यह $0 \mathrm{~K}$ से 298 $\mathrm{K}$ तक $\frac{q_{\text {rev }}}{T}$ वृद्धियों को जोड़ कर प्राप्त किया जा सकता है। मानक एन्ट्रॉपियाँ हेस-नियम प्रकार के परिकलन द्वारा मानक एन्ट्रॉपी परिवर्तन परिकलित करने के लिए इस्तेमाल की जा सकती हैं।
5.7 गिब्ज़ ऊर्जा-परिवर्तन एवं साम्यावस्था
हम देख चुके हैं कि इस प्रकार मुक्त ऊर्जा का चिह्न एवं परिमाण-अभिक्रिया के बारे में निम्नलिखित जानकारी देता है-
(i) रासायनिक अभिक्रिया की स्वतःप्रवर्तिता का पूर्वानुमान।
(ii) रासायनिक अभिक्रिया से प्राप्त हो सकने वाले उपयोगी कार्य का पूर्वानुमान।
अब तक हम अनुत्क्रमणीय अभिक्रियाओं में मुक्त ऊर्जा परिवर्तनों पर विचार कर चुके हैं। अब हम उत्क्रमणीय अभिक्रियाओं में मुक्त ऊर्जा-परिवर्तन की जाँच करते हैं।
‘उत्क्रमणीयता’ में ऊष्मागतिकी एक विशेष परिस्थिति है, जिसमें एक प्रक्रम को इस प्रकार किया जाता है कि निकाय हमेशा अपने परिवेश से पूर्णतः साम्य में रहे। रासायनिक अभिक्रियाओं के संदर्भ में ‘उत्क्रमणीयता’ का अर्थ है कि एक रासायनिक अभिक्रिया दोनों दिशाओं में साथ-साथ चल सकती है, जिससे कि साम्य स्थापित हो सके। इससे प्रतीत होता है कि अभिक्रिया दोनों दिशाओं में मुक्त ऊर्जा में कमी के साथ चल सके, जो असंभव प्रतीत होता है। यह तभी संभव है, जब साम्यावस्था में निकाय की मुक्त ऊर्जा न्यूनतम हो। यदि ऐसा नहीं हो, तो निकाय स्वतः ही कम मुक्त ऊर्जा की स्थिति में परिवर्तित हो जाएगा।
अतः साम्य के लिए कसौटी है-
$\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$
$\Delta_{r} G=0$
किसी अभिक्रिया, जिसमें सभी अभिकारक एवं उत्पाद मानक अवस्था में हों, तो गिब्ज़ ऊर्जा $\Delta_{\mathrm{r}} \mathrm{G}^{\ominus}$, साम्यावस्था स्थिरांक से निम्नलिखित समीकरण द्वारा संबंधित होती है-
$$ 0=\Delta_{r} G^{\ominus}+\mathrm{R} T \ln K $$
अथवा $\Delta_{r} G^{\ominus}=-\mathrm{R} T \ln K$
$$ \text{ अथवा }\quad \quad \Delta_{r} G^{\ominus}=-2.303 \mathrm{R} T \log K \tag{5.23}$$
हम यह भी जानते हैं कि
$$\begin{equation*} \Delta_{r} G^{\ominus}=\Delta_{r} H^{\ominus}-T \Delta_{r} S^{\ominus}=-\mathrm{R} T \ln K \tag{5.24} \end{equation*}$$
प्रबल ऊष्माशोषी अभिक्रियाओं के लिए $\Delta_{\mathrm{r}} \mathrm{H}^{\ominus}$ का मान अधिक एवं धनात्मक होता है। इन परिस्थितियों में $\mathrm{K}$ का मान 1 से बहुत कम होगा एवं अभिक्रिया में अधिक उत्पाद बनाने की प्रवृत्ति नहीं होगी। ऊष्माक्षेपी अभिक्रियाओं में $\Delta_{\mathrm{r}} \mathrm{H}^{\ominus}$ का मान अधिक ज्यादा एवं ऋणात्मक होगा तथा $\Delta_{\mathrm{r}} \mathrm{G}^{\ominus}$ का मान अधिक एवं ऋणात्मक संभावित है। इन परिस्थितियों में $\mathrm{K}$ का मान 1 से बहुत अधिक होगा। हम प्रबल ऊष्माक्षेपी अभिक्रियाओं के लिए उच्च $\mathrm{K}$ की आशा कर सकते हैं एवं अभिक्रिया लगभग पूर्ण हो सकती है। $\Delta_{\mathrm{r}} \mathrm{G}^{\ominus}$ का मान $\Delta_{\mathrm{r}} \mathrm{S}^{\ominus}$ के मान पर भी निर्भर करता है। यदि अभिक्रिया में एन्ट्रॉपी परिवर्तन को भी ध्यान में रखा जाए, तब $\mathrm{K}$ का मान या अभिक्रिया की सीमा इस बात से प्रभावित होगी कि $\Delta_{\mathrm{r}} \mathrm{S}^{\ominus}$ का मान धनात्मक या ॠणात्मक है।
समीकरण (5.24) का प्रयोग करने पर
तालिका 5.4 अभिक्रिया की स्वतःप्रवर्तिता पर ताप का प्रभाव
$\Delta_{r} H^{\ominus}$ | $\Delta_{r} \mathbf{S}^{\ominus}$ | $\boldsymbol{\Delta} _{r} \boldsymbol{G}^{\ominus}$ | वर्णन* |
---|---|---|---|
- | + | - | सभी ताप पर अभिक्रिया स्वतःप्रवर्तित |
- | - | - (निम्न ताप पर $)$ | निम्न ताप पर अभिक्रिया स्वतःप्रवर्तित |
- | - | + (उच्च ताप पर $)$ | उच्च ताप पर अभिक्रिया अस्वतःप्रवर्तित |
+ | + | $+($ निम्न ताप पर $)$ | निम्न ताप पर अभिक्रिया अस्वतःप्रवर्तित |
+ | + | - (उच्च ताप पर $)$ | उच्च ताप पर अभिक्रिया स्वतःप्रवर्तित |
+ | - | + (सभी ताप पर $)$ | सभी ताप पर अभिक्रिया अस्वतःप्रवर्तित |
- पद निम्न ताप एवं उच्च ताप तुलनात्मक हैं। किसी विशेष अभिक्रिया के लिए उच्च ताप औसत कमरे का ताप भी हो सकता है।
(i) $\Delta \mathrm{H}^{\ominus}$ एवं $\Delta \mathrm{S}^{\ominus}$ के मापन से $\Delta \mathrm{G}^{\ominus}$ का मान अनुमानित करके, किसी भी ताप पर किफायती रूप से उत्पादों की प्राप्ति के लिए $\mathrm{K}$ के मान की गणना की जा सकती है।
(ii) यदि प्रयोगशाला में $\mathrm{K}$ सीधा ही माप लिया जाए, तो किसी भी अन्य ताप पर $\Delta \mathrm{G}^{\ominus}$ के मान की गणना की जा सकती है।
समीकरण (5.24) का प्रयोग करने पर
उदाहरण 5.12
$298 \mathrm{~K}$ पर ऑक्सीजन के ओज़ोन में रूपांतरण $\frac{3}{2} \mathrm{O} _{2}(\mathrm{~g}) \rightarrow \mathrm{O} _{3}(\mathrm{~g})$ के लिए $\Delta _{\mathrm{r}} \mathrm{G}^{\ominus}$ के मान की गणना कीजिए। इस अभिक्रिया के लिए $\mathrm{K} _{\mathrm{p}}$ का मान $2.47 \times 10^{-29}$ है।
हल
हम जानते हैं कि $\Delta _{\mathrm{r}} \mathrm{G}^{\ominus}=-2.303 \mathrm{RT} \log \mathrm{K} _{\mathrm{p}}$ एवं $\mathrm{R}$ $=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
अतः
$\Delta_{r} G^{\ominus}= -2.303 (8.314 J K \left.{ }^{-1} \mathrm{~mol}^{-1}\right) \times(298 \mathrm{~K})\left(\log 2.47 \times 10^{-29}\right)$
$=163000 \mathrm{~J} \mathrm{~mol}^{-1}$
$=163 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
उदाहरण 5.13
निम्नलिखित अभिक्रिया के लिए $298 \mathrm{~K}$ पर साम्य स्थिरांक का मान ज्ञात कीजिए-
$$ \begin{array}{r} 2 \mathrm{NH_3}(\mathrm{~g})+\mathrm{CO_2}(\mathrm{~g}) \leftrightharpoons \mathrm{NH_2} \mathrm{CONH_2}(\mathrm{aq}) +\mathrm{H_2} \mathrm{O}(\mathrm{l}) \end{array} $$
दिए गए ताप पर मानक गिब्ज़ ऊर्जा $\Delta_{\mathrm{r}} \mathrm{G}^{\ominus}$ का मान $-13.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ है।
हल
हम जानते हैं कि $\log \mathrm{K}=\frac{-\Delta_{\mathrm{r}} \mathrm{G}^{\ominus}}{2.303 \mathrm{RT}}$
$$ \begin{aligned} & =\frac{\left(-13.6 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}\right)}{2.303\left(8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)(298 \mathrm{~K})} \\ & =2.38 \end{aligned} $$
$K=\operatorname{antilog} 2.38=2.4 \times 10^{2}$
उदाहरण 5.14
$60^{\circ} \mathrm{C}$ ताप पर डाइनाइट्रोजन टेट्राक्साइड $50 %$ वियोजित होता है। एक वायुमंडलीय दाब एवं इस ताप पर मानक मुक्त ऊर्जा-परिवर्तन की गणना कीजिए।
हल
$$ \mathrm{N} _{2} \mathrm{O} _{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO} _{2}(\mathrm{~g}) $$
यदि $\mathrm{N} _{2} \mathrm{O} _{4}, 50 \%$ वियोजित होता है, तो दोनों पदार्थों का मोल अंश होगा-
$$ \begin{aligned} & x_{\mathrm{N_2} \mathrm{O_4}}= \frac{1-0.5}{1+0.5}: x_{\mathrm{NO_2}}=\frac{2 \times 0.5}{1+0.5} \\ & p_{\mathrm{N_2} \mathrm{O_4}}=\frac{0.5}{1.5} \times 1 \mathrm{~atm}, p_{\mathrm{NO_2}}= \\ & \frac{1}{1.5} \times 1 \mathrm{~atm} . \end{aligned} $$
साम्य स्थिरांक $K_{p} \frac{\left(p _{\mathrm{NO} _{2}}\right)^{2}}{p _{\mathrm{N} _{2} \mathrm{O} _{4}}}=\frac{1.5}{(1.5)^{2}(0.5)}$
$=1.33 \mathrm{~atm}$.
चूँकि
$$ \begin{aligned} & \Delta_{r} G^{\ominus}=-\mathrm{R} T \ln K_{p} \\ & \Delta_{r} G^{\ominus}=\left(-8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right) \times(333 \mathrm{~K}) \\ & \times(2.303) \times(0.1239) \\ & =-763.8 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$
सारांश
ऊष्मागतिकी रासायनिक एवं भौतिक प्रक्रमों में ऊर्जा-परिवर्तन से संबंध रखती है। यह इन परिवर्तनों का मात्रात्मक अध्ययन करने तथा उपयोगी अनुमान लगाने में हमें सहायता करती है। इन कार्यों के लिए हम ब्रह्मांड को निकाय एवं परिवेश में विभाजित करते हैं। रासायनिक एवं भौतिक प्रक्रम ऊष्मा $(q)$ उत्सर्जन या अवशोषण के साथ होते हैं, जिसका कुछ भाग कार्य $(\mathrm{w})$ में बदला जा सकता है। ये राशियाँ ऊष्मागतिक के प्रथम नियम $\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}$ द्वारा संबंधित होती हैं। $\Delta \mathrm{U}$ प्रारंभिक एवं अंतिम अवस्था पर निर्भर करता है तथा $U$ अवस्था फलन है, जबकि $q$ एवं $\mathrm{w}$ पथ पर निर्भर करते हैं तथा अवस्था फलन नहीं है। हम $q$ एवं $\mathrm{w}$ के लिए चिह्न परिपाटी का पालन करते हैं, यदि इन्हें निकाय को दिया जाए तो इन्हें धनात्मक चिह्न देते हैं,हम ऊष्मा के एक निकाय से दूसरे निकाय में स्थानांतरण का मापन कर सकते हैं, जिससे ताप में परिवर्तन होता है। तापमान में वृद्धि का मान पदार्थ की ऊष्माधारिता $(\mathrm{C})$ पर निर्भर करता है। अतः अवशोषित या उत्सर्जित ऊष्मा $\mathrm{q}=\mathrm{C} \Delta \mathrm{T}$ होता है। यदि गैस का प्रसरण होता हो, तो कार्य का मापन $\mathrm{W}=-\mathrm{p} _{\mathrm{ex}} \Delta \mathrm{V}$ से करते हैं। उत्क्रमणीय प्रक्रम में आयतन के अत्यणु परिवर्तन के लिए $\mathrm{p} _{\mathrm{ex}}=\mathrm{p}$ का मान रख सकते हैं। अतः $\mathrm{W} _{\mathrm{rev}}=-\mathrm{pdV}$ इस अवस्था में हम गैस समीकरण $p V=n \mathrm{R} T$ का प्रयोग कर सकते हैं।
स्थिर आयतन पर $\mathrm{w}=0$ तब $\Delta \mathrm{U}=\mathrm{q} _{\mathrm{v}}$ अर्थात् यह स्थिर आयतन पर स्थानांतरित ऊष्मा है। परंतु रासायनिक अभिक्रियाओं के अध्ययन के लिए हम सामान्यतया स्थिर दाब लेते हैं। हम एक ओर अवस्था-फलन एन्थैल्पी को परिभाषित करते हैं। एन्थैल्पी-परिवर्तन $\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{n} _{\mathrm{g}} \mathrm{RT}$ का मापन सीधे स्थिर दाब पर ऊष्मा-परिवर्तन से किया जा सकता है, यहाँ $\Delta \mathrm{H}=\mathrm{q} _{\mathrm{p}}$ है।
एन्थैल्पी-परिवर्तनों के कई प्रकार हैं। प्रावस्था परिवर्तन (जैसे-गलन, वाष्पीकरण एवं ऊर्ध्वपातन) सामान्यतया स्थिर ताप पर होते हैं, जिन्हें धनात्मक एन्थैल्पी-परिवर्तन से अभिलक्षित किया जाता है। विरचन एन्थैल्पी, दहन एन्थैल्पी एवं अन्य एन्थैल्पियों में परिवर्तन हेस के नियम का उपयोग करके ज्ञात किए जा सकते हैं। रासायनिक अभिक्रियाओं में एन्थैल्पी-परिवर्तन
$\Delta_{r} H=\sum_{f}\left(a_{i} \Delta_{f} H_{\text {products }}\right)-\sum_{i}\left(b_{i} \Delta_{f} H_{\text {reactions }}\right)$
गैसीय अवस्था में
$\Delta_{\mathrm{r}} \mathrm{H}^{\ominus}=$ (अभिकारकों की आबंध ऊर्जा) $-\sum$ (उत्पादों की आबंध ऊर्जा)
ऊष्मागतिकी का प्रथम नियम रासायनिक अभिक्रिया की दिशा के बारे में हमें निर्देशित नहीं करता, अर्थात् यह नहीं बताता कि रासायनिक अभिक्रिया का प्रेरक बल क्या है। विलगित निकाय के लिए $\Delta \mathrm{U}=0$ है। अतः हम इस कार्य के लिए दूसरा अवस्था-फलन, $\mathrm{S}$, एन्ट्रॉपी परिभाषित करते हैं। एन्ट्रॉपी अव्यवस्था का मापन है। एक स्वतः प्रवर्तित प्रक्रम के लिए कुल एन्ट्रॉपी परिवर्तन धनात्मक होता है। एक विलगित निकाय के लिए $\Delta \mathrm{U}=0, \Delta \mathrm{S}>0$ है। अतः एन्ट्रॉपी परिवर्तन स्वतः प्रवर्तित प्रक्रम को विभेदित करता है, जबकि ऊर्जा परिवर्तन नहीं करता। उत्क्रमणीय प्रक्रम के लिए एन्ट्रॉपी परिवर्तन-समीकरण $\Delta \mathrm{S}=\frac{\mathrm{q} _{\mathrm{rev}}}{\mathrm{T}}$ से ज्ञात किया जा सकता है। $\frac{\mathrm{q} _{\mathrm{rev}}}{\mathrm{T}}$ पथ पर निर्भर नहीं करता है।
चूँकि अधिकांश रासायनिक अभिक्रियाएं स्थिर दाब पर होती हैं, अतः हम दूसरा अवस्था-फलन गिब़़ ऊर्जा $G$ परिभाषित करते हैं, जो निकाय के एन्ट्रॉपी एवं एन्थैल्पी परिवर्तनों से समीकरण
$\Delta_{\mathrm{r}} \mathrm{G}=\Delta_{\mathrm{r}} \mathrm{H}-\mathrm{T} \Delta_{\mathrm{r}} \mathrm{S}$ द्वारा संबंधित है।
स्वतःप्रवर्तित प्रक्रम के लिए $\Delta \mathrm{G} _{\mathrm{sys}}<0$ एवं साम्यावस्था पर $\Delta \mathrm{G} _{\mathrm{sys}}=0$
मानक गिब्ज़ ऊर्जा-परिवर्तन साम्य स्थिरांक से $\Delta_{\mathrm{r}} \mathrm{G}^{\ominus}=-\mathrm{RT}$ In $\mathrm{K}$ समीकरण से संबंधित है।
इसकी सहायता से $\Delta_{\mathrm{r}} \mathrm{G}^{\ominus}$ ज्ञात होने पर $\mathrm{K}$ का मान ज्ञात किया जा सकता है। $\Delta_{\mathrm{r}} \mathrm{G}^{\ominus}$ का मान समीकरण $\Delta_{\mathrm{r}} \mathrm{G}^{\ominus}=\Delta_{\mathrm{r}} \mathrm{H}^{\ominus}-\mathrm{T} \Delta_{\mathrm{r}} \mathrm{S}^{\ominus}$ से ज्ञात किया जा सकता है। समीकरण में ताप एक महत्त्वपूर्ण कारक है। धनात्मक एन्ट्रॉपी परिवर्तनवाली कई अभिक्रियाएं, जो कम ताप पर अस्वतः प्रवर्तित हों, उन्हें उच्च ताप पर स्वतःप्रवर्तित बनाया जा सकता है।
अभ्यास
5.1 सही उत्तर चुनिए-
ऊष्मागतिकी अवस्था फलन एक राशि है,
(i) जो ऊष्मा-परिवर्तनों के लिए प्रयुक्त होती है।
(ii) जिसका मान पथ पर निर्भर नहीं करता है।
(iii) जो दाब-आयतन कार्य की गणना करने में प्रयुक्त होती है।
(iv) जिसका मान केवल ताप पर निर्भर करता है।
Show Answer
Answer
/#missing
5.2 एक प्रक्रम के रूद्वोष्म परिस्थितियों में होने के लिए-
(i) $\Delta T=0$
(ii) $\Delta p=0$
(iii) $q=0$
(iv) $\mathrm{w}=0$
Show Answer
Answer
/#missing
5.3 सभी तत्त्वों की एन्थैल्पी उनकी संदर्भ-अवस्था में होती है-
(i) इकाई
(ii) शून्य
(iii) $<0$
(iv) सभी तत्त्वों के लिए भिन्न होती है।
Show Answer
Answer
/#missing
5.4 मेथेन के दहन के लिए $\Delta \mathrm{U}^{\ominus}$ का मान $-\mathrm{X} \mathrm{kJ} \mathrm{mol}^{-1}$ है। इसके लिए $\Delta \mathrm{H}^{\ominus}$ का मान होगा-
(i) $=\Delta U^{0}$
(ii) $>\Delta U^{0}$
(iii) $<\Delta U^{0}$
(iv) $=0$
Show Answer
Answer
/#missing
5.5 मेथेन, ग्रैफाइट एवं डाइहाइड्रोजन के लिए $298 \mathrm{~K}$ पर दहन एन्थैल्पी के मान क्रमशः $-890.3 \mathrm{~kJ}$ $\mathrm{mol}^{-1},-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ एवं $-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ हैं। $\mathrm{CH} _{4}(\mathrm{~g})$ की विरचन एन्थैल्पी क्या होगी?
(i) $-74.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(ii) $-52.27 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(iii) $+74.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(iv) $+52.26 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Show Answer
Answer
/#missing
5.6 एक अभिक्रिया $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}+\mathrm{q}$ के लिए एन्ट्रॉपी परिवर्तन धनात्मक पाया गया। यह अभिक्रिया संभव होगी-
(i) उच्च ताप पर
(ii) केवल निम्न ताप पर
(iii) किसी भी ताप पर नहीं
(iv) किसी भी ताप पर
Show Answer
Answer
/#missing
5.7 एक प्रक्रम में निकाय द्वारा $701 \mathrm{~J}$ ऊष्मा अवशोषित होती है एवं $394 \mathrm{~J}$ कार्य किया जाता है। इस प्रक्रम में आंतरिक ऊर्जा में कितना परिवर्तन होगा?
Show Answer
Answer
/#missing
5.8 एक बम कैलोरीमीटर में $\mathrm{NH} _{2} \mathrm{CN}(\mathrm{s})$ की अभिक्रिया डाइऑक्सीजन के साथ की गई एवं $\Delta \mathrm{U}$ का मान $-742.7 \mathrm{KJ} \mathrm{mol}^{-1}$ पाया गया ( $298 \mathrm{~K}$ पर)। इस अभिक्रिया के लिए $298 \mathrm{~K}$ पर एन्थैल्पी परिवर्तन ज्ञात कीजिए-
$\mathrm{NH} _{2} \mathrm{CN}(\mathrm{g})+\frac{3}{2} \mathrm{O} _{2}(\mathrm{~g}) \rightarrow \mathrm{N} _{2}(\mathrm{~g})+\mathrm{CO} _{2}(\mathrm{~g})+\mathrm{H} _{2} \mathrm{O}(\mathrm{l})$
Show Answer
Answer
/#missing
5.9 $60.0 \mathrm{~g}$ ऐलुमिनियम का ताप $35^{\circ} \mathrm{C}$ से $55^{\circ} \mathrm{C}$ करने के लिए कितने किलो जूल ऊष्मा की आवश्यकता होगी? $\mathrm{Al}$ की मोलर ऊष्माधारिता $24 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ है।
Show Answer
Answer
/#missing
5.10 $10.0^{\circ} \mathrm{C}$ पर 1 मोल जल की बर्फ $-10^{\circ} \mathrm{C}$ पर जमाने पर एन्थैल्पी-परिवर्तन की गणना कीजिए। $\Delta_{\text {fus }} H=6.03 \mathrm{~kJ} \mathrm{~mol}^{-1} 0^{\circ} \mathrm{C}$ पर,
$$ \begin{aligned} & C_p\left[\mathrm{H}_2 \mathrm{O}(\mathrm{l})\right]=75.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & C_p\left[\mathrm{H}_2 \mathrm{O}(\mathrm{s})\right]=36.8 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned} $$
Show Answer
Answer
/#missing
5.11 $\mathrm{CO} _{2}$ की दहन एन्थैल्पी $-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ है। कार्बन एवं ऑक्सीजन से $35.2 \mathrm{~g} \mathrm{CO} _{2}$ बनने पर उत्सर्जित ऊष्मा की गणना कीजिए।
Show Answer
Answer
/#missing
5.12 $\mathrm{CO}(\mathrm{g}), \mathrm{CO} _{2}(\mathrm{~g}), \mathrm{N} _{2} \mathrm{O}(\mathrm{g})$ एवं $\mathrm{N} _{2} \mathrm{O} _{4}(\mathrm{~g})$ की विरचन एन्थैल्पी क्रमशः $-110,-393,81$ एवं $9.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ हैं। अभिक्रिया $\mathrm{N} _{2} \mathrm{O} _{4}(\mathrm{~g})+3 \mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{N} _{2} \mathrm{O}(\mathrm{g})+3 \mathrm{CO} _{2}(\mathrm{~g})$ के लिए $\Delta _{\mathrm{r}} \mathrm{H}$ का मान ज्ञात कीजिए।
Show Answer
Answer
/#missing
5.13 $\mathrm{N} _{2}(\mathrm{~g})+3 \mathrm{H} _{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH} _{3}(\mathrm{~g}) ; \Delta _{\mathrm{r}} \mathrm{H}^{\ominus}=-92.4 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{NH} _{3}$ गैस की मानक विरचन एन्थैल्पी क्या है?
Show Answer
Answer
/#missing
5.14 निम्नलिखित आँकड़ों से $\mathrm{CH} _{3} \mathrm{OH}(\mathrm{l})$ की मानक-विरचन एन्थैल्पी ज्ञात कीजिए-
$\mathrm{CH} _{3} \mathrm{OH}(\mathrm{l})+\frac{3}{2} \mathrm{O} _{2}(\mathrm{~g}) \rightarrow \mathrm{CO} _{2}(\mathrm{~g})+2 \mathrm{H} _{2} \mathrm{O}(\mathrm{l}) ; \Delta _{r} H^{\ominus}=-726 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{C}($ ग्रैफाइट $)+\mathrm{O} _{2}(\mathrm{~g}) \rightarrow \mathrm{CO} _{2}(\mathrm{~g}) ; \Delta _{c} H^{\ominus}=-393 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{H} _{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O} _{2}(\mathrm{~g}) \rightarrow \mathrm{H} _{2} \mathrm{O}(\mathrm{l}) ; \Delta _{f} H^{\ominus}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Show Answer
Answer
/#missing
5.15 $\mathrm{CCl} _{4}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{g})+4 \mathrm{Cl}(\mathrm{g})$ अभिक्रिया के लिए एन्थैल्पी-परिवर्तन ज्ञात कीजिए एवं $\mathrm{CCl} _{4}$ में $\mathrm{C}-\mathrm{Cl}$ की आबंध एन्थैल्पी की गणना कीजिए-
$\Delta_{\text {vap }} \mathrm{H}^{\ominus}\left(\mathrm{CCl} _{4}\right)=30.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
$\Delta_{f} H^{\ominus}\left(\mathrm{CCl} _{4}\right)=-135.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
$\Delta_{a} H^{\ominus}(\mathrm{C})=715.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, यहाँ $\Delta_{a} H^{0}$ कणन एन्थैल्पी है।
$\Delta_{a} H^{\ominus}\left(\mathrm{Cl} _{2}\right)=242 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Show Answer
Answer
/#missing
5.16 एक विलगित निकाय के लिए $\Delta \mathrm{U}=0$, इसके लिए $\Delta \mathrm{S}$ क्या होगा?
Show Answer
Answer
/#missing
5.17 $298 \mathrm{~K}$ पर अभिक्रिया $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}$ के लिए
$\Delta \mathrm{H}=400 \mathrm{~kJ} \mathrm{~mol}^{-1}$ एवं $\Delta \mathrm{S}=0.2 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\Delta \mathrm{H}$ एवं $\Delta \mathrm{S}$ को ताप-विस्तार में स्थिर मानते हुए बताइए कि किस ताप पर अभिक्रिया स्वतः होगी?
Show Answer
Answer
/#missing
5.18 अभिक्रिया $2 \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{Cl} _{2}(\mathrm{~g})$ के लिए $\Delta \mathrm{H}$ एवं $\mathrm{OSQ}$ के चिह्न क्या होंगे?
Show Answer
Answer
/#missing
5.19अभिक्रिया $2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{g}) \rightarrow 2 \mathrm{D}(\mathrm{g})$ के लिए $\Delta \mathrm{U}^{\ominus}=-10.5 \mathrm{~kJ}$ एवं $\Delta \mathrm{S}^{\ominus}=-44.1 \mathrm{JK}^{-1}$ अभिक्रिया के लिए $\Delta \mathrm{G}^{\ominus}$ की गणना कीजिए और बताइए कि क्या अभिक्रिया स्वतः प्रवर्तित हो सकती है?
Show Answer
Answer
/#missing
5.20 300 पर एक अभिक्रिया के लिए साम्य स्थिरांक 10 है। $\Delta \mathrm{G}^{\ominus}$ का मान क्या होगा? $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Show Answer
Answer
/#missing
5.21 निम्नलिखित अभिक्रियाओं के आधार पर $\mathrm{NO}(\mathrm{g})$ के ऊष्मागतिकी स्थायित्व पर टिप्पणी कीजिए-
$\frac{1}{2} \mathrm{~N} _{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O} _{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g}) ; \quad \Delta _{r} H^{\ominus}=90 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O} _{2}(\mathrm{~g}) \rightarrow \mathrm{NO} _{2}(\mathrm{~g}): \quad \Delta _{r} H^{\ominus}=-74 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Show Answer
Answer
/#missing
5.22 जब 1.00 मोल $\mathrm{H} _{2} \mathrm{O}(\mathrm{l})$ को मानक परिस्थितियों में विरचित जाता है, तब परिवेश के एन्ट्रॉपी-परिवर्तन की गणना कीजिए- $\Delta _{\mathrm{f}} \mathrm{H}^{\ominus}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Show Answer
Answer
/#missing