Chapter-12 Magnetic Effects of Electric Current

In the previous Chapter on ‘Electricity’ we learnt about the heating effects of electric current. What could be the other effects of electric current? We know that an electric current-carrying wire behaves like a magnet. Let us perform the following Activity to reinforce it.

Activity 12.1

  • Take a straight thick copper wire and place it between the points $X$ and $Y$ in an electric circuit, as shown in Fig. 12.1. The wire XY is kept perpendicular to the plane of paper.
  • Horizontally place a small compass near to this copper wire. See the position of its needle.
  • Pass the current through the circuit by inserting the key into the plug.
  • Observe the change in the position of the compass needle.

Figure 12.1 Compass needle is deflected on passing an electric current through a metallic conductor

We see that the needle is deflected. What does it mean? It means that the electric current through the copper wire has produced a magnetic effect. Thus we can say that electricity and magnetism are linked to each other. Then, what about the reverse possibility of an electric effect of moving magnets? In this Chapter we will study magnetic fields and such electromagnetic effects. We shall also study about electromagnets which involve the magnetic effect of electric current.

Hans Christian Oersted (1777-1851)

Hans Christian Oersted, one of the leading scientists of the $19^{\text{th }}$ century, played a crucial role in understanding electromagnetism. In 1820 he accidentally discovered that a compass needle got deflected when an electric current passed through a metallic wire placed nearby. Through this observation Oersted showed that electricity and magnetism were related phenomena. His research later created technologies such as the radio, television and fiber optics. The unit of magnetic field strength is named the oersted in his honor.

12.1 MAGNETIC FIELD AND FIELD LINES

We are familiar with the fact that a compass needle gets deflected when brought near a bar magnet. A compass needle is, in fact, a small bar magnet. The ends of the compass needle point approximately towards north and south directions. The end pointing towards north is called north seeking or north pole. The other end that points towards south is called south seeking or south pole. Through various activities we have observed that like poles repel, while unlike poles of magnets attract each other.

Questions

1. Why does a compass needle get deflected when brought near a bar magnet?

Show Answer

Answer

A compass needle is a small bar magnet. When it is brought near a bar magnet, its magnetic field lines interact with that of the bar magnet. Hence, a compass needle shows a deflection when brought near the bar magnet.

Activity 12.2

  • Fix a sheet of white paper on a drawing board using some adhesive material.
  • Place a bar magnet in the centre of it.
  • Sprinkle some iron filings uniformly around the bar magnet (Fig. 12.2). A salt-sprinkler may be used for this purpose.
  • Now tap the board gently.
  • What do you observe?

Figure 12.2 Iron filings near the bar magnet align themselves along the field lines.

The iron filings arrange themselves in a pattern as shown Fig. 12.2. Why do the iron filings arrange in such a pattern? What does this pattern demonstrate? The magnet exerts its influence in the region surrounding it. Therefore the iron filings experience a force. The force thus exerted makes iron filings to arrange in a pattern. The region surrounding a magnet, in which the force of the magnet can be detected, is said to have a magnetic field. The lines along which the iron filings align themselves represent magnetic field lines.

Are there other ways of obtaining magnetic field lines around a bar magnet? Yes, you can yourself draw the field lines of a bar magnet.

Activity 12.3

  • Take a small compass and a bar magnet.
  • Place the magnet on a sheet of white paper fixed on a drawing board, using some adhesive material.
  • Mark the boundary of the magnet.
  • Place the compass near the north pole of the magnet. How does it behave? The south pole of the needle points towards the north pole of the magnet. The north pole of the compass is directed away from the north pole of the magnet.
  • Mark the position of two ends of the needle.
  • Now move the needle to a new position such that its south pole occupies the position previously occupied by its north pole.
  • In this way, proceed step by step till you reach the south pole of the magnet as shown in Fig. 12.3.
  • Join the points marked on the paper by a smooth curve. This curve represents a field line.
  • Repeat the above procedure and draw as many lines as you can. You will get a pattern shown in Fig. 12.4. These lines represent the magnetic field around the magnet. These are known as magnetic field lines.
  • Observe the deflection in the compass needle as you move it along a field line. The deflection increases as the needle is moved towards the poles.

Figure 12.3 Drawing a magnetic field line with the help of a compass needle

Figure 12.4 Field lines around a bar magnet

Magnetic field is a quantity that has both direction and magnitude. The direction of the magnetic field is taken to be the direction in which a north pole of the compass needle moves inside it. Therefore it is taken by convention that the field lines emerge from north pole and merge at the south pole (note the \tos marked on the field lines in Fig. 12.4). Inside the magnet, the direction of field lines is from its south pole to its north pole. Thus the magnetic field lines are closed curves.

The relative strength of the magnetic field is shown by the degree of closeness of the field lines. The field is stronger, that is, the force acting on the pole of another magnet placed is greater where the field lines are crowded (see Fig. 12.4).

No two field-lines are found to cross each other. If they did, it would mean that at the point of intersection, the compass needle would point towards two directions, which is not possible.

12.2 MAGNETIC FIELD DUE TO A CURRENT-CARRYING CONDUCTOR

In Activity 12.1, we have seen that an electric current through a metallic conductor produces a magnetic field around it. In order to find the direction of the field produced let us repeat the activity in the following way -

Activity 12.4

  • Take a long straight copper wire, two or three cells of $1.5 V$ each, and a plug key. Connect all of them in series as shown in Fig. 12.5 (a).
  • Place the straight wire parallel to and over a compass needle.
  • Plug the key in the circuit.
  • Observe the direction of deflection of the north pole of the needle. If the current flows from north to south, as shown in Fig. 12.5 (a), the north pole of the compass needle would move towards the east.
  • Replace the cell connections in the circuit as shown in Fig. 12.5 (b). This would result in the change of the direction of current through the copper wire, that is, from south to north.
  • Observe the change in the direction of deflection of the needle. You will see that now the needle moves in opposite direction, that is, towards the west [Fig. 12.5 (b)]. It means that the direction of magnetic field produced by the electric current is also reversed.

(a)

(b)

Figure 12.5 A simple electric circuit in which a straight copper wire is placed parallel to and over a compass needle. The deflection in the needle becomes opposite when the direction of the current is reversed.

12.2.1 Magnetic Field due to a Current through a Straight Conductor

What determines the pattern of the magnetic field generated by a current through a conductor? Does the pattern depend on the shape of the conductor? We shall investigate this with an activity.

We shall first consider the pattern of the magnetic field around a straight conductor carrying current.

Activity 12.5

  • Take a battery (12 V), a variable resistance (or a rheostat), an ammeter (0-5 A), a plug key, connecting wires and a long straight thick copper wire.
  • Insert the thick wire through the centre, normal to the plane of a rectangular cardboard. Take care that the cardboard is fixed and does not slide up or down.
  • Connect the copper wire vertically between the points $X$ and $Y$, as shown in Fig. 12.6 (a), in series with the battery, a plug and key.
  • Sprinkle some iron filings uniformly on the cardboard. (You may use a salt sprinkler for this purpose.)
  • Keep the variable of the rheostat at a fixed position and note the current through the ammeter.
  • Close the key so that a current flows through the wire. Ensure that the copper wire placed between the points $X$ and $Y$ remains vertically straight.
  • Gently tap the cardboard a few times. Observe the pattern of the iron filings. You would find that the iron filings align themselves showing a pattern of concentric circles around the copper wire (Fig. 12.6).
  • What do these concentric circles represent? They represent the magnetic field lines.
  • How can the direction of the magnetic field be found? Place a compass at a point (say P) over a circle. Observe the direction of the needle. The direction of the north pole of the compass needle would give the direction of the field lines produced by the electric current through the straight wire at point $P$. Show the direction by an arrow.
  • Does the direction of magnetic field lines get reversed if the direction of current through the straight copper wire is reversed? Check it.

(a)

(b)

Figure 12.6 (a) A pattern of concentric circles indicating the field lines of a magnetic field around a straight conducting wire. The arrows in the circles show the direction of the field lines. (b) A close up of the pattern obtained.

What happens to the deflection of the compass needle placed at a given point if the current in the copper wire is changed? To see this, vary the current in the wire. We find that the deflection in the needle also changes. In fact, if the current is increased, the deflection also increases. It indicates that the magnitude of the magnetic field produced at a given point increases as the current through the wire increases.

What happens to the deflection of the needle if the compass is moved away from the copper wire but the current through the wire remains the same? To see this, now place the compass at a farther point from the conducting wire (say at point $Q$ ). What change do you observe? We see that the deflection in the needle decreases. Thus the magnetic field produced by a given current in the conductor decreases as the distance from it increases. From Fig. 12.6, it can be noticed that the concentric circles representing the magnetic field around a current-carrying straight wire become larger and larger as we move away from it.

12.2.2 Right-Hand Thumb Rule

A convenient way of finding the direction of magnetic field associated with a current-carrying conductor is given in Fig. 12.7.

Figure 12.7 Right-hand thumb rule

Imagine that you are holding a current-carrying straight conductor in your right hand such that the thumb points towards the direction of current. Then your fingers will wrap around the conductor in the direction of the field lines of the magnetic field, as shown in Fig. 12.7. This is known as the right-hand thumb rule*.

Example 12.1

A current through a horizontal power line flows in east to west direction. What is the direction of magnetic field at a point directly below it and at a point directly above it?

Solution

The current is in the east-west direction. Applying the right-hand thumb rule, we get that the magnetic field (at any point below or above the wire) turns clockwise in a plane perpendicular to the wire, when viewed from the east end, and anti-clockwise, when viewed from the west end.

Questions

1. Draw magnetic field lines around a bar magnet.

Show Answer

Answer

Magnetic field lines of a bar magnet emerge from the north pole and terminate at the south pole. Inside the magnet, the field lines emerge from the south pole and terminate at the north pole, as shown in the given figure.

2. List the properties of magnetic field lines.

Show Answer

Answer

The properties of magnetic lines of force are as follows.

(a) Magnetic field lines emerge from the north pole.

(b) They merge at the south pole.

(c) The direction of field lines inside the magnet is from the south pole to the north pole.

(d) Magnetic lines do not intersect with each other.

3. Why don’t two magnetic field lines intersect each other?

Show Answer

Answer

If two field lines of a magnet intersect, then at the point of intersection, the compass needle points in two different directions. This is not possible. Hence, two field lines do not intersect each other.

12.2.3 Magnetic Field due to a Current through a Circular Loop

Figure 12.8 Magnetic field lines of the field produced by a current-carrying circular loop

We have so far observed the pattern of the magnetic field lines produced around a current-carrying straight wire. Suppose this straight wire is bent in the form of a circular loop and a current is passed through it. How would the magnetic field lines look like? We know that the magnetic field produced by a current-carrying straight wire depends inversely on the distance from it. Similarly at every point of a current-carrying circular loop, the concentric circles representing the magnetic field around it would become larger and larger as we move away from the wire (Fig. 12.8). By the time we reach at the centre of the circular loop, the arcs of these big circles would appear as straight lines. Every point on the wire carrying current would give rise to the magnetic field appearing as straight lines at the center of the loop. By applying the right hand rule, it is easy to check that every section of the wire contributes to the magnetic field lines in the same direction within the loop.

  • This rule is also called Maxwell’s corkscrew rule. If we consider ourselves driving a corkscrew in the direction of the current, then the direction of the rotation of corkscrew is the direction of the magnetic field.

We know that the magnetic field produced by a current-carrying wire at a given point depends directly on the current passing through it. Therefore, if there is a circular coil having $n$ turns, the field produced is $n$ times as large as that produced by a single turn. This is because the current in each circular turn has the same direction, and the field due to each turn then just adds up.

Activity 12.6

  • Take a rectangular cardboard having two holes. Insert a circular coil having large number of turns through them, normal to the plane of the cardboard.
  • Connect the ends of the coil in series with a battery, a key and a rheostat, as shown in Fig. 12.9.
  • Sprinkle iron filings uniformly on the cardboard.
  • Plug the key.
  • Tap the cardboard gently a few times. Note the pattern of the iron filings that emerges on the cardboard.

Figure 12.9 Magnetic field produced by a currentcarrying circular coil.

12.2.4 Magnetic Field due to a Current in a Solenoid

A coil of many circular turns of insulated copper wire wrapped closely in the shape of a cylinder is called a solenoid. The pattern of the magnetic field lines around a current-carrying solenoid is shown in Fig. 12.10. Compare the pattern of the field with the magnetic field around a bar magnet (Fig. 12.4). Do they look similar? Yes, they are similar. In fact, one end of the solenoid behaves as a magnetic north pole, while the other behaves as the south pole. The field lines inside the solenoid are in the form of parallel straight lines. This indicates that the magnetic field is the same at all points inside the solenoid. That is, the field is uniform inside the solenoid.

Figure 12.10 Field lines of the magnetic field through and around a current carrying solenoid.

Figure 12.11 A current-carrying solenoid coil is used to magnetise steel rod inside it - an electromagnet.

A strong magnetic field produced inside a solenoid can be used to magnetise a piece of magnetic material, like soft iron, when placed inside the coil (Fig. 12.11). The magnet so formed is called an electromagnet.

Question

1. Consider a circular loop of wire lying in the plane of the table. Let the current pass through the loop clockwise. Apply the right-hand rule to find out the direction of the magnetic field inside and outside the loop.

Show Answer

Answer

Inside the loop = Pierce inside the table

Outside the loop = Appear to emerge out from the table

For downward direction of current flowing in the circular loop, the direction of magnetic field lines will be as if they are emerging from the table outside the loop and merging in the table inside the loop. Similarly, for upward direction of current flowing in the circular loop, the direction of magnetic field lines will be as if they are emerging from the table outside the loop and merging in the table inside the loop, as shown in the given figure.

2. The magnetic field in a given region is uniform. Draw a diagram to represent it.

Show Answer

Answer

The magnetic field lines inside a current-carrying long straight solenoid are uniform.

3. Choose the correct option.

The magnetic field inside a long straight solenoid-carrying current

(a) is zero.

(b) decreases as we move towards its end.

(c) increases as we move towards its end.

(d) is the same at all points.

Show Answer

Answer

(d) The magnetic field inside a long, straight, current-carrying solenoid is uniform. It is the same at all points inside the solenoid.

12.3 FORCE ON A CURRENT-CARRYING CONDUCTOR IN A MAGNETIC FIELD

We have learnt that an electric current flowing through a conductor produces a magnetic field. The field so produced exerts a force on a magnet placed in the vicinity of the conductor. French scientist Andre Marie Ampere (1775-1836) suggested that the magnet must also exert an equal and opposite force on the current-carrying conductor. The force due to a magnetic field acting on a current-carrying conductor can be demonstrated through the following activity.

Activity 12.7

  • Take a small aluminium rod $AB$ (of about $5 cm$ ). Using two connecting wires suspend it horizontally from a stand, as shown in Fig. 12.12.
  • Place a strong horse-shoe magnet in such a way that the rod lies between the two poles with the magnetic field directed upwards. For this put the north pole of the magnet vertically below and south pole vertically above the aluminium rod (Fig. 12.12).
  • Connect the aluminium rod in series with a battery, a key and a rheostat.
  • Now pass a current through the aluminium rod from end $B$ to end $A$.
  • What do you observe? It is observed that the rod is displaced towards the left. You will notice that the rod gets displaced.
  • Reverse the direction of current flowing through the rod and observe the direction of its displacement. It is now towards the right.
  • Why does the rod get displaced?

Figure 12.12 A current-carrying rod, $A B$, experiences a force perpendicular to its length and the magnetic field. Support for the magnet is not shown here, for simplicity.

The displacement of the rod in the above activity suggests that a force is exerted on the current-carrying aluminium rod when it is placed in a magnetic field. It also suggests that the direction of force is also reversed when the direction of current through the conductor is reversed. Now change the direction of field to vertically downwards by interchanging the two poles of the magnet. It is once again observed that the direction of force acting on the current-carrying rod gets reversed. It shows that the direction of the force on the conductor depends upon the direction of current and the direction of the magnetic field. Experiments have shown that the displacement of the rod is largest (or the magnitude of the force is the highest) when the direction of current is at right angles to the direction of the magnetic field. In such a condition we can use a simple rule to find the direction of the force on the conductor.

In Activity 12.7, we considered the direction of the current and that of the magnetic field perpendicular to each other and found that the force is perpendicular to both of them. The three directions can be illustrated through a simple rule, called Fleming’s left-hand rule. According to this rule, stretch the thumb, forefinger and middle finger of your left hand such that they are mutually perpendicular (Fig. 12.13). If the first finger points in the direction of magnetic field and the second finger in the direction of current, then the thumb will point in the direction of motion or the force acting on the conductor.

Figure 12.13 Fleming’s left-hand rule

Devices that use current-carrying conductors and magnetic fields include electric motor, electric generator, loudspeakers, microphones and measuring instruments.

Example 12.2

An electron enters a magnetic field at right angles to it, as shown in Fig. 12.14. The direction of force acting on the electron will be

(a) to the right.

(b) to the left.

(c) out of the page.

(d) into the page.

Figure 12.14

Solution

Answer is option (d). The direction of force is perpendicular to the direction of magnetic field and current as given by Fleming’s left hand rule. Recall that the direction of current is taken opposite to the direction of motion of electrons. The force is therefore directed into the page.

Questions

1. Which of the following property of a proton can change while it moves freely in a magnetic field? (There may be more than one correct answer.)

(a) mass

(b) speed

(c) velocity

(d) momentum

Show Answer

Answer

(c) and (d)

When a proton enters in a region of magnetic field, it experiences a magnetic force. As a result of the force, the path of the proton becomes circular. Hence, its velocity and momentum change.

2. In Activity, how do we think the displacement of rod $A B$ will be affected if (i) current in rod $AB$ is increased, (ii) a stronger horse-shoe magnet is used, and (iii) length of the rod $A B$ is increased?

Show Answer

Answer

(i) The displacement of rod AB increases when current is increased. This is because the magnetic force experienced by the rod increases with increased current leading to larger displacement of the rod.

(ii) The displacement of rod AB increases when a stronger horse-shoe magnet is used. This is because the magnetic force experienced by the rod increases with increase in the strength of magnetic field leading to larger displacement of the rod.

(iii) The displacement of rod AB increases when its length is increased. This is because the magnetic force experienced by the rod increases with increased length leading to larger displacement of the rod.

3. A positively-charged particle (alpha-particle) projected towards west is deflected towards north by a magnetic field. The direction of magnetic field is

(a) towards south

(b) towards east

(c) downward

(d) upward

Show Answer

Answer

(d) upward

The direction of the magnetic field can be determined by the Fleming’s left hand rule. According this rule, if we arrange the thumb, the centre finger, and the forefinger of the left hand at right angles to each other, then the thumb points towards the direction of the magnetic force, the centre finger gives the direction of current, and the forefinger points in the direction of magnetic field. Since the direction of positively charged alpha particle is towards west, the direction of current will be the same i.e., towards west. Again, the direction of magnetic force is towards north. Hence, according to Fleming’s left hand rule, the direction of magnetic field will be upwards.

More to know!

Magnetism in medicine

An electric current always produces a magnetic field. Even weak ion currents that travel along the nerve cells in our body produce magnetic fields. When we touch something, our nerves carry an electric impulse to the muscles we need to use. This impulse produces a temporary magnetic field. These fields are very weak and are about one-billionth of the earth’s magnetic field. Two main organs in the human body where the magnetic field produced is significant, are the heart and the brain. The magnetic field inside the body forms the basis of obtaining the images of different body parts. This is done using a technique called Magnetic Resonance Imaging (MRI). Analysis of these images helps in medical diagnosis. Magnetism has, thus, got important uses in medicine.

12.4 DOMESTIC ELECTRIC CIRCUITS

In our homes, we receive supply of electric power through a main supply (also called mains), either supported through overhead electric poles or by underground cables. One of the wires in this supply, usually with red insulation cover, is called live wire (or positive). Another wire, with black insulation, is called neutral wire (or negative). In our country, the potential difference between the two is $220 V$.

At the meter-board in the house, these wires pass into an electricity meter through a main fuse. Through the main switch they are connected to the line wires in the house. These wires supply electricity to separate circuits within the house. Often, two separate circuits are used, one of 15 A current rating for appliances with higher power ratings such as geysers, air coolers, etc. The other circuit is of $5 A$ current rating for bulbs, fans, etc. The earth wire, which has insulation of green colour, is usually connected to a metal plate deep in the earth near the house. This is used as a safety measure, especially for those appliances that have a metallic body, for example, electric press, toaster, table fan, refrigerator, etc. The metallic body is connected to the earth wire, which provides a low-resistance conducting path for the current. Thus, it ensures that any leakage of current to the metallic body of the appliance keeps its potential to that of the earth, and the user may not get a severe electric shock.

Figure 12.15 A schematic diagram of one of the common domestic circuits

Figure 12.15 gives a schematic diagram of one of the common domestic circuits. In each separate circuit, different appliances can be connected across the live and neutral wires. Each appliance has a separate switch to ‘ON’/ ‘OFF’ the flow of current through it. In order that each appliance has equal potential difference, they are connected parallel to each other.

Electric fuse is an important component of all domestic circuits. We have already studied the principle and working of a fuse in the previous chapter (see Section 11.7). A fuse in a circuit prevents damage to the appliances and the circuit due to overloading. Overloading can occur when the live wire and the neutral wire come into direct contact. (This occurs when the insulation of wires is damaged or there is a fault in the appliance.) In such a situation, the current in the circuit abruptly increases. This is called short-circuiting. The use of an electric fuse prevents the electric circuit and the appliance from a possible damage by stopping the flow of unduly high electric current. The Joule heating that takes place in the fuse melts it to break the electric circuit. Overloading can also occur due to an accidental hike in the supply voltage. Sometimes overloading is caused by connecting too many appliances to a single socket.

Questions

1. Name two safety measures commonly used in electric circuits and appliances.

Show Answer

Answer

Two safety measures commonly used in electric circuits and appliances are as follows:

(i) Each circuit must be connected with an electric fuse. This prevents the flow of excessive current through the circuit. When the current passing through the wire exceeds the maximum limit of the fuse element, the fuse melts to stop the flow of current through that circuit, hence protecting the appliances connected to the circuit.

(ii) Earthing is a must to prevent electric shocks. Any leakage of current in an electric appliance is transferred to the ground and people using the appliance do not get the shock.

2. An electric oven of $2 kW$ power rating is operated in a domestic electric circuit $(220 V)$ that has a current rating of $5 A$. What result do you expect? Explain.

Show Answer

Answer

Current drawn by the electric oven can be obtained by the expression,

$P=VI$

$I=\dfrac{P}{V}$

Where,

Current $=I$

Power of the oven, $P=2 kW=2000 W$

Voltage supplied, $V=220 V$

$I=\dfrac{2000}{220}=9.09 A$

Hence, the current drawn by the electric oven is $9.09 A$, which exceeds the safe limit of the circuit. Fuse element of the electric fuse will melt and break the circuit.

3. What precaution should be taken to avoid the overloading of domestic electric circuits?

Show Answer

Answer

The precautions that should be taken to avoid the overloading of domestic circuits are as follows:

(a) Too many appliances should not be connected to a single socket.

(b) Too many appliances should not be used at the same time.

(c) Faulty appliances should not be connected in the circuit.

(d) Fuse should be connected in the circuit.

What you have learnt

  • A compass needle is a small magnet. Its one end, which points towards north, is called a north pole, and the other end, which points towards south, is called a south pole.
  • A magnetic field exists in the region surrounding a magnet, in which the force of the magnet can be detected.
  • Field lines are used to represent a magnetic field. A field line is the path along which a hypothetical free north pole would tend to move. The direction of the magnetic field at a point is given by the direction that a north pole placed at that point would take. Field lines are shown closer together where the magnetic field is greater.
  • A metallic wire carrying an electric current has associated with it a magnetic field. The field lines about the wire consist of a series of concentric circles whose direction is given by the right-hand rule.
  • The pattern of the magnetic field around a conductor due to an electric current flowing through it depends on the shape of the conductor. The magnetic field of a solenoid carrying a current is similar to that of a bar magnet.
  • An electromagnet consists of a core of soft iron wrapped around with a coil of insulated copper wire.
  • A current-carrying conductor when placed in a magnetic field experiences a force. If the direction of the field and that of the current are mutually perpendicular to each other, then the force acting on the conductor will be perpendicular to both and will be given by Fleming’s left-hand rule.
  • In our houses we receive $AC$ electric power of $220 V$ with a frequency of $50 Hz$. One of the wires in this supply is with red insulation, called live wire. The other one is of black insulation, which is a neutral wire. The potential difference between the two is $220 V$. The third is the earth wire that has green insulation and this is connected to a metallic body deep inside earth. It is used as a safety measure to ensure that any leakage of current to a metallic body does not give any severe shock to a user.
  • Fuse is the most important safety device, used for protecting the circuits due to short-circuiting or overloading of the circuits.

EXERCISES

1. Which of the following correctly describes the magnetic field near a long straight wire?

(a) The field consists of straight lines perpendicular to the wire.

(b) The field consists of straight lines parallel to the wire.

(c) The field consists of radial lines originating from the wire.

(d) The field consists of concentric circles centred on the wire.

Show Answer

Answer

(d) The magnetic field lines, produced around a straight current-carrying conductor, are concentric circles. Their centres lie on the wire.

2. At the time of short circuit, the current in the circuit

(a) reduces substantially.

(b) does not change.

(c) increases heavily.

(d) vary continuously.

Show Answer

Answer

(c) When two naked wires of an electric circuit touch each other, the amount of current that is flowing in the circuit increases abruptly. This causes short-circuit.

3. State whether the following statements are true or false.

(a) The field at the centre of a long circular coil carrying current will be parallel straight lines.

(b) A wire with a green insulation is usually the live wire of an electric supply.

Show Answer

Answer

(a) False

An electric motor converts electrical energy into mechanical energy.

(b) True

A generator is an electric device that generates electricity by rotating a coil in a magnetic field. It works on the principle of electromagnetic induction.

(c) True

A long circular coil is a long solenoid. The magnetic field lines inside the solenoid are parallel lines.

(d) False

Live wire has red insulation cover, whereas earth wire has green insulation colour in the domestic circuits.

4. List two methods of producing magnetic fields.

Show Answer

Answer

Three sources of magnetic fields are as follows:

(a) Current-carrying conductors

(b) Permanent magnets

(c) Electromagnets

5. When is the force experienced by a current-carrying conductor placed in a magnetic field largest?

Show Answer

Answer

The force experienced by a current-currying conductor is the maximum when the direction of current is perpendicular to the direction of the magnetic field.

6. Imagine that you are sitting in a chamber with your back to one wall. An electron beam, moving horizontally from back wall towards the front wall, is deflected by a strong magnetic field to your right side. What is the direction of magnetic field?

Show Answer

Answer

The direction of magnetic field is given by Fleming’s left hand rule. Magnetic field inside the chamber will be perpendicular to the direction of current (opposite to the direction of electron) and direction of deflection/force i.e., either upward or downward. The direction of current is from the front wall to the back wall because negatively charged electrons are moving from back wall to the front wall. The direction of magnetic force is rightward. Hence, using Fleming’s left hand rule, it can be concluded that the direction of magnetic field inside the chamber is downward.

7. State the rule to determine the direction of a (i) magnetic field produced around a straight conductor-carrying current, (ii) force experienced by a current-carrying straight conductor placed in a magnetic field which is perpendicular to it, and (iii) current induced in a coil due to its rotation in a magnetic field.

Show Answer

Answer

(i) Maxwell’s right hand thumb rule

(ii) Fleming’s left hand rule

(iii) Fleming’s right hand rule

8. When does an electric short circuit occur?

Show Answer

Answer

If the resistance of an electric circuit becomes very low, then the current flowing through the circuit becomes very high. This is caused by connecting too many appliances to a single socket or connecting high power rating appliances to the light circuits. This results in a short circuit.

When the insulation of live and neutral wires undergoes wear and tear and then touches each other, the current flowing in the circuit increases abruptly. Hence, a short circuit occurs.

9. What is the function of an earth wire? Why is it necessary to earth metallic appliances?

Show Answer

Answer

The metallic body of electric appliances is connected to the earth by means of earth wire so that any leakage of electric current is transferred to the ground. This prevents any electric shock to the user. That is why earthing of the electrical appliances is necessary.

विद्युत के पिछ्ल अध्याय में हमने विद्युत धारा के तापीय प्रभावों के बारे में अध्ययन किया था। विद्यत धारा के अन्य प्रभाव क्या हो सकते हैं? हम जानते हैं कि विद्यु धारावाही तार चुंबक की भाँति व्यवहार करता है। इस तथ्य का पुनः अवलोकन करने के लिए आइए, एक क्रियाकलाप करते हैं।

क्रियाकलाप 12.1

  • ताँबे का एक सीधा मोटा तार लीजिए तथा इसे चित्र 12.1 में दर्शाए अनुसार विद्युत परिपथ के दो बिंदुओं $X$ तथा $Y$ के बीच रखिए। (तार $\mathrm{XY}$ कागज की सतह के लंबवत रखा है।)
  • इस ताँबे के तार के निकट क्षैतिज रूप में एक छोटी दिक्सूचक रखिए। इसकी सुई की स्थिति नोट कीजिए।
  • प्लग में कुंजी लगाकर विद्युत परिपथ में विद्युत धारा प्रवाहित कराइए।
  • दिक्सूचक सुई की स्थिति में परिवर्तन का प्रेक्षण कीजिए।

चित्र 12.1 धातु के चालक से विद्युत धारा प्रवाहित कराने पर दिक्सूचक सुई विक्षेपित होती है।

हम देखते हैं कि सुई विक्षेपित हो जाती है। इसका क्या तात्पर्य है? इसका यह अर्थ है कि ताँबे के तार से प्रवाहित विद्युत धारा ने एक चुंबकीय प्रभाव उत्पन्न किया है। इस प्रकार हम यह कह सकते हैं कि विद्युत और चुंबकत्व एक-दूसरे से संबंधित हैं। तब गतिमान चुंबकों के विद्युतीय प्रभाव की उत्क्रमित संभावना के विषय में आप क्या कह सकते हैं? इस अध्याय में हम चुंबकीय क्षेत्रों तथा इसी प्रकार के विद्युत-चुंबकीय प्रभावों का अध्ययन करेंगे। हम विद्युत-चुंबकों तथा विद्युत मोटरों के विषय में भी अध्ययन करेंगे, जो विद्युत धारा के चुंबकीय प्रभाव पर आधारित होता है। इसके साथ ही हम विद्युत जनित्र के विषय में भी जानकारी प्राप्त करेंगे, जो गतिमान चुंबकों के विद्युतीय प्रभाव पर आधारित है।

हैंस क्रिश्चियन ऑर्स्टेड (1777-1851)

19 वीं शताब्दी के अग्रणी वैज्ञानिकों में से एक, हैंस क्रिश्चियन ऑर्स्टेड ने वैद्युतचुंबकत्व को समझने में एक निर्णायक भूमिका निभाई। सन् 1820 ई. में उन्होंने अकस्मात यह खोजा कि किसी धातु के तार में विद्युत धारा प्रवाहित करने पर पास में रखी दिक्सूची में विक्षेप उत्पन्न हुआ। अपने प्रेक्षणों के आधार पर ऑर्स्टेड ने यह प्रमाणित किया कि विद्युत तथा चुंबकत्व परस्पर संबंधित परिघटनाएँ हैं। उनके अनुसंधान ने आगे जाकर नई-नई प्रौद्योगिकियों; जैसे- रेडियो, टेलीविजन, तंतु प्रकाशिकी आदि का सृजन किया। उन्हीं के सम्मान में चुंबकीय क्षेत्र की तीव्रता का मात्रक ऑर्स्टेड रखा गया है।

12.1 चुंबकीय क्षेत्र और क्षेत्र रेखाएँ

हम इस तथ्य से भली-भाँति परिचित हैं कि किसी छड़-चुंबक के निकट लाने पर दिक्सूचक की सुई विक्षेपित हो जाती है। वास्तव में दिक्सूचक की सुई एक छोटा छड़ चुंबक ही होती है। किसी दिक्सूचक की सुई के दोनों सिरे लगभग उत्तर और दक्षिण दिशाओं की ओर संकेत करते हैं। उत्तर दिशा की ओर संकेत करने वाले सिरे को उत्तरोमुखी ध्रुव अथवा उत्तर ध्रुव कहते हैं। दूसरा सिरा, जो दक्षिण दिशा की ओर संकेत करता है, उसे दक्षिणोमुखी ध्रुव अथवा दक्षिण ध्रुव कहते हैं। विविध क्रियाकलापों के द्वारा हमने यह प्रेक्षण किया है कि चुंबकों के सजातीय ध्रुवों में परस्पर प्रतिकर्षण तथा विजातीय ध्रुवों में परस्पर आकर्षण होता है।

प्रश्न

1. चुंबक के निकट लाने पर दिक्सूचक की सुई विक्षेपित क्यों हो जाती है?

Show Answer #missing

क्रियाकलाप 12.2

  • किसी चिपचिपे पदार्थ का उपयोग करके ड्राइंग बोर्ड पर एक सफ़ेद कागज़ लगाइए।
  • इसके बीचोंबीच एक छड़-चुंबक रखिए।
  • छड़-चुंबक के चारों ओर एकसमान रूप से कुछ लौहचूर्ण छितराइए (चित्र 12.2)। इस कार्य के लिए नमक-छितरावक का उपयोग किया जा सकता है।
  • अब बोर्ड को धीरे से थपथपाइए।
  • आप क्या प्रेक्षण करते हैं?

चित्र 12.2 छड़ चुंबक के निकट का लौहचूर्ण स्वयं ही चुंबकीय क्षेत्र रेखाओं के अनुदिश संरेखित हो जाता है

लौहचूर्ण स्वयं को चित्र 12.2 में दर्शाए गए पैटर्न में व्यवस्थित कर लेता है? लौहचूर्ण इस प्रकार के पैटर्न में क्यों व्यवस्थित होता है? यह पैटर्न क्या निदर्शित करता है? चुंबक अपने चारों ओर के क्षेत्र में अपना प्रभाव आरोपित करता है। अतः लौहचूर्ण एक बल का अनुभव करता है। इसी बल के कारण लौह-चूर्ण इस प्रकार के पैटर्न में व्यवस्थित हो जाता है। किसी चुंबक के चारों ओर का वह क्षेत्र जिसमें उसके बल का संसूचन किया जा सकता है, उस चुंबक का चुंबकीय क्षेत्र कहलाता है। बह रेखाएँ जिनके अनुदिश लौहचूर्ण स्वयं सरेखित होता है, चुंबकीय क्षेत्र रेखाओं का निरूपण करती हैं।

क्या किसी छड़-चुंबक के चारों ओर चुंबकीय क्षेत्र रेखाएँ प्राप्त करने के अन्य कोई उपाय भी हैं? वास्तव में आप स्वयं किसी छड़-चुंबक की चुंबकीय क्षेत्र रेखाएँ खींच सकते हैं।

क्रियाकलाप 12.3

  • एक छड़-चुंबक तथा एक छोटी दिक्सूची लीजिए।
  • किसी चिपचिपे पदार्थ से ड्राइंग बोर्ड पर चिपकाए गए सफ़ेद कागज़ के बीचोंबीच इस चुंबक को रखिए।
  • चुंबक की सीमा रेखा अंकित कीजिए।
  • दिक्सूची को चुंबक के उत्तर ध्रुव के निकट ले जाइए। यह कैसे व्यवहार करता है? दिक्सूची का दक्षिण ध्रुव चुंबक के उत्तर ध्रुव की ओर संकेत करता है। दिक्सूची का उत्तर ध्रुव चुंबक के उत्तर ध्रुव से दूर की ओर संकेत करता है।
  • दिक्सूची के दोनों सिरों की स्थितियाँ नुकीली पेंसिल से अंकित कीजिए।
  • अब दिक्सूची को इस प्रकार रखिए कि इसका दक्षिण ध्रुव उस स्थिति पर आ जाए, जहाँ पहले उत्तर ध्रुव की स्थिति को अंकित किया था। उत्तर ध्रुव की इस नई स्थिति को अंकित कीजिए।
  • चित्र 12.3 में दर्शाए अनुसार चुंबक के दक्षिण ध्रुव पर पहुँचने तक इस क्रिया को दोहराते जाइए।
  • अब कागज़ पर अंकित बिंदुओं को इस प्रकार मिलाइए कि एक निष्कोण वक्र प्राप्त हो जाए। यह वक्र एक चुंबकीय क्षेत्र रेखा को निरूपित करता है। उपरोक्त प्रक्रिया को दोहराकर जितनी संभव हो सकें क्षेत्र रेखाएँ खींचिए। आपको चित्र 12.4 में दर्शाए जैसा पैटर्न प्राप्त होगा। ये रेखाएँ चुंबक के चारों ओर के चुंबकीय क्षेत्र को निरूपित करती हैं। इन्हें चुंबकीय क्षेत्र रेखाएँ कहते हैं।
  • किसी चुंबकीय क्षेत्र रेखा के अनुदिश गमन करते समय दिक्सूची के विक्षेप का प्रेक्षण कीजिए। चुंबक के ध्रुवों के निकट जाने पर सुई के विक्षेप में वृद्धि होती जाती है।

चित्र 12.3 दिक्सूचक की सहायता से चुंबकीय क्षेत्र रेखाएँ आरेखित करना

चित्र 12.4 किसी छड़-चुंबक के चारों ओर क्षेत्र रेखाएँ

चुंबकीय क्षेत्र एक ऐसी राशि है, जिसमें परिमाण तथा दिशा दोनों होते हैं। किसी चुंबकीय क्षेत्र की दिशा वह मानी जाती है, जिसके अनुदिश दिक्सूची का उत्तर ध्रुव उस क्षेत्र के भीतर गमन करता है। इसीलिए परिपाटी के अनुसार चुंबकीय क्षेत्र रेखाएँ चुंबक के उत्तर ध्रुव से प्रकट होती हैं तथा दक्षिण ध्रुव पर विलीन हो जाती हैं। (चित्र 12.4 में चुंबकीय क्षेत्र रेखाओं पर अंकित तीर के निशानों पर ध्यान दीजिए) चुंबक के भीतर चुंबकीय क्षेत्र रेखाओं की दिशा उसके दक्षिण ध्रुव से उत्तर ध्रुव की ओर होती है। अतः चुंबकीय क्षेत्र रेखाएँ एक बंद वक्र होती हैं।

चुंबकीय क्षेत्र की आपेक्षिक प्रबलता को क्षेत्र रेखाओं की निकटता की कोटि द्वारा दर्शाया जाता है, जहाँ पर चुंबकीय क्षेत्र रेखाएँ अपेक्षाकृत अधिक निकट होती हैं वहाँ चुंबकीय क्षेत्र अधिक प्रबल होता है, अर्थात वहाँ पर विद्यमान किसी अन्य चुंबक के ध्रुव पर चुंबकीय क्षेत्र के कारण अधिक बल कार्य करेगा। (चित्र 12.4 देखिए)

दो क्षेत्र रेखाएँ कहीं भी एक-दूसरे को प्रतिच्छेद नहीं करतीं। यदि वे ऐसा करें तो इसका यह अर्थ होगा कि प्रतिच्छेद बिंदु पर दिक्सूची को रखने पर उसकी सुई दो दिशाओं की ओर संकेत करेगी, जो संभव नहीं हो सकता।

12.2 किसी विद्युत धारावाही चालक के कारण चुंबकीय क्षेत्र

क्रियाकलाप 12.1 में हमने यह देखा कि किसी धातु के चालक में विद्युत धारा प्रवाहित करने पर उसके चारों ओर एक चुंबकीय क्षेत्र उत्पन्न हो जाता है। उत्पन्न चुंबकीय क्षेत्र की दिशा को ज्ञात करने के लिए आइए, हम इसी क्रियाकलाप को नीचे दिए गए ढंग से करते हैं।

क्रियाकलाप 12.4

  • एक लंबा सीधा ताँबे का तार, $1.5 \mathrm{~V}$ के दो या तीन सेल तथा एक प्लग कुंजी लीजिए। इन सबको चित्र 12.5 (a) में दर्शाए अनुसार श्रेणीक्रम में संयोजित कीजिए।
  • सीधे तार को दिक्सूची के ऊपर उसकी सुई के समांतर रखिए।
  • अब प्लग में कुंजी लगाकर परिपथ को पूरा कीजिए।
  • सुई के उत्तर ध्रुव के विक्षेप की दिशा नोट कीजिए।
  • यदि विद्युत धारा चित्र 12.5 (a) में दर्शाए अनुसार उत्तर से दक्षिण की ओर प्रवाहित हो रही है तो दिक्सूची का उत्तर ध्रुव पूर्व की ओर विक्षेपित होगा।
  • चित्र 12.5 (b) में दर्शाए अनुसार परिपथ में जुड़े सेलों के संयोजनों को प्रतिस्थापित कीजिए। इसके परिणामस्वरूप ताँबे के तार में विद्युत धारा के प्रवाह की दिशा में परिवर्तन होगा अर्थात विद्युत धारा के प्रवाह की दिशा दक्षिण से उत्तर की ओर हो जाएगी।
  • दिक्सूची के विक्षेप की दिशा में परिवर्तन का प्रेक्षण कीजिए। आप यह देखेंगे कि अब सुई विपरीत दिशा में अर्थात पश्चिम की ओर विक्षेपित होती है। इसका अर्थ यह हुआ कि विद्युत धारा द्वारा उत्पन्न चुंबकीय क्षेत्र की दिशा भी उत्क्रमित हो गई है।

(a)

(b)

चित्र 12.5 एक सरल विद्युत परिपथ, जिसमें किसी लंबे ताँबे के तार को किसी दिक्सूची के ऊपर तथा उसकी सुई के समांतर रखा गया है। जब तार में विद्युत धारा के प्रवाह की दिशा उत्क्रमित होती है तो दिक्सूची का विक्षेप विपरीत दिशा में होता है।

12.2.1 सीधे चालक से विद्युत धारा प्रवाहित होने के कारण चुंबकीय क्षेत्र

किसी चालक से विद्युत धारा प्रवाहित होने पर उत्पन्न चुंबकीय क्षेत्र का पैटर्न कैसे निर्धारित होता है? क्या यह पैटर्न चालक की आकृति पर निर्भर करता है? इसकी जाँच हम एक क्रियाकलाप द्वारा करेंगे।

पहले हम किसी विद्युत धारावाही सीधे चालक के चारों ओर के चुंबकीय क्षेत्र पैटर्न पर विचार करेंगे।

क्रियाकलाप 12.5

  • एक $12 \mathrm{~V}$ की बैटरी, एक परिवर्ती प्रतिरोध (धारा नियंत्रक), 0-5 A परिसर का ऐमीटर, एक प्लग कुंजी तथा एक लंबा मोटा सीधा ताँबे का तार लीजिए।
  • एक आयताकार कार्डबोर्ड का टुकड़ा लेकर उसके बीचोंबीच कार्डबोर्ड के तल के अभिलंबवत इस मोटे तार को प्रविष्ट कराइए। यह सावधानी रखिए कि कार्डबोर्ड तार में स्थिर रहे, ऊपर-नीचे हिले-डुले नहीं।
  • चित्र 12.6 (a) में दर्शाए अनुसार ताँबे के तार को ऊर्ध्वाधरतः बिंदुओं $X$ तथा $Y$ के बीच श्रेणीक्रम में बैटरी, ऐमीटर, धारा नियंत्रक तथा प्लग कुंजी से संयोजित कीजिए।
  • तार के चारों ओर कार्डबोर्ड पर कुछ लौहचूर्ण एकसमान रूप से छितराइए। (इसके लिए आप नमक छितरावक का उपयोग भी कर सकते हैं।)
  • धारा-नियंत्रक के परिवर्तक को किसी एक नियत स्थिति पर रखिए तथा ऐमीटर में विद्युत धारा का पाठ्यांक नोट कीजिए।
  • कुंजी लगाकर परिपथ बंद कीजिए ताकि ताँबे के तार से विद्युत धारा प्रवाहित हो। यह सुनिश्चित कीजिए कि बिंदुओं $X$ तथा $Y$ के बीच में लगा ताँबे का तार ऊर्ध्वाधरतः सीधा रहे।
  • कार्डबोर्ड को हल्के से कुछ बार थपथपाइए। लौहचूर्ण के पैटर्न का प्रेक्षण कीजिए। आप यह देखेंगे कि लौहचूर्ण संरेखित होकर तार के चारों ओर संकेंद्री वृत्तों के रूप में व्यवस्थित होकर एक वृत्ताकार पैटर्न (चित्र 12.6) बनाता है।
  • ये संकेंद्री वृत्त क्या निरूपित करते हैं? ये चुंबकीय क्षेत्र रेखाओं को निरूपित करते हैं।
  • इस प्रकार उत्पन्न चुंबकीय क्षेत्र की दिशा कैसे ज्ञात करें? वृत्त के किसी बिंदु (जैसे P) पर दिक्सूची रखिए। सुई की दिशा का प्रेक्षण कीजिए। दिक्सूची का उत्तर ध्रुव बिंदु विद्युत धारा द्वारा उत्पन्न चुंबकीय क्षेत्र रेखा की दिशा बताता है। इस दिशा को तीर द्वारा दर्शाइए।
  • यदि सीधे तार में प्रवाहित विद्युत धारा की दिशा को उत्क्रमित कर दिया जाए, तो क्या चुंबकीय क्षेत्र रेखाओं की दिशा भी उत्क्रमित हो जाएगी? इसका परीक्षण कीजिए।

(a)

(b)

चित्र 12.6 (a) किसी विद्युत धारावाही सीधे चालक तार के चारों ओर के चुंबकीय क्षेत्र की क्षेत्र रेखाओं को निरूपित करता संकेंद्री वृत्तों का पैटर्न। वृत्तों पर अंकित तीर क्षेत्र रेखाओं की दिशाओं को दर्शाते हैं। (b) प्राप्त पैटर्न का समीप दृश्य

यदि ताँबे के तार में प्रवाहित विद्युत धारा के परिमाण को परिवर्तित कर दें, तो किसी दिए गए बिंदु पर रखे दिक्सूची के विक्षेप पर क्या प्रभाव पड़ता है? इसे देखने के लिए तार में विद्युत धारा को परिवर्तित कीजिए। हम यह पाते हैं कि सुई के विक्षेप में भी परिवर्तन होता है। वास्तव में, जब विद्युत धारा के परिमाण में वृद्धि होती है तो विक्षेप में भी वृद्धि होती है। इससे यह निर्दिष्ट होता है कि जैसे-जैसे तार में प्रवाहित विद्युत धारा के परिमाण में वृद्धि होती है तो किसी दिए गए बिंदु पर उत्पन्न चुंबकीय क्षेत्र के परिमाण में भी वृद्धि हो जाती है।

यदि ताँबे के तार में प्रवाहित विद्युत धारा तो वही रहती हैं, परंतु दिक्सूची ताँबे के तार से दूर चला जाता है, तब दिक्सूची के विक्षेप पर क्या प्रभाव पड़ता है? इसे देखने के लिए हम दिक्सूची को चालक तार से दूर स्थित किसी बिंदु (जैसे Q) पर रख देते हैं। आप क्या परिवर्तन देखते हैं? हम यह देखते हैं कि दिक्सूची का विक्षेप घट जाता है। इस प्रकार किसी चालक से प्रवाहित की गई विद्युत धारा के कारण उत्पन्न चुंबकीय क्षेत्र चालक से दूर जाने पर घटता है। चित्र 12.6 से यह देखा जा सकता है कि जैसे-जैसे विद्युत धारावाही सीधे चालक तार से दूर हटते जाते हैं, उसके चारों ओर उत्पन्न चुंबकीय क्षेत्र को निरूपित करने वाले संकेंद्री वृत्तों का साइज़ बड़ा हो जाता है।

12.2.2 दक्षिण-हस्त अंगुष्ठ नियम

किसी विद्युत धारावाही चालक से संबद्ध चुंबकीय क्षेत्र की दिशा ज्ञात करने का एक सुगम उपाय नीचे दिया गया है।

चित्र 12.7 दक्षिण-हस्त अंगुष्ठ नियम

कल्पना कीजिए कि आप अपने दाहिने हाथ में विद्युत धारावाही चालक को इस प्रकार पकड़े हुए हैं कि आपका अँगूठा विद्युत धारा की दिशा की ओर संकेत करता है, तो आपकी अँगुलियाँ चालक के चारों ओर चुंबकीय क्षेत्र की क्षेत्र रेखाओं की दिशा में लिपटी होंगी जैसा कि चित्र 12.7 में दर्शाया गया है। इसे दक्षिण-हस्त (दायाँ हाथ) अंगुष्ठ* नियम कहते हैं।

उदाहरण 12.1

किसी क्षैतिज शक्ति संचरण लाइन (पावर लाइन) में पूर्व से पश्चिम दिशा की ओर विद्युत धारा प्रवाहित हो रही है। इसके ठीक नीचे के किसी बिंदु पर तथा इसके ठीक ऊपर के किसी बिंदु पर चुंबकीय क्षेत्र की दिशा क्या है?

हल

विद्युत धारा पूर्व से पश्चिम की ओर प्रवाहित हो रही है। दक्षिण-हस्त अंगुष्ठ नियम को लागू करने पर पूर्वी सिरे से अवलोकन करने पर चुंबकीय क्षेत्र की दिशा (तार के ऊपर या नीचे किसी भी बिंदु पर) तार के लंबवत् तल में दक्षिणावर्त होगी। इसी प्रकार से तार के पश्चिमी सिरे से अवलोकन करने पर चुंबकीय क्षेत्र की दिशा वामावर्त होगी

प्रश्न

1. किसी छड़-चुंबक के चारों ओर चुंबकीय क्षेत्र रेखाएँ खींचिए।

Show Answer #missing

2. चुंबकीय क्षेत्र रेखाओं के गुणों की सूची बनाइए।

Show Answer #missing

3. दो चुंबकीय क्षेत्र रेखाएँ एक-दूसरे को प्रतिच्छेद क्यों नहीं करतीं?

Show Answer #missing

12.2.3 विद्युत धारावाही वृत्ताकार पाश के कारण चुंबकीय क्षेत्र

चित्र 12.8 विद्युत धारावाही पाश के कारण उत्पन्न चुंबकीय क्षेत्र रेखाएँ

अब तक हमने किसी सीधे विद्युत धारावाही चालक के कारण उसके चारों ओर उत्पन्न चुंबकीय क्षेत्र रेखाओं का पैटर्न देखा है। मान लीजिए, इस तार को मोड़कर एक वृत्ताकार पाश (लूप) बनाया जाता है और फिर उसमें विद्युत धारा प्रवाहित कराते हैं। तब इसके द्वारा उत्पन्न चुंबकीय क्षेत्र कैसा प्रतीत होगा? हम जानते हैं कि किसी विद्युत धारावाही चालक के कारण उत्पन्न चुंबकीय क्षेत्र उससे दूरी के व्युत्क्रम पर निर्भर करता है। इसी प्रकार किसी विद्युत धारावाही पाश के प्रत्येक बिंदु पर उसके चारों ओर उत्पन्न चुंबकीय क्षेत्र को निरूपित करने वाले संकेंद्री वृत्तों का साइज़ तार से दूर जाने पर निरंतर बड़ा (चित्र 12.8) होता जाता है। जैसे ही हम वृत्ताकार पाश के केंद्र पर पहुँचते हैं, इन बृहत् वृत्तों के चाप सरल रेखाओं जैसे प्रतीत होने लगते हैं। विद्युत धारावाही तार के प्रत्येक बिंदु से उत्पन्न चुंबकीय क्षेत्र रेखाएँ पाश के केंद्र पर सरल रेखा जैसी प्रतीत होने लगती हैं। दक्षिण-हस्त अंगुष्ठ नियम को लागू करके इस बात की आसानी से जाँच की जा सकती है कि तार का प्रत्येक भाग चुंबकीय क्षेत्र रेखाओं में योगदान देता है तथा पाश के भीतर सभी चुंबकीय क्षेत्र रेखाएँ एक ही दिशा में होती हैं।

  • इसे मैक्सवेल का कॉर्कस्क्रू नियम भी कहते हैं। यदि हम यह विचार करें कि हम किसी कॉर्कस्क्रू को विद्युत धारा की दिशा में आगे बढ़ा रहे हैं, तो कॉर्कस्क्रू के घूर्णन की दिशा चुंबकीय क्षेत्र की दिशा होती है।

हम जानते हैं कि किसी विद्युत धारावाही तार के कारण किसी दिए गए बिंदु पर उत्पन्न चुंबकीय क्षेत्र प्रवाहित विद्युत धारा पर अनुलोमतः निर्भर करता है। अतः यदि हमारे पास $n$ फेरों की कोई कुंडली हो तो उत्पन्न चुंबकीय क्षेत्र परिमाण में एकल फेरे द्वारा उत्पन्न चुंबकीय क्षेत्र की तुलना में $n$ गुना अधिक प्रबल होगा। इसका कारण यह है कि प्रत्येक फेरे में विद्युत धारा के प्रवाह की दिशा समान है। अतः व्यष्टिगत फेरों के चुंबकीय क्षेत्र संयोजित हो जाते हैं।

क्रियाकलाप 12.6

  • एक ऐसा आयताकर कार्डबोर्ड लीजिए, जिसमें दो छिद्र हों। एक ऐसी वृत्ताकार कुंडली लीजिए, जिसमें फेरों की संख्या काफ़ी अधिक हो और उसे कार्डबोर्ड के तल के अभिलंबवत लगाया गया हो।
  • चित्र 12.9 में दर्शाए अनुसार कुंडली के सिरों को श्रेणीक्रम में बैटरी, एक कुंजी तथा एक धारा नियंत्रक से संयोजित कीजिए।
  • कार्डबोर्ड पर लौहचूर्ण एकसमान रूप से छितराइए।
  • कुंजी लगाकर परिपथ पूरा कीजिए।
  • कार्डबोर्ड को हल्के से कुछ बार थपथपाइए। कार्डबोर्ड पर जो पैटर्न बनता दिखाई दे, उसका प्रेक्षण कीजिए।

चित्र 12.9 धारावाही वृत्ताकार कुंडली द्वारा उत्पन्न चुंबकीय क्षेत्र

12.2.4 परिनालिका में प्रवाहित विद्युत धारा के कारण चुंबकीय क्षेत्र

पास-पास लिपटे विद्युतरोधी ताँबे के तार की बेलन की आकृति की अनेक फेरों वाली कुंडली को परिनालिका कहते हैं। किसी विद्युत धारावाही परिनालिका के कारण उसके चारों ओर उत्पन्न चुंबकीय क्षेत्र रेखाओं का पैटर्न चित्र 12.10 में दर्शाया गया है। इस चुंबकीय क्षेत्र के पैटर्न की तुलना चित्र 12.4 में दर्शाए गए छड़-चुंबक के चुंबकीय क्षेत्र रेखाओं के पैटर्न से कीजिए। क्या ये एक जैसे प्रतीत होते हैं? वास्तव में परिनालिका का एक सिरा उत्तर ध्रुव तथा दूसरा सिरा दक्षिण ध्रुव की भाँति व्यवहार करता है। परिनालिका के भीतर चुंबकीय क्षेत्र रेखाएँ समांतर सरल रेखाओं की भाँति होती हैं। यह निर्दिष्ट करता है कि किसी परिनालिका के भीतर सभी बिंदुओं पर चुंबकीय क्षेत्र समान होता है। अर्थात परिनालिका के भीतर एकसमान चुंबकीय क्षेत्र होता है।

चित्र 12.10 किसी विद्युत धारावाही परिनालिका के भीतर और उसके चारों ओर चुंबकीय क्षेत्र की क्षेत्र रेखाएँ

चित्र 12.11 किसी विद्युत धारावाही परिनालिका का उपयोग उसके भीतर रखी स्टील की छड़ को चुंबकित करने में किया जाता है- एक विद्युत चुबंक

परिनालिका के भीतर उत्पन्न प्रबल चुंबकीय क्षेत्र का उपयोग किसी चुंबकीय पदार्थ, जैसे नर्म लोहे, को परिनालिका के भीतर रखकर चुंबक बनाने (चित्र 12.11) में किया जा सकता है। इस प्रकार बने चुंबक को विद्युत चुंबक कहते हैं।

प्रश्न

1. मेज़ के तल में पड़े तार के वृत्ताकार पाश पर विचार कीजिए। मान लीजिए इस पाश में दक्षिणावर्त विद्युत धारा प्रवाहित हो रही है। दक्षिण-हस्त अंगुष्ठ नियम को लागू करके पाश के भीतर तथा बाहर चुंबकीय क्षेत्र की दिशा ज्ञात कीजिए।

Show Answer #missing

2. किसी दिए गए क्षेत्र में चुंबकीय क्षेत्र एकसमान है। इसे निरूपित करने के लिए आरेख खींचिए।

Show Answer #missing

3. सही विकल्प चुनिए-

किसी विद्युत धारावाही सीधी लंबी परिनालिका के भीतर चुंबकीय क्षेत्र-

(a) शून्य होता है।

(b) इसके सिरे की ओर जाने पर घटता है।

(c) इसके सिरे की ओर जाने पर बढ़ता है।

(d) सभी बिंदुओं पर समान होता है।

Show Answer #missing

12.3 चुंबकीय क्षेत्र में किसी विद्युत धारावाही चालक पर बल

हमने यह सीखा है कि किसी चालक में प्रवाहित विद्युत धारा चुंबकीय क्षेत्र उत्पन्न करती है। इस प्रकार उत्पन्न चुंबकीय क्षेत्र इस चालक के निकट रखे किसी चुंबक पर कोई बल आरोपित करता है। फ्रांसीसी वैज्ञानिक आंत्रे मैरी ऐम्पियर (1775-1836) ने यह विचार प्रस्तुत किया कि चुंबक को भी विद्युत धारावाही चालक पर परिमाण में समान, परंतु दिशा में विपरीत बल आरोपित करना चाहिए। किसी विद्युत धारावाही चालक पर चुंबकीय क्षेत्र के कारण लगने वाले बल को निम्नलिखित क्रियाकलाप द्वारा निदर्शित किया जा सकता है।

क्रियाकलाप 12.7

  • एल्युमिनियम की एक छोटी छड़ (लगभग $5 \mathrm{~cm}$ लंबी) लीजिए। चित्र 12.12 में दर्शाए अनुसार इस छड़ को दो संयोजक तारों द्वारा किसी स्टेंड से क्षैतिजतः लटकाइए।
  • प्रबल नाल चुंबक इस प्रकार से व्यवस्थित कीजिए कि छड़ नाल चुंबक के दो ध्रुवों के बीच में हो तथा चुंबकीय क्षेत्र की दिशा उपरिमुखी हो। ऐसा करने के लिए नाल चुंबक का उत्तर ध्रुव एल्युमिनियम की छड़ के ऊर्ध्वाधरतः नीचे एवं दक्षिण ध्रुव ऊर्ध्वाधरतः ऊपर रखिए। (चित्र 12.12)
  • एल्युमिनियम की छड़ को एक बैटरी, एक कुंजी तथा एक धारा नियंत्रक के साथ श्रेणीक्रम में संयोजित कीजिए। एल्युमिनियम छड़ में सिरे $\mathrm{B}$ से $\mathrm{A}$ की ओर विद्युत धारा प्रवाहित कराइए।
  • आप क्या देखते हैं? हम यह देखते हैं कि विद्युत धारा प्रवाहित होते ही छड़ बाईं दिशा में विस्थापित होती है।
  • अब छड़ में प्रवाहित होने वाली विद्युत धारा की दिशा उत्क्रमित कीजिए और छड़ के विस्थापन की दिशा नोट कीजिए। अब यह दाईं ओर विस्थापित होती है। छड़ क्यों विस्थापित होती है?

चित्र 12.12 विद्युत धारावाही छड़ $A B$ अपनी लंबाई तथा चुंबकीय क्षेत्र के लंबवत एक बल का अनुभव करती है। सरलता के लिए, चुंबक की टेक नहीं दर्शाई गई है।

उपरोक्त क्रियाकलाप में छड़ के विस्थापन से हमें यह संकेत मिलता है कि चुंबकीय क्षेत्र में रखने पर एल्युमिनियम की विद्युत धारावाही छड़ पर एक बल आरोपित होता है। और यह भी संकेत मिलता है कि चालक में प्रवाहित विद्युत धारा की दिशा उत्क्रमित करने पर बल की दिशा भी उत्क्रमित हो जाती है। अब चुंबक के ध्रुवों को परस्पर बदल कर चुंबकीय क्षेत्र की दिशा ऊर्ध्वाधरतः अधोमुखी कीजिए। एक बार पुनः यह दिखाई देता है कि विद्युत धारावाही छड़ पर आरोपित बल की दिशा उत्क्रमित हो जाती है। इससे यह प्रदर्शित होता है कि चालक पर आरोपित बल की दिशा विद्युत धारा की दिशा और चुंबकीय क्षेत्र की दिशा दोनों पर निर्भर करती है। प्रयोगों द्वारा यह देखा गया है कि छड़ में विस्थापन उस समय अधिकतम (अथवा छड़ पर आरोपित बल का परिणाम उच्चतम) होता है, जब विद्युत धारा की दिशा चुंबकीय क्षेत्र की दिशा के लंबवत होती है। ऐसी स्थिति में चालक पर आरोपित बल की दिशा का पता हम एक सरल नियम द्वारा लगा सकते हैं।

क्रियाकलाप 12.7 में, हमने विद्युत धारा की दिशा और चुंबकीय क्षेत्र की दिशा को परस्पर लंबवत रखकर विचार किया था और यह पाया कि चालक पर आरोपित बल की दिशा इन दोनों के लंबवत है। इन तीनों दिशाओं की व्याख्या एक सरल नियम जिसे फ्लेमिंग का वामहस्त (बायाँ हाथ) नियम कहते हैं, द्वारा की जा सकती है। इस नियम के अनुसार, अपने बाएँ हाथ की तर्जनी, मध्यमा तथा अँगूठे को इस प्रकार फैलाइए कि ये तीनों एक-दूसरे के परस्पर (चित्र 12.13) लंबवत हों। यदि तर्जनी चुंबकीय क्षेत्र की दिशा और मध्यमा चालक में प्रवाहित विद्युत धारा की दिशा की ओर संकेत करती है तो अँगूठा चालक की गति की दिशा अथवा चालक पर आरोपित बल की दिशा की ओर संकेत करेगा।

चित्र 12.13 फ्लेमिंग का वामहस्त नियम

विद्युत मोटर, विद्युत जनित्र, ध्वनि विस्तारक यंत्र, माइक्रोफ़ोन तथा विद्युत मापक यंत्र कुछ ऐसी युक्तियाँ हैं, जिनमें विद्युत धारावाही चालक तथा चुंबकीय क्षेत्रों का उपयोग होता है।

उदाहरण 12.2

चित्र 12.14 में दर्शाए अनुसार कोई इलेक्ट्रॉन किसी चुंबकीय क्षेत्र में क्षेत्र के लंबवत प्रवेश करता है। इलेक्ट्रॉन पर आरोपित बल की दिशा क्या है?

(a) दाईं ओर

(b) बाईं ओर

(c) कागज़ से बाहर की ओर आते हुए

(d) कागज़ में भीतर की ओर जाते हुए

चित्र 12.14

हल

उत्तर विकल्प (d) है। फ्लेमिंग के वामहस्त नियम के अनुसार आरोपित बल की दिशा चुंबकीय क्षेत्र तथा विद्युत धारा दोनों की दिशाओं के लंबवत होती है। याद कीजिए विद्युत धारा की दिशा इलेक्ट्रॉनों की गति की दिशा के विपरीत होती है। अतः आरोपित बल की दिशा कागज़ में भीतर की ओर जाते हुए है।

प्रश्न

1. किसी प्रोटॉन का निम्नलिखित में से कौन-सा गुण किसी चुबंकीय क्षेत्र में मुक्त गति करते समय परिवर्तित हो जाता है? (यहाँ एक से अधिक सही उत्तर हो सकते हैं।)

(a) द्रव्यमान

(b) चाल

(c) वेग

(d) संवेग

Show Answer #missing

2. क्रियाकलाप 12.7 में हमारे विचार से छड़ $\mathrm{AB}$ का विस्थापन किस प्रकार प्रभावित होगा यदि- (i) छड़ $\mathrm{AB}$ में प्रवाहित विद्युत धारा में वृद्धि हो जाए (ii) अधिक प्रबल नाल चुंबक प्रयोग किया जाए; और (iii) छड़ $\mathrm{AB}$ की लंबाई में वृद्धि कर दी जाए?

Show Answer #missing

3. पश्चिम की ओर प्रक्षेपित कोई धनावेशित कण (अल्फा-कण) किसी चुंबकीय क्षेत्र द्वारा उत्तर की ओर विक्षेपित हो जाता है। चुंबकीय क्षेत्र की दिशा क्या है?

(a) दक्षिण की ओर

(b) पूर्व की ओर

(c) अधोमुखी

(d) उपरिमुखी

Show Answer #missing

यह भी जानिया!

औषध में चुंबकत्व

विद्युत धारा सदैव चुंबकीय क्षेत्र उत्पन्न करती है। यहाँ तक कि हमारे शरीर की तंत्रिका कोशिकाओं के अनुदिश गमन करने वाली दुर्बल आयन धाराएँ भी चुंबकीय क्षेत्र उत्पन्न करती हैं। जब हम किसी वस्तु को स्पर्श करते हैं तो हमारी तंत्रिकाएँ एक विद्युत आवेग का उस पेशी तक वहन करती हैं, जिसका हमें उपयोग करना है। यह आवेग एक अस्थायी चुंबकीय क्षेत्र उत्पन्न करता है। ये क्षेत्र अति दुर्बल होते हैं और पृथ्वी के चुंबकीय क्षेत्र की तुलना में उसके एक अरबवें भाग के बराबर होते हैं। मानव शरीर के दो मुख्य भाग, जिनमें चुंबकीय क्षेत्र का उत्पन्न होना महत्वपूर्ण है, वे हृदय तथा मस्तिष्क हैं। शरीर के भीतर चुंबकीय क्षेत्र शरीर के विभिन्न भागों के प्रतिबिंब प्राप्त करने का आधार बनता है। ऐसा एक विशेष तकनीक जिसे चुंबकीय अनुनाद प्रतिबिंबन [Magnetic Resonance Imaging (MRI)] कहते हैं, के उपयोग द्वारा किया जाता है। चिकित्सा निदान में इन प्रतिबिंबों का विश्लेषण सहायक होता है। इस प्रकार चिकित्सा विज्ञान में चुंबकत्व के महत्वपूर्ण उपयोग हैं।

12.4 घरेलू विद्युत परिपथ

हम अपने घरों में विद्युत शक्ति की आपूर्ति मुख्य तारों (जिसे मेंस भी कहते हैं।) से प्राप्त करते हैं। ये मुख्य तार या तो धरती पर लगे विद्युत खंभों के सहारे अथवा भूमिगत केबलों से हमारे घरों तक आते हैं। इस आपूर्ति के तारों में से एक तार को जिस पर प्रायः लाल विद्युतरोधी आवरण होता है, विद्युन्मय तार (अथवा धनात्मक तार) कहते हैं। अन्य तार को जिस पर काला आवरण होता है, उदासीन तार (अथवा ऋणात्मक तार) कहते हैं। हमारे देश में इन दोनों तारों के बीच $220 \mathrm{~V}$ का विभवांतर होता है।

घर में लगे मीटर बोर्ड में ये तार मुख्य फ्यूज़ से होते हुए एक विद्युत मीटर में प्रवेश करते हैं। इन्हें मुख्य स्विच से होते हुए घर के लाइन तारों से संयोजित किया जाता है। ये तार घर के पृथक्पृथक् परिपथों में विद्युत आपूर्ति करते हैं। प्रायः घरों में दो पृथक् परिपथ होते हैं, एक $15 \mathrm{~A}$ विद्युत धारा अनुमतांक के लिए जिसका उपयोग उच्च शक्ति वाले विद्युत साधित्रों, जैसे — गीज़र, वायु शीतित्र/कूलर (air cooler) आदि के लिए किया जाता है। दूसरा विद्युत परिपथ $5 \mathrm{~A}$ विद्युत धारा अनुमतांक के लिए होता है, जिससे बल्ब पंखे आदि चलाए जाते हैं। भूसंपर्क तार जिस पर प्रायः हरा विद्युतरोधी आवरण होता है, घर के निकट भूमि के भीतर बहुत गहराई पर स्थित धातु की प्लेट से संयोजित होता है। इस तार का उपयोग विशेषकर विद्युत इस्त्री, टोस्टर, मेज़ का पंखा, रेफ्रिजरेटर, आदि धातु के आवरण वाले विद्युत साधित्रों में सुरक्षा के उपाय के रूप में किया जाता है। धातु के आवरणों से संयोजित भूसंपर्क तार विद्युत धारा के लिए अल्प प्रतिरोध का चालन पथ प्रस्तुत करता है। इससे यह सुनिश्चित हो जाता है कि साधित्र के धात्विक आवरण में विद्युत धारा का कोई क्षरण होने पर उस साधित्र का विभव भूमि के विभव के बराबर हो जाएगा। फलस्वरूप इस साधित्र को उपयोग करने वाला व्यक्ति तीव्र विद्युत आघात से सुरक्षित बचा रहता है।

चित्र 12.15 सामान्य घरेलू विद्युत परिपथों में से एक परिपथ का व्यवस्था आरेख

चित्र 12.15 में सामान्य घरेलू विद्युत परिपथों में से किसी एक परिपथ का व्यवस्था आरेख दर्शाया गया है। प्रत्येक पृथक् विद्युत परिपथ में विद्युन्मय तथा उदासीन तारों के बीच विभिन्न विद्युत साधित्रों को संयोजित किया जा सकता है। प्रत्येक साधित्र का अपना पृथक् ‘ऑन/ऑफ़’ स्विच होता है, ताकि इच्छानुसार उनमें विद्युत धारा प्रवाहित कराई जा सके। सभी साधित्रों को समान वोल्टता मिल सके, इसके लिए उन्हें परस्पर पार्श्वक्रम में संयोजित किया जाता है।

विद्युत फ्यूज सभी घरेलू परिपथों का एक महत्वपूर्ण अवयव होता है। पिछले अध्याय (अनुभाग 11.4 देखिए) में हम विद्युत फ़्यूज के सिद्धांत एवं कार्यविधि के विषय में अध्ययन कर चुके हैं। विद्युत परिपथ में लगा फ़्यूज़ परिपथ तथा साधित्र को अतिभारण के कारण होने वाली क्षति से बचाता है। जब विद्युन्मय तार तथा उदासीन तार दोनों सीधे संपर्क में आते हैं तो अतिभारण हो सकता है। (यह तब होता है, जब तारों का विद्युतरोधन क्षतिग्रस्त हो जाता है अथवा साधित्र में कोई दोष होता है।) ऐसी परिस्थितियों में, किसी परिपथ में विद्युत धारा अकस्मात बहुत अधिक हो जाती है। इसे लघुपथन कहते हैं। विद्युत फ़्यूज का उपयोग विद्युत परिपथ तथा विद्युत साधित्र को अवांछनीय उच्च विद्युत धारा के प्रवाह को समाप्त करके, संभावित क्षति से बचाना है। फ़्यूजों में होने वाला जूल तापन फ़्यूज़ को पिघला देता है, जिससे विद्युत परिपथ टूट जाता है। आपूर्ति वोल्टता में दुर्घटनावश होने वाली वृद्धि से भी कभी-कभी अतिभारण हो सकता है। कभी-कभी एक ही सॉकेट से बहुत से विद्युत साधित्रों को संयोजित करने से भी अतिभारण हो जाता है।

प्रश्न

1. विद्युत परिपथों तथा साधित्रों में सामान्यतः उपयोग होने वाले दो सुरक्षा उपायों के नाम लिखिए।

Show Answer #missing

2. $2 \mathrm{~kW}$ शक्ति अनुमतांक का एक विद्युत तंदूर किसी घरेलू विद्युत परिपथ $(220 \mathrm{~V})$ में प्रचालित किया जाता है जिसका विद्युत धारा अनुमतांक $5 \mathrm{~A}$ है, इससे आप किस परिणाम की अपेक्षा करते हैं? स्पष्ट कीजिए।

Show Answer #missing

3. घरेलू विद्युत परिपथों में अतिभारण से बचाव के लिए क्या सावधानी बरतनी चाहिए?

Show Answer #missing

आपने क्या सीखा

  • दिक्सूची एक छोटा चुंबक होता है। इसका एक सिरा जो उत्तर की ओर संकेत करता है उत्तर ध्रुव कहलाता है, तथा दूसरा सिरा जो दक्षिण की ओर संकेत करता है दक्षिण ध्रुव कहलाता है।
  • किसी चुंबक के चारों ओर एक चुंबकीय क्षेत्र होता है, जिसमें उस चुंबक के बल का संसूचन किया जा सकता है।
  • किसी चुंबकीय क्षेत्र के निरूपण के लिए चुंबकीय क्षेत्र रेखाओं का उपयोग किया जाता है। चुंबकीय क्षेत्र रेखा वह पथ है, जिसके अनुदिश कोई परिकल्पित स्वतंत्र उत्तर ध्रुव गमन करने की प्रवृत्ति रखता है। चुंबकीय क्षेत्र के किसी बिंदु पर क्षेत्र की दिशा उस बिंदु पर रखे उत्तर ध्रुव की गति की दिशा द्वारा दर्शाई जाती है। जहाँ चुंबकीय क्षेत्र प्रबल होता है, वहाँ क्षेत्र रेखाएँ एक-दूसरे के निकट दिखाई जाती हैं।
  • किसी विद्युत धारावाही धातु के तार से एक चुंबकीय क्षेत्र संबद्ध होता है। तार के चारों ओर क्षेत्र रेखाएँ अनेक संकेंद्री वृत्तों के रूप में होती हैं, जिनकी दिशा दक्षिण-हस्त अँगुष्ठ नियम द्वारा ज्ञात की जाती है।
  • विद्युत चुंबक में नर्म लौह-क्रोड होता है, जिसके चारों ओर विद्युतरोधी ताँबे के तार की कुंडली लिपटी रहती है।
  • कोई विद्युत धारावाही चालक चुंबकीय क्षेत्र में रखे जाने पर बल का अनुभव करता है।
  • यदि चुंबकीय क्षेत्र तथा विद्युत धारा की दिशाएँ परस्पर एक-दूसरे के लंबवत हैं तब चालक पर आरोपित बल की दिशा इन दोनों दिशाओं के लंबवत होती है, जिसे फ्लेमिंग के वामहस्त नियम द्वारा प्राप्त किया जाता है।
  • हम अपने घरों में प्रत्यावर्ती विद्युत शक्ति $220 \mathrm{~V}$ पर प्राप्त करते हैं, जिसकी आवृत्ति $50 \mathrm{~Hz}$ है। आपूर्ति का एक तार लाल विद्युतरोधन युक्त होता है, जिसे विद्युन्मय तार कहते हैं। दूसरे पर काला विद्युतरोधन होता है, जिसे उदासीन तार कहते हैं। इन दोनों तारों के बीच $220 \mathrm{~V}$ का विभवांतर होता है। तीसरा तार भूसंपर्क तार होता है, जिस पर हरा विद्युतरोधन होता है। यह तार भूमि में गहराई पर दबी धातु की प्लेट से संयोजित होता है। भूसंपर्कण एक सुरक्षा उपाय है, जो यह सुनिश्चित करता है कि साधित्र के धात्विक आवरण में यदि विद्युत धारा का कोई भी क्षरण होता है तो उस साधित्र का उपयोग करने वाले व्यक्ति को गंभीर झटका न लगे।
  • विद्युत परिपथों की लघुपथन अथवा अतिभारण के कारण होने वाली हानि से सुरक्षा की सबसे महत्वपूर्ण युक्ति फ़्यूज़ है।

अभ्यास

1. निम्नलिखित में से कौन किसी लंबे विद्युत धारावाही तार के निकट चुंबकीय क्षेत्र का सही वर्णन करता है?

(a) चुंबकीय क्षेत्र की क्षेत्र रेखाएँ तार के लंबवत होती हैं।

(b) चुंबकीय क्षेत्र की क्षेत्र रेखाएँ तार के समांतर होती हैं।

(c) चुंबकीय क्षेत्र की क्षेत्र रेखाएँ अरीय होती हैं जिनका उद्भव तार से होता है।

(d) चुंबकीय क्षेत्र की संकेंद्री क्षेत्र रेखाओं का केंद्र तार होता है।

Show Answer #missing

2. लघुपथन के समय परिपथ में विद्युत धारा का मान-

(a) बहुत कम हो जाता है।

(b) परिवर्तित नहीं होता।

(c) बहुत अधिक बढ़ जाता है।

(d) निरंतर परिवर्तित होता है।

Show Answer #missing

3. निम्नलिखित प्रकथनों में कौन-सा सही है तथा कौन-सा गलत है? इसे प्रकथन के सामने अंकित कीजिए-

(a) किसी लंबी वृत्ताकर विद्युत धारावाही कुंडली के केंद्र पर चुंबकीय क्षेत्र समांतर सीधी क्षेत्र रेखाएँ होता है।

(b) हरे विद्युतरोधन वाला तार प्रायः विद्युन्मय तार होता है।

Show Answer #missing

4. चुंबकीय क्षेत्र को उत्पन्न करने के दो तरीकों की सूची बनाइए।

Show Answer #missing

5. किसी चुंबकीय क्षेत्र में स्थित विद्युत धारावाही चालक पर आरोपित बल कब अधिकतम होता है?

Show Answer #missing

6. मान लीजिए आप किसी चैंबर में अपनी पीठ को किसी एक दीवार से लगाकर बैठे हैं। कोई इलेक्ट्रॉन पुंज आपके पीछे की दीवार से सामने वाली दीवार की ओर क्षैतिजतः गमन करते हुए किसी प्रबल चुंबकीय क्षेत्र द्वारा आपके दाईं ओर विक्षेपित हो जाता है। चुंबकीय क्षेत्र की दिशा क्या है?

Show Answer #missing

7. निम्नलिखित की दिशा को निर्धारित करने वाला नियम लिखिए- (i) किसी विद्युत धारावाही सीधे चालक के चारों ओर उत्पन्न चुंबकीय क्षेत्र, (ii) किसी चुंबकीय क्षेत्र में, क्षेत्र के लंबवत स्थित, विद्युत धारावाही सीधे चालक पर आरोपित बल

Show Answer #missing

8. किसी विद्युत परिपथ में लघुपथन कब होता है?

Show Answer #missing

9. भूसंपर्क तार का क्या कार्य है? धातु के आवरण वाले विद्युत साधित्रों को भूसंपर्कित करना क्यों आवश्यक

Show Answer #missing


Table of Contents