Chapter-12 Surface Areas and Volumes
12.1 Introduction
From Class IX, you are familiar with some of the solids like cuboid, cone, cylinder, and sphere (see Fig. 12.1). You have also learnt how to find their surface areas and volumes.
Fig. 12.1
In our day-to-day life, we come across a number of solids made up of combinations of two or more of the basic solids as shown above.
You must have seen a truck with a container fitted on its back (see Fig. 12.2), carrying oil or water from one place to another. Is it in the shape of any of the four basic solids mentioned above? You may guess that it is made of a cylinder with two hemispheres as its ends.
Fig. 12.2
Again, you may have seen an object like the one in Fig. 12.3. Can you name it? A test tube, right! You would have used one in your science laboratory. This tube is also a combination of a cylinder and a hemisphere. Similarly, while travelling, you may have seen some big and beautiful buildings or monuments made up of a combination of solids mentioned above.
If for some reason you wanted to find the surface areas, or volumes, or capacities of such objects, how would you do it? We cannot classify these under any of the solids you have already studied.
Fig. 12.3
In this chapter, you will see how to find surface areas and volumes of such objects.
12.2 Surface Area of a Combination of Solids
Let us consider the container seen in Fig. 12.2. How do we find the surface area of such a solid? Now, whenever we come across a new problem, we first try to see, if we can break it down into smaller problems, we have earlier solved. We can see that this solid is made up of a cylinder with two hemispheres stuck at either end. It would look like what we have in Fig. 12.4, after we put the pieces all together.
Fig. 12.4
If we consider the surface of the newly formed object, we would be able to see only the curved surfaces of the two hemispheres and the curved surface of the cylinder.
So, the total surface area of the new solid is the sum of the curved surface areas of each of the individual parts. This gives,
TSA of new solid $=$ CSA of one hemisphere + CSA of cylinder + CSA of other hemisphere
where TSA, CSA stand for ‘Total Surface Area’ and ‘Curved Surface Area’ respectively.
Let us now consider another situation. Suppose we are making a toy by putting together a hemisphere and a cone. Let us see the steps that we would be going through.
First, we would take a cone and a hemisphere and bring their flat faces together. Here, of course, we would take the base radius of the cone equal to the radius of the hemisphere, for the toy is to have a smooth surface. So, the steps would be as shown in Fig. 12.5.
Fig. 12.5
At the end of our trial, we have got ourselves a nice round-bottomed toy. Now if we want to find how much paint we would require to colour the surface of this toy, what would we need to know? We would need to know the surface area of the toy, which consists of the CSA of the hemisphere and the CSA of the cone.
So, we can say:
Total surface area of the toy $=$ CSA of hemisphere + CSA of cone
Now, let us consider some examples.
Example 1 : Rasheed got a playing top (lattu) as his birthday present, which surprisingly had no colour on it. He wanted to colour it with his crayons. The top is shaped like a cone surmounted by a hemisphere (see Fig 12.6). The entire top is $5 \mathrm{~cm}$ in height and the diameter of the top is $3.5 \mathrm{~cm}$. Find the area he has to colour. (Take $\pi=\dfrac{22}{7}$ )
Fig. 12.6
Solution : This top is exactly like the object we have discussed in Fig. 12.5. So, we can conveniently use the result we have arrived at there. That is :
$ \text { TSA of the toy }=\text { CSA of hemisphere }+ \text { CSA of cone } $
Now, the curved surface area of the hemisphere $=\dfrac{1}{2}\left(4 \pi r^{2}\right)=2 \pi r^{2}$
$$ =\left(2 \times \dfrac{22}{7} \times \dfrac{3.5}{2} \times \dfrac{3.5}{2}\right) \mathrm{cm}^{2} $$
Also, the height of the cone = height of the top - height (radius) of the hemispherical part
$$ =\left(5-\dfrac{3.5}{2}\right) \mathrm{cm}=3.25 \mathrm{~cm} $$
So, the slant height of the cone $(l)=\sqrt{r^{2}+h^{2}}=\sqrt{\left(\dfrac{3.5}{2}\right)^{2}+(3.25)^{2}} \mathrm{~cm}=3.7 \mathrm{~cm}$ (approx.)
Therefore, CSA of cone $=\pi r l=\left(\dfrac{22}{7} \times \dfrac{3.5}{2} \times 3.7\right) \mathrm{cm}^{2}$
This gives the surface area of the top as
$$ \begin{aligned} & =\left(2 \times \dfrac{22}{7} \times \dfrac{3.5}{2} \times \dfrac{3.5}{2}\right) \mathrm{cm}^{2}+\left(\dfrac{22}{7} \times \dfrac{3.5}{2} \times 3.7\right) \mathrm{cm}^{2} \\ & =\dfrac{22}{7} \times \dfrac{3.5}{2}(3.5+3.7) \mathrm{cm}^{2}=\dfrac{11}{2} \times(3.5+3.7) \mathrm{cm}^{2}=39.6 \mathrm{~cm}^{2} \text { (approx.) } \end{aligned} $$
You may note that ’total surface area of the top’ is not the sum of the total surface areas of the cone and hemisphere.
Example 2 : The decorative block shown in Fig. 12.7 is made of two solids - a cube and a hemisphere. The base of the block is a cube with edge $5 \mathrm{~cm}$, and the hemisphere fixed on the top has a diameter of $4.2 \mathrm{~cm}$. Find the total surface area of the block. (Take $\pi=\dfrac{22}{7}$ )
Fig. 12.7
Solution : The total surface area of the cube $=6 \times(\text { edge })^{2}=6 \times 5 \times 5 \mathrm{~cm}^{2}=150 \mathrm{~cm}^{2}$.
Note that the part of the cube where the hemisphere is attached is not included in the surface area.
So, the surface area of the block $=$ TSA of cube - base area of hemisphere + CSA of hemisphere
$$ \begin{aligned} & =150-\pi r^{2}+2 \pi r^{2}=\left(150+\pi r^{2}\right) \mathrm{cm}^{2} \\ & =150 \mathrm{~cm}^{2}+\left(\dfrac{22}{7} \times \dfrac{4.2}{2} \times \dfrac{4.2}{2}\right) \mathrm{cm}^{2} \\ & =(150+13.86) \mathrm{cm}^{2}=163.86 \mathrm{~cm}^{2} \end{aligned} $$
Example 3 : A wooden toy rocket is in the shape of a cone mounted on a cylinder, as shown in Fig. 12.8. The height of the entire rocket is $26 \mathrm{~cm}$, while the height of the conical part is $6 \mathrm{~cm}$. The base of the conical portion has a diameter of $5 \mathrm{~cm}$, while the base diameter of the cylindrical portion is $3 \mathrm{~cm}$. If the conical portion is to be painted orange and the cylindrical portion yellow, find the area of the rocket painted with each of these colours. (Take $\pi=3.14$ )
Fig. 12.8
Solution : Denote radius of cone by $r$, slant height of cone by $l$, height of cone by $h$, radius of cylinder by $r^{\prime}$ and height of cylinder by $h^{\prime}$. Then $r=2.5 \mathrm{~cm}, h=6 \mathrm{~cm}, r^{\prime}=1.5 \mathrm{~cm}$, $h^{\prime}=26-6=20 \mathrm{~cm}$ and
$$ l=\sqrt{r^{2}+h^{2}}=\sqrt{2.5^{2}+6^{2}} \mathrm{~cm}=6.5 \mathrm{~cm} $$
Here, the conical portion has its circular base resting on the base of the cylinder, but the base of the cone is larger than the base of the cylinder. So, a part of the base of the cone (a ring) is to be painted.
So, the area to be painted orange $=$ CSA of the cone + base area of the cone - base area of the cylinder
$$ \begin{aligned} & =\pi r l+\pi r^{2}-\pi\left(r^{\prime}\right)^{2} \\ & =\pi\left[(2.5 \times 6.5)+(2.5)^{2}-(1.5)^{2}\right] \mathrm{cm}^{2} \\ & =\pi[20.25] \mathrm{cm}^{2}=3.14 \times 20.25 \mathrm{~cm}^{2} \\ & =63.585 \mathrm{~cm}^{2} \end{aligned} $$
Now, the area to be painted yellow $=$ CSA of the cylinder + area of one base of the cylinder
$$ \begin{aligned} & =2 \pi r^{\prime} h^{\prime}+\pi\left(r^{\prime}\right)^{2} \\ & =\pi r^{\prime}\left(2 h^{\prime}+r^{\prime}\right) \\ & =(3.14 \times 1.5)(2 \times 20+1.5) \mathrm{cm}^{2} \\ & =4.71 \times 41.5 \mathrm{~cm}^{2} \\ & =195.465 \mathrm{~cm}^{2} \end{aligned} $$
Example 4 : Mayank made a bird-bath for his garden in the shape of a cylinder with a hemispherical depression at one end (see Fig. 12.9). The height of the cylinder is $1.45 \mathrm{~m}$ and its radius is $30 \mathrm{~cm}$. Find the total surface area of the bird-bath. (Take $\pi=\dfrac{22}{7}$ )
Fig. 12.9
Solution : Let $h$ be height of the cylinder, and $r$ the common radius of the cylinder and hemisphere. Then, the total surface area of the bird-bath $=$ CSA of cylinder + CSA of hemisphere
$$ \begin{aligned} & =2 \pi r h+2 \pi r^{2}=2 \pi r(h+r) \\ & =2 \times \dfrac{22}{7} \times 30(145+30) \mathrm{cm}^{2} \\ & =33000 \mathrm{~cm}^{2}=3.3 \mathrm{~m}^{2} \end{aligned} $$
EXERCISE 12.1
Unless stated otherwise, take $\pi=\dfrac{22}{7}$.
1. 2 cubes each of volume $64 \mathrm{~cm}^{3}$ are joined end to end. Find the surface area of the resulting cuboid.
Show Answer
Solution2. A vessel is in the form of a hollow hemisphere mounted by a hollow cylinder. The diameter of the hemisphere is $14 \mathrm{~cm}$ and the total height of the vessel is $13 \mathrm{~cm}$. Find the inner surface area of the vessel.
Show Answer
Solution
It can be observed that radius $(r)$ of the cylindrical part and the hemispherical part is the same (i.e., $7 cm$ ).
Height of hemispherical part $=$ Radius $=7 cm$
Height of cylindrical part $(h)=13-7=6 cm$
Inner surface area of the vessel = CSA of cylindrical part + CSA of hemispherical part
$=2 \pi r h+2 \pi r^{2}$
Inner surface area of vessel $=2 \times \dfrac{22}{7} \times 7 \times 6+2 \times \dfrac{22}{7} \times 7 \times 7$
$ \begin{aligned} & =44(6+7)=44 \times 13 \\ & =572 cm^{2} \end{aligned} $
3. A toy is in the form of a cone of radius $3.5 \mathrm{~cm}$ mounted on a hemisphere of same radius. The total height of the toy is $15.5 \mathrm{~cm}$. Find the total surface area of the toy.
Show Answer
Solution
It can be observed that the radius of the conical part and the hemispherical part is same (i.e., $3.5 cm$ ).
Height of hemispherical part $=$ Radius $(r)=3.5=\dfrac{7}{2} cm$
Height of conical part $(h)=15.5-3.5=12 cm$
Slant height $(l)$ of conical part $=\sqrt{r^{2}+h^{2}}$
$ \begin{aligned} & =\sqrt{(\dfrac{7}{2})^{2}+(12)^{2}}=\sqrt{\dfrac{49}{4}+144}=\sqrt{\dfrac{49+576}{4}} \\ & =\sqrt{\dfrac{625}{4}}=\dfrac{25}{2} \end{aligned} $
Total surface area of toy $=$ CSA of conical part + CSA of hemispherical part
$ \begin{aligned} & =\pi r l+2 \pi r^{2} \\ & =\dfrac{22}{7} \times \dfrac{7}{2} \times \dfrac{25}{2}+2 \times \dfrac{22}{7} \times \dfrac{7}{2} \times \dfrac{7}{2} \\ & =137.5+77=214.5 cm^{2} \end{aligned} $
4. A cubical block of side $7 \mathrm{~cm}$ is surmounted by a hemisphere. What is the greatest diameter the hemisphere can have? Find the surface area of the solid.
Show Answer
Solution
From the figure, it can be observed that the greatest diameter possible for such hemisphere is equal to the cube’s edge, i.e., $7 cm$.
Radius $(r.$ ) of hemispherical part $=\dfrac{7}{2}=3.5 cm$
Total surface area of solid = Surface area of cubical part + CSA of hemispherical part
- Area of base of hemispherical part
$=6(\text{ Edge })^{2}+2 \pi r^{2}-\pi r^{2}=6(\text{ Edge })^{2}+\pi r^{2}$
Total surface area of solid $=6(7)^{2}+\dfrac{22}{7} \times \dfrac{7}{2} \times \dfrac{7}{2}$
$ =294+38.5=332.5 cm^{2} $
5. A hemispherical depression is cut out from one face of a cubical wooden block such that the diameter $l$ of the hemisphere is equal to the edge of the cube. Determine the surface area of the remaining solid.
Show Answer
Solution
Diameter of hemisphere $=$ Edge of cube $=I$
Radius of hemisphere $=\dfrac{l}{2}$
Total surface area of solid = Surface area of cubical part + CSA of hemispherical part
- Area of base of hemispherical part
$=6(\text{ Edge })^{2}+2 \pi r^{2}-\pi r^{2}=6(\text{ Edge })^{2}+\pi r^{2}$
Total surface area of solid $=6 l^{2}+\pi \times(\dfrac{l}{2})^{2}$
$ \begin{aligned} & =6 l^{2}+\dfrac{\pi l^{2}}{4} \\ & =\dfrac{1}{4}(24+\pi) l^{2} \text{ unit }^{2} \end{aligned} $
6. A medicine capsule is in the shape of a cylinder with two hemispheres stuck to each of its ends (see Fig. 12.10). The length of the entire capsule is $14 \mathrm{~mm}$ and the diameter of the capsule is $5 \mathrm{~mm}$. Find its surface area.
Fig. 12.10
Show Answer
Solution
It can be observed that
Radius $(r)$ of cylindrical part $=$ Radius $(r)$ of hemispherical
part
$ =\dfrac{\text{ Diameter of the capsule }}{2}=\dfrac{5}{2} $
Length of cylindrical part $(h)=$ Length of the entire capsule $-2 \times r$
$=14-5=9 cm$
Surface area of capsule $=2 \times$ CSA of hemispherical part + CSA of cylindrical part
$ \begin{aligned} & =2 \times 2 \pi r^{2}+2 \pi r h \\ & =4 \pi(\dfrac{5}{2})^{2}+2 \pi(\dfrac{5}{2})(9) \\ & =25 \pi+45 \pi \\ & =70 \pi mm^{2} \\ & =70 \times \dfrac{22}{7} \\ & =220 mm^{2} \end{aligned} $
7. A tent is in the shape of a cylinder surmounted by a conical top. If the height and diameter of the cylindrical part are $2.1 \mathrm{~m}$ and $4 \mathrm{~m}$ respectively, and the slant height of the top is $2.8 \mathrm{~m}$, find the area of the canvas used for making the tent. Also, find the cost of the canvas of the tent at the rate of ₹ 500 per $\mathrm{m}^{2}$. (Note that the base of the tent will not be covered with canvas.)
Show Answer
Solution
Given that,
Height $(h)$ of the cylindrical part $=2.1 m$
Diameter of the cylindrical part $=4 m$
Radius of the cylindrical part $=2 m$
Slant height $(I)$ of conical part $=2.8 m$
Area of canvas used $=$ CSA of conical part + CSA of cylindrical part $=\pi r l+2 \pi r h$
$=\pi \times 2 \times 2.8+2 \pi \times 2 \times 2.1$
$=2 \pi[2.8+2 \times 2.1]=2 \pi[2.8+4.2]=2 \times \dfrac{22}{7} \times 7$
$=44 m^{2}$
Cost of $1 m^{2}$ canvas $=$ Rs 500
Cost of $44 m^{2}$ canvas $=44 \times 500=22000$
Therefore, it will cost Rs 22000 for making such a tent.
8. From a solid cylinder whose height is $2.4 \mathrm{~cm}$ and diameter $1.4 \mathrm{~cm}$, a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid to the nearest $\mathrm{cm}^{2}$.
Show Answer
Solution
Given that,
Height $(h)$ of the conical part $=$ Height $(h)$ of the cylindrical part $=2.4 cm$
Diameter of the cylindrical part $=1.4 cm$
Therefore, radius $(r)$ of the cylindrical part $=0.7 cm$
Slant height $(l)$ of conical part $=\sqrt{r^{2}+h^{2}}$
$ \begin{aligned} & =\sqrt{(0.7)^{2}+(2.4)^{2}}=\sqrt{0.49+5.76} \\ & =\sqrt{6.25}=2.5 \end{aligned} $
Total surface area of the remaining solid will be
$=$ CSA of cylindrical part + CSA of conical part + Area of cylindrical base
$=2 \pi r h+\pi r l+\pi r^{2}$
$=2 \times \dfrac{22}{7} \times 0.7 \times 2.4+\dfrac{22}{7} \times 0.7 \times 2.5+\dfrac{22}{7} \times 0.7 \times 0.7$
$ \begin{aligned} & =4.4 \times 2.4+2.2 \times 2.5+2.2 \times 0.7 \\ & =10.56+5.50+1.54=17.60 cm^{2} \end{aligned} $
The total surface area of the remaining solid to the nearest $cm^{2}$ is $18 cm^{2}$.
9. A wooden article was made by scooping out a hemisphere from each end of a solid cylinder, as shown in Fig. 12.11. If the height of the cylinder is $10 \mathrm{~cm}$, and its base is of radius $3.5 \mathrm{~cm}$, find the total surface area of the article.
Fig. 12.11
Show Answer
Solution
Radius $(r)$ of cylindrical part $=$ Radius $(r)$ of hemispherical part $=3.5 cm$
Height of cylindrical part $(h)=10 cm$
Surface area of article $=$ CSA of cylindrical part $+2 \times$ CSA of hemispherical part
$=2 \pi r h+2 \times 2 \pi r^{2}$
$=2 \pi \times 3.5 \times 10+2 \times 2 \pi \times 3.5 \times 3.5$
$=70 \pi+49 \pi$
$=119 \pi$
$=17 \times 22=374 cm^{2}$
12.3 Volume of a Combination of Solids
In the previous section, we have discussed how to find the surface area of solids made up of a combination of two basic solids. Here, we shall see how to calculate their volumes. It may be noted that in calculating the surface area, we have not added the surface areas of the two constituents, because some part of the surface area disappeared in the process of joining them. However, this will not be the case when we calculate the volume. The volume of the solid formed by joining two basic solids will actually be the sum of the volumes of the constituents, as we see in the examples below.
Example 5 : Shanta runs an industry in a shed which is in the shape of a cuboid surmounted by a half cylinder (see Fig. 12.12). If the base of the shed is of dimension $7 \mathrm{~m} \times 15 \mathrm{~m}$, and the height of the cuboidal portion is $8 \mathrm{~m}$, find the volume of air that the shed can hold. Further, suppose the machinery in the shed occupies a total space of $300 \mathrm{~m}^{3}$, and there are 20 workers, each of whom occupy about $0.08 \mathrm{~m}^{3}$ space on an average. Then, how much air is in the shed? (Take $\pi=\dfrac{22}{7}$ )
Fig. 12.12
Solution : The volume of air inside the shed (when there are no people or machinery) is given by the volume of air inside the cuboid and inside the half cylinder, taken together.
Now, the length, breadth and height of the cuboid are $15 \mathrm{~m}, 7 \mathrm{~m}$ and $8 \mathrm{~m}$, respectively. Also, the diameter of the half cylinder is $7 \mathrm{~m}$ and its height is $15 \mathrm{~m}$.
So, the required volume $=$ volume of the cuboid $+\dfrac{1}{2}$ volume of the cylinder
$$ =\left[15 \times 7 \times 8+\dfrac{1}{2} \times \dfrac{22}{7} \times \dfrac{7}{2} \times \dfrac{7}{2} \times 15\right] \mathrm{m}^{3}=1128.75 \mathrm{~m}^{3} $$
Next, the total space occupied by the machinery $=300 \mathrm{~m}^{3}$
And the total space occupied by the workers $=20 \times 0.08 \mathrm{~m}^{3}=1.6 \mathrm{~m}^{3}$
Therefore, the volume of the air, when there are machinery and workers
$$ =1128.75-(300.00+1.60)=827.15 \mathrm{~m}^{3} $$
Example 6 : A juice seller was serving his customers using glasses as shown in Fig. 12.13. The inner diameter of the cylindrical glass was $5 \mathrm{~cm}$, but the bottom of the glass had a hemispherical raised portion which reduced the capacity of the glass. If the height of a glass was $10 \mathrm{~cm}$, find the apparent capacity of the glass and its actual capacity. (Use $\pi=3.14$.)
Fig. 12.13
Solution : Since the inner diameter of the glass $=5 \mathrm{~cm}$ and height $=10 \mathrm{~cm}$, the apparent capacity of the glass $=\pi r^{2} h$
$$ =3.14 \times 2.5 \times 2.5 \times 10 \mathrm{~cm}^{3}=196.25 \mathrm{~cm}^{3} $$
But the actual capacity of the glass is less by the volume of the hemisphere at the base of the glass.
i.e., $\quad$ it is less by $\dfrac{2}{3} \pi r^{3}=\dfrac{2}{3} \times 3.14 \times 2.5 \times 2.5 \times 2.5 \mathrm{~cm}^{3}=32.71 \mathrm{~cm}^{3}$
So, the actual capacity of the glass $=$ apparent capacity of glass - volume of the hemisphere
$$ \begin{aligned} & =(196.25-32.71) \mathrm{cm}^{3} \\ & =163.54 \mathrm{~cm}^{3} \end{aligned} $$
Example 7 : A solid toy is in the form of a hemisphere surmounted by a right circular cone. The height of the cone is $2 \mathrm{~cm}$ and the diameter of the base is $4 \mathrm{~cm}$. Determine the volume of the toy. If a right circular cylinder circumscribes the toy, find the difference of the volumes of the cylinder and the toy. (Take $\pi=3.14$ )
Fig. 12.14
Solution : Let BPC be the hemisphere and ABC be the cone standing on the base of the hemisphere (see Fig. 12.14). The radius BO of the hemisphere (as well as of the cone) $=\dfrac{1}{2} \times 4 \mathrm{~cm}=2 \mathrm{~cm}$.
So, volume of the toy $=\dfrac{2}{3} \pi r^{3}+\dfrac{1}{3} \pi r^{2} h$
$$ =\left[\dfrac{2}{3} \times 3.14 \times(2)^{3}+\dfrac{1}{3} \times 3.14 \times(2)^{2} \times 2\right] \mathrm{cm}^{3}=25.12 \mathrm{~cm}^{3} $$
Now, let the right circular cylinder EFGH circumscribe the given solid. The radius of the base of the right circular cylinder $=\mathrm{HP}=\mathrm{BO}=2 \mathrm{~cm}$, and its height is
$$ \mathrm{EH}=\mathrm{AO}+\mathrm{OP}=(2+2) \mathrm{cm}=4 \mathrm{~cm} $$
So, the volume required $=$ volume of the right circular cylinder - volume of the toy
$$ \begin{aligned} & =\left(3.14 \times 2^{2} \times 4-25.12\right) \mathrm{cm}^{3} \\ & =25.12 \mathrm{~cm}^{3} \end{aligned} $$
Hence, the required difference of the two volumes $=25.12 \mathrm{~cm}^{3}$.
EXERCISE 12.2
Unless stated otherwise, take $\pi=\dfrac{22}{7}$.
1. A solid is in the shape of a cone standing on a hemisphere with both their radii being equal to $1 \mathrm{~cm}$ and the height of the cone is equal to its radius. Find the volume of the solid in terms of $\pi$.
Show Answer
Solution
Given that,
Height $(h)$ of conical part $=$ Radius $(r)$ of conical part $=1 cm$
Radius $(r)$ of hemispherical part $=$ Radius of conical part $(r)=1 cm$
Volume of solid $=$ Volume of conical part + Volume of hemispherical part
$=\dfrac{1}{3} \pi r^{2} h+\dfrac{2}{3} \pi r^{3}$
$=\dfrac{1}{3} \pi(1)^{2}(1)+\dfrac{2}{3} \pi(1)^{2}=\dfrac{\pi}{3}+\dfrac{2 \pi}{3}=\pi cm^{3}$
2. Rachel, an engineering student, was asked to make a model shaped like a cylinder with two cones attached at its two ends by using a thin aluminium sheet. The diameter of the model is $3 \mathrm{~cm}$ and its length is $12 \mathrm{~cm}$. If each cone has a height of $2 \mathrm{~cm}$, find the volume of air contained in the model that Rachel made. (Assume the outer and inner dimensions of the model to be nearly the same.)
Show Answer
Solution
From the figure, it can be observed that
Height $(h_1)$ of each conical part $=2 cm$
Height $(h_2)$ of cylindrical part $=12-2 \times$ Height of conical part
$=12-2 \times 2=8 cm$
Radius $(r)$ of cylindrical part $=$ Radius of conical part $=\dfrac{3}{2} cm$
Volume of air present in the model $=$ Volume of cylinder $+2 \times$ Volume of cones
$=\pi r^{2} h_2+2 \times \dfrac{1}{3} \pi r^{2} h_1$
$\begin{aligned}=\pi(\dfrac{3}{2})^{2}(8)+2 \times \dfrac{1}{3} \pi(\dfrac{3}{2})^{2}(2) & =\pi \times \dfrac{9}{4} \times 8+\dfrac{2}{3} \pi \times \dfrac{9}{4} \times 2 \\ & =18 \pi+3 \pi=21 \pi=66 cm^{2}\end{aligned}$
3. A gulab jamun, contains sugar syrup up to about $30 %$ of its volume. Find approximately how much syrup would be found in 45 gulab jamuns, each shaped like a cylinder with two hemispherical ends with length $5 \mathrm{~cm}$ and diameter $2.8 \mathrm{~cm}$ (see Fig. 12.15).
Fig. 12.15
Show Answer
Solution
It can be observed that
Radius $(r)$ of cylindrical part $=$ Radius $(r)$ of hemispherical part $=\dfrac{2.8}{2}=1.4 cm$
Length of each hemispherical part $=$ Radius of hemispherical part $=1.4 cm$
Length $(h)$ of cylindrical part $=5-2 \times$ Length of hemispherical part
$=5-2 \times 1.4=2.2 cm$
Volume of one gulab jamun $=$ Vol. of cylindrical part $+2 \times$ Vol. of hemispherical part $=\pi r^{2} h+2 \times \dfrac{2}{3} \pi r^{3}=\pi r^{2} h+\dfrac{4}{3} \pi r^{3}$
$=\pi \times(1.4)^{2} \times 2.2+\dfrac{4}{3} \pi(1.4)^{3}$
$=\dfrac{22}{7} \times 1.4 \times 1.4 \times 2.2+\dfrac{4}{3} \times \dfrac{22}{7} \times 1.4 \times 1.4 \times 1.4$
$=13.552+11.498=25.05 cm^{3}$
Volume of 45 gulab jamuns $=45 \times 25.05=1,127.25 cm^{3}$
Volume of sugar syrup $=30 %$ of volume
$=\dfrac{30}{100} \times 1,127.25$
$=338.17 cm^{3}$
$\simeq 338 cm^{3}$
4. A pen stand made of wood is in the shape of a cuboid with four conical depressions to hold pens. The dimensions of the cuboid are $15 \mathrm{~cm}$ by $10 \mathrm{~cm}$ by $3.5 \mathrm{~cm}$. The radius of each of the depressions is 0.5 $\mathrm{cm}$ and the depth is $1.4 \mathrm{~cm}$. Find the volume of wood in the entire stand (see Fig. 12.16).
Fig. 12.16
Show Answer
Solution
Depth $(h)$ of each conical depression $=1.4 cm$
Radius ( $r$ ) of each conical depression $=0.5 cm$
Volume of wood $=$ Volume of cuboid $-4 \times$ Volume of cones
$ \begin{aligned} & =lbh-4 \times \dfrac{1}{3} \pi r^{2} h \\ & =15 \times 10 \times 3.5-4 \times \dfrac{1}{3} \times \dfrac{22}{7} \times(\dfrac{1}{2})^{2} \times 1.4 \\ & =525-1.47 \\ & =523.53 cm^{3} \end{aligned} $
5. A vessel is in the form of an inverted cone. Its height is $8 \mathrm{~cm}$ and the radius of its top, which is open, is $5 \mathrm{~cm}$. It is filled with water up to the brim. When lead shots, each of which is a sphere of radius $0.5 \mathrm{~cm}$ are dropped into the vessel, one-fourth of the water flows out. Find the number of lead shots dropped in the vessel.
Show Answer
Solution
Height $(h)$ of conical vessel $=8 cm$
Radius $(r_1)$ of conical vessel $=5 cm$
Radius $(r_2)$ of lead shots $=0.5 cm$
Let $n$ number of lead shots were dropped in the vessel.
Volume of water spilled $=$ Volume of dropped lead shots
$\dfrac{1}{4} \times$ Volume of cone $n \times \dfrac{4}{3} r_2^{3}$
$\dfrac{1}{4} \times \dfrac{1}{3} \pi r_1^{2} h=n \times \dfrac{4}{3} \pi r_2^{3}$
$r_1^{2} h=n \times 16 r_2^{3}$
$5^{2} \times 8=n \times 16 \times(0.5)^{3}$
$n=\dfrac{25 \times 8}{16 \times(\dfrac{1}{2})^{3}}=100$
Hence, the number of lead shots dropped in the vessel is 100.
6. A solid iron pole consists of a cylinder of height $220 \mathrm{~cm}$ and base diameter $24 \mathrm{~cm}$, which is surmounted by another cylinder of height $60 \mathrm{~cm}$ and radius $8 \mathrm{~cm}$. Find the mass of the pole, given that $1 \mathrm{~cm}^{3}$ of iron has approximately $8 \mathrm{~g}$ mass. (Use $\pi=3.14$ )
Show Answer
Solution
From the figure, it can be observed that
Height $(h_1)$ of larger cylinder $=220 cm$
Radius $(r_1)$ of larger cylinder $=\dfrac{24}{2}=12 cm$
Height $(h_2)$ of smaller cylinder $=60 cm$
Radius $(r_2.$ ) of smaller cylinder $=8 cm$
Total volume of pole $=$ Volume of larger cylinder + Volume of smaller cylinder
$ \begin{aligned} & =\pi r_1^{2} h_1+\pi r_2^{2} h_2 \\ & =\pi(12)^{2} \times 220+\pi(8)^{2} \times 60 \\ & =\pi[144 \times 220+64 \times 60] \\ & =35520 \times 3.14=1,11,532.8 cm^{3} \end{aligned} $
Mass of $1 cm^{3}$ iron $=8 g$
Mass of $111532.8 cm^{3}$ iron $=111532.8 \times 8=892262.4 g=892.262 kg$
7. A solid consisting of a right circular cone of height $120 \mathrm{~cm}$ and radius $60 \mathrm{~cm}$ standing on a hemisphere of radius $60 \mathrm{~cm}$ is placed upright in a right circular cylinder full of water such that it touches the bottom. Find the volume of water left in the cylinder, if the radius of the cylinder is $60 \mathrm{~cm}$ and its height is $180 \mathrm{~cm}$.
Show Answer
Solution
Radius $(r)$ of hemispherical part $=$ Radius $(r)$ of conical part $=60 cm$
Height $(h_2)$ of conical part of solid $=120 cm$
Height $(h_1)$ of cylinder $=180 cm$
Radius ( $r$ ) of cylinder $=60 cm$
Volume of water left $=$ Volume of cylinder - Volume of solid
$=$ Volume of cylinder $-($ Volume of cone + Volume of hemisphere $)$
$=\pi r^{2} h_1-(\dfrac{1}{3} \pi r^{2} h_2+\dfrac{2}{3} \pi r^{3})$
$=\pi(60)^{2}(180)-(\dfrac{1}{3} \pi(60)^{2} \times 120+\dfrac{2}{3} \pi(60)^{3})$
$=\pi(60)^{2}[(180)-(40+40)]$
$=\pi(3,600)(100)=3,60,000 \pi cm^{3}=1131428.57 cm^{3}=1.131 m^{3}$
8. A spherical glass vessel has a cylindrical neck $8 \mathrm{~cm}$ long, $2 \mathrm{~cm}$ in diameter; the diameter of the spherical part is $8.5 \mathrm{~cm}$. By measuring the amount of water it holds, a child finds its volume to be $345 \mathrm{~cm}^{3}$. Check whether she is correct, taking the above as the inside measurements, and $\pi=3.14$.
Show Answer
Solution
Height $(h)$ of cylindrical part $=8 cm$
Radius $(r_2)$ of cylindrical part $=\dfrac{2}{2}=1 cm$
Radius $(r_1)$ spherical part $=\dfrac{8.5}{2}=4.25 cm$
Volume of vessel $=$ Volume of sphere + Volume of cylinder
$=\dfrac{4}{3} \pi r_1^{3}+\pi r_2^{2} h$
$=\dfrac{4}{3} \pi(\dfrac{8.5}{2})^{3}+\pi(1)^{2}(8)$
$=\dfrac{4}{3} \times 3.14 \times 76.765625+8 \times 3.14$
$=321.392+25.12$
$=346.512$
$=346.51 cm^{3}$
Hence, she is wrong.
12.4 Summary
In this chapter, you have studied the following points:
1. To determine the surface area of an object formed by combining any two of the basic solids, namely, cuboid, cone, cylinder, sphere and hemisphere.
2. To find the volume of objects formed by combining any two of a cuboid, cone, cylinder, sphere and hemisphere.
12.1 भूमिका
कक्षा IX से, आप कुछ ठोस आकृतियों जैसे घनाभ, शंकु, बेलन और गोला से परिचित हो चुके हैं (देखिए आकृति 12.1)। आप यह भी पढ़ चुके हैं कि इन आकृतियों के पृष्ठीय क्षेत्रफल और आयतन किस प्रकार ज्ञात किए जाते हैं।
आकृति 12.1
अपने दैनिक जीवन में हमें ऐसे अनेक ठोस देखने को मिलते हैं जो उपरोक्त दो या अधिक आधारभूत ठोसों के संयोजनों से (अर्थात् इनको मिलाकर) बनते हैं।
आपने एक ट्रक के पीछे रखे बड़े कंटेनर (container) को अवश्य ही देखा होगा (देखिए आकृति 12.2), जिसमें एक स्थान से दूसरे स्थान तक तेल या पानी ले जाया जाता है। क्या इसका आकार उपरोक्त चारों ठोसों में से किसी एक के आकार जैसा है? आप यह अनुमान लगा सकते हैं कि यह ठोस एक बेलन और उसके दोनों सिरों पर दो अर्धगोले लगने पर बना है।
आकृति 12.2
पुनः, आपने ऐसी वस्तु भी अवश्य देखी होगी जो आकृति 12.3 में दर्शाई गई है। क्या आप इसका नाम बता सकते हैं? यह निश्चय ही एक परख नली (test tube) है। आपने इसे अपनी विज्ञान प्रयोगशाला में प्रयोग किया होगा। यह परखनली भी एक बेलन और एक अर्धगोले से मिलकर बनी है। इसी प्रकार, यात्रा करते समय भी उपरोक्त ठोसों के संयोजनों से बने अनेक बड़े और सुंदर भवनों अथवा स्मारकों को आपने देखा होगा।
यदि किन्हीं कारणवश, आप इन ठोसों के पृष्ठीय क्षेत्रफल या आयतन या धारिता ज्ञात करना चाहें तो आप ऐसा किस प्रकार करेंगे? आप ऐसे ठोसों को अब तक पढ़ी हुई चारों ठोस आकृतियों में से किसी एक के रूप में वर्गीकृत नहीं कर सकते।
आकृति 12.3
इस अध्याय में आप यह देखेंगे कि इस प्रकार के ठोसों के पृष्ठीय क्षेत्रफल और आयतन किस प्रकार ज्ञात किए जाते हैं?
12.2 ठोसों के संयोजन का पृष्ठीय क्षेत्रफल
आइए उस कंटेनर पर विचार करें जो हमने आकृति 12.2 में देखा था। इस प्रकार के ठोस का पृष्ठीय क्षेत्रफल हम कैसे ज्ञात करें? अब, जब भी हमारे सम्मुख कोई नई समस्या आती है तो हम सर्वप्रथम यह देखने का प्रयत्न करते हैं कि क्या हम इसे ऐसी छोटी समस्याओं में तोड़ सकते हैं जिन्हें हम पहले हल कर चुके हैं। हम देख सकते हैं कि यह ठोस एक बेलन के दोनों सिरों पर एक-एक अर्धगोला लगाने से बना है। यह आकृति 12.4 में दिखाए ठोस जैसा लगेगा, जबकि हम सभी टुकड़ों को एक साथ मिला लेते हैं।
आकृति 12.4
यदि हम नयी बनी हुई वस्तु को देखें, तो हमें केवल दोनों अर्धगोलों तथा बेलन के केवल वक्रपृष्ठ दिखाई देंगे।
इसलिए इस ठोस का संपूर्ण पृष्ठीय क्षेत्रफल तीनों भागों के वक्र पृष्ठीय क्षेत्रफलों के योग के बराबर होगा। इससे हमें प्राप्त होता है :
ठोस का संपूर्ण पृष्ठीय क्षेत्रफल $(\mathrm{TSA})=$ एक अर्धगोले का वक्र पृष्ठीय क्षेत्रफल (CSA) + बेलन का वक्र पृष्ठीय क्षेत्रफल + दूसरे अर्धगोले का वक्र पृष्ठीय क्षेत्रफल
#missing
आइए एक अन्य स्थिति पर विचार करें। मान लीजिए हम अर्धगोले और एक शंकु को जोड़कर एक खिलौना बना रहे हैं। आइए हम उन चरणों को देखें जिनका हम अनुसरण करेंगे।
पहले हम एक शंकु और एक अर्धगोला लेंगे और फिर उनके सपाट पृष्ठों को साथ-साथ लाने का प्रयत्न करेंगे। निस्संदेह, खिलौने के पृष्ठ को चिकना रखने के लिए हम शंकु के आधार की त्रिज्या अर्धगोले की त्रिज्या के बराबर लेंगे। इस खिलौने के बनाने में संबद्ध चरण आकृति 12.5 में दर्शाए अनुसार होंगे :
आकृति 12.5
अपने प्रयत्न के फलस्वरूप हमें एक गोल आधार वाला सुंदर खिलौना प्राप्त हो जाता है। अब, हम यदि यह जानना चाहें कि इस खिलौने के पृष्ठ पर रंग करवाने के लिए कितने पेंट की आवश्यकता होगी, तो हमें क्या जानकारी होनी चाहिए? हमें इस खिलौने के पृष्ठीय क्षेत्रफल को ज्ञात करने की आवश्यकता है, जो अर्धगोले के CSA और शंकु के CSA को मिलाकर बनता है।
अतः, हम कह सकते हैं कि
खिलौने का संपूर्ण पृष्ठीय क्षेत्रफल $=$ अर्धगोले का CSA + शंकु का CSA
अब, आइए कुछ उदाहरण लें।
उदाहरण 1 : रशीद को जन्मदिन के उपहार के रूप में एक लट्टू मिला, जिस पर रंग नहीं किया गया था। वह इस पर अपने मोमिया रंगों (Crayons) से रंग करना चाहता है। यह लट्टू एक शंकु के आकार का है जिसके ऊपर एक अर्धगोला अध्यारोपित है (देखिए आकृति 12.6)। लट्टू की पूरी ऊँचाई $5 \mathrm{~cm}$ है और इसका व्यास $3.5 \mathrm{~cm}$ है। उसके द्वारा रंग किया जाने वाला क्षेत्रफल ज्ञात कीजिए। ( $\pi=\frac{22}{7}$ लीजिए।)
आवृति 12.6
हल : यह लट्टू बिल्कुल उस वस्तु जैसा है जिसकी चर्चा हमने आकृति 12.5 में की थी। अतः, हम वहाँ पर प्राप्त परिणाम को सुविधाजनक रूप से यहाँ प्रयोग कर सकते हैं। अर्थात्
लट्टू का $\mathrm{TSA}=$ अर्धगोले का $\mathrm{CSA}+$ शंकु का CSA
अब, अर्धगोले का वक्र पृष्ठीय क्षेत्रफल $=\frac{1}{2}\left(4 \pi r^{2}\right)=2 \pi r^{2}$
$$ =\left(2 \times \frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2}\right) \mathrm{cm}^{2} $$
साथ ही, शंकु की ऊँचाई = लट्टू की ऊँचाई - अर्धगोलीय भाग की ऊँचाई (त्रिज्या)
$$ =\left(5-\frac{3.5}{2}\right) \mathrm{cm}=3.25 \mathrm{~cm} $$
अतः शंकु की तिर्यक ऊँचाई $(l)=\sqrt{r^{2}+h^{2}}=\sqrt{\left(\frac{3.5}{2}\right)^{2}+(3.25)^{2}} \mathrm{~cm}=3.7 \mathrm{~cm}$ (लगभग )
इसलिए शंकु का पृष्ठीय क्षेत्रफल $=\pi r l=\left(\frac{22}{7} \times \frac{3.5}{2} \times 3.7\right) \mathrm{cm}^{2}$
इससे लट्टू का प्राप्त पृष्ठीय क्षेत्रफल
$$ \begin{aligned} & =\left(2 \times \frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2}\right) \mathrm{cm}^{2}+\left(\frac{22}{7} \times \frac{3.5}{2} \times 3.7\right) \mathrm{cm}^{2} \\ & =\frac{22}{7} \times \frac{3.5}{2}(3.5+3.7) \mathrm{cm}^{2}=\frac{11}{2} \times(3.5+3.7) \mathrm{cm}^{2}=39.6 \mathrm{~cm}^{2}(\text { लगभग }) \end{aligned} $$
आप देख सकते हैं कि लट्टू का संपूर्ण पृष्ठीय क्षेत्रफल अर्धगोले और शंकु के संपूर्ण पृष्ठीय क्षेत्रफलों के योग के बराबर नहीं है।
उदाहरण 2 : आकृति 12.7 में दर्शाया गया सजावट के लिए प्रयोग होने वाला ब्लॉक दो ठोसों से मिलकर बना है। इनमें से एक घन है और दूसरा अर्धगोला है। इस ब्लॉक (block) का आधार $5 \mathrm{~cm}$ कोर या किनारे (edge) वाला एक घन है और उसके ऊपर लगे हुए अर्धगोले का व्यास $4.2 \mathrm{~cm}$ है। इस ब्लॉक का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए। ( $\pi=\frac{22}{7}$ लीजिए।)
आकृति 12.7
हल : घन का संपूर्ण पृष्ठीय क्षेत्रफल $=6 \times(\text { कोर })^{2}=6 \times 5 \times 5 \mathrm{~cm}^{2}=150 \mathrm{~cm}^{2}$
अब, घन का वह भाग जिस पर अर्धगोला लगा हुआ है पृष्ठीय क्षेत्रफल में सम्मिलित नहीं होगा।
अतः ब्लॉक का पृष्ठीय क्षेत्रफल = घन का TSA-अर्धगोले के आधार का क्षेत्रफल + अर्धगोले का CSA
$$ \begin{aligned} = & 150-\pi r^{2}+2 \pi r^{2}=\left(150+\pi r^{2}\right) \mathrm{cm}^{2} \\ = & 150 \mathrm{~cm}^{2}+\left(\frac{22}{7} \times \frac{4.2}{2} \times \frac{4.2}{2}\right) \mathrm{cm}^{2} \\ = & 150 \mathrm{~cm}^{2}+13.86 \mathrm{~cm}^{2}=163.86 \mathrm{~cm}^{2} \end{aligned} $$
उदाहरण 3 : लकड़ी का एक खिलौना रॉकेट (rocket) एक शंकु के आकार का है जो एक बेलन पर अध्यारोपित है, जैसाकि आकृति 12.8 में दर्शाया गया है। संपूर्ण रॉकेट की ऊँचाई $26 \mathrm{~cm}$ है, जबकि शंक्वाकार भाग की ऊँचाई $6 \mathrm{~cm}$ है। शंक्वाकार के भाग के आधार का व्यास $5 \mathrm{~cm}$ और बेलनाकार भाग के आधार का व्यास $3 \mathrm{~cm}$ है। यदि शंक्वाकार भाग पर नारंगी रंग किया जाना है और बेलनाकार भाग पर पीला रंग किया जाना है, तो प्रत्येक रंग द्वारा रॉकेट का रँगे जाने वाले भाग का क्षेत्रफल ज्ञात कीजिए। ( $\pi=3.14$ लीजिए।)
आकृति 12.8
हल : शंकु की त्रिज्या को $r$ से, शंकु की तिर्यक ऊँचाई को $l$ से, शंकु की ऊँचाई को $h$ से, बेलन की त्रिज्या को $r^{\prime}$ से, बेलन की ऊँचाई को $h^{\prime}$ से व्यक्त कीजिए। तब, $r=2.5 \mathrm{~cm}, h$ $=6 \mathrm{~cm}, r^{\prime}=1.5 \mathrm{~cm}, h^{\prime}=26-6=20 \mathrm{~cm}$ तथा
$$ l=\sqrt{r^{2}+h^{2}}=\sqrt{2.5^{2}+6^{2}} \mathrm{~cm}=6.5 \mathrm{~cm} $$
यहाँ, शंक्वाकार भाग का वृत्तीय आधार बेलन के आधार पर टिका हुआ है परंतु शंकु का आधार बेलन के आधार से बड़ा है। अतः, शंकु के आधार के एक भाग [वलय (ring)] को भी रँगा जाएगा।
अतः, नारंगी रंग से रँगे भाग का क्षेत्रफल $=$ शंकु का $\mathrm{CSA}+$ शंकु के आधार का क्षेत्रफल - बेलन के आधार का क्षेत्रफल
$$ \begin{aligned} & =\pi r l+\pi r^{2}-\pi\left(r^{\prime}\right)^{2} \\ & =\pi\left[(2.5 \times 6.5)+(2.5)^{2}-(1.5)^{2}\right] \mathrm{cm}^{2} \\ & =\pi[20.25] \mathrm{cm}^{2}=3.14 \times 20.25 \mathrm{~cm}^{2} \\ & =63.585 \mathrm{~cm}^{2} \end{aligned} $$
अब, पीले रंग से रंगे जाने वाले भाग का क्षेत्रफल $=$ बेलन का CSA + बेलन के एक आधार का क्षेत्रफल
$$ \begin{aligned} & =2 \pi r^{\prime} h^{\prime}+\pi\left(r^{\prime}\right)^{2} \\ & =\pi r^{\prime}\left(2 h^{\prime}+r^{\prime}\right) \\ & =3.14 \times 1.5[2 \times 20+1.5] \mathrm{cm}^{2} \\ & =4.71 \times 41.5 \mathrm{~cm}^{2} \\ & =195.465 \mathrm{~cm}^{2} \end{aligned} $$
उदाहरण 4 : मयंक ने अपने बगीचे के लिए एक पक्षी-स्नानागार (bird-bath) बनाया जिसका आकार एक खोखले बेलन जैसा है जिसके एक सिरे पर अर्धगोलाकार बर्तन बना हुआ है (देखिए आकृति 12.9)। बेलन की ऊँचाई $1.45 \mathrm{~m}$ है और उसकी त्रिज्या $30 \mathrm{~cm}$ है। इस पक्षी-स्नानागार का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
आकृति 12.9
हल : मान लीजिए कि बेलन की ऊँचाई $h$ है तथा बेलन और अर्धगोले की उभयनिष्ठ त्रिज्या $r$ है। तब, पक्षी-स्नानागार का संपूर्ण पृष्ठीय क्षेत्रफल $=$ बेलन का $\mathrm{CSA}+$ अर्धगोले का CSA
$$ \begin{aligned} & =2 \pi r h+2 \pi r^{2}=2 \pi r(h+r) \\ & =2 \times \frac{22}{7} \times 30(145+30) \mathrm{cm}^{2} \\ & =33000 \mathrm{~cm}^{2}=3.3 \mathrm{~m}^{2} \end{aligned} $$
प्रश्नावली 12.1
जब तक अन्यथा न कहा जाए, $\pi=\frac{22}{7}$ लीजिए।
1. दो घनों, जिनमें से प्रत्येक का आयतन $64 \mathrm{~cm}^{3}$ है, के संलग्न फलकों को मिलाकर एक ठोस बनाया जाता है। इससे प्राप्त घनाभ का पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
Show Answer
#missing2. कोई बर्तन एक खोखले अर्धगोले के आकार का है जिसके ऊपर एक खोखला बेलन अध्यारोपित है। अर्धगोले का व्यास $14 \mathrm{~cm}$ है और इस बर्तन (पात्र) की कुल ऊँचाई $13 \mathrm{~cm}$ है। इस बर्तन का आंतरिक पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
Show Answer
#missing3. एक खिलौना त्रिज्या $3.5 \mathrm{~cm}$ वाले एक शंकु के आकार का है, जो उसी त्रिज्या वाले एक अर्धगोले पर अध्यारोपित है। इस खिलौने की संपूर्ण ऊँचाई $15.5 \mathrm{~cm}$ है। इस खिलौने का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
Show Answer
#missing4. भुजा $7 \mathrm{~cm}$ वाले एक घनाकार ब्लॉक के ऊपर एक अर्धगोला रखा हुआ है। अर्धगोले का अधिकतम व्यास क्या हो सकता है? इस प्रकार बने ठोस का पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
Show Answer
#missing5. एक घनाकार ब्लॉक के एक फलक को अंदर की ओर से काट कर एक अर्धगोलाकार गड्ढा इस प्रकार बनाया गया है कि अर्धगोले का व्यास घन के एक किनारे के बराबर है। शेष बचे ठोस का पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
Show Answer
#missing6. दवा का एक कैप्सूल (capsule) एक बेलन के आकार का है जिसके दोनों सिरों पर एक-एक अर्धगोला लगा हुआ है (देखिए आकृति 12.10)। पूर कैप्सूल की लंबाई $14 \mathrm{~mm}$ है और उसका व्यास $5 \mathrm{~mm}$ है। इसका पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
आवृति 12.10
Show Answer
#missing7. कोई तंबू एक बेलन के आकार का है जिस पर एक शंकु अध्यारोपित है। यदि बेलनाकार भाग की ऊँचाई और व्यास क्रमशः $2.1 \mathrm{~m}$ और $4 \mathrm{~m}$ है तथा शंकु की तिर्यक ऊँचाई $2.8 \mathrm{~m}$ है तो इस तंबू को बनाने में प्रयुक्त कैनवस (canvas) का क्षेत्रफल ज्ञात कीजिए। साथ ही, ₹ 500 प्रति $\mathrm{m}^{2}$ की दर से इसमें प्रयुक्त कैनवस की लागत ज्ञात कीजिए। (ध्यान दीजिए कि तंबू के आधार को कैनवस से नहीं ढका जाता है।)
Show Answer
#missing8. ऊँचाई $2.4 \mathrm{~cm}$ और व्यास $1.4 \mathrm{~cm}$ वाले एक ठोस बेलन में से इसी ऊँचाई और इसी व्यास वाला एक शंक्वाकार खोल (cavity) काट लिया जाता है। शेष बचे ठोस का निकटतम वर्ग सेंटीमीटर तक पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
Show Answer
#missing9. लकड़ी के एक ठोस बेलन के प्रत्येक सिरे पर एक अर्धगोला खोदकर निकालते हुए, एक वस्तु बनाई गई है, जैसाकि आकृति 12.11 में दर्शाया गया है। यदि बेलन की ऊँचाई $10 \mathrm{~cm}$ है और आधार की त्रिज्या $3.5 \mathrm{~cm}$ है तो इस वस्तु का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
आकृति 12.11
Show Answer
#missing12.3 ठोसों के संयोजन का आयतन
पिछले अनुच्छेद में हमने यह चर्चा की है कि दो आधारभूत ठोसों के संयोजन से बने ठोसों के पृष्ठीय क्षेत्रफल किस प्रकार ज्ञात किए जाते हैं। अब हम देखेंगे कि इस प्रकार के ठोसों के आयतन किस प्रकार परिकलित किए जाते हैं। ध्यान दीजिए कि पृष्ठीय क्षेत्रफल परिकलित करने में हमने दोनों घटकों (ठोसों) के पृष्ठीय क्षेत्रफलों को जोड़ा नहीं था क्योंकि इनको मिलाने की प्रक्रिया में पृष्ठीय क्षेत्रफल का कुछ भाग लुप्त हो गया था। परंतु आयतन परिकलित करने की स्थिति में ऐसा नहीं होगा। दो आधारभूत ठोसों के संयोजन से बने ठोस का आयतन वास्तव में दोनों घटकों के आयतनों के योग के बराबर होता है, जैसाकि हम नीचे दिए उदाहरण में देखेंगे।
उदाहरण 5 : शांता किसी शेड (shed) में एक उद्योग चलाती है। यह शेड एक घनाभ के आकार का है जिस पर एक अर्धबेलन आरोपित है (देखिए आकृति 12.12)। यदि इस शेड के आधार की विमाएँ $7 \mathrm{~m} \times 15 \mathrm{~m}$ हैं तथा घनाभाकार भाग की ऊँचाई $8 \mathrm{~m}$ है तो शेड में समावेशित हो सकने वाली हवा का आयतन ज्ञात कीजिए। पुनः यदि यह मान लें कि शेड में रखी मशीनरी $300 \mathrm{~m}^{3}$ स्थान घेरती है तथा शेड के अंदर 20 श्रमिक हैं जिनमें से प्रत्येक $0.08 \mathrm{~m}^{3}$ के औसत से स्थान घेरता है तब शेड में कितनी हवा होगी? ( $\pi=\frac{22}{7}$ लीजिए।)
आवृति 12.12
हल : शेड के अंदर हवा का आयतन (जब इसमें कोई व्यक्ति या मशीनरी नहीं है) घनाभ के अंदर की हवा और अर्धबेलन के अंदर की हवा के आयतनों को मिला कर प्राप्त होगा।
अब, घनाभ की लंबाई, चौड़ाई और ऊँचाई क्रमशः $15 \mathrm{~m}, 7 \mathrm{~m}$ और $8 \mathrm{~m}$ हैं। साथ ही, अर्धबेलन का व्यास $7 \mathrm{~m}$ और ऊँचाई $15 \mathrm{~m}$ है।
इसलिए वांछित आयतन $=$ घनाभ का आयतन $+\frac{1}{2}$ बेलन का आयतन
$$ =\left[15 \times 7 \times 8+\frac{1}{2} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 15\right] \mathrm{m}^{3}=1128.75 \mathrm{~m}^{3} $$
आगे, मशीनरी द्वारा घेरा गया स्थान $=300 \mathrm{~m}^{3}$
तथा 20 श्रमिकों द्वारा घेरा गया स्थान $=20 \times 0.08 \mathrm{~m}^{3}=1.6 \mathrm{~m}^{3}$
अतः, शेड में उस समय हवा का आयतन, जब उसमें मशीनरी और श्रमिक हैं
$$ =1128.75-(300.00+1.60)=827.15 \mathrm{~m}^{3} $$
उदाहरण 6 : एक जूस (juice) बेचने वाला अपने ग्राहकों को आकृति 12.13 में दर्शाए गिलासों से जूस देता था। बेलनाकार गिलास का आंतरिक व्यास $5 \mathrm{~cm}$ था, परंतु गिलास के निचले आधार (तली) में एक उभरा हुआ अर्धगोला था, जिससे गिलास की धारिता कम हो जाती थी। यदि एक गिलास की ऊँचाई $10 \mathrm{~cm}$ थी, तो गिलास की आभासी (apparent) धारिता तथा उसकी वास्तविक धारिता ज्ञात कीजिए। ( $\pi=3.14$ लीजिए)
आकृति 12.13
हल : चूँकि गिलास का आंतरिक व्यास $=5 \mathrm{~cm}$ है और ऊँचाई $10 \mathrm{~cm}$ है, इसलिए गिलास की आभासी धारिता $=\pi r^{2} h$
$$ =3.14 \times 2.5 \times 2.5 \times 10 \mathrm{~cm}^{3}=196.25 \mathrm{~cm}^{3} $$
परंतु इसकी वास्तविक धारिता उपरोक्त धारिता से आधार में बने अर्धगोले के आयतन के बराबर कम है।
अर्थात् कमी बराबर है $\frac{2}{3} \pi r^{3}=\frac{2}{3} \times 3.14 \times 2.5 \times 2.5 \times 2.5 \mathrm{~cm}^{3}=32.71 \mathrm{~cm}^{3}$
अतः गिलास की वास्तविक धारिता $=$ आभासी धारिता - अर्धगोले का आयतन
$$ \begin{aligned} & =(196.25-32.71) \mathrm{cm}^{3} \\ & =163.54 \mathrm{~cm}^{2} \end{aligned} $$
उदाहरण 7 : एक ठोस खिलौना एक अर्धगोले के आकार का है जिस पर एक लंब वृत्तीय शंकु आरोपित है। इस शंकु की ऊँचाई $2 \mathrm{~cm}$ है और आधार का व्यास $4 \mathrm{~cm}$ है। इस खिलौने का आयतन निर्धारित कीजिए। यदि एक लंब वृत्तीय बेलन इस खिलौने के परिगत हो तो बेलन और खिलौने के आयतनों का अंतर ज्ञात कीजिए। ( $\pi=3.14$ लीजिए।)
आकृति 12.14
हल : मान लीजिए $\mathrm{BPC}$ अर्धगोला है तथा $\mathrm{ABC}$ अर्धगोले के आधार पर खड़ा एक शंकु है (देखिए आकृति 12.14)। अर्धगोले (और शंकु की भी) की त्रिज्या $=\frac{1}{2} \times 4 \mathrm{~cm}=2 \mathrm{~cm}$
इसलिए खिलौने का आयतन $=\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2} h$
$$ =\frac{2}{3} \times 3.14 \times(2)^{3}+\frac{1}{3} \times 3.14 \times(2)^{2} \times 2 \mathrm{~cm}^{3}=25.12 \mathrm{~cm}^{3} $$
अब, मान लीजिए कि दिए गए ठोस के परिगत लंब वृत्तीय बेलन $\mathrm{EFGH}$ है। इस लंब वृत्तीय बेलन के आधार की त्रिज्या $=\mathrm{HP}=\mathrm{BO}=2 \mathrm{~cm}$ है तथा इसकी ऊँचाई
$$ \mathrm{EH}=\mathrm{AO}+\mathrm{OP}=(2+2) \mathrm{cm}=4 \mathrm{~cm} \text { है। } $$
अतः, वांछित आयतन $=$ लंब वृत्तीय बेलन का आयतन - खिलौने का आयतन
$$ \begin{aligned} & =\left(3.14 \times 2^{2} \times 4-25.12\right) \mathrm{cm}^{3} \\ & =25.12 \mathrm{~cm}^{3} \end{aligned} $$
इस प्रकार, दोनों आयतनों का अंतर $=25.12 \mathrm{~cm}^{3}$ है।
प्रश्नावली 12.2
(जब तक अन्यथा न कहा जाए, $\pi=\frac{22}{7}$ लीजिए।)
1. एक ठोस एक अर्धगोले पर खड़े एक शंकु के आकार का है जिनकी त्रिज्याएँ $1 \mathrm{~cm}$ हैं तथा शंकु की ऊँचाई उसकी त्रिज्या के बराबर है। इस ठोस का आयतन $\pi$ के पदों में ज्ञात कीजिए।
Show Answer
#missing2. एक इंजीनियरिंग के विद्यार्थी रचेल से एक पतली एल्यूमीनियम की शीट का प्रयोग करते हुए एक मॉडल बनाने को कहा गया जो एक ऐसे बेलन के आकार का हो जिसके दोनों सिरों पर दो शंकु जुड़े हुए हों। इस मॉडल का व्यास $3 \mathrm{~cm}$ है और इसकी लंबाई $12 \mathrm{~cm}$ है। यदि प्रत्येक शंकु की ऊँचाई $2 \mathrm{~cm}$ हो तो रचेल द्वारा बनाए गए मॉडल में अंतर्विष्ट हवा का आयतन ज्ञात कीजिए। (यह मान लीजिए कि मॉडल की आंतरिक और बाहरी विमाएँ लगभग बराबर हैं।)
Show Answer
#missing3. एक गुलाबजामुन में उसके आयतन की लगभग $30 %$ चीनी की चाशनी होती है। 45 गुलाबजामुनों में लगभग कितनी चाशनी होगी, यदि प्रत्येक गुलाबजामुन एक बेलन के आकार का है, जिसके दोनों सिरे अर्धगोलाकार हैं तथा इसकी लंबाई $5 \mathrm{~cm}$ और व्यास $2.8 \mathrm{~cm}$ है (देखिए आकृति 12.15)।
आवृति 12.15
Show Answer
#missing4. एक कलमदान घनाभ के आकार की एक लकड़ी से बना है जिसमें कलम रखने के लिए चार शंक्वाकार गड्ढे बने हुए हैं। घनाभ की विमाएँ $15 \mathrm{~cm} \times 10 \mathrm{~cm} \times$ $3.5 \mathrm{~cm}$ हैं। प्रत्येक गड्ढे की त्रिज्या $0.5 \mathrm{~cm}$ है और गहराई $1.4 \mathrm{~cm}$ है। पूरे कलमदान में लकड़ी का आयतन ज्ञात कीजिए (देखिए आकृति 12.16)।
आकृति 12.16
Show Answer
#missing5. एक बर्तन एक उल्टे शंकु के आकार का है। इसकी ऊँचाई $8 \mathrm{~cm}$ है और इसके ऊपरी सिरे (जो खुला हुआ है) की त्रिज्या $5 \mathrm{~cm}$ है। यह ऊपर तक पानी से भरा हुआ है। जब इस बर्तन में सीसे की कुछ गोलियाँ जिनमें प्रत्येक $0.5 \mathrm{~cm}$ त्रिज्या वाला एक गोला है, डाली जाती हैं, तो इसमें से भरे हुए पानी का एक चौथाई भाग बाहर निकल जाता है। बर्तन में डाली गई सीसे की गोलियों की संख्या ज्ञात कीजिए।
Show Answer
#missing6. ऊँचाई $220 \mathrm{~cm}$ और आधार व्यास $24 \mathrm{~cm}$ वाले एक बेलन, जिस पर ऊँचाई $60 \mathrm{~cm}$ और त्रिज्या 8 $\mathrm{cm}$ वाला एक अन्य बेलन आरोपित है, से लोहे का एक स्तंभ बना है। इस स्तंभ का द्रव्यमान ज्ञात कीजिए, जबकि दिया है $1 \mathrm{~cm}^{3}$ लोहे का द्रव्यमान लगभग $8 \mathrm{~g}$ होता है। $(\pi=3.14$ लीजिए।)
Show Answer
#missing7. एक ठोस में, ऊँचाई $120 \mathrm{~cm}$ और त्रिज्या $60 \mathrm{~cm}$ वाला एक शंकु सम्मिलित है, जो $60 \mathrm{~cm}$ त्रिज्या वाले एक अर्धगोले पर आरोपित है। इस ठोस को पानी से भरे हुए एक लंब वृत्तीय बेलन में इस प्रकार सीधा डाल दिया जाता है कि यह बेलन की तली को स्पर्श करे। यदि बेलन की त्रिज्या $60 \mathrm{~cm}$ है और ऊँचाई $180 \mathrm{~cm}$ है तो बेलन में शेष बचे पानी का आयतन ज्ञात कीजिए।
Show Answer
#missing8. एक गोलाकार काँच के बर्तन की एक बेलन के आकार की गर्दन है जिसकी लंबाई $8 \mathrm{~cm}$ है और व्यास $2 \mathrm{~cm}$ है जबकि गोलाकार भाग का व्यास $8.5 \mathrm{~cm}$ है। इसमें भरे जा सकने वाली पानी की मात्रा माप कर, एक बच्चे ने यह ज्ञात किया कि इस बर्तन का आयतन $345 \mathrm{~cm}^{3}$ है। जाँच कीजिए कि उस बच्चे का उत्तर सही है या नहीं, यह मानते हुए कि उपरोक्त मापन आंतरिक मापन है और $\pi=3.14$ ।
Show Answer
#missing12.4 सारांश
इस अध्याय में, आपने निम्नलिखित तथ्यों का अध्ययन किया है :
1. आधारभूत ठोसों घनाभ, बेलन, शंकु और गोले और अर्धगोले में से किन्हीं दो ठोसों के संयोजन (को मिलाने से) से बने ठोसों के पृष्ठीय क्षेत्रफल निर्धारित करना।
2. ठोसों घनाभ, बेलन, शंकु, गोले और अर्धगोले में से किन्हीं दो ठोसों के संयोजन से बने ठोसों के आयतन ज्ञात करना।