Chapter-11 Areas Related To Circles

11.1 Areas of Sector and Segment of a Circle

You have already come across the terms sector and segment of a circle in your earlier classes. Recall that the portion (or part) of the circular region enclosed by two radii and the corresponding arc is called a sector of the circle and the portion (or part) of the circular region enclosed between a chord and the corresponding arc is called a segment of the circle. Thus, in Fig. 11.1, shaded region OAPB is a sector of the circle with centre $\mathrm{O} . \angle \mathrm{AOB}$ is called the angle of the sector. Note that in this figure, unshaded region OAQB is also a sector of the circle. For obvious reasons, OAPB is called the minor sector and $\mathrm{OAQB}$ is called the major sector. You can also see that angle of the major sector is $360^{\circ}-\angle \mathrm{AOB}$.

Fig. 11.1

Now, look at Fig. 11.2 in which AB is a chord of the circle with centre $\mathrm{O}$. So, shaded region APB is a segment of the circle. You can also note that unshaded region $\mathrm{AQB}$ is another segment of the circle formed by the chord AB. For obvious reasons, APB is called the minor segment and AQB is called the major segment.

Fig. 11.2

Remark : When we write ‘segment’ and ‘sector’ we will mean the ‘minor segment’ and the ‘minor sector’ respectively, unless stated otherwise.

Now with this knowledge, let us try to find some relations (or formulae) to calculate their areas.

Let OAPB be a sector of a circle with centre $\mathrm{O}$ and radius $r$ (see Fig. 11.3). Let the degree measure of $\angle \mathrm{AOB}$ be $\theta$.

Fig. 11.3

You know that area of a circle (in fact of a circular region or disc) is $\pi r^{2}$.

In a way, we can consider this circular region to be a sector forming an angle of $360^{\circ}$ (i.e., of degree measure 360) at the centre O. Now by applying the Unitary Method, we can arrive at the area of the sector OAPB as follows:

When degree measure of the angle at the centre is 360 , area of the sector $=\pi r^{2}$

So, when the degree measure of the angle at the centre is 1 , area of the sector $=\dfrac{\pi r^{2}}{360}$.

Therefore, when the degree measure of the angle at the centre is $\theta$, area of the sector $=\dfrac{\pi r^{2}}{360} \times \theta=\dfrac{\theta}{360} \times \pi r^{2}$.

Thus, we obtain the following relation (or formula) for area of a sector of a circle:

Area of the sector of angle $\theta=\dfrac{\theta}{360} \times \pi r^{2} \text {, }$

where $r$ is the radius of the circle and $\theta$ the angle of the sector in degrees.

Now, a natural question arises : Can we find the length of the arc APB corresponding to this sector? Yes. Again, by applying the Unitary Method and taking the whole length of the circle (of angle $360^{\circ}$ ) as $2 \pi r$, we can obtain the required length of the arc APB as $\dfrac{\theta}{360} \times 2 \pi r$.

So, length of an arc of a sector of angle $\theta=\dfrac{\theta}{360} \times 2 \pi r$.

Fig. 11.4

Now let us take the case of the area of the segment APB of a circle with centre $\mathrm{O}$ and radius $r$ (see Fig. 11.4). You can see that :

Area of the segment $\mathrm{APB}=$ Area of the sector $\mathrm{OAPB}-$ Area of $\triangle \mathrm{OAB}$

$$ =\dfrac{\theta}{360} \times \pi r^{2}-\text { area of } \Delta \mathrm{OAB} $$

Note : From Fig. 11.3 and Fig. 11.4 respectively, you can observe that:

Area of the major sector $\mathrm{OAQB}=\pi r^{2}-$ Area of the minor sector $\mathrm{OAPB}$

and

Area of major segment $\mathrm{AQB}=\pi r^{2}$ - Area of the minor segment APB

Let us now take some examples to understand these concepts (or results).

Example 1 : Find the area of the sector of a circle with radius $4 \mathrm{~cm}$ and of angle $30^{\circ}$. Also, find the area of the corresponding major sector (Use $\pi=3.14$ ).

Solution : Given sector is OAPB (see Fig. 11.5).

Fig. 11.5

Area of the sector $=\dfrac{\theta}{360} \times \pi r^{2}$

$$ \begin{aligned} & =\dfrac{30}{360} \times 3.14 \times 4 \times 4 \mathrm{~cm}^{2} \\ & =\dfrac{12.56}{3} \mathrm{~cm}^{2}=4.19 \mathrm{~cm}^{2} \text { (approx.) } \end{aligned} $$

Area of the corresponding major sector

$$ \begin{aligned} & =\pi r^{2}-\text { area of sector OAPB } \\ & =(3.14 \times 16-4.19) \mathrm{cm}^{2} \\ & =46.05 \mathrm{~cm}^{2}=46.1 \mathrm{~cm}^{2} \text { (approx.) } \end{aligned} $$

Alternatively, area of the major sector $=\dfrac{(360-\theta)}{360} \times \pi r^{2}$

$$ \begin{aligned} & =\left(\dfrac{360-30}{360}\right) \times 3.14 \times 16 \mathrm{~cm}^{2} \\ & =\dfrac{330}{360} \times 3.14 \times 16 \mathrm{~cm}^{2}=46.05 \mathrm{~cm}^{2} \\ & =46.1 \mathrm{~cm}^{2} \text { (approx.) } \end{aligned} $$

Example 2 : Find the area of the segment AYB shown in Fig. 11.6, if radius of the circle is $21 \mathrm{~cm}$ and $\angle \mathrm{AOB}=120^{\circ}$. (Use $\pi=\dfrac{22}{7}$ )

Fig. 11.6

Solution : Area of the segment AYB

$$ =\text { Area of sector OAYB }- \text { Area of } \Delta \mathrm{OAB} \tag{1} $$

$$ \text{ Now, area of the sector OAYB } =\dfrac{120}{360} \times \dfrac{22}{7} \times 21 \times 21 \mathrm{~cm}^{2}=462 \mathrm{~cm}^{2} \tag{2}$$

For finding the area of $\Delta \mathrm{OAB}$, draw $\mathrm{OM} \perp \mathrm{AB}$ as shown in Fig. 11.7.

Fig. 11.7

Note that $\mathrm{OA}=\mathrm{OB}$. Therefore, by RHS congruence, $\Delta \mathrm{AMO} \cong \Delta \mathrm{BMO}$.

So, $\mathrm{M}$ is the mid-point of $\mathrm{AB}$ and $\angle \mathrm{AOM}=\angle \mathrm{BOM}=\dfrac{1}{2} \times 120^{\circ}=60^{\circ}$.

$\text {Let} \qquad \mathrm{OM}=x \mathrm{~cm}$

So, from $\Delta$ OMA, $$ \dfrac{\mathrm{OM}}{\mathrm{OA}}=\cos 60^{\circ} $$

$\text {or,}\qquad \dfrac{x}{21}=\dfrac{1}{2} \quad\left(\cos 60^{\circ}=\dfrac{1}{2}\right)$

$\text {or,}\qquad x=\dfrac{21}{2}$

$\text {So,}\qquad \mathrm{OM}=\dfrac{21}{2} \mathrm{~cm}$

$\text {Also,}\qquad \dfrac{\mathrm{AM}}{\mathrm{OA}}=\sin 60^{\circ}=\dfrac{\sqrt{3}}{2}$

$\text {So,}\qquad \mathrm{AM}=\dfrac{21 \sqrt{3}}{2} \mathrm{~cm}$

$\text {Therefore,}\qquad \mathrm{AB}=2 \mathrm{AM}=\dfrac{2 \times 21 \sqrt{3}}{2} \mathrm{~cm}=21 \sqrt{3} \mathrm{~cm}$

So, $$ \text { area of } \begin{aligned} \Delta \mathrm{OAB} & =\dfrac{1}{2} \mathrm{AB} \times \mathrm{OM}=\dfrac{1}{2} \times 21 \sqrt{3} \times \dfrac{21}{2} \mathrm{~cm}^{2} \end{aligned} $$

$$ =\dfrac{441}{4} \sqrt{3} \mathrm{~cm}^{2}\tag{3}$$

Therefore, area of the segment AYB $=\left(462-\dfrac{441}{4} \sqrt{3}\right) \mathrm{cm}^{2}$

[From (1), (2) and (3)]

$$ =\dfrac{21}{4}(88-21 \sqrt{3}) \mathrm{cm}^{2} $$

EXERCISE 11.1

Unless stated otherwise, use $\pi=\dfrac{22}{7}$.

1. Find the area of a sector of a circle with radius $6 \mathrm{~cm}$ if angle of the sector is $60^{\circ}$.

Show Answer

Solution

Let $OACB$ be a sector of the circle making $60^{\circ}$ angle at centre $O$ of the circle.

Area of sector of angle $\theta=\dfrac{\theta}{360^{\circ}} \times \pi r^{2}$

Area of sector $OACB=\dfrac{60^{\circ}}{360^{\circ}} \times \dfrac{22}{7} \times(6)^{2}$

$=\dfrac{1}{6} \times \dfrac{22}{7} \times 6 \times 6=\dfrac{132}{7} cm^{2}$

2. Find the area of a quadrant of a circle whose circumference is $22 \mathrm{~cm}$.

Show Answer

Solution

Let the radius of the circle be $r$.

Circumference $=22 cm$

$2 \pi r=22$

$r=\dfrac{22}{2 \pi}=\dfrac{11}{\pi}$

Quadrant of circle will subtend $90^{\circ}$ angle at the centre of the circle.

Area of such quadrant of the circle $=\dfrac{90^{\circ}}{360^{\circ}} \times \pi \times r^{2}$

$=\dfrac{1}{4 \pi} \times \pi \times(\dfrac{11}{\pi})^{2}$

$=\dfrac{121}{4 \pi}=\dfrac{121 \times 7}{4 \times 22}$

$=\dfrac{77}{8} cm^{2}$

3. The length of the minute hand of a clock is $14 \mathrm{~cm}$. Find the area swept by the minute hand in 5 minutes.

Show Answer

Solution

We know that in 1 hour (i.e., 60 minutes), the minute hand rotates $360^{\circ}$.

In 5 minutes, minute hand will rotate $=\dfrac{360^{\circ}}{60} \times 5=30^{\circ}$

Therefore, the area swept by the minute hand in 5 minutes will be the area of a sector of $30^{\circ}$ in a circle of $14 cm$ radius.

Area of sector of angle $\theta=\dfrac{\theta}{360^{\circ}} \times \pi r^{2}$

Area of sector of $30^{\circ}=\dfrac{30^{\circ}}{360^{\circ}} \times \dfrac{22}{7} \times 14 \times 14$

$=\dfrac{22}{12} \times 2 \times 14$

$=\dfrac{11 \times 14}{3}$

$=\dfrac{154}{3} cm^{2}$

Therefore, the area swept by the minute hand in 5 minutes is $\dfrac{154}{3} cm^{2}$.

4. A chord of a circle of radius $10 \mathrm{~cm}$ subtends a right angle at the centre. Find the area of the corresponding:

(i) minor segment

(ii) major sector. (Use $\pi=3.14$ )

Show Answer

Solution

Let $A B$ be the chord of the circle subtending $90^{\circ}$ angle at centre $O$ of the circle.

Area of major sector $OADB=(\dfrac{360^{\circ}-90^{\circ}}{360^{\circ}}) \times \pi r^{2}=(\dfrac{270^{\circ}}{360^{\circ}}) \pi r^{2}$ $=\dfrac{3}{4} \times 3.14 \times 10 \times 10$

$=235.5 cm^{2}$

Area of minor sector $OACB=\dfrac{90^{\circ}}{360^{\circ}} \times \pi r^{2}$

$=\dfrac{1}{4} \times 3.14 \times 10 \times 10$

$=78.5 cm^{2}$

Area of $\triangle OAB=\dfrac{1}{2} \times OA \times OB=\dfrac{1}{2} \times 10 \times 10$

$=50 cm^{2}$

Area of minor segment $A C B=$ Area of minor sector $OACB$ -

Area of $\triangle OAB=78.5-50=28.5 cm^{2}$

5. In a circle of radius $21 \mathrm{~cm}$, an arc subtends an angle of $60^{\circ}$ at the centre. Find:

(i) the length of the arc

(ii) area of the sector formed by the arc

(iii) area of the segment formed by the corresponding chord

Show Answer

Solution

Radius $(r)$ of circle $=21 cm$

Angle subtended by the given arc $=60^{\circ}$

Length of an arc of a sector of angle $\theta=\dfrac{\theta}{360^{\circ}} \times 2 \pi r$

Length of $arc A C B=\dfrac{60^{\circ}}{360^{\circ}} \times 2 \times \dfrac{22}{7} \times 21$

$=\dfrac{1}{6} \times 2 \times 22 \times 3$

$=22 cm$

Area of sector $OACB=\dfrac{60^{\circ}}{360^{\circ}} \times \pi r^{2}$

$=\dfrac{1}{6} \times \dfrac{22}{7} \times 21 \times 21$

$=231 cm^{2}$

In $\triangle OAB$,

$\angle OAB=\angle OBA(As OA=OB)$

$\angle OAB+\angle AOB+\angle OBA=180^{\circ}$

$2 \angle OAB+60^{\circ}=180^{\circ}$

$\angle OAB=60^{\circ}$

Therefore, $\triangle OAB$ is an equilateral triangle.

Area of $\triangle OAB=\dfrac{\sqrt{3}}{4} \times(\text{ Side })^{2}$

$=\dfrac{\sqrt{3}}{4} \times(21)^{2}=\dfrac{441 \sqrt{3}}{4} cm^{2}$

Area of segment $A C B=$ Area of sector $O A C B$ - Area of $\triangle O A B$

$=(231-\dfrac{441 \sqrt{3}}{4}) cm^{2}$

6. A chord of a circle of radius $15 \mathrm{~cm}$ subtends an angle of $60^{\circ}$ at the centre. Find the areas of the corresponding minor and major segments of the circle.

(Use $\pi=3.14$ and $\sqrt{3}=1.73$ )

Show Answer

Solution

Radius ( $r$ ) of circle $=15 cm$

Area of sector OPRQ $=\dfrac{60^{\circ}}{360^{\circ}} \times \pi r^{2}$

$=\dfrac{1}{6} \times 3.14 \times(15)^{2}$

$=117.75 cm^{2}$

In $\triangle OPQ$,

$\angle OPQ=\angle OQP($ As OP $=OQ)$

$\angle OPQ+\angle OQP+\angle POQ=180^{\circ}$

$2 \angle OPQ=120^{\circ}$

$\angle OPQ=60^{\circ}$

$\triangle OPQ$ is an equilateral triangle.

Area of $\triangle OPQ=\dfrac{\sqrt{3}}{4} \times(\text{ side })^{2}$

$=\dfrac{\sqrt{3}}{4} \times(15)^{2}=\dfrac{225 \sqrt{3}}{4} cm^{2}$

$=56.25 \sqrt{3}$

$=97.3125 cm^{2}$

Area of segment PRQ = Area of sector OPRQ - Area of $\triangle OPQ$

$=117.75$ - 97.3125

$=20.4375 cm^{2}$

Area of major segment PSQ = Area of circle - Area of segment PRQ

$ \begin{aligned} & =\pi(15)^{2}-20.4375 \\ & =3.14 \times 225-20.4375 \\ & =706.5-20.4375 \\ & =\quad 686.0625 cm^{2} \end{aligned} $

7. A chord of a circle of radius $12 \mathrm{~cm}$ subtends an angle of $120^{\circ}$ at the centre. Find the area of the corresponding segment of the circle.

(Use $\pi=3.14$ and $\sqrt{3}=1.73$ )

Show Answer

Solution

Let us draw a perpendicular OV on chord ST. It will bisect the chord ST.

$SV=VT$

In $\triangle OVS$,

$ \begin{aligned} & \dfrac{O V}{O S}=\cos 60^{\circ} \\ & \dfrac{O V}{12}=\dfrac{1}{2} \\ & O V=6 cm \end{aligned} $

$\dfrac{SV}{SO}=\sin 60^{\circ}=\dfrac{\sqrt{3}}{2}$

$\dfrac{SV}{12}=\dfrac{\sqrt{3}}{2}$

$SV=6 \sqrt{3} cm$

$ST=2 SV=2 \times 6 \sqrt{3}=12 \sqrt{3} cm$

Area of $\triangle OST=\dfrac{1}{2} \times ST \times OV$

$=\dfrac{1}{2} \times 12 \sqrt{3} \times 6$

$=36 \sqrt{3}=36 \times 1.73=62.28 cm^{2}$

Area of sector OSUT $=\dfrac{120^{\circ}}{360^{\circ}} \times \pi(12)^{2}$

$=\dfrac{1}{3} \times 3.14 \times 144=150.72 cm^{2}$

Area of segment SUT = Area of sector OSUT - Area of $\triangle OST$

$=150.72-62.28$

$=88.44 cm^{2}$

8. A horse is tied to a peg at one corner of a square shaped grass field of side $15 \mathrm{~m}$ by means of a $5 \mathrm{~m}$ long rope (see Fig. 11.8). Find

Fig. 11.8

(i) the area of that part of the field in which the horse can graze.

(ii) the increase in the grazing area if the rope were $10 \mathrm{~m}$ long instead of $5 \mathrm{~m}$. (Use $\pi=3.14$ )

Show Answer

Solution

From the figure, it can be observed that the horse can graze a sector of $90^{\circ}$ in a circle of $5 m$ radius.

Area that can be grazed by horse $=$ Area of sector $OACB$

$=\dfrac{90^{\circ}}{360^{\circ}} \pi r^{2}$

$=\dfrac{1}{4} \times 3.14 \times(5)^{2}$

$=19.625 m^{2}$

Area that can be grazed by the horse when length of rope is $10 m$ long $=\dfrac{90^{\circ}}{360^{\circ}} \times \pi \times(10)^{2}$

$=\dfrac{1}{4} \times 3.14 \times 100$

$=78.5 m^{2}$

Increase in grazing area $=(78.5-19.625) m^{2}$

$=58.875 m^{2}$

9. A brooch is made with silver wire in the form of a circle with diameter $35 \mathrm{~mm}$. The wire is also used in making 5 diameters which divide the circle into 10 equal sectors as shown in Fig. 11.9. Find :

Fig. 11.9

(i) the total length of the silver wire required.

(ii) the area of each sector of the brooch.

Show Answer

Solution

Total length of wire required will be the length of 5 diameters and the circumference of the brooch.

Radius of circle $=\dfrac{35}{2} mm$

Circumference of brooch $=2 \pi r$

$=2 \times \dfrac{22}{7} \times(\dfrac{35}{2})$

$=110 mm$

Length of wire required $=110+5 \times 35$

$=110+175=285 mm$

It can be observed from the figure that each of 10 sectors of the circle is subtending $36^{\circ}$ at the centre of the circle.

Therefore, area of each sector $=\dfrac{36^{\circ}}{360^{\circ}} \times \pi r^{2}$

$=\dfrac{1}{10} \times \dfrac{22}{7} \times(\dfrac{35}{2}) \times(\dfrac{35}{2})$

$=\dfrac{385}{4} mm^{2}$

10. An umbrella has 8 ribs which are equally spaced (see Fig. 11.10). Assuming umbrella to be a flat circle of radius $45 \mathrm{~cm}$, find the area between the two consecutive ribs of the umbrella.

Fig. 11.10

Show Answer

Solution

There are 8 ribs in an umbrella. The area between two consecutive ribs is subtending $\dfrac{360^{\circ}}{8}=45^{\circ}$ at the centre of the assumed flat circle.

Area between two consecutive ribs of circle $=\dfrac{45^{\circ}}{360^{\circ}} \times \pi r^{2}$

$ \begin{aligned} & =\dfrac{1}{8} \times \dfrac{22}{7} \times(45)^{2} \\ & =\dfrac{11}{28} \times 2025=\dfrac{22275}{28} cm^{2} \end{aligned} $

11. A car has two wipers which do not overlap. Each wiper has a blade of length $25 \mathrm{~cm}$ sweeping through an angle of $115^{\circ}$. Find the total area cleaned at each sweep of the blades.

Show Answer

Solution

It can be observed from the figure that each blade of wiper will sweep an area of a sector of $115^{\circ}$ in a circle of $25 cm$ radius.

Area of such sector $=\dfrac{115^{\circ}}{360^{\circ}} \times \pi \times(25)^{2}$

$=\dfrac{23}{72} \times \dfrac{22}{7} \times 25 \times 25$

$=\dfrac{158125}{252} cm^{2}$

Area swept by 2 blades $=2 \times \dfrac{158125}{252}$

$=\dfrac{158125}{126} cm^{2}$

12. To warn ships for underwater rocks, a lighthouse spreads a red coloured light over a sector of angle $80^{\circ}$ to a distance of $16.5 \mathrm{~km}$. Find the area of the sea over which the ships are warned. (Use $\pi=3.14$ )

Show Answer

Solution

It can be observed from the figure that the lighthouse spreads light across a

sector of $80^{\circ}$ in a circle of $16.5 km$ radius.

Area of sector $OACB=\dfrac{80^{\circ}}{360^{\circ}} \times \pi r^{2}$

$=\dfrac{2}{9} \times 3.14 \times 16.5 \times 16.5$

$=189.97 km^{2}$

13. A round table cover has six equal designs as shown in Fig. 11.11. If the radius of the cover is $28 \mathrm{~cm}$, find the cost of making the designs at the rate of ₹ 0.35 per $\mathrm{cm}^{2}$. (Use $\sqrt{3}=1.7$ )

Fig. 11.11

Show Answer

Solution

It can be observed that these designs are segments of the circle.

Consider segment APB. Chord AB is a side of the hexagon. Each chord will substitute $\dfrac{360^{\circ}}{6}=60^{\circ}$ at the centre of the circle.

In $\triangle OAB$,

$\angle OAB=\angle OBA(As OA=OB)$

$\angle A O B=60^{\circ}$

$\angle OAB+\angle OBA+\angle AOB=180^{\circ}$

$2 \angle OAB=180^{\circ}-60^{\circ}=120^{\circ}$

$\angle OAB=60^{\circ}$

Therefore, $\triangle OAB$ is an equilateral triangle.

Area of $\triangle OAB=\dfrac{\sqrt{3}}{4} \times(\text{ side })^{2}$

$\begin{aligned}=\dfrac{\sqrt{3}}{4} \times(28)^{2}=196 \sqrt{3} & =196 \times 1.7 \\ & =333.2 cm^{2}\end{aligned}$

Area of sector OAPB $=\dfrac{60^{\circ}}{360^{\circ}} \times \pi r^{2}$

$=\dfrac{1}{6} \times \dfrac{22}{7} \times 28 \times 28$

$=\dfrac{1232}{3} cm^{2}$

Area of segment APB = Area of sector OAPB - Area of $\triangle O A B$

$=(\dfrac{1232}{3}-333.2) cm^{2}$

Therefore, area of designs $=6 \times(\dfrac{1232}{3}-333.2) cm^{2}$

$ \begin{aligned} & =(2464-1999.2) cm^{2} \\ & =464.8 cm^{2} \end{aligned} $

Cost of making $1 cm^{2}$ designs $=$ Rs 0.35

Cost of making $464.76 cm^{2}$ designs $=464.8 \times 0.35=$ Rs 162.68

Therefore, the cost of making such designs is Rs 162.68 .

14. Tick the correct answer in the following :

Area of a sector of angle $p$ (in degrees) of a circle with radius $\mathrm{R}$ is

(A) $\dfrac{p}{180} \times 2 \pi \mathrm{R}$

(B) $\dfrac{p}{180} \times \pi \mathrm{R}^{2}$

(C) $\dfrac{p}{360} \times 2 \pi \mathrm{R}$

(D) $\dfrac{p}{720} \times 2 \pi R^{2}$

Show Answer

Solution

We know that area of sector of angle $\theta=\dfrac{\theta}{360^{\circ}} \times \pi R^{2}$

Area of sector of angle $P=\dfrac{p}{360^{\circ}}(\pi R^{2})$

$=(\dfrac{p}{720^{\circ}})(2 \pi R^{2})$

Hence, (D) is the correct answer.

11.2 Summary

In this chapter, you have studied the following points :

1. Length of an arc of a sector of a circle with radius $r$ and angle with degree measure $\theta$ is $\dfrac{\theta}{360} \times 2 \pi r$.

2. Area of a sector of a circle with radius $r$ and angle with degree measure $\theta$ is $\dfrac{\theta}{360} \times \pi r^{2}$.

3. Area of segment of a circle $=$ Area of the corresponding sector - Area of the corresponding triangle.

11.1 त्रिज्यखंड और वृत्तखंड के क्षेत्रफल

आप पिछली कक्षाओं में शब्दों त्रिज्यखंड (sector) और वृत्तखंड (segment of a circle) से पूर्व परिचित हैं। आपको याद होगा कि एक वृत्तीय क्षेत्र का वह भाग जो दो त्रिज्याओं और संगत चाप से घिरा (परिबद्ध) हो, उस वृत्त का एक त्रिज्यखंड कहलाता है तथा वृत्तीय क्षेत्र का वह भाग जो एक जीवा और संगत चाप के बीच में परिबद्ध हो एक वृत्तखंड कहलाता है। इस प्रकार, आकृति 11.1 में, छायांकित भाग $O A P B$ केंद्र $O$ वाले वृत्त का एक त्रिज्यखंड है। $\angle A O B$ इस त्रिज्यखंड का कोण कहलाता है। ध्यान दीजिए कि इसी आकृति में अछायांकित भाग $O A Q B$ भी वृत्त का त्रिज्यखंड है। स्पष्ट कारणों से OAPB एक लघु त्रिज्यखंड (minor sector) कहलाता है तथा $\mathrm{OAQB}$ एक दीर्घ त्रिज्यखंड (major sector) कहलाता है। आप यह भी देख सकते हैं कि इस दीर्घ त्रिज्यखंड का कोण $360^{\circ}-\angle \mathrm{AOB}$ है।

आवृति 11.1

अब आकृति 11.2 को देखिए, जिसमें $\mathrm{AB}$ केंद्र $\mathrm{O}$ वाले वृत्त की एक जीवा है। अतः छायांकित भाग APB एक वृत्तखंड है। आप यह भी देख सकते हैं कि अछायांकित आकृति 11.2 भाग $A Q B$ भी जीवा $A B$ द्वारा निर्मित एक अन्य वृत्तखंड है। स्पष्ट कारणों से, $\mathrm{APB}$ लघु वृत्तखंड कहलाता है तथा $\mathrm{AQB}$ दीर्घ वृत्तखंड कहलाता है।

आकृति 11.2

टिप्पणी: जब तक अन्यथा न कहा जाए, ‘वृत्तखंड’ और ‘त्रिज्यखंड’ लिखने से हमारा तात्पर्य क्रमशः लघु वृत्तखंड और लघु त्रिज्यखंड से होगा।

आइए उपरोक्त ज्ञान के आधार पर, इनके क्षेत्रफलों के परिकलित करने के कुछ संबंध (या सूत्र) ज्ञात करने का प्रयत्न करें।

मान लीजिए OAPB केंद्र $\mathrm{O}$ और त्रिज्या $r$ वाले वृत्त का एक त्रिज्यखंड है (देखिए आकृति 11.3)। मान लीजिए $\angle \mathrm{AOB}$ का अंशीय (degree) माप $\theta$ है।

आकृति 11.3

आप जानते हैं कि एक वृत्त [वस्तुतः एक वृत्तीय क्षेत्र या चकती (disc)] का क्षेत्रफल $\pi r^{2}$ होता है।

एक तरीके से, हम इस वृत्तीय क्षेत्र को केंद्र $\mathrm{O}$ पर $360^{\circ}$ का कोण बनाने वाला (अंशीय माप 360) एक त्रिज्यखंड मान सकते हैं। फिर ऐकिक विधि (Unitary Method) का प्रयोग करके, हम त्रिज्यखंड OAPB का क्षेत्रफल नीचे दर्शाए अनुसार ज्ञात कर सकते हैं:

जब केंद्र पर बने कोण का अंशीय माप 360 है, तो त्रिज्यखंड का क्षेत्रफल $=\pi r^{2}$

अतः, जब केंद्र पर बने कोण का अंशीय माप 1 है, तो त्रिज्यखंड का क्षेत्रफल $=\frac{\pi r^{2}}{360}$

इसलिए जब केंद्र पर बने कोण का अंशीय माप $\theta$ है, तो त्रिज्यखंड का क्षेत्रफल $=\frac{\pi r^{2}}{360} \times \theta=\frac{\theta}{360} \times \pi r^{2}$

इस प्रकार, हम वृत्त के एक त्रिज्यखंड के क्षेत्रफल के लिए, निम्नलिखित संबंध (या सूत्र) प्राप्त करते हैं :

कोण $\theta$ वाले त्रिज्यखंड का क्षेत्रफल $=\frac{\theta}{360} \times \pi r^{2}$,

जहाँ $r$ वृत्त की त्रिज्या है और $\theta$ त्रिज्यखंड का अंशों में कोण है।

अब एक स्वाभाविक प्रश्न उठता है: क्या हम इस त्रिज्यखंड की संगत चाप APB की लंबाई ज्ञात कर सकते हैं। हाँ, हम ऐसा कर सकते हैं। पुनः, ऐकिक विधि का प्रयोग करने तथा संपूर्ण वृत्त ( $360^{\circ}$ कोण वाले) की लंबाई $2 \pi r$ लेने पर, हम चाप APB की वांछित लंबाई $\frac{\theta}{360} \times 2 \pi r$ प्राप्त करते हैं।

अतः कोण $\theta$ वाले त्रिज्यखंड के संगत चाप की लंबाई $=\frac{\theta}{360} \times 2 \pi r$

आकृति 11.4

आइए अब केंद्र $\mathrm{O}$ और त्रिज्या $r$ वाले वृत्तखंड $\mathrm{APB}$ के क्षेत्रफल पर विचार करें (देखिए आकृति 11.4)। आप देख सकते हैं कि

वृत्तखंड $\mathrm{APB}$ का क्षेत्रफल $=$ त्रिज्यखंड $\mathrm{OAPB}$ का क्षेत्रफल $-\triangle \mathrm{OAB}$ का क्षेत्रफल

$$ =\frac{\theta}{360} \times \pi r^{2}-\Delta \mathrm{OAB} \text { का क्षेत्रफल } $$

टिप्पणी : क्रमशः आकृति 11.3 और आकृति 11.4 से, आप देख सकते हैं कि

दीर्घ त्रिज्यखंड $\mathrm{OAQB}$ का क्षेत्रफल $=\pi r^{2}$ - लघु त्रिज्यखंड $\mathrm{OAPB}$ का क्षेत्रफल

तथा

दीर्घ वृत्तखंड $\mathrm{AQB}$ का क्षेत्रफल $=\pi r^{2}$ - लघु वृत्तखंड $\mathrm{APB}$ का क्षेत्रफल

अब आइए इन अवधारणाओं (या परिणामों) को समझने के लिए कुछ उदाहरण लें।

उदाहरण 1 : त्रिज्या $4 \mathrm{~cm}$ वाले एक वृत्त के त्रिज्यखंड का क्षेत्रफल ज्ञात कीजिए, जिसका कोण $30^{\circ}$ है। साथ ही, संगत दीर्घ त्रिज्यखंड का क्षेत्रफल भी ज्ञात कीजिए। ( $\pi=3.14$ का प्रयोग कीजिए)।

हल : दिया हुआ त्रिज्यखंड OAPB है (देखिए आकृति 11.5)।

आकृति 11.5

त्रिज्यखंड का क्षेत्रफल $=\frac{\theta}{360} \times \pi r^{2}$

$$ \begin{aligned} & =\frac{30}{360} \times 3.14 \times 4 \times 4 \mathrm{~cm}^{2} \\ & =\frac{12.56}{3} \mathrm{~cm}^{2}=4.19 \mathrm{~cm}^{2} \text { (लगभग) } \end{aligned} $$

संगत दीर्घ त्रिज्यखंड का क्षेत्रफल

$$ \begin{aligned} & =\pi r^{2}-\text { त्रिज्यखंड OAPB का क्षेत्रफल } \\ & =(3.14 \times 16-4.19) \mathrm{cm}^{2} \\ & \left.=46.05 \mathrm{~cm}^{2}=46.1 \mathrm{~cm}^{2} \quad \text { (लगभग }\right) \end{aligned} $$

वैकल्पिक रूप से, दीर्घ त्रिज्यखंड का क्षेत्रफल $=\frac{(360-\theta)}{360} \times \pi r^{2}$

$$ \begin{aligned} & =\left(\frac{360-30}{360}\right) \times 3.14 \times 16 \mathrm{~cm}^{2} \\ & =\frac{330}{360} \times 3.14 \times 16 \mathrm{~cm}^{2}=46.05 \mathrm{~cm}^{2} \\ & =46.1 \mathrm{~cm}^{2}(\text { लगभग) } \end{aligned} $$

उदाहरण 2 : आकृति 11.6 में दर्शाए गए वृत्तखंड का क्षेत्रफल ज्ञात कीजिए, यदि वृत्त की त्रिज्या $21 \mathrm{~cm}$ है और $\angle \mathrm{AOB}=120^{\circ}$ है। $\left[\pi=\frac{22}{7}\right.$ लीजिए $]$

आकृति 11.6

हल : वृत्तखंड AYB का क्षेत्रफल

$$ =\text { त्रिज्यखंड OAYB का क्षेत्रफल }- \Delta \mathrm{OAB}\text { का क्षेत्रफल } \tag{1} $$

$$ \text{ अब, त्रिज्यखंड OAYB का क्षेत्रफल } =\frac{120}{360} \times \frac{22}{7} \times 21 \times 21 \mathrm{~cm}^{2}=462 \mathrm{~cm}^{2} \tag{2}$$

$\triangle \mathrm{OAB}$ का क्षेत्रफल ज्ञात करने के लिए $\mathrm{OM} \perp \mathrm{AB}$ खींचिए, जैसाकि आकृति 11.7 में दिखाया गया है।

आकृति 11.7

ध्यान दीजिए कि $\mathrm{OA}=\mathrm{OB}$ है। अतः, $\mathrm{RHS}$ सर्वांगसमता से, $\triangle \mathrm{AMO} \cong \triangle \mathrm{BMO}$ है।

इसलिए $\mathrm{M}$ जीवा $\mathrm{AB}$ का मध्य-बिंदु है तथा $\angle \mathrm{AOM}=\angle \mathrm{BOM}=\frac{1}{2} \times 120^{\circ}=60^{\circ}$ है।

मान लीजिए

$$ \mathrm{OM}=x \mathrm{~cm} \text { है। } $$

इसलिए $\triangle$ OMA से,

$$ \frac{\mathrm{OM}}{\mathrm{OA}}=\cos 60^{\circ} $$

या

$$ \frac{x}{21}=\frac{1}{2} \quad\left(\cos 60^{\circ}=\frac{1}{2}\right) $$

या

$$ x=\frac{21}{2} $$

अत:

$$ \mathrm{OM}=\frac{21}{2} \mathrm{~cm} $$

साथ ही

$$ \frac{\mathrm{AM}}{\mathrm{OA}}=\sin 60^{\circ}=\frac{\sqrt{3}}{2} $$

अत:

$$ \mathrm{AM}=\frac{21 \sqrt{3}}{2} \mathrm{~cm} $$

इसलिए

$$ \mathrm{AB}=2 \mathrm{AM}=\frac{2 \times 21 \sqrt{3}}{2} \mathrm{~cm}=21 \sqrt{3} \mathrm{~cm} $$

अत:

$$ \begin{align*} \Delta \mathrm{OAB} \text { का क्षेत्रफल } & =\frac{1}{2} \mathrm{AB} \times \mathrm{OM}=\frac{1}{2} \times 21 \sqrt{3} \times \frac{21}{2} \mathrm{~cm}^{2} \end{align*} $$

$$ =\frac{441}{4} \sqrt{3} \mathrm{~cm}^{2}\tag{3}$$

इसलिए वृत्तखंड AYB का क्षेत्रफल $=\left(462-\frac{441}{4} \sqrt{3}\right) \mathrm{cm}^{2}$

$[(1),(2)$ और (3) से]

$$ =\frac{21}{4}(88-21 \sqrt{3}) \mathrm{cm}^{2} $$

अभ्यास 11.1

(जब तक अन्यथा न कहा जाए, $\pi=\frac{22}{7}$ का प्रयोग कीजिए।)

1. $6 \mathrm{~cm}$ त्रिज्या वाले एक वृत्त के एक त्रिज्यखंड का क्षेत्रफल ज्ञात कीजिए, जिसका कोण $60^{\circ}$ है।

Show Answer #missing

2. एक वृत्त के चतुर्थांश (quadrant) का क्षेत्रफल ज्ञात कीजिए, जिसकी परिधि $22 \mathrm{~cm}$ है।

Show Answer #missing

3. एक घड़ी की मिनट की सुई जिसकी लंबाई $14 \mathrm{~cm}$ है। इस सुई द्वारा 5 मिनट में रचित क्षेत्रफल ज्ञात कीजिए।

Show Answer #missing

4. 10 सेमी त्रिज्या वाले एक वृत्त की कोई जीवा केंद्र पर एक समकोण अंतरित करती है। निम्नलिखित के क्षेत्रफल ज्ञात कीजिए :

(i) संगत लघु वृत्तखंड

(ii) संगत दीर्घ त्रिज्यखंड ( $\pi=3.14$ का प्रयोग कीजिए)।

Show Answer #missing

5. त्रिज्या $21 \mathrm{~cm}$ वाले वृत्त का एक चाप केंद्र पर $60^{\circ}$ का कोण अंतरित करता है। ज्ञात कीजिए :

(i) चाप की लंबाई

(ii) चाप द्वारा बनाए गए त्रिज्यखंड का क्षेत्रफल

(iii) संगत जीवा द्वारा बनाए गए वृत्तखंड का क्षेत्रफल

Show Answer #missing

6. $15 \mathrm{~cm}$ त्रिज्या वाले एक वृत्त की कोई जीवा केंद्र पर $60^{\circ}$ का कोण अंतरित करती है। संगत लघु और दीर्घ वृत्तखंडों के क्षेत्रफल ज्ञात कीजिए।

$(\pi=3.14$ और $\sqrt{3}=1.73$ का प्रयोग कीजिए।)

Show Answer #missing

7. त्रिज्या $12 \mathrm{~cm}$ वाले एक वृत्त की कोई जीवा केंद्र पर $120^{\circ}$ का कोण अंतरित करती है। संगत वृत्तखंड का क्षेत्रफल ज्ञात कीजिए।

( $\pi=3.14$ और $\sqrt{3}=1.73$ का प्रयोग कीजिए।)

Show Answer #missing

8. $15 \mathrm{~m}$ भुजा वाले एक वर्गाकार घास के मैदान के एक कोने पर लगे खूँटे से एक घोड़े को $5 \mathrm{~m}$ लंबी रस्सी से बाँध दिया गया है (देखिए आकृति 11.8)। ज्ञात कीजिए:

आकृति 11.8

(i) मैदान के उस भाग का क्षेत्रफल जहाँ घोड़ा घास चर सकता है।

(ii) चरे जा सकने वाले क्षेत्रफल में वृद्धि, यदि घोड़े को $5 \mathrm{~m}$ लंबी रस्सी के स्थान पर $10 \mathrm{~m}$ लंबी रस्सी से बाँध दिया जाए। ( $\pi=3.14$ का प्रयोग कीजिए।)

Show Answer #missing

9. एक वृत्ताकार ब्रूच (brooch) को चाँदी के तार से बनाया जाना है जिसका व्यास $35 \mathrm{~mm}$ है। तार को वृत के 5 व्यासों को बनाने में भी प्रयुक्त किया गया है जो उसे 10 बराबर त्रिज्यखंडों में विभाजित करता है जैसा कि आकृति 11.9 में दर्शाया गया है। तो ज्ञात कीजिए:

आवृति 11.9

(i) कुल वांछित चाँदी के तार की लंबाई

(ii) ब्रूच के प्रत्येक त्रिज्यखंड का क्षेत्रफल

Show Answer #missing

10. एक छतरी में आठ ताने हैं, जो बराबर दूरी पर लगे हुए हैं (देखिए आकृति 11.10)। छतरी को $45 \mathrm{~cm}$ त्रिज्या वाला एक सपाट वृत्त मानते हुए, इसकी दो क्रमागत तानों के बीच का क्षेत्रफल ज्ञात कीजिए।

आवृति 11.10

Show Answer #missing

11. किसी कार के दो वाइपर (Wipers) हैं, परस्पर कभी आच्छादित नहीं होते हैं। प्रत्येक वाइपर की पत्ती की लंबाई $25 \mathrm{~cm}$ है और $115^{\circ}$ के कोण तक घूम कर सफाई कर सकता है। पत्तियों की प्रत्येक बुहार के साथ जितना क्षेत्रफल साफ हो जाता है, वह ज्ञात कीजिए।

Show Answer #missing

12. जहाज़ों को समुद्र में जलस्तर के नीचे स्थित चट्टानों की चेतावनी देने के लिए, एक लाइट हाउस (light house) $80^{\circ}$ कोण वाले एक त्रिज्यखंड में $16.5 \mathrm{~km}$ की दूरी तक लाल रंग का प्रकाश फैलाता है। समुद्र के उस भाग का क्षेत्रफल ज्ञात कीजिए जिसमें जहाज़ों को चेतावनी दी जा सके। ( $\pi=3.14$ का प्रयोग कीजिए।)

Show Answer #missing

13. एक गोल मेज़पोश पर छः समान डिज़ाइन बने हुए हैं जैसाकि आकृति 11.11 में दर्शाया गया है। यदि मेज़पोश की त्रिज्या $28 \mathrm{~cm}$ है, तो ₹ 0.35 प्रति वर्ग सेंटीमीटर की दर से इन डिज़ाइनों को बनाने की लागत ज्ञात कीजिए। ( $\sqrt{3}=1.7$ का प्रयोग कीजिए)

आकृति 11.11

Show Answer #missing

14. निम्नलिखित में सही उत्तर चुनिए:

त्रिज्या $\mathrm{R}$ वाले वृत्त के उस त्रिज्यखंड का क्षेत्रफल जिसका कोण $p^{\circ}$ है, निम्नलिखित है :

(A) $\frac{p}{180} \times 2 \pi \mathrm{R}$

(B) $\frac{p}{180} \times \pi \mathrm{R}^{2}$

(C) $\frac{p}{720} \times 2 \pi \mathrm{R}^{2}$

(D) $\frac{p}{360} \times 2 \pi \mathrm{R}$

Show Answer #missing

11.2 सारांश

इस अध्याय में, आपने निम्नलिखित बिंदुओं का अध्ययन किया है:

1. त्रिज्या $r$ वाले वृत्त के एक त्रिज्यखंड, जिसका कोण अंशों में $\theta$ है, के संगत चाप की लंबाई $\frac{\theta}{360} \times 2 \pi r$ होती है।

2. त्रिज्या $r$ वाले वृत्त के एक त्रिज्यखंड, जिसका कोण अंशों में $\theta$ है, का क्षेत्रफल $\frac{\theta}{360} \times \pi r^{2}$ होता है।

3. एक वृत्तखंड का क्षेत्रफल $=$ संगत त्रिज्यखंड का क्षेत्रफल-संगत त्रिभुज का क्षेत्रफल



Table of Contents