Chapter-06 Triangles

6.1 Introduction

You are familiar with triangles and many of their properties from your earlier classes. In Class IX, you have studied congruence of triangles in detail. Recall that two figures are said to be congruent, if they have the same shape and the same size. In this chapter, we shall study about those figures which have the same shape but not necessarily the same size. Two figures having the same shape (and not necessarily the same size) are called similar figures. In particular, we shall discuss the similarity of triangles and apply this knowledge in giving a simple proof of Pythagoras Theorem learnt earlier.

Can you guess how heights of mountains (say Mount Everest) or distances of some long distant objects (say moon) have been found out? Do you think these have been measured directly with the help of a measuring tape? In fact, all these heights and distances have been found out using the idea of indirect measurements, which is based on the principle of similarity of figures (see Example 7 , Q. 15 of Exercise 6.3 and also Chapters 8 and 9 of this book).

6.2 Similar Figures

In Class IX, you have seen that all circles with the same radii are congruent, all squares with the same side lengths are congruent and all equilateral triangles with the same side lengths are congruent.

Fig. 6.1

Now consider any two (or more) circles [see Fig. 6.1 (i)]. Are they congruent? Since all of them do not have the same radius, they are not congruent to each other. Note that some are congruent and some are not, but all of them have the same shape. So they all are, what we call, similar. Two similar figures have the same shape but not necessarily the same size. Therefore, all circles are similar. What about two (or more) squares or two (or more) equilateral triangles [see Fig. 6.1 (ii) and (iii)]? As observed in the case of circles, here also all squares are similar and all equilateral triangles are similar.

From the above, we can say that all congruent figures are similar but the similar figures need not be congruent.

Can a circle and a square be similar? Can a triangle and a square be similar? These questions can be answered by just looking at the figures (see Fig. 6.1). Evidently these figures are not similar. (Why?)

Fig. 6.2

What can you say about the two quadrilaterals $A B C D$ and $P Q R S$ (see Fig 6.2)?Are they similar? These figures appear to be similar but we cannot be certain about it.Therefore, we must have some definition of similarity of figures and based on this definition some rules to decide whether the two given figures are similar or not. For this, let us look at the photographs given in Fig. 6.3:

Fig. 6.3

You will at once say that they are the photographs of the same monument (Taj Mahal) but are in different sizes. Would you say that the three photographs are similar? Yes,they are.

What can you say about the two photographs of the same size of the same person one at the age of 10 years and the other at the age of 40 years? Are these photographs similar? These photographs are of the same size but certainly they are not of the same shape. So, they are not similar.

What does the photographer do when she prints photographs of different sizes from the same negative? You must have heard about the stamp size, passport size and postcard size photographs. She generally takes a photograph on a small size film, say of 35 mm size and then enlarges it into a bigger size, say 45 mm (or 55 mm ). Thus, if we consider any line segment in the smaller photograph (figure), its corresponding line segment in the bigger photograph (figure) will be $\dfrac{45}{35}$ (or $.\dfrac{55}{35}$) of that of the line segment. This really means that every line segment of the smaller photograph is enlarged (increased) in the ratio 35:45 (or 35:55). It can also be said that every line segment of the bigger photograph is reduced (decreased) in the ratio 45:35 (or 55:35). Further, if you consider inclinations (or angles) between any pair of corresponding line segments in the two photographs of different sizes, you shall see that these inclinations(or angles) are always equal. This is the essence of the similarity of two figures and in particular of two polygons. We say that:

Two polygons of the same number of sides are similar, if (i) their corresponding angles are equal and (ii) their corresponding sides are in the same ratio (or proportion).

Note that the same ratio of the corresponding sides is referred to as the scale factor (or the Representative Fraction) for the polygons. You must have heard that world maps (i.e., global maps) and blue prints for the construction of a building are prepared using a suitable scale factor and observing certain conventions.

In order to understand similarity of figures more clearly, let us perform the following activity:

Activity 1 : Place a lighted bulb at a point $O$ on the ceiling and directly below it a table in your classroom. Let us cut a polygon, say a quadrilateral $ABCD$, from a plane cardboard and place this cardboard parallel to the ground between the lighted bulb and the table. Then a shadow of ABCD is cast on the table. Mark the outline of this shadow as $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ (see Fig.6.4).

Note that the quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is an enlargement (or magnification) of the quadrilateral $ABCD$. This is because of the property of light that light propogates in a straight line. You may also note that $A^{\prime}$ lies on ray $OA, B^{\prime}$ lies on ray $OB, C^{\prime}$ lies on $O C$ and $D^{\prime}$ lies on $O D$. Thus, quadrilaterals $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ and $A B C D$ are of the same shape but of different sizes.

Fig. 6.4

So, quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is similiar to quadrilateral $ABCD$. We can also say that quadrilateral $A B C D$ is similar to the quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

Here, you can also note that vertex $A^{\prime}$ corresponds to vertex $A$, vertex $B^{\prime}$ corresponds to vertex $B$, vertex $C^{\prime}$ corresponds to vertex $C$ and vertex $D^{\prime}$ corresponds to vertex D. Symbolically, these correspondences are represented as $A^{\prime} \leftrightarrow A, B^{\prime} \leftrightarrow B$, $C^{\prime} \leftrightarrow C$ and $D^{\prime} \leftrightarrow D$. By actually measuring the angles and the sides of the two quadrilaterals, you may verify that

(i) $\angle A=\angle A^{\prime}, \angle B=\angle B^{\prime}, \angle C=\angle C^{\prime}, \angle D=\angle D^{\prime}$ and

(ii) $\dfrac{AB}{A^{\prime} B^{\prime}}=\dfrac{BC}{B^{\prime} C^{\prime}}=\dfrac{CD}{C^{\prime} D^{\prime}}=\dfrac{DA}{D^{\prime} A^{\prime}}$.

This again emphasises that two polygons of the same number of sides are similar, if (i) all the corresponding angles are equal and (ii) all the corresponding sides are in the same ratio (or proportion).

From the above, you can easily say that quadrilaterals $A B C D$ and PQRS of Fig. 6.5 are similar.

Fig. 6.5

Remark : You can verify that if one polygon is similar to another polygon and this second polygon is similar to a third polygon, then the first polygon is similar to the third polygon.

You may note that in the two quadrilaterals (a square and a rectangle) of Fig. 6.6, corresponding angles are equal, but their corresponding sides are not in the same ratio.

Fig. 6.6

So, the two quadrilaterals are not similar. Similarly, you may note that in the two quadrilaterals (a square and a rhombus) of Fig. 6.7, corresponding sides are in the same ratio, but their corresponding angles are not equal. Again, the two polygons (quadrilaterals) are not similar.

Fig. 6.7

Thus, either of the above two conditions (i) and (ii) of similarity of two polygons is not sufficient for them to be similar.

EXERCISE 6.1

1. Fill in the blanks using the correct word given in brackets :

(i) All circles are ________. (congruent, similar)

(ii) All squares are ________. (similar, congruent)

(iii) All ________ triangles are similar. (isosceles, equilateral)

(iv) Two polygons of the same number of sides are similar, if (a) their corresponding angles are ________ and (b) their corresponding sides are ________.(equal, proportional)

Show Answer

Solution

(i) Similar

(ii) Similar

(iii) Equilateral

(iv) (a) Equal

(b) Proportional

2. Give two different examples of pair of

(i) similar figures.

(ii) non-similar figures.

Show Answer

Solution

(i) Two equilateral triangles with sides $1 cm$ and $2 cm$

Two squares with sides $1 cm$ and $2 cm$

(ii) Trapezium and square

Triangle and parallelogram

3. State whether the following quadrilaterals are similar or not:

Fig. 6.8

Show Answer

Solution

Quadrilateral PQRS and ABCD are not similar as their corresponding sides are proportional, i.e. 1:2, but their corresponding angles are not equal.

6.3 Similarity of Triangles

What can you say about the similarity of two triangles?

You may recall that triangle is also a polygon. So, we can state the same conditions for the similarity of two triangles. That is:

Two triangles are similiar, if

(i) their corresponding angles are equal and

(ii) their corresponding sides are in the same ratio (or proportion).

Note that if corresponding angles of two triangles are equal, then they are known as equiangular triangles. A famous Greek mathematician Thales gave an important truth relating to two equiangular triangles which is as follows:

The ratio of any two corresponding sides in two equiangular triangles is always the same.

It is believed that he had used a result called the Basic Proportionality Theorem (now known as the Thales Theorem) for the same.

To understand the Basic Proportionality Theorem, let us perform the following activity:

Activity 2 : Draw any angle XAY and on its one arm AX, mark points (say five points) P, Q, D, R and $B$ such that $A P=P Q=Q D=D R=R B$.

Now, through B, draw any line intersecting arm $AY$ at $C$ (see Fig. 6.9).

Fig. 6.9

Also, through the point $D$, draw a line parallel to $BC$ to intersect $AC$ at $E$. Do you observe from your constructions that $\dfrac{AD}{DB}=\dfrac{3}{2}$ ? Measure $AE$ and $EC$. What about $\dfrac{A E}{E C}$ ? Observe that $\dfrac{A E}{E C}$ is also equal to $\dfrac{3}{2}$. Thus, you can see that in $\triangle ABC, DE \| BC$ and $\dfrac{AD}{DB}=\dfrac{AE}{EC}$. Is it a coincidence? No, it is due to the following theorem (known as the Basic Proportionality Theorem):

Theorem 6.1: If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Proof : We are given a triangle $ABC$ in which a line parallel to side $BC$ intersects other two sides $AB$ and $AC$ at $D$ and $E$ respectively (see Fig. 6.10).

Fig. 6.10

We need to prove that $\dfrac{AD}{DB}=\dfrac{AE}{EC}$.

Let us join $BE$ and $CD$ and then draw $DM \perp AC$ and $EN \perp AB$.

Now, area of $\Delta ADE(=\dfrac{1}{2}.$ base $\times$ height $)=\dfrac{1}{2} AD \times EN$.

Recall from Class IX, that area of $\triangle ADE$ is denoted as $ar(ADE)$.

$ \text{So,}\quad ar(ADE)=\dfrac{1}{2} AD \times EN $

$ \begin{aligned} \text{Similarly,}\\ & ar(BDE)=\dfrac{1}{2} DB \times EN, \\ & ar(ADE)=\dfrac{1}{2} AE \times DM \text{ and } ar(DEC)=\dfrac{1}{2} EC \times DM . \end{aligned} $

Therefore, $$\quad \dfrac{ar(ADE)}{ar(BDE)}=\dfrac{\dfrac{1}{2} AD \times EN}{\dfrac{1}{2} DB \times EN}=\dfrac{AD}{DB} \tag{1}$$

and $$\dfrac{ar(ADE)}{ar(DEC)}=\dfrac{\dfrac{1}{2} AE \times DM}{\dfrac{1}{2} EC \times DM}=\dfrac{AE}{EC} \tag{2}$$

Note that $\triangle BDE$ and $DEC$ are on the same base $DE$ and between the same parallels $BC$ and $DE$.

$$ \begin{equation*} \text{So,}\quad \operatorname{ar}(\mathrm{BDE})=\operatorname{ar}(\mathrm{DEC}) \tag{3} \end{equation*} $$

Therefore, from (1), (2) and (3), we have :

$ \dfrac{AD}{DB}=\dfrac{AE}{EC} $

Is the converse of this theorem also true (For the meaning of converse, see Appendix 1)? To examine this, let us perform the following activity:

Activity 3 : Draw an angle XAY on your notebook and on ray $AX$, mark points $B_1, B_2$, $B_3, B_4$ and $B$ such that $AB_1=B_1 B_2=B_2 B_3=$ $B_3 B_4=B_4 B$.

Similarly, on ray AY, mark points $C_1, C_2, C_3, C_4$ and $C$ such that $AC_1=C_1 C_2=$ $C_2 C_3=C_3 C_4=C_4 C$. Then join $B_1 C_1$ and $BC$ (see Fig. 6.11).

Fig. 6.11

Note that $\dfrac{AB_1}{B_1 B}=\dfrac{AC_1}{C_1 C}$ (Each equal to $\dfrac{1}{4}$ )

You can also see that lines $B_1 C_1$ and $BC$ are parallel to each other, i.e.,

$$ B_1 C_1 \| BC \tag{1} $$

Similarly, by joining $B_2 C_2, B_3 C_3$ and $B_4 C_4$, you can see that:

$$\dfrac{AB_2}{B_2 B}=\dfrac{AC_2}{C_2 C}(=\dfrac{2}{3}) \text{ and } B_2 C_2 \| BC \tag{2} $$

$$ \dfrac{AB_3}{B_3 B}=\dfrac{AC_3}{C_3 C}(=\dfrac{3}{2}) \text{ and } B_3 C_3 \| BC \tag{3} $$

$$ \dfrac{AB_4}{B_4 B}=\dfrac{AC_4}{C_4 C}(=\dfrac{4}{1}) \text{ and } B_4 C_4 \| BC \tag{4}$$

From (1), (2), (3) and (4), it can be observed that if a line divides two sides of a triangle in the same ratio, then the line is parallel to the third side.

You can repeat this activity by drawing any angle XAY of different measure and taking any number of equal parts on arms AX and AY. Each time, you will arrive at the same result. Thus, we obtain the following theorem, which is the converse of Theorem 6.1:

Theorem 6.2: If a line divides any two sides of a triangle in the same ratio, then the line is parallel to the third side.

This theorem can be proved by taking a line $DE$ such that $\dfrac{AD}{DB}=\dfrac{AE}{EC}$ and assuming that $DE$ is not parallel to $BC$ (see Fig. 6.12).

Fig. 6.12

If $DE$ is not parallel to $BC$, draw a line $DE^{\prime}$ parallel to $BC$.

$ \text{So,}\quad \dfrac{A D}{D B}=\dfrac{A E^{\prime}}{E^{\prime} C} \quad \text{ (Why ?) } $

$ \text{Therefore,}\quad \dfrac{AE}{EC}=\dfrac{AE^{\prime}}{E^{\prime} C} \quad(\text{ Why ?) } $

Adding 1 to both sides of above, you can see that $E$ and $E^{\prime}$ must coincide. (Why ?)

Let us take some examples to illustrate the use of the above theorems.

Example 1 : If a line intersects sides $A B$ and $A C$ of a $\triangle A B C$ at $D$ and $E$ respectively and is parallel to $B C$, prove that $\dfrac{A D}{A B}=\dfrac{A E}{A C}$ (see Fig. 6.13).

Fig. 6.13

Solution : $DE \| BC \quad \quad \quad $ Given

So, $$\quad \dfrac{AD}{DB}=\dfrac{AE}{EC}\tag{ Theorem 6.1 }$$

or, $\quad \dfrac{DB}{AD}=\dfrac{EC}{AE}$

or, $\quad \dfrac{DB}{AD}+1=\dfrac{EC}{AE}+1$

or,

or, $\quad \dfrac{AB}{AD}=\dfrac{AC}{AE} $

So, $\quad \dfrac{AD}{AB}=\dfrac{AE}{AC} $

Example 2 : ABCD is a trapezium with $AB \| DC$. $E$ and $F$ are points on non-parallel sides $A D$ and $B C$ respectively such that $E F$ is parallel to $A B$ (see Fig. 6.14). Show that $\dfrac{AE}{ED}=\dfrac{BF}{FC}$.

Fig. 6.14

Solution : Let us join AC to intersect $EF$ at $G$ (see Fig. 6.15).

Fig. 6.15

$AB \| DC$ and $EF \| AB$ (Given)

So, $EF \| DC$ (Lines parallel to the same line are parallel to each other)

Now, in $\triangle ADC$,

EG $\|$ DC (As EF $\|$ DC)

So, $$\dfrac{AE}{ED}=\dfrac{AG}{GC} \quad (Theorem 6.1) \tag{1}$$

Similarly, from $\triangle CAB$,

$$ \dfrac{CG}{AG}=\dfrac{CF}{BF} $$

$$ \text{i.e.,}\quad \dfrac{AG}{GC}=\dfrac{BF}{FC} \tag{2} $$

Therefore, from (1) and (2),

$$ \dfrac{AE}{ED}=\dfrac{BF}{FC} $$

Example 3 : In Fig. 6.16, $\dfrac{PS}{SQ}=\dfrac{PT}{TR}$ and $\angle PST=$ $\angle PRQ$. Prove that $PQR$ is an isosceles triangle.

Fig. 6.16

Solution : It is given that $\dfrac{PS}{SQ}=\dfrac{PT}{TR}$.

$$\text{So,}\quad \text{ST } \| \text{ QR} \tag{Theorem 6.2}$$

(Theorem 6.2)

$$ \text{Therefore,}\quad \angle PST=\angle PQR \quad \text{ (Corresponding angles) } \tag{1} $$

Also, it is given that

$$ \angle PST=\angle PRQ \tag{2} $$

$\text{So,}\quad \angle PRQ=\angle PQR$ [From (1) and (2)]

Therefore, $ \quad \quad PQ=PR \quad$ (Sides opposite the equal angles)

i.e., $\quad\quad\triangle PQR$ is an isosceles triangle.

EXERCISE 6.2

1. In Fig. 6.17, (i) and (ii), $DE \| BC$. Find $EC$ in (i) and $AD$ in (ii).

Fig. 6.17

Show Answer

Solution

(i)

Let $EC=x cm$

It is given that $D E \| B C$.

By using basic proportionality theorem, we obtain

$ \begin{aligned} & \dfrac{AD}{DB}=\dfrac{AE}{EC} \\ & \dfrac{1.5}{3}=\dfrac{1}{x} \\ & x=\dfrac{3 \times 1}{1.5} \\ & x=2 \\ & \therefore EC=2 cm \end{aligned} $

(ii)

Let $AD=x cm$

It is given that DE || BC.

By using basic proportionality theorem, we obtain

$\dfrac{AD}{DB}=\dfrac{AE}{EC}$

$\dfrac{x}{7.2}=\dfrac{1.8}{5.4}$

$x=\dfrac{1.8 \times 7.2}{5.4}$

$x=2.4$

$\therefore AD=2.4 cm$

2. $E$ and $F$ are points on the sides $P Q$ and $P R$ respectively of a $\triangle PQR$. For each of the following cases, state whether EF $\|$ QR :

(i) $PE=3.9 ~cm, EQ=3 ~cm, PF=3.6 ~cm$ and $FR=2.4 ~cm$

(ii) $PE=4 cm, QE=4.5 cm, PF=8 cm$ and $RF=9 cm$

(iii) $PQ=1.28 cm, PR=2.56 cm, PE=0.18 cm$ and $PF=0.36 cm$

Show Answer

Solution

(i)

Given that, $PE=3.9 cm, EQ=3 cm, PF=3.6 cm, FR=2.4 cm$ $\dfrac{PE}{EQ}=\dfrac{3.9}{3}=1.3$ $\dfrac{PF}{FR}=\dfrac{3.6}{2.4}=1.5$

Hence, $\dfrac{PE}{EQ} \neq \dfrac{PF}{FR}$

Therefore, EF is not parallel to QR.

(ii)

$P E=4 cm, Q E=4.5 cm, P F=8 cm, R F=9 cm$

$\dfrac{PE}{EQ}=\dfrac{4}{4.5}=\dfrac{8}{9}$

$\dfrac{PF}{FR}=\dfrac{8}{9}$

Hence, $\dfrac{PE}{EQ}=\dfrac{PF}{FR}$

Therefore, $EF$ is parallel to QR.

(iii)

$P Q=1.28 cm, P R=2.56 cm, P E=0.18 cm, P F=0.36 cm$

$\dfrac{PE}{PQ}=\dfrac{0.18}{1.28}=\dfrac{18}{128}=\dfrac{9}{64}$

$\dfrac{PF}{PR}=\dfrac{0.36}{2.56}=\dfrac{9}{64}$

Hence, $\dfrac{P E}{P Q}=\dfrac{P F}{P R}$

Therefore, EF is parallel to QR.

3. In Fig. 6.18, if $L M \| C B$ and $L N \| C D$, prove that $\dfrac{AM}{AB}=\dfrac{AN}{AD} .$

Fig. 6.18

Show Answer

Solution

In the given figure, $L M \| C B$

By using basic proportionality theorem, we obtain $\dfrac{AM}{AB}=\dfrac{AL}{AC}$

Similarly, $LN \| CD$

$\therefore \dfrac{AN}{AD}=\dfrac{AL}{AC}$

From $(i)$ and $(i i)$, we obtain

$\dfrac{AM}{AB}=\dfrac{AN}{AD}$

4. In Fig. 6.19, $DE \| AC$ and $DF \| AE$. Prove that $\dfrac{BF}{FE}=\dfrac{BE}{EC}$.

Fig. 6.19

Show Answer

Solution

In $\triangle A B C, D E \| A C$

$\therefore \dfrac{B D}{D A}=\dfrac{B E}{E C} \quad$ (Basic Proportionality Theorem)

In $\triangle BAE, DF \| AE$

$\therefore \dfrac{BD}{DA}=\dfrac{BF}{FE} \quad$ (Basic Proportionality Theorem)

(ii)

From $(i)$ and $(i i)$, we obtain

$\dfrac{BE}{EC}=\dfrac{BF}{FE}$

5. In Fig. 6.20, DE $\| OQ$ and $DF \| OR$. Show that EF $\| QR$.

Fig. 6.20

Show Answer

Solution

In $\triangle POQ, DE \| OQ$

$\therefore \dfrac{P E}{E Q}=\dfrac{P D}{D O} \quad$ (Basic proportionality theorem)

(i)

In $\triangle POR, DF \| OR$

$\therefore \dfrac{PF}{FR}=\dfrac{PD}{DO} \quad$ (Basic proportionality theorem)

From $(i)$ and $(i i)$, we obtain

$\dfrac{PE}{EQ}=\dfrac{PF}{FR}$

$\therefore EF \| QR \quad$ (Converse of basic proportionality theorem)

6. In Fig. 6.21, A, B and $C$ are points on $OP, OQ$ and $OR$ respectively such that $AB \| PQ$ and $AC \| PR$. Show that $BC \| QR$.

Fig. 6.21

Show Answer

Solution

In $\triangle POQ, AB \| PQ$

$\therefore \dfrac{OA}{AP}=\dfrac{OB}{BQ} \quad$ (Basic proportionality theorem)

(i)

In $\triangle POR, AC \| PR$

$\therefore \dfrac{OA}{AP}=\dfrac{OC}{CR} \quad$ (By basic proportionality theorem) (ii)

From $(i)$ and $(i i)$, we obtain

$\dfrac{OB}{BQ}=\dfrac{OC}{CR}$

$\therefore BC \| QR \quad$ (By the converse of basic proportionality theorem)

7. Using Theorem 6.1 , prove that a line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in Class IX).

Show Answer

Solution

Consider the given figure in which $P Q$ is a line segment drawn through the mid-point $P$ of line $A B$, such that $PQ \| BC$

By using basic proportionality theorem, we obtain

$\dfrac{AQ}{QC}=\dfrac{AP}{PB}$

$\dfrac{AQ}{QC}=\dfrac{1}{1} \quad$ (P is the mid-point of $AB . \therefore AP=PB$ )

$\Rightarrow AQ=QC$

Or, $Q$ is the mid-point of $AC$.

8. Using Theorem 6.2, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that you have done it in Class IX).

Show Answer

Solution

Consider the given figure in which $P Q$ is a line segment joining the mid-points $P$ and $Q$ of line $A B$ and $A C$ respectively.

i.e., $A P=P B$ and $A Q=Q C$

It can be observed that $\dfrac{AP}{PB}=\dfrac{1}{1}$

and $\dfrac{AQ}{QC}=\dfrac{1}{1}$

$\therefore \dfrac{AP}{PB}=\dfrac{AQ}{QC}$

Hence, by using basic proportionality theorem, we obtain

$PQ \| BC$

9. $A B C D$ is a trapezium in which $A B \| D C$ and its diagonals intersect each other at the point $O$. Show that $\dfrac{AO}{BO}=\dfrac{CO}{DO}$.

Show Answer

Solution

Draw a line $EF$ through point $O$, such that

$EF \| CD$

In $\triangle ADC, EO \| CD$

By using basic proportionality theorem, we obtain

$\dfrac{AE}{ED}=\dfrac{AO}{OC}$

In $\triangle ABD$

$OE \| AB$

So, by using basic proportionality theorem, we obtain

$\dfrac{ED}{AE}=\dfrac{OD}{BO}$

$\Rightarrow \dfrac{AE}{ED}=\dfrac{BO}{OD}$

From equations (1) and (2), we obtain $\dfrac{AO}{OC}=\dfrac{BO}{OD}$

$\Rightarrow \dfrac{AO}{BO}=\dfrac{OC}{OD}$

10. The diagonals of a quadrilateral $A B C D$ intersect each other at the point $O$ such that $\dfrac{AO}{BO}=\dfrac{CO}{DO} \cdot$ Show that $ABCD$ is a trapezium.

Show Answer

Solution

Let us consider the following figure for the given question.

Draw a line $O E \| A B$

In $\triangle A B D, O E \| A B$

By using basic proportionality theorem, we obtain

$\dfrac{AE}{ED}=\dfrac{BO}{OD}$

However, it is given that $\dfrac{AO}{OC}=\dfrac{OB}{OD}$

From equations (1) and (2), we obtain

$\dfrac{AE}{ED}=\dfrac{AO}{OC}$

$\Rightarrow EO$ || DC [By the converse of basic proportionality theorem]

$\Rightarrow AB|| OE|| DC$

$\Rightarrow AB \| CD$

$\therefore A B C D$ is a trapezium.

6.4 Criteria for Similarity of Triangles

In the previous section, we stated that two triangles are similar, if (i) their corresponding angles are equal and (ii) their corresponding sides are in the same ratio (or proportion).

That is, in $\triangle ABC$ and $\triangle DEF$, if

(i) $\angle A=\angle D, \angle B=\angle E, \angle C=\angle F$ and

(ii) $\dfrac{AB}{DE}=\dfrac{BC}{EF}=\dfrac{CA}{FD}$, then the two triangles are similar (see Fig. 6.22).

Fig. 6.22

Here, you can see that A corresponds to D, B corresponds to E and C corresponds to F. Symbolically, we write the similarity of these two triangles as ’ $\triangle ABC \sim \triangle DEF$ ’ and read it as ’triangle ABC is similar to triangle DEF’. The symbol ’ $\sim$ ’ stands for ‘is similar to’. Recall that you have used the symbol ’ $\cong$ ’ for ‘is congruent to’ in Class IX.

It must be noted that as done in the case of congruency of two triangles, the similarity of two triangles should also be expressed symbolically, using correct correspondence of their vertices. For example, for the triangles $A B C$ and $D E F$ of Fig. 6.22, we cannot write $\Delta ABC \sim \Delta EDF$ or $\Delta ABC \sim \Delta FED$. However, we can write $\Delta BAC \sim \Delta EDF$.

Now a natural question arises : For checking the similarity of two triangles, say $ABC$ and $DEF$, should we always look for all the equality relations of their corresponding angles $ \left(\angle A=\angle D, \angle B=\angle E, \angle C=\angle F \right)$ and all the equality relations of the ratios of their corresponding sides $(\dfrac{AB}{DE}=\dfrac{BC}{EF}=\dfrac{CA}{FD})$ ? Let us examine. You may recall that in Class IX, you have obtained some criteria for congruency of two triangles involving only three pairs of corresponding parts (or elements) of the two triangles. Here also, let us make an attempt to arrive at certain criteria for similarity of two triangles involving relationship between less number of pairs of corresponding parts of the two triangles, instead of all the six pairs of corresponding parts. For this, let us perform the following activity:

Activity 4 : Draw two line segments $BC$ and $EF$ of two different lengths, say 3 cm and 5 cm respectively. Then, at the points $B$ and $C$ respectively, construct angles $PBC$ and QCB of some measures, say, $60^{\circ}$ and $40^{\circ}$. Also, at the points $E$ and $F$, construct angles REF and SFE of $60^{\circ}$ and $40^{\circ}$ respectively (see Fig. 6.23).

Fig. 6.23

Let rays $BP$ and $CQ$ intersect each other at $A$ and rays $ER$ and $FS$ intersect each other at $D$. In the two triangles $ABC$ and $DEF$, you can see that $\angle B=\angle E, \angle C=\angle F$ and $\angle A=\angle D$. That is, corresponding angles of these two triangles are equal. What can you say about their corresponding sides? Note that $\dfrac{BC}{EF}=\dfrac{3}{5}=0.6$. What about $\dfrac{AB}{DE}$ and $\dfrac{CA}{FD}$ ? On measuring $AB, DE, CA$ and $FD$, you will find that $\dfrac{AB}{DE}$ and $\dfrac{CA}{FD}$ are also equal to 0.6 (or nearly equal to 0.6 , if there is some error in the measurement). Thus, $\dfrac{A B}{D E}=\dfrac{B C}{E F}=\dfrac{C A}{F D}$. You can repeat this activity by constructing several pairs of triangles having their corresponding angles equal. Every time, you will find that their corresponding sides are in the same ratio (or proportion). This activity leads us to the following criterion for similarity of two triangles.

Theorem 6.3 : If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence the two triangles are similar.

This criterion is referred to as the AAA (Angle-Angle-Angle) criterion of similarity of two triangles.

This theorem can be proved by taking two triangles $ABC$ and $DEF$ such that $\angle A=\angle D, \angle B=\angle E$ and $\angle C=\angle F$ (see Fig. 6.24)

Fig. 6.24

Cut $DP=AB$ and $DQ=AC$ and join $PQ$.

$ \text{So,}\quad \Delta ABC \cong \Delta DPQ \quad \text{ (Why ?) } $

$ \text{This gives}\quad \angle B=\angle P=\angle E \text{ and } PQ \| EF \quad \text{ (How?) } $

$$ \text{Therefore,}\quad \dfrac{DP}{PE}=\dfrac{DQ}{QF} \tag{Why?} $$

$$ \text{i.e.,}\quad \dfrac{AB}{DE}=\dfrac{AC}{DF} \tag{Why?} $$

Similarly, $\dfrac{AB}{DE}=\dfrac{BC}{EF}$ and so $\dfrac{AB}{DE}=\dfrac{BC}{EF}=\dfrac{AC}{DF}$.

Remark : If two angles of a triangle are respectively equal to two angles of another triangle, then by the angle sum property of a triangle their third angles will also be equal. Therefore, AAA similarity criterion can also be stated as follows:

If two angles of one triangle are respectively equal to two angles of another triangle, then the two triangles are similar.

This may be referred to as the AA similarity criterion for two triangles.

You have seen above that if the three angles of one triangle are respectively equal to the three angles of another triangle, then their corresponding sides are proportional (i.e., in the same ratio). What about the converse of this statement? Is the converse true? In other words, if the sides of a triangle are respectively proportional to the sides of another triangle, is it true that their corresponding angles are equal? Let us examine it through an activity :

Activity 5 : Draw two triangles $ABC$ and $DEF$ such that AB = 3 cm, BC = 6 cm, CA = 8 cm, DE = 4.5 cm, EF = 9 cm and FD = 12 cm (see Fig. 6.25).

Fig. 6.25

So, you have : $\quad \dfrac{AB}{DE}=\dfrac{BC}{EF}=\dfrac{CA}{FD} \quad$ (each equal to $\dfrac{2}{3}$ )

Now measure $\angle A, \angle B, \angle C, \angle D, \angle E$ and $\angle F$. You will observe that $\angle A=\angle D, \angle B=\angle E$ and $\angle C=\angle F$, i.e., the corresponding angles of the two triangles are equal.

You can repeat this activity by drawing several such triangles (having their sides in the same ratio). Everytime you shall see that their corresponding angles are equal. It is due to the following criterion of similarity of two triangles:

Theorem 6.4 : If in two triangles, sides of one triangle are proportional to (i.e., in the same ratio of) the sides of the other triangle, then their corresponding angles are equal and hence the two triangles are similiar.

This criterion is referred to as the SSS (Side-Side-Side) similarity criterion for two triangles.

This theorem can be proved by taking two triangles $ABC$ and $DEF$ such that $\dfrac{AB}{DE}=\dfrac{BC}{EF}=\dfrac{CA}{FD}(<1)$ (see Fig. 6.26):

Fig. 6.26

Cut $DP=AB$ and $DQ=AC$ and join $PQ$.

It can be seen that

$ \dfrac{DP}{PE}=\dfrac{DQ}{QF} \text{ and } PQ \| EF \text{ (How?) } $

$$ \text{So,}\quad \angle P=\angle E \text{ and } \angle Q=\angle F \text{. } $$

$$ \text{Therefore,}\quad \dfrac{DP}{DE}=\dfrac{DQ}{DF}=\dfrac{PQ}{EF} $$

$$ \text{So,}\quad \dfrac{DP}{DE}=\dfrac{DQ}{DF}=\dfrac{BC}{EF} \quad(\text{ Why? }) $$

$$ \text{So,}\quad BC=PQ \quad\quad\quad\quad(\text{ Why? }) $$

$$ \text{Thus,}\quad \Delta ABC \cong \Delta DPQ \quad\quad\quad\quad(\text{ Why? }) $$

$$ \text{So,}\quad \angle A=\angle D, \angle B=\angle E \text{ and } \angle C=\angle F \quad \text{ (How ?) } $$

Remark : You may recall that either of the two conditions namely, (i) corresponding angles are equal and (ii) corresponding sides are in the same ratio is not sufficient for two polygons to be similar. However, on the basis of Theorems 6.3 and 6.4, you can now say that in case of similarity of the two triangles, it is not necessary to check both the conditions as one condition implies the other.

Let us now recall the various criteria for congruency of two triangles learnt in Class IX. You may observe that SSS similarity criterion can be compared with the SSS congruency criterion. This suggests us to look for a similarity criterion comparable to SAS congruency criterion of triangles. For this, let us perform an activity.

Activity 6 : Draw two triangles $ABC$ and $DEF$ such that $AB=2 cm, \angle A=50^{\circ}$, $AC=4 cm, DE=3 cm, \angle D=50^{\circ}$ and $DF=6 cm$ (see Fig.6.27).

Fig. 6.27

Here, you may observe that $\dfrac{AB}{DE}=\dfrac{AC}{DF}$ (each equal to $\dfrac{2}{3}$ ) and $\angle A$ (included between the sides $AB$ and $AC$ ) $=\angle D$ (included between the sides $DE$ and $DF$ ). That is, one angle of a triangle is equal to one angle of another triangle and sides including these angles are in the same ratio (i.e., proportion). Now let us measure $\angle B, \angle C$, $\angle E$ and $\angle F$.

You will find that $\angle B=\angle E$ and $\angle C=\angle F$. That is, $\angle A=\angle D, \angle B=\angle E$ and $\angle C=\angle F$. So, by AAA similarity criterion, $\triangle ABC \sim \triangle DEF$. You may repeat this activity by drawing several pairs of such triangles with one angle of a triangle equal to one angle of another triangle and the sides including these angles are proportional. Everytime, you will find that the triangles are similar. It is due to the following criterion of similarity of triangles:

Theorem 6.5: If one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.

This criterion is referred to as the SAS (Side-Angle-Side) similarity criterion for two triangles.

As before, this theorem can be proved by taking two triangles $A B C$ and $D E F$ such that $\dfrac{AB}{DE}=\dfrac{AC}{DF}(<1)$ and $\angle A=\angle D$ (see Fig. 6.28). Cut $DP=AB, DQ$ $=AC$ and join $PQ$.

Fig. 6.28

$ \text{Now,}\quad PQ \| EF \text{ and } \Delta ABC \cong \Delta DPQ \quad \quad \text{(How ?)} $

$ \text{So,}\quad \angle A=\angle D, \angle B=\angle P \text{ and } \angle C=\angle Q $

$\text{Therefore,}\quad \triangle ABC \sim \triangle DEF \quad \quad \text{(Why ?)} $

We now take some examples to illustrate the use of these criteria.

Example 4 : In Fig. 6.29, if PQ $\|$ RS, prove that $\Delta$ POQ $\sim \Delta$ SOR.

Fig. 6.29

Solution :

$ \text{ PQ } \| RS \quad \quad \quad $

$ \text{So,}\quad \angle P=\angle S \quad \quad \quad \text{(Alternate angles)} $

$ \text{and}\quad \angle Q=\angle R $

$ \text{Also,}\quad \angle POQ=\angle SOR \quad \quad \quad \text{(Vertically opposite angles)} $

$\text{Therefore,}\quad \triangle POQ \sim \Delta SOR \quad \quad \quad \text{(AAA similarity criterion)}$

Example 5 : Observe Fig. 6.30 and then find $\angle$ P.

Fig. 6.30

Solution : In $\Delta ABC$ and $\Delta PQR$

$ \dfrac{AB}{RQ}=\dfrac{3.8}{7.6}=\dfrac{1}{2}, \dfrac{BC}{QP}=\dfrac{6}{12}=\dfrac{1}{2} \text{ and } \dfrac{CA}{PR}=\dfrac{3 \sqrt{3}}{6 \sqrt{3}}=\dfrac{1}{2} $

That is, $\quad \dfrac{AB}{RQ}=\dfrac{BC}{QP}=\dfrac{CA}{PR}$

So, $ \Delta ABC \sim \Delta RQP \quad \quad \quad \text{(SSS similarity)} $

Therefore, $ \angle C=\angle P \quad \text{ (Corresponding angles of similar triangles) } $

But $ \angle C=180^{\circ}-\angle A-\angle B \quad \quad \quad \text{(Angle sum property)} $

$ =180^{\circ}-80^{\circ}-60^{\circ}=40^{\circ} $

So, $ \angle P=40^{\circ} $

Example 6 : In Fig. 6.31,

$OA \cdot OB=OC \cdot OD$.

Show that $\angle A=\angle C$ and $\angle B=\angle D$.

Solution: $\quad OA \cdot OB=OC . OD \quad$ (Given)

So, $ \dfrac{OA}{OC}=\dfrac{OD}{OB} $

Also, we have $\angle AOD=\angle COB \quad$ (Vertically opposite angles) (2)

Therefore, from (1) and (2), $\triangle$ AOD $\sim \Delta COB \quad$ (SAS similarity criterion)

So, $ \angle A=\angle C \text{ and } \angle D=\angle B \quad \text{(Corresponding angles of similar triangles)} $

Example 7 : A girl of height $90 cm$ is walking away from the base of a lamp-post at a speed of $1.2 m / s$. If the lamp is $3.6 m$ above the ground, find the length of her shadow after 4 seconds.

Solution : Let AB denote the lamp-post and CD the girl after walking for 4 seconds away from the lamp-post (see Fig. 6.32).

Fig. 6.32

From the figure, you can see that DE is the shadow of the girl. Let $DE$ be $x$ metres.

Now, $B D=1.2 m \times 4=4.8 m$.

Note that in $\triangle ABE$ and $\Delta CDE$,

$\angle B = \angle D \quad$ (Each is of $90^\circ$ because lamp-post as well as the girl are standing vertical to the ground)

$$ \begin{array}{lcr} \text{and } \quad \quad & \angle E = \angle E & \quad \quad \text{(Same angle)} \\ \text{So, } \quad \quad & \Delta \text{ABE}\sim \Delta \text{CDE} & \quad \quad \text{(AA similarity criterion)} \\ \text{Therefore, } \quad \quad & \dfrac{\text{BE}}{\text{DE}} = \dfrac{\text{AB}}{\text{CD}} & \\ \text{i.e., } \quad \quad & \dfrac{4.8+x}{x} = \dfrac{3.6}{0.9} & \quad \quad (90 ~cm= \dfrac{90}{100}m = 0.9 ~m) \\ \text{i.e., } \quad \quad & 4.8 + x = 4x & \\ \text{i.e., } \quad \quad & 3x = 4.8 & \\ \text{i.e., } \quad \quad & x = 1.6 & \\ \end{array} $$

So, the shadow of the girl after walking for 4 seconds is 1.6 m long.

Example 8 : In Fig. 6.33, $CM$ and $RN$ are respectively the medians of $\triangle ABC$ and $\triangle PQR$. If $\triangle ABC \sim \Delta PQR$, prove that :

Fig. 6.33

(i) $\triangle AMC \sim \Delta PNR$

(ii) $\dfrac{CM}{RN}=\dfrac{AB}{PQ}$

(iii) $\Delta CMB \sim \Delta RNQ$

Solution : (i) $\Delta ABC \sim \Delta PQR$ (Given)

So, $\dfrac{AB}{PQ}=\dfrac{BC}{QR}=\dfrac{CA}{RP} \tag{1}$

and $\angle A=\angle P, \angle B=\angle Q \text{ and } \angle C=\angle R \tag{2}$

But $AB=2 AM \text{ and } PQ=2 PN \quad \quad \text{(As CM and RN are medians)}$

So, from (1), $\quad \dfrac{2 AM}{2 PN}=\dfrac{CA}{RP}$

i.e., $\dfrac{AM}{PN}=\dfrac{CA}{RP} \tag{3}$

Also,$\angle \text{MAC} = \angle \text{NPR} \quad \quad \quad \text{[From(2)]} \tag{4} $

So, from (3) and (4),

$$ \Delta AMC \sim \Delta PNR \quad \quad \quad {\text{SAS similarity}} \tag{5} $$

(ii) From (5),

$$ \dfrac{CM}{RN}=\dfrac{CA}{RP} \tag{6} $$

But $\dfrac{C A}{R P}=\dfrac{A B}{P Q} \quad \quad \quad \quad \text{[From (1)]} \tag{7}$

Therefore, $\dfrac{CM}{RN}=\dfrac{AB}{PQ} \quad \quad \quad \quad \text{[From (6) and (7)]} \tag{8}$

(iii) Again,

$$ \dfrac{AB}{PQ}=\dfrac{BC}{QR} \quad \quad \quad \quad \text{[From (1)]} $$

Therefore $\dfrac{CM}{RN}=\dfrac{BC}{QR} \quad \quad \quad \quad \text{[From (8)]} \tag{9}$

Also, $\dfrac{CM}{RN}=\dfrac{AB}{PQ}=\dfrac{2 BM}{2 QN}$

i.e., $\dfrac{CM}{RN}=\dfrac{BM}{QN} \tag{10}$

i.e., $\dfrac{CM}{RN}=\dfrac{BC}{QR}=\dfrac{BM}{QN} \quad \quad \quad \quad \text{[From (9) and (10)]}$

Therefore, $\Delta CMB \sim \Delta RNQ \quad \quad \quad \quad \text{(SSS similarity)}$

[Note : You can also prove part (iii) by following the same method as used for proving part (i).]

EXERCISE 6.3

1. State which pairs of triangles in Fig. 6.34 are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

Show Answer

Solution

(i) $\angle A=\angle P=60^{\circ}$

$\angle B=\angle Q=80^{\circ}$

$\angle C=\angle R=40^{\circ}$

Therefore, $\triangle ABC \tilde{A} \phi \ddot{E} \dagger \hat{A} 1 \dfrac{1}{4} \Delta PQR$ [By AAA similarity criterion]

$ \dfrac{AB}{QR}=\dfrac{BC}{RP}=\dfrac{CA}{PQ} $

(ii)

$\therefore \triangle ABC \sim \triangle QRP$

[By SSS similarity criterion]

(iii)The given triangles are not similar as the corresponding sides are not proportional.

$MNQP=MLQR=12$

2. In Fig. 6.35, $\triangle ODC \sim \Delta OBA, \angle BOC=125^{\circ}$ and $\angle CDO=70^{\circ}$. Find $\angle DOC, \angle DCO$ and $\angle OAB$.

Fig. 6.35

Show Answer

Solution

DOB is a straight line.

$\therefore \angle DOC+\angle COB=180^{\circ}$

$\Rightarrow \angle DOC=180^{\circ}-125^{\circ}$

$=55^{\circ}$

In $\triangle DOC$,

$\angle DCO+\angle CDO+\angle DOC=180^{\circ}$

(Sum of the measures of the angles of a triangle is $180^{\circ}$.)

$\Rightarrow \angle DCO+70^{\circ}+55^{\circ}=180^{\circ}$

$\Rightarrow \angle DCO=55^{\circ}$

It is given that $\triangle ODC \angle \hat{A} 1 / 4 \triangle OBA$.

$\therefore \angle OAB=\angle OCD$ [Corresponding angles are equal in similar triangles.]

$\Rightarrow \angle OAB=55^{\circ}$

3. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B|| D C$ intersect each other at the point O. Using a similarity criterion for two triangles, show that $\dfrac{OA}{OC}=\dfrac{OB}{OD}$.

Show Answer #missing

4. In Fig. 6.36, $\dfrac{QR}{QS}=\dfrac{QT}{PR}$ and $\angle 1=\angle 2$. Show that $\Delta PQS \sim \Delta TQR$.

Fig. 6.36

Show Answer

Solution

In $\triangle PQR, \angle PQR=\angle PRQ$

$\therefore PQ=PR(i)$

Given, $\dfrac{QR}{QS}=\dfrac{QT}{PR}$

Using $(i)$, we obtain

$\dfrac{QR}{QS}=\dfrac{QT}{QP}$

In $\triangle PQS$ and $\triangle TQR$.

$ \begin{aligned} & \dfrac{QR}{QS}=\dfrac{QT}{QP} \quad[\text{ Using }(i i)] \\ & \angle Q=\angle Q \\ & \therefore \triangle PQS \sim \triangle TQR \quad \text{ [SAS similarity criterion] } \end{aligned} $

5. $\quad S$ and $T$ are points on sides $PR$ and $QR$ of $\triangle PQR$ such that $\angle P=\angle RTS$. Show that $\Delta RPQ \sim \Delta RTS$.

Show Answer

Solution

In $\triangle RPQ$ and $\triangle RST$,

$\angle RTS=\angle QPS$ (Given)

$\angle R=\angle R$ (Common angle)

$\therefore \Delta RPQ \propto 1 / 4 \Delta RTS$ (By AA similarity criterion)

6. In Fig. 6.37, if $\Delta \mathrm{ABE} \cong \triangle \mathrm{ACD}$, show that $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$.

Fig. 6.37

Show Answer

Solution

It is given that $\triangle ABE \cong \triangle ACD$.

$\therefore \text{AB=AC[By CPCT] (1) } $

And, $ \text{AD=AE[By CPCT]}(2) $

In $\triangle ADE$ and $\triangle ABC$,

$\dfrac{AD}{AB}=\dfrac{AE}{AC}$

[Dividing equation (2) by (1)]

$\angle A=\angle A[$ Common angle]

$\therefore \triangle ADE \sim \Delta ABC$ [By SAS similarity criterion]

7. In Fig. 6.38, altitudes $\mathrm{AD}$ and $\mathrm{CE}$ of $\triangle \mathrm{ABC}$ intersect each other at the point $P$. Show that:

Fig. 6.38

(i) $\triangle \mathrm{AEP} \sim \triangle \mathrm{CDP}$

(ii) $\triangle \mathrm{ABD} \sim \Delta \mathrm{CBE}$

(iii) $\triangle \mathrm{AEP} \sim \triangle \mathrm{ADB}$

(iv) $\triangle \mathrm{PDC} \sim \Delta \mathrm{BEC}$

Show Answer

Solution

(i)

In $\triangle AEP$ and $\triangle CDP$,

$\angle AEP=\angle CDP($ Each 90 $)$

$\angle APE=\angle CPD$ (Vertically opposite angles)

Hence, by using AA similarity criterion,

$\triangle AEP \propto 1 / 4 \Delta CDP$

(ii)

In $\triangle ABD$ and $\triangle CBE$,

$\angle ADB=\angle CEB(.$ Each $.90^{\circ})$

$\angle ABD=\angle CBE$ (Common)

Hence, by using AA similarity criterion,

$\triangle ABD \propto 1 / 4 \triangle CBE$

(iii)

In $\triangle AEP$ and $\triangle ADB$,

$\angle AEP=\angle ADB(.$ Each $.90^{\circ})$

$\angle PAE=\angle DAB$ (Common)

Hence, by using AA similarity criterion,

$\triangle AEP \propto 1 / 4 \Delta ADB$

(iv)

In $\triangle PDC$ and $\triangle BEC$,

$\angle PDC=\angle BEC(.$ Each $.90^{\circ})$

$\angle PCD=\angle BCE$ (Common angle)

Hence, by using AA similarity criterion,

$\triangle PDC \propto 1 / 4 \triangle BEC$

8. $\mathrm{E}$ is a point on the side $\mathrm{AD}$ produced of a parallelogram $\mathrm{ABCD}$ and $\mathrm{BE}$ intersects $\mathrm{CD}$ at $\mathrm{F}$. Show that $\triangle \mathrm{ABE} \sim \Delta \mathrm{CFB}$.

Show Answer

Solution

In $\triangle ABE$ and $\triangle CFB$,

$\angle A=\angle C$ (Opposite angles of a parallelogram)

$\angle AEB=\angle CBF$ (Alternate interior angles as $AE \| BC$ )

$\therefore \triangle ABE \propto 1 / 4 \triangle CFB$ (By AA similarity criterion)

9. In Fig. 6.39, $\mathrm{ABC}$ and $\mathrm{AMP}$ are two right triangles, right angled at $B$ and $M$ respectively. Prove that:

Fig. 6.39

(i) $\triangle \mathrm{ABC} \sim \Delta \mathrm{AMP}$

(ii) $\dfrac{\mathrm{CA}}{\mathrm{PA}}=\dfrac{\mathrm{BC}}{\mathrm{MP}}$

Show Answer

Solution

In $\triangle ABC$ and $\triangle AMP$,

$\angle ABC=\angle AMP(.$ Each $.90^{\circ})$

$\angle A=\angle A$ (Common)

$\therefore \triangle ABC \tilde{A} \phi \ddot{E}+\hat{A} 1 / 4 \Delta AMP$ (By AA similarity criterion)

$\Rightarrow \dfrac{CA}{PA}=\dfrac{BC}{MP} \quad$ (Corresponding sides of similar triangles are proportional)

10. $\mathrm{CD}$ and GH are respectively the bisectors of $\angle \mathrm{ACB}$ and $\angle \mathrm{EGF}$ such that $\mathrm{D}$ and $\mathrm{H}$ lie on sides $\mathrm{AB}$ and $\mathrm{FE}$ of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EFG}$ respectively. If $\triangle \mathrm{ABC} \sim \Delta \mathrm{FEG}$, show that:

(i) $\dfrac{\mathrm{CD}}{\mathrm{GH}}=\dfrac{\mathrm{AC}}{\mathrm{FG}}$

(ii) $\triangle \mathrm{DCB} \sim \Delta \mathrm{HGE}$

(iii) $\Delta \mathrm{DCA} \sim \Delta \mathrm{HGF}$

Show Answer

Solution

Answer :

It is given that $\triangle ABC \tilde{A} \phi \ddot{E} \dagger \hat{A} 114 \Delta FEG$.

$\therefore \angle A=\angle F, \angle B=\angle E$, and $\angle ACB=\angle FGE$ $\angle ACB=\angle FGE$

$\therefore \angle ACD=\angle FGH$ (Angle bisector)

And, $\angle DCB=\angle HGE$ (Angle bisector)

In $\triangle ACD$ and $\triangle FGH$,

$\angle A=\angle F$ (Proved above)

$\angle ACD=\angle FGH$ (Proved above)

$\therefore \triangle ACD \sim \Delta FGH$ (By AA similarity criterion)

$\Rightarrow \dfrac{CD}{GH}=\dfrac{AC}{FG}$

In $\triangle DCB$ and $\triangle HGE$,

$\angle DCB=\angle HGE$ (Proved above)

$\angle B=\angle E$ (Proved above)

$\therefore \triangle DCB \tilde{A} \phi \ddot{E}+A^{1} / 4 \Delta HGE$ (By AA similarity criterion)

In $\triangle DCA$ and $\triangle HGF$,

$\angle ACD=\angle FGH$ (Proved above)

$\angle A=\angle F$ (Proved above)

$\therefore \triangle DCA \sim \Delta HGF$ (By AA similarity criterion)

11. In Fig. 6.40, $E$ is a point on side $CB$ produced of an isosceles triangle $A B C$ with $AB=AC$. If $AD \perp BC$ and $EF \perp AC$, prove that $\triangle ABD \sim \triangle ECF$.

Fig. 6.40

Show Answer

Solution

It is given that $A B C$ is an isosceles triangle.

$\therefore AB=AC$

$\Rightarrow \angle ABD=\angle ECF$

In $\triangle ABD$ and $\triangle ECF$, $\angle ADB=\angle EFC(.$ Each $.90^{\circ})$

$\angle BAD=\angle CEF$ (Proved above)

$\therefore \Delta ABD \sim \Delta ECF$ (By using $AA$ similarity criterion)

12. Sides $A B$ and $B C$ and median $A D$ of a triangle $ABC$ are respectively proportional to sides $PQ$ and $QR$ and median $PM$ of $\triangle PQR$ (see Fig. 6.41). Show that $\triangle ABC \sim \Delta PQR$.

Fig. 6.41

Show Answer

Solution

Median divides the opposite side.

$ \therefore \quad BD=\dfrac{BC}{2} \text{ and } QM=\dfrac{QR}{2} $

Given that,

$ \dfrac{AB}{PQ}=\dfrac{BC}{QR}=\dfrac{AD}{PM} $

$\Rightarrow \dfrac{AB}{PQ}=\dfrac{\dfrac{1}{2} BC}{\dfrac{1}{2} QR}=\dfrac{AD}{PM}$

$\Rightarrow \dfrac{AB}{PQ}=\dfrac{BD}{QM}=\dfrac{AD}{PM}$

In $\triangle ABD$ and $\triangle PQM$,

$ \begin{aligned} & \dfrac{AB}{PQ}=\dfrac{BD}{QM}=\dfrac{AD}{PM} \\ & \therefore \triangle ABD \tilde{A} \phi \ddot{E} \dagger \hat{A} 1 / 4 \Delta PQM \text{ (By SSS similarity criterion) } \\ & \Rightarrow \angle ABD=\angle PQM \text{ (Corresponding angles of similar triangles) } \end{aligned} $

In $\triangle A B C$ and $\triangle P Q R$,

$\angle ABD=\angle PQM$ (Proved above) $\dfrac{AB}{PQ}=\dfrac{BC}{QR}$

$\therefore \triangle ABC \tilde{A} \phi \ddot{E}+\hat{A} 11 / 4 \triangle PQR$ (By SAS similarity criterion)

13. $D$ is a point on the side $BC$ of a triangle $ABC$ such that $\angle ADC=\angle BAC$. Show that $CA^{2}=CB . CD$.

Show Answer

Solution

In $\triangle ADC$ and $\triangle BAC$,

$\angle ADC=\angle BAC$ (Given)

$\angle ACD=\angle BCA$ (Common angle)

$\therefore \triangle ADC \tilde{A} \phi \ddot{E}+\hat{A} 11 / 4 \Delta BAC$ (By AA similarity criterion)

We know that corresponding sides of similar triangles are in proportion.

$\therefore \dfrac{CA}{CB}=\dfrac{CD}{CA}$

$\Rightarrow CA^{2}=CB \times CD$

14. Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $PQ$ and $PR$ and median $PM$ of another triangle $PQR$. Show that $\triangle ABC \sim \Delta PQR$.

Show Answer

Solution

Given that,

$ \dfrac{AB}{PQ}=\dfrac{AC}{PR}=\dfrac{AD}{PM} $

Let us extend $A D$ and $P M$ up to point $E$ and $L$ respectively, such that $A D=D E$ and $P M=M L$. Then, join $B$ to $E, C$ to $E, Q$ to $L$, and $R$ to $L$.

We know that medians divide opposite sides.

Therefore, $BD=DC$ and $QM=MR$

Also, $AD=DE$ (By construction)

And, $PM=ML$ (By construction)

In quadrilateral $A B E C$, diagonals $A E$ and $B C$ bisect each other at point $D$.

Therefore, quadrilateral ABEC is a parallelogram.

$\therefore A C=B E$ and $A B=E C$ (Opposite sides of a parallelogram are equal)

Similarly, we can prove that quadrilateral $PQLR$ is a parallelogram and $PR=QL, PQ=LR$

It was given that

$ \begin{aligned} & \dfrac{A B}{P Q}=\dfrac{A C}{P R}=\dfrac{A D}{P M} \\ & \Rightarrow \dfrac{A B}{P Q}=\dfrac{B E}{Q L}=\dfrac{2 A D}{2 P M} \\ & \Rightarrow \dfrac{A B}{P Q}=\dfrac{B E}{Q L}=\dfrac{A E}{P L} \end{aligned} $

$\therefore \triangle ABE \tilde{A} \phi \ddot{E} \dagger \hat{A} 1 / 4 \Delta PQL$ (By SSS similarity criterion)

We know that corresponding angles of similar triangles are equal.

$\therefore \angle BAE=\angle QPL$.

Similarly, it can be proved that $\triangle AEC \tilde{A} \phi \ddot{E} \dagger \hat{A} 11 / 4 \Delta PLR$ and

$\angle CAE=\angle RPL \ldots$

Adding equation (1) and (2), we obtain

$\angle BAE+\angle CAE=\angle QPL+\angle RPL$

$\Rightarrow \angle CAB=\angle RPQ$

In $\triangle ABC$ and $\triangle PQR$,

$\dfrac{AB}{PQ}=\dfrac{AC}{PR}$

(Given)

$\angle CAB=\angle RPQ$ [Using equation (3)]

$\therefore \triangle ABC \tilde{A} \phi \ddot{E} \dagger \hat{A} 1 \dfrac{1}{4} \Delta PQR$ (By SAS similarity criterion)

15. A vertical pole of length $6 m$ casts a shadow $4 m$ long on the ground and at the same time a tower casts a shadow $28 m$ long. Find the height of the tower.

Show Answer

Solution

Let $A B$ and $C D$ be a tower and a pole respectively.

Let the shadow of $B E$ and $D F$ be the shadow of $A B$ and $C D$ respectively.

At the same time, the light rays from the sun will fall on the tower and the pole at the same angle.

Therefore, $\angle DCF=\angle BAE$

And, $\angle DFC=\angle BEA$

$\angle CDF=\angle ABE$ (Tower and pole are vertical to the ground)

$\therefore \triangle ABE \sim \Delta CDF$ (AAA similarity criterion) $\Rightarrow \dfrac{AB}{CD}=\dfrac{BE}{DF}$

$\Rightarrow \dfrac{AB}{6 m}=\dfrac{28}{4}$

$\Rightarrow AB=42 m$

Therefore, the height of the tower will be 42 metres.

16. If $A D$ and $P M$ are medians of triangles $A B C$ and $P Q R$, respectively where $\Delta ABC \sim \Delta PQR$, prove that $\dfrac{AB}{PQ}=\dfrac{AD}{PM}$.

Show Answer

Solution

It is given that $\triangle A B C \tilde{A} \phi \ddot{E} \dagger \hat{A} 1 / 4 \triangle P Q R$

We know that the corresponding sides of similar triangles are in proportion.

$\therefore \dfrac{AB}{PQ}=\dfrac{AC}{PR}=\dfrac{BC}{QR}$

Also, $\angle A=\angle P, \angle B=\angle Q, \angle C=\angle R$

Since AD and PM are medians, they will divide their opposite sides.

$$ \begin{equation*} \therefore \quad BD=\dfrac{BC}{2} \text{ and } QM=\dfrac{QR}{2} \tag{3} \end{equation*} $$

From equations ( 1 ) and (3), we obtain

$$ \begin{equation*} \dfrac{AB}{PQ}=\dfrac{BD}{QM} \tag{4} \end{equation*} $$

In $\triangle ABD$ and $\triangle PQM$,

$\angle B=\angle Q[$ Using equation (2)] $\dfrac{AB}{PQ}=\dfrac{BD}{QM}$

$\therefore \triangle ABD \tilde{A} \phi \ddot{E}+\hat{A} 11 / 4 \triangle PQM$ (By SAS similarity criterion)

$\Rightarrow \dfrac{AB}{PQ}=\dfrac{BD}{QM}=\dfrac{AD}{PM}$

6.5 Summary

In this chapter you have studied the following points :

1. Two figures having the same shape but not necessarily the same size are called similar figures.

2. All the congruent figures are similar but the converse is not true.

3. Two polygons of the same number of sides are similar, if (i) their corresponding angles are equal and (ii) their corresponding sides are in the same ratio (i.e., proportion).

4. If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.

5. If a line divides any two sides of a triangle in the same ratio, then the line is parallel to the third side.

6. If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio and hence the two triangles are similar (AAA similarity criterion).

7. If in two triangles, two angles of one triangle are respectively equal to the two angles of the other triangle, then the two triangles are similar (AA similarity criterion).

8. If in two triangles, corresponding sides are in the same ratio, then their corresponding angles are equal and hence the triangles are similar (SSS similarity criterion).

9. If one angle of a triangle is equal to one angle of another triangle and the sides including these angles are in the same ratio (proportional), then the triangles are similar (SAS similarity criterion).

A NOTE TO THE READER

If in two right triangles, hypotenuse and one side of one triangle are proportional to the hypotenuse and one side of the other triangle, then the two triangles are similar. This may be referred to as the RHS Similarity Criterion.

If you use this criterion in Example 2 , Chapter 8, the proof will become simpler.

6.1 भूमिका

आप अपनी पिछली कक्षाओं से, त्रिभुजों और उनके अनेक गुणधर्मों से भली भाँति परिचित हैं। कक्षा IX में, आप त्रिभुजों की सर्वांगसमता के बारे में विस्तृत रूप से अध्ययन कर चुके हैं। याद कीजिए कि दो त्रिभुज सर्वांगसम तब कहे जाते हैं जब उनके समान आकार (shape) तथा समान आमाप (size) हों। इस अध्याय में, हम ऐसी आकृतियों के बारे में अध्ययन करेंगे जिनके आकार समान हों परंतु उनके आमाप का समान होना आवश्यक नहीं हो। दो आकृतियाँ जिनके समान आकार हों (परंतु समान आमाप होना आवश्यक न हो) समरूप आकृतियाँ (similar figures) कहलाती हैं। विशेष रूप से, हम समरूप त्रिभुजों की चर्चा करेंगे तथा इस जानकारी को पहले पढ़ी गई पाइथागोरस प्रमेय की एक सरल उपपत्ति देने में प्रयोग करेंगे।

क्या आप अनुमान लगा सकते हैं कि पर्वतों (जैसे माऊंट एवरेस्ट) की ऊँचाईयाँ अथवा कुछ दूरस्थ वस्तुओं (जैसे चन्द्रमा) की दूरियाँ किस प्रकार ज्ञात की गई हैं? क्या आप सोचते हैं कि इन्हें एक मापने वाले फीते से सीधा (प्रत्यक्ष) मापा गया है? वास्तव में, इन सभी ऊँचाई और दूरियों को अप्रत्यक्ष मापन (indirect measurement) की अवधारणा का प्रयोग करते हुए ज्ञात किया गया है, जो आकृतियों की समरूपता के सिद्धांत पर आधारित है (देखिए उदाहरण 7 , प्रश्नावली 6.3 का प्रश्न 15 तथा साथ ही इस पुस्तक के अध्याय 8 और 9)।

6.2 समरूप आकृतियाँ

कक्षा IX में, आपने देखा था कि समान (एक ही) त्रिज्या वाले सभी वृत्त सर्वांगसम होते हैं, समान लंबाई की भुजा वाले सभी वर्ग सर्वांगसम होते हैं तथा समान लंबाई की भुजा वाले सभी समबाहु त्रिभुज सर्वांगसम होते हैं।

आकृति 6.1

अब किन्हीं दो (या अधिक) वृत्तों पर विचार कीजिए [देखिए आकृति 6.1 (i)]। क्या ये सर्वांगसम हैं? चूँकि इनमें से सभी की त्रिज्या समान नहीं है, इसलिए ये परस्पर सर्वांगसम नहीं हैं। ध्यान दीजिए कि इनमें कुछ सर्वांगसम हैं और कुछ सर्वांगसम नहीं हैं, परंतु इनमें से सभी के आकार समान हैं। अतः, ये सभी वे आकृतियाँ हैं जिन्हें हम समरूप (similar) कहते हैं। दो समरूप आकृतियों के आकार समान होते हैं परंतु इनके आमाप समान होने आवश्यक नहीं हैं। अतः, सभी वृत्त समरूप होते हैं। दो (या अधिक) वर्गों के बारे में अथवा दो (या अधिक) समबाहु त्रिभुजों के बारे में आप क्या सोचते हैं [देखिए आकृति 6.1 (ii) और (iii)]? सभी वृत्तों की तरह ही, यहाँ सभी वर्ग समरूप हैं तथा सभी समबाहु त्रिभुज समरूप हैं।

उपरोक्त चर्चा से, हम यह भी कह सकते हैं कि सभी सर्वांगसम आकृतियाँ समरूप होती हैं, परंतु सभी समरूप आकृतियों का सर्वांगसम होना आवश्यक नहीं है।

क्या एक वृत्त और एक वर्ग समरूप हो सकते हैं? क्या एक त्रिभुज और एक वर्ग समरूप हो सकते हैं? इन आकृतियों को देखने मात्र से ही आप प्रश्नों के उत्तर दे सकते हैं (देखिए आकृति 6.1)। स्पष्ट शब्दों में, ये आकृतियाँ समरूप नहीं हैं। (क्यों?)

आकृति 6.2

आप दो चतुर्भुजों $\mathrm{ABCD}$ और $\mathrm{PQRS}$ के बारे में क्या कह सकते हैं (देखिए आकृति 6.2)? क्या ये समरूप हैं? ये आकृतियाँ समरूप-सी प्रतीत हो रही हैं, परंतु हम इसके बारे में निश्चित रूप से कुछ नहीं कह सकते। इसलिए, यह आवश्यक हो जाता है कि हम आकृतियों की समरूपता के लिए कोई परिभाषा ज्ञात करें तथा इस परिभाषा पर आधारित यह सुनिश्चित करने के लिए कि दो दी हुई आकृतियाँ समरूप हैं या नहीं, कुछ नियम प्राप्त करें। इसके लिए, आइए आकृति 6.3 में चित्रों को देखें:

आकृति 6.3

आप तुरंत यह कहेंगे कि ये एक ही स्मारक (ताजमहल) के चित्र हैं, परंतु ये भिन्न-भिन्न आमापों (sizes) के हैं। क्या आप यह कहेंगे कि ये चित्र समरूप हैं? हाँ, ये हैं।

आप एक ही व्यक्ति के एक ही आमाप वाले उन दो चित्रों के बारे में क्या कह सकते हैं, जिनमें से एक उसकी 10 वर्ष की आयु का है तथा दूसरा उसकी 40 वर्ष की आयु का है? क्या ये दोनों चित्र समरूप हैं? ये चित्र समान आमाप के हैं, परंतु निश्चित रूप से ये समान आकार के नहीं हैं। अतः, ये समरूप नहीं हैं।

जब कोई फ़ोटोग्राफर एक ही नेगेटिव से विभिन्न मापों के फ़ोटो प्रिंट निकालती है, तो वह क्या करती है? आपने स्टैंप साइज़, पासपोर्ट साइज़ एवं पोस्ट कार्ड साइज़ फ़ोटो (या चित्रों) के बारे में अवश्य सुना होगा। वह सामान्य रूप से एक छोटे आमाप (साइज) की फ़िल्म (film), मान लीजिए जो $35 \mathrm{~mm}$ आमाप वाली फ़िल्म है, पर फ़ोटो खींचती है और फिर उसे एक बड़े आमाप, जैसे $45 \mathrm{~mm}$ (या $55 \mathrm{~mm}$ ) आमाप, वाली फ़ोटो के रूप में आवर्धित करती है। इस प्रकार, यदि हम छोटे चित्र के किसी एक रेखाखंड को लें, तो बड़े चित्र में इसका संगत रेखाखंड, लंबाई में पहले रेखाखंड का $\frac{45}{35}$ या $\frac{55}{35}$ गुना होगा। वास्तव में इसका अर्थ यह है कि छोटे चित्र का प्रत्येक रेखाखंड $35: 45$ (या $35: 55$ ) के अनुपात में आवर्धित हो (बढ़) गया है। इसी को इस प्रकार भी कहा जा सकता है कि बड़े चित्र का प्रत्येक रेखाखंड $45: 35$ (या $55: 35$ ) के अनुपात में घट (कम हो) गया है। साथ ही, यदि आप विभिन्न आमापों के दो चित्रों में संगत रेखाखंडों के किसी भी युग्म के बीच बने झुकावों [अथवा कोणों] को लें, तो आप देखेंगे कि ये झुकाव (या कोण) सदैव बराबर होंगे। यही दो आकृतियों तथा विशेषकर दो बहुभुजों की समरूपता का सार है। हम कहते हैं कि:

भुजाओं की समान संख्या वाले दो बहुभुज समरूप होते हैं, यदि $(i)$ उनके संगत कोण बराबर हों तथा (ii) इनकी संगत भुजाएँ एक ही अनुपात में (अर्थात् समानुपाती) हों।

ध्यान दीजिए कि बहुभुजों के लिए संगत भुजाओं के इस एक ही अनुपात को स्केल गुणक (scale factor) [अथवा प्रतिनिधित्व भिन्न (Representative Fraction)] कहा जाता है। आपने यह अवश्य सुना होगा कि विश्व मानचित्र [अर्थात् ग्लोबल मानचित्र] तथा भवनों के निर्माण के लिए बनाए जाने वाली रूप रेखा एक उपयुक्त स्केल गुणक तथा कुछ परिपाटियों को ध्यान में रखकर बनाए जाते हैं।

आकृतियों की समरूपता को अधिक स्पष्ट रूप से समझने के लिए, आइए निम्नलिखित क्रियाकलाप करें:

क्रियाकलाप 1 : अपनी कक्षा के कमरे की छत के किसी बिंदु $\mathrm{O}$ पर प्रकाश युक्त बल्ब लगाइए तथा उसके ठीक नीचे एक मेज रखिए। आइए एक समतल कार्डबोर्ड में से एक बहुभुज, मान लीजिए चतुर्भुज $\mathrm{ABCD}$, काट लें तथा इस कार्डबोर्ड को भूमि के समांतर मेज और जलते हुए बल्ब के बीच में रखें। तब, मेज पर $\mathrm{ABCD}$ की एक छाया (shadow) पड़ेगी। इस छाया की बाहरी रूपरेखा को $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ से चिह्मित कीजिए (देखिए आकृति 6.4)।

ध्यान दीजिए कि चतुर्भुज $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ चतुर्भुज $\mathrm{ABCD}$ का एक आकार परिवर्धन (या आवर्धन) है। यह प्रकाश के इस गुणधर्म के कारण है कि प्रकाश सीधी रेखा में चलती है। आप यह भी देख सकते हैं कि $\mathrm{A}^{\prime}$ किरण $\mathrm{OA}$ पर स्थित है, $\mathrm{B}^{\prime}$ किरण $\mathrm{OB}$ पर स्थित है, $\mathrm{C}^{\prime}$ किरण $\mathrm{OC}$ पर स्थित है तथा $\mathrm{D}^{\prime}$ किरण $\mathrm{OD}$ पर स्थित है। इस प्रकार, चतुर्भुज $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ और $\mathrm{ABCD}$ समान आकार के हैं; परंतु इनके माप भिन्न-भिन्न हैं।

आकृति 6.4

अतः चतुर्भुज $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ चतुर्भुज $\mathrm{ABCD}$ के समरूप है। हम यह भी कह सकते हैं कि चतुर्भुज $\mathrm{ABCD}$ चतुर्भुज $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ के समरूप है।

यहाँ, आप यह भी देख सकते हैं कि शीर्ष $A^{\prime}$ शीर्ष $A$ के संगत है, शीर्ष $B^{\prime}$ शीर्ष $B$ के संगत है, शीर्ष $C^{\prime}$ शीर्ष $C$ के संगत है तथा शीर्ष $D^{\prime}$ शीर्ष $D$ के संगत है। सांकेतिक रूप से इन संगतताओं (correspondences) को $\mathrm{A}^{\prime} \leftrightarrow \mathrm{A}, \mathrm{B}^{\prime} \leftrightarrow \mathrm{B}, \mathrm{C}^{\prime} \leftrightarrow \mathrm{C}$ और $\mathrm{D}^{\prime} \leftrightarrow \mathrm{D}$ से निरूपित किया जाता है। दोनों चतुर्भुजों के कोणों और भुजाओं को वास्तविक रूप से माप कर, आप इसका सत्यापन कर सकते हैं कि

(i) $\angle \mathrm{A}=\angle \mathrm{A}^{\prime}, \angle \mathrm{B}=\angle \mathrm{B}^{\prime}, \angle \mathrm{C}=\angle \mathrm{C}^{\prime}, \angle \mathrm{D}=\angle \mathrm{D}^{\prime}$ और

(ii) $\frac{\mathrm{AB}}{\mathrm{A}^{\prime} \mathrm{B}^{\prime}}=\frac{\mathrm{BC}}{\mathrm{B}^{\prime} \mathrm{C}^{\prime}}=\frac{\mathrm{CD}}{\mathrm{C}^{\prime} \mathrm{D}^{\prime}}=\frac{\mathrm{DA}}{\mathrm{D}^{\prime} \mathrm{A}^{\prime}}$.

इससे पुनः यह बात स्पष्ट होती है कि भुजाओं की समान संख्या वाले दो बहुभुज समरूप होते हैं, यदि $(i)$ उनके सभी संगत कोण बराबर हों तथा $(i i)$ उनकी सभी संगत भुजाएँ एक ही अनुपात (समानुपात) में हों।

उपरोक्त के आधार पर, आप सरलता से यह कह सकते हैं कि आकृति 6.5 में दिए गए चतुर्भुज $\mathrm{ABCD}$ और $\mathrm{PQRS}$ समरूप हैं।

आकृति 6.5

टिप्पणी: आप इसका सत्यापन कर सकते हैं कि यदि एक बहुभुज किसी अन्य बहुभुज के समरूप हो और यह दूसरा बहुभुज एक तीसरे बहुभुज के समरूप हो, तो पहला बहुभुज तीसरे बहुभुज के समरूप होगा।

आप यह देख सकते हैं कि आकृति 6.6 के दो चतुर्भुजों (एक वर्ग और एक आयत) में, संगत कोण बराबर हैं, परंतु इनकी संगत भुजाएँ एक ही अनुपात में नहीं हैं। अतः, ये दोनों चतुर्भुज समरूप नहीं हैं।

आकृति 6.6

इसी प्रकार आप देख सकते हैं कि आकृति 6.7 के दो चतुर्भुजों (एक वर्ग और एक समचतुर्भुज) में, संगत भुजाएँ एक ही अनुपात में हैं, परंतु इनके संगत कोण बराबर नहीं हैं। पुनः, दोनों बहुभुज (चतुर्भुज) समरूप नहीं हैं।

आकृति 6.7

इस प्रकार, आप देख सकते हैं कि दो बहुभुजों की समरूपता के प्रतिबंधों (i) और (ii) में से किसी एक का ही संतुष्ट होना उनकी समरूपता के लिए पर्याप्त नहीं है।

प्रश्नावली 6.1

1. कोष्ठकों में दिए शब्दों में से सही शब्दों का प्रयोग करते हुए, रिक्त स्थानों को भरिए:

(i) सभी वृत्त __________ होते हैं। (सर्वांगसम, समरूप)

(ii) सभी वर्ग ________ होते हैं। (समरूप, सर्वांगसम)

(iii) सभी ________ त्रिभुज समरूप होते हैं। (समद्विबाहु, समबाहु)

(iv) भुजाओं की समान संख्या वाले दो बहुभुज समरूप होते हैं, यदि (i) उनके संगत कोण ______ हों तथा (ii) उनकी संगत भुजाएँ _______ हों। (बराबर, समानुपाती)

Show Answer #missing

2. निम्नलिखित युग्मों के दो भिन्न-भिन्न उदाहरण दीजिए:

(i) समरूप आकृतियाँ

(ii) ऐसी आकृतियाँ जो समरूप नहीं हैं।

Show Answer #missing

3. बताइए कि निम्नलिखित चतुर्भुज समरूप हैं या नहीं:

आकृति 6.8

Show Answer #missing

6.3 त्रिभुजों की समरूपता

आप दो त्रिभुजों की समरूपता के बारे में क्या कह सकते हैं?

आपको याद होगा कि त्रिभुज भी एक बहुभुज ही है। इसलिए, हम त्रिभुजों की समरूपता के लिए भी वही प्रतिबंध लिख सकते हैं, जो बहुभुजों की समरूपता के लिए लिखे थे। अर्थात्

दो त्रिभुज समरूप होते हैं, यदि

(i) उनके संगत कोण बराबर हों तथा

(ii) उनकी संगत भुजाएँ एक ही अनुपात में (अर्थात् समानुपाती) हों।

ध्यान दीजिए कि यदि दो त्रिभुजों के संगत कोण बराबर हों, तो वे समानकोणिक त्रिभुज (equiangular triangles) कहलाते हैं। एक प्रसिद्ध यूनानी गणितज्ञ थेल्स (Thales) ने दो समानकोणिक त्रिभुजों से संबंधित एक महत्वपूर्ण तथ्य प्रतिपादित किया, जो नीचे दिया जा रहा है:

दो समानकोणिक त्रिभुजों में उनकी संगत भुजाओं का अनुपात सदैव समान रहता है।

ऐसा विश्वास किया जाता है कि इसके लिए उन्होंने एक परिणाम का प्रयोग किया जिसे आधारभूत समानुपातिकता प्रमेय (आजकल थेल्स प्रमेय) कहा जाता है।

आधारभूत समानुपातिकता प्रमेय (Basic Proportionality Theorem) को समझने के लिए, आइए निम्नलिखित क्रियाकलाप करें:

क्रियाकलाप 2 : कोई कोण XAY खींचिए तथा उसकी एक भुजा $A X$ पर कुछ बिंदु (मान लीजिए पाँच बिंदु) $P$, $\mathrm{Q}, \mathrm{D}, \mathrm{R}$ और $\mathrm{B}$ इस प्रकार अंकित कीजिए कि $\mathrm{AP}=\mathrm{PQ}=\mathrm{QD}=\mathrm{DR}=\mathrm{RB}$ हो।

अब, बिंदु $\mathrm{B}$ से होती हुई कोई एक रेखा खींचिए, जो भुजा $\mathrm{AY}$ को बिंदु $\mathrm{C}$ पर काटे ( देखिए आकृति 6.9)।

आकृति 6.9

साथ ही, बिंदु $\mathrm{D}$ से होकर $\mathrm{BC}$ के समांतर एक रेखा खींचिए, जो $\mathrm{AC}$ को $\mathrm{E}$ पर काटे। क्या आप अपनी रचनाओं से यह देखते हैं कि $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{3}{2}$ हैं? $\mathrm{AE}$ और $\mathrm{EC}$ मापिए। $\frac{\mathrm{AE}}{\mathrm{EC}}$ क्या है? देखिए $\frac{\mathrm{AE}}{\mathrm{EC}}$ भी $\frac{3}{2}$ के बराबर है। इस प्रकार, आप देख सकते हैं कि त्रिभुज $\mathrm{ABC}$ में, $\mathrm{DE} | \mathrm{BC}$ है तथा $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$ है। क्या यह संयोगवश है? नहीं, यह निम्नलिखित प्रमेय के कारण है (जिसे आधारभूत समानुपातिकता प्रमेय कहा जाता है):

प्रमेय 6.1: यदि किसी त्रिभुज की एक भुजा के समांतर अन्य दो भुजाओं को भिन्न-भिन्न बिंदुओं पर प्रतिच्छेद करने के लिए एक रेखा खींची जाए, तो ये अन्य दो भुजाएँ एक ही अनुपात में विभाजित हो जाती हैं।

उपपत्ति : हमें एक त्रिभुज $\mathrm{ABC}$ दिया है, जिसमें भुजा $\mathrm{BC}$ के समांतर खींची गई एक रेखा अन्य दो भुजाओं $\mathrm{AB}$ और $\mathrm{AC}$ को क्रमशः $\mathrm{D}$ और $\mathrm{E}$ पर काटती हैं (देखिए आकृति 6.10)।

आकृति 6.10

हमें सिद्ध करना है कि $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$

आवृति 6.10 आइए $\mathrm{B}$ और $\mathrm{E}$ तथा $\mathrm{C}$ और $\mathrm{D}$ को मिलाएँ और फिर $\mathrm{DM} \perp \mathrm{AC}$ एवं $\mathrm{EN} \perp \mathrm{AB}$ खीचें।

अब, $\triangle \mathrm{ADE}$ का क्षेत्रफल (= $\frac{1}{2}$ आधार $\times$ ऊँचाई) $=\frac{1}{2} \mathrm{AD} \times \mathrm{EN}$

कक्षा IX से याद कीजिए कि $\triangle \mathrm{ADE}$ के क्षेत्रफल को $\operatorname{ar}(\mathrm{ADE})$ से व्यक्त किया जाता है।

अत:

$\quad \operatorname{ar}(\mathrm{ADE})=\frac{1}{2} \mathrm{AD} \times \mathrm{EN}$

इसी प्रकार

$ \begin{aligned} & ar(BDE)=\frac{1}{2} DB \times EN, \\ & ar(ADE)=\frac{1}{2} AE \times DM \text{ तथा } ar(DEC)=\frac{1}{2} EC \times DM . \end{aligned} $

अत : $$\quad \frac{ar(ADE)}{ar(BDE)}=\frac{\frac{1}{2} AD \times EN}{\frac{1}{2} DB \times EN}=\frac{AD}{DB} \tag{1}$$

तथा $$\frac{ar(ADE)}{ar(DEC)}=\frac{\frac{1}{2} AE \times DM}{\frac{1}{2} EC \times DM}=\frac{AE}{EC} \tag{2}$$

ध्यान दीजिए कि $\triangle \mathrm{BDE}$ और $\triangle \mathrm{DEC}$ एक ही आधार $\mathrm{DE}$ तथा समांतर रेखाओं $\mathrm{BC}$ और $\mathrm{DE}$ के बीच बने दो त्रिभुज हैं।

अत:

$$ \begin{equation*} \operatorname{ar}(\mathrm{BDE})=\operatorname{ar}(\mathrm{DEC}) \tag{3} \end{equation*} $$

इसलिए (1), (2) और (3), से हमें प्राप्त होता है:

$ \frac{AD}{DB}=\frac{AE}{EC} $

क्या इस प्रमेय का विलोम भी सत्य है (विलोम के अर्थ के लिए परिशिष्ट 1 देखिए)? इसकी जाँच करने के लिए, आइए निम्नलिखित क्रियाकलाप करें:

क्रियाकलाप 3 : अपनी अभ्यासपुस्तिका में एक कोण $\mathrm{XAY}$ खींचिए तथा किरण $\mathrm{AX}$ पर बिंदु $\mathrm{B} _{1}, \mathrm{~B} _{2}$, $\mathrm{B} _{3}, \mathrm{~B} _{4}$ और $\mathrm{B}$ इस प्रकार अंकित कीजिए कि $\mathrm{AB} _{1}=\mathrm{B} _{1} \mathrm{~B} _{2}=\mathrm{B} _{2} \mathrm{~B} _{3}=\mathrm{B} _{3} \mathrm{~B} _{4}=\mathrm{B} _{4} \mathrm{~B}$ हो।

इसी प्रकार, किरण $\mathrm{AY}$, पर बिंदु $\mathrm{C} _{1}, \mathrm{C} _{2}$, $\mathrm{C} _{3}, \mathrm{C} _{4}$ और $\mathrm{C}$ इस प्रकार अंकित कीजिए कि $\mathrm{AC} _{1}=\mathrm{C} _{1} \mathrm{C} _{2}=\mathrm{C} _{2} \mathrm{C} _{3}=\mathrm{C} _{3} \mathrm{C} _{4}=\mathrm{C} _{4} \mathrm{C}$ हो। फिर $\mathrm{B} _{1} \mathrm{C} _{1}$ और $\mathrm{BC}$ को मिलाइए (देखिए आकृति 6.11)।

आकृति 6.11

ध्यान दीजिए कि $\frac{\mathrm{AB} _{1}}{\mathrm{~B} _{1} \mathrm{~B}}=\frac{\mathrm{AC} _{1}}{\mathrm{C} _{1} \mathrm{C}}$ (प्रत्येक $\frac{1}{4}$ के बराबर है)

आप यह भी देख सकते हैं कि रेखाएँ $\mathrm{B} _{1} \mathrm{C} _{1}$ और $\mathrm{BC}$ परस्पर समांतर हैं, अर्थात्

$$ \begin{equation*} \mathrm{B} _{1} \mathrm{C} _{1} \| \mathrm{BC} \tag{1} \end{equation*} $$

इसी प्रकार, क्रमशः $\mathrm{B} _{2} \mathrm{C} _{2}, \mathrm{~B} _{3} \mathrm{C} _{3}$ और $\mathrm{B} _{4} \mathrm{C} _{4}$ को मिलाकर आप देख सकते हैं कि

$$\frac{AB_2}{B_2 B}=\frac{AC_2}{C_2 C}(=\frac{2}{3}) \text{ and } B_2 C_2 \| BC \tag{2} $$

$$ \frac{AB_3}{B_3 B}=\frac{AC_3}{C_3 C}(=\frac{3}{2}) \text{ and } B_3 C_3 \| BC \tag{3} $$

$$ \frac{AB_4}{B_4 B}=\frac{AC_4}{C_4 C}(=\frac{4}{1}) \text{ and } B_4 C_4 \| BC \tag{4}$$

(1), (2), (3) और (4) से, यह देखा जा सकता है कि यदि कोई रेखा किसी त्रिभुज की दो भुजाओं को एक ही अनुपात में विभाजित करे, तो वह रेखा तीसरी भुजा के समांतर होती हैं।

आप किसी अन्य माप का कोण XAY खींचकर तथा भुजाओं $\mathrm{AX}$ और $\mathrm{AY}$ पर कितने भी समान भाग अंकित कर, इस क्रियाकलाप को दोहरा सकते हैं। प्रत्येक बार, आप एक ही परिणाम पर पहुँचेंगे। इस प्रकार, हम निम्नलिखित प्रमेय प्राप्त करते हैं, जो प्रमेय 6.1 का विलोम है:

प्रमेय 6.2 : यदि एक रेखा किसी त्रिभुज की दो भुजाओं को एक ही अनुपात में विभाजित करे, तो वह तीसरी भुजा के समांतर होती है।

इस प्रमेय को सिद्ध किया जा सकता है, यदि हम एक रेखा $\mathrm{DE}$ इस प्रकार लें कि $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$ हो तथा $\mathrm{DE}$ भुजा $\mathrm{BC}$ के समांतर न हो (देखिए आकृति 6.12)।

आकृति 6.12

अब यदि $\mathrm{DE}$ भुजा $\mathrm{BC}$ के समांतर नहीं है, तो $\mathrm{BC}$ के समांतर एक रेखा $\mathrm{DE}^{\prime}$ खींचिए।

अत:

$ \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}^{\prime}}{\mathrm{E}^{\prime} \mathrm{C}} \quad \text { (क्यों?) } $

इसलिए

$ \frac{\mathrm{AE}}{\mathrm{EC}}=\frac{\mathrm{AE}^{\prime}}{\mathrm{E}^{\prime} \mathrm{C}} \quad \text { ( क्यों?) } $

उपरोक्त के दोनों पक्षों में 1 जोड़ कर, आप यह देख सकते हैं कि $\mathrm{E}$ और $\mathrm{E}^{\prime}$ को अवश्य ही संपाती होना चाहिए ( क्यों?)।

उपरोक्त प्रमेयों का प्रयोग स्पष्ट करने के लिए आइए कुछ उदाहरण लें।

उदाहरण 1 : यदि कोई रेखा एक $\triangle \mathrm{ABC}$ की भुजाओं $\mathrm{AB}$ और $\mathrm{AC}$ को क्रमशः $\mathrm{D}$ और $\mathrm{E}$ पर प्रतिच्छेद करे तथा भुजा $\mathrm{BC}$ के समांतर हो, तो सिद्ध कीजिए कि $\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AE}}{\mathrm{AC}}$ होगा (देखिए आकृति 6.13)।

आकृति 6.13

हल : $DE \| BC \quad \quad \quad $ दिया है

अत: $$\quad \frac{AD}{DB}=\frac{AE}{EC}\tag{ प्रमेय 6.1 }$$

या $\quad \frac{DB}{AD}=\frac{EC}{AE}$

या $\quad \frac{DB}{AD}+1=\frac{EC}{AE}+1$

या

या $\quad \frac{AB}{AD}=\frac{AC}{AE} $

अत: $\quad \frac{AD}{AB}=\frac{AE}{AC} $

उदाहरण 2 : $\mathrm{ABCD}$ एक समलंब है जिसमें $\mathrm{AB} | \mathrm{DC}$ है। असमांतर भुजाओं $\mathrm{AD}$ और $\mathrm{BC}$ पर क्रमशः बिंदु $\mathrm{E}$ और $\mathrm{F}$ इस प्रकार स्थित हैं कि $\mathrm{EF}$ भुजा $\mathrm{AB}$ के समांतर है (देखिए आकृति 6.14)। दर्शाइए कि $\frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{BF}}{\mathrm{FC}}$ है।

आकृति 6.14

हल : आइए $\mathrm{A}$ और $\mathrm{C}$ को मिलाएँ जो $\mathrm{EF}$ को $\mathrm{G}$ पर प्रतिच्छेद करे (देखिए आकृति 6.15)।

आकृति 6.15

$\mathrm{AB} \| \mathrm{DC}$ और $\mathrm{EF} \| \mathrm{AB}$ (दिया है)

इसलिए $\mathrm{EF} \| \mathrm{DC}$ (एक ही रेखा के समांतर रेखाएँ परस्पर समांतर होती हैं)

अब $\triangle \mathrm{ADC}$ में,

EG || DC (क्योंकि EF || DC)

अत: $$\frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{AG}}{\mathrm{GC}} \quad (प्रमेय 6.1) \tag{1}$$

इसी प्रकार, $\triangle \mathrm{CAB}$ में

$$ \frac{CG}{AG}=\frac{CF}{BF} $$

अर्थात्

$$ \frac{AG}{GC}=\frac{BF}{FC} \tag{2} $$

अतः (1) और (2) से

$$ \frac{AE}{ED}=\frac{BF}{FC} $$

उदाहरण 3 : आकृति 6.16 में $\frac{\mathrm{PS}}{\mathrm{SQ}}=\frac{\mathrm{PT}}{\mathrm{TR}}$ है तथा $\angle \mathrm{PST}=\angle \mathrm{PRQ}$ है। सिद्ध कीजिए कि $\triangle \mathrm{PQR}$ एक समद्विबाहु त्रिभुज है।

आकृति 6.16

हल : यह दिया है कि, $\frac{\mathrm{PS}}{\mathrm{SQ}}=\frac{\mathrm{PT}}{\mathrm{TR}}$

अत:

$$\text{ST } \| \text{ QR} \tag{प्रमेय 6.2}$$

(प्रमेय 6.2 )

इसलिए

$$ \angle PST=\angle PQR \quad \text{ (संगत कोण) } \tag{1} $$

साथ ही यह दिया है कि

$$ \angle PST=\angle PRQ \tag{2} $$

अत :

$\angle \mathrm{PRQ}=\angle \mathrm{PQR}[(1)$ और (2) से]

इसलिए $ \quad \quad \mathrm{PQ}=\mathrm{PR} \quad \text { (समान कोणों की सम्मुख भुजाएँ) }$

अर्थात् $\triangle \mathrm{PQR}$ एक समद्विबाहु त्रिभुज है।

प्रश्नावली 6.2

1. आकृति 6.17 (i) और (ii) में, $\mathrm{DE} | \mathrm{BC}$ है। (i) में $\mathrm{EC}$ और (ii) में $\mathrm{AD}$ ज्ञात कीजिए:

आकृति 6.17

Show Answer #missing

2. किसी $\triangle \mathrm{PQR}$ की भुजाओं $\mathrm{PQ}$ और $\mathrm{PR}$ पर क्रमशः बिंदु $\mathrm{E}$ और $\mathrm{F}$ स्थित हैं। निम्नलिखित में से प्रत्येक स्थिति के लिए, बताइए कि क्या $\mathrm{EF} \| \mathrm{QR}$ है:

(i) $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$ और $\mathrm{FR}=2.4 \mathrm{~cm}$

(ii) $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}$ और $\mathrm{RF}=9 \mathrm{~cm}$

(iii) $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ और $\mathrm{PF}=0.36 \mathrm{~cm}$

Show Answer #missing

3. आकृति 6.18 में यदि $\mathrm{LM} | \mathrm{CB}$ और $\mathrm{LN} | \mathrm{CD}$ हो तो सिद्ध कीजिए कि $\frac{\mathrm{AM}}{\mathrm{AB}}=\frac{\mathrm{AN}}{\mathrm{AD}}$ है।

आकृति 6.18

Show Answer #missing

4. आकृति 6.19 में $\mathrm{DE} \| \mathrm{AC}$ और $\mathrm{DF} \| \mathrm{AE}$ है। सिद्ध कीजिए कि $\frac{\mathrm{BF}}{\mathrm{FE}}=\frac{\mathrm{BE}}{\mathrm{EC}}$ है।

आकृति 6.19

Show Answer #missing

5. आकृति 6.20 में $\mathrm{DE} \| \mathrm{OQ}$ और $\mathrm{DF} \| \mathrm{OR}$ है। दर्शाइए कि $\mathrm{EF} \| \mathrm{QR}$ है।

आकृति 6.20

Show Answer #missing

6. आकृति 6.21 में क्रमश: $\mathrm{OP}, \mathrm{OQ}$ और $\mathrm{OR}$ पर स्थित बिंदु $\mathrm{A}, \mathrm{B}$ और $\mathrm{C}$ इस प्रकार हैं कि $\mathrm{AB} \| \mathrm{PQ}$ और $\mathrm{AC} \| \mathrm{PR}$ है। दर्शाइए कि $\mathrm{BC} \| \mathrm{QR}$ है।

आकृति 6.21

Show Answer #missing

7. प्रमेय 6.1 का प्रयोग करते हुए सिद्ध कीजिए कि एक त्रिभुज की एक भुजा के मध्य-बिंदु से होकर दूसरी भुजा के समांतर खींची गई रेखा तीसरी भुजा को समद्विभाजित करती है। (याद कीजिए कि आप इसे कक्षा IX में सिद्ध कर चुके हैं।)

Show Answer #missing

8. प्रमेय 6.2 का प्रयोग करते हुए सिद्ध कीजिए कि एक त्रिभुज की किन्हीं दो भुजाओं के मध्य-बिंदुओं को मिलाने वाली रेखा तीसरी भुजा के समांतर होती है। (याद कीजिए कि आप कक्षा IX में ऐसा कर चुके हैं)।

Show Answer #missing

9. $\mathrm{ABCD}$ एक समलंब है जिसमें $\mathrm{AB} \| \mathrm{DC}$ है तथा इसके विकर्ण परस्पर बिंदु $\mathrm{O}$ पर प्रतिच्छेद करते हैं। दर्शाइए कि $\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}$ है।

Show Answer #missing

10. एक चतुर्भुज $\mathrm{ABCD}$ के विकर्ण परस्पर बिंदु $\mathrm{O}$ पर इस प्रकार प्रतिच्छेद करते हैं कि $\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}$ है। दर्शाइए कि $\mathrm{ABCD}$ एक समलंब है।

Show Answer #missing

6.4 त्रिभुजों की समरूपता के लिए कसौटियाँ

पिछले अनुच्छेद में हमने कहा था कि दो त्रिभुज समरूप होते हैं यदि (i) उनके संगत कोण बराबर हों तथा (ii) उनकी संगत भुजाएँ एक ही अनुपात में (समानुपाती हों)। अर्थात्

यदि $\triangle \mathrm{ABC}$ और $\triangle \mathrm{DEF}$ में,

(i) $\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{C}=\angle \mathrm{F}$ है तथा

(ii) $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{FD}}$ है तो दोनों त्रिभुज समरूप होते हैं (देखिए आकृति 6.22)।

आकृति 6.22

यहाँ आप देख सकते हैं कि $\mathrm{A}, \mathrm{D}$ के संगत है; $\mathrm{B}, \mathrm{E}$ के संगत है तथा $\mathrm{C}, \mathrm{F}$ के संगत है। सांकेतिक रूप से, हम इन त्रिभुजों की समरूपता को ’ $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ ’ लिखते हैं तथा ‘त्रिभुज $\mathrm{ABC}$ समरूप है त्रिभुज $\mathrm{DEF}$ के’ पढ़ते हैं। संकेत ’ , ‘समरूप’ को प्रकट करता है। याद कीजिए कि कक्षा IX में आपने ‘सर्वांगसम’ के लिए संकेत ’ $\cong$ ’ का प्रयोग किया था।

इस बात पर अवश्य ध्यान देना चाहिए कि जैसा त्रिभुजों की सर्वांगसमता की स्थिति में किया गया था त्रिभुजों की समरूपता को भी सांकेतिक रूप से व्यक्त करने के लिए, उनके शीर्षों की संगतताओं को सही क्रम में लिखा जाना चाहिए। उदाहरणार्थ, आकृति 6.22 के त्रिभुजों $\mathrm{ABC}$ और $\mathrm{DEF}$ के लिए, हम $\triangle \mathrm{ABC} \sim \triangle \mathrm{EDF}$ अथवा $\triangle \mathrm{ABC} \sim \triangle \mathrm{FED}$ नहीं लिख सकते। परंतु हम $\triangle \mathrm{BAC} \sim \triangle \mathrm{EDF}$ लिख सकते हैं।

अब एक प्रश्न यह उठता है: दो त्रिभुजों, मान लीजिए $\mathrm{ABC}$ और $\mathrm{DEF}$ की समरूपता की जाँच के लिए क्या हम सदैव उनके संगत कोणों के सभी युग्मों की समानता $(\angle \mathrm{A}=\angle \mathrm{D}$, $\angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{C}=\angle \mathrm{F}$ ) तथा उनकी संगत भुजाओं के सभी युग्मों के अनुपातों की समानता $\left(\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{FD}}\right)$ पर विचार करते हैं? आइए इसकी जाँच करें। आपको याद होगा कि कक्षा IX में, आपने दो त्रिभुजों की सर्वांगसमता के लिए कुछ ऐसी कसौटियाँ (criteria) प्राप्त की थीं जिनमें दोनों त्रिभुजों के संगत भागों (या अवयवों) के केवल तीन युग्म ही निहित थे। यहाँ भी, आइए हम दो त्रिभुजों की समरूपता के लिए, कुछ ऐसी कसौटियाँ प्राप्त करने का प्रयत्न करें, जिनमें इन दोनों त्रिभुजों के संगत भागों के सभी छः युग्मों के स्थान पर, इन संगत भागों के कम युग्मों के बीच संबंध ही निहित हों। इसके लिए, आइए निम्नलिखित क्रियाकलाप करें:

क्रियाकलाप 4 : भिन्न-भिन्न लंबाइयों, मान लीजिए $3 \mathrm{~cm}$ और $5 \mathrm{~cm}$ वाले क्रमशः दो रेखाखंड $\mathrm{BC}$ और $\mathrm{EF}$ खींचिए। फिर बिंदुओं $\mathrm{B}$ और $\mathrm{C}$ पर क्रमशः $\angle \mathrm{PBC}$ और $\angle \mathrm{QCB}$ किन्हीं दो मापों, मान लीजिए $60^{\circ}$ और $40^{\circ}$, के खींचिए। साथ ही, बिंदुओं $\mathrm{E}$ और $\mathrm{F}$ पर क्रमशः $\angle \mathrm{REF}=60^{\circ}$ और $\angle \mathrm{SFE}=40^{\circ}$ खींचिए (देखिए आकृति 6.23)।

आकृति 6.23

मान लीजिए किरण $\mathrm{BP}$ और $\mathrm{CQ}$ परस्पर बिंदु $\mathrm{A}$ पर प्रतिच्छेद करती हैं तथा किरण $\mathrm{ER}$ और $\mathrm{FS}$ परस्पर बिंदु $\mathrm{D}$ पर प्रतिच्छेद करती हैं। इन दोनों त्रिभुजों $\mathrm{ABC}$ और $\mathrm{DEF}$ में, आप देख सकते हैं कि $\angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{C}=\angle \mathrm{F}$ और $\angle \mathrm{A}=\angle \mathrm{D}$ है। अर्थात् इन त्रिभुजों के संगत कोण बराबर हैं। इनकी संगत भुजाओं के बारे में आप क्या कह सकते हैं? ध्यान दीजिए कि $\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{3}{5}=0.6$ है। $\frac{\mathrm{AB}}{\mathrm{DE}}$ और $\frac{\mathrm{CA}}{\mathrm{FD}}$ के बारे में आप क्या कह सकते हैं? $\mathrm{AB}, \mathrm{DE}, \mathrm{CA}$ और $\mathrm{FD}$ को मापने पर, आप पाएँगे कि $\frac{\mathrm{AB}}{\mathrm{DE}}$ और $\frac{\mathrm{CA}}{\mathrm{FD}}$ भी 0.6 के बराबर है (अथवा लगभग 0.6 के बराबर हैं, यदि मापन में कोई त्रुटि है)। इस प्रकार, $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{FD}}$ है। आप समान संगत कोण वाले त्रिभुजों के अनेक युग्म खींचकर इस क्रियाकलाप को दुहरा सकते हैं। प्रत्येक बार, आप यह पाएँगे कि उनकी संगत भुजाएँ एक ही अनुपात में (समानुपाती) हैं। यह क्रियाकलाप हमें दो त्रिभुजों की समरूपता की निम्नलिखित कसौटी की ओर अग्रसित करता है:

प्रमेय 6.3 : यदि दो त्रिभुजों में, संगत कोण बराबर हों, तो उनकी संगत भुजाएँ एक ही अनुपात में (समानुपाती) होती हैं और इसीलिए ये त्रिभुज समरूप होते हैं।

उपरोक्त कसौटी को दो त्रिभुजों की समरूपता कीAAA ( कोण-कोण-कोण) कसौटी कहा जाता है।

इस प्रमेय को दो ऐसे त्रिभुज $\mathrm{ABC}$ और $\mathrm{DEF}$ लेकर, जिनमें $\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}$ और $\angle \mathrm{C}=\angle \mathrm{F}$ हो, सिद्ध किया जा सकता है (देखिए आकृति 6.24)।

आकृति 6.24

$\mathrm{DP}=\mathrm{AB}$ और $\mathrm{DQ}=\mathrm{AC}$ काटिए तथा $\mathrm{P}$ और $\mathrm{Q}$ को मिलाइए।

अत:

$\triangle \mathrm{ABC} \cong \triangle \mathrm{DPQ}$ ( क्यों?)

इससे

$\angle \mathrm{B}=\angle \mathrm{P}=\angle \mathrm{E}$ और $\mathrm{PQ} \| \mathrm{EF}$ प्राप्त होता है (कैसे?)

अत :

$$ \frac{DP}{PE}=\frac{DQ}{QF} \tag{क्यों?} $$

अर्थात्

$$ \frac{AB}{DE}=\frac{AC}{DF} \tag{क्यों?} $$

इसी प्रकार, $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}$ और इसीलिए $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AC}}{\mathrm{DF}}$

टिप्पणी: यदि एक त्रिभुज के दो कोण किसी अन्य त्रिभुज के दो कोणों के क्रमशः बराबर हों, तो त्रिभुज के कोण योग गुणधर्म के कारण, इनके तीसरे कोण भी बराबर होंगे। इसीलिए, AAA समरूपता कसौटी को निम्नलिखित रूप में भी व्यक्त किया जा सकता है:

यदि एक त्रिभुज के दो कोण एक अन्य त्रिभुज के क्रमशः दो कोणों के बराबर हों, तो दोनों त्रिभुज समरूप होते हैं।

उपरोक्त को दो त्रिभुजों की समरूपता की $\mathrm{AA}$ कसौटी कहा जाता है।

ऊपर आपने देखा है कि यदि एक त्रिभुज के तीनों कोण क्रमशः दूसरे त्रिभुज के तीनों कोणों के बराबर हों, तो उनकी संगत भुजाएँ समानुपाती (एक ही अनुपात में) होती हैं। इस कथन के विलोम के बारे में क्या कह सकते हैं? क्या यह विलोम सत्य है? दूसरे शब्दों में, यदि एक त्रिभुज की भुजाएँ क्रमशः दूसरे त्रिभुज की भुजाओं के समानुपाती हों, तो क्या यह सत्य है कि इन त्रिभुजों के संगत कोण बराबर हैं? आइए, एक क्रियाकलाप द्वारा जाँच करें।

क्रियाकलाप 5 : दो त्रिभुज $\mathrm{ABC}$ और $\mathrm{DEF}$ इस प्रकार खींचिए कि $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$, $\mathrm{CA}=8 \mathrm{~cm}, \mathrm{DE}=4.5 \mathrm{~cm}, \mathrm{EF}=9 \mathrm{~cm}$ और $\mathrm{FD}=12 \mathrm{~cm}$ हो (देखिए आकृति 6.25)।

आकृति 6.25

तब, आपको प्राप्त है: $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{FD}} \quad \text { (प्रत्येक } \frac{2}{3} \text { के बराबर हैं) }$

अब, $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}, \angle \mathrm{D}, \angle \mathrm{E}$ और $\angle \mathrm{F}$ को मापिए। आप देखेंगे कि $\angle \mathrm{A}=\angle \mathrm{D}$, $\angle \mathrm{B}=\angle \mathrm{E}$ और $\angle \mathrm{C}=\angle \mathrm{F}$ है, अर्थात् दोनों त्रिभुजों के संगत कोण बराबर हैं।

इसी प्रकार के अनेक त्रिभुजों के युग्म खींचकर (जिनमें संगत भुजाओं के अनुपात एक ही हों), आप इस क्रियाकलाप को पुनः कर सकते हैं। प्रत्येक बार आप यह पाएँगे कि इन त्रिभुजों के संगत कोण बराबर हैं। यह दो त्रिभुजों की समरूपता की निम्नलिखित कसौटी के कारण हैं:

प्रमेय 6.4 : यदि दो त्रिभुजों में एक त्रिभुज की भुजाएँ दूसरे त्रिभुज की भुजाओं के समानुपाती (अर्थात् एक ही अनुपात में) हों, तो इनके संगत कोण बराबर होते हैं, और इसीलिए दोनों त्रिभुज समरूप होते हैं।

इस कसौटी को दो त्रिभुजों की समरूपता की $\operatorname{SSS}$ (भुजा-भुजा-भुजा) कसौटी कहा जाता है।

उपरोक्त प्रमेय को ऐसे दो त्रिभुज $\mathrm{ABC}$ और $\mathrm{DEF}$ लेकर, जिनमें $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{FD}}$ हो, सिद्ध किया जा सकता है (देखिए आकृति 6.26):

आकृति 6.26

$\triangle \mathrm{DEF}$ में $\mathrm{DP}=\mathrm{AB}$ और $\mathrm{DQ}=\mathrm{AC}$ काटिए तथा $\mathrm{P}$ और $\mathrm{Q}$ को मिलाइए।

यहाँ यह देखा जा सकता है कि

$\frac{\mathrm{DP}}{\mathrm{PE}}=\frac{\mathrm{DQ}}{\mathrm{QF}}$ और $\mathrm{PQ} | \mathrm{EF}$ है (कैसे?)

अत:

$$ \angle \mathrm{P}=\angle \mathrm{E} \text { और } \angle \mathrm{Q}=\angle \mathrm{F} \text {. } $$

इसलिए

$$ \frac{\mathrm{DP}}{\mathrm{DE}}=\frac{\mathrm{DQ}}{\mathrm{DF}}=\frac{\mathrm{PQ}}{\mathrm{EF}} $$

जिससे

$$ \frac{\mathrm{DP}}{\mathrm{DE}}=\frac{\mathrm{DQ}}{\mathrm{DF}}=\frac{\mathrm{BC}}{\mathrm{EF}} \quad \text { (क्यों?) } $$

अत:

$$ \begin{equation*} \mathrm{BC}=\mathrm{PQ} \tag{क्यों?} \end{equation*} $$

इस प्रकार

$$ \begin{equation*} \Delta \mathrm{ABC} \cong \Delta \mathrm{DPQ} \tag{क्यों?} \end{equation*} $$

अतः

$$ \angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E} \text { और } \angle \mathrm{C}=\angle \mathrm{F} \text { (कैसे?) } $$

टिप्पणी: आपको याद होगा कि दो बहुभुजों की समरूपता के दोनों प्रतिबंधों, अर्थात् (i) संगत कोण बराबर हों और (ii) संगत भुजाएँ एक ही अनुपात में हों, में से केवल किसी एक का ही संतुष्ट होना उनकी समरूपता के लिए पर्याप्त नहीं होता। परंतु प्रमेयों 6.3 और 6.4 के आधार पर, अब आप यह कह सकते हैं कि दो त्रिभुजों की समरूपता की स्थिति में, इन दोनों प्रतिबंधों की जाँच करने की आवश्यकता नहीं है, क्योंकि एक प्रतिबंध से स्वतः ही दूसरा प्रतिबंध प्राप्त हो जाता है।

आइए अब दो त्रिभुजों की सर्वांगसमता की उन कसौटियों को याद करें, जो हमने कक्षा IX में पढ़ी थीं। आप देख सकते हैं कि SSS समरूपता कसौटी की तुलना SSS सर्वांगसमता कसौटी से की जा सकती है। इससे हमें यह संकेत मिलता है कि त्रिभुजों की समरूपता की ऐसी कसौटी प्राप्त करने का प्रयत्न किया जाए जिसकी त्रिभुजों की SAS सर्वांगसमता कसौटी से तुलना की जा सके। इसके लिए, आइए एक क्रियाकलाप करें।

क्रियाकलाप 6 : दो त्रिभुज $\mathrm{ABC}$ और $\mathrm{DEF}$ इस प्रकार खींचिए कि $\mathrm{AB}=2 \mathrm{~cm}, \angle \mathrm{A}=50^{\circ}$, $\mathrm{AC}=4 \mathrm{~cm}, \mathrm{DE}=3 \mathrm{~cm}, \angle \mathrm{D}=50^{\circ}$ और $\mathrm{DF}=6 \mathrm{~cm}$ हो (देखिए आकृति 6.27)।

आकृति 6.27

यहाँ, आप देख सकते हैं कि $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}$ (प्रत्येक $\frac{2}{3}$ के बराबर हैं) तथा $\angle \mathrm{A}$ ( भुजाओं $\mathrm{AB}$ और $\mathrm{AC}$ के अंतर्गत कोण) $=\angle \mathrm{D}$ (भुजाओं $\mathrm{DE}$ और $\mathrm{DF}$ के अंतर्गत कोण) है। अर्थात् एक त्रिभुज का एक कोण दूसरे त्रिभुज के एक कोण के बराबर है तथा इन कोणों को अंतर्गत करने वाली भुजाएँ एक ही अनुपात में (समानुपाती) हैं। अब, आइए $\angle \mathrm{B}, \angle \mathrm{C}, \angle \mathrm{E}$ और $\angle \mathrm{F}$ को मापें।

आप पाएँगे कि $\angle \mathrm{B}=\angle \mathrm{E}$ और $\angle \mathrm{C}=\angle \mathrm{F}$ है। अर्थात्, $\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}$ और $\angle \mathrm{C}=\angle \mathrm{F}$ है। इसलिए, $\mathrm{AAA}$ समरूपता कसौटी से $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ है। आप ऐसे अनेक त्रिभुजों के युग्मों को खींचकर, जिनमें एक त्रिभुज का एक कोण दूसरे त्रिभुज के एक कोण के बराबर हो तथा इन कोणों को अंतर्गत करने वाली भुजाएँ एक ही अनुपात में (समानुपाती) हों, इस क्रियाकलाप को दोहरा सकते हैं। प्रत्येक बार, आप यह पाएँगे कि दोनों त्रिभुज समरूप हैं। यह त्रिभुजों की समरूपता की निम्नलिखित कसौटी के कारण हैं:

प्रमेय 6.5: यदि एक त्रिभुज का एक कोण दूसरे त्रिभुज के एक कोण के बराबर हो तथा इन कोणों को अंतर्गत करने वाली भुजाएँ समानुपाती हों, तो दोनों त्रिभुज समरूप होते हैं।

इस कसौटी को दो त्रिभुजों की समरूपता की $S A S$ (भुजा-कोण-भुजा) कसौटी कहा जाता है।

पहले की ही तरह, इस प्रमेय को भी दो त्रिभुज $\mathrm{ABC}$ और $\mathrm{DEF}$ ऐसे लेकर कि $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}(<1)$ हो तथा $\angle \mathrm{A}=\angle \mathrm{D}$ हो (देखिए आकृति 6.28) तो सिद्ध किया जा सकता है। $\triangle \mathrm{DEF}$ में $\mathrm{DP}=\mathrm{AB}$ और $\mathrm{DQ}=\mathrm{AC}$ काटिए तथा $\mathrm{P}$ और $\mathrm{Q}$ को मिलाइए।

आकृति 6.28

अब

$\mathrm{PQ} \| \mathrm{EF}$ और $\Delta \mathrm{ABC} \cong \Delta \mathrm{DPQ}$ (कैसे?)

अतः

$$ \angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{P} \text { और } \angle \mathrm{C}=\angle \mathrm{Q} \text { है } $$

इसलिए

$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ ( क्यों?)

आइए अब हम इन कसौटियों के प्रयोग को प्रदर्शित करने के लिए, कुछ उदाहरण लें।

उदाहरण 4 : आकृति 6.29 में, यदि $\mathrm{PQ} \| \mathrm{RS}$ है, तो सिद्ध कीजिए कि $\Delta \mathrm{POQ} \sim \Delta \mathrm{SOR}$ है।

आकृति 6.29

हल :

$\text{ PQ } \| RS \quad \quad \quad $

अत :

$ \angle P=\angle S \quad \quad \quad \text{(एकांतर कोण)} $

और

$ \angle Q=\angle R $

साथ ही

$ \angle POQ=\angle SOR \quad \quad \quad \text{(शीर्षाभिमुख कोण)} $

इसलिए

$\triangle POQ \sim \Delta SOR \quad \quad \quad \text{(AAA समरूपता कसौटी)}$

उदाहरण 5 : आकृति 6.30 में $\angle \mathrm{P}$ ज्ञात कीजिए।

आकृति 6.30

हल : $\triangle \mathrm{ABC}$ और $\triangle \mathrm{PQR}$ में,

$$ \frac{\mathrm{AB}}{\mathrm{RQ}}=\frac{3.8}{7.6}=\frac{1}{2}, \frac{\mathrm{BC}}{\mathrm{QP}}=\frac{6}{12}=\frac{1}{2} \text { और } \frac{\mathrm{CA}}{\mathrm{PR}}=\frac{3 \sqrt{3}}{6 \sqrt{3}}=\frac{1}{2} $$

अर्थात् $\quad \frac{\mathrm{AB}}{\mathrm{RQ}}=\frac{\mathrm{BC}}{\mathrm{QP}}=\frac{\mathrm{CA}}{\mathrm{PR}}$

इसलिए

$\hspace{10 mm} \triangle \mathrm{ABC} \sim \triangle \mathrm{RQP} \hspace{10 mm}$ (SSS समरूपता)

इसलिए

$\hspace{10 mm} \angle \mathrm{C}=\angle \mathrm{P} \hspace{10 mm}$ (समरूप त्रिभुजों के संगत कोण)

परंतु

$\angle \mathrm{C}=180^{\circ}-\angle \mathrm{A}-\angle \mathrm{B}$ (त्रिभुज का कोण योग गुणधर्म)

$ =180^{\circ}-80^{\circ}-60^{\circ}=40^{\circ} $

अत :

$ \angle \mathrm{P}=40^{\circ} $

उदाहरण 6 : आकृति 6.31 में,

$OA \cdot OB=OC \cdot OD$.है।

दर्शाइए कि $\angle A=\angle C$ and $\angle B=\angle D$.

हल :: $\quad OA \cdot OB=OC . OD \quad$ (दिया है)

So,

$ \frac{OA}{OC}=\frac{OD}{OB} $

साथ ही, हमें प्राप्त हैं : $\angle AOD=\angle COB \quad$ (शीर्षाभिमुख कोण) (2)

(SAS समरूपता कसौटी) अतः (1) और (2) से $\triangle \mathrm{AOD} \sim \triangle \mathrm{COB}$

इसलिए

$\angle \mathrm{A}=\angle \mathrm{C}$ और $\angle \mathrm{D}=\angle \mathrm{B}$ (समरूप त्रिभुजों के संगत कोण)

उदाहरण 7: $90 \mathrm{~cm}$ की लंबाई वाली एक लड़की बल्ब लगे एक खंभे के आधार से परे $1.2 \mathrm{~m} / \mathrm{s}$ की चाल से चल रही है। यदि बल्ब भूमि से $3.6 \mathrm{~cm}$ की ऊँचाई पर है, तो 4 सेकंड बाद उस लड़की की छाया की लंबाई ज्ञात कीजिए।

हल : मान लीजिए $\mathrm{AB}$ बल्ब लगे खंभे को तथा $\mathrm{CD}$ लड़की द्वारा खंभे के आधार से परे 4 सेकंड चलने के बाद उसकी स्थिति को प्रकट करते हैं (देखिए आकृति 6.32)।

आकृति 6.32

आकृति से आप देख सकते हैं कि $\mathrm{DE}$ लड़की की छाया की लंबाई है। मान लीजिए $\mathrm{DE}, x \mathrm{~m}$ है।

अब, $\mathrm{BD}=1.2 \mathrm{~m} \times 4=4.8 \mathrm{~m}$

ध्यान दीजिए कि $\triangle \mathrm{ABE}$ और $\triangle \mathrm{CDE}$ में,

$\angle \mathrm{B}=\angle \mathrm{D} \text { (प्रत्येक } 90^{\circ} \text { का है, क्योंकि बल्ब }$ लगा खंभा और लड़की दोनों ही भूमि से ऊर्ध्वाधर खड़े हैं)

$$ \begin{array}{lcr} \text{तथा } \quad \quad & \angle E = \angle E & \quad \quad \text{(समान कोण)} \\ \text{अत: } \quad \quad & \Delta \text{ABE}\sim \Delta \text{CDE} & \quad \quad \text{(AA समरूपता कसौटी)} \\ \text{इसलिए } \quad \quad & \frac{\text{BE}}{\text{DE}} = \frac{\text{AB}}{\text{CD}} & \\ \text{अर्थात् } \quad \quad & \frac{4.8+x}{x} = \frac{3.6}{0.9} & \quad \quad (90 ~cm= \frac{90}{100}m = 0.9 ~m) \\ \text{अर्थात् } \quad \quad & 4.8 + x = 4x & \\ \text{अर्थात् } \quad \quad & 3x = 4.8 & \\ \text{अर्थात्, } \quad \quad & x = 1.6 & \\ \end{array} $$

अतः 4 सेकंड चलने के बाद लड़की की छाया की लंबाई $1.6 \mathrm{~m}$ है।

उदाहरण 8 : आकृति 6.33 में $\mathrm{CM}$ और $\mathrm{RN}$ क्रमश:$\triangle \mathrm{ABC}$ और $\triangle \mathrm{PQR}$ की माध्यिकाएँ हैं। यदि $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ है तो सिद्ध कीजिए कि

आकृति 6.33

(i) $\triangle \mathrm{AMC} \sim \triangle \mathrm{PNR}$

(ii) $\frac{\mathrm{CM}}{\mathrm{RN}}=\frac{\mathrm{AB}}{\mathrm{PQ}}$

(iii) $\Delta \mathrm{CMB} \sim \Delta \mathrm{RNQ}$

हल : (i)

$\Delta ABC \sim \Delta PQR$ (दिया है)

So,

$$ \frac{AB}{PQ}=\frac{BC}{QR}=\frac{CA}{RP} \tag{1} $$

और

$$ \angle A=\angle P, \angle B=\angle Q \text{ और } \angle C=\angle R \tag{2} $$

लेकिन

$ AB=2 AM \text{ और } PQ=2 PN \quad \quad$ (क्योंकि $\mathrm{CM}$ और $\mathrm{RN}$ माध्यिकाएँ हैं)

इसलिए (1) से , $\quad \frac{2 AM}{2 PN}=\frac{CA}{RP}$

अथार्थ

$$ \frac{AM}{PN}=\frac{CA}{RP} \tag{3} $$

साथ ही

$$\angle \text{MAC} = \angle \text{NPR} \quad \quad \quad \text{[(2) से ]} \tag{4} $$

इसलिए, (3) और (4) से

$$ \Delta AMC \sim \Delta PNR \quad \quad \quad {\text{SAS समरूपता}} \tag{5} $$

(ii) (5) से,

$$ \frac{CM}{RN}=\frac{CA}{RP} \tag{6} $$

लेकिन

$$ \frac{C A}{R P}=\frac{A B}{P Q} \quad \quad \quad \quad \text{[(1) से ]} \tag{7} $$

इसलिए

$$ \frac{CM}{RN}=\frac{AB}{PQ} \quad \quad \quad \quad \text{[(6) और (7) से]} \tag{8} $$

(iii) पुनः

$$ \frac{AB}{PQ}=\frac{BC}{QR} \quad \quad \quad \quad \text{[ (1) से ]} $$

इसलिए

$$ \frac{CM}{RN}=\frac{BC}{QR} \quad \quad \quad \quad \text{[(8) से ]} \tag{9} $$

साथ ही

$$ \frac{CM}{RN}=\frac{AB}{PQ}=\frac{2 BM}{2 QN} $$

अथार्थ

$$ \frac{CM}{RN}=\frac{BM}{QN} \tag{10} $$

अथार्थ

$$ \frac{CM}{RN}=\frac{BC}{QR}=\frac{BM}{QN} \quad \quad \quad \quad \text{[(9) और (10) से ]} $$

इसलिए $\Delta \mathrm{CMB} \sim \Delta \mathrm{RNQ}$ (SSS समरूपता)

[टिप्पणी: आप इस प्रश्न के भाग (iii) को भाग (i) में प्रयोग की गई विधि से भी सिद्ध कर सकते हैं।]

प्रश्नावली 6.3

1. बताइए कि आकृति 6.34 में दिए त्रिभुजों के युग्मों में से कौन-कौन से युग्म समरूप हैं। उस समरूपता कसौटी को लिखिए जिसका प्रयोग आपने उत्तर देने में किया है तथा साथ ही समरूप त्रिभुजों को सांकेतिक रूप में व्यक्त कीजिए।

Show Answer #missing

2. आकृति 6.35 में, $\triangle \mathrm{ODC} \sim \triangle \mathrm{OBA}, \angle \mathrm{BOC}=$ $125^{\circ}$ और $\angle \mathrm{CDO}=70^{\circ}$ है। $\angle \mathrm{DOC}, \angle \mathrm{DCO}$ और $\angle \mathrm{OAB}$ ज्ञात कीजिए।

आकृति 6.35

Show Answer #missing

3. समलंब $\mathrm{ABCD}$, जिसमें $\mathrm{AB} \| \mathrm{DC}$ है, के विकर्ण $\mathrm{AC}$ और $\mathrm{BD}$ परस्पर $\mathrm{O}$ पर प्रतिच्छेद करते हैं। दो त्रिभुजों की समरूपता कसौटी का प्रयोग करते हुए, दर्शाइए कि $\frac{\mathrm{OA}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}$ है।

Show Answer #missing

4. आकृति 6.36 में, $\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PR}}$ तथा $\angle 1=\angle 2$ है। दर्शाइए कि $\triangle \mathrm{PQS} \sim \triangle \mathrm{TQR}$ है।

आकृति 6.36

Show Answer #missing

5. $\triangle \mathrm{PQR}$ की भुजाओं $\mathrm{PR}$ और $\mathrm{QR}$ पर क्रमशः बिंदु $\mathrm{S}$ और $\mathrm{T}$ इस प्रकार स्थित हैं कि $\angle \mathrm{P}=\angle \mathrm{RTS}$ है। दर्शाइए कि $\triangle \mathrm{RPQ} \sim \Delta \mathrm{RTS}$ है।

Show Answer #missing

6. आकृति 6.37 में, यदि $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACD}$ है, तो दर्शाइए कि $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$ है।

आकृति 6.36

Show Answer #missing

7. आकृति 6.38 में, $\triangle \mathrm{ABC}$ के शीर्षलंब $\mathrm{AD}$ और $\mathrm{CE}$ परस्पर बिंदु $\mathrm{P}$ पर प्रतिच्छेद करते हैं। दर्शाइए कि:

आवृति 6.38

(i) $\triangle \mathrm{AEP} \sim \triangle \mathrm{CDP}$

(ii) $\triangle \mathrm{ABD} \sim \triangle \mathrm{CBE}$

(iii) $\triangle \mathrm{AEP} \sim \triangle \mathrm{ADB}$

(iv) $\triangle \mathrm{PDC} \sim \triangle \mathrm{BEC}$

Show Answer #missing
  1. समांतर चतुर्भुज $\mathrm{ABCD}$ की बढ़ाई गई भुजा $\mathrm{AD}$ पर स्थित $\mathrm{E}$ एक बिंदु है तथा $\mathrm{BE}$ भुजा $\mathrm{CD}$ को $\mathrm{F}$ पर प्रतिच्छेद करती है। दर्शाइए कि $\triangle \mathrm{ABE} \sim \triangle \mathrm{CFB}$ है।
Show Answer #missing
  1. आकृति 6.39 में, $\mathrm{ABC}$ और $\mathrm{AMP}$ दो समकोण त्रिभुज हैं, जिनके कोण $\mathrm{B}$ और $\mathrm{M}$ समकोण हैं। सिद्ध कीजिए कि:

आकृति 6.39

(i) $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$

(ii) $\frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}}$

Show Answer #missing
  1. $\mathrm{CD}$ और $\mathrm{GH}$ क्रमशः $\angle \mathrm{ACB}$ और $\angle \mathrm{EGF}$ के ऐसे समद्विभाजक हैं कि बिंदु $\mathrm{D}$ और $\mathrm{H}$ क्रमशः $\triangle \mathrm{ABC}$ और $\triangle \mathrm{FEG}$ की भुजाओं $\mathrm{AB}$ और $\mathrm{FE}$ पर स्थित हैं। यदि $\triangle A B C \sim \triangle F E G$ है, तो दर्शाइए कि:

(i) $\frac{\mathrm{CD}}{\mathrm{GH}}-\frac{\mathrm{AC}}{\mathrm{FG}}$

(ii) $\triangle \mathrm{DCB} \sim \triangle \mathrm{HGE}$

(iii) $\triangle \mathrm{DCA} \sim \triangle \mathrm{HGF}$

Show Answer #missing

11. आकृति 6.40 में, $\mathrm{AB}=\mathrm{AC}$ वाले, एक समद्विबाहु त्रिभुज $\mathrm{ABC}$ की बढ़ाई गई भुजा $\mathrm{CB}$ पर स्थित $\mathrm{E}$ एक बिंदु है। यदि $\mathrm{AD} \perp \mathrm{BC}$ और $\mathrm{EF} \perp \mathrm{AC}$ है तो सिद्ध कीजिए कि $\triangle \mathrm{ABD} \sim \triangle \mathrm{ECF}$ है।

आवृत्ति 6.40

Show Answer #missing

12. एक त्रिभुज $A B C$ की भुजाएँ $A B$ और $B C$ तथा माध्यिका $A D$ एक अन्य त्रिभुज $P Q R$ की क्रमश: भुजाओं $\mathrm{PQ}$ और $\mathrm{QR}$ तथा माध्यिका $\mathrm{PM}$ के समानुपाती हैं (देखिए आकृति 6.41)। दर्शाइए कि $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ है।

आवृति 6.41

Show Answer #missing

13. एक त्रिभुज $\mathrm{ABC}$ की भुजा $\mathrm{BC}$ पर एक बिंदु $\mathrm{D}$ इस प्रकार स्थित है कि $\angle \mathrm{ADC}=$ $\angle \mathrm{BAC}$ है। दर्शाइए कि $\mathrm{CA}^{2}=\mathrm{CB} \cdot \mathrm{CD}$ है।

Show Answer #missing

14. एक त्रिभुज $A B C$ की भुजाएँ $A B$ और $A C$ तथा माध्यिका $A D$ एक अन्य त्रिभुज की भुजाओं $P Q$ और $\mathrm{PR}$ तथा माध्यिका $\mathrm{PM}$ के क्रमशः समानुपाती हैं। दर्शाइए कि $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ है।

Show Answer #missing

15. लंबाई $6 \mathrm{~m}$ वाले एक ऊर्ध्वाधर स्तंभ की भूमि पर छाया की लंबाई $4 \mathrm{~m}$ है, जबकि उसी समय एक मीनार की छाया की लंबाई $28 \mathrm{~m}$ है। मीनार की ऊँचाई ज्ञात कीजिए।

Show Answer #missing

16. $\mathrm{AD}$ और $\mathrm{PM}$ त्रिभुजों $\mathrm{ABC}$ और $\mathrm{PQR}$ की क्रमशः माध्यिकाएँ हैं, जबकि $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ है। सिद्ध कीजिए कि $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AD}}{\mathrm{PM}}$ है।

Show Answer #missing

6.5 सारांश

इस अध्याय में, आपने निम्नलिखित तथ्यों का अध्ययन किया है:

1. दो आकृतियाँ जिनके आकार समान हों, परंतु आवश्यक रूप से आमाप समान न हों, समरूप आकृतियाँ कहलाती हैं।

2. सभी सर्वांगसम आकृतियाँ समरूप होती हैं परंतु इसका विलोम सत्य नहीं है।

3. भुजाओं की समान संख्या वाले दो बहुभुज समरूप होते हैं, यदि (i) उनके संगत कोण बराबर हों तथा (ii) उनकी संगत भुजाएँ एक ही अनुपात में (समानुपाती) हों।

4. यदि किसी त्रिभुज की एक भुजा के समांतर अन्य दो भुजाओं को भिन्न-भिन्न बिंदुओं पर प्रतिच्छेद करने के लिए, एक रेखा खींची जाए, तो ये अन्य दो भुजाएँ एक ही अनुपात में विभाजित हो जाती हैं।

5. यदि एक रेखा किसी त्रिभुज की दो भुजाओं को एक ही अनुपात में विभाजित करे, तो यह रेखा तीसरी भुजा के समांतर होती है।

6. यदि दो त्रिभुजों में, संगत कोण बराबर हों, तो उनकी संगत भुजाएँ एक ही अनुपात में होती हैं और इसीलिए दोनों त्रिभुज समरूप होते हैं (AAA समरूपता कसौटी)।

7. यदि दो त्रिभुजों में, एक त्रिभुज के दो कोण क्रमशः दूसरे त्रिभुज के दो कोणों के बराबर हों, तो दोनों त्रिभुज समरूप होते हैं (AA समरूपता कसौटी)।

8. यदि दो त्रिभुजों में, संगत भुजाएँ एक ही अनुपात में हों, तो उनके संगत कोण बराबर होते हैं और इसीलिए दोनों त्रिभुज समरूप होते हैं (SSS समरूपता कसौटी)।

9. यदि एक त्रिभुज का एक कोण दूसरे त्रिभुज के एक कोण के बराबर हो तथा इन कोणों को अंतर्गत करने वाली भुजाएँ एक ही अनुपात में हों, तो दोनों त्रिभुज समरूप होते हैं(SAS समरूपता कसौटी)।

पाठकों के लिए विशेष

यदि दो समकोण त्रिभुजों में एक त्रिभुज का कर्ण तथा एक भुजा, दूसरे त्रिभुज के कर्ण तथा एक भुजा के समानुपाती हो तो दोनों त्रिभुज समरूप होते हैं। इसे RHS समरूपता कसौटी कहा जा सकता है।

यदि आप इस कसौटी को अध्याय 8 के उदाहरण 2 में प्रयोग करते हैं तो उपपति और भी सरल हो जाएगी।



Table of Contents