Chapter-08 Force and Laws of Motion
In the previous chapter, we described the motion of an object along a straight line in terms of its position, velocity and acceleration. We saw that such a motion can be uniform or non-uniform. We have not yet discovered what causes the motion. Why does the speed of an object change with time? Do all motions require a cause? If so, what is the nature of this cause? In this chapter we shall make an attempt to quench all such curiosities.
For many centuries, the problem of motion and its causes had puzzled scientists and philosophers. A ball on the ground, when given a small hit, does not move forever. Such observations suggest that rest is the “natural state” of an object. This remained the belief until Galileo Galilei and Isaac Newton developed an entirely different approach to understand motion.
Fig. 8.1: Pushing, pulling, or hitting objects change their state of motion.
In our everyday life we observe that some effort is required to put a stationary object into motion or to stop a moving object. We ordinarily experience this as a muscular effort and say that we must push or hit or pull on an object to change its state of motion. The concept of force is based on this push, hit or pull. Let us now ponder about a ‘force’. What is it? In fact, no one has seen, tasted or felt a force. However, we always see or feel the effect of a force. It can only be explained by describing what happens when a force is applied to an object. Pushing, hitting and pulling of objects are all ways of bringing objects in motion (Fig. 8.1). They move because we make a force act on them.
From your studies in earlier classes, you are also familiar with the fact that a force can be used to change the magnitude of velocity of an object (that is, to make the object move faster or slower) or to change its direction of motion. We also know that a force can change the shape and size of objects (Fig. 8.2).
(a)
(b)
Fig. 8.2: (a) A spring expands on application of force; (b) A spherical rubber ball becomes oblong as we apply force on it.
8.1 Balanced and Unbalanced Forces
Fig. 8.3 shows a wooden block on a horizontal table. Two strings $X$ and $Y$ are tied to the two opposite faces of the block as shown. If we apply a force by pulling the string $X$, the block begins to move to the right. Similarly, if we pull the string $Y$, the block moves to the left. But, if the block is pulled from both the sides with equal forces, the block will not move. Such forces are called balanced forces and do not change the state of rest or of motion of an object. Now, let us consider a situation in which two opposite forces of different magnitudes pull the block. In this case, the block would begin to move in the direction of the greater force. Thus, the two forces are not balanced and the unbalanced force acts in the direction the block moves. This suggests that an unbalanced force acting on an object brings it in motion.
Fig. 8.3: Two forces acting on a wooden block
What happens when some children try to push a box on a rough floor? If they push the box with a small force, the box does not move because of friction acting in a direction opposite to the push [Fig. 8.4(a)]. This friction force arises between two surfaces in contact; in this case, between the bottom of the box and floor’s rough surface. It balances the pushing force and therefore the box does not move. In Fig. 8.4(b), the children push the box harder but the box still does not move. This is because the friction force still balances the pushing force. If the children push the box harder still, the pushing force becomes bigger than the friction force [Fig. 8.4(c)]. There is an unbalanced force. So the box starts moving.
What happens when we ride a bicycle? When we stop pedalling, the bicycle begins to slow down. This is again because of the friction forces acting opposite to the direction of motion. In order to keep the bicycle moving, we have to start pedalling again. It thus appears that an object maintains its motion under the continuous application of an unbalanced force. However, it is quite incorrect. An object moves with a uniform velocity when the forces (pushing force and frictional force) acting on the object are balanced and there is no net external force on it. If an unbalanced force is applied on the object, there will be a change either in its speed or in the direction of its motion. Thus, to accelerate the motion of an object, an unbalanced force is required. And the change in its speed (or in the direction of motion) would continue as long as this unbalanced force is applied. However, if this force is removed completely, the object would continue to move with the velocity it has acquired till then.
Fig. 8.4
8.2 First Law of Motion
By observing the motion of objects on an inclined plane Galileo deduced that objects move with a constant speed when no force acts on them. He observed that when a marble rolls down an inclined plane, its velocity increases [Fig. 8.5(a)]. In the next chapter, you will learn that the marble falls under the unbalanced force of gravity as it rolls down and attains a definite velocity by the time it reaches the bottom. Its velocity decreases when it climbs up as shown in Fig. 8.5(b). Fig. 8.5(c) shows a marble resting on an ideal frictionless plane inclined on both sides. Galileo argued that when the marble is released from left, it would roll down the slope and go up on the opposite side to the same height from which it was released. If the inclinations of the planes on both sides are equal then the marble will climb the same distance that it covered while rolling down. If the angle of inclination of the right-side plane were gradually decreased, then the marble would travel further distances till it reaches the original height. If the right-side plane were ultimately made horizontal (that is, the slope is reduced to zero), the marble would continue to travel forever trying to reach the same height that it was released from. The unbalanced forces on the marble in this case are zero. It thus suggests that an unbalanced (external) force is required to change the motion of the marble but no net force is needed to sustain the uniform motion of the marble. In practical situations it is difficult to achieve a zero unbalanced force. This is because of the presence of the frictional force acting opposite to the direction of motion. Thus, in practice the marble stops after travelling some distance. The effect of the frictional force may be minimised by using a smooth marble and a smooth plane and providing a lubricant on top of the planes.
Fig. 8.5: (a) the downward motion; (b) the upward motion of a marble on an inclined plane; and (c) on a double inclined plane.
Newton further studied Galileo’s ideas on force and motion and presented three fundamental laws that govern the motion of objects. These three laws are known as Newton’s laws of motion. The first law of motion is stated as:
An object remains in a state of rest or of uniform motion in a straight line unless compelled to change that state by an applied force.
In other words, all objects resist a change in their state of motion. In a qualitative way, the tendency of undisturbed objects to stay at rest or to keep moving with the same velocity is called inertia. This is why, the first law of motion is also known as the law of inertia.
Certain experiences that we come across while travelling in a motorcar can be explained on the basis of the law of inertia. We tend to remain at rest with respect to the seat until the driver applies a braking force to stop the motorcar. With the application of brakes, the car slows down but our body tends to continue in the same state of motion because of its inertia. A sudden application of brakes may thus cause injury to us by impact or collision with the panels in front. Safety belts are worn to prevent such accidents.
Galileo Galilei was born on 15 February 1564 in Pisa, Italy. Galileo, right from his childhood, had interest in mathematics and natural philosophy. But his father Vincenzo Galilei wanted him to become a medical doctor. Accordingly, Galileo enrolled himself for a medical degree at the Galileo Galilei (1564 - 1642)
University of Pisa in 1581 which he never completed because of his real interest in mathematics. In 1586, he wrote his first scientific book ‘The Little Balance [La Balancitta]’, in which he described Archimedes’ method of finding the relative densities (or specific gravities) of substances using a balance. In 1589, in his series of essays - De Motu, he presented his theories about falling objects using an inclined plane to slow down the rate of descent.
In 1592, he was appointed professor of mathematics at the University of Padua in the Republic of Venice. Here he continued his observations on the theory of motion and through his study of inclined planes and the pendulum, formulated the correct law for uniformly accelerated objects that the distance the object moves is proportional to the square of the time taken.
Galileo was also a remarkable craftsman. He developed a series of telescopes whose optical performance was much better than that of other telescopes available during those days. Around 1640, he designed the first pendulum clock. In his book ‘Starry Messenger’ on his astronomical discoveries, Galileo claimed to have seen mountains on the moon, the milky way made up of tiny stars, and four small bodies orbiting Jupiter. In his books ‘Discourse on Floating Bodies’ and ‘Letters on the Sunspots’, he disclosed his observations of sunspots.
Using his own telescopes and through his observations on Saturn and Venus, Galileo argued that all the planets must orbit the Sun and not the earth, contrary to what was believed at that time.
Safety belts exert a force on our body to make the forward motion slower. An opposite experience is encountered when we are standing in a bus and the bus begins to move suddenly. Now we tend to fall backwards. This is because the sudden start of the bus brings motion to the bus as well as to our feet in contact with the floor of the bus. But the rest of our body opposes this motion because of its inertia.
When a motorcar makes a sharp turn at a high speed, we tend to get thrown to one side. This can again be explained on the basis of the law of inertia. We tend to continue in our straight-line motion. When an unbalanced force is applied by the engine to change the direction of motion of the motorcar, we slip to one side of the seat due to the inertia of our body.
The fact that a body will remain at rest unless acted upon by an unbalanced force can be illustrated through the following activities:
Activity 8.1
-
Make a pile of similar carom coins on a table, as shown in Fig. 8.6.
-
Attempt a sharp horizontal hit at the bottom of the pile using another carom coin or the striker. If the hit is strong enough, the bottom coin moves out quickly. Once the lowest coin is removed, the inertia of the other coins makes them ‘fall’ vertically on the table.
Fig. 8.6: Only the carom coin at the bottom of a pile is removed when a fast moving carom coin (or striker) hits it.
Activity 8.2
-
Set a five-rupee coin on a stiff card covering an empty glass tumbler standing on a table as shown in Fig. 8.7.
-
Give the card a sharp horizontal flick with a finger. If we do it fast then the card shoots away, allowing the coin to fall vertically into the glass tumbler due to its inertia.
-
The inertia of the coin tries to maintain its state of rest even when the card flows off.
Fig. 8.7: When the card is flicked with the finger the coin placed over it falls in the tumbler.
Activity 8.3
-
Place a water-filled tumbler on a tray.
-
Hold the tray and turn around as fast as you can.
-
We observe that the water spills. Why?
Observe that a groove is provided in a saucer for placing the tea cup. It prevents the cup from toppling over in case of sudden jerks.
8.3 Inertia and Mass
All the examples and activities given so far illustrate that there is a resistance offered by an object to change its state of motion. If it is at rest it tends to remain at rest; if it is moving it tends to keep moving. This property of an object is called its inertia. Do all bodies have the same inertia? We know that it is easier to push an empty box than a box full of books. Similarly, if we kick a football it flies away. But if we kick a stone of the same size with equal force, it hardly moves. We may, in fact, get an injury in our foot while doing so! Similarly, in activity 8.2, instead of a five-rupees coin if we use a one-rupee coin, we find that a lesser force is required to perform the activity. A force that is just enough to cause a small cart to pick up a large velocity will produce a negligible change in the motion of a train. This is because, in comparison to the cart the train has a much lesser tendency to change its state of motion. Accordingly, we say that the train has more inertia than the cart. Clearly, heavier or more massive objects offer larger inertia. Quantitatively, the inertia of an object is measured by its mass. We may thus relate inertia and mass as follows:
Inertia is the natural tendency of an object to resist a change in its state of motion or of rest. The mass of an object is a measure of its inertia.
Questions
1. Which of the following has more inertia:
(a) a rubber ball and a stone of the same size?
(b) a bicycle and a train?
(c) a fiverupees coin and a one-rupee coin?
Show Answer
Answer
Inertia of an object is the measurement of its mass.
(a) A stone of same size as that of rubber ball will have a greater mass because the stone will have more inertia.
(b) A train has much greater mass than that of a bicycle, so the train will have more inertia.
(c) A five-rupee coin has more mass than a one-rupee coin, so five-rupee coin will have greater inertia.
2. In the following example, try to identify the number of times the velocity of the ball changes:
“A football player kicks a football to another player of his team who kicks the football towards the goal. The goalkeeper of the opposite team collects the football and kicks it towards a player of his own team”.
Also identify the agent supplying the force in each case.
Show Answer
Answer
Given below are the number of times at which the velocity of the ball changes. Whenever a force will be applied on the ball then the velocity of the ball will change.
a) When first player kicks the ball towards another player of his team then the velocity of ball will change because first player applies some force on the ball.
b) When another player kicks the ball towards the goal, then the velocity of ball will change, here again the force is applied on the ball.
c) When goalkeeper of the opposite team collects the ball, then the velocity of ball will change, it becomes zero. Here the goalkeeper applies some force on the ball to stop.
d) When the goalkeeper kicks the ball towards his own team, the velocity of the ball changes because goalkeeper applies some force on the ball.
3. Explain why some of the leaves may get detached from a tree if we vigorously shake its branch.
Show Answer
Answer
We know that the leaves are attached to the tree and are in a state of rest initially. But when the tree is vigoursly shaken, the branches of the tree comes in the state of motion but the leaves tend to maintain their state of rest, as a result the leaves get detached from the tree and fall down.
4. Why do you fall in the forward direction when a moving bus brakes to a stop and fall backwards when it accelerates from rest?
Show Answer
Answer
Initially when the bus is at rest our body also follows the same state. But all of a sudden when the bus starts to move the lower part of our body tends to move with the motion of the bus, but the upper part rejects this state of motion and continues to be in a state of rest. This results in a sudden jerk backwards when a bus moves. Also, a person standing in a bus will be in a state of motion, and when the brakes are applied the lower part of our body comes to the state of rest but our upper part is in a state of motion. Hence, we tend to fall forward when the bus applies brakes.
8.4 Second Law of Motion
The first law of motion indicates that when an unbalanced external force acts on an object, its velocity changes, that is, the object gets an acceleration. We would now like to study how the acceleration of an object depends on the force applied to it and how we measure a force. Let us recount some observations from our everyday life. During the game of table tennis if the ball hits a player it does not hurt him. On the other hand, when a fast moving cricket ball hits a spectator, it may hurt him. A truck at rest does not require any attention when parked along a roadside. But a moving truck, even at speeds as low as $5 m s^{-1}$, may kill a person standing in its path. A small mass, such as a bullet may kill a person when fired from a gun. These observations suggest that the impact produced by the objects depends on their mass and velocity. Similarly, if an object is to be accelerated, we know that a greater force is required to give a greater velocity. In other words, there appears to exist some quantity of importance that combines the object’s mass and its velocity. One such property called momentum was introduced by Newton. The momentum, $p$ of an object is defined as the product of its mass, $m$ and velocity, $v$. That is,
$$ p=m v $$
Momentum has both direction and magnitude. Its direction is the same as that of velocity, $v$. The SI unit of momentum is kilogram-metre per second $(kg m s^{-1})$. Since the application of an unbalanced force brings a change in the velocity of the object, it is therefore clear that a force also produces a change of momentum.
Let us consider a situation in which a car with a dead battery is to be pushed along a straight road to give it a speed of $1 m s^{-1}$, which is sufficient to start its engine. If one or two persons give a sudden push (unbalanced force) to it, it hardly starts. But a continuous push over some time results in a gradual acceleration of the car to this speed. It means that the change of momentum of the car is not only determined by the magnitude of the force but also by the time during which the force is exerted. It may then also be concluded that the force necessary to change the momentum of an object depends on the time rate at which the momentum is changed.
The second law of motion states that the rate of change of momentum of an object is proportional to the applied unbalanced force in the direction of force.
8.4.1 MATHEMATICAL FORMULATION OF SECOND LAW OF MOTION
Suppose an object of mass, $m$ is moving along a straight line with an initial velocity, $u$. It is uniformly accelerated to velocity, $v$ in time, $t$ by the application of a constant force, $F$ throughout the time, $t$. The initial and final momentum of the object will be, $p_1=m u$ and $p_2=m v$ respectively.
The change in momentum $$\propto p_2-p_1$$
$$ \propto m v-m u $$
$$ \propto m \times(v-u) . $$
The rate of change of momentum $\propto \frac{m \times(v-u)}{t}$ Or, the applied force,
$$ \begin{aligned} F \propto & \frac{m \times(v-u)}{t} \\ F & =\frac{k m \times(v-u)}{t} \\ & =k m a \end{aligned} $$
Here $a[=(v-u) / t]$ is the acceleration, which is the rate of change of velocity. The quantity, $k$ is a constant of proportionality. The SI units of mass and acceleration are $kg$ and $m s^{-2}$ respectively. The unit of force is so chosen that the value of the constant, $k$ becomes one. For this, one unit of force is defined as the amount that produces an acceleration of $1 m s^{-2}$ in an object of $1 kg$ mass. That is,
1 unit of force $=k \times(1 kg) \times(1 m s^{-2})$.
Thus, the value of $k$ becomes 1. From Eq. (8.3)
$$ \begin{equation*} F=m a \tag{8.4} \end{equation*} $$
The unit of force is $kg m s^{-2}$ or newton, which has the symbol $N$. The second law of motion gives us a method to measure the force acting on an object as a product of its mass and acceleration.
The second law of motion is often seen in action in our everyday life. Have you noticed that while catching a fast moving cricket ball, a fielder in the ground gradually pulls his hands backwards with the moving ball? In doing so, the fielder increases the time during which the high velocity of the moving ball decreases to zero. Thus, the acceleration of the ball is decreased and therefore the impact of catching the fast moving ball (Fig. 8.8) is also reduced. If the ball is stopped suddenly then its high velocity decreases to zero in a very short interval of time. Thus, the rate of change of momentum of the ball will be large. Therefore, a large force would have to be applied for holding the catch that may hurt the palm of the fielder. In a high jump athletic event, the athletes are made to fall either on a cushioned bed or on a sand bed. This is to increase the time of the athlete’s fall to stop after making the jump. This decreases the rate of change of momentum and hence the force. Try to ponder how a karate player breaks a slab of ice with a single blow.
Fig. 8.8: A fielder pulls his hands gradually with the moving ball while holding a catch.
The first law of motion can be mathematically stated from the mathematical expression for the second law of motion. Eq. $(8.4)$ is
$F=m a $
$\text{ or } \quad F \quad=\frac{m(v-u)}{t}$
$\text{ or } \quad F t=m v-m u$
That is, when $F=0, v=u$ for whatever time, $t$ is taken. This means that the object will continue moving with uniform velocity, $u$ throughout the time, $t$. If $u$ is zero then $v$ will also be zero. That is, the object will remain at rest.
Example 8.1 A constant force acts on an object of mass $5 kg$ for a duration of $2 s$. It increases the object’s velocity from $3 m s^{-1}$ to $7 m s^{-1}$. Find the magnitude of the applied force. Now, if the force was applied for a duration of $5 s$, what would be the final velocity of the object?
Solution:
We have been given that $u=3 m s^{-1}$ and $v=7 m s^{-1}, t=2 s$ and $m=5 kg$. From Eq. (8.5) we have,
$ F=\frac{m(v-u)}{t} $
Substitution of values in this relation gives
$F=5 kg(7 m s^{-1}-3 m s^{-1}) / 2 s=10 N$.
Now, if this force is applied for a duration of $5 s(t=5 s)$, then the final velocity can be calculated by rewriting Eq. (8.5) as
$$ v=u+\frac{F t}{m} $$
On substituting the values of $u, F, m$ and $t$, we get the final velocity,
$$ V=13 \mathrm{~m} \mathrm{~s}^{-1} $$
Example 8.2 Which would require a greater force - accelerating a $2 kg$ mass at $5 m s^{-2}$ or a $4 kg$ mass at $2 m s^{-2}$ ?
Solution:
From Eq. (8.4), we have $F=m a$.
Here we have $m _{1}=2 \mathrm{~kg} ; a _{1}=5 \mathrm{~m} \mathrm{~s}^{-2}$ and $m _{2}=4 \mathrm{~kg} ; a _{2}=2 \mathrm{~m} \mathrm{~s}^{-2}$..
Thus, $F_1=m_1 a_1=2 kg \times 5 m s^{-2}=10 N$; and $F_2=m_2 a_2=4 kg \times 2 m s^{-2}=8 N$. $\Rightarrow F_1>F_2$. Thus, accelerating a $2 kg$ mass at $5 m s^{-2}$ would require a greater force.
Example 8.3 A motorcar is moving with a velocity of $108 km / h$ and it takes $4 s$ to stop after the brakes are applied. Calculate the force exerted by the brakes on the motorcar if its mass along with the passengers is $1000 kg$.
Solution:
The initial velocity of the motorcar
$$ \begin{aligned} u & =108 \mathrm{~km} / \mathrm{h} \\ & =108 \times 1000 \mathrm{~m} /(60 \times 60 \mathrm{~s}) \\ & =30 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned} $$
and the final velocity of the motorcar $v=0 m s^{-1}$.
The total mass of the motorcar along with its passengers $=1000 kg$ and the time taken to stop the motorcar, $t=4 s$. From Eq. (8.5) we have the magnitude of the force $(F)$ applied by the brakes as $m(v-u) / t$.
On substituting the values, we get
$F=1000 kg \times(0-30) m s^{-1} / 4 s$
$=-7500 kg m s^{-2}$ or $-7500 N$.
The negative sign tells us that the force exerted by the brakes is opposite to the direction of motion of the motorcar.
Example 8.4 A force of $5 N$ gives a mass $m_1$, an acceleration of $10 m s^{-2}$ and a mass $m_2$, an acceleration of $20 m s^{-2}$. What acceleration would it give if both the masses were tied together?
Solution:
From Eq. (8.4) we have $m_1=F / a_1$; and $m_2=F / a_2$. Here, $a_1=10 m s^{-2}$; $a_2=20 m s^{-2}$ and $F=5 N$.
Thus, $m_1=5 N / 10 m s^{-2}=0.50 kg$; and $m_2=5 N / 20 m s^{-2}=0.25 kg$.
If the two masses were tied together, the total mass, $m$ would be $m=0.50 kg+0.25 kg=0.75 kg$.
The acceleration, a produced in the combined mass by the $5 N$ force would be, $a=F / m=5 N / 0.75 kg=6.67 m s^{-2}$.
Example 8.5 The velocity-time graph of a ball of mass $20 g$ moving along a straight line on a long table is given in Fig. 8.9.
Fig. 8.9
How much force does the table exert on the ball to bring it to rest?
Solution:
The initial velocity of the ball is $20 cm s^{-1}$. Due to the frictional force exerted by the table, the velocity of the ball decreases down to zero in $10 s$. Thus, $u=20 cm s^{-1}$; $v=0 cm s^{-1}$ and $t=10 s$. Since the velocity-time graph is a straight line, it is clear that the ball moves with a constant acceleration. The acceleration $a$ is
$$ \begin{aligned} a & =\frac{v-u}{t} \\ & =(0 cm s^{-1}-20 cm s^{-1}) / 10 s \\ & =-2 cm s^{-2}=-0.02 m s^{-2} . \end{aligned} $$
The force exerted on the ball $F$ is,
$$ \begin{aligned} F & =m a=(20 / 1000) kg \times(-0.02 m s^{-2}) \\ & =-0.0004 N \end{aligned} $$
The negative sign implies that the frictional force exerted by the table is opposite to the direction of motion of the ball.
8.5 Third Law of Motion
The first two laws of motion tell us how an applied force changes the motion and provide us with a method of determining the force. The third law of motion states that when one object exerts a force on another object, the second object instantaneously exerts a force back on the first. These two forces are always equal in magnitude but opposite in direction. These forces act on different objects and never on the same object. In the game of football sometimes we, while looking at the football and trying to kick it with a greater force, collide with a player of the opposite team. Both feel hurt because each applies a force to the other. In other words, there is a pair of forces and not just one force. The two opposing forces are also known as action and reaction forces.
Let us consider two spring balances connected together as shown in Fig. 8.10. The fixed end of balance $B$ is attached with a rigid support, like a wall. When a force is applied through the free end of spring balance $A$, it is observed that both the spring balances show the same readings on their scales. It means that the force exerted by spring balance $A$ on balance $B$ is equal but opposite in direction to the force exerted by the balance $B$ on balance A. Any of these two forces can be called as action and the other as reaction. This gives us an alternative statement of the third law of motion i.e., to every action there is an equal and opposite reaction. However, it must be remembered that the action and reaction always act on two different objects, simultaneously.
Fig. 8.10: Action and reaction forces are equal and opposite.
Suppose you are standing at rest and intend to start walking on a road. You must accelerate, and this requires a force in accordance with the second law of motion. Which is this force? Is it the muscular effort you exert on the road? Is it in the direction we intend to move? No, you push the road below backwards. The road exerts an equal and opposite force on your feet to make you move forward.
It is important to note that even though the action and reaction forces are always equal in magnitude, these forces may not produce accelerations of equal magnitudes. This is because each force acts on a different object that may have a different mass.
When a gun is fired, it exerts a forward force on the bullet. The bullet exerts an equal and opposite force on the gun. This results in the recoil of the gun (Fig. 8.11). Since the gun has a much greater mass than the bullet, the acceleration of the gun is much less than the acceleration of the bullet. The third law of motion can also be illustrated when a sailor jumps out of a rowing boat. As the sailor jumps forward, the force on the boat moves it backwards (Fig. 8.12).
Fig. 8.11: A forward force on the bullet and recoil of the gun.
Fig. 8.12: As the sailor jumps in forward direction, the boat moves backwards.
Activity 8.4
-
Request two children to stand on two separate carts as shown in Fig. 8.13.
-
Give them a bag full of sand or some other heavy object. Ask them to play a game of catch with the bag.
-
Does each of them experience an instantaneous force as a result of throwing the sand bag?
-
You can paint a white line on cartwheels to observe the motion of the two carts when the children throw the bag towards each other.
Fig. 8.13
Now, place two children on one cart and one on another cart. The second law of motion can be seen, as this arrangement would show different accelerations for the same force.
The cart shown in this activity can be constructed by using a $12 mm$ or $18 mm$ thick plywood board of about $50 cm \times 100 cm$ with two pairs of hard ball-bearing wheels (skate wheels are good to use). Skateboards are not as effective because it is difficult to maintain straight-line motion.
What you have learnt
-
First law of motion: An object continues to be in a state of rest or of uniform motion along a straight line unless acted upon by an unbalanced force.
-
The natural tendency of objects to resist a change in their state of rest or of uniform motion is called inertia.
-
The mass of an object is a measure of its inertia. Its SI unit is kilogram $(kg)$.
-
Force of friction always opposes motion of objects.
-
Second law of motion: The rate of change of momentum of an object is proportional to the applied unbalanced force in the direction of the force.
-
The SI unit of force is $kg m s^{-2}$. This is also known as newton and represented by the symbol N. A force of one newton produces an acceleration of $1 m s^{-2}$ on an object of mass $1 kg$.
-
The momentum of an object is the product of its mass and velocity and has the same direction as that of the velocity. Its SI unit is $kg m s^{-1}$.
-
Third law of motion: To every action, there is an equal and opposite reaction and they act on two different bodies.
Exercises
1. An object experiences a net zero external unbalanced force. Is it possible for the object to be travelling with a non-zero velocity? If yes, state the conditions that must be placed on
Show Answer
Answer
According to the Newton’s 1st law of motion, no net force is required to move an object which is moving with a constant velocity. So, when an object experiences a net zero external unbalanced force, then it can move with a non-zero velocity. Also, if an object is initially at rest not net force acts upon it, thus the object may not move at all.
2. When a carpet is beaten with a stick, dust comes out of it, Explain.
Show Answer
Answer
When a carpet is beaten with a stick, then the fibers of the carpet attain the state of motion while the dust particles remain in rest due to inertia of rest. Therefore, the dust particles fall down.
3. Why is it advised to tie any luggage kept on the roof of a bus with a rope?
Show Answer
Answer
It is advised to tie any luggage kept on the roof of a bus because when the bus stops suddenly, it readily comes in the state of rest but the luggage remains in the state of motion. So, due to inertia of motion, the luggage will move forward and would fall down from the roof of the bus.
If the bus starts suddenly, then bus comes in the state of motion but luggage remains in the state of rest. Due to inertia of rest, the luggage moves in the backward direction and will fall down.
4. A batsman hits a cricket ball which then rolls on a level ground. After covering a short distance, the ball comes to rest. The ball slows to a stop because
(a) the batsman did not hit the ball hard enough.
(b) velocity is proportional to the force exerted on the ball.
(c) there is a force on the ball opposing the motion.
(d) there is no unbalanced force on the ball, so the ball would want to come to rest.
Show Answer
Answer
(c) because the ball slows down to rest as the force of friction acting between the ground and the ball opposes the motion of the ball.
5. A truck starts from rest and rolls down a hill with a constant acceleration. It travels a distance of $400 m$ in 20 s. Find its acceleration. Find the force acting on it if its mass is 7 tonnes (Hint: 1 tonne $=1000 kg$.)
Show Answer
Answer
The truck starts from rest, so initial velocity $u=0$, Distances $=400 m, t=20 s, m=7$ tons $=7 \times 1000=7000 kg$,
From 2nd equation of motion,
$ \begin{aligned} s & =u t+\frac{1}{2} a t^{2} \\ 400 & =0 \times 20+\frac{1}{2} \times a \times(20)^{2} \\ 400 & =200 a \\ a & =2 ms^{-2} \end{aligned} $
From Newton’s 2nd law of motion, force acting on the truck
$ \begin{aligned} F & =m a \\ & =7000 \times 2=14000 N \\ & =1.4 \times 10^{4} N \end{aligned} $
6. A stone of $1 kg$ is thrown with a velocity of $20 m s^{-1}$ across the frozen surface of a lake and comes to rest after travelling a distance of $50 m$. What is the force of friction between the stone and the ice?
Show Answer
Answer
Mass of stone $m=1 kg$, initial velocity $u=20 ms-1$,
Final velocity $v=O$ (Therefore, the stone comes to rest), distance covered $s=50 m$.
From third equation of motion,
$v 2=u 2+2 as$
(0) $2=(20) 2+2 a(50)$
$100 a=-400$
$a=-4 m s-2$
Here negative sign shows that there is retardation in the motion of stone.
Force of friction between stone and ice = Force required to stop the stone
$ \begin{aligned} & =ma \\ & =1 \times-4=-4 N \text{ OR } 4 N \end{aligned} $
7. A $8000 kg$ engine pulls a train of 5 wagons, each of $2000 kg$, along a horizontal track. If the engine exerts a force of 40000 $N$ and the track offers a friction force of $5000 N$, then calculate:
(a) the net accelerating force and
(b) the acceleration of the train.
Show Answer
Answer
(a) Net accelerating force $=$ Force exerted by engine-Friction force (Here frictional force is subtracted because it opposes the motion) $=40000-5000=35000 N$
$=3.5 \times 10^{4} N$
(b) From Newton’s second law of motion,
Accelerating force $=$ Mass of the train $\times$ Acceleration of train
$a = \frac{F}{m}$
Mass of train $=$ Mass of engine + Mass of all wagons
$=8000+5 \times 2000$
$=8000+10000=18000 kg$
Acceleration $=35000=35=1.95 ms^{-2}$
18000 18
8. An automobile vehicle has a mass of $1500 kg$. What must be the force between the vehicle and road if the vehicle is to be stopped with a negative acceleration of $1.7 m s^{-2}$ ?
Show Answer
Answer
Mass, $m=1500 kg$, Acceleration, $a=-1.7 ms-2$
From Newton’s second law of motion,
F ma
$=1500 \times(-1.7)$
$=-2550 N$
9. What is the momentum of an object of mass $m$, moving with a velocity $v$ ?
(a) $(m v)^{2}$
(b) $m v^{2}$
(c) $1 / 2 m v^{2}$
(d) $m v$
Show Answer
Answer: -(d) because the momentum of an object of mass $m$ moving with a velocity $v$.
$p=m v$
10. Using a horizontal force of $200 N$, we intend to move a wooden cabinet across a floor at a constant velocity. What is the friction force that will be exerted on the cabinet?
Show Answer
Answer
The cabinet will move across the floor with constant velocity, if there is no net external force is applied on it.
Here a horizontal force of $200 N$ is applied on the cabinet, so for the net force to be zero, an external force of $200 N$ should be applied on the cabinet in opposite direction.
Thus, the frictional force $=200 N$
(Frictional force always acts in the direction opposite to direction of motion.)
11. According to the third law of motion when we push on an object, the object pushes back on us with an equal and opposite force. If the object is a massive truck parked along the roadside, it will probably not move. A student justifies this by answering that the two opposite and equal forces cancel each other. Comment on this logic and explain why the truck does not move.
Show Answer
Answer
The logic given by the student is not correct because two equal and opposite forces cancel each other only in the case if they act on the same body. According to Newton’s third law, action and reaction force always act on two different bodies, so they cannot cancel each other. When a massive truck is pushed, then the truck may not move because the force applied is not sufficient to move the truck.
12. A hockey ball of mass $200 g$ travelling at $10 m s^{-1}$ is struck by a hockey stick so as to return it along its original path with a velocity at $5 m s^{-1}$. Calculate the magnitude of change of momentum occurred in the motion of the hockey ball by the force applied by the hockey stick.
Show Answer
Answer
Mass of hockey ball
$ m=200 g=0.2 kg $
Initial velocity, $u=10 ms-1$
Final velocity, $v=-5 m s-1$
(Since, final velocity of the ball is in the direction opposite to the direction of initial velocity.)
Change in momentum of the ball = Final momentum - Initial momentum
$=m v-m u$
$=m(v-u)$
$=0.2(-5-10)$
$=0.2 \times-15=-3 kg ms-1$
13. A bullet of mass $10 g$ travelling horizontally with a velocity of $150 m s^{-1}$ strikes a stationary wooden block and comes to rest in $0.03 s$. Calculate the distance of penetration of the bullet into the block. Also calculate the magnitude of the force exerted by the wooden block on the bullet.
Show Answer
Answer
Mass of bullet, $m=10 g=\frac{10}{1000} kg=0.001 kg$
Initial velocity, $u=150 ms^{-1}$
Final velocity, $v=0$
Time, $\quad t=0.03 s$
From equation of motion,
$ \begin{aligned} v & =u+a t \\ 0 & =150+a \times 0.03 \\ a & =\frac{-150}{0.03} \\ & =-5000 ms^{-2} \end{aligned} $
Magnitude of the force applied by the bullet on the block, $F=m a$
$ =0.01 \times -5000 ms^{-2} $
$F = -50 N$
14. An object of mass $1 kg$ travelling in a straight line with a velocity of $10 m s^{-1}$ collides with, and sticks to, a stationary wooden block of mass $5 kg$. Then they both move off together in the same straight line. Calculate the total momentum just before the impact and just after the impact. Also, calculate the velocity of the combined object.
Show Answer
Answer
Given, mass of the object $(m_1) = 1 kg$
Mass of the block $(m_2) = 5 kg$
Initial velocity of the object $(u_1) = 10 m/s$
Initial velocity of the block $(u_2) = 0$
Mass of the resulting object $= m_1 + m_2 = 6 kg$
Velocity of the resulting object $(v) =?$
Total momentum before the collision $= m_1u_1 + m_2u_2 = (1kg) × (10m/s) + 0 = 10 kg.m.s^{-1}$
As per the law of conservation of momentum, the total momentum before the collision is equal to the total momentum post the collision. Therefore, the total momentum post the collision is also $10 kg.m.s^{-1}$
Now, $(m_1 + m_2) × v = 10kg.m.s-1$
Therefor, $v = \frac{10 kg.m.s^{-1}}{6 kg} =1.66 ms^{-1}$
The resulting object moves with a velocity of $1.66$ meters per second.
15. An object of mass $100 kg$ is accelerated uniformly from a velocity of $5 m s^{-1}$ to $8 m s^{-1}$ in $6 s$. Calculate the initial and final momentum of the object. Also, find the magnitude of the force exerted on the object.
Show Answer
Answer
Given, mass of the object $(m) = 100kg$
Initial velocity $(u) = 5 m/s$
Terminal velocity $(v) = 8 m/s$
Time period $(t) = 6s$
Now, initial momentum $(m \times u) = 100kg \times 5m/s = 500 kg.m.s^{-1}$
Final momentum $(m \times v) = 100kg × 8m/s = 800 kg.m.s^{-1}$
Acceleration of the object (a) $=\frac{v-u}{t}= \frac{8-5}{6}ms^{-2}$
Therefore, the object accelerates at $0.5 ms^{-2}$. This implies that the force acting on the object $(F = ma)$ is equal to:
$F = (100kg) × (0.5 ms^{-2}) = 50 N$
Therefore, a force of 50 N is applied on the 100kg object, which accelerates it by $0.5 ms^{-2}$.
16. Akhtar, Kiran and Rahul were riding in a motorcar that was moving with a high velocity on an expressway when an insect hit the windshield and got stuck on the windscreen. Akhtar and Kiran started pondering over the situation. Kiran suggested that the insect suffered a greater change in momentum as compared to the change in momentum of the motorcar (because the change in the velocity of the insect was much more than that of the motorcar). Akhtar said that since the motorcar was moving with a larger velocity, it exerted a larger force on the insect. And as a result the insect died. Rahul while putting an entirely new explanation
Show Answer
Answer
The explanation given by Rahul is correct, as there is no external force on the system, so both the insect and motorcar experienced the same force and a change in momentum.
17. How much momentum will a dumb-bell of mass $10 \mathrm{~kg}$ transfer to the floor if it falls from a height of $80 \mathrm{~cm}$ ? Take its downward acceleration to be $10 \mathrm{~m} \mathrm{~s}^{-2}$.
Show Answer
missingAdditional Exercises
A1. The following is the distance-time table of an object in motion:
Time in seconds | Distance in metres |
---|---|
1 | 1 |
2 | 8 |
3 | 27 |
4 | 64 |
5 | 125 |
6 | 216 |
7 | 343 |
(a) What conclusion can you draw about the acceleration? Is it constant, increasing, decreasing, or zero?
(b) What do you infer about the forces acting on the object?
Show Answer
Answer
(a) The distance covered by the object at any time interval is greater than any of the distances covered in previous time intervals. Therefore, the acceleration of the object is increasing.
(b) As per the second law of motion, force = mass $\times$ acceleration. Since the mass of the object remains constant, the increasing acceleration implies that the force acting on the object is increasing as well.
A2. Two persons manage to push a motorcar of mass $1200 kg$ at a uniform velocity along a level road. The same motorcar can be pushed by three persons to produce an acceleration of $0.2 m s^{-2}$. With what force does each person push the motorcar? (Assume that all persons push the motorcar with the same muscular effort.)
Show Answer
Answer
Given, mass of the car $(m) = 1200kg$
When the third person starts pushing the car, the acceleration (a) is $0.2 ms^{-2}$ . Therefore, the force applied by the third person $(F = ma)$ is given by:
$F = 1200kg × 0.2 ms^{-2} = 240N$
The force applied by the third person on the car is 240 N. Since all 3 people push with the same muscular effort, the force applied by each person on the car is $240 N$.
A3. A hammer of mass $500 g$, moving at $50 m s^{-1}$, strikes a nail. The nail stops the hammer in a very short time of $0.01 s$. What is the force of the nail on the hammer?
Show Answer
Answer
Given, mass of the hammer $(m) = 500g = 0.5kg$
Initial velocity of the hammer $(u) = 50 m/s$
Terminal velocity of the hammer $(v) = 0$ (the hammer is stopped and reaches a position of rest).
Time period $(t) = 0.01s$
Therefore, the acceleration of the hammer is given by: $a = \frac{v-u}{t} = \frac{0-50ms^{-1}}{0.01 s}$
$a = -5000 ms^{-2}$
Therefore, the force exerted by the hammer on the nail $(F = ma)$ can be calculated as:
$F = (0.5kg) \times (-5000 ms^{-2} ) = -2500 N$
As per the third law of motion, the nail exerts an equal and opposite force on the hammer. Since the force exerted on the nail by the hammer is $-2500 N$, the force exerted on the hammer by the nail will be $+2500 N$.
A4. A motorcar of mass $1200 kg$ is moving along a straight line with a uniform velocity of $90 km / h$. Its velocity is slowed down to $18 km / h$ in $4 s$ by an unbalanced external force. Calculate the acceleration and change in momentum. Also calculate the magnitude of the force required.
Show Answer
Answer
Given, mass of the car $(m) = 1200kg$
Initial velocity $(u) = 90 \text{ km/hour} = 25 \text{ meters/sec}$
Terminal velocity $(v) = 18 \text{ km/hour} = 5 \text{ meters/sec}$
Time period $(t) = 4 \text{ seconds}$
The acceleration of the car can be calculated with the help of the formula: $a = \frac{v-u}{t}$
$a= \frac{5-25}{4} ms^{-2} = -5ms^{-2}$
Therefore, the acceleration of the car is $-5 ms^{-2}.$
Initial momentum of the car $= m × u = (1200kg) × (25m/s) = 30,000 kg.m.s^{-1}$
Final momentum of the car $= m × v = (1200kg) × (5m/s) = 6,000 kg.m.s^{-1}$
पिछले अध्याय में हमने एक सरल रेखा में वस्तु की स्थिति, वेग तथा त्वरण के आधार पर वस्तु की गति का वर्णन किया। हमने देखा कि ऐसी गति में कभी एकरूपता होती है तथा कभी नहीं। लेकिन अभी हमने ये चर्चा नहीं की कि गति का कारण क्या होता है। समय के साथ वस्तु की चाल क्यों बदलती है? क्या सभी प्रकार की गतियों का कोई कारण होता है? यदि ऐसा है, तो इस कारण का स्वभाव क्या है? इस अध्याय में हम ऐसी ही सभी जिज्ञासाओं को बुझाएँगे।
सदियों से गति और इसके कारणों ने वैज्ञानिकों और दार्शानिकों को उलझा रखा था। फ़र्श पर रखी एक गेंद को धीमे से ठोकर लगाने पर वह हमेशा के लिए गतिशील नहीं रहती। ऐसी परिस्थितियों से यह पता चलता है कि किसी वस्तु की विराम की अवस्था ही उसकी स्वाभाविक अवस्था है। ऐसी मान्यता तब तक बनी रही जब तक कि गैलीलियो और आइजक न्यूटन ने वस्तुओं की गति के बारे में एक पूर्णतः भिन्न संकल्पना प्रस्तुत की।
चित्र 8.1: वस्तुओं को धकेलकर, खींचकर या ठोकर लगाकर उनकी गति की अवस्था को बदला जा सकता है।
अपने प्रतिदिन के जीवन में हम देखते हैं कि एक स्थिर वस्तु को गति देने के लिए या गतिशील वस्तु को रोकने के लिए हमें कुछ प्रयास करना पड़ता है। सामान्य भाषा में इसके लिए हमें शारीरिक प्रयास करना पड़ता है तथा हम कहते हैं कि किसी वस्तु को गति की अवस्था में लाने के लिए हमें उसे खींचना, धकेलना या ठोकर लगाना पड़ता है। खींचने, धकेलने या ठोकर लगाने की इसी क्रिया पर बल की अवधारणा आधारित है। अब हम बल के विषय में विचार करते हैं। यह क्या है? वास्तव में बल को न तो किसी ने देखा है, न चखा है और न ही महसूस किया है। हालाँकि बल का प्रभाव हम प्रायः देखते या महसूस करते हैं। किसी वस्तु पर बल लगाने पर क्या होता है, यह जानकर हम बल की व्याख्या कर सकते हैं। वस्तु को खींचना, धकेलना या ठोकर लगाना, ये सभी क्रियाएँ वस्तु को गति देने की युक्तियाँ हैं (चित्र 8.1)। हमारे द्वारा किसी तरह का बल लगाने पर ही उनमें गति होती है।
पिछली कक्षाओं में अर्जित ज्ञान के आधार पर आप इस बात से परिचित हैं कि किसी वस्तु में वेग का परिमाण बदलने (अर्थात् वस्तु की गति को तेज़ या धीमी करने) के लिए या उसकी गति की दिशा बदलने के लिए बल का प्रयोग होता है। आप यह भी जानते हैं कि किसी बल के प्रयोग द्वारा वस्तु का आकार या आकृति भी बदली जा सकती है (चित्र 8.2)।
(a)
(b)
चित्र 8.2: (a) बल लगाने पर स्प्रिंग फैलती है। (b) बल लगाने पर गोलाकार गेंद अंडाकार हो जाती है।
8.1 संतुलित और असंतुलित बल
चित्र 8.3 में लकड़ी का एक पिंड एक समतल मेज पर रखा है। चित्र में दर्शाए अनुसार, दो धागे $\mathrm{X}$ और $\mathrm{Y}$ पिंड के विपरीत सिरों से जुड़े हैं। अगर हम किसी बल द्वारा धागे $\mathrm{X}$ को खींचते हैं, तो पिंड दाहिनी ओर खिसकना शुरू करता है। उसी प्रकार अगर हम धागे $\mathrm{Y}$ को खींचते हैं, तो पिंड बाईं ओर खिसकना शुरू करता है। लेकिन अगर पिंड को दोनों ओर से समान बल द्वारा खींचा जाता है, तो ऐसी दशा में पिंड गति नहीं करता। इस तरह के बलों को संतुलित बल कहते हैं तथा यह गति की अवस्था को परिवर्तित नहीं करता। अब एक ऐसी अवस्था की कल्पना करें, जिसमें भिन्न परिमाण के दो विपरीत बल पिंड को खींचते हैं। इस अवस्था में, पिंड अधिक बल वाली दिशा में खिसकना शुरू करेगा। इस प्रकार दोनों बल संतुलित नहीं हैं और असंतुलित बल पिंड के खिसकने की दिशा में कार्य करता है। इससे यह पता चलता है कि किसी भी पिंड पर लगने वाला असंतुलित बल उसे गति प्रदान करता है।
चित्र 8.3: लकड़ी के एक पिंड पर लगे दो बल
क्या होता है जब कुछ बच्चे एक बक्से को खुरदरे फ़र्श पर धकेलने की कोशिश करते हैं? यदि वे कम बल के साथ बक्से को धकेलते हैं, तो बक्सा नहीं खिसकता है, क्योंकि घर्षण बल धकेलने की विपरीत दिशा में काम कर रहा है [चित्र 8.4.(a)]। यह घर्षण बल दोनों संपर्क सतहों के बीच में उत्पन्न होता है अर्थात् बक्से के नीचे की सतह तथा फ़र्श की खुरदरी सतह के बीच। यह घर्षण बल, धकेलने में लगे बल को संतुलित करता है और यही कारण है कि बक्सा नहीं खिसकता है। चित्र $8.4(\mathrm{~b})$ में बच्चे बक्से को ज़ोर से धकेलते हैं लेकिन बक्सा फिर भी नहीं खिसकता है। ऐसा इसलिए है क्योंकि घर्षण बल अभी भी धकेलने वाले बल को संतुलित कर रहा है। अगर बच्चे बक्से को ज़्यादा ज़ोर से धकेलते हैं तब धकेलने वाला बल घर्षण बल से अधिक हो जाता है [चित्र 8.4(c)]। यहाँ असंतुलित बल कार्य करता है, इसलिए बक्सा खिसकने लगता है।
जब हम साइकिल चलाते हैं, तो क्या होता है? पैडल चलाना बंद करने पर साइकिल की गति धीमी होने लगती है। ऐसा इसलिए होता है, क्योंकि घर्षण बल गति की दिशा के विपरीत दिशा में कार्य करता है। साइकिल को गति में रखने के लिए हमें फिर से पैडल चलाना पड़ता है। इस अवस्था में ऐसा प्रतीत होता है कि किसी वस्तु को सतत् गतिशील बनाए रखने के लिए एक असंतुलित बल की आवश्यकता है। तथापि वह बिलकुल गलत है। कोई वस्तु समान वेग के साथ केवल तभी गतिशील रह सकती है, जब उस पर लगने वाला बल (बाह्य तथा घर्षण) संतुलित होते हैं तथा वस्तु पर कोई नेट बाह्य बल कार्य नहीं करता है। अगर किसी वस्तु पर असंतुलित बल लगाया जाता है, तो उसके वेग में परिवर्तन या उसकी दिशा में परिवर्तन होता है। इस प्रकार किसी वस्तु को त्वरित करने के लिए एक असंतुलित बल की आवश्यकता होती है और उसकी गति या गति की दिशा में तब तक परिवर्तन होता रहेगा जब तक यह संतुलित बल उस पर कार्य करता रहेगा। तथापि, यह बल हटा लेने पर, वस्तु प्राप्त हुए वेग से गतिमान रहेगी।
चित्र 8.4
8.2 गति का प्रथम नियम
वस्तुओं की किसी आनत तल पर गति को देखकर गैलीलियो ने यह निष्कर्ष निकाला कि जब तक कोई बाह्य बल कार्य नहीं करता, वस्तुएँ एक निश्चित गति से चलती हैं। उन्होंने देखा कि काँच की गोली आनत तल पर लुढ़कती है तो उसका वेग बढ़ जाता है [चित्र 8.4(a) ]। अगले अध्याय में आप पढ़ंगे कि गोली असंतुलित गुरुत्वीय बल के कारण नीचे गिरती है और नीचे पहुँचते-पहुँचते यह एक निश्चित वेग प्राप्त कर लेती है। चित्र 8.5 (b) में दर्शाए अनुसार, जब यह काँच की गोली ऊपर की ओर चढ़ती है तब इसका वेग घटता है। चित्र 8.5 (c) में दोनों ओर से एक आदर्श घर्षणरहित आनत तल पर एक गोली स्थिर है। गैलीलियो ने तर्क दिया कि जब गोली को बाईं ओर से छोड़ा जाता है तब यह ढाल पर नीचे की ओर लुढ़केगी तथा दाईं ओर के आनत तल पर उतनी ही ऊँचाई तक जाएगी, जितनी ऊँचाई से उसे छोड़ा गया था। यदि दोनों ओर के तलों के झुकाव समान हैं तो गोली उतनी ही दूरी चढ़ेगी जितनी दूर तक कि वह लुढ़की थी। अगर दाईं ओर के आनत तल के कोण को धीरे-धीरे कम किया जाए तो गोली को मूल ऊँचाई प्राप्त करने के लिए अधिक दूरी तय करनी होगी। अगर इस तल को क्षैतिज कर दिया जाए (अर्थात् ढाल को शून्य कर दिया जाए) तो गोली मूल ऊँचाई प्राप्त करने के लिए क्षैतिज तल पर लगातार चलती ही रहेगी। यहाँ गोली पर लगने वाला असंतुलित बल शून्य है। इस प्रकार यह ज्ञात होता है कि गोली की गति को बदलने के लिए एक असंतुलित बाह्य बल की आवश्यकता होती है लेकिन गोली की गति
चित्र 8.5: (a) किसी काँच की गोली का आनत तल पर नीचे की ओर लुढ़कना; (b) गोली की ऊपर की ओर गति; तथा (c) काँच की गोली की द्वि-आनत तल पर गति
न्यूटन ने बल एवं गति के बारे में गैलीलियो के विचारों को आगे विकसित किया। उन्होंने तीन मौलिक नियमों को प्रस्तुत किया जो किसी वस्तु की गति को वर्णित करते हैं। इन नियमों को न्यूटन के गति के नियमों के नाम से जाना जाता है। गति का प्रथम नियम इस प्रकार है:
प्रत्येक वस्तु अपनी स्थिर अवस्था या सरल रेखा में एकसमान गति की अवस्था में बनी रहती है जब तक कि उस पर कोई बाहरी बल कार्यरत न हो।
दूसरे शब्दों में, सभी वस्तुएँ अपनी गति की अवस्था में परिवर्तन का विरोध करती हैं। गुणात्मक रूप में किसी वस्तु के विरामावस्था में रहने या समान वेग से गतिशील रहने की प्रवृत्ति को जड़त्व कहते हैं। यही कारण है कि गति के पहले नियम को जड़त्व का नियम भी कहते हैं।
किसी मोटर गाड़ी में यात्रा करते समय होने वाले अनुभवों की व्याख्या जड़त्व के नियम द्वारा की जा सकती है। सीट के सापेक्ष हम तब तक विरामावस्था में रहते हैं जब तक कि मोटरगाड़ी को रोकने के लिए ब्रेक न लगाई जाए। ब्रेक लगाए जाने पर गाड़ी के साथ सीट भी विरामावस्था में आ जाती है, परंतु हमारा शरीर जड़त्व के कारण गतिज अवस्था में ही बने रहने की प्रवृत्ति रखता है। अचानक ब्रेक लगने पर सीट के आगे लगे पैनल से टकराकर हम घायल भी हो सकते हैं। इस तरह की दुर्घटनाओं से बचने के लिए सुरक्षा बेल्ट का उपयोग किया जाता है। ये सुरक्षा बेल्ट हमारे आगे बढ़ने की गति को धीमा करती है। इसके विपरीत अनुभव हमें तब होता है जब हम मोटर बस में खड़े होते हैं एवं मोटर बस अचानक चल पड़ती है। इस स्थिति में हम पीछे की ओर झुक जाते हैं। ऐसा इसलिए होता है, क्योंकि मोटर बस के अचानक गति में आ जाने से हमारा पैर, जो मोटर बस के फ़र्श के संपर्क में रहता है, गति में आ जाता है। परंतु शरीर का ऊपरी भाग जड़त्व के कारण इस गति का विरोध करता है।
गैलीलियो गैलिली का जन्म 15 फरवरी सन् 1564 में इटली के पीसा शहर में हुआ था। गैलीलियो की बचपन से ही गणित तथा प्राकृतिक दर्शन में रुचि थी। परंतु पिता विनेंजो गैलिली, उन्हें एक चिकित्सक बनाना चाहते गैलीलियो गैलिली (1564 - 1642) थे।
तदनुसार गैलीलियो ने सन् 1581 में चिकित्सा उपाधि के लिए पीसा विश्वविद्यालय में नामांकन लिया। इस पाठ्यक्रम को वे कभी पूरा नहीं कर पाए क्योंकि उनकी वास्तविक रुचि गणित में थी। सन् 1586 में उन्होंने अपनी प्रथम वैज्ञानिकी पुस्तक ‘द लिटिल बैलेंस’ (ला वैलेंसिटा) लिखी, जिसमें उन्होंने एक तुला द्वारा पदार्थों के आपेक्षिक घनत्व (अथवा विशिष्ट गुरुत्व) प्राप्त करने की आर्कीमिडीज़ की विधि का वर्णन किया। सन् 1589 में उन्होंने अपनी निबंध श्रेणी ‘डी मौट्’ में नत समतल के प्रयोग से, किसी गिरती हुई वस्तु के गिरने की दर कम होने संबंधी अपने सिद्धांत को प्रस्तुत किया।
सन् 1592 में उन्हें वेनिस गणराज्य के पाडुआ विश्वविद्यालय में गणित के प्रोफेसर पद पर नियुक्त किया गया था। यहाँ भी उन्होंने लगातार गतिज सिद्धांतों पर प्रेक्षण किया। उन्होंने नत समतल तथा लोलक संबंधी अपने अध्ययन द्वारा नियत त्वरण से गतिशील वस्तुओं से संबंधित परिष्कृत नियम प्रतिपादित किया।
गैलीलियो एक कुशल शिल्पकार भी थे। उन्होंने विभिन्न प्रकार के दूरदर्शियों की श्रेणी विकसित की जिनकी प्रकाशिक दक्षता उस समय उपलब्ध दूरदर्शियों से काफी उत्तम थी। सन् 1640 के आस-पास उन्होंने प्रथम लोलक घड़ी की संरचना की। उनके खगोलीय आविष्कारों की एक पुस्तक ‘स्टारी मैसेंजर’ में गैलीलियो ने चंद्रमा पर पहाड़ों, छोटे-छोटे सितारों से मिलकर बनी आकाशगंगा तथा बृहस्पति ग्रह के परितः चार छोटे पिंडों को घूमते हुए देखने का दावा किया। उन्होंने अपनी पुस्तकों ‘डिस्कोर्स ऑन फ्लोटिंग बॉडीज़’ तथा ‘लेटर्स ऑन दि सन स्पॉट’ में सूर्य पर उपस्थित धब्बों के संदर्भ में अपने प्रेक्षणों का रहस्योद्घाटन किया।
अपने स्वयं के द्वारा निर्मित दूरदर्शियों के प्रयोग द्वारा शनि तथा शुक्र ग्रह के निरीक्षण से गैलीलियो ने यह तर्क दिया कि सभी ग्रह सूर्य के परितः ही कक्षीय गति करते हैं न कि पृथ्वी के परितः यह विचार उस समय प्रचलित विचारधारा के विपरीत था।
को एकरूप बनाए रखने के लिए किसी नेट बल की आवश्यकता नहीं होती है। वास्तविक अवस्था में शून्य असंतुलित बाह्य बल प्राप्त करना कठिन है। ऐसा गति की विपरीत दिशा में लगने वाले घर्षण बल के कारण होता है। इस प्रकार व्यवहार में गोली कुछ दूर चलने के बाद रुक जाती है। घर्षण के प्रभाव को न्यूनतम करने के लिए चिकनी काँच की गोली तथा चिकने समतल का प्रयोग एवं समतल की सतह पर चिकनाईयुक्त पदार्थ (लुब्रीकेंट) का लेप किया जाता है।
जब कोई मोटरकार तीव्र गति के साथ किसी तीक्ष्ण मोड़ पर मुड़ती है तो हम एक ओर झुकने लगते हैं। इसे भी जड़त्व के नियम से समझा जा सकता है। हमारा शरीर अपनी एक सरल रेखीय गति को बनाए रखना चाहता है। जब मोटर कार की दिशा को बदलने के लिए इंजन द्वारा एक असंतुलित बल लगाया जाता है तब हम अपने शरीर के जड़त्व के कारण सीट पर एक ओर झुक जाते हैं।
एक वस्तु तब तक अपनी विरामावस्था में रहेगी जब तक कि उस पर कोई असंतुलित बल नहीं लगा है। इसे निम्न गतिविधि द्वारा प्रदर्शित किया जा सकता है।
क्रियाकलाप 8.1
-
चित्र 8.6 में दर्शाए अनुसार एक ही तरह की कैरम की गोटियों को एक के ऊपर एक रखकर ढेरी बनाएँ।
-
एक अन्य गोटी (या स्ट्राइकर) को अपनी अंगुलियों से तीव्रता से क्षैतिज झटका देकर ढेरी की सबसे नीचे वाली गोटी पर टकराइए। यदि आप गोटी को पर्याप्त तीव्रता से टकराते हैं तो आप देखेंगे कि केवल नीचे वाली गोटी ही शीघ्रता से ढेरी से बाहर आती है। नीचे वाली गोटी के बाहर आ जाने के बाद शेष गोटियाँ अपने जड़त्व के कारण लंबवत् दिशा में नीचे की ओर ‘गिर’ जाती हैं।
चित्र 8.6: किसी तीव्र गति की कैरम की गोटी (या स्ट्राइकर) से टकरा कर ढेरी के सबसे नीचे वाली गोटी ही ढेरी से बाहर आती है।
क्रियाकलाप 8.2
-
काँच के एक खाली गिलास के ऊपर एक कड़े ताश का पत्ता रखें।
-
अब चित्र 8.7 में दर्शाए अनुसार पत्ते के ऊपर पाँच रुपये का एक सिक्का रखें। पत्ते को अंगुलियों से तीव्र क्षैतिज झटका दें।
-
आप पाएँगे कि पत्ता आगे खिसक जाता है तथा सिक्का अपने जड़त्व के कारण नीचे की ओर गिलास में गिर जाता है। ऐसा इसलिए होता है क्योंकि पत्ते के हटने के बाद भी सिक्का अपनी विरामावस्था क बनाए रखना चाहता है।
चित्र 8.7: अंगुली से ताश के पत्ते को झटका देने पर पत्ते के ऊपर रखा सिक्का नीचे की ओर गिलास में गिर जाता है।
क्रियाकलाप 8.3
-
पानी से भरा गिलास किसी ट्रे पर रखिए।
-
ट्रे को हाथ से पकड़कर जितनी तेजी से हो सके, घूम जाइए।
-
हम देखते हैं कि गिलास लुढ़क जाता है और पानी छलक जाता है, क्यों?
क्या आप अब समझे कि प्लेट में कप को रखने के लिए खाँचा क्यों बना होता है? अचानक झटका लगने की दशा में, प्लेट का खाँचा कप को गिरने से रोकता है।
8.3 जड़त्व तथा द्रव्यमान
अभी तक दिए सभी उदाहरणों और गतिविधियों से ज्ञात होता है कि प्रत्येक वस्तु अपनी गति की अवस्था में परिर्वतन का विरोध करती है। चाहे वह विरामावस्था में हो या गतिशील, वह अपनी मूल अवस्था को बनाए रखना चाहती है। वस्तु का यह गुण उसका जड़त्व कहलाता है। क्या सभी वस्तुओं का जड़त्व समान होता है? हम जानते हैं कि पुस्तकों से भरे बक्से को धक्का देने की अपेक्षा खाली बक्से को धक्का देना आसान होता है। उसी प्रकार हम एक फुटबॉल को किक लगाते हैं तो वह दूर चली जाती है जबकि अगर हम उतने ही बल से किसी उतने ही बड़े पत्थर पर किक लगाएँ, तो हो सकता है कि वह खिसके भी नहीं। हो सकता है कि ऐसा करते समय हमें ही चोट लग जाए। क्रियाकलाप 8.2 में हम पाँच रुपये के सिक्के के स्थान पर यदि कम द्रव्यमान के सिक्के का प्रयोग करते हैं तो हम पाते हैं कि उसी क्रिया को करने में हमें कम बल की आवश्यकता होती है। एक ठेलागाड़ी को चलाने के लिए जितने बल की आवश्यकता होती है, उतना बल यदि किसी रेलगाड़ी पर लगाया जाए तो उसकी गति में न के बराबर परिवर्तन होगा क्योंकि ठेलागाड़ी की तुलना में रेलगाड़ी अपनी गति में कम परिवर्तन चाहती है। इस प्रकार हम कह सकते हैं कि रेलगाड़ी का जड़त्व ठेलागाड़ी से अधिक है। इससे स्पष्ट है कि भारी वस्तुओं का जड़त्व अधिक होता है। मात्रात्मक रूप से, किसी वस्तु का जड़त्व उसके द्रव्यमान से मापा जाता है। अतः हम जड़त्व और द्रव्यमान को निम्न रूप में परिभाषित कर सकते हैं:
किसी भी वस्तु का जड़त्व उसका वह प्राकृतिक गुण है, जो उसकी विराम या गति की अवस्था में परिवर्तन का विरोध करता है। इस प्रकार किसी वस्तु का द्रव्यमान उसके जड़त्व की माप है।
प्रशन
1. निम्न में किसका जड़त्व अधिक है:
(a) एक रबर की गेंद एवं उसी आकार का पत्थर,
(b) एक साइकिल एवं एक रेलगाड़ी,
(c) पाँच रुपये का एक सिक्का एवं एक रुपये का सिक्का।
Show Answer
missing2. नीचे दिए गए उदाहरण में गेंद का वेग कितनी बार बदलता है, जानने का प्रयास करें:
“फुटबॉल का एक खिलाड़ी गेंद पर किक लगाकर गेंद को अपनी टीम के दूसरे खिलाड़ी के पास पहुँचाता है। दूसरा खिलाड़ी उस गेंद को किक लगाकर गोल की ओर पहुँचाने का प्रयास करता है। विपक्षी टीम का गोलकीपर गेंद को पकड़ता है और अपनी टीम के खिलाड़ी की ओर किक लगाता है।
इसके साथ ही उस कारक की भी पहचान करें जो प्रत्येक अवस्था में बल प्रदान करता है।
Show Answer
missing3. किसी पेड़ की शाखा को तीव्रता से हिलाने पर कुछ पत्तियाँ झड़ जाती हैं। क्यों?
Show Answer
missing4. जब कोई गतिशील बस अचानक रुकती है तो आप आगे की ओर झुक जाते हैं और जब विरामावस्था से गतिशील होती है तो पीछे की ओर हो जाते हैं, क्यों?
Show Answer
missing8.4 गति का द्वितीय नियम
गति का प्रथम नियम यह बताता है कि जब कोई असंतुलित बाह्य बल किसी वस्तु पर कार्य करता है तो उसके वेग में परिवर्तन होता है अर्थात् वस्तु त्वरण प्राप्त करती है। अब हम देखेंगे कि किसी वस्तु का त्वरण उस पर लगाए गए बल पर कैसे निर्भर होता है तथा उस बल को हम कैसे मापते हैं। आइए कुछ दैनिक अनुभवों का अध्ययन करें। टेबल-टेनिस खेलने के दौरान यदि गेंद किसी खिलाड़ी के शरीर से टकराती है, तो वह घायल नहीं होता। गति से आती हुई क्रिकेट की गेंद किसी दर्शक को लगने के बाद उसे घायल कर सकती है। सड़क के किनारे खड़े किसी ट्रक से कोई दुर्घटना नहीं होती। परंतु $5 \mathrm{~m} \mathrm{~s}^{-1}$ जैसी कम गति से चलते हुए ट्रक से टक्कर, रास्ते में खड़े किसी व्यक्ति की मृत्यु का कारण बन सकती है। एक छोटे द्रव्यमान की वस्तु जैसे गोली को अगर बंदूक से तीव्र वेग से छोड़ा जाए तो वह भी किसी व्यक्ति की मृत्यु का कारण बन सकती है। इससे पता चलता है कि वस्तु के द्वारा उत्पन्न प्रभाव वस्तु के द्रव्यमान एवं वेग पर निर्भर करता है। इसी प्रकार यदि किसी वस्तु को त्वरित किया जाता है, तो अधिक वेग प्राप्त करने के लिए अधिक बल की आवश्यकता होती है। दूसरे शब्दों में, हम कह सकते हैं कि वस्तु के द्रव्यमान एवं वेग से संबंधित एक महत्वपूर्ण राशि होती है। संवेग नामक इस राशि को न्यूटन ने प्रस्तुत किया था। किसी वस्तु का संवेग $p$ उसके द्रव्यमान $m$ और वेग $v$ के गुणनफल से परिभाषित किया जाता है।
$$ p=m v $$
संवेग में परिमाण और दिशा दोनों होते हैं। इसकी दिशा वही होती है, जो वेग $v$ की होती है। संवेग का SI मात्रक किलोग्राम-मीटर/सेकंड $\left(\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}\right)$ होता है। चूँकि किसी असंतुलित बल के प्रयोग से उस वस्तु के वेग में परिर्वतन होता है, इसलिए यह कहा जा सकता है कि बल ही संवेग को भी परिवर्तित करता है।
एक ऐसी अवस्था के बारे में विचार करें जिसमें खराब बैट्री वाली एक कार को सीधी सड़क पर $1 \mathrm{~m} \mathrm{~s}^{-1}$ की गति प्रदान करने के लिए धक्का दिया जाता है, जो कि उसके इंजन को स्टार्ट करने के लिए पर्याप्त है। यदि एक या दो व्यक्ति इसे अचानक धक्का देते हैं तो भी यह स्टार्ट नहीं होती। लेकिन कुछ समय तक लगातार धक्का देने से कार उस गति पर आ जाती है। इससे स्पष्ट है कि कार के संवेग में परिवर्तन केवल बल के परिमाण से नहीं होता है, बल्कि उस समय से है जितने समय तक उस पर बल लगाया जाता है। इससे यह भी निष्कर्ष निकाला जा सकता है कि वस्तु के संवेग में परिवर्तन लाने में लगने वाला बल उसकी उस समय दर पर निर्भर करता है, जिसमें कि संवेग में परिवर्तन होता है।
गति का द्वितीय नियम यह बताता है कि किसी वस्तु के संवेग में परिवर्तन की दर उस पर लगने वाले असंतुलित बल की दिशा में बल के समानुपातिक होती है।
8.4.1 गति के द्वितीय नियम की गणितीय गणना
माना कि $m$ द्रव्यमान की कोई वस्तु $u$ प्रारंभिक वेग से सीधी रेखा में चल रही है। $t$ समय तक एक निश्चित बल $F$ लगाने पर उस वस्तु का वेग $V$ हो जाता है। तब इसका प्रारंभिक और अंतिम संवेग क्रमशः, $p _{1}=m u$ और $p _{2}=m v$ होंगे।
संवेग में परिवर्तन $$\propto p _{2}-p _{1}$$
$$ \propto m v-m u $$
$$ \propto m \times(v-u) . $$
संवेग में परिवर्तन की दर $\propto \frac{m \times(v-u)}{t}$ या लगाया गया बल,
$$ \begin{aligned} F \propto & \frac{m \times(v-u)}{t} \\ F & =\frac{k m \times(v-u)}{t} \\ & =k m a \end{aligned} $$
यहाँ $a[=(v-u) / t]$ वेग में परिवर्तन की दर अर्थात् त्वरण है। $k$ एक आनुपातिकता स्थिरांक है। द्रव्यमान और त्वरण के SI मात्रक क्रमशः $\mathrm{kg}$ और $\mathrm{m} \mathrm{s}^{-2}$ हैं। हम बल का मात्रक इस प्रकार लेते हैं कि स्थिरांक $k$ का मान एक हो जाता है। इस इकाई बल को उस मात्रा के रूप में परिभाषित करते हैं, $1 \mathrm{~kg}$ द्रव्यमान वाली किसी वस्तु में $1 \mathrm{~m} \mathrm{~s}^{-2}$ का त्वरण उत्पन्न करती है,
अर्थात् 1 इकाई बल $=k(1 \mathrm{~g}) \times\left(1 \mathrm{~m} \mathrm{~s}^{-2}\right)$ ।
इस प्रकार $k$ का मान एक हो जाता है। समीकरण (8.3) से,
$$ \begin{equation*} F=m a \tag{8.4} \end{equation*} $$
बल का मात्रक $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$ है, इसे न्यूटन (आइजक न्यूटन के नाम पर) भी कहते हैं, जिसे $\mathrm{N}$ द्वारा प्रदर्शित किया जाता है। गति के द्वितीय नियम से हमें किसी वस्तु पर लगने वाले बल को मापने की विधि मिलती है। बल को उस वस्तु में उत्पन्न त्वरण तथा वस्तु के द्रव्यमान के गुणनफल से प्राप्त किया जाता है।
गति के द्वितीय नियम का प्रयोग हम अपने दैनिक जीवन में प्रायः देखते हैं। क्या आपने क्रिकेट मैच के दौरान मैदान में क्षेत्ररक्षक को तेज़ गति से आ रही गेंद को लपकते समय हाथ को पीछे की ओर खींचते देखा है? इस प्रकार से क्षेत्ररक्षक गेंद के वेग को शून्य करने में अधिक समय लगाता है। इस प्रकार गेंद में संवेग परिवर्तन की दर कम हो जाती है। इस कारण तेज़ गति से आ रही गेंद का प्रभाव हाथ पर कम पड़ता है। अगर गेंद को अचानक रोका जाता है तो तीव्र गति से आ रही गेंद का वेग बहुत कम समय में शून्य होता है अर्थात् गेंद के संवेग में परिवर्तन की दर अधिक होगी, इसलिए कैच लपकने में अधिक बल लगाना होगा जिससे हो सकता है कि खिलाड़ी की हथेली में चोट लग जाए। ऊँची कूद वाले मैदान में, खिलाड़ियों को कुशन या बालू पर कूदना होता है। ऐसा खिलाड़ियों के छलाँग लगाने के बाद गिरने के समय को बढ़ाने के लिए किया जाता है। इस स्थिति में संवेग में परिवर्तन की दर कम होती है। सोचो कि कैसे कराटे का एक खिलाड़ी एक ही झटके में बर्फ़ की एक सिल्ली को तोड़ देता है!
चित्र 8.8: क्रिकेट के खेल में कैच लपकने के लिए क्षेत्ररक्षक गेंद के साथ अपने हाथों को धीरे-धीरे पीछे की ओर खींचता है।
गति के द्वितीय नियम के गणितीय सूत्र [समीकरण (8.4)] के उपयोग से गति के प्रथम नियम को गणितीय रूप से प्राप्त किया जा सकता है। समीकरण $(8.4)$ से,
$F=m a$
या $F=\frac{m(v-u)}{t}$
या $F t=m v-m u$
अर्थात् जब $F=0$, तो किसी भी समय $t$ पर, $v=$ $u$ इसका अर्थ यह है कि वस्तु समान वेग $u$ से चलती रहेगी। यदि $u$ शून्य है तो $v$ भी शून्य होगा अर्थात् वस्तु विरामावस्था में ही रहेगी।
उदाहरण 8.1 एक $5 \mathrm{~kg}$ द्रव्यमान वाली वस्तु पर $2 \mathrm{~s}$ के लिए एक नियत बल कार्यरत होता है। यह वस्तु के वेग को $3 \mathrm{~m} / \mathrm{s}$ से बढ़ा कर $7 \mathrm{~m} / \mathrm{s}$ कर देता है। लगाए गए बल की मात्रा ज्ञात करें। यदि इस बल को $5 \mathrm{~s}$ के लिए आरोपित किया जाए, तो वस्तु का अंतिम वेग क्या होगा?
हल:
हमें ज्ञात है: $u=3 \mathrm{~m} \mathrm{~s}^{-1}$ और $v=7 \mathrm{~m} \mathrm{~s}^{-1}$, $t=2 \mathrm{~s}$ और $m=5 \mathrm{~kg}$ समीकरण (8.5) से
$F=\frac{m(v-u)}{t}$
मान रखने पर
$F=5 \mathrm{~kg}\left(7 \mathrm{~m} \mathrm{~s}^{-1}-3 \mathrm{~m} \mathrm{~s}^{-1}\right) / 2 \mathrm{~s}=10 \mathrm{~N}$
अब अगर $5 \mathrm{~s}(t=5 \mathrm{~s})$ तक बल लगाया जाता है तो समीकरण (8.5) को पुनः लिखकर अंतिम वेग प्राप्त किया जा सकता है
$$ v=u+\frac{F t}{m} $$
$u, F, m$ और $t$ का मान रखने पर अंतिम वेग
$$ V=13 \mathrm{~m} \mathrm{~s}^{-1} $$
उदाहरण 8.2 किसमें अधिक बल की आवश्यकता होगी: $2 \mathrm{~kg}$ द्रव्यमान वाली किसी वस्तु को $5 \mathrm{~m} \mathrm{~s}^{-2}$ की दर से त्वरित करने में या $4 \mathrm{~kg}$ द्रव्यमान वाली वस्तु को $2 \mathrm{~m} \mathrm{~s}^{-2}$ की दर से त्वरित करने में?
हल :
समीकरण (8.4) से, $F=m a$
यहाँ $m _{1}=2 \mathrm{~kg} ; a _{1}=5 \mathrm{~m} \mathrm{~s}^{-2}$ तथा $m _{2}=4 \mathrm{~kg} ; a _{2}=2 \mathrm{~m} \mathrm{~s}^{-2}$.
इस प्रकार, $F _{1}=m _{1} a _{1}=2 \mathrm{~kg} \times 5 \mathrm{~m} \mathrm{~s}^{-2}=10 \mathrm{~N}$; तथा $F _{2}=m _{2} a _{2}=4 \mathrm{~kg} \times 2 \mathrm{~m} \mathrm{~s}^{-2}=8 \mathrm{~N}$ $ \Rightarrow F _{1}>F _{2} $ अतः $2 \mathrm{~kg}$ द्रव्यमान की वस्तु को $5 \mathrm{~m} \mathrm{~s}^{-2}$ की दर से त्वरित करने में अधिक बल की आवश्यकता होगी।
उदाहरण 8.3 एक कार $108 \mathrm{~km} / \mathrm{h}$ की गति से चल रही है और ब्रेक लगाने के बाद यह रुकने में $4 \mathrm{~s}$ का समय लेती है। कार पर ब्रेक लगाए जाने के बाद लगने वाले बल की गणना करें। कार का यात्रियों सहित कुल द्रव्यमान $1000 \mathrm{~kg}$ है।
हल:
कार का प्रारंभिक वेग
$$ \begin{aligned} u & =108 \mathrm{~km} / \mathrm{h} \\ & =108 \times 1000 \mathrm{~m} /(60 \times 60 \mathrm{~s}) \\ & =30 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned} $$
तथा कार का अंतिम वेग, $v=0 \mathrm{~m} \mathrm{~s}^{-1}$
कार का कुल द्रव्यमान $=1000 \mathrm{~kg}$ तथा कार को रोकने में लगा समय $t=4 \mathrm{~s}$ तथा समीकरण (8.5) से ब्रेक लगाने वाले बल $F$ का परिमाण $m(v-u) / t$ है।
मान रखने पर,
$F=1000 kg \times(0-30) m s^{-1} / 4 s$
$=-7500 kg m s^{-2}$ या $-7500 N$.
ॠणात्मक चिह्न दर्शाता है कि ब्रेक के द्वारा लगाया गया बल गाड़ी की गति के विपरीत दिशा में आरोपित है।
उदाहरण 8.4 $5 \mathrm{~N}$ का एक बल किसी द्रव्यमान $m _{1}$ को $10 \mathrm{~m} \mathrm{~s}^{-2}$ का त्वरण देता है तथा द्रव्यमान $m _{2}$ को $20 \mathrm{~m} \mathrm{~s}^{-2}$ का त्वरण देता है। अगर दोनों द्रव्यमानों को एक साथ मिला दिया जाए, तो इस बल के द्वारा क्या त्वरण उत्पन्न होगा?
हल:
समीकरण (8.4) से $m _{1}=F / a _{1}$; तथा $m _{2}=F / a _{2}$ यहाँ $a _{1}=10 \mathrm{~m} \mathrm{~s}^{-2}$; $a _{2}=20 \mathrm{~m} \mathrm{~s}^{-2}$ तथा $F=5 \mathrm{~N}$
इस प्रकार, $m _{1}=5 \mathrm{~N} / 10 \mathrm{~m} \mathrm{~s}^{-2}=0.50 \mathrm{~kg}$; तथा $m _{2}=5 \mathrm{~N} / 20 \mathrm{~m} \mathrm{~s}^{-2}=0.25 \mathrm{~kg}$
जब दोनों द्रव्यमानों को एक साथ मिलाया जाता है, पूरा द्रव्यमान $m=0.50 \mathrm{~kg}+0.25 \mathrm{~kg}$ $ =0.75 \mathrm{~kg} $
अब पूरे द्रव्यमान $m$ पर $5 \mathrm{~N}$ बल द्वारा उत्पन्न किया गया त्वरण, $a=F / m=5 \mathrm{~N} / 0.75 \mathrm{~kg}=6.67 \mathrm{~m} \mathrm{~s}^{-2}$
उदाहरण 8.5 एक लंबी मेज़ पर सीधी रेखा में जा रही $20 \mathrm{~g}$ द्रव्यमान की गेंद का वेग-समय ग्राफ़ चित्र 8.9 में दिया गया है।
चित्र 8.9
गेंद को विरामावस्था में लाने के लिए मेज़ द्वारा कितना बल लगेगा?
हल:
गेंद का प्रारंभिक वेग $20 \mathrm{~cm} \mathrm{~s}^{-1}$ है। मेज़ के द्वारा गेंद पर घर्षण बल लगने के कारण गेंद का वेग $10 \mathrm{~s}$ में शून्य हो जाता है। चूँकि वेग-समय ग्राफ़ एक सीधी रेखा है इससे स्पष्ट है कि गेंद एक नियत त्वरित बल के साथ चलती है।
$$ \text { त्वरण, } \begin{aligned} a & =\frac{v-u}{t} \\ & =\left(0 \mathrm{~cm} \mathrm{~s}^{-1}-20 \mathrm{~cm} \mathrm{~s}^{-1}\right) / 10 \mathrm{~s} \\ & =-2 \mathrm{~cm} \mathrm{~s}^{-2}=-0.02 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned} $$
गेंद पर लगा घर्षण बल,
$$ \begin{aligned} F & =m a=(20 / 1000) \mathrm{kg} \times\left(-0.02 \mathrm{~m} \mathrm{~s}^{-2}\right) \\ & =-0.0004 \mathrm{~N} \end{aligned} $$
ॠणात्मक चिह्न दर्शाता है कि गेंद की गति की दिशा के विपरीत मेज़ द्वारा घर्षण बल आरोपित किया जाता है।
8.5 गति का तृतीय नियम
पहले दोनों गति के नियमों से हमें ज्ञात होता है कि कोई प्रयुक्त बल वस्तु की गति की अवस्था में परिवर्तन लाता है तथा इनसे हमें बल को मापने की विधि भी प्राप्त होती है। गति के तीसरे नियम के अनुसार, जब एक वस्तु दूसरी वस्तु पर बल लगाती है तब दूसरी वस्तु द्वारा भी पहली वस्तु पर तात्क्षणिक बल लगाया जाता है। ये दोनों बल परिमाण में सदैव समान लेकिन दिशा में विपरीत होते हैं। इसका तात्पर्य यह है कि बल सदैव युगल रूप में होते हैं। ये बल कभी एक वस्तु पर कार्य नहीं करते बल्कि दो अलग-अलग वस्तुओं पर कार्य करते हैं। फुटबॉल के खेल में प्रायः हम गेंद को तेज़ गति से किक मारने के क्रम में विपक्षी टीम के खिलाड़ी से टकरा जाते हैं। इस क्रम में दोनों खिलाड़ी एक-दूसरे पर बल लगाते हैं, अतएव दोनों ही खिलाड़ी चोटिल होते हैं। दूसरे शब्दों में, किसी एकल बल का अस्तित्व नहीं होता बल्कि ये सदैव युगल रूप में होते हैं। इन दोनों विरोधी बलों को क्रिया तथा प्रतिक्रिया बल कहा जाता है।
माना कि दो स्प्रिंग तुलाएँ एक-दूसरे से जुड़ी हैं, जैसा कि चित्र 8.10 में दर्शाया गया है। तुला $\mathrm{B}$ का स्थिर सिरा दीवार से जुड़ा है। जब तुला $\mathrm{A}$ के मुक्त सिरे पर बल लगाया जाता है तब हम पाते हैं कि दोनों तुलाएँ एक ही मान दर्शाती हैं। अर्थात् तुला $A$ द्वारा तुला $B$ पर प्रयुक्त बल तुला $B$ के द्वारा तुला $A$ पर लगाए गए बल के परिमाण में समान है परंतु इन दोनों बलों की दिशाएँ परस्पर विपरीत हैं। इन दोनों बलों में से कोई एक बल क्रिया और दूसरा बल प्रतिक्रिया कहलाता है। अतः गति के तृतीय नियम को इस प्रकार भी व्यक्त किया जाता है: किसी भी क्रिया के लिए ठीक उसके समान किंतु विपरीत दिशा में प्रतिक्रिया होती है। यद्यपि यह अवश्य याद रखना चाहिए कि क्रिया और प्रतिक्रिया बल सदैव दो अलग-अलग वस्तुओं पर एक साथ कार्य करते हैं।
चित्र 8.10: क्रिया तथा प्रतिक्रिया बल समान तथा विपरीत होते हैं।
माना कि आप विश्राम की अवस्था में हैं और सड़क पर चलना प्रारंभ करते हैं। द्वितीय नियम के अनुसार इसके लिए एक बल की आवश्यकता होती है, जो आपके शरीर में त्वरण उत्पन्न करता है। यह कौन-सा बल है? क्या यह पेशीय बल है जो आप सड़क पर लगाते हैं? क्या यह बल हम उसी दिशा में लगाते हैं जिस दिशा में हम आगे बढ़ते हैं? नहीं, हम नीचे पृथ्वी की सतह को अपने पैरों से पीछे धकेलते हैं। सड़क भी आपके पैर पर उतना ही बल विपरीत दिशा में लगाती है जिसके प्रभाव से आप आगे बढ़ते हैं।
यह जानना आवश्यक है कि यद्यपि क्रिया और प्रतिक्रिया बल मान में हमेशा समान होते हैं फिर भी ये बल एकसमान परिमाण के त्वरण उत्पन्न नहीं कर सकते। ऐसा इसलिए है क्योंकि प्रत्येक बल अलगअलग द्रव्यमान की वस्तुओं पर कार्य करते हैं।
बंदूक से गोली छोड़ने की अवस्था में, बंदूक द्वारा गोली पर आगे की ओर एक बल निरूपित होता है। गोली भी बंदूक पर एकसमान परंतु विपरीत दिशा में बल लगाती है। इससे बंदूक पीछे की ओर प्रतिक्षेपित होती है (चित्र 8.11)। चूँकि बंदूक का द्रव्यमान गोली के द्रव्यमान से बहुत अधिक होता है, इसलिए बंदूक का त्वरण गोली के त्वरण से काफी कम होता है। एक नाविक द्वारा नाव से आगे की ओर कूदने की स्थिति में भी, गति के तीसरे नियम को प्रदर्शित किया जा सकता है। नाविक आगे की ओर कूदता है तो नाव पर लगने वाला प्रतिक्रिया बल नाव को पीछे की ओर धकेलता है (चित्र 8.12)।
चित्र 8.11: गोली पर लगने वाला त्वरित बल तथा बंदूक का
चित्र 8.12: नाविक के आगे की ओर कूदने की स्थिति में नाव पीछे की ओर गति करती है।
क्रियाकलाप 8.4
-
दो बच्चों को पहिए वाली गाड़ी पर खड़ा होने को कहें जैसा कि चित्र 8.13 में दर्शाया गया है।
-
उन्हें बालू से भरा थैला या कोई भारी वस्तु दे दें। अब उन्हें थैले को लपकते हुए खेलने को कहें।
-
क्या बालू के थैले को फेंकने के कारण उसमें से प्रत्येक तात्क्षणिक बल का अनुभव करते हैं?
-
आप गाड़ी के पहिए पर कोई सफेद रेखा खींच दें, ताकि जब वे दोनों बच्चे थैले को फेंके तो गाड़ी की गति का अवलोकन किया जा सके।
चित्र 8.13
अब दो बच्चों को किसी एक गाड़ी पर खड़ा कर दें तथा एक अन्य बच्चे को दूसरी गाड़ी पर। आप यहाँ गति के द्वितीय नियम को देख सकते हैं, क्योंकि इस अवस्था में यह बल अलग-अलग त्वरण उत्पन्न करेगा।
इस क्रिया में दिखाई गई गाड़ी $50 \mathrm{~cm} \times 100 \mathrm{~cm}$ आकार के $12 \mathrm{~mm}$ या $18 \mathrm{~mm}$ मोटे प्लाइबोर्ड में दो जोड़े पहिए लगाकर बनाई जा सकती है। स्केटबोर्ड प्रभावी नहीं होगा क्योंकि इसका सीधी रेखा में गति करना कठिन है।
आपने क्या सीखा
-
गति का प्रथम नियमः वस्तु अपनी विरामावस्था अथवा सरल रेखा पर एक समान गति की अवस्था में तब तक बनी रहती है, जब तक उस पर कोई असंतुलित बल कार्य न करे।
-
वस्तुओं द्वारा अपनी गति की अवस्था में परिवर्तन का प्रतिरोध करने की प्रवृत्ति को जड़त्व कहते हैं।
-
किसी वस्तु का द्रव्यमान उसके जड़त्व की माप है। इसका SI मात्रक किलोग्राम $(\mathrm{kg})$ है।
-
घर्षण बल सदैव वस्तु की गति का प्रतिरोध करता है।
-
गति का द्वितीय नियम: किसी वस्तु के संवेग परिवर्तन की दर वस्तु पर आरोपित असंतुलित बल के समानुपाती एवं बल की दिशा में होती है।
-
बल का SI मात्रक $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$ है। इसे न्यूटन के नाम से भी जाना जाता है तथा प्रतीक $\mathrm {N}$ द्वारा व्यक्त किया जाता है। 1 न्यूटन का बल किसी $1 \mathrm{~kg}$ द्रव्यमान की वस्तु में $1 \mathrm{~m} \mathrm {~s}^{-2}$ का त्वरण उत्पन्न करता है।
-
वस्तु का संवेग, उसके द्रव्यमान एवं वेग का गुणनफल होता है तथा इसकी दिशा वही होती है, जो वस्तु के वेग की होती है। इसका SI मात्रक $\mathrm{kg} \mathrm{m} \mathrm{s}{ }^{-1}$ होता है।
-
गति का तृतीय नियम: प्रत्येक क्रिया के समान एवं विपरीत प्रतिक्रिया होती है। ये दो विभिन्न वस्तुओं पर कार्य करती हैं।
अभ्यास
1. कोई वस्तु शून्य बाह्य असंतुलित बल अनुभव करती है। क्या किसी भी वस्तु के लिए अशून्य वेग से गति करना संभव है? यदि हाँ, तो वस्तु के वेग के परिमाण एवं दिशा पर लगने वाली शर्तों का उल्लेख करें। यदि नहीं, तो कारण स्पष्ट करें।
Show Answer
missing2. जब किसी छड़ी से एक दरी (कार्पेट) को पीटा जाता है, तो धूल के कण बाहर आ जाते हैं। स्पष्ट करें।
Show Answer
missing3. बस की छत पर रखे सामान को रस्सी से क्यों बाँधा जाता है?
Show Answer
missing4. किसी बल्लेबाज द्वारा क्रिकेट की गेंद को मारने पर गेंद ज़मीन पर लुढ़कती है। कुछ दूरी चलने के पश्चात् गेंद रुक जाती है। गेंद रुकने के लिए धीमी होती है, क्योंकि
(a) बल्लेबाज ने गेंद को पर्याप्त प्रयास से हिट नहीं किया है।
(b) वेग गेंद पर लगाए गए बल के समानुपाती है।
(c) गेंद पर गति की दिशा के विपरीत एक बल कार्य कर रहा है।
(d) गेंद पर कोई असंतुलित बल कार्यरत नहीं है, अतः गेंद विरामावस्था में आने के लिए प्रयासरत है।
Show Answer
missing5. एक ट्रक विरामावस्था से किसी पहाड़ी से नीचे की ओर नियत त्वरण से लुढ़कना शुरू करता है। यह $20 \mathrm{~s}$ में $400 \mathrm{~m}$ की दूरी तय करता है। इसका त्वरण ज्ञात करें। अगर इसका द्रव्यमान 7 टन है तो इस पर लगने वाले बल की गणना करें। ( 1 टन $=1000 \mathrm{~kg}$ )।
Show Answer
missing6. $1 \mathrm{~kg}$ द्रव्यमान के एक पत्थर को $20 \mathrm{~m} \mathrm{~s}^{-1}$ के वेग से झील की जमी हुई सतह पर फेंका जाता है। पत्थर $50 \mathrm{~m}$ की दूरी तय करने के बाद रुक जाता है। पत्थर और बर्फ़ के बीच लगने वाले घर्षण बल की गणना करें।
Show Answer
missing7. एक $8000 \mathrm{~kg}$ द्रव्यमान का रेल इंजन प्रति $2000 \mathrm{~kg}$ द्रव्यमान वाले पाँच डिब्बों को सीधी पटरी पर खींचता है। यदि इंजन $40000 \mathrm{~N}$ का बल आरोपित करता है तथा यदि पटरी $5000 \mathrm{~N}$ का घर्षण बल लगाती है, तो ज्ञात करें:
(a) नेट त्वरण बल तथा
(b) रेल का त्वरण
Show Answer
missing8. एक गाड़ी का द्रव्यमान $1500 \mathrm{~kg}$ है। यदि गाड़ी को $1.7 \mathrm{~m} \mathrm{~s}^{-2}$ के ॠणात्मक त्वरण (अवमंदन) के साथ विरामावस्था में लाना है, तो गाड़ी तथा सड़क के बीच लगने वाला बल कितना होगा?
Show Answer
missing9. किसी $m$ द्रव्यमान की वस्तु जिसका वेग $v$ है का संवेग क्या होगा?
(a) $(m v)^{2}$
(b) $m v^{2}$
(c) $(1 / 2) m v^{2}$
(d) $m v$
Show Answer
missing10. हम एक लकड़ी के बक्से को $200 \mathrm{~N}$ बल लगाकर उसे नियत वेग से फ़र्श पर धकेलते हैं। बक्से पर लगने वाला घर्षण बल क्या होगा?
Show Answer
missing11. गति के तृतीय नियम के अनुसार जब हम किसी वस्तु को धक्का देते हैं, तो वस्तु उतने ही बल के साथ हमें भी विपरीत दिशा में धक्का देती है। यदि वह वस्तु एक ट्रक है जो सड़क के किनारे खड़ा है; संभवतः हमारे द्वारा बल आरोपित करने पर भी गतिशील नहीं हो पाएगा। एक विद्यार्थी इसे सही साबित करते हुए कहता है कि दोनों बल विपरीत एवं बराबर हैं जो एक-दूसरे को निरस्त कर देते हैं। इस तर्क पर अपने विचार दें और बताएँ कि ट्रक गतिशील क्यों नहीं हो पाता?
Show Answer
missing12. $200 \mathrm{~g}$ द्रव्यमान की एक हॉकी की गेंद $10 \mathrm{~m} \mathrm{~s}^{-1}$ से गति कर रही है। यह एक हॉकी स्टिक से इस प्रकार टकराती है कि यह $5 \mathrm{~m} \mathrm{~s}^{-1}$ के वेग से अपने प्रारंभिक मार्ग पर वापस लौटती है। हॉकी स्टिक द्वारा आरोपित बल द्वारा हॉकी की गेंद में आये संवेग परिवर्तन के परिमाप का परिकलन कीजिए।
Show Answer
missing13. $10 \mathrm{~g}$ द्रव्यमान की एक गोली सीधी रेखा में $150 \mathrm{~m} \mathrm{~s}^{-1}$ के वेग से चलकर एक लकड़ी के गुटके से टकराती है और $0.03 \mathrm{~s}$ के बाद रुक जाती है। गोली लकड़ी को कितनी दूरी तक भेदेगी? लकड़ी के गुटके द्वारा गोली पर लगाए गए बल के परिमाण की गणना करें।
Show Answer
missing14. एक वस्तु जिसका द्रव्यमान $1 \mathrm{~kg}$ है, $10 \mathrm{~m} \mathrm{~s}^{-1}$ के वेग से एक सीधी रेखा में चलते हुए विरामावस्था में रखे $5 \mathrm{~kg}$ द्रव्यमान के एक लकड़ी के गुटके से टकराती है। उसके बाद दोनों साथ-साथ उसी सीधी रेखा में गति करते हैं। संघट्ट के पहले तथा बाद के कुल संवेगों की गणना करें। आपस में जुड़े हुए संयोजन के वेग की भी गणना करें।
Show Answer
missing15. $100 \mathrm{~kg}$ द्रव्यमान की एक वस्तु का वेग समान त्वरण से चलते हुए $6 \mathrm{~s}$ में $5 \mathrm{~m} \mathrm{~s}^{-1}$ से $8 \mathrm{~m} \mathrm{~s}^{-1}$ हो जाता है। वस्तु के पहले और बाद के संवेगों की गणना करें। उस बल के परिमाण की गणना करें जो उस वस्तु पर आरोपित है।
Show Answer
missing16. अख़्तर, किरण और राहुल किसी राजमार्ग पर बहुत तीव्र गति से चलती हुई कार में सवार हैं, अचानक उड़ता हुआ कोई कीड़ा, गाड़ी के सामने के शीशे से आ टकराया और वह शीशे से चिपक गया। अख़्तर और किरण इस स्थिति पर विवाद करते हैं। किरण का मानना है कि कीड़े के संवेग परिवर्तन का परिमाण कार के संवेग परिवर्तन के परिमाण की अपेक्षा बहुत अधिक है। (क्योंकि कीड़े के वेग में परिवर्तन का मान कार के वेग में परिवर्तन के मान से बहुत अधिक है।) अख़्तर ने कहा कि चूँकि कार का वेग बहुत अधिक था अतः कार ने कीड़े पर बहुत अधिक बल लगाया जिसके कारण कीड़े की मौत हो गई। राहुल ने एक नया तर्क देते हुए कहा कि कार तथा कीड़ा दोनों पर समान बल लगा और दोनों के संवेग में बराबर परिवर्तन हुआ। इन विचारों पर अपनी प्रतिक्रिया दें।
Show Answer
missing17. एक $10 \mathrm{~kg}$ द्रव्यमान की घंटी $80 \mathrm{~cm}$ की ऊँचाई से फ़र्श पर गिरी। इस अवस्था में घंटी द्वारा फ़र्श पर स्थानांतरित संवेग के मान की गणना करें। परिकलन में सरलता हेतु नीचे की ओर दिष्ट त्वरण का मान $10 \mathrm{~m} \mathrm{~s}^{-2}$ लें।
Show Answer
missingअतिरिक्त अभ्यास
A1. एक वस्तु की गति की अवस्था में दूरी समय सारणी निम्नवत् है:
समय (सेकंड) | दूरी (मीटर) |
---|---|
1 | 1 |
2 | 8 |
3 | 27 |
4 | 64 |
5 | 125 |
6 | 216 |
7 | 343 |
(a) त्वरण के बारे में आप क्या निष्कर्ष निकाल सकते हैं? क्या यह नियत है? बढ़ रहा है? घट रहा है? या शून्य है?
(b) आप वस्तु पर लगने वाले बल के बारे में क्या निष्कर्ष निकाल सकते हैं?
Show Answer
missingA2. $1200 \mathrm{~kg}$ द्रव्यमान की कार को एक समतल सड़क पर दो व्यक्ति समान वेग से धक्का देते हैं। उसी कार को तीन व्यक्तियों द्वारा धक्का देकर $0.2 \mathrm{~m} \mathrm{~s}^{-2}$ का त्वरण उत्पन्न किया जाता है। कितने बल के साथ प्रत्येक व्यक्ति कार को धकेल पाते हैं। (मान लें कि सभी व्यक्ति समान पेशीय बल के साथ कार को धक्का देते हैं।)
Show Answer
missingA3. $500 \mathrm{~g}$ द्रव्यमान के एक हथौड़े द्वारा $50 \mathrm{~m} \mathrm{~s}^{-1}$ वेग से एक कील पर प्रहार किया जाता है। कील द्वारा हथौड़े को बहुत कम समय $0.01 \mathrm{~s}$ में ही रोक दिया जाता है। कील के द्वारा हथौड़े पर लगाए गए बल का परिकलन करें।
Show Answer
missingA4. एक $1200 \mathrm{~kg}$ द्रव्यमान की मोटरकार $90 \mathrm{~km} / \mathrm{h}$ की वेग से एक सरल रेखा के अनुदिश चल रही है। उसका वेग बाहरी असंतुलित बल लगने के कारण $4 \mathrm{~s}$ में घटकर $18 \mathrm{~km} / \mathrm{h}$ हो जाता है। त्वरण और संवेग में परिवर्तन का परिकलन करें। लगने वाले बल के परिमाण का भी परिकलन करें।