Chapter-07 Motion

In everyday life, we see some objects at rest and others in motion. Birds fly, fish swim, blood flows through veins and arteries, and cars move. Atoms, molecules, planets, stars and galaxies are all in motion. We often perceive an object to be in motion when its position changes with time. However, there are situations where the motion is inferred through indirect evidences. For example, we infer the motion of air by observing the movement of dust and the movement of leaves and branches of trees. What causes the phenomena of sunrise, sunset and changing of seasons? Is it due to the motion of the earth? If it is true, why don’t we directly perceive the motion of the earth?

An object may appear to be moving for one person and stationary for some other. For the passengers in a moving bus, the roadside trees appear to be moving backwards. A person standing on the road-side perceives the bus alongwith the passengers as moving. However, a passenger inside the bus sees his fellow passengers to be at rest. What do these observations indicate?

Most motions are complex. Some objects may move in a straight line, others may take a circular path. Some may rotate and a few others may vibrate. There may be situations involving a combination of these. In this chapter, we shall first learn to describe the motion of objects along a straight line. We shall also learn to express such motions through simple equations and graphs. Later, we shall discuss ways of describing circular motion.

Activity 7.1

  • Discuss whether the walls of your classroom are at rest or in motion.

Activity 7.2

  • Have you ever experienced that the train in which you are sitting appears to move while it is at rest?

  • Discuss and share your experience.

Think and Act

We sometimes are endangered by the motion of objects around us, especially if that motion is erratic and uncontrolled as observed in a flooded river, a hurricane or a tsunami. On the other hand, controlled motion can be a service to human beings such as in the generation of hydro-electric power. Do you feel the necessity to study the erratic motion of some objects and learn to control them?

7.1 Describing Motion

We describe the location of an object by specifying a reference point. Let us understand this by an example. Let us assume that a school in a village is $2 km$ north of the railway station. We have specified the position of the school with respect to the railway station. In this example, the railway station is the reference point. We could have also chosen other reference points according to our convenience. Therefore, to describe the position of an object we need to specify a reference point called the origin.

7.1.1 MOTION ALONG A STRAIGHT LINE

The simplest type of motion is the motion along a straight line. We shall first learn to describe this by an example. Consider the motion of an object moving along a straight path. The object starts its journey from $O$ which is treated as its reference point (Fig. 7.1). Let A, B and C represent the position of the object at different instants. At first, the object moves through $C$ and $B$ and reaches $A$. Then it moves back along the same path and reaches $C$ through $B$. The total path length covered by the object is $OA+AC$, that is $60 km+35 km=95 km$. This is the distance covered by the object. To describe distance we need to specify only the numerical value and not the direction of motion. There are certain quantities which are described by specifying only their numerical values. The numerical value of a physical quantity is its magnitude. From this example, can you find out the distance of the final position $C$ of the object from the initial position $O$ ? This difference will give you the numerical value of the displacement of the object from $O$ to $C$ through $A$. The shortest distance measured from the initial to the final position of an object is known as the displacement.

Fig. 7.1: Positions of an object on a straight line path

Can the magnitude of the displacement be equal to the distance travelled by an object? Consider the example given in (Fig. 7.1). For motion of the object from $O$ to $A$, the distance covered is $60 km$ and the magnitude of displacement is also $60 km$. During its motion from $O$ to $A$ and back to $B$, the distance covered $=60 km+25 km=85 km$ while the magnitude of displacement $=35 km$. Thus, the magnitude of displacement $(35 km)$ is not equal to the path length $(85 km)$. Further, we will notice that the magnitude of the displacement for a course of motion may be zero but the corresponding distance covered is not zero. If we consider the object to travel back to $O$, the final position concides with the initial position, and therefore, the displacement is zero. However, the distance covered in this journey is $OA+AO=60 km+$ $60 km=120 km$. Thus, two different physical quantities - the distance and the displacement, are used to describe the overall motion of an object and to locate its final position with reference to its initial position at a given time.

Activity 7.3

  • Take a metre scale and a long rope. Walk from one corner of a basket-ball court to its oppposite corner along its sides.

  • Measure the distance covered by you and magnitude of the displacement.

  • What difference would you notice between the two in this case?

Activity 7.4

  • Automobiles are fitted with a device that shows the distance travelled. Such a device is known as an odometer. A car is driven from Bhubaneshwar to New Delhi. The difference between the final reading and the initial reading of the odometer is $1850 km$.

  • Find the magnitude of the displacement between Bhubaneshwar and New Delhi by using the Road Map of India.

Questions

1. An object has moved through a distance. Can it have zero displacement? If yes, support your answer with an example.

Show Answer

Answer

Yes, an object can have zero displacement even when it has moved through a distance.This happens when final position of the object coincides with its initial position. For example, if a person moves around park and stands on place from where he started then here displacement will be zero.

2. A farmer moves along the boundary of a square field of side $10 m$ in $40 s$. What will be the magnitude of displacement of the farmer at the end of 2 minutes 20 seconds from his initial position?

Show Answer

Answer

Given, Side of the square field $=10 m$

Therefore, perimeter $=10 m \times 4=40 m$

Farmer moves along the boundary in 40 s.

Displacement after $2 m 20 s=2 \times 60 s+20 s=140 s=$ ?

Since in $40 s$ farmer moves $40 m$

Therefore, in 1s distance covered by farmer $=40 / 40 m=1 m$

Therefore, in 140s distance covered by farmer $=1 \times 140 m=140 mNow$, number of rotation to cover 140 along the boundary= Total Distance / Perimeter

$=140 m / 40 m=3.5$ round

Thus, after 3.5 round farmer will at point $C$ of the field.

Therefore. Displacement $A C=\sqrt{(10 m)^{2}+(10 m)^{2}}$

$=\sqrt{100 m^{2}+100 m^{2}}$

$=\sqrt{200 m^{2}}$

$=10 \sqrt{2} m$

$=10 \times 1.414=14.14 m$

Thus, after 2 min 20 seconds the displacement of farmer will be equal to $14.14 m$ north east from intial position.

3. Which of the following is true for displacement?

(a) It cannot be zero.

(b) Its magnitude is greater than the distance travelled by the object.

Show Answer

Answer

None of the statement is true for displacement First statement is false because displacement can be zero. Second statement is also false because displacement is less than or equal to the distance travelled by the object.

7.1.2 UNIFORM MOTION AND NONUNIFORM MOTION

Consider an object moving along a straight line. Let it travel $5 m$ in the first second, $5 m$ more in the next second, $5 m$ in the third second and $5 m$ in the fourth second. In this case, the object covers $5 m$ in each second. As the object covers equal distances in equal intervals of time, it is said to be in uniform motion. The time interval in this motion should be small. In our day-to-day life, we come across motions where objects cover unequal distances in equal intervals of time, for example, when a car is moving on a crowded street or a person is jogging in a park. These are some instances of non-uniform motion.

Activity 7.5

  • The data regarding the motion of two different objects A and B are given in Table 7.1.

  • Examine them carefully and state whether the motion of the objects is uniform or non-uniform.

Table 7.1

Time Distance travelled by object A in $\mathbf{~ m}$ Distance travelled by object B in $\mathbf{~ m}$
9:30 am 10 12
9:45 am 20 19
10:00 am 30 23
10:15 am 40 35
10:30 am 50 37
10:45 am 60 41
11:00 am 70 44

7.2 Measuring the Rate of Motion

Fig. 7.2 (b)

Look at the situations given in Fig. 7.2. If the bowling speed is $143 km h^{-1}$ in Fig. 7.2 (a) what does it mean? What do you understand from the signboard in Fig. 7.2(b)?

Different objects may take different amounts of time to cover a given distance. Some of them move fast and some move slowly. The rate at which objects move can be different. Also, different objects can move at the same rate. One of the ways of measuring the rate of motion of an object is to find out the distance travelled by the object in unit time. This quantity is referred to as speed. The SI unit of speed is metre per second. This is represented by the symbol $m s^{-1}$ or $m / s$. The other units of speed include centimetre per second $(cm s^{-1})$ and kilometre per hour $(km h^{-1})$. To specify the speed of an object, we require only its magnitude. The speed of an object need not be constant. In most cases, objects will be in non-uniform motion. Therefore, we describe the rate of motion of such objects in terms of their average speed. The average speed of an object is obtained by dividing the total distance travelled by the total time taken. That is,

$$ \text{ average speed }=\frac{\text{ Total distance travelled }}{\text{ Total time taken }} $$

If an object travels a distance $s$ in time $t$ then its speed $v$ is,

$$ \begin{equation*} V=\frac{s}{t} \tag{7.1} \end{equation*} $$

Let us understand this by an example. A car travels a distance of $100 km$ in $2 h$. Its average speed is $50 km h^{-1}$. The car might not have travelled at $50 km h^{-1}$ all the time. Sometimes it might have travelled faster and sometimes slower than this.

Example 7 .1 An object travels $16 m$ in $4 s$ and then another $16 m$ in $2 s$. What is the average speed of the object?

Solution:

Total distance travelled by the object $=$ $16 m+16 m=32 m$

Total time taken $=4 s+2 s=6 s$

$ \begin{aligned} \text{ Average speed } & =\frac{\text{ Total distance travelled }}{\text{ Total time taken }} \\ & =\frac{32 m}{6 s}=5.33 m s^{-1} \end{aligned} $

Therefore, the average speed of the object is $5.33 m s^{-1}$.

7.2.1 SPEED WITH DIRECTION

The rate of motion of an object can be more comprehensive if we specify its direction of motion along with its speed. The quantity that specifies both these aspects is called velocity. Velocity is the speed of an object moving in a definite direction. The velocity of an object can be uniform or variable. It can be changed by changing the object’s speed, direction of motion or both. When an object is moving along a straight line at a variable speed, we can express the magnitude of its rate of motion in terms of average velocity. It is calculated in the same way as we calculate average speed.

In case the velocity of the object is changing at a uniform rate, then average velocity is given by the arithmetic mean of initial velocity and final velocity for a given period of time. That is,

average velocity $=\frac{\text{ initial velocity }+ \text{ final velocity }}{2}$

$V _{a v}=\frac{u+v}{2} \tag{7.2}$

where $v_{a v}$ is the average velocity, $u$ is the initial velocity and $v$ is the final velocity of the object.

Speed and velocity have the same units, that is, $m s^{-1}$ or $m / s$.

Activity 7.6

  • Measure the time it takes you to walk from your house to your bus stop or the school. If you consider that your average walking speed is $4 km h^{-1}$, estimate the distance of the bus stop or school from your house.

Activity 7.7

  • At a time when it is cloudy, there may be frequent thunder and lightning. The sound of thunder takes some time to reach you after you see the lightning.

  • Can you answer why this happens? Measure this time interval using a digital wrist watch or a stop watch.

  • Calculate the distance of the nearest point of lightning. (Speed of sound in air $=346 m s^{-1}$.)

Questions

1. Distinguish between speed and velocity.

Show Answer

Answer

Speed Velocity
Speed is the distance travelled by
an object in a given interval of
time.
Velocity is the displacement of an
object in a given interval of time.
Speed = distance / time Velocity = displacement / time
Speed is scalar quantity i.e. it has
only magnitude.
Velocity is vector quantity i.e. it has
both magnitude as well as
direction.

2. Under what condition(s) is the magnitude of average velocity of an object equal to its average speed?

Show Answer

Answer

The magnitude of average velocity of an object is equal to its average speed, only when an object is moving in a straight line.

3. What does the odometer of an automobile measure?

Show Answer

Answer

The odometer of an automobile measures the distance covered by an automobile.

4. What does the path of an object look like when it is in uniform motion?

Show Answer

Answer

An object having uniform motion has a straight line path.

5. During an experiment, a signal from a spaceship reached the ground station in five minutes. What was the distance of the spaceship from the ground station? The signal travels at the speed of light, that is, $3 \times 10^{8}$ $m s^{-1}$

Show Answer

Answer

Speed $=3 \times 10^{8} m s^{-1}$

Time $=5 \min =5 \times 60=300$ secs. Distance $=$ Speed $\times$ Time

Distance $=3 \times 10^{8} m s^{-1} \times 300$ secs. $=9 \times 10^{10} m$

Example 7.2 The odometer of a car reads $2000 km$ at the start of a trip and $2400 km$ at the end of the trip. If the trip took $8 h$, calculate the average speed of the car in $km h^{-1}$ and $m s^{-1}$.

Solution:

Distance covered by the car, $s=2400 km-2000 km=400 km$ Time elapsed, $t=8 h$

Average speed of the car is,

$$ \begin{aligned} V _{a v} & =\frac{s}{t}=\frac{400 km}{8 h} \\ & =50 km h^{-1} \end{aligned} $$

$$ \begin{aligned} & =50 \frac{km}{h} \times \frac{1000 m}{1 km} \times \frac{1 h}{3600 s} \\ & =13.9 m s^{-1} \end{aligned} $$

The average speed of the car is $50 km h^{-1}$ or $13.9 m s^{-1}$.

Example 7.3 Usha swims in a $90 m$ long pool. She covers $180 m$ in one minute by swimming from one end to the other and back along the same straight path. Find the average speed and average velocity of Usha.

Solution:

Total distance covered by Usha in $1 min$ is $180 m$.

Displacement of Usha in $1 min=0 m$

Average speed $=\frac{\text{ Total distance covered }}{\text{ Total time taken }}$

$$ \begin{aligned} & =\frac{180 m}{1 min}=\frac{180 m}{1 min} \times \frac{1 min}{60 s} \\ & =3 m s^{-1} \end{aligned} $$

Average velocity $=\frac{\text{ Displacement }}{\text{ Total timetaken }}$

$$ \begin{aligned} & =\frac{0 \mathrm{~m}}{60 \mathrm{~s}} \\ & =0 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned} $$

The average speed of Usha is $3 m s^{-1}$ and her average velocity is $0 m s^{-1}$.

7.3 Rate of Change of Velocity

During uniform motion of an object along a straight line, the velocity remains constant with time. In this case, the change in velocity of the object for any time interval is zero. However, in non-uniform motion, velocity varies with time. It has different values at different instants and at different points of the path. Thus, the change in velocity of the object during any time interval is not zero. Can we now express the change in velocity of an object?

To answer such a question, we have to introduce another physical quantity called acceleration, which is a measure of the change in the velocity of an object per unit time. That is,

$$ \text{ acceleration }=\frac{\text{ change in velocity }}{\text{ time taken }} $$

If the velocity of an object changes from an initial value $u$ to the final value $v$ in time $t$, the acceleration $a$ is,

$$ \begin{equation*} a=\frac{v-u}{t} \tag{7.3} \end{equation*} $$

This kind of motion is known as accelerated motion. The acceleration is taken to be positive if it is in the direction of velocity and negative when it is opposite to the direction of velocity. The SI unit of acceleration is $m s^{-2}$.

If an object travels in a straight line and its velocity increases or decreases by equal amounts in equal intervals of time, then the acceleration of the object is said to be uniform. The motion of a freely falling body is an example of uniformly accelerated motion. On the other hand, an object can travel with non-uniform acceleration if its velocity changes at a non-uniform rate. For example, if a car travelling along a straight road increases its speed by unequal amounts in equal intervals of time, then the car is said to be moving with non-uniform acceleration.

Activity 7.8

In your everyday life you come across a range of motions in which

(a) acceleration is in the direction of motion,

(b) acceleration is against the direction of motion,

(c) acceleration is uniform,

(d) acceleration is non-uniform.

  • Can you identify one example each for the above type of motion?

Example 7.4 Starting from a stationary position, Rahul paddles his bicycle to attain a velocity of $6 m s^{-1}$ in $30 s$. Then he applies brakes such that the velocity of the bicycle comes down to $4 m s^{-1}$ in the next $5 s$. Calculate the acceleration of the bicycle in both the cases.

Solution:

In the first case:

initial velocity, $u=0$;

final velocity, $v=6 m s^{-1}$;

time, $t=30 s$.

From Eq. (8.3), we have

$$ a=\frac{v-u}{t} $$

Substituting the given values of $u, v$ and $t$ in the above equation, we get

$$ \begin{aligned} a & =\frac{(6 m s^{-1}-0 m s^{-1})}{30 s} \\ & =0.2 m s^{-2} \end{aligned} $$

In the second case:

initial velocity, $u=6 m s^{-1}$;

final velocity, $v=4 m s^{-1}$;

time, $t=5 s$.

Then, $a=\frac{\left(4 \mathrm{~m} \mathrm{~s}^{-1}-6 \mathrm{~m} \mathrm{~s}^{-1}\right)}{5 \mathrm{~s}}$ $$ =-0.4 \mathrm{~m} \mathrm{~s}^{-2} \text {. } $$

The acceleration of the bicycle in the first case is $0.2 m s^{-2}$ and in the second case, it is $-0.4 m s^{-2}$.

Questions

1. When will you say a body is in (i) uniform acceleration? (ii) nonuniform acceleration?

Show Answer

Answer

(i) A body is said to be in uniform acceleration if it travels in a straight line and its velocity increases or decreases by equal amounts in equal intervals of time.

(ii) A body is said to be in nonuniform acceleration if the rate of change of its velocity is not constant.

2. A bus decreases its speed from $ \text{80km} h^{-1} $ to $ \text{60km} h^{-1} $ in 5 s. Find the acceleration of the bus.

Show Answer

Answer

Initial speed of the bus, $u=80 km / h=80 \times \frac{5}{18}=22.22 m / s$

Final speed of the bus, $v=60 km / h=60 \times \frac{5}{18}=16.66 m / s$

Time take to decrease the speed, $t=5 s$

Acceleration, $a=\frac{v-u}{t} \quad=\frac{16.66-22.22}{5}=-1.112 m / s^{2}$

3. A train starting from a railway station and moving with uniform acceleration attains a speed 40 km h–1 in 10 minutes. Find its acceleration.

Show Answer

Answer

Initial velocity of the train, $u=0$

Final velocity of the train, $v=40 km / h \quad=40 \times \frac{5}{18}=11.11 m / s$

Time taken, $t=10 min=10 \times 60=600 s$

Acceleration, $a=\frac{v-u}{t}=\frac{11.11-0}{600}=0.0185 m / s^{2}$

Hence, the acceleration of the train is $0.0185 m / s^{2}$.

7.4 Graphical Representation of Motion

Graphs provide a convenient method to present basic information about a variety of events. For example, in the telecast of a one-day cricket match, vertical bar graphs show the run rate of a team in each over. As you have studied in mathematics, a straight line graph helps in solving a linear equation having two variables.

To describe the motion of an object, we can use line graphs. In this case, line graphs show dependence of one physical quantity, such as distance or velocity, on another quantity, such as time.

7.4.1 DISTANCE-TIME GRAPHS

The change in the position of an object with time can be represented on the distance-time graph adopting a convenient scale of choice. In this graph, time is taken along the $x$-axis and distance is taken along the $y$-axis. Distance-time graphs can be employed under various conditions where objects move with uniform speed, non-uniform speed, remain at rest etc.

Fig. 7.3: Distance-time graph of an object moving with uniform speed

We know that when an object travels equal distances in equal intervals of time, it moves with uniform speed. This shows that the

distance travelled by the object is directly proportional to time taken. Thus, for uniform speed, a graph of distance travelled against time is a straight line, as shown in Fig. 7.3. The portion OB of the graph shows that the distance is increasing at a uniform rate. Note that, you can also use the term uniform velocity in place of uniform speed if you take the magnitude of displacement equal to the distance travelled by the object along the $y$-axis.

We can use the distance-time graph to determine the speed of an object. To do so, consider a small part $AB$ of the distance-time graph shown in Fig 7.3. Draw a line parallel to the $x$-axis from point $A$ and another line parallel to the $y$-axis from point $B$. These two lines meet each other at point $C$ to form a triangle $ABC$. Now, on the graph, $AC$ denotes the time interval $(t_2-t_1)$ while $BC$ corresponds to the distance $(s_2-s_1)$. We can see from the graph that as the object moves from the point A to $B$, it covers a distance $(s_2-s_1)$ in time $(t_2-t_1)$. The speed, $v$ of the object, therefore can be represented as

$$ V=\frac{s_2-s_1}{t_2-t_1} \tag{7.4} $$

We can also plot the distance-time graph for accelerated motion. Table 7.2 shows the distance travelled by a car in a time interval of two seconds.

Table 7.2: Distance travelled by a car at regular time intervals Time in seconds Distance in metres

Time in second Distance in metres
0 0
2 1
4 4
6 9
8 16
10 25
12 36

Fig. 7.4: Distance-time graph for a car moving with non-uniform speed

The distance-time graph for the motion of the car is shown in Fig. 7.4. Note that the shape of this graph is different from the earlier distance-time graph (Fig. 7.3) for uniform motion. The nature of this graph shows nonlinear variation of the distance travelled by the car with time. Thus, the graph shown in Fig 7.4 represents motion with non-uniform speed.

7.4.2 VELOCITY-TIME GRAPHS

The variation in velocity with time for an object moving in a straight line can be represented by a velocity-time graph. In this graph, time is represented along the $x$-axis and the velocity

Fig. 7.5: Velocity-time graph for uniform motion of a car is represented along the $y$-axis. If the object moves at uniform velocity, the height of its velocity-time graph will not change with time (Fig. 7.5). It will be a straight line parallel to the $x$-axis. Fig. 7.5 shows the velocity-time graph for a car moving with uniform velocity of $40 km h^{-1}$.

We know that the product of velocity and time give displacement of an object moving with uniform velocity. The area enclosed by velocity-time graph and the time axis will be equal to the magnitude of the displacement.

To know the distance moved by the car between time $t_1$ and $t_2$ using Fig. 7.5, draw perpendiculars from the points corresponding to the time $t_1$ and $t_2$ on the graph. The velocity of $40 km h^{-1}$ is represented by the height AC or $BD$ and the time $(t_2-t_1)$ is represented by the length $AB$.

So, the distance $s$ moved by the car in time $\left(t _{2}-t _{1}\right)$ can be expressed as

$S= \mathrm{AC} \mathrm{CD} $

$= {\left[\left(40 \mathrm{~km} \mathrm{~h}^{-1}\right) \quad\left(t _{2}-t _{1}\right) \mathrm{h}\right] } $

$= 40\left(t _{2}-t _{1}\right) \mathrm{km} $

$= \text { area of the rectangle ABDC } (\text {Fig. } 7.5 $

We can also study about uniformly accelerated motion by plotting its velocitytime graph. Consider a car being driven along a straight road for testing its engine. Suppose a person sitting next to the driver records its velocity after every 5 seconds by noting the reading of the speedometer of the car. The velocity of the car, in $km h^{-1}$ as well as in $m s^{-1}$, at different instants of time is shown in table 7.3.

Table 7.3: Velocity of a car at regular instants of time

$\underset{(s)}{\text{Times}}$ $\underset{(\text{ms}^{-1}) }{\text{Velocity of the car}}$ $\underset{(\text{kmh}^{-1})}{}$
0 0 0
5 2.5 9
10 5.0 18
15 7.5 27
20 10.0 36
25 12.5 45
30 15.0 54

In this case, the velocity-time graph for the motion of the car is shown in Fig. 7.6. The nature of the graph shows that velocity changes by equal amounts in equal intervals of time. Thus, for all uniformly accelerated motion, the velocity-time graph is a straight line.

Fig. 7.6: Velocity-time graph for a car moving with uniform accelerations.

You can also determine the distance moved by the car from its velocity-time graph. The area under the velocity-time graph gives the distance (magnitude of displacement) moved by the car in a given interval of time. If the car would have been moving with uniform velocity, the distance travelled by it would be represented by the area $A B C D$ under the graph (Fig. 7.6). Since the magnitude of the velocity of the car is changing due to acceleration, the distance $s$ travelled by the car will be given by the area ABCDE under the velocity-time graph (Fig. 7.6). That is,

$ \begin{aligned} S= & \text{ area } ABCDE \\ \end{aligned} $

$ \begin{aligned} = & \text{ area of the rectangle } ABCD+\text{ area of } \\ & \text{ the triangle } ADE \\ = & AB \quad BC+\frac{1}{2}(AD \quad DE) \end{aligned} $

In the case of non-uniformly accelerated motion, velocity-time graphs can have any shape.

(a)

(b)

Fig. 7.7: Velocity-time graphs of an object in nonuniformly accelerated motion.

Fig. 7.7(a) shows a velocity-time graph that represents the motion of an object whose velocity is decreasing with time while Fig. 7.7 (b) shows the velocity-time graph representing the non-uniform variation of velocity of the object with time. Try to interpret these graphs.

Activity 7.9

  • The times of arrival and departure of a train at three stations $A, B$ and $C$ and the distance of stations $B$ and $C$ from station A are given in Table 7.4.

Table 7.4: Distances of stations B and $C$ from $A$ and times of arrival and departure of the train

Station Distance from A (km) Time of arrival (hours) Time of departure (hours)
A 0 $08: 00$ $08: 15$
B 120 $11: 15$ $11: 30$
C 180 $13: 00$ $13: 15$
  • Plot and interpret the distance-time graph for the train assuming that its motion between any two stations is uniform.

Activity 7.10

Feroz and his sister Sania go to school on their bicycles. Both of them start at the same time from their home but take different times to reach the school although they follow the same route. Table 7.5 shows the distance travelled by them in different times

Time Distance travelled by Feroz $(km)$ Distance travelled by Sania $(km)$
8:00 am 0 0
8:05 am 1.0 0.8
8:10 am 1.9 1.6
8:15 am 2.8 2.3
8:20 am 3.6 3.0
8:25 am - 3.6
  • Plot the distance-time graph for their motions on the same scale and interpret.

Questions

1. What is the nature of the distance-time graphs for uniform and non-uniform motion of an object?

Show Answer

Answer

When the motion is uniform, the distance time graph is a straight line with a slope.

When the motion is non uniform, the distance time graph is not a straight line.It can be any curve.

2. What can you say about the motion of an object whose distance-time graph is a straight line parallel to the time axis?

Show Answer

Answer

If distance time graph is a straight line parallel to the time axis, the body is at rest.

3. What can you say about the motion of an object if its speedtime graph is a straight line parallel to the time axis?

Show Answer

Answer

If speed time graph is a straight line parallel to the time axis, the object is moving uniformly.

4. What is the quantity which is measured by the area occupied below the velocity-time graph?

Show Answer

Answer

The area below velocity-time graph gives the distance covered by the object.

7.5 Equations of Motion

When an object moves along a straight line with uniform acceleration, it is possible to relate its velocity, acceleration during motion and the distance covered by it in a certain time interval by a set of equations known as the equations of motion. For convenience, a set of three such equations are given below:

$$ \begin{align*} v & =u+a t \tag{7.5} \\ s & =u t+1 / 2 a t^{2} \tag{7.6} \\ 2 a s & =v^{2}-u^{2} \tag{7.7} \end{align*} $$

where $u$ is the initial velocity of the object which moves with uniform acceleration a for time $t$, $v$ is the final velocity, and $s$ is the distance travelled by the object in time $t$. Eq. (7.5) describes the velocity-time relation and Eq. (7.6) represents the position-time relation. Eq. (7.7), which represents the relation between the position and the velocity, can be obtained from Eqs. (7.5) and (7.6) by eliminating $t$. These three equations can be derived by graphical method.

Example 7.5 A train starting from rest attains a velocity of $72 km h^{-1}$ in 5 minutes. Assuming that the acceleration is uniform, find (i) the acceleration and (ii) the distance travelled by the train for attaining this velocity.

Solution:

We have been given $u=0 ; v=72 \mathrm{~km} \mathrm{~h}^{-1}=20 \mathrm{~m} \mathrm{~s}^{-1}$ and $t=5 \mathrm{~min} .=300 \mathrm{~s}$.

(i) From Eq. (7.5) we know that

$$ \begin{aligned} a & =\frac{(v-u)}{t} \\ & =\frac{20 m s^{-1}-0 m s^{-1}}{300 s} \\ & =\frac{1}{15} m s^{-2} \end{aligned} $$

(ii) From Eq. (7.7) we have

$2 a s=v^{2}-u^{2}=v^{2}-0$

Thus,

$$ \begin{aligned} s & =\frac{v^{2}}{2 a} \\ & =\frac{(20 m s^{-1})^{2}}{2 \times(1 / 15) m s^{-2}} \\ & =3000 m \\ & =3 km \end{aligned} $$

The acceleration of the train is $\frac{1}{15} m s^{-2}$ and the distance travelled is $3 km$.

Example 7.6 A car accelerates uniformly from $18 km h^{-1}$ to $36 km h^{-1}$ in $5 s$. Calculate (i) the acceleration and (ii) the distance covered by the car in that time.

Solution:

We are given that

$$ \begin{aligned} u & =18 km h^{-1}=5 m s^{-1} \\ v & =36 km h^{-1}=10 m s^{-1} \text{ and } \\ t & =5 s . \end{aligned} $$

(i) From Eq. (7.5) we have

$$ \begin{aligned} a & =\frac{v-u}{t} \\ & =\frac{10 m s^{-1}-5 m s^{-1}}{5 s} \\ & =1 m s^{-2} \end{aligned} $$

(ii) From Eq. (7.6) we have

$$ \begin{aligned} s & =u t+\frac{1}{2} a t^{2} \\ & =5 m s^{-1} \times 5 s+\frac{1}{2} \times 1 m s^{-2} \times(5 s)^{2} \\ & =25 m+12.5 m \\ & =37.5 m \end{aligned} $$

The acceleration of the car is $1 m s^{-2}$ and the distance covered is $37.5 m$.

Example 7.7 The brakes applied to a car produce an acceleration of $6 m s^{-2}$ in the opposite direction to the motion. If the car takes $2 s$ to stop after the application of brakes, calculate the distance it travels during this time.

Solution:

We have been given

$a=-6 m s^{-2} ; t=2 s$ and $v=0 m s^{-1}$.

From Eq. (7.5) we know that

$$ \begin{aligned} & v=u+a t \\ & 0=u+(-6 m s^{-2}) \quad 2 s \end{aligned} $$

or $u=12 \mathrm{~m} \mathrm{~s}^{-1}$.

From Eq. (7.6) we get

$ \begin{aligned} s & =u t+\frac{1}{2} a t^{2} \\ & =(12 m s^{-1}) \times(2 s)+\frac{1}{2}(-6 m s^{-2})(2 s)^{2} \\ & =24 m-12 m \\ & =12 m \end{aligned} $

Thus, the car will move $12 m$ before it stops after the application of brakes. Can you now appreciate why drivers are cautioned to maintain some distance between vehicles while travelling on the road?

Questions

1. A bus starting from rest moves with a uniform acceleration of $0.1 m s^{-2}$ for 2 minutes. Find (a) the speed acquired, (b) the distance travelled.

Show Answer

Answer

Initial speed of the bus, $u=0$

Acceleration, $a=0.1 m / s^{2}$

Time taken, $t=2$ minutes $=120 s$

(a) $v=u+a t$

$v=0+0 \times 1 \times 120$

$v=12 ms^{-1}$

(b) According to the third equation of motion:

$v^{2}-u^{2}=2 a s$

Where, $s$ is the distance covered by the bus

$(12)^{2}-(0)^{2}=2(0.1) s$

$s=720 m$

Speed acquired by the bus is $12 m / s$.

Distance travelled by the bus is $720 m$.

2. A train is travelling at a speed of $90 km h^{-1}$. Brakes are applied so as to produce a uniform acceleration of $-0.5 m s^{-2}$. Find how far the train will go before it is brought to rest.

Show Answer

Answer

Initial speed of the train, $u=90 km / h=25 m / s$

Final speed of the train, $v=0$ (finally the train comes to rest)

Acceleration $=-0.5 m s^{-2}$

According to third equation of motion:

$v^{2}=u^{2}+2$ as

$(0)^{2}=(25)^{2}+2(-0.5) s$

Where, $s$ is the distance covered by the train

$ s=\frac{25^{2}}{2(0.5)}=625 m $

The train will cover a distance of $625 m$ before it comes to rest.

3. A trolley, while going down an inclined plane, has an acceleration of $2 cm s^{-2}$. What will be its velocity $3 s$ after the start?

Show Answer

Answer

Initial Velocity of trolley, $u=0 cms^{-1}$

Acceleration, $a=2 cm s^{-2}$

Time, $t=3 s$

We know that final velocity, $v=u+a t=0+2 \times 3 cms^{-1}$

Therefore, The velocity of train after 3 seconds $=6 cms^{-1}$

4. A racing car has a uniform acceleration of $4 m s^{-2}$. What distance will it cover in $10 s$ after start?

Show Answer

Answer

Initial Velocity of the car, $u=0 ms^{-1}$

Acceleration, $a=4 m s^{-2}$

Time, $t=10 s$

We know Distance, $s=u t+(1 / 2) a t^{2}$

Therefore, Distance covered by car in 10 second $=0 \times 10+(1 / 2) \times 4 \times$ 102

$=0+(1 / 2) \times 4 \times 10 \times 10 m$

$=(1 / 2) \times 400 m$

$=200 m$

5. A stone is thrown in a vertically upward direction with a velocity of $5 m s^{-1}$. If the acceleration of the stone during its motion is 10 $m s^{-2}$ in the downward direction, what will be the height attained by the stone and how much time will it take to reach there?

Show Answer

Answer

Given Initial velocity of stone, $u=5 m s^{-1}$

Downward of negative Acceleration, $a=10 m s^{-2}$

We know that $2 a s=v^{2}-u^{2}$

Therefore, Height attained by the stone, $s=\frac{0^{2}}{5^{2}} \times(-10) m$

$=\frac{-25}{-20} m$

$=1.25 m$

Also we know that final velocity, $v=u+at$

or, Time, $t=\frac{v-u}{a}$

Therefore, Time, $t$ taken by stone to attain the height, $s=\frac{0-5}{-10 s}$ $=0.5 s$

7.6 Uniform Circular Motion

When the velocity of an object changes, we say that the object is accelerating. The change in the velocity could be due to change in its magnitude or the direction of the motion or both. Can you think of an example when an object does not change its magnitude of velocity but only its direction of motion?

Fig. 7.8: The motion of an athlete along closed tracks of different shapes.

Let us consider an example of the motion of a body along a closed path. Fig 8.9 (a) shows the path of an athlete along a rectangular track $A B C D$. Let us assume that the athlete runs at a uniform speed on the straight parts $AB, BC, CD$ and $DA$ of the track. In order to keep himself on track, he quickly changes his speed at the corners. How many times will the athlete have to change his direction of motion, while he completes one round? It is clear that to move in a rectangular track once, he has to change his direction of motion four times.

Now, suppose instead of a rectangular track, the athlete is running along a hexagonal shaped path $ABCDEF$, as shown in Fig. 7.8(b). In this situation, the athlete will have to change his direction six times while he completes one round. What if the track was not a hexagon but a regular octagon, with eight equal sides as shown by ABCDEFGH in Fig. 7.8(c)? It is observed that as the number of sides of the track increases the athelete has to take turns more and more often. What would happen to the shape of the track as we go on increasing the number of sides indefinitely? If you do this you will notice that the shape of the track approaches the shape of a circle and the length of each of the sides will decrease to a point. If the athlete moves with a velocity of constant magnitude along the circular path, the only change in his velocity is due to the change in the direction of motion. The motion of the athlete moving along a circular path is, therefore, an example of an accelerated motion.

We know that the circumference of a circle of radius $r$ is given by $2 \pi r$. If the athlete takes $t$ seconds to go once around the circular path of radius $r$, the speed $v$ is given by

$$ \large v=\large\frac{2 \pi r}{t} \tag{7.8} $$

When an object moves in a circular path with uniform speed, its motion is called uniform circular motion.

Activity 7.11

  • Take a piece of thread and tie a small piece of stone at one of its ends. Move the stone to describe a circular path with constant speed by holding the thread at the other end, as shown in Fig. 7.9.

Fig. 7.9: A stone describing a circular path with a velocity of constant magnitude.

  • Now, let the stone go by releasing the thread.

  • Can you tell the direction in which the stone moves after it is released?

  • By repeating the activity for a few times and releasing the stone at different positions of the circular path, check whether the direction in which the stone moves remains the same or not.

If you carefully note, on being released the stone moves along a straight line tangential to the circular path. This is because once the stone is released, it continues to move along the direction it has been moving at that instant. This shows that the direction of motion changed at every point when the stone was moving along the circular path.

When an athlete throws a hammer or a discus in a sports meet, he/she holds the hammer or the discus in his/her hand and gives it a circular motion by rotating his / her own body. Once released in the desired direction, the hammer or discus moves in the direction in which it was moving at the time it was released, just like the piece of stone in the activity described above. There are many more familiar examples of objects moving under uniform circular motion, such as the motion of the moon and the earth, a satellite in a circular orbit around the earth, a cyclist on a circular track at constant speed and so on.

What you have learnt

  • Motion is a change of position; it can be described in terms of the distance moved or the displacement.

  • The motion of an object could be uniform or non-uniform depending on whether its velocity is constant or changing.

  • The speed of an object is the distance covered per unit time, and velocity is the displacement per unit time.

  • The acceleration of an object is the change in velocity per unit time.

  • Uniform and non-uniform motions of objects can be shown through graphs.

  • The motion of an object moving at uniform acceleration can be described with the help of the following equations, namely

    $ \begin{aligned} & v=u+a t \\ & s=u t+1 / 2 a t^{2} \\ & 2 a s=v^{2}-u^{2} \end{aligned} $

    where $u$ is initial velocity of the object, which moves with uniform acceleration a for time $t, v$ is its final velocity and $s$ is the distance it travelled in time $t$.

  • If an object moves in a circular path with uniform speed, its motion is called uniform circular motion.

Exercises

1. An athlete completes one round of a circular track of diameter $200 m$ in $40 s$. What will be the distance covered and the displacement at the end of 2 minutes $20 s$ ?

Show Answer

Answer

Diameter of circular track (D) $=200 m$

Radius of circular track $(r)=200 / 2=100 m$

Time taken by the athlete for one round $(t)=40 s$

Distance covered by athlete in one round $(s)=2 \pi r$

$=2 \times(22 / 7) \times 100$

Speed of the athlete $(v)=$ Distance $/$ Time

$=(2 \times 2200) /(7 \times 40)$

$=4400 / 7 \times 40$

Therefore, Distance covered in $140 s=$ Speed $(s) \times$ Time $(t)$

$=4400 /(7 \times 40) \times(2 \times 60+20)$

$=4400 /(7 \times 40) \times 140$ $=4400 \times 140 / 7 \times 40$

$=2200 m$

Number of round in $40 s=1$ round

Number of round in $140 s=140 / 40$

$=3^{1 / 2}$

After taking start from position $X$, the athlete will be at postion $Y$ after $3 \frac{1}{2}$ rounds as shown in figure

Hence, Displacement of the athlete with respect to initial position at $x=$ xy $=$ Diameter of circular track

$=200 m$

2. Joseph jogs from one end A to the other end B of a straight $300 m$ road in 2 minutes 30 seconds and then turns around and jogs $100 m$ back to point $C$ in another 1 minute. What are Joseph’s average speeds and velocities in jogging (a) from $A$ to $B$ and (b) from $A$ to $C$ ?

Show Answer

Answer

Total Distance covered from $A B=300 m$

Total time taken $=2 \times 60+30 s$

$=150 s$

Therefore, Average Speed from AB = Total Distance / Total Time $=300 / 150 m s^{-1}$

$=2 m s^{-1}$

Therefore, Velocity from AB =Displacement AB $/$ Time $=300 / 150 m s^{-1}$

$=2 m s^{-1}$

Total Distance covered from $A C=A B+B C$

$=300+200 m$

Total time taken from A to C = Time taken for AB + Time taken for BC $=(2 \times 60+30)+60 s$

$=210 s$

Therefore, Average Speed from AC = Total Distance /Total Time

$=400 / 210 m s^{-1}$

$=1.904 m s^{-1}$

Displacement (S) from $A$ to $C=A B-B C$

$=300-100 m$

$=200 m$

Time (t) taken for displacement from AC $=210 s$

Therefore, Velocity from AC = Displacement (s) / Time (t)

$=200 / 210 m s^{-1}$

$=0.952 m s^{-1}$

3. Abdul, while driving to school, computes the average speed for his trip to be $20 km h^{-1}$. On his return trip along the same route, there is less traffic and the average speed is $30 km h^{-1}$. What is the average speed for Abdul’s trip?

Show Answer

Answer

The distance Abdul commutes while driving from Home to School $=S$ Let us assume time taken by Abdul to commutes this distance $=t_1$ Distance Abdul commutes while driving from School to Home $=S$ Let us assume time taken by Abdul to commutes this distance $=t_2$ Average speed from home to school $v _{1 av}=20 km h _{\text{- }}$ Average speed from school to home $v _{2 a v}=30 km h^{-1}$ Also we know Time taken form Home to School $t_1=S / v _{1 av}$ Similarly Time taken form School to Home $t_2=S / V _{2 a v}$ Total distance from home to school and backward $=2 S$ Total time taken from home to school and backward $(T)=S / 20+S / 30$ Therefore, Average speed $(V _{av})$ for covering total distance $(2 S)=$ Total Dostance/Total Time

$=2 S /(S / 20+S / 30)$

$=2 S /[(30 S+20 S) / 600]$

$=1200 S / 50 S$

$=24 kmh^{-1}$

4. A motorboat starting from rest on a lake accelerates in a straight line at a constant rate of $3.0 m s^{-2}$ for $8.0 s$. How far does the boat travel during this time?

Show Answer

Answer

Given Initial velocity of motorboat, $u=0$

Acceleration of motorboat, $a=3.0 m s^{-2}$

Time under consideration, $t=8.0 s$

We know that Distance, $s=u t+(1 / 2) a t^{2}$

Therefore, The distance travel by motorboat $=0 \times 8+(1 / 2) 3.0 \times 82$

$=(1 / 2) \times 3 \times 8 \times 8 m$

$=96 m$

5. A driver of a car travelling at $52 km h^{-1}$ applies the brakes Shade the area on the graph that represents the distance travelled by the car during the period. (b) Which part of the graph represents uniform motion of the car?

Show Answer missing

6. Fig 7.10 shows the distance-time graph of three objects A,B and $C$. Study the graph and answer the following questions:

Fig. 7.10

(a) Which of the three is travelling the fastest?

(b) Are all three ever at the same point on the road?

(c) How far has C travelled when B passes A?

(d) How far has B travelled by the time it passes C?

Show Answer

Answer

(a) Object B

(b) No

(c) $5.71 km$

(d) $5.14 km$

(a) Speed $=\frac{\text{ Distance }}{\text{ Time }}$

Slope of graph $=\frac{y \text{-axis }}{x-\text{ axis }}=\frac{\text{ Distance }}{\text{ Time }}$

Therefore, Speed = slope of the graph

Since slope of object B is greater than objects A and C, it is travelling the fastest.

(b) All three objects A, B and C never meet at a single point. Thus, they were never at the same point on road.

(c)

Since there are 7 unit areas of the graph between 0 and 4 on the Y axis, 1 graph unit equals $4/7 km$.

Since the initial point of an object C is 4 graph units away from the origin, Its initial distance from the origin is $4\times(4/7)km = 16/7 km$

When B passes A, the distance between the origin and C is $8km$

Therefore, total distance travelled by C in this time = $8 – (16/7) km = 5.71 km$

(d) The distance that object B has covered at the point where it passes C is equal to 9 graph units. Therefore, total distance travelled by B when it crosses C = $9\times(4/7) = 5.14 km$

7. A ball is gently dropped from a height of $20 m$. If its velocity increases uniformly at the rate of $10 m s^{-2}$, with what velocity will it strike the ground? After what time will it strike the ground?

Show Answer

Answer

Let us assume, the final velocity with which ball will strike the ground be ’ $v$ ’ and time it takes to strike the ground be ’ $t$ ’ Initial Velocity of ball, $u=0$

Distance or height of fall, $s=20 m$

Downward acceleration, $a=10 m s^{-2}$

As we know, $2 a s=v^{2}-u^{2}$

$v^{2}=2 as+u^{2}$

$=2 \times 10 \times 20+0$

$=400$

$\therefore$ Final velocity of ball, $v=20 ms^{-1}$

$t=(v-u) / a$

$\therefore$ Time taken by the ball to strike $=(20-0) / 10$

$=20 / 10$

$=2$ seconds

8. The speed-time graph for a car is shown is Fig. 7.11.

Fig. 7.11

(a) Find how far does the car travel in the first 4 seconds. Shade the area on the graph that represents the distance travelled by the car during the period.

(b) Which part of the graph represents uniform motion of the car?

Show Answer

Answer

(a)

The shaded area which is equal to $1 / 2 \times 4 \times 6=12 m$ represents the distance travelled by the car in the first $4 s$.

(b)

The part of the graph in red colour between time $6 s$ to $10 s$ represents uniform motion of the car.

9. State which of the following situations are possible and give an example for each of these:

(a) an object with a constant acceleration but with zero velocity

(b) an object moving with an acceleration but with uniform speed.

(c) an object moving in a certain direction with an acceleration in the perpendicular direction.

Show Answer

Answer

(a) It is possible; an object thrown up into the air has a constant acceleration due to gravity acting on it. However, when it reaches its maximum height, its velocity is zero.

(b) It is possible; acceleration implies an increase or decrease in speed, and uniform speed implies that the speed does not change over time

Circular motion is an example of an object moving with acceleration but with uniform speed.

An object moving in a circular path with uniform speed is still under acceleration because the velocity changes due to continuous changes in the direction of motion.

(c) It is possible; for an object accelerating in a circular trajectory, the acceleration is perpendicular to the direction followed by the object.

10. An artificial satellite is moving in a circular orbit of radius $42250 km$. Calculate its speed if it takes 24 hours to revolve around the earth.

Show Answer

Answer

Radius of the circular orbit, $r=42250 km$

Time taken to revolve around the earth, $t=24 h$

Speed of a circular moving object, $v=(2 \pi r) / t$

$=[2 \times(22 / 7) \times 42250 \times 1000] /(24 \times 60 \times 60)$

$=(2 \times 22 \times 42250 \times 1000) /(7 \times 24 \times 60 \times 60) m s^{-1}$

$=3073.74 m s^{-1}$

दैनिक जीवन में हम कुछ वस्तुओं को विरामावस्था में तथा कुछ वस्तुओं को गतिमान अवस्था में देखते हैं। पक्षी उड़ते हैं, मछलियाँ तैरती हैं, रक्त का प्रवाह शिराओं और धमनियों में होता है तथा मोटरगाड़ियाँ चलती हैं। परमाणु, अणु, ग्रह, तारे और आकाशगंगाएँ सभी गतिमान हैं। हम प्रायः यह समझते हैं कि कोई वस्तु गति में तभी है जब वह समय के साथ अपनी स्थिति को परिवर्तित करती है। तथापि ऐसी कई अवस्थाएँ हैं, जिनमें गति के अस्तित्व के अप्रत्यक्ष साक्ष्य हैं। उदाहरण के लिए, हम हवा की गति का अनुमान धूल-कणों के उड़ने व पेड़ों की शाखाओं और पत्तियों के हिलने-डुलने से लगाते हैं। सूर्योदय, सूर्यास्त एवं मौसम परिवर्तन की परिघटनाओं के क्या कारण हैं? क्या यह पृथ्वी की गति के कारण हैं? यदि यह सही है तो हम पृथ्वी की गति का अनुमान प्रत्यक्ष रूप से क्यों नहीं लगा पाते हैं?

किसी व्यक्ति के लिए एक वस्तु गतिशील प्रतीत हो सकती है, जबकि दूसरे के लिए स्थिर। गति कर रही बस के यात्रियों के लिए, सड़क के किनारे लगे पेड़-पौधे पीछे की ओर गतिमान प्रतीत होते हैं। जबकि सड़क के किनारे खड़ा एक व्यक्ति बस के साथ यात्रियों को भी गति करते हुए पाता है। यद्यपि बस के अंदर बैठा हुआ एक यात्री अपने साथी यात्रियों को विरामावस्था में पाता है। ये अवलोकन क्या संकेत करते हैं?

बहुत-सी गतियाँ जटिल होती हैं। कुछ वस्तुएँ सीधी रेखा में, तो कुछ वस्तुएँ वृत्तीय पथ पर गतिमान हो सकती हैं। कुछ घूर्णन कर सकती हैं एवं कुछ कंपन कर सकती हैं। ऐसी भी स्थिति हो सकती है जिसमें ये क्रियाएँ साथ-साथ हों। इस अध्याय में हम सबसे पहले सीधी रेखा में गतिमान वस्तुओं का वर्णन करेंगे। हम इस तरह की गति को साधारण समीकरणों और ग्राफ़ों के माध्यम से व्यक्त करना भी सीखेंगे। बाद में, हम वृत्तीय गति के बारे में चर्चा करेंगे।

क्रियाकलाप 7.1

  • आपकी कक्षा की दीवार विरामावस्था में है या गति में, चर्चा करें।

क्रियाकलाप 7.2

  • क्या आपने कभी अनुभव किया है कि रेलगाड़ी, जिसमें आप बैठे हैं, गति करती हुई प्रतीत होती है जबकि वास्तव में वह विरामावस्था में है?

  • इस बिंदु पर चर्चा करें और विचारों का आदान-प्रदान करें।

सोचें एवं करें

हम कभी-कभी अपने आस-पास की वस्तुओं की गति के कारण ख़तरे में घिर जाते हैं, विशेषतः यदि वह गति अनिश्चित व अनियंत्रित हो, जैसे- बाढ़ वाली नदी, तूफ़ान या सुनामी में देखा गया है। दूसरी ओर, नियंत्रित गति मानव की सेवा में सहायक हो सकती है, जैसे- पानी के द्वारा विद्युत उत्पादन। क्या आप महसूस करते हैं कि कुछ वस्तुओं की अनियमित गति का अध्ययन करना तथा उन्हें नियंत्रित करने के विषय में जानना आवश्यक है?

7.1 गति का वर्णन

हम किसी वस्तु की स्थिति को, एक निर्देश बिंदु निर्धारित कर, व्यक्त करते हैं। आइए, हम इसे एक उदाहरण के द्वारा समझें। माना किसी गाँव में एक स्कूल रेलवे स्टेशन से $2 \mathrm{~km}$ उत्तर दिशा में है। हमने स्कूल की स्थिति को रेलवे स्टेशन के सापेक्ष निर्धारित किया है। इस उदाहरण में रेलवे स्टेशन निर्देश बिंदु है। हम दूसरे निर्देश बिंदुओं का भी अपनी सुविधानुसार चयन कर सकते हैं। इसलिए किसी वस्तु की स्थिति को बताने के लिए हमें एक निर्देश बिंदु की आवश्यकता होती है, जिसे मूल बिंदु कहा जाता है।

7.1.1 सरल रेखीय गति

गति का सबसे साधारण प्रकार सरल रेखीय गति है। हमें सबसे पहले एक उदाहरण के द्वारा इसे व्यक्त करना सीखना होगा। माना कोई वस्तु सरल रेखीय पथ पर गतिमान है। वस्तु अपनी गति बिंदु ’ $\mathrm{O}$ ’ से प्रारंभ करती है, जिसे निर्देश बिंदु माना जा सकता है (चित्र 7.1)। माना कि भिन्न-भिन्न क्षणों में $\mathrm{A}, \mathrm{B}$ और $\mathrm{C}$ वस्तु की स्थितियों को प्रदर्शित करते हैं। पहले यह $\mathrm{C}$ और $\mathrm{B}$ से गुजरती है तथा $\mathrm{A}$ पर पहुँचती है। इसके पश्चात् यह उसी पथ पर लौटती है और $\mathrm{B}$ से गुज़रते हुए $\mathrm{C}$ तक पहुँचती है। वस्तु के द्वारा तय की गई कुल दूरी $\mathrm{OA}+\mathrm{AC}$ है, अर्थात्, $60 \mathrm{~km}+35 \mathrm{~km}=95 \mathrm{~km}$ । यह वस्तु के द्वारा तय की गई दूरी है। किसी वस्तु की दूरी को निर्धारित करने के लिए हमें केवल अंकीय मान की आवश्यकता होती है, न कि गति की दिशा की। कुछ ऐसी राशियाँ होती हैं, जिन्हें केवल उनके अंकीय मान द्वारा व्यक्त किया जा सकता है। किसी भौतिक राशि का अंकीय मान उसका परिमाण है। इस उदाहरण के द्वारा क्या आप वस्तु के प्रारंभिक स्थिति $O$ से उसकी अंतिम स्थिति $\mathrm{C}$ तक की दूरी ज्ञात कर सकते हैं? यह दूरी आपको, $A$ से गुज़रते हुए $O$ से $C$ तक के विस्थापन का अंकीय मान देगा। वस्तु की प्रारंभिक व अंतिम स्थिति के बीच की न्यूनतम दूरी को वस्तु का विस्थापन कहते हैं।

चित्र 7.1: किसी सरल रेखीय पथ पर गतिमान वस्तु की स्थितियाँ

क्या विस्थापन का परिमाण वस्तु के द्वारा तय की गई दूरी के बराबर हो सकता है? चित्र 7.1 में दिए गए उदाहरण को लें। $\mathrm{O}$ से $\mathrm{A}$ तक वस्तु की गति के लिए तय की गई दूरी $60 \mathrm{~km}$ है तथा विस्थापन का परिमाण भी $60 \mathrm{~km}$ है। $O$ से $A$ तथा पुन: $B$ तक गति के दौरान तय की गई दूरी $=60 \mathrm{~km}+25 \mathrm{~km}$ $=85 \mathrm{~km}$, जबकि विस्थापन का परिमाण $35 \mathrm{~km}$ होगा। इसलिए विस्थापन का परिमाण $(35 \mathrm{~km})$ तय की गई दूरी $(85 \mathrm{~km})$ के बराबर नहीं होगा। पुन: हम देखेंगे कि गति के दौरान विस्थापन का परिमाण शून्य (0) हो सकता है परंतु तय की गई दूरी शून्य नहीं होगी। यदि हम मान लेते हैं कि वस्तु गति करते हुए पुनः $\mathrm{O}$ तक जाती है, तो प्रारंभिक स्थिति और अंतिम स्थिति आपस में मिल जाती हैं। अतः विस्थापन शून्य है। यद्यपि इस यात्रा में तय की गई दूरी $\mathrm{OA}+$ $\mathrm{AO}=60 \mathrm{~km}+60 \mathrm{~km}=120 \mathrm{~km}$ है। इस प्रकार दो विभिन्न भौतिक राशियों — दूरी एवं विस्थापन का प्रयोग वस्तु की पूरी गति प्रक्रिया को व्यक्त करने में तथा दिए गए समय में वस्तु की प्रारंभिक स्थिति के सापेक्ष अंतिम स्थिति ज्ञात करने में किया जाता है।

क्रियाकलाप 7.3

  • एक मीटर स्केल और एक लंबी रस्सी लीजिए। बास्केट बॉल कोर्ट के एक कोने से दूसरे कोने तक उसके किनारे से होते हुए जाएँ।

  • अपने द्वारा तय की गई दूरी और विस्थापन के परिमाण को मापें।

  • दोनों भौतिक राशियों के मापन में आप क्या अंतर पाते हैं?

क्रियाकलाप 7.4

  • स्वचलित वाहनों में एक यंत्र लगा होता है जो उनके द्वारा तय की गई दूरी को प्रदर्शित करता है। इस यंत्र को ओडोमीटर कहते हैं। एक कार को भुवनेश्वर से नयी दिल्ली ले जाया जाता है। ओडोमीटर के अंतिम पाठ्यांक और आरंभिक पाठ्यांकों के बीच का अंतर $1850 \mathrm{~km}$ है।
  • भारत के सड़क मानचित्र की सहायता से भुवनेश्वर तथा नयी दिल्ली के बीच के विस्थापन के परिमाण को ज्ञात करें।

प्रशन

1. एक वस्तु के द्वारा कुछ दूरी तय की गई। क्या इसका विस्थापन शून्य हो सकता है? अगर हाँ, तो अपने उत्तर को उदाहरण के द्वारा समझाएँ।

Show Answer missing

2. एक किसान $10 \mathrm{~m}$ की भुजा वाले एक वर्गाकार खेत की सीमा पर $40 \mathrm{~s}$ में चक्कर लगाता है। 2 minute $20 \mathrm{~s}$ के बाद किसान के विस्थापन का परिमाण क्या होगा?

Show Answer missing

3. विस्थापन के लिए निम्न में कौन सही है?

(a) यह शून्य नहीं हो सकता है।

(b) इसका परिमाण वस्तु के द्वारा तय की गई दूरी से अधिक है।

Show Answer missing

7.1 .2 एकसमान गति और असमान गति

माना कि एक वस्तु एक सीधी रेखा पर चल रही है। माना पहले 1 सेकंड में यह $50 \mathrm{~m}$, दूसरे सेकंड में $50 \mathrm{~m}$, तीसरे सेकंड में $50 \mathrm{~m}$ तथा चौथे सेकंड में $50 \mathrm{~m}$ दूरी तय करती है। इस स्थिति में वस्तु प्रत्येक सेकंड में $50 \mathrm{~m}$ की दूरी तय करती है क्योंकि वस्तु समान समयांतराल में समान दूरी तय करती है तो उसकी गति को एकसमान गति कहते हैं। इस तरह की गति में समयांतराल छोटा होना चाहिए। हम दैनिक जीवन में कई बार देखते हैं कि वस्तुओं के द्वारा समान समयांतराल में असमान दूरी तय की जाती है। उदाहरण के लिए, भीड़ वाली सड़क पर जा रही कार या पार्क में दौड़ रहा एक व्यक्ति। ये असमान गति के कुछ उदाहरण हैं।

क्रियाकलाप 7.5

  • दो वस्तुओं $\mathrm{A}$ तथा $\mathrm{B}$ की गति से संबंधित आँकड़ों को सारणी 7.1 में दिया गया है।

  • ध्यान से देखें और बताएँ कि वस्तुओं की गति एकसमान है या असमान।

सारणी 7.1

समय वस्तु $\mathrm{A}$ के द्वारा तय की गई दूरी मीटर में वस्तु $\mathrm{B}$ के द्वारा तय की गई दूरी मीटर में
9:30 am 10 12
9:45 am 20 19
10:00 am 30 23
10:15 am 40 35
10:30 am 50 37
10:45 am 60 41
11:00 am 70 44

7.2 गति की दर का मापन

चित्र 7.2 (b)

चित्र 7.2 में दी गयी स्थिति को देखें। चित्र 7.2 (a) में यदि गेंद की गति $143 \mathrm{~km} / \mathrm{h}$ है, तो इसका क्या अर्थ है? चित्र $7.2(\mathrm{~b})$ में दिए गए साइन बोर्ड से आप क्या समझते हैं?

किसी दी गई निश्चित दूरी को तय करने के लिए अलग-अलग वस्तुएँ अलग-अलग समय लेंगी। इनमें से कुछ तेज चलती हैं तो कुछ धीमे। वस्तुओं की गति करने की दर अलग-अलग हो सकती है। अलग-अलग वस्तुएँ समान दर से भी गति कर सकती हैं। वस्तु द्वारा इकाई समय में तय की गई दूरी के उपयोग से उस वस्तु की गति की दर प्राप्त की जा सकती है। इस राशि को चाल कहा जाता है। चाल का मात्रक मीटर प्रति सेकंड है। यह $\mathrm{m} \mathrm{s}^{-1}$ चिह्न द्वारा प्रदर्शित की जाती है। चाल का अन्य मात्रक सेंटीमीटर प्रति सेकंड $\left(\mathrm{cm} \mathrm{s}^{-1}\right)$ और किलोमीटर प्रति घंटा $\left(\mathrm{km} \mathrm{h}^{-1}\right)$ । वस्तु की गति को व्यक्त करने के लिए हमें केवल उसके परिमाण की आवश्यकता होती है। यह आवश्यक नहीं है कि वस्तु की गति नियत हो। अधिकतर अवस्थाओं में वस्तुएँ असमान गति में होंगी। इसलिए हम उन वस्तुओं की गति की दर को उनकी औसत चाल के रूप में व्यक्त करते हैं। वस्तु की औसत चाल उसके द्वारा तय की गई कुल दूरी को कुल समयावधि से भाग देकर प्राप्त किया जा सकता है।

$$ \text { औसत चाल }=\frac{\text { तय की गई कुल दूरी }}{\text { कुल समयावधि }} $$

यदि एक वस्तु $t$ समय में $s$ दूरी तय करती है तो इसकी चाल

$$ \begin{equation*} V=\frac{s}{t} \tag{7.1} \end{equation*} $$

आइए इसे उदाहरण के द्वारा समझें। एक कार $2 \mathrm{~h}$ में $100 \mathrm{~km}$ की दूरी तय करती है। इसकी औसत चाल $50 \mathrm{~km} / \mathrm{h}$ है। कार पूरे समय $50 \mathrm{~km} / \mathrm{h}$ की चाल से नहीं चली होगी। कुछ समय यह इससे अधिक तो कुछ समय इससे कम चाल से चली होगी।

उदाहरण 7.1 एक वस्तु $16 \mathrm{~m}$ की दूरी $4 \mathrm{~s}$ में तय करती है तथा पुन: $16 \mathrm{~m}$ की दूरी $2 \mathrm{~s}$ में तय करती है। वस्तु की औसत चाल क्या होगी?

हल :

वस्तु के द्वारा तय की गई कुल दूरी = $16 \mathrm{~m}+16 \mathrm{~m}=32 \mathrm{~m}$

लिया गया कुल समय $=4 \mathrm{~s}+2 \mathrm{~s}=6 \mathrm{~s}$

$$ \begin{aligned} \text { औसत चाल } & =\frac{\text { तय की गई कुल दूरी }}{\text { लिया गया समय }} \\ & =\frac{32 \mathrm{~m}}{6 \mathrm{~s}}=5.33 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned} $$

इसलिए वस्तु की औसत चाल $5.33 \mathrm{~m} \mathrm{~s}^{-1}$ है।

7.2.1 दिशा के साथ चाल

किसी वस्तु की गति की दर और भी अधिक व्यापक हो सकती है अगर हम उसकी चाल के साथ-साथ दिशा को भी व्यक्त करें। वह राशि जो इन दोनों पक्षों को व्यक्त करती है उसे वेग कहा जाता है। अतः, एक निश्चित दिशा में चाल को वेग कहते हैं। किसी वस्तु का वेग समान या असमान हो सकता है। यह वस्तु की चाल, गति की दिशा या दोनों के परिवर्तन के साथ परिवर्तित हो सकती है। जब एक वस्तु सीधी रेखा में बदलती हुई चाल के साथ गति कर रही है, तो हम इसके गति की दर के परिमाण को औसत वेग के द्वारा व्यक्त कर सकते हैं। इसकी गणना औसत चाल की गणना के समान ही होती है।

यदि वस्तु का वेग समान रूप से परिवर्तित हो रहा है, तब दिए गए प्रारंभिक वेग और अंतिम वेग के अंकगणितीय माध्य के द्वारा औसत वेग प्राप्त किया जा सकता है।

$\text { औसत वेग }=\frac{\text { प्रारंभिक वेग }+ \text { अंतिम वेग }}{2}$

$V _{a v}=\frac{u+v}{2} \tag{7.2}$

जहाँ $v _{a v}$ औसत वेग है, $u$ प्रारंभिक वेग है तथा $v$ वस्तु का अंतिम वेग है।

चाल तथा वेग दोनों का मात्रक समान होता है अर्थात्, $\mathrm{m} \mathrm{s}^{-1}$ या $\mathrm{m} / \mathrm{s}$ ।

क्रियाकलाप 7.6

  • अपने घर से बस स्टॉप या स्कूल जाने में लगे समय को मापिए। यदि आप मान लें कि आपके पैदल चलने की औसत चाल $4 \mathrm{~km} / \mathrm{h}$ है। तो अपने घर से बस स्टॉप या स्कूल की दूरी का आकलन कीजिए।

क्रियाकलाप 7.7

  • जब आसमान में बादल छाए होते हैं, तो बिजली के चमकने और बादलों के गरजने की क्रिया बार-बार हो सकती है। पहले बिजली की चमक दिखाई देती है। उसके कुछ समय पश्चात् बादलों के गरजने की ध्वनि आप तक पहुँचती है।
  • क्या आप बता सकेंगे, ऐसा क्यों होता है? इनके बीच के समयांतराल को एक डिजिटल कलाई घड़ी या स्टॉप घड़ी से मापें।
  • बिजली की चमक के निकटतम बिंदु की दूरी का परिकलन कीजिए। (वायु में ध्वनि की चाल $346 \mathrm{~m} \mathrm{~s}^{-1}$ है।)

प्रशन

1. चाल एवं वेग में अंतर बताइए।

Show Answer missing

2. किस अवस्था में किसी वस्तु के औसत वेग का परिमाण उसकी औसत चाल के बराबर होगा?

Show Answer missing

3. एक गाड़ी का ओडोमीटर क्या मापता है?

Show Answer missing

4. जब वस्तु एकसमान गति में होती है तब इसका मार्ग कैसा दिखाई पड़ता है?

Show Answer missing

5. एक प्रयोग के दौरान, अंतरिक्षयान से एक सिग्नल को पृथ्वी पर पहुँचने में 5 मिनट का समय लगता है। पृथ्वी पर स्थित स्टेशन से उस अंतरिक्षयान की दूरी क्या है? (सिग्नल की चाल $=$ प्रकाश की चाल $=$ $3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ )

Show Answer missing

उदाहरण 7.2 यात्रा शुरू होते समय कार का ओडोमीटर $2000 \mathrm{~km}$ प्रदर्शित करता है और यात्रा समाप्ति पर $2400 \mathrm{~km}$ प्रदर्शित करता है। यदि इस यात्रा में $8 \mathrm{~h}$ लगते हैं, तो कार की औसत चाल को $\mathrm{km} \mathrm{h}^{-1}$ और $\mathrm{m} \mathrm{s}^{-1}$ में ज्ञात करें।

हल:

कार के द्वारा तय की गई दूरी $s=2400 \mathrm{~km}-2000 \mathrm{~km}=400 \mathrm{~km}$ दूरी तय करने में लगा कुल समय $t=8 \mathrm{~h}$

कार की औसत चाल

$$ \begin{aligned} V _{a v} & =\frac{s}{t}=\frac{400 km}{8 h} \\ & =50 km h^{-1} \end{aligned} $$

$$ \begin{aligned} & =50 \frac{km}{h} \times \frac{1000 m}{1 km} \times \frac{1 h}{3600 s} \\ & =13.9 m s^{-1} \end{aligned} $$

कार की औसत चाल $50 \mathrm{~km} \mathrm{~h}^{-1}$ अथवा $13.9 \mathrm{~m} \mathrm{~s}^{-1}$ है।

उदाहरण 7.3 ऊषा $90 \mathrm{~m}$ लंबे तालाब में तैरती है। वह एक सिरे से दूसरे सिरे तक सरल रेखीय पथ पर जाती है तथा वापस आती है। इस दौरान वह कुल $180 \mathrm{~m}$ की दूरी 1 मिनट में तय करती है। ऊषा की औसत चाल और औसत वेग को ज्ञात कीजिए।

हल :

ऊषा द्वारा 1 मिनट में तय की गई कुल दूरी $180 \mathrm{~m}$ है।

1 मिनट में ऊषा का विस्थापन $=0 \mathrm{~m}$

औसत चाल $=\frac{\text { तय की गई कुल दूरी }}{\text { लिया गया कुल समय }}$

$$ \begin{aligned} & =\frac{180 \mathrm{~m}}{1 \mathrm{~min}}=\frac{180 \mathrm{~m}}{1 \mathrm{~min}} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}} \\ & =3 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned} $$

औसत वेग $=\frac{\text { विस्थापन }}{\text { लिया गया कुल समय }}$

$$ \begin{aligned} & =\frac{0 \mathrm{~m}}{60 \mathrm{~s}} \\ & =0 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned} $$

अतः ऊषा की औसत चाल $3 \mathrm{~m} \mathrm{~s}^{-1}$ है और औसत वेग $0 \mathrm{~m} \mathrm{~s}^{-1}$ है।

7.3 वेग में परिवर्तन की दर

किसी वस्तु की एकसमान सरल रेखीय गति के दौरान, समय के साथ वेग नियत रहता है। इस अवस्था में किसी भी समयांतराल में वस्तु के वेग में परिवर्तन शून्य है। यद्यपि असमान गति में वेग समय के साथ परिवर्तित होता है। इसका मान विभिन्न समयों पर एवं विभिन्न बिंदुओं पर भिन्न-भिन्न होता है। इस प्रकार, किसी भी समयांतराल पर वस्तु के वेग में परिवर्तन शून्य नहीं होता है। क्या अब हम वस्तु के वेग में परिवर्तन को व्यक्त कर सकते हैं?

इस तरह के प्रश्नों का उत्तर देने के लिए हमें एक अन्य भौतिक राशि त्वरण के बारे में जानना होगा, जो कि एक वस्तु के प्रति इकाई समय में वेग परिवर्तन की माप है।

$$ \text { अर्थात्, त्वरण }=\frac{\text { वेग में परिवर्तन }}{\text { लिया गया समय }} $$

यदि एक वस्तु का वेग प्रारंभिक वेग $u$ से $t$ समय में बदलकर $v$ हो जाता है, तो त्वरण निम्न होगा।

$$ \begin{equation*} a=\frac{v-u}{t} \tag{7.3} \end{equation*} $$

इस प्रकार की गति को त्वरित गति कहा जाता है। यदि त्वरण, वेग की दिशा में है तो इसे धनात्मक लिया जाता है तथा यदि यह वेग के विपरीत दिशा में है तो इसे ऋणात्मक लिया जाता है। त्वरण का मात्रक $\mathrm{m} \mathrm{s}^{-2}$ है।

यदि एक वस्तु सीधी रेखा में चलती है और इसका वेग समान समयांतराल में समान रूप से घटता या बढ़ता है, तो वस्तु के त्वरण को एकसमान त्वरण कहा जाता है। स्वतंत्र रूप से गिर रही एक वस्तु की गति एकसमान त्वरित गति का उदाहरण है। दूसरी ओर, एक वस्तु असमान त्वरण से चल सकती है यदि उसका वेग असमान रूप से बदलता है। उदाहरण के लिए, यदि एक कार सीधी सड़क पर चलते हुए समान समयांतराल में असमान दर से चाल को परिवर्तित करती है, तब कहा जाता है कि कार असमान त्वरण के साथ गतिमान है।

क्रियाकलाप 7.8

आप दैनिक जीवन में बहुत प्रकार की गतियों को देखते होंगे, जिनमें प्रमुख हैं:

(a) गति की दिशा में त्वरण है,

(b) त्वरण गति की दिशा के विरुद्ध है,

(c) एकसमान त्वरण है, तथा

(d) असमान त्वरण है।

  • क्या आप ऊपर दी प्रत्येक प्रकार की गति के लिए एक-एक उदाहरण दें सकते हैं?

उदाहरण 7.4 विरामावस्था से राहुल अपनी साइकिल को चलाना शुरू करता है और $30 \mathrm{~s}$ में $6 \mathrm{~m} \mathrm{~s}^{-1}$ का वेग प्राप्त करता है। वह इस प्रकार से ब्रेक लगाता है कि साइकिल का वेग अगले $5 \mathrm{~s}$ में कम होकर $4 \mathrm{~m} \mathrm{~s}^{-1}$ हो जाता है। दोनों स्थितियों में साइकिल के त्वरण की गणना करें।

हल :

पहली स्थिति में,

प्रारंभिक वेग, $u=0$;

अंतिम वेग, $v=6 \mathrm{~m} \mathrm{~s}^{-1}$;

समय, $t=30 \mathrm{~s}$.

समीकरण (8.3), से,

$$ a=\frac{v-u}{t} $$

$u, v$ और $t$ का दिया हुआ मान ऊपर दिए गए समीकरण में रखने पर,

$$ \begin{aligned} a & =\frac{(6 m s^{-1}-0 m s^{-1})}{30 s} \\ & =0.2 m s^{-2} \end{aligned} $$

दूसरी अवस्था में,

प्रारंभिक वेग, $u=6 \mathrm{~m} \mathrm{~s}^{-1}$;

अंतिम वेग,$\quad V=4 \mathrm{~m} \mathrm{~s}^{-1}$;

समय, $\quad t=5 \mathrm{~s}$.

तब, $a=\frac{\left(4 \mathrm{~m} \mathrm{~s}^{-1}-6 \mathrm{~m} \mathrm{~s}^{-1}\right)}{5 \mathrm{~s}}$ $$ =-0.4 \mathrm{~m} \mathrm{~s}^{-2} \text {. } $$

साइकिल का त्वरण पहली स्थिति में $0.2 \mathrm{~m} \mathrm{~s}^{-2}$ है और दूसरी स्थिति में $-0.04 \mathrm{~m} \mathrm{~s}^{-2}$ है।

प्रशन

1. आप किसी वस्तु के बारे में कब कहेंगे कि, (i) वह एकसमान त्वरण से गति में है? (ii) वह असमान त्वरण से गति में है?

Show Answer missing

2. एक बस की गति $5 \mathrm{~s}$ में $80 \mathrm{~km} \mathrm{~h}^{-1}$ से घटकर $60 \mathrm{~km} \mathrm{~h}^{-1}$ हो जाती है। बस का त्वरण ज्ञात कीजिए।

Show Answer missing

3. एक रेलगाड़ी स्टेशन से चलना प्रारंभ करती है और एकसमान त्वरण के साथ चलते हुए 10 मिनट में $40 \mathrm{~km} \mathrm{~h}^{-1}$ की चाल प्राप्त करती है। इसका त्वरण ज्ञात कीजिए।

Show Answer missing

7.4 गति का ग्राफ़ीय प्रदर्शन

कई घटनाओं के बारे में मूल जानकारी सुविधाजनक विधि से ग्राफ़ द्वारा प्रदर्शित की जा सकती है। उदाहरण के लिए, किसी एक दिवसीय क्रिकेट मैच के प्रसारण में किसी टीम द्वारा प्रत्येक ओवर में बनाए गए रनों की दर को प्रायः ऊर्ध्वाधर बार ग्राफ़ से दिखाया जाता है। जैसा कि आपने गणित में पढ़ा है कि एक सरल रेखीय ग्राफ़ की सहायता से दो चर युक्त रैखिक समीकरण का हल ज्ञात किया जाता है।

किसी वस्तु की गति को दर्शाने के लिए, एक रेखीय ग्राफ़ की आवश्यकता होती है। इस स्थिति में रेखा ग्राफ़ किसी एक भौतिक राशि पर निर्भरता को दर्शाता है जैसे दूरी या वेग का दूसरी राशि, जैसे समय पर।

7.4.1 दूरी-समय ग्राप्र

समय के साथ किसी वस्तु की स्थिति परिवर्तन को एक सुविधाजनक पैमाना अपनाकर दूरी-समय ग्राफ़ द्वारा व्यक्त किया जा सकता है। इस ग्राफ़ में समय को $x$-अक्ष और दूरी को $y$-अक्ष पर प्रदर्शित किया जाता है। दूरी-समय ग्राफ़ को विभिन्न अवस्थाओं में प्रदर्शित किया जा सकता है जैसे वस्तु एकसमान चाल या असमान चाल से चल रही है, विरामावस्था में है इत्यादि।

चित्र 7.3: एकसमान चाल से गतिमान किसी वस्तु का दूरी-समय ग्राफ़

हम जानते हैं कि जब कोई वस्तु समान दूरी समान समयांतराल में तय करती है, तब इसकी चाल एकसमान होती है।

अतः वस्तु के द्वारा तय की गई दूरी, लिए गए समय के समानुपाती होती है। इस प्रकार एकसमान चाल के लिए, समय के साथ तय की गई दूरी का ग्राफ़ एक सरल रेखा है जैसा कि चित्र 7.3 में प्रदर्शित है। ग्राफ़ का $\mathrm{OB}$ भाग यह दर्शाता है कि दूरी, एकसमान दर से बढ़ रही है। यदि आप $y$-अक्ष पर विस्थापन का परिमाण, तय की गई दूरी के बराबर लेते हैं, तो आप एकसमान चाल के स्थान पर एकसमान वेग पद का भी प्रयोग कर सकते हैं।

हम दूरी-समय ग्राफ़ का प्रयोग वस्तु की चाल ज्ञात करने के लिए कर सकते हैं। ऐसा करने के लिए, चित्र 7.3 में दिए गए दूरी समय ग्राफ़ के भाग $\mathrm{AB}$ को लें। बिंदु $\mathrm{A}$ से $\mathrm{X}$-अक्ष के समानान्तर एक रेखा तथा बिंदु $\mathrm{B}$ से $y$-अक्ष के समानांतर एक रेखा खींचें। ये दोनों रेखाएँ बिंदु $\mathrm{C}$ पर मिलकर एक त्रिभुज $\mathrm{ABC}$ बनाती है। अब ग्राफ़ पर, $\mathrm{AC}$ समयांतराल $\left(t _{2}-t _{1}\right)$ को बताता है, जबकि $\mathrm{BC}$ दूरी $\left(s _{2}-s _{1}\right)$ को बताता है। हम ग्राफ़ से देख सकते हैं कि वस्तु $\mathrm{A}$ से $\mathrm{B}$ बिंदु तक जाने में $\left(t _{2}-t _{1}\right)$ समय में $\left(s _{2}-s _{1}\right)$ दूरी तय करती है। अतः वस्तु की चाल निम्न प्रकार से व्यक्त की जा सकती है:

$$ \begin{equation*} V=\frac{s _{2}-s _{1}}{t _{2}-t _{1}} \tag{7.4} \end{equation*} $$

हम त्वरित गति के लिए भी दूरी-समय ग्राफ़ अंकित कर सकते हैं। सारणी 7.2 एक कार के द्वारा $2 \mathrm{~s}$ के समयांतराल में तय की गई दूरियों को प्रदर्शित करती है।

सारणी 7.2: तय की गई दूरी

समय (s) दूरी (m)
0 0
2 1
4 4
6 9
8 16
10 25
12 36

चित्र 7.4: असमान चाल से गतिमान किसी कार का दूरी-समय ग्राफ़

कार की गति के लिए दूरी-समय ग्राफ़ चित्र 7.4 में दर्शाया गया है। ध्यान दें कि इस ग्राफ़ की आकृति चित्र 7.3 में दिए गए ग्राफ़ से भिन्न है। इस ग्राफ़ की प्रकृति समय के साथ कार द्वारा तय की गयी दूरी का आरेखीय परिवर्तन दर्शाता है। इस प्रकार, चित्र 7.4 में दिखाया गया ग्राफ़ असमान चाल को व्यक्त करता है।

7.4.2 वेग-समय ग्राफ़

एक सरल रेखा में चल रही वस्तु के वेग में समय के साथ परिवर्तन को वेग-समय ग्राफ़ द्वारा दर्शाया जा

चित्र 7.5: एकसमान चाल से गतिमान किसी कार का वेग-समय ग्राफ़ सकता है। इस ग्राफ़ में, समय को $x$-अक्ष पर और वेग को $y$-अक्ष पर दर्शाया जाता है। यदि वस्तु एकसमान वेग से गतिमान है, तो समय के साथ वेग-समय ग्राफ़ की ऊँचाई में कोई परिवर्तन नहीं होगा (चित्र 7.5)। यह $x$-अक्ष के समानांतर एक सीधी रेखा होगी। चित्र 7.5 में, एक कार जो कि $40 \mathrm{~km} \mathrm{~h}^{-1}$ के एकसमान वेग से गति कर रही है, के वेग समय-ग्राफ़ को दर्शाया गया है।

हम जानते हैं कि एकसमान वेग से चल रही किसी वस्तु के वेग तथा समय के गुणनफल से विस्थापन प्राप्त किया जाता है। वेग-समय ग्राफ़ तथा समय अक्ष के द्वारा घेरा गया क्षेत्र विस्थापन के परिमाण के बराबर होता है।

चित्र 7.5 से $t _{1}$ और $t _{2}$ समय के बीच कार द्वारा तय की गई दूरी को ज्ञात करने के लिए समय $t _{1}$ व $t _{2}$ के संगत बिंदुओं से ग्राफ़ पर लंब खींचें। $40 \mathrm{~km} \mathrm{~h}^{-1}$ के वेग को ऊँचाई $\mathrm{AC}$ या $\mathrm{BD}$ और समय $\left(t _{2}-t _{1}\right)$ को लंबाई $\mathrm{AB}$ से प्रदर्शित किया गया है।

इसलिए समय $\left(t _{2}-t _{1}\right)$ में कार द्वारा तय की गई दूरी को इस प्रकार व्यक्त किया जा सकता है,

$S= \mathrm{AC} \mathrm{CD} $

$= {\left[\left(40 \mathrm{~km} \mathrm{~h}^{-1}\right) \quad\left(t _{2}-t _{1}\right) \mathrm{h}\right] } $

$= 40\left(t _{2}-t _{1}\right) \mathrm{km} $

$= \text { चतुर्भुज ABDC का क्षेत्रफल } (\text { चित्र } 7.5 \text { में छायांकित ) }$

वेग-समय ग्राफ़ के द्वारा हम एकसमान रूप से त्वरित गति का अध्ययन भी कर सकते हैं। मान लें कि एक कार के इंजन को जाँचने के लिए सीधे मार्ग पर चलाया जाता है। माना कि चालक के साथ में बैठा एक व्यक्ति प्रत्येक $5 \mathrm{~s}$ के बाद कार के स्पीडोमीटर का पाठ्यांक लेता है। कार का वेग विभिन्न समयों पर $\mathrm{m} \mathrm{s}^{-1}$ व $\mathrm{km} \mathrm{h}^{-1}$ में सारणी 7.3 में प्रदर्शित किया गया है।

सारणी 7.3: विभिन्न समय पर कार का वेग

$\underset{(s)}{\text{ समय }}$ $\underset{(\text{ms}^{-1}) }{\text{कार का वेग }}$ $\underset{(\text{kmh}^{-1})}{}$
0 0 0
5 2.5 9
10 5.0 18
15 7.5 27
20 10.0 36
25 12.5 45
30 15.0 54

इस स्थिति में कार की गति के लिए समय-वेग ग्राफ़ चित्र 7.6 में प्रदर्शित किया गया है। ग्राफ़ की प्रकृति यह बताती है कि समान समयांतराल में वेग में परिवर्तन समान रूप से होता है। इस प्रकार सभी एकसमान त्वरित गतियों के लिए वेग-समय ग्राफ़ सीधी रेखा है।

चित्र 7.6: एकसमान त्वरित गति से गतिमान किसी कार का वेग-समय ग्राफ़

आप कार के द्वारा तय की गई दूरी को वेग-समय ग्राफ़ द्वारा प्राप्त कर सकते हैं। वेग-समय ग्राफ़ का क्षेत्रफल दिए गए समयांतराल में कार द्वारा तय की गई दूरी (विस्थापन के परिमाण) को बताता है। यदि कार एकसमान वेग से गति करे, तो ग्राफ़ (चित्र 7.6) में दर्शाए गए क्षेत्र $\mathrm{ABCD}$ द्वारा तय की गई दूरी को दर्शाया जाएगा। चूँकि कार के वेग का परिमाण त्वरण के कारण परिवर्तित हो रहा है, अतः कार के द्वारा तय की गई दूरी $s$, वेग-समय ग्राफ़ (चित्र 7.6) में प्रदर्शित क्षेत्र $\mathrm{ABCDE}$ द्वारा व्यक्त की जाएगी।

$S=\mathrm{ABCDE}$ का क्षेत्रफल $

$=$ आयत $\mathrm{ABCD}$ का क्षेत्रफल + त्रिभुज $\mathrm{ADE}$ का क्षेत्रफल $ =\mathrm{AB} \times \mathrm{BC}+\frac{1}{2}(\mathrm{AD} \times \mathrm{DE}) $

असमान त्वरित गति की स्थिति में वेग-समय ग्राफ़ किसी भी आकृति का हो सकता है।

(a)

(b)

चित्र 7.7: असमान त्वरित गति से गतिमान एक वस्तु के वेग-समय ग्राफ़

चित्र 7.7(a) वेग-समय ग्राफ़ को दर्शाता है, जो कि एक वस्तु के गति को प्रदर्शित करता है, जिसका वेग समय के साथ घटता है। जबकि चित्र 7.7 (b) में किसी वस्तु के वेग में असमान परिवर्तन को वेग-समय ग्राफ़ द्वारा दर्शाया गया है।

क्रियाकलाप 7.9

  • एक ट्रेन के तीन विभिन्न स्टेशनों $\mathrm{A}, \mathrm{B}$ और $\mathrm{C}$ पर आगमन और प्रस्थान करने के समय एवं स्टेशन $\mathrm{A}$ से स्टेशन $\mathrm{B}$ व $\mathrm{C}$ की दूरी सारणी 7.4 में दी गई है।

सारणी 7.4: स्टेशन $\mathrm{A}$ से $\mathrm{B}$ तथा $\mathrm{C}$ की दूरी तथा ट्रेन के आगमन व प्रस्थान करने का समय

स्टेशान $A$ से दूरी (km) आगमन का समय (घंटे) प्रस्थान का समय (घंटे)
A 0 $08: 00$ $08: 15$
B 120 $11: 15$ $11: 30$
C 180 $13: 00$ $13: 15$
  • मान लें कि किन्हीं दो स्टेशनों के बीच ट्रेन की गति एकसमान है तो इस आधार पर वेग-समय ग्राफ़ खींचें तथा इसकी व्याख्या करें।

क्रियाकलाप 7.10

  • फ़िरोज़ और उसकी बहन सानिया अपनी साइकिलों से स्कूल जाते हैं। वे दोनों घर से एक ही समय पर प्रस्थान करते हैं एवं एक ही मार्ग से जाते हैं फिर भी अलग-अलग समय पर स्कूल पहुँचते हैं। सारणी 7.5 उन दोनों के द्वारा अलग-अलग समय में तय की गई दूरी को दर्शाती है।
समय प्रिरोज़ के द्वारा तय की गई दूरी $(\mathbf{k m})$ सानिया के द्वारा तय की गई दूरी (km)
8:00 am 0 0
8:05 am 1.0 0.8
8:10 am 1.9 1.6
8:15 am 2.8 2.3
8:20 am 3.6 3.0
8:25 am - 3.6
  • उन दोनों की गति के लिए एक ही पैमाने पर दूरीसमय ग्राफ़ खींचें तथा व्याख्या करें।

प्रशन

1. किसी वस्तु के एकसमान व असमान गति के लिए समय-दूरी ग्राफ़ की प्रकृति क्या होती है?

Show Answer missing

2. किसी वस्तु की गति के विषय में आप क्या कह सकते हैं, जिसका दूरी-समय ग्राफ़ समय अक्ष के समानांतर एक सरल रेखा है?

Show Answer missing

3. किसी वस्तु की गति के विषय में आप क्या कह सकते हैं, जिसका चाल-समय ग्राफ़ समय अक्ष के समानांतर एक सरल रेखा है?

Show Answer missing

4. वेग-समय ग्राफ़ के नीचे के क्षेत्र से मापी गई राशि क्या होती है?

Show Answer missing

7.5 गति के समीकरण

कोई वस्तु सीधी रेखा में एकसमान त्वरण से चलती है तो एक निश्चित समयांतराल में समीकरणों के द्वारा उसके वेग, गति के दौरान त्वरण व उसके द्वारा तय की गई दूरी में संबंध स्थापित करना संभव है, जिन्हें गति के समीकरण के नाम से जाना जाता है। सुविधा के लिए, इस प्रकार के तीन समीकरणों का एक समुच्चय निम्नलिखित हैं:

$$ \begin{align*} v & =u+a t \tag{7.5} \\ s & =u t+1 / 2 a t^{2} \tag{7.6} \\ 2 a s & =v^{2}-u^{2} \tag{7.7} \end{align*} $$

जहाँ $u$ वस्तु का प्रारंभिक वेग है जो कि $t$ समय के लिये एकसमान त्वरण $a$ से चलती है, $v$ अंतिम वेग है तथा $t$ समय में वस्तु के द्वारा तय की गई दूरी $s$ है। समीकरण (7.5) वेग एवं समय में संबंध व्यक्त करती है तथा समीकरण (7.6) समय व स्थिति के बीच संबंध व्यक्त करती है। समीकरण (7.7) जो कि वेग एवं स्थिति के बीच संबध व्यक्त करती है, जिसे समीकरण (7.5) एवं (7.6) से $t$ को विलुप्त कर प्राप्त किया जा सकता है। इन तीनों समीकरणों को ग्राफ़ीय विधि से भी प्राप्त किया जा सकता है।

उदाहरण 7.5 एक रेलगाड़ी विरामावस्था से चलना प्रारंभ करती है और 5 मिनट में $72 \mathrm{~km} / \mathrm{h}$ का वेग प्राप्त कर लेती है। मान लें कि त्वरण एकसमान है, परिकलन कीजिए, (i) त्वरण, (ii) इस वेग को प्राप्त करने के लिए रेलगाड़ी द्वारा तय की गई दूरी।

हल:

दिया है, $u=0 ; v=72 \mathrm{~km} \mathrm{~h}^{-1}=20 \mathrm{~m} \mathrm{~s}^{-1}$ और $t=5 \mathrm{~min} .=300 \mathrm{~s}$.

(i) समीकरण (7.5) से हम जानते हैं,

$$ \begin{aligned} a & =\frac{(v-u)}{t} \\ & =\frac{20 \mathrm{~m} \mathrm{~s}^{-1}-0 \mathrm{~m} \mathrm{~s}^{-1}}{300 \mathrm{~s}} \\ & =\frac{1}{15} \mathrm{~m} \mathrm{~s}^{-2} \end{aligned} $$

(ii) समीकरण (7.7) से हम जानते हैं,

$2 a s=v^{2}-u^{2}=v^{2}-0$

अत :

$$ \begin{aligned} s & =\frac{v^{2}}{2 a} \\ & =\frac{\left(20 \mathrm{~ms}^{-1}\right)^{2}}{2 \times(1 / 15) \mathrm{ms}^{-2}} \\ & =3000 \mathrm{~m} \\ & =3 \mathrm{~km} \end{aligned} $$

रेलगाड़ी का त्वरण $\frac{1}{15} \mathrm{~m} \mathrm{~s}^{-2}$ है तथा तय की गई दूरी $3 \mathrm{~km}$ है।

उदाहरण 7.6 कोई कार एकसमान रूप से त्वरित होकर $5 \mathrm{~s}$ में $18 \mathrm{~km} \mathrm{~h}^{-1}$ से $36 \mathrm{~km} \mathrm{~h}^{-1}$ की गति प्राप्त करती है। ज्ञात करें (i) त्वरण, (ii) उतने समय में कार के द्वारा तय की गई दूरी।

हल:

दिया गया है,

$$ \begin{aligned} & u=18 \mathrm{~km} \mathrm{~h}^{-1}=5 \mathrm{~m} \mathrm{~s}^{-1} \\ & v=36 \mathrm{~km} \mathrm{~h}^{-1}=10 \mathrm{~m} \mathrm{~s}^{-1} \text { और } \\ & t=5 \mathrm{~s} . \end{aligned} $$

(i) समीकरण (7.5) से हम जानते हैं,

$$ \begin{aligned} a & =\frac{v-u}{t} \\ & =\frac{10 \mathrm{~m} \mathrm{~s}^{-1}-5 \mathrm{~m} \mathrm{~s}^{-1}}{5 \mathrm{~s}} \\ & =1 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned} $$

(ii) समीकरण (7.6) से हम जानते हैं,

$$ \begin{aligned} S & =u t+\frac{1}{2} a t^{2} \\ & =5 \mathrm{~m} \mathrm{~s}^{-1} \times 5 \mathrm{~s}+\frac{1}{2} \times 1 \mathrm{~m} \mathrm{~s}^{-2} \times(5 \mathrm{~s})^{2} \\ & =25 \mathrm{~m}+12.5 \mathrm{~m} \\ & =37.5 \mathrm{~m} \end{aligned} $$

कार का त्वरण $1 \mathrm{~m} \mathrm{~s}^{-2}$ तथा तय की गई दूरी $37.5 \mathrm{~m}$ है।

उदाहरण 7.7 किसी कार पर ब्रेक लगाने पर वह गति के विपरीत दिशा में $6 \mathrm{~m} \mathrm{~s}^{-2}$ का त्वरण उत्पन्न करती है। यदि कार ब्रेक लगाए जाने के बाद रुकने में $2 \mathrm{~s}$ का समय लेती है तो उतने समय में तय की गई दूरी की गणना करें।

हल :

दिया गया है,

$a=-6 \mathrm{~m} \mathrm{~s}^{-2} ; t=2 \mathrm{~s}$ तथा $v=0 \mathrm{~m} \mathrm{~s}^{-1}$.

समीकरण 7.5 से हम जानते हैं,

$$ \begin{aligned} & V=u+a t \\ & 0=u+\left(-6 \mathrm{~m} \mathrm{~s}^{-2}\right) \quad 2 \mathrm{~s} \end{aligned} $$

या $u=12 \mathrm{~m} \mathrm{~s}^{-1}$.

समीकरण 7.6 से हम पाते हैं,

$s=u t+\frac{1}{2} a t^{2}$ $$ \begin{aligned} & =\left(12 \mathrm{~m} \mathrm{~s}^{-1}\right) \times(2 \mathrm{~s})+\frac{1}{2}\left(-6 \mathrm{~m} \mathrm{~s}^{-2}\right) \times(2 \mathrm{~s})^{2} \\ & =24 \mathrm{~m}-12 \mathrm{~m} \\ & =12 \mathrm{~m} \end{aligned} $$

अतः कार रुकने के पहले $12 \mathrm{~m}$ की दूरी तय करेगी। क्या अब आप इस महत्त्व को समझ सकते हैं कि चालक सडक पर गाड़ी चलाते समय दूसरी गाड़ी से दूरी क्यों बना कर रखते हैं?

प्रशन

1. कोई बस विरामावस्था से चलना प्रारंभ करती है तथा 2 मिनट तक $0.1 \mathrm{~m} \mathrm{~s}^{-2}$ के एकसमान त्वरण से चलती है। परिकलन कीजिए, (a) प्राप्त की गई चाल तथा (b) तय की गई दूरी।

Show Answer missing

2. कोई रेलगाड़ी $90 \mathrm{~km} \mathrm{~h}^{-1}$ के चाल से चल रही है। ब्रेक लगाए जाने पर वह $-0.5 \mathrm{~m} \mathrm{~s}^{-2}$ का एकसमान त्वरण उत्पन्न करती है। रेलगाड़ी विरामावस्था में आने के पहले कितनी दूरी तय करेगी?

Show Answer missing

3. एक ट्रॉली एक आनत तल पर $2 \mathrm{~m} \mathrm{~s}^{-2}$ के त्वरण से नीचे जा रही है। गति प्रारंभ करने के $3 \mathrm{~s}$ के पश्चात् उसका वेग क्या होगा?

Show Answer missing

4. एक रेसिंग कार का एकसमान त्वरण $4 \mathrm{~m} \mathrm{~s}^{-2}$ है। गति प्रारंभ करने के $10 \mathrm{~s}$ पश्चात् वह कितनी दूरी तय करेगी?

Show Answer missing

5. किसी पत्थर को ऊधर्वाधर ऊपर की ओर $5 \mathrm{~m} \mathrm{~s}^{-1}$ के वेग से फेंका जाता है। यदि गति के दौरान पत्थर का नीचे की ओर दिष्ट त्वरण $10 \mathrm{~m} \mathrm{~s}^{-2}$ है, तो पत्थर के द्वारा कितनी ऊँचाई प्राप्त की गई तथा उसे वहाँ पहुँचने में कितना समय लगा?

Show Answer missing

7.6 एकसमान वृत्तीय गति

जब वस्तु के वेग में परिवर्तन होता है तब हम कहते हैं कि वह वस्तु त्वरित हो रही है। वेग में यह परिवर्तन, वेग के परिमाण या गति की दिशा या दोनों के कारण हो सकता है। क्या आप एक उदाहरण के बारे में सोच सकते हैं, जिसमें एक वस्तु अपने वेग के परिमाण को नहीं बदलती, परंतु अपनी गति की दिशा को बदलती है?

चित्र 7.8: एक एथलीट (धावक) की विभिन्न आकृतियों के बंद पथ पर गति

किसी बंद पथ (मार्ग) पर एक वस्तु की गति का उदाहरण लें चित्र 7.8(a)। किसी एथलीट (धावक) को एक आयताकार पथ $\mathrm{ABCD}$ के अनुदिश दर्शाता है। माना एथलीट पथ के सीधे भागों $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ और $\mathrm{DA}$ पर एकसमान चाल से दौड़ता है। अपने आपको पथ पर बनाए रखने के लिए कोनों पर वह शीघ्रता से अपनी चाल बदलता है। एक चक्कर पूरा करने में उसे कितनी बार अपनी गति की दिशा बदलनी पड़ेगी? यह स्पष्ट है कि आयताकार पथ पर एक चक्कर लगाने के दौरान उसने चार बार अपनी गति की दिशा को बदला होगा।

अब मान लें कि एथलीट आयताकार पथ के स्थान पर षट्कोणीय पथ $\mathrm{ABCDEF}$ के अनुदिश दौड़ रहा है जैसा कि चित्र 7.8 (b) में प्रदर्शित है। इस स्थिति में, एथलीट को एक चक्कर पूरा करने में, छः बार अपनी दिशा को बदलना होगा। यदि पथ षट्भुजाकार न होकर सम अष्टभुजाकार पथ ABCDEFGH हो [चित्र 7.8(c)] तो क्या होगा? यह देखा गया है कि पथ की भुजाओं की संख्या में वृद्धि के साथ ही एथलीट को अपने मुड़ने कि संख्या में वृद्धि करनी पड़ती है। अगर हम अनिश्चित रूप से पथ की भुजाओं की संख्या बढ़ाएँ तो उन भुजाओं का आकार कैसा होगा? यदि आप ऐसा करते हैं तो आप पाएँगे कि सभी भुजाओं की लंबाई घटकर एक बिंदु के समान हो जाएगी और पथ का आकार लगभग वृत्त के समान हो जाता है। अगर एथलीट एक वृत्तीय पथ पर नियत परिमाण वाले वेग के साथ दौड़ता है तो उसके वेग में परिवर्तन केवल गति की दिशा में परिवर्तन के कारण होता है। इसलिए वृत्तीय पथ पर दौड़ता हुआ एक एथलीट, त्वरित गति का एक उदाहरण है।

हम जानते हैं कि त्रिज्या $r$ वाले वृत्त की परिधि $2 \pi r$ होती है। अगर एथलीट $r$ त्रिज्या वाले वृत्तीय पथ का एक चक्कर लगाने में $t$ सेकंड का समय लेता है तो वेग $V$ होगा,

$$ \begin{equation*} v=\frac{2 \pi r}{t} \tag{7.8} \end{equation*} $$

जब एक वस्तु वृत्तीय रास्ते पर एकसमान चाल से चलती है तब उसकी गति को एकसमान वृत्तीय गति कहा जाता है।

क्रियाकलाप 7.11

  • एक धागे का टुकड़ा लें और उसके एक छोर पर एक छोटे से पत्थर को बाँध दें। धागे के दूसरे छोर को पकड़कर पत्थर को वृत्तीय पथ पर नियत चाल से घुमाएँ जैसा कि चित्र 7.9 में दिखाया गया है।

चित्र 7.9: पत्थर नियत परिमाण के वेग से वृत्तीय पथ को निर्दिष्ट करता है

  • अब पत्थर सहित धागे को छोड़ दें।

  • क्या आप बता सकते हैं कि धागा छोड़ने के बाद पत्थर किस दिशा में जाएगा?

  • इस क्रिया को बार-बार दोहराएँ और वृत्तीय पथ के अलग-अलग जगहों से पत्थर को छोड़ें और यह देखें कि पत्थर के गति करने की दिशा समान है या नहीं।

ध्यानपूर्वक देखने पर आप पाएँगे कि पत्थर वृत्तीय पथ के स्पर्शरेखीय सीधी रेखा के साथ गति करता है। ऐसा इसलिए क्योंकि जब पत्थर को छोड़ा जाता है तो वह उसी दिशा में गति जारी रखता है जिस दिशा में उस क्षण वह गति कर रहा है। इससे पता चलता है कि जब किसी पत्थर को वृत्तीय पथ पर घुमाया जाता है तो उसकी गति की दिशा प्रत्येक बिंदु पर परिवर्तित होती है।

जब कोई एथलीट खेल प्रतियोगिता में एक चक्र (डिसकॅस) या गोले को फेंकता है, तो वह उसे अपने हाथ में पकड़ता है तथा अपने शरीर को घुमाकर उसे वृत्तीय गति प्रदान करता है। इच्छित दिशा में एक बार छूटने के बाद गोला या चक्र उसी दिशा में गति करता है जिस दिशा में वह छोड़ते समय गति कर रहा था। यह ठीक उसी प्रकार है जिस प्रकार उक्त क्रियाकलाप में पत्थर के लिए वर्णित है। वस्तुओं की एकसमान वृत्तीय गति के बहुत से चिरपरिचित उदाहरण हैं जैसे, चंद्रमा एवं पृथ्वी की गति, पृथ्वी के चारों ओर वृत्तीय कक्षा में घूर्णन करता हुआ एक उपग्रह, वृत्तीय पथ पर नियत चाल से चलता हुआ साइकिल सवार इत्यादि।

आपने क्या सीखा

  • स्थिति में परिवर्तन एक गति है, इसकी व्याख्या तय की गई दूरी या विस्थापन के रूप में की जा सकती है।

  • एक वस्तु की गति का समान या असमान होना उस वस्तु के वेग पर निर्भर करता है जो कि नियत है या बदल रहा है।

  • प्रति इकाई समय में वस्तु के द्वारा तय की गई दूरी उसकी चाल है और प्रति इकाई समय में हुआ विस्थापन उसका वेग है।

  • किसी वस्तु का त्वरण प्रति इकाई समय में उसके वेग में होने वाला परिवर्तन है।

  • ग्राफ़ों के द्वारा वस्तु की समान और असमान गति को दर्शाया जा सकता है। एकसमान त्वरण से चल रही एक वस्तु की गति की व्याख्या निम्न समीकरणों के माध्यम से की जा सकती है:

    $$ \begin{aligned} v & =u+a t \\ s & =u t+1 / 2 a t^{2} \\ 2 a s & =v^{2}-u^{2} \end{aligned} $$

    जहाँ $u$ वस्तु का प्रारंभिक वेग है, जो कि $t$ समय के लिए एकसमान त्वरण $a$ से गति करती है, इसका अन्तिम वेग $v$ है और $t$ समय में तय की गई दूरी $s$ है।

  • अगर कोई वस्तु वृत्तीय पथ पर एकसमान चाल से चलती है तो उसकी गति को एकसमान वृत्तीय गति कहा जाता है।

अभ्यास

1. एक एथलीट वृत्तीय रास्ते, जिसका व्यास $200 \mathrm{~m}$ है, का एक चक्कर $40 \mathrm{~s}$ में लगाता है। $2 \mathrm{~min} 20 \mathrm{~s}$ के बाद वह कितनी दूरी तय करेगा और उसका विस्थापन क्या होगा?

Show Answer missing

2. $300 \mathrm{~m}$ सीधे रास्ते पर जोसेफ़ जॉगिंग करता हुआ $2 \min 50 \mathrm{~s}$ में एक सिरे $\mathrm{A}$ से दूसरे सिरे $\mathrm{B}$ पर पहुंचता है और घूमकर $1 \mathrm{~min}$. में $100 \mathrm{~m}$ पीछे बिंदु $\mathrm{C}$ पर पहुँचता है। जोसेफ़ की औसत चाल और औसत वेग क्या होंगे? (a) सिरे $\mathrm{A}$ से सिरे $\mathrm{B}$ तक तथा (b) सिरे $\mathrm{A}$ से सिरे $\mathrm{C}$ तक।

Show Answer missing

3. अब्दुल गाड़ी से स्कूल जाने के क्रम में औसत चाल को $20 \mathrm{~km} \mathrm{~h}^{-1}$ पाता है। उसी रास्ते से लौटने के समय वहाँ भीड़ कम है और औसत चाल $40 \mathrm{~km} \mathrm{~h}^{-1}$ है। अब्दुल की इस पूरी यात्रा में उसकी औसत चाल क्या है?

Show Answer missing

4. कोई मोटरबोट झील में विरामावस्था से सरल रेखीय पथ पर $3.0 \mathrm{~m} \mathrm{~s}^{-2}$ की नियत त्वरण से $8.0 \mathrm{~s}$ तक चलती है। इस समय अंतराल में मोटरबोट कितनी दूरी तय करती है?

Show Answer missing

5. किसी गाड़ी का चालक $52 \mathrm{~km} \mathrm{~h}^{-1}$ की गति से चल रही कार में ब्रेक लगाता है तथा कार विपरीत दिशा में एकसमान दर से त्वरित होती है। कार $5 \mathrm{~s}$ में रुक जाती है। दूसरा चालक $30 \mathrm{~km} \mathrm{~h}^{-1}$ की गति से चलती हुई दूसरी कार पर धीमे-धीमे ब्रेक लगाता है तथा $10 \mathrm{~s}$ में रुक जाता है। एक ही ग्राफ़ पेपर पर दोनों कारों के लिए चाल-समय ग्राफ़ आलेखित करें। ब्रेक लगाने के पश्चात् दोनों में से कौन-सी कार अधिक दूरी तक जाएगी?

Show Answer missing

6. चित्र 7.10 में तीन वस्तुओं $\mathrm{A}, \mathrm{B}$ और $\mathrm{C}$ के दूरी-समय ग्राफ़ प्रदर्शित हैं। ग्राफ़ का अध्ययन करके निम्न प्रश्नों के उत्तर दीजिए:

चित्र 7.10

(a) तीनों में से कौन सबसे तीव्र गति से गतिमान है?

(b) क्या ये तीनों किसी भी समय सड़क के एक ही बिंदु पर होंगे?

(c) जिस समय $\mathrm{B}, \mathrm{A}$ से गुजरती है उस समय तक $\mathrm{C}$ कितनी दूरी तय कर लेती है?

(d) जिस समय $\mathrm{B}, \mathrm{C}$ से गुजरती है उस समय तक यह कितनी दूरी तय कर लेती है?

Show Answer missing

7. $20 \mathrm{~m}$ की ऊँचाई से एक गेंद को गिराया जाता है। यदि उसका वेग $10 \mathrm{~m}$ $\mathrm{s}^{-2}$ के एकसमान त्वरण की दर से बढ़ता है तो यह किस वेग से धरातल से टकराएगी? कितने समय पश्चात् वह धरातल से टकराएगी?

Show Answer missing

8. किसी कार का चाल-समय ग्राफ़ चित्र 7.11 में दर्शाया गया है।

चित्र 7.11

(a) पहले $4 \mathrm{~s}$ में कार कितनी दूरी तय करती है? इस अवधि में कार द्वारा तय की गई दूरी को ग्राफ़ में छायांकित क्षेत्र द्वारा दर्शाइए।

(b) ग्राफ़ का कौन-सा भाग कार की एकसमान गति को दर्शाता है?

Show Answer missing

9. निम्नलिखित में से कौन-सी अवस्थाएँ संभव हैं तथा प्रत्येक के लिए एक उदाहरण दें:

(a) कोई वस्तु जिसका त्वरण नियत हो परन्तु वेग शून्य हो।

(b) कोई त्वरित वस्तु एकसमान चाल से गति कर रही हो।

(c) कोई वस्तु किसी निश्चित दिशा में गति कर रही हो तथा त्वरण उसके लंबवत् हो।

Show Answer missing

10. एक कृत्रिम उपग्रह $42250 \mathrm{~km}$ त्रिज्या की वृत्ताकार कक्षा में घूम रहा है। यदि वह 24 घंटे में पृथ्वी की परिक्रमा करता है तो उसकी चाल का परिकलन कीजिए।

Show Answer missing


Table of Contents