Chapter-11 Surface Areas and Volumes
11.1 Surface Area of a Right Circular Cone
We have already studied the surface areas of cube, cuboid and cylinder. We will now study the surface area of cone. So far, we have been generating solids by stacking up congruent figures. Incidentally, such figures are called prisms. Now let us look at another kind of solid which is not a prism (These kinds of solids are called pyramids.). Let us see how we can generate them.
Activity : Cut out a right-angled triangle $\mathrm{ABC}$ right angled at $\mathrm{B}$. Paste a long thick string along one of the perpendicular sides say AB of the triangle [see Fig. 11.1(a)]. Hold the string with your hands on either sides of the triangle and rotate the triangle about the string a number of times. What happens? Do you recognize the shape that the triangle is forming as it rotates around the string [see Fig. 11.1(b)]? Does it remind you of the time you had eaten an ice-cream heaped into a container of that shape [see Fig. 11.1(c) and (d)]?
Fig. 11.1
This is called a right circular cone. In Fig. 11.1(c) of the right circular cone, the point $\mathrm{A}$ is called the vertex, $\mathrm{AB}$ is called the height, $\mathrm{BC}$ is called the radius and $A C$ is called the slant height of the cone. Here $B$ will be the centre of circular base of the cone. The height, radius and slant height of the cone are usually denoted by $h, r$ and $l$ respectively. Once again, let us see what kind of cone we can not call a right circular cone. Here, you are (see Fig. 11.2)! What you see in these figures are not right circular cones; because in (a), the line joining its vertex to the centre of its base is not at right angle to the base, and in (b) the base is not circular.
Fig. 11.2
As in the case of cylinder, since we will be studying only about right circular cones, remember that by ‘cone’ in this chapter, we shall mean a ‘right circular cone.’
Activity : (i) Cut out a neatly made paper cone that does not have any overlapped paper, straight along its side, and opening it out, to see the shape of paper that forms the surface of the cone. (The line along which you cut the cone is the slant height of the cone which is represented by $l$ ). It looks like a part of a round cake.
(ii) If you now bring the sides marked A and B at the tips together, you can see that the curved portion of Fig. 11.3 (c) will form the circular base of the cone.
Fig. 11.3
(iii) If the paper like the one in Fig. 11.3 (c) is now cut into hundreds of little pieces, along the lines drawn from the point $\mathrm{O}$, each cut portion is almost a small triangle, whose height is the slant height $l$ of the cone.
(iv) Now the area of each triangle $=\frac{1}{2} \times$ base of each triangle $\times l$.
So, area of the entire piece of paper
$$ \begin{aligned} & =\text { sum of the areas of all the triangles } \\ & =\frac{1}{2} b_{1} l+\frac{1}{2} b_{2} l+\frac{1}{2} b_{3} l+\cdots=\frac{1}{2} l\left(b_{1}+b_{2}+b_{3}+\cdots\right) \\ & =\frac{1}{2} \times l \times \text { length of entire curved boundary of Fig. 11.3(c) } \end{aligned} $$
$\quad$(as $b_{1}+b_{2}+b_{3}+\ldots$ makes up the curved portion of the figure)
But the curved portion of the figure makes up the perimeter of the base of the cone and the circumference of the base of the cone $=2 \pi r$, where $r$ is the base radius of the cone.
So, Curved Surface Area of a Cone $=\frac{1}{2} \times l \times 2 \pi r=\pi r l$
where $r$ is its base radius and $l$ its slant height.
Note that $l^{2}=r^{2}+h^{2}$ (as can be seen from Fig. 11.4), by applying Pythagoras Theorem. Here $h$ is the height of the cone.
Therefore, $l=\sqrt{r^{2}+h^{2}}$
Fig. 11.4
Now if the base of the cone is to be closed, then a circular piece of paper of radius $r$ is also required whose area is $\pi r^{2}$.
So, Total Surface Area of a Cone $=\pi r l+\pi r^{2}=\pi r(l+r)$
Example 1 : Find the curved surface area of a right circular cone whose slant height is $10 \mathrm{~cm}$ and base radius is $7 \mathrm{~cm}$.
Solution : Curved surface area $=\pi r l$
$$ \begin{aligned} & =\frac{22}{7} \times 7 \times 10 \mathrm{~cm}^{2} \\ & =220 \mathrm{~cm}^{2} \end{aligned} $$
Example 2 : The height of a cone is $16 \mathrm{~cm}$ and its base radius is $12 \mathrm{~cm}$. Find the curved surface area and the total surface area of the cone (Use $\pi=3.14$ ).
Solution : Here, $h=16 \mathrm{~cm}$ and $r=12 \mathrm{~cm}$.
So, from $l^{2}=h^{2}+r^{2}$, we have
$$ l=\sqrt{16^{2}+12^{2}} \mathrm{~cm}=20 \mathrm{~cm} $$
So, curved surface area $=\pi r l$
$$ \begin{aligned} & =3.14 \times 12 \times 20 \mathrm{~cm}^{2} \\ & =753.6 \mathrm{~cm}^{2} \end{aligned} $$
Further, total surface area $=\pi r l+\pi r^{2}$
$$ \begin{aligned} & =(753.6+3.14 \times 12 \times 12) \mathrm{cm}^{2} \\ & =(753.6+452.16) \mathrm{cm}^{2} \\ & =1205.76 \mathrm{~cm}^{2} \end{aligned} $$
Example 3 : A corn cob (see Fig. 11.5), shaped somewhat like a cone, has the radius of its broadest end as $2.1 \mathrm{~cm}$ and length (height) as $20 \mathrm{~cm}$. If each $1 \mathrm{~cm}^{2}$ of the surface of the cob carries an average of four grains, find how many grains you would find on the entire cob.
Fig. 11.5
Solution : Since the grains of corn are found only on the curved surface of the corn cob, we would need to know the curved surface area of the corn cob to find the total number of grains on it. In this question, we are given the height of the cone, so we need to find its slant height.
Here, $\quad l=\sqrt{r^{2}+h^{2}}=\sqrt{(2.1)^{2}+20^{2}} \mathrm{~cm}$
$$ =\sqrt{404.41} \mathrm{~cm}=20.11 \mathrm{~cm} $$
Therefore, the curved surface area of the corn cob $=\pi r l$
$$ =\frac{22}{7} \times 2.1 \times 20.11 \mathrm{~cm}^{2}=132.726 \mathrm{~cm}^{2}=132.73 \mathrm{~cm}^{2} \text { (approx.) } $$
Number of grains of corn on $1 \mathrm{~cm}^{2}$ of the surface of the corn cob $=4$
Therefore, number of grains on the entire curved surface of the cob
$$ =132.73 \times 4=530.92=531 \text { (approx.) } $$
So, there would be approximately 531 grains of corn on the cob.
EXERCISE 11.1
$$ \text { Assume } \pi=\frac{22}{7} \text {, unless stated otherwise. } $$
1. Diameter of the base of a cone is $10.5 \mathrm{~cm}$ and its slant height is $10 \mathrm{~cm}$. Find its curved surface area.
Show Answer
Solution
$ (\frac{10.5}{2}) cm $
Radius $(r)$ of the base of cone $=\quad=5.25 cm$
Slant height (I) of cone $=10 cm$
CSA of cone $=\pi r l$
$ =(\frac{22}{7} \times 5.25 \times 10) cm^{2}=(22 \times 0.75 \times 10) cm^{2}=165 cm^{2} $
Therefore, the curved surface area of the cone is $165 cm^{2}$.
2. Find the total surface area of a cone, if its slant height is $21 \mathrm{~m}$ and diameter of its base is $24 \mathrm{~m}$.
Show Answer
Solution
Radius $(r)$ of Slant height $[.$ Assume $.\pi=\frac{22}{7}]$
Total
$=\pi r(r+I)$ the base of cone $=$
(I) of cone $=21 m$
surface $\quad=12 m$ area of cone
$=[\frac{22}{7} \times 12 \times(12+21)] m^{2}$
$=(\frac{22}{7} \times 12 \times 33) m^{2}$
$=1244.57 m^{2}$
3. Curved surface area of a cone is $308 \mathrm{~cm}^{2}$ and its slant height is $14 \mathrm{~cm}$. Find (i) radius of the base and (ii) total surface area of the cone.
Show Answer
Solution
(i) Slant height (I) of cone $=14 cm$
Let the radius of the circular end of the cone be $r$. We
know, CSA of cone $=$ nrl
(308) $cm^{2}=(\frac{22}{7} \times r \times 14) cm$
$\Rightarrow r=(\frac{308}{44}) cm=7 cm$
Therefore, the radius of the circular end of the cone is $7 cm$.
(ii) Total surface area of cone $=$ CSA of cone + Area of base
$ \begin{aligned} & =\pi r l+\pi r^{2} \\ & =[308+\frac{22}{7} \times(7)^{2}] cm^{2} \\ & =(308+154) cm^{2} \\ & =462 cm^{2} \end{aligned} $
Therefore, the total surface area of the cone is $462 cm^{2}$.
4. A conical tent is $10 \mathrm{~m}$ high and the radius of its base is $24 \mathrm{~m}$. Find
(i) slant height of the tent.
(ii) cost of the canvas required to make the tent, if the cost of $1 \mathrm{~m}^{2}$ canvas is ₹ 70 .
Show Answer
Solution
(i) Let $A B C$ be a conical tent.
Height ( $h$ ) of conical tent $=10 m$
Radius ( $r$ ) of conical tent $=24 m$
Let the slant height of the tent be I.
In $\triangle A B O, A B^{2}=A O^{2}+$
$BO^{2}$
$ \begin{aligned} & I^{2}=h^{2}+r^{2} \\ & =(10 m)^{2}+(24 m)^{2} \\ & =676 m^{2} \\ & \therefore I=26 m \end{aligned} $
Therefore, the slant height of the tent is $26 m$.
(ii) CSA of tent $=\pi rl$
$ \begin{aligned} & =(\frac{22}{7} \times 24 \times 26) m^{2} \\ & =\frac{13728}{7} m^{2} \end{aligned} $
Cost of $1 m^{2}$ canvas $=$ Rs 70
Cost of 7 canvas $=$
$ \frac{13728}{7} m^{2} \quad Rs(\frac{13728}{7} \times 70) $
$=$ Rs 137280
Therefore, the cost of the canvas required to make such a tent is Rs 137280 .
5. What length of tarpaulin $3 \mathrm{~m}$ wide will be required to make conical tent of height $8 \mathrm{~m}$ and base radius $6 \mathrm{~m}$ ? Assume that the extra length of material that will be required for stitching margins and wastage in cutting is approximately $20 \mathrm{~cm}$ (Use $\pi=3.14$ ).
Show Answer
Solution
Height $(h)$ of conical tent $=8 m$
Radius ( $r$ ) of base of tent $=6 m$
Slant height (I) of tent $=\sqrt{r^{2}+h^{2}}$
$=(\sqrt{6^{2}+8^{2}}) m=(\sqrt{100}) m=10 m$
CSA of conical tent $=\pi r \mid$
$=(3.14 \times 6 \times 10) m^{2}$
$=188.4 m^{2}$
Let the length of tarpaulin sheet required be $I$.
As $20 cm$ will be wasted, therefore, the effective length will be $(I-0.2 m)$.
Breadth of tarpaulin $=3 m$
Area of sheet $=$ CSA of tent $[(I$
$-0.2 m) \times 3] m=188.4 m^{2} I-$
$0.2 m=62.8 m I=63 m$
Therefore, the length of the required tarpaulin sheet will be $63 m$.
6. The slant height and base diameter of a conical tomb are $25 \mathrm{~m}$ and $14 \mathrm{~m}$ respectively. Find the cost of white-washing its curved surface at the rate of ₹ 210 per $100 \mathrm{~m}^{2}$.
Show Answer
Solution
Slant height (I) of conical tomb $=25 m$
Base radius $(r)$ of tomb $=\frac{14}{2}=7 m$
CSA of conical tomb $=\pi r l$
$=(\frac{22}{7} \times 7 \times 25) m^{2}$
$=550 m^{2}$
Cost of white-washing $100 m^{2}$ area $=$ Rs 210
Cost of white-washing $550 m^{2}$ area $=Rs(\frac{210 \times 550}{100})$
$=Rs 1155$
Therefore, it will cost Rs 1155 while white-washing such a conical tomb.
7. A joker’s cap is in the form of a right circular cone of base radius $7 \mathrm{~cm}$ and height $24 \mathrm{~cm}$. Find the area of the sheet required to make 10 such caps.
Show Answer
Solution
Radius ( $r$ ) of conical cap $=7 cm$
Height (h) of conical cap $=24 cm$
Slant height (I) of conical cap $=\sqrt{r^{2}+h^{2}}$.
$=[\sqrt{(7)^{2}+(24)^{2}}] cm=(\sqrt{625}) cm=25 cm$
CSA of 1 conical cap $=\pi r l$
$=(\frac{22}{7} \times 7 \times 25) cm^{2}=550 cm^{2}$
CSA of 10 such conical caps $=(10 \times 550) cm^{2}=5500 cm^{2}$ Therefore, $5500 cm^{2}$ sheet will be required.
8. A bus stop is barricaded from the remaining part of the road, by using 50 hollow cones made of recycled cardboard. Each cone has a base diameter of $40 \mathrm{~cm}$ and height $1 \mathrm{~m}$. If the outer side of each of the cones is to be painted and the cost of painting is ₹ 12 per $\mathrm{m}^{2}$, what will be the cost of painting all these cones? (Use $\pi=3.14$ and take $\sqrt{1.04}=1.02)$
Show Answer
Solution
Radius ( $r$ ) of cone $={ }^{\frac{40}{2}=20 cm}=0.2 m$
Height ( $h$ ) of cone $=1 m$
Slant height (I) of cone $=\sqrt{h^{2}+r^{2}}$
$=[\sqrt{(1)^{2}+(0.2)^{2}}] m=(\sqrt{1.04}) m=1.02 m$
CSA of each cone $=\pi r l$
$=(3.14 \times 0.2 \times 1.02) m^{2}=0.64056 m^{2} CSA$
of 50 such cones $=(50 \times 0.64056) m^{2}$
$=32.028 m^{2}$
Cost of painting $1 m^{2}$ area $=$ Rs 12
Cost of painting $32.028 m^{2}$ area $=Rs(32.028 \times 12)$
$=$ Rs 384.336
$=$ Rs 384.34 (approximately)
Therefore, it will cost Rs 384.34 in painting 50 such hollow cones.
11.2 Surface Area of a Sphere
What is a sphere? Is it the same as a circle? Can you draw a circle on a paper? Yes, you can, because a circle is a plane closed figure whose every point lies at a constant distance (called radius) from a fixed point, which is called the centre of the circle. Now if you paste a string along a diameter of a circular disc and rotate it as you had rotated the triangle in the previous section, you see a new solid (see Fig 11.6). What does it resemble? A ball? Yes. It is called a sphere.
Fig. 11.6
Can you guess what happens to the centre of the circle, when it forms a sphere on rotation? Of course, it becomes the centre of the sphere. So, a sphere is a three dimensional figure (solid figure), which is made up of all points in the space, which lie at a constant distance called the radius, from a fixed point called the centre of the sphere.
Note : A sphere is like the surface of a ball. The word solid sphere is used for the solid whose surface is a sphere.
Activity : Have you ever played with a top or have you at least watched someone play with one? You must be aware of how a string is wound around it. Now, let us take a rubber ball and drive a nail into it. Taking support of the nail, let us wind a string around the ball. When you have reached the ‘fullest’ part of the ball, use pins to keep the string in place, and continue to wind the string around the remaining part of the ball, till you have completely covered the ball [see Fig. 11.7(a)]. Mark the starting and finishing points on the string, and slowly unwind the string from the surface of the ball.
Now, ask your teacher to help you in measuring the diameter of the ball, from which you easily get its radius. Then on a sheet of paper, draw four circles with radius equal to the radius of the ball. Start filling the circles one by one, with the string you had wound around the ball [see Fig. 11.7(b)].
Fig. 11.7
What have you achieved in all this?
The string, which had completely covered the surface area of the sphere, has been used to completely fill the regions of four circles, all of the same radius as of the sphere.
So, what does that mean? This suggests that the surface area of a sphere of radius $r$ $=4$ times the area of a circle of radius $r=4 \times\left(\pi r^{2}\right)$
So,$\quad$Surface Area of a Sphere $=4 \pi r^{2}$
where $r$ is the radius of the sphere.
How many faces do you see in the surface of a sphere? There is only one, which is curved.
Now, let us take a solid sphere, and slice it exactly ’through the middle’ with a plane that passes through its centre. What happens to the sphere?
Yes, it gets divided into two equal parts (see Fig. 11.8)! What will each half be called? It is called a hemisphere. (Because ‘hemi’ also means ‘half’)
Fig. 11.8
And what about the surface of a hemisphere? How many faces does it have?
Two! There is a curved face and a flat face (base).
The curved surface area of a hemisphere is half the surface area of the sphere, which is $\frac{1}{2}$ of $4 \pi r^{2}$.
Therefore, Curved Surface Area of a Hemisphere $=\mathbf{2} \boldsymbol{\pi} r^{2}$
where $r$ is the radius of the sphere of which the hemisphere is a part.
Now taking the two faces of a hemisphere, its surface area $2 \pi r^{2}+\pi r^{2}$
So, Total Surface Area of a Hemisphere $=3 \pi r^{2}$
Example 4 : Find the surface area of a sphere of radius $7 \mathrm{~cm}$.
Solution : The surface area of a sphere of radius $7 \mathrm{~cm}$ would be
$$ 4 \pi r^{2}=4 \times \frac{22}{7} \times 7 \times 7 \mathrm{~cm}^{2}=616 \mathrm{~cm}^{2} $$
Example 5 : Find (i) the curved surface area and (ii) the total surface area of a hemisphere of radius $21 \mathrm{~cm}$.
Solution : The curved surface area of a hemisphere of radius $21 \mathrm{~cm}$ would be
$$ =2 \pi r^{2}=2 \times \frac{22}{7} \times 21 \times 21 \mathrm{~cm}^{2}=2772 \mathrm{~cm}^{2} $$
(ii) the total surface area of the hemisphere would be
$$ 3 \pi r^{2}=3 \times \frac{22}{7} \times 21 \times 21 \mathrm{~cm}^{2}=4158 \mathrm{~cm}^{2} $$
Example 6 : The hollow sphere, in which the circus motorcyclist performs his stunts, has a diameter of $7 \mathrm{~m}$. Find the area available to the motorcyclist for riding.
Solution : Diameter of the sphere $=7 \mathrm{~m}$. Therefore, radius is $3.5 \mathrm{~m}$. So, the riding space available for the motorcyclist is the surface area of the ‘sphere’ which is given by
$$ \begin{aligned} 4 \pi r^{2} & =4 \times \frac{22}{7} \times 3.5 \times 3.5 \mathrm{~m}^{2} \\ & =154 \mathrm{~m}^{2} \end{aligned} $$
Example 7 : A hemispherical dome of a building needs to be painted (see Fig. 11.9). If the circumference of the base of the dome is $17.6 \mathrm{~m}$, find the cost of painting it, given the cost of painting is ₹ 5 per $100 \mathrm{~cm}^{2}$.
Fig. 11.9
Solution : Since only the rounded surface of the dome is to be painted, we would need to find the curved surface area of the hemisphere to know the extent of painting that needs to be done. Now, circumference of the dome $=17.6 \mathrm{~m}$. Therefore, $17.6=2 \pi r$.
So, the radius of the dome $=17.6 \times \frac{7}{2 \times 22} \mathrm{~m}=2.8 \mathrm{~m}$
The curved surface area of the dome $=2 \pi r^{2}$
$$ \begin{aligned} & =2 \times \frac{22}{7} \times 2.8 \times 2.8 \mathrm{~m}^{2} \\ & =49.28 \mathrm{~m}^{2} \end{aligned} $$
Now, cost of painting $100 \mathrm{~cm}^{2}$ is ₹ 5.
So, cost of painting $1 \mathrm{~m}^{2}$=₹ 500
Therefore, cost of painting the whole dome =₹ 500 $\times 49.28$ = ₹ 24640
EXERCISE 11.2
$ \text { Assume } \pi=\frac{22}{7} \text {, unless stated otherwise. } $
1. Find the surface area of a sphere of radius:
(i) $10.5 \mathrm{~cm}$
(ii) $5.6 \mathrm{~cm}$
(iii) $14 \mathrm{~cm}$
Show Answer
Solution
(i) Radius ( $r$ ) of sphere $=10.5 cm$
Surface area of sphere $=4 n r^{2}$
$=[4 \times \frac{22}{7} \times(10.5)^{2}] cm^{2}$
$=(4 \times \frac{22}{7} \times 10.5 \times 10.5) cm^{2}$
$=(88 \times 1.5 \times 10.5) cm^{2}$
$=1386 cm^{2}$
Therefore, the surface area of a sphere having radius $10.5 cm$ is $1386 cm^{2}$.
(ii) Radius( $r$ ) of sphere $=5.6 cm$
Surface area of sphere $=4 \pi r^{2}$ $=[4 \times \frac{22}{7} \times(5.6)^{2}] cm^{2}$
$=(88 \times 0.8 \times 5.6) cm^{2}$
$=394.24 cm^{2}$
Therefore, the surface area of a sphere having radius $5.6 cm$ is $394.24 cm^{2}$.
(iii) Radius ( $r$ ) of sphere $=14 cm$
Surface area of sphere $=4 \pi r^{2}$
$=[4 \times \frac{22}{7} \times(14)^{2}] cm^{2}$
$=(4 \times 44 \times 14) cm^{2}$
$=2464 cm^{2}$
Therefore, the surface area of a sphere having radius $14 cm$ is $2464 cm^{2}$.
2. Find the surface area of a sphere of diameter:
(i) $14 \mathrm{~cm}$
(ii) $21 \mathrm{~cm}$
(iii) $3.5 \mathrm{~m}$
Show Answer
Solution
(i) $Radius(r)$ of sphere $=\frac{\text{ Diameter }}{2}=(\frac{14}{2}) cm=7 cm$
Surface area of sphere $=4 n r^{2}$
$=(4 \times \frac{22}{7} \times(7)^{2}) cm^{2}$ $=(88 \times 7) cm^{2}$ $=616 cm^{2}$
Therefore, the surface area of a sphere having diameter $14 cm$ is $616 cm^{2}$.
(ii) Radius ( $r$ ) of sphere $=\frac{21}{2}=10.5 cm$
Surface area of sphere $=4 n r^{2}$
$=[4 \times \frac{22}{7} \times(10.5)^{2}] cm^{2}$
$=1386 cm^{2}$
Therefore, the surface area of a sphere having diameter $21 cm$ is $1386 cm^{2}$.
(iii) Radius ( $r$ ) of sphere $=\frac{\frac{3.5}{2}=1.75}{} m$
Surface area of sphere $=4 n r^{2}$
$=[4 \times \frac{22}{7} \times(1.75)^{2}] m^{2}$
$=38.5 m^{2}$
Therefore, the surface area of the sphere having diameter $3.5 m$ is $38.5 m^{2}$.
3. Find the total surface area of a hemisphere of radius $10 \mathrm{~cm}$. (Use $\pi=3.14$ )
Show Answer
Solution
Radius ( $r$ ) of hemisphere $=10 cm$
Total surface area of hemisphere $=$ CSA of hemisphere + Area of circular end of hemisphere
$ \begin{aligned} & =2 \pi r^{2}+\pi r^{2} \\ & =3 \pi r^{2} \\ & =[3 \times 3.14 \times(10)^{2}] cm^{2} \\ & =942 cm^{2} \end{aligned} $
Therefore, the total surface area of such a hemisphere is $942 cm^{2}$.
4. The radius of a spherical balloon increases from $7 \mathrm{~cm}$ to $14 \mathrm{~cm}$ as air is being pumped into it. Find the ratio of surface areas of the balloon in the two cases.
Show Answer
Solution
Radius ( $r_1$ ) of spherical balloon $=7 cm$
Radius $(r_2.$ ) of spherical balloon, when air is pumped into it $=14 cm$
$ \begin{aligned} \text{ Required ratio } & =\frac{\text{ Ini }}{\text{ Surface area af }} \\ & =\frac{4 \pi r_1^{2}}{4 \pi r_2^{2}}=(\frac{r_1}{r_2})^{2} \\ & =(\frac{7}{14})^{2}=\frac{1}{4} \end{aligned} $
Therefore, the ratio between the surface areas in these two cases is $1: 4$.
5. A hemispherical bowl made of brass has inner diameter $10.5 \mathrm{~cm}$. Find the cost of tin-plating it on the inside at the rate of ₹ 16 per $100 \mathrm{~cm}^{2}$.
Show Answer
Solution
$ =(\frac{10.5}{2}) cm=5.25 cm $
Inner radius ( $r$ ) of hemispherical bowl
Surface area of hemispherical bowl $=2 \pi r^{2}$
$=[2 \times \frac{22}{7} \times(5.25)^{2}] cm^{2}$
$=173.25 cm^{2}$
Cost of tin-plating $100 cm^{2}$ area $=$ Rs 16
Cost of tin-plating $173.25 cm^{2}$ area $=Rs(\frac{16 \times 173.25}{100})=Rs 27.72$
Therefore, the cost of tin-plating the inner side of the hemispherical bowl is Rs 27.72 .
6. Find the radius of a sphere whose surface area is $154 \mathrm{~cm}^{2}$.
Show Answer
Solution
Let the radius of the sphere be $r$.
Surface area of sphere $=154$
$ \begin{aligned} & \therefore 4 \pi r^{2}=154 cm^{2} \\ & r^{2}=(\frac{154 \times 7}{4 \times 22}) cm^{2}=(\frac{7 \times 7}{2 \times 2}) cm^{2} \\ & r=(\frac{7}{2}) cm=3.5 cm \end{aligned} $
Therefore, the radius of the sphere whose surface area is $154 cm^{2}$ is $3.5 cm$.
7. The diameter of the moon is approximately one fourth of the diameter of the earth. Find the ratio of their surface areas.
Show Answer
Solution
Let the diameter of earth be $d$. Therefore, the diameter of moon will be $\frac{d}{4}$.
$ \begin{aligned} & \text{ Radius of earth }=\frac{\frac{d}{2}}{\frac{1}{2} \times \frac{d}{4}=\frac{d}{8}} \\ & \text{ Radius of moon }=\frac{4 \pi(\frac{d}{8})^{2}}{4 \pi(\frac{d}{2})^{2}} \\ & \text{ Surface area of moon }=\frac{4 \pi(\frac{d}{8})^{2}}{4 \pi(\frac{d}{2})^{2}} \\ & \text{ Surface area of earth }=\frac{4}{\text{ Required ratio }} \\ & =\frac{4}{64}=\frac{1}{16} \end{aligned} $
Therefore, the ratio between their surface areas will be $1: 16$.
8. A hemispherical bowl is made of steel, $0.25 \mathrm{~cm}$ thick. The inner radius of the bowl is $5 \mathrm{~cm}$. Find the outer curved surface area of the bowl.
Show Answer
Solution
Inner radius of hemispherical bowl $=5 cm$
Thickness of the bowl $=0.25 cm$
$\therefore$ Outer radius $(r)$ of hemispherical bowl $=(5+0.25) cm$
$=5.25 cm$
Outer CSA of hemispherical bowl $=2 \pi r^{2}$
$ =2 \times \frac{22}{7} \times(5.25 cm)^{2}=173.25 cm^{2} $
Therefore, the outer curved surface area of the bowl is $173.25 cm^{2}$.
9. A right circular cylinder just encloses a sphere of radius $r$ (see Fig. 11.10). Find
(i) surface area of the sphere,
(ii) curved surface area of the cylinder,
(iii) ratio of the areas obtained in (i) and (ii).
Fig. 11.10
Show Answer
Solution
(i) Surface area of sphere $=4 \pi r^{2}$
(ii) Height of cylinder $=r+r=2 r$
Radius of cylinder $=r$
CSA of cylinder $=2 nrh$
$=2 \pi r(2 r)$
$=4 \Gamma r^{2}$
(iii)
Required ratio $=\frac{\text{ Surface area of sphere }}{\text{ CSA of cylinder }}$
$=\frac{4 \pi r^{2}}{4 \pi r^{2}}$
$=\frac{1}{1}$
Therefore, the ratio between these two surface areas is $1: 1$.
11.3 Volume of a Right Circular Cone
In earlier classes we have studied the volumes of cube, cuboid and cylinder
In Fig 11.11, can you see that there is a right circular cylinder and a right circular cone of the same base radius and the same height?
Fig. 11.11
Activity : Try to make a hollow cylinder and a hollow cone like this with the same base radius and the same height (see Fig. 11.11). Then, we can try out an experiment that will help us, to see practically what the volume of a right circular cone would be!
Fig. 11.12
So, let us start like this.
Fill the cone up to the brim with sand once, and empty it into the cylinder. We find that it fills up only a part of the cylinder [see Fig. 11.12(a)].
When we fill up the cone again to the brim, and empty it into the cylinder, we see that the cylinder is still not full [see Fig. 11.12(b)].
When the cone is filled up for the third time, and emptied into the cylinder, it can be seen that the cylinder is also full to the brim [see Fig. 11.12(c)].
With this, we can safely come to the conclusion that three times the volume of a cone, makes up the volume of a cylinder, which has the same base radius and the same height as the cone, which means that the volume of the cone is one-third the volume of the cylinder.
So, $\quad \text { Volume of a Cone }=\frac{1}{3} \pi r^{2} h$
where $r$ is the base radius and $h$ is the height of the cone.
Example 8 : The height and the slant height of a cone are $21 \mathrm{~cm}$ and $28 \mathrm{~cm}$ respectively. Find the volume of the cone.
Solution : From $l^{2}=r^{2}+h^{2}$, we have
$$ r=\sqrt{l^{2}-h^{2}}=\sqrt{28^{2}-21^{2}} \mathrm{~cm}=7 \sqrt{7} \mathrm{~cm} $$
So, volume of the cone $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times 7 \sqrt{7} \times 7 \sqrt{7} \times 21 \mathrm{~cm}^{3}$
$=7546 \mathrm{~cm}^{3}$
Example 9 : Monica has a piece of canvas whose area is $551 \mathrm{~m}^{2}$. She uses it to have a conical tent made, with a base radius of $7 \mathrm{~m}$. Assuming that all the stitching margins and the wastage incurred while cutting, amounts to approximately $1 \mathrm{~m}^{2}$, find the volume of the tent that can be made with it.
Solution : Since the area of the canvas $=551 \mathrm{~m}^{2}$ and area of the canvas lost in wastage is $1 \mathrm{~m}^{2}$, therefore the area of canvas available for making the tent is $(551-1) \mathrm{m}^{2}=550 \mathrm{~m}^{2}$.
Now, the surface area of the tent $=550 \mathrm{~m}^{2}$ and the required base radius of the conical tent $=7 \mathrm{~m}$
Note that a tent has only a curved surface (the floor of a tent is not covered by canvas!!).
Therefore, curved surface area of tent $=550 \mathrm{~m}^{2}$.
That is,$\quad \pi r l=550$
or, $\quad \frac{22}{7}\times 7 \times l=550$
or, $\quad l=3 \frac{550}{22} \mathrm{~m}=25 \mathrm{~m}$
Now,$\quad l^{2}=r^{2}+h^{2}$
$$ \begin{aligned} \text{Therefore,}\quad h=\sqrt{l^{2}-r^{2}} & =\sqrt{25^{2}-7^{2}} \mathrm{~m}=\sqrt{625-49} \mathrm{~m}=\sqrt{576} \mathrm{~m} \\ & =24 \mathrm{~m} \end{aligned} $$
So, the volume of the conical tent $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 24 \mathrm{~m}^{3}=1232 \mathrm{~m}^{3}$.
EXERCISE 11.3
Assume $\pi=\frac{22}{7}$, unless stated otherwise.
1. Find the volume of the right circular cone with
(i) radius $6 \mathrm{~cm}$, height $7 \mathrm{~cm}$
(ii) radius $3.5 \mathrm{~cm}$, height $12 \mathrm{~cm}$
Show Answer
Solution
(i) Radius ( $r$ ) of cone $=6 cm$
Height (h) of cone $=7 cm$
Volume of cone
$ =\frac{1}{3} \pi r^{2} h $
$=[\frac{1}{3} \times \frac{22}{7} \times(6)^{2} \times 7] cm^{3}$
$=(12 \times 22) cm^{3}$
$=264 cm^{3}$
Therefore, the volume of the cone is $264 cm^{3}$.
(ii) Radius ( $r$ ) of cone $=3.5 cm$
Height (h) of cone $=12 cm$
Volume of cone
$ =\frac{1}{3} \pi r^{2} h $
$=[\frac{1}{3} \times \frac{22}{7} \times(3.5)^{2} \times 12] cm^{3}$
$=(\frac{1}{3} \times 22 \times \frac{1}{2} \times 3.5 \times 12) cm^{3}$
$=154 cm^{3}$
Therefore, the volume of the cone is $154 cm^{3}$.
2. Find the capacity in litres of a conical vessel with
(i) radius $7 \mathrm{~cm}$, slant height $25 \mathrm{~cm}$
(ii) height $12 \mathrm{~cm}$, slant height $13 \mathrm{~cm}$
Show Answer
Solution
(i) Radius ( $r$ ) of cone $=7 cm$
Slant height (I) of cone $=25 cm$
Height (h) of cone $=\sqrt{l^{2}-r^{2}}$
$=(\sqrt{25^{2}-7^{2}}) cm$
$=24 cm$
Volume of cone $=\frac{1}{3} \pi r^{2} h$
$=(\frac{1}{3} \times \frac{22}{7} \times(7)^{2} \times 24) cm^{3}$
$=(154 \times 8) cm^{3}$
$=1232 cm^{3}$
Therefore, capacity of the conical vessel
$=(\frac{1232}{1000})$ litres $(1.$ litre $.=1000 cm^{3})$
$=1.232$ litres
(ii) Height (h) of cone $=12 cm$
Slant height $(I)$ of cone $=13 cm$
Radius $(r.$ ) of cone $=\sqrt{l^{2}-h^{2}}$
$=(\sqrt{13^{2}-12^{2}}) cm$
$=5 cm$
Volume of cone $=\frac{1}{3} \pi r^{2} h$
$ \begin{aligned} & =[\frac{1}{3} \times \frac{22}{7} \times(5)^{2} \times 12] cm^{3} \\ & =(4 \times \frac{22}{7} \times 25) cm^{3} \\ & =(\frac{2200}{7}) cm^{3} \end{aligned} $
Therefore, capacity of the conical vessel
$ \begin{aligned} &(\frac{2200}{7000}) \text{ litres }(1 \text{ litre }=1000 cm^{3}) \\ &= \frac{11}{35} \text{ litres } \\ & \text{ Question 3: } \end{aligned} $
3. The height of a cone is $15 \mathrm{~cm}$. If its volume is $1570 \mathrm{~cm}^{3}$, find the radius of the base. (Use $\pi=3.14$ )
Show Answer
Solution
Height $(h)$ of cone $=15 cm$
Let the radius of the cone be $r$. Volume of cone
$=1570 cm^{3}$
$\frac{1}{3} \pi r^{2} h=1570 cm^{3}$
$\Rightarrow(\frac{1}{3} \times 3.14 \times r^{2} \times 15) cm=1570 cm^{3}$
$\Rightarrow r^{2}=100 cm^{2}$
$\Rightarrow r=10 cm$
Therefore, the radius of the base of cone is $10 cm$.
4. If the volume of a right circular cone of height $9 \mathrm{~cm}$ is $48 \pi \mathrm{cm}^{3}$, find the diameter of its base.
Show Answer
Solution
Height (h) of cone $=9 cm$
Let the radius of the cone be $r$.
Volume of cone $=48 cm^{3}$
$\Rightarrow \frac{1}{3} \pi r^{2} h=48 \pi cm^{3}$
$\Rightarrow(\frac{1}{3} \pi r^{2} \times 9) cm=48 \pi cm^{3}$
$\Rightarrow r^{2}=16 cm^{2}$
$\Rightarrow r=4 cm$
Diameter of base $=2 r=8 cm$
5. A conical pit of top diameter $3.5 \mathrm{~m}$ is $12 \mathrm{~m}$ deep. What is its capacity in kilolitres?
Show Answer
Solution
Radius ( $r$ ) of pit
$ =(\frac{3.5}{2}) m=1.75 m $
Height $(h)$ of pit $=$ Depth of pit $=12 m$
Volume of pit
$ =\frac{1}{3} \pi r^{2} h $
$=[\frac{1}{3} \times \frac{22}{7} \times(1.75)^{2} \times 12] cm^{3}$
$=38.5 m^{3}$
Thus, capacity of the pit $=(38.5 \times 1)$ kilolitres $=38.5$ kilolitres
6. The volume of a right circular cone is $9856 \mathrm{~cm}^{3}$. If the diameter of the base is $28 \mathrm{~cm}$, find
(i) height of the cone
(ii) slant height of the cone
(iii) curved surface area of the cone
Show Answer
Solution
(i) Radius of cone $=(\frac{28}{2}) cm=14 cm$
Let the height of the cone be $h$. Volume of cone
$=9856 cm^{3}$
$ \begin{aligned} & \Rightarrow \frac{1}{3} \pi r^{2} h=9856 cm^{3} \\ & \Rightarrow[\frac{1}{3} \times \frac{22}{7} \times(14)^{2} \times h] cm^{2}=9856 cm^{3} \end{aligned} $
$h=48 cm$
Therefore, the height of the cone is $48 cm$.
(ii) Slant height (I) of cone $=\sqrt{r^{2}+h^{2}}$
$=[\sqrt{(14)^{2}+(48)^{2}}] cm$
$=[\sqrt{196+2304}] cm$
$=50 cm$
Therefore, the slant height of the cone is $50 cm$.
(iii) $CSA$ of cone $=nrl$
$=(\frac{22}{7} \times 14 \times 50) cm^{2}$
$=2200 cm^{2}$
Therefore, the curved surface area of the cone is $2200 cm^{2}$.
7. A right triangle $\mathrm{ABC}$ with sides $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and $13 \mathrm{~cm}$ is revolved about the side $12 \mathrm{~cm}$. Find the volume of the solid so obtained.
Show Answer
Solution
When right-angled $\triangle A B C$ is revolved about its side $12 cm$, a cone with height $(h)$ as 12 $cm$, radius ( $r$ ) as $5 cm$, and slant height (I) $13 cm$ will be formed.
$ =\frac{1}{3} \pi r^{2} h $
Volume of cone
$=[\frac{1}{3} \times \pi \times(5)^{2} \times 12] cm^{3}$
$=100 \pi cm^{3}$
Therefore, the volume of the cone so formed is $100 n cm^{3}$.
8. If the triangle $\mathrm{ABC}$ in the Question 7 above is revolved about the side $5 \mathrm{~cm}$, then find the volume of the solid so obtained. Find also the ratio of the volumes of the two solids obtained in Questions 7 and 8.
Show Answer
Solution
When right-angled $\triangle A B C$ is revolved about its side $5 cm$, a cone will be formed having radius ( $r$ ) as $12 cm$, height ( $h$ ) as $5 cm$, and slant height $(I)$ as $13 cm$.
$ \begin{aligned} & \qquad=\frac{1}{3} \pi r^{2} h \\ & \text{ Volume of cone } \\ & =[\frac{1}{3} \times \pi \times(12)^{2} \times 5] cm^{3} \\ & =240 \pi cm^{3} \\ & \qquad=\frac{100 \pi}{240 \pi} \\ & \text{ Reauired ratio } \\ & =\frac{5}{12}=5: 12 \end{aligned} $
9. A heap of wheat is in the form of a cone whose diameter is $10.5 \mathrm{~m}$ and height is $3 \mathrm{~m}$. Find its volume. The heap is to be covered by canvas to protect it from rain. Find the area of the canvas required.
Show Answer
Solution
Radius ( $r$ ) of heap
$ =(\frac{10.5}{2}) m=5.25 m $
Height ( $h$ ) of heap $=3 m$
Volume of heap
$ =\frac{1}{3} \pi r^{2} h $
$=(\frac{1}{3} \times \frac{22}{7} \times(5.25)^{2} \times 3) m^{3}$
$=86.625 m^{3}$
Therefore, the volume of the heap of wheat is $86.625 m^{3}$.
Area of canvas required $=$ CSA of cone
$ \begin{aligned} & =\pi r l=\pi r \sqrt{r^{2}+h^{2}} \\ & =[\frac{22}{7} \times 5.25 \times \sqrt{(5.25)^{2}+(3)^{2}}] m^{2} \\ & =(\frac{22}{7} \times 5.25 \times 6.05) m^{2} \\ & =99.825 m^{2} \end{aligned} $
Therefore, $99.825 m^{2}$ canvas will be required to protect the heap from rain.
Find the volume of a sphere whose radius is
(i) $7 cm$ (ii) $0.63 m$
Assume $.\pi=\frac{22}{7}]$
11.4 Volume of a Sphere
Now, let us see how to go about measuring the volume of a sphere. First, take two or three spheres of different radii, and a container big enough to be able to put each of the spheres into it, one at a time. Also, take a large trough in which you can place the container. Then, fill the container up to the brim with water [see Fig. 11.13(a)].
Now, carefully place one of the spheres in the container. Some of the water from the container will over flow into the trough in which it is kept [see Fig. 11.13(b)]. Carefully pour out the water from the trough into a measuring cylinder (i.e., a graduated cylindrical jar) and measure the water over flowed [see Fig. 11.13(c)]. Suppose the radius of the immersed sphere is $r$ (you can find the radius by measuring the diameter of the sphere). Then evaluate $\frac{4}{3} \pi r^{3}$. Do you find this value almost equal to the measure of the volume over flowed?
Fig. 11.13
Once again repeat the procedure done just now, with a different size of sphere. Find the radius $R$ of this sphere and then calculate the value of $\frac{4}{3} \pi R^{3}$. Once again this value is nearly equal to the measure of the volume of the water displaced (over flowed) by the sphere. What does this tell us? We know that the volume of the sphere is the same as the measure of the volume of the water displaced by it. By doing this experiment repeatedly with spheres of varying radii, we are getting the same result, namely, the volume of a sphere is equal to $\frac{4}{3} \pi$ times the cube of its radius. This gives us the idea that
$\quad$ Volume of a Sphere $=\frac{4}{3} \pi r^{3}$
where $r$ is the radius of the sphere.
Later, in higher classes it can be proved also. But at this stage, we will just take it as true.
Since a hemisphere is half of a sphere, can you guess what the volume of a hemisphere will be? Yes, it is $\frac{1}{2}$ of $\frac{4}{3} \pi r^{3}=\frac{2}{3} \pi r^{3}$.
So, $\quad$ Volume of a Hemisphere $=\frac{\mathbf{2}}{\mathbf{3}} \pi r^{3}$
where $r$ is the radius of the hemisphere.
Let us take some examples to illustrate the use of these formulae.
Example 10 : Find the volume of a sphere of radius $11.2 \mathrm{~cm}$.
Solution : Required volume $=\frac{4}{3} \pi r^{3}$
$$ =\frac{4}{3} \times \frac{22}{7} \times 11.2 \times 11.2 \times 11.2 \mathrm{~cm}^{3}=5887.32 \mathrm{~cm}^{3} $$
Example 11 : A shot-putt is a metallic sphere of radius $4.9 \mathrm{~cm}$. If the density of the metal is $7.8 \mathrm{~g} \mathrm{per} \mathrm{cm}^{3}$, find the mass of the shot-putt.
Solution : Since the shot-putt is a solid sphere made of metal and its mass is equal to the product of its volume and density, we need to find the volume of the sphere.
Now, volume of the sphere $=\frac{4}{3} \pi r^{3}$
$$ \begin{aligned} & =\frac{4}{3} \times \frac{22}{7} \times 4.9 \times 4.9 \times 4.9 \mathrm{~cm}^{3} \\ & =493 \mathrm{~cm}^{3} \text { (nearly) } \end{aligned} $$
Further, mass of $1 \mathrm{~cm}^{3}$ of metal is $7.8 \mathrm{~g}$.
Therefore, mass of the shot-putt $=7.8 \times 493 \mathrm{~g}$
$$ =3845.44 \mathrm{~g}=3.85 \mathrm{~kg} \text { (nearly) } $$
Example 12 : A hemispherical bowl has a radius of $3.5 \mathrm{~cm}$. What would be the volume of water it would contain?
Solution : The volume of water the bowl can contain
$$ \begin{aligned} & =\frac{2}{3} \pi r^{3} \\ & =\frac{2}{3} \times \frac{22}{7} \times 3.5 \times 3.5 \times 3.5 \mathrm{~cm}^{3}=89.8 \mathrm{~cm}^{3} \end{aligned} $$
EXERCISE 11.4
Assume $\pi=\frac{22}{7}$ , unless stated otherwise.
1. Find the volume of a sphere whose radius is
(i) $7 \mathrm{~cm}$
(ii) $0.63 \mathrm{~m}$
Show Answer
Solution
(i) Radius of sphere $=7 cm$
Volume of sphere $=^{\frac{4}{3} \pi r^{3}}$ $=[\frac{4}{3} \times \frac{22}{7} \times(7)^{3}] cm^{3}$ $=(\frac{4312}{3}) cm^{3}$ $=1437 \frac{1}{3} cm^{3}$
Therefore, the volume of the sphere is $1437 \frac{1}{3} cm^{3}$.
(ii) Radius of sphere $=0.63 m$
$\frac{4}{3} \pi r^{3}$
Volume of sphere $=$
$=[\frac{4}{3} \times \frac{22}{7} \times(0.63)^{3}] m^{3}$
$=1.0478 m^{3}$
Therefore, the volume of the sphere is $1.05 m^{3}$ (approximately).
2. Find the amount of water displaced by a solid spherical ball of diameter
(i) $28 \mathrm{~cm}$
(ii) $0.21 \mathrm{~m}$
Show Answer
Solution
(i) Radius ( $r$ ) of ball $=$
$(\frac{28}{2}) cm=14 cm$
Volume of ball $=\frac{4}{3} \pi r^{3}$
$=[\frac{4}{3} \times \frac{22}{7} \times(14)^{3}] cm^{3}$
$=11498 \frac{2}{3} cm^{3}$
Therefore, the volume of the sphere is $11498 \frac{2}{3} cm^{3}$.
$ \begin{aligned} & \text{ (ii)Radius ( } r \text{ ) of ball }=\frac{(\frac{0.21}{2}) m}{\frac{4}{3} \pi r^{3}}=0.105 m \\ & \text{ Volume of ball }= \\ & =[\frac{4}{3} \times \frac{22}{7} \times(0.105)^{3}] m^{3} \\ & =0.004851 m^{3} \end{aligned} $
Therefore, the volume of the sphere is $0.004851 m^{3}$.
3. The diameter of a metallic ball is $4.2 \mathrm{~cm}$. What is the mass of the ball, if the density of the metal is $8.9 \mathrm{~g}_{\text {per }} \mathrm{cm}^{3}$ ?
Show Answer
Solution
$ (\frac{4.2}{2}) cm=2.1 cm $
Radius ( $r$ ) of metallic ball
Volume of metallic ball $=$
$ \frac{4}{3} \pi r^{3} $
$=[\frac{4}{3} \times \frac{22}{7} \times(2.1)^{3}] cm^{3}$
$=38.808 cm^{3}$
Density $=\frac{\text{ Mass }}{\text{ Volume }}$
Mass $=$ Density $\times$ Volume
$=(8.9 \times 38.808) g$
$=345.3912 g$
Hence, the mass of the ball is $345.39 g$ (approximately).
4. The diameter of the moon is approximately one-fourth of the diameter of the earth. What fraction of the volume of the earth is the volume of the moon?
Show Answer
Solution
$ \frac{d}{2} $
Let the diameter of earth be $d$. Therefore, the radius of earth will be
Diameter of moon will be $\frac{\frac{d}{4}}{}$ and the radius of moon will be $\frac{d}{8}$.
Volume of moon $=$
$ \frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(\frac{d}{8})^{3}=\frac{1}{512} \times \frac{4}{3} \pi d^{3} $
$ \frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(\frac{d}{2})^{3}=\frac{1}{8} \times \frac{4}{3} \pi d^{3} $
$\frac{\text{ Volume of moon }}{\text{ Volume of earth }}=\frac{\frac{1}{512} \times \frac{4}{3} \pi d^{3}}{\frac{1}{8} \times \frac{4}{3} \pi d^{3}}$
$ =\frac{1}{64} $
$\Rightarrow$ Volume of moon $=\frac{1}{64}$ Volume of earth
Therefore, the volume of moon is $\frac{1}{64}$ of the volume of earth.
5. How many litres of milk can a hemispherical bowl of diameter $10.5 \mathrm{~cm}$ hold?
Show Answer
Solution
$ (\frac{10.5}{2}) cm $
Volume of hemispherical bowl $=\frac{2}{3} \pi r^{3}$
$=[\frac{2}{3} \times \frac{22}{7} \times(5.25)^{3}] cm^{3}$
$=303.1875 cm^{3}$
$(\frac{303.1875}{1000})$ litre
Capacity of the bowl $=$
$=0.3031875$ litre $=0.303$ litre (approximately)
$=5.25 cm$
Radius ( $r$ ) of hemispherical bowl $=$
Therefore, the volume of the hemispherical bowl is 0.303 litre.
6. A hemispherical tank is made up of an iron sheet $1 \mathrm{~cm}$ thick. If the inner radius is $1 \mathrm{~m}$, then find the volume of the iron used to make the tank.
Show Answer
Solution
Inner radius $(r_1)$ of hemispherical tank $=1 m$ Thickness of
$ \begin{aligned} & \Rightarrow 4 n r^{2}=154 cm^{2} \\ & \Rightarrow r^{2}=(\frac{154 \times 7}{4 \times 22}) cm^{2} \\ & \Rightarrow r=(\frac{7}{2}) cm=3.5 cm \\ & \text{ Volume of sphere }= \\ & =[\frac{4}{3} \times \frac{22}{7} \times(3.5)^{3}] cm^{3} \\ & =179 \frac{2}{3} cm^{3} \\ & \text{ hemispherical tank }=1 cm=0.01 m \\ & \text{ Outer radius }(r_2) \text{ of hemispherical tank }=(1+0.01) m=1.01 m \\ & \text{ Volume of iron used to make such a tank } \pi=\frac{2}{3}(r_2^{3}-r_1^{3}) \\ & =[\frac{2}{3} \times \frac{22}{7} \times{(1.01)^{3}-(1)^{3}}] m^{3} \\ & =[\frac{44}{21} \times(1.030301-1)] m^{3} \\ & =0.06348 m^{3} \quad \text{ (approximately) } \end{aligned} $
7. Find the volume of a sphere whose surface area is $154 \mathrm{~cm}^{2}$.
Show Answer
Solution
Let radius of sphere be $r$.
Surface area of sphere $=154 cm^{2}$
Therefore, the volume of the sphere is $179 \frac{2}{3} cm^{3}$.
8. A dome of a building is in the form of a hemisphere. From inside, it was white-washed at the cost of ₹ 4989.60. If the cost of white-washing is ₹ 20 per square metre, find the
(i) inside surface area of the dome,
(ii) volume of the air inside the dome.
Show Answer
Solution
(i) Cost of white-washing the dome from inside $=$ Rs 498.96
Cost of white-washing $1 m^{2}$ area $=$ Rs 2
Therefore, CSA of the inner side of dome $=(\frac{498.96}{2}) m^{2}$
$=249.48 m^{2}$
(ii) Let the inner radius of the hemispherical dome be $r$.
CSA of inner side of dome $=249.48 m^{2}$
$2 \pi r^{2}=249.48 m^{2}$
$ \begin{aligned} & \Rightarrow 2 \times \frac{22}{7} \times r^{2}=249.48 m^{2} \\ & \Rightarrow r^{2}=(\frac{249.48 \times 7}{2 \times 22}) m^{2}=39.69 m^{2} \end{aligned} $
$\Rightarrow r=6.3 m$
Volume of air inside the dome $=$ Volume of hemispherical dome
$=\frac{2}{3} \pi r^{3}$
$=[\frac{2}{3} \times \frac{22}{7} \times(6.3)^{3}] m^{3}$
$=523.908 m^{3}$
$=523.9 m^{3}$ (approximately)
Therefore, the volume of air inside the dome is $523.9 m^{3}$.
9. Twenty seven solid iron spheres, each of radius $r$ and surface area $\mathrm{S}$ are melted to form a sphere with surface area $\mathrm{S}^{\prime}$. Find the
(i) radius $r^{\prime}$ of the new sphere,
(ii) ratio of $\mathrm{S}$ and $\mathrm{S}^{\prime}$.
Show Answer
Solution
(i)Radius of 1 solid iron sphere $=r$
Volume of 1 solid iron sphere
$ \begin{aligned} = & \frac{4}{3} \pi r^{3} \\ & =27 \times \frac{4}{3} \pi r^{3} \end{aligned} $
Volume of 27 solid iron spheres
27 solid iron spheres are melted to form 1 iron sphere. Therefore, the volume of this iron sphere will be equal to the volume of 27 solid iron spheres. Let the radius of this new sphere be $r^{\prime}$.
Volume of new solid iron sphere $=\frac{4}{3} \pi r^{3}$
$ \begin{aligned} & \frac{4}{3} \pi r^{\prime 3}=27 \times \frac{4}{3} \pi r^{3} \\ & r^{\prime 3}=27 r^{3} \\ & r^{\prime}=3 r \end{aligned} $
(ii) Surface area of 1 solid iron sphere of radius $r=4 \pi r^{2}$
Surface area of iron sphere of radius $r^{\prime}=4 \pi(r^{\prime})^{2}$
$ \begin{aligned} & =4 n(3 r)^{2}=36 n r^{2} \\ & \frac{S}{S^{\prime}}=\frac{4 \pi r^{2}}{36 \pi r^{2}}=\frac{1}{9}=1: 9 \end{aligned} $
10. A capsule of medicine is in the shape of a sphere of diameter $3.5 \mathrm{~mm}$. How much medicine (in $\mathrm{mm}^{3}$ ) is needed to fill this capsule?
Show Answer
Solution
$ =(\frac{3.5}{2}) mm=1.75 mm $
Radius ( $r$ ) of capsule
Volume of spherical capsule $=\frac{4}{3} \pi r^{3}$
$ \begin{aligned} & =[\frac{4}{3} \times \frac{22}{7} \times(1.75)^{3}] mm^{3} \\ & =22.458 mm^{3} \\ & =22.46 mm^{3} \text{ (approximately) } \end{aligned} $
Therefore, the volume of the spherical capsule is $22.46 mm^{3}$.
11.5 Summary
In this chapter, you have studied the following points:
1. Curved surface area of a cone $=\pi r l$
2. Total surface area of a right circular cone $=\pi r l +\pi r^{2}$, i.e., $\pi r(l+r)$
3. Surface area of a sphere of radius $r=4 \pi r^{2}$
4. Curved surface area of a hemisphere $=2 \pi r^{2}$
5. Total surface area of a hemisphere $=3 \pi r^{2}$
6. Volume of a cone $=\frac{1}{3} \pi r^{2} h$
7. Volume of a sphere of radius $r=\frac{4}{3} \pi r^{3}$
8. Volume of a hemisphere $=\frac{2}{3} \pi r^{3}$
[Here, letters $l, b, h, a, r$, etc. have been used in their usual meaning, depending on the context.]
11.1 एक लंब वृत्तीय शंकु का पृष्ठीय क्षेत्रफल
अभी तक हम सर्वांगसम आकृतियों को एक के ऊपर एक रख कर ठोस जनित कर रहे थे। संयोग से इन आकृतियों को प्रिज्म (prism) कहते हैं। अब एक अन्य प्रकार के ठोसों को देखें जो प्रिज्म नहीं हैं। (इस प्रकार के ठोस पिरामिड (pyramids) कहलाते हैं।) आइए देखें कि इनको किस प्रकार जनित किया (बनाया) जाता है।
क्रियाकलाप : एक समकोण त्रिभुज $\mathrm{ABC}$ जिसका कोण $\mathrm{B}$ समकोण हो, काट लीजिए। दोनों लंब भुजाओं में से किसी एक, मान लीजिए $A B$, के अनुदिश एक लंबी और मोटी डोरी चिपका दीजिए [देखिए आकृति 11.1(a)]। डोरी को दोनों हाथों से त्रिभुज के दोनों ओर से पकड़े हुए, त्रिभुज को डोरी के अनुदिश कई बार घुमाइए। आप क्या देखते हैं? जब त्रिभुज डोरी के अनुदिश घूम रहा है, तो जो वह आकृति बना रहा है, क्या आप उसे पहचानते हैं [देखिए आकृति 11.1(b)]? क्या आपको इस बात की याद दिलाती है कि इसी आकार के एक छोटे बर्तन (पात्र) में भरी आपने कभी आइसक्रीम खाई थी [देखिए आकृति 11.1 (c) और (d)]?
आकृति 11.1
यह आकृति एक लंब वृत्तीय शंकु (right circular cone) कहलाती है। आकृति 11.1(c) में बिन्दु A इस लम्ब वृत्तीय शंकु का शीर्ष (vertex) कहलाता है, $\mathrm{AB}$ इसकी ऊँचाई कहलाती है और $\mathrm{BC}$ आधार की त्रिज्या कहलाती है। $\mathrm{AC}$ इस शंकु की तिर्यक ऊँचाई (slant height) कहलाती है। यहाँ $\mathrm{B}$ वृत्तीय आधार का केंद्र (centre) है। शंकु की ऊँचाई, त्रिज्या और तिर्यक ऊँचाई को प्रायः क्रमशः $h, r$ और $l$ से व्यक्त किया जाता है। एक बार पुन: देखें कि किस प्रकार के शंकु को हम लंब वृत्तीय शंकु नहीं कह सकते हैं। आप आकृति 11.2 को देखिए। इनमें जो आप शंकु देख रहे हैं वे लंब वृत्तीय शंकु नहीं हैं। (a) में, शीर्ष को आधार के केंद्र से मिलाने वाली रेखा आधार पर लंब नहीं है और (b) में, आधार वृत्तीय नहीं है।
आकृति 11.2
जैसा कि बेलन की स्थिति में था, जब तक अन्यथा न कहा जाए, ‘शंकु’ से हमारा तात्पर्य लंब वृत्तीय ‘शंकु’ से ही होगा।
क्रियाकलाप :(i) एक साफ बने हुए कागज़ के शंकु को उसके शीर्ष से जाने वाली किसी भुजा या किनारे के अनुदिश काटिए जिसमें कोई अतिव्यापिकता न हो तथा खोल कर देखिए कि किस आकार के कागज़ से शंकु का पृष्ठ बना था। (जिस भुजा या किनारे के अनुदिश आप शंकु को काटेंगे वह उसकी तिर्यक ऊँचाई होगी जिसे $l$ से व्यक्त किया जाता है।) खोला हुआ कागज़ आपको एक गोल केक के भाग की तरह दिखाई देगा।
(ii) यदि आप उन भुजाओं, जिनके सिरों पर $\mathrm{A}$ और $\mathrm{B}$ अंकित है, को मोड़ कर मिला लें, तो आप देखेंगे कि आकृति 11.3 (c) का वक्रित भाग शंकु का वृत्तीय आधार बनाता है।
आकृति 11.3
(iii) यदि आकृति 11.3 (c) में दिए कागज़ को $\mathrm{O}$ से जाती हुई रेखाओं द्वारा सैकड़ों छोटे-छोटे टुकड़ों में विभाजित कर लिया जाए, तो ये कटे हुए भाग लगभग त्रिभुज के आकारों के हैं और इनमें से प्रत्येक की ऊँचाई शंकु की तिर्यक ऊँचाई $l$ के बराबर है।
(iv) अब प्रत्येक त्रिभुज का क्षेत्रफल $=\frac{1}{2} \times$ प्रत्येक त्रिभुज का आधार $\times l$
अतः, पूरे कागज़ का क्षेत्रफल
$$ \begin{aligned} & =\text { सभी त्रिभुजों के क्षेत्रफलों का योग } \\ & =\frac{1}{2} b_{1} l+\frac{1}{2} b_{2} l+\frac{1}{2} b_{3} l+\cdots=\frac{1}{2} l\left(b_{1}+b_{2}+b_{3}+\cdots\right) \\ & =\frac{1}{2} \times l \times \text { आकृति $11.3(\mathrm{c})$ की पूरी वक्रित परिसीमा की लंबाई } \end{aligned} $$
(चूँकि $b _{1}+b _{2}+b _{3}+\ldots$ मिलकर इस आकृति के वक्रित भाग को बनाते हैं)
परन्तु इस वक्रित भाग से शंकु का आधार बनता है। साथ ही, इस आधार की परिधि $=2 \pi r$, जहाँ $r$ आधार की त्रिज्या है।
इसलिए, शंकु का वक्र पृष्ठीय क्षेत्रफल $=\frac{1}{2} \times l \times 2 \pi r=\pi r l$
जहाँ $r$ आधार की त्रिज्या है और $l$ तिर्यक ऊँचाई हैं।
ध्यान दीजिए कि $l^{2}=r^{2}+h^{2}$ होता है, जिसे हम आकृति 11.4 से देख सकते हैं ( पाइथागोरस प्रमेय से)। यहाँ $h$ शंकु की ऊँचाई है।
अत: $l=\sqrt{r^{2}+h^{2}}$ होगा।
आकृति 11.4
अब यदि शंकु के आधार को बंद रखा जाता है, तो ढकने के लिए $r$ त्रिज्या वाले एक वृत्ताकार कागज के टुकड़े की आवश्यकता और होगी। इसका क्षेत्रफल स्पष्टतः $\pi r^{2}$ है।
इसलिए, शंकु का कुल पृष्ठीय क्षेत्रफल $=\pi r l+\pi r^{2}=\pi r(l+r)$
उदाहरण 1 : एक लंब वृत्तीय शंकु का वक्र पृष्ठीय क्षेत्रफल ज्ञात कीजिए, जिसकी तिर्यक ऊँचाई $10 \mathrm{~cm}$ है और आधार की त्रिज्या $7 \mathrm{~cm}$ है।
हल : वक्र पृष्ठीय क्षेत्रफल $=\pi r l$
$$ \begin{aligned} & =\frac{22}{7} \times 7 \times 10 \mathrm{~cm}^{2} \\ & =220 \mathrm{~cm}^{2} \end{aligned} $$
उदाहरण 2 : एक शंकु की ऊँचाई $16 \mathrm{~cm}$ है और आधार की त्रिज्या $12 \mathrm{~cm}$ है। इस शंकु का वक्र पृष्ठीय क्षेत्रफल ज्ञात कीजिए। ( $\pi=3.14$ का प्रयोग कीजिए)
हल : यहाँ, $h=16 \mathrm{~cm}$ और $r=12 \mathrm{~cm}$ है।
इसलिए, $l^{2}=h^{2}+r^{2}$ से हमें प्राप्त होता है :
$$ l=\sqrt{16^{2}+12^{2}} \mathrm{~cm}=20 \mathrm{~cm} $$
अतः, वक्र पृष्ठीय क्षेत्रफल $=\pi r l$
$$ \begin{aligned} & =3.14 \times 12 \times 20 \mathrm{~cm}^{2} \\ & =753.6 \mathrm{~cm}^{2} \end{aligned} $$
साथ ही, कुल पृष्ठीय क्षेत्रफल $=\pi r l+\pi r^{2}$
$$ \begin{aligned} & =(753.6+3.14 \times 12 \times 12) \mathrm{cm}^{2} \\ & =(753.6+452.16) \mathrm{cm}^{2} \\ & =1205.76 \mathrm{~cm}^{2} \end{aligned} $$
उदाहरण 3 : एक भुट्टा कुछ-कुछ शंकु जैसे आकार का है (देखिए आकृति 11.5) जिसके सबसे चौड़े सिरे की त्रिज्या $2.1 \mathrm{~cm}$ है और इसकी लम्बाई (ऊँचाई) $20 \mathrm{~cm}$ है। यदि भुट्टे के प्रत्येक $1 \mathrm{~cm}^{2}$ पृष्ठ पर औसतन चार दानें हों, तो ज्ञात कीजिए कि पूरे भुट्टे पर कुल कितने दानें होंगे?
आकृति 11.5
हल : चूँकि भुट्टे के दानें उसके वक्र पृष्ठ पर ही होते हैं, इसलिए हमें दानों की संख्या ज्ञात करने के लिए भुट्टे के वक्र पृष्ठीय क्षेत्रफल को ज्ञात करना होगा। यहाँ हमें शंकु की ऊँचाई दी है। इसलिए, हमें पहले शंकु की तिर्यक ऊँचाई ज्ञात करनी पड़ेगी।
$\text { अब, } l =\sqrt{r^{2}+h^{2}}=\sqrt{(2.1)^{2}+20^{2}} \mathrm{~cm}$
$=\sqrt{404.41} \mathrm{~cm}=20.11 \mathrm{~cm}$
अतः, भुट्टे का वक्र पृष्ठीय क्षेत्रफल $=\pi r l$
$$ =\frac{22}{7} \times 2.1 \times 20.11 \mathrm{~cm}^{2}=132.726 \mathrm{~cm}^{2}=132.73 \mathrm{~cm}^{2} \text { (लगभग) } $$
अतः $1 \mathrm{~cm}^{2}$ क्षेत्रफल पर दानों की संख्या $=4$
इसलिए, पूरे भुट्टे पर कुल दानों की संख्या
$=132.73 \times 4=530.92=531$ (लगभग)
अतः, इस भुट्टे पर लगभग 531 दानें होंगे।
प्रश्नावली 11.1
जब तक अन्यथा न कहा जाए, $\pi=\frac{22}{7}$ लीजिए।
1. एक शंकु के आधार का व्यास $10.5 \mathrm{~cm}$ है और इसकी तिर्यक ऊँचाई $10 \mathrm{~cm}$ है। इसका वक्र पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
Show Answer
Missing2. एक शंकु का कुल पृष्ठीय क्षेत्रफल ज्ञात कीजिए, जिसकी तिर्यक ऊँचाई $21 \mathrm{~m}$ है और आधार का व्यास $24 \mathrm{~m}$ है।
Show Answer
Missing3. एक शंकु का वक्र पृष्ठीय क्षेत्रफल $308 \mathrm{~cm}^{2}$ है और इसकी तिर्यक ऊँचाई $14 \mathrm{~cm}$ है। ज्ञात कीजिए : (i) आधार की त्रिज्या (ii) शंकु का कुल पृष्ठीय क्षेत्रफल
Show Answer
Missing4. शंकु के आकार का एक तंबू $10 \mathrm{~m}$ ऊँचा है और उसके आधार की त्रिज्या $24 \mathrm{~m}$ है। ज्ञात कीजिए :
(i) तंबू की तिर्यक ऊँचाई
(ii) तंबू में लगे केनवास (canvas) की लागत, यदि $1 \mathrm{~m}^{2}$ केनवास की लागत 70 रुपए है।
Show Answer
Missing5. $8 \mathrm{~m}$ ऊँचाई और आधार की त्रिज्या $6 \mathrm{~m}$ वाले एक शंकु के आकार का तंबू बनाने में $3 \mathrm{~m}$ चौड़े तिरपाल की कितनी लंबाई लगेगी? यह मान कर चलिए कि इसकी सिलाई और कटाई में $20 \mathrm{~cm}$ तिरपाल अतिरिक्त लगेगा। ( $\pi=3.14$ का प्रयोग कीजिए।)
Show Answer
Missing6. शंकु के आधार की एक गुंबज की तिर्यक ऊँचाई और आधार व्यास क्रमशः $25 \mathrm{~m}$ और $14 \mathrm{~m}$ हैं। इसकी वक्र पृष्ठ पर ₹ 210 प्रति $100 \mathrm{~m}^{2}$ की दर से सफेदी कराने का व्यय ज्ञात कीजिए।
Show Answer
Missing7. एक जोकर की टोपी एक शंकु के आकार की है, जिसके आधार की त्रिज्या $7 \mathrm{~cm}$ और ऊँचाई $24 \mathrm{~cm}$ है। इसी प्रकार की 10 टोपियाँ बनाने के लिए आवश्यक गत्ते का क्षेत्रफल ज्ञात कीजिए।
Show Answer
Missing8. किसी बस स्टाप को पुराने गत्ते से बने 50 खोखले शंकुओं द्वारा सड़क से अलग किया हुआ है। प्रत्येक शंकु के आधार का व्यास $40 \mathrm{~cm}$ है और ऊँचाई $1 \mathrm{~m}$ है। यदि इन शंकुओं की बाहरी पृष्ठों को पेंट करवाना है और पेंट की दर ₹ 12 प्रति $\mathrm{m}^{2}$ है, तो इनको पेंट कराने में कितनी लागत आएगी? $(\pi=3.14$ और $\sqrt{1.04}=1.02$ का प्रयोग कीजिए।)
Show Answer
Missing11.2 गोले का पृष्ठीय क्षेत्रफल
एक गोला (sphere) क्या होता है? क्या यह एक वृत्त की तरह ही है? क्या आप एक कागज पर वृत्त खींच सकते हैं? हाँ, आप खींच सकते हैं, क्योंकि यह एक बंद समतल आकृति है जिसका प्रत्येक बिंदु एक निश्चित बिंदु (जिसे वृत्त का केंद्र कहते हैं) से एक निश्चित दूरी पर रहता है (जिसे वृत्त की त्रिज्या कहते हैं)। अब यदि आप एक वृत्ताकार चकती (disc) के एक व्यास के अनुदिश एक डोरी चिपका दें और इसे वैसे ही घुमाएँ जैसे आपने पिछले अनुच्छेद में त्रिभुज को घुमाया था, तो आप एक नया ठोस देखेंगे (देखिए आकृति 11.6)। यह किस वस्तु से मिलता-जुलता लगता है? एक गेंद? हाँ, ऐसा ही है। यह एक गोला (sphere) कहलाता है।
आकृति 11.6
क्या आप अनुमान लगा सकते हैं कि उस वृत्त के केंद्र का क्या होता है जिसे आपने घुमाया है। निःसंदेह, यह गोले का केंद्र भी हो जाता है। इस प्रकार, गोला एक त्रिविमीय आकृति (three dimensional figure) ( ठोस आकृति) है, जो आकाश ( स्पेस) (space) में स्थित उन सभी बिंदुओं से मिल कर बनी है जो एक निश्चित बिंदु से (जो गोले का केन्द्र कहलाता है) से एक अचर या निश्चित दूरी पर होते हैं ( जो गोले की त्रिज्या कहलाती है)।
टिप्पणी : गोला एक गेंद की पृष्ठ की तरह होता है। ठोस गोला उस ठोस के लिए प्रयोग होता है जिसका पृष्ठ एक गोला हो।
क्रियाकलाप : क्या आप कभी लट्टू के साथ खेले हैं या कभी आपने किसी व्यक्ति को लट्टू के साथ खेलते देखा है? आप यह जानते होंगे कि उस पर डोरी किस प्रकार लपेटी जाती है। अब आइए एक रबर की गेंद लें और उसके ऊपर एक कील लगा दें। कील की सहायता लेते हुए, गेंद पर डोरी लपेटना प्रारम्भ कर दीजिए। जब आप ऐसा कर रहे हों, तो डोरी को थामे रखने के लिए, बीच-बीच में पिन लगाते रहिए और डोरी लपेटना तब तक जारी रखिए जब तक कि पूरी गेंद पर डोरी न लिपट जाए [देखिए आकृति 11.7(a)]। डोरी पर प्रारम्भिक और अंतिम बिंदु अंकित कर लीजिए और धीरे-धीरे गेंद से डोरी को हटा लीजिए।
अब अपने शिक्षक से गेंद का व्यास मापने के लिए सहायता देने के लिए कहिए। इससे आपको गेंद की त्रिज्या ज्ञात हो जाएगी। इसके बाद, कागज पर गेंद की त्रिज्या के बराबर चार वृत्त खींच लीजिए। अब जो डोरी आपने गेंद पर लपेटी थी उसी को एक-एक करके इन वृत्तों पर रखकर वृत्तों को भरिए [देखिए आकृति 11.7(b)]।
आकृति 11.7
इन सबसे आपको क्या प्राप्त होता है?
वह डोरी जिसने एक गोले के पृष्ठ को पूरा-पूरा ढक दिया था अब उसी गोले की त्रिज्या वाले चार वृत्तों के क्षेत्रों को भर रही है। इसका क्या अर्थ हुआ? इससे यह सुझाव मिलता है कि त्रिज्या $r$ वाले एक गोले का पृष्ठीय क्षेत्रफल
$=$ त्रिज्या $r$ वाले चार वृत्तों का क्षेत्रफल $=4 \times\left(\pi r^2\right)$ इसलिए, गोले का पृष्ठीय क्षेत्रफल $=4 \pi r^2$
इसलिए, गोले का पृष्ठीय क्षेत्रफल $=4 \pi r^{2}$
जहाँ $r$ गोले की त्रिज्या है।
गोले के पृष्ठ पर आप कितने फलक देखते हैं? केवल एक। यह वक्रीय है।
आइए एक ठोस गोला लें और इसे बीच से इसके केंद्र से जाते हुए एक तल द्वारा दो भागों में काट लें। गोले का क्या होता है?
यह दो बराबर भागों में विभाजित हो गया है (देखिए आकृति 11.8)। प्रत्येक आधा भाग क्या कहलाता है यह एक अर्धगोला (hemisphere) कहलाता है (क्योंकि hemi का अर्थ आधा है।)।
आकृति 11.8
अर्धगोले के पृष्ठ के बारे में आप क्या कह सकते हैं? इसके कितने फलक हैं?
दो!, इनमें एक वक्रीय है और एक समतल फलक है (आधार)।
अर्धगोले का वक्र पृष्ठीय क्षेत्रफल गोले के पृष्ठीय क्षेत्रफल का आधा, अर्थात् $\frac{1}{2} \times 4 \pi r^{2}$ है।
अतः, अर्धगोले का वक्र पृष्ठीय क्षेत्रफल $=2 \pi r^{2}$
जहाँ $r$ उस गोले की त्रिज्या है जिसका अर्धगोला एक भाग है।
अब दोनों फलकों को लेने पर, इसका कुल पृष्ठीय क्षेत्रफल $=2 \pi r^{2}+\pi r^{2}$ है।
अतः, अर्धगोले का कुल पृष्ठीय क्षेत्रफल $=3 \pi r^{2}$
उदाहरण 4 : $ 7 \mathrm{~cm}$ त्रिज्या वाले एक गोले का पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
हल : $7 \mathrm{~cm}$ त्रिज्या वाले गोले का पृष्ठीय क्षेत्रफल
$$ =4 \pi r^{2}=4 \times \frac{22}{7} \times 7 \times 7 \mathrm{~cm}^{2}=616 \mathrm{~cm}^{2} $$
उदाहरण 5 : त्रिज्या $21 \mathrm{~cm}$ वाले एक अर्धगोले के लिए, ज्ञात कीजिए: (i) वक्र पृष्ठीय क्षेत्रफल (ii) कुल पृष्ठीय क्षेत्रफल
हल : (i) त्रिज्या $21 \mathrm{~cm}$ वाले अर्धगोले का वक्र पृष्ठीय क्षेत्रफल
$$ =2 \pi r^{2}=2 \times \frac{22}{7} \times 21 \times 21 \mathrm{~cm}^{2}=2772 \mathrm{~cm}^{2} $$
(ii) अर्धगोले का कुल पृष्ठीय क्षेत्रफल
$$ =3 \pi r^{2}=3 \times \frac{22}{7} \times 21 \times 21 \mathrm{~cm}^{2}=4158 \mathrm{~cm}^{2} $$
उदाहरण 6 : सर्कस का एक मोटरसाइकिल सवार जिस खोखले गोले के अंदर अपने करतब (खेल) दिखाता है उसका व्यास $7 \mathrm{~m}$ है। मोटरसाइकिल सवार के पास ये करतब दिखाने के लिए कितना क्षेत्रफल उपलब्ध है?
हल : गोले का व्यास $=7 \mathrm{~m}$ है। इसलिए त्रिज्या $3.5 \mathrm{~m}$ हुई। अब, करतब दिखाने के लिए, मोटरसाइकिल सवार को उपलब्ध स्थान इस गोले का पृष्ठीय क्षेत्रफल है। गोले का पृष्ठीय क्षेत्रफल
$$ \begin{aligned} 4 \pi r^{2} & =4 \times \frac{22}{7} \times 3.5 \times 3.5 \mathrm{~m}^{2} \\ & =154 \mathrm{~m}^{2} \end{aligned} $$
उदाहरण 7 : किसी भवन का ऊपरी भाग अर्धगोलाकार है और इस पर पेंट किया जाना है (देखिए आकृति 11.9)। यदि इस अर्धगोले के आधार की परिधि $17.6 \mathrm{~m}$ है, तो ₹5 प्रति $100 \mathrm{~cm}^{2}$ की दर से इसे पेंट कराने का व्यय ज्ञात कीजिए।
आकृति 11.9
हल : हल : चूँकि केवल गोलाकार पृष्ठ पर ही पेंट होगा, इसलिए हमें अर्धगोले के वक्र पृष्ठीय क्षेत्रफल को ज्ञात करने की आवश्यकता है। अब, आधार की परिधि $=17.6 \mathrm{~m}$ है। इसलिए, $\quad 2 \pi r=17.6$
अब, आधार की परिधि $=17.6 \mathrm{~m}$ है। अर्थात्, $\quad r=\frac{17.6 \times 7}{2 \times 22} \mathrm{~m}=2.8 \mathrm{~m}$
इसलिए, भवन का वक्र पृष्ठीय क्षेत्रफल $=2 \pi r^{2}$
$$ \begin{aligned} & =2 \times \frac{22}{7} \times 2.8 \times 2.8 \mathrm{~m}^{2} \\ & =49.28 \mathrm{~m}^{2} \end{aligned} $$
अब, $100 \mathrm{~cm}^{2}$ पेंटिंग की लागत = ₹5
इसलिए, $1 \mathrm{~m}^{2}$ पेंटिंग की लागत = ₹500
अतः, $49.28 \mathrm{~m}^{2}$ पेंटिंग की लागत =₹ 500 $ \times 49.28 $ = ₹ 24640
प्रश्नावली 11.2
$ \text { जब तक अन्यथा न कहा जाए, } \pi=\frac{22}{7} \text { लीजिए। } $
1. निम्न त्रिज्या वाले गोले का पृष्ठीय क्षेत्रफल ज्ञात कीजिए :
(i) $10.5 \mathrm{~cm}$
(ii) $5.6 \mathrm{~cm}$
(iii) $14 \mathrm{~cm}$
Show Answer
Missing2. निम्न व्यास वाले गोले का पृष्ठीय क्षेत्रफल ज्ञात कीजिए :
(i) $14 \mathrm{~cm}$
(ii) $21 \mathrm{~cm}$
(iii) $3.5 \mathrm{~m}$
Show Answer
Missing3. $10 \mathrm{~cm}$ त्रिज्या वाले एक अर्धगोले का कुल पृष्ठीय क्षेत्रफल ज्ञात कीजिए। $(\pi=3.14$ लीजिए।)
Show Answer
Missing4. एक गोलाकार गुब्बारे में हवा भरने पर, उसकी त्रिज्या $7 \mathrm{~cm}$ से $14 \mathrm{~cm}$ हो जाती है। इन दोनों स्थितियों में, गुब्बारे के पृष्ठीय क्षेत्रफलों का अनुपात ज्ञात कीजिए।
Show Answer
Missing5. पीतल से बने एक अर्धगोलाकार कटोरे का आंतरिक व्यास $10.5 \mathrm{~cm}$ है। ₹ 16 प्रति $100 \mathrm{~cm}^{2}$ की दर से इसके आंतरिक पृष्ठ पर कलई कराने का व्यय ज्ञात कीजिए।
Show Answer
Missing6. उस गोले की त्रिज्या ज्ञात कीजिए जिसका पृष्ठीय क्षेत्रफल $154 \mathrm{~cm}^{2}$ है।
Show Answer
Missing7. चन्द्रमा का व्यास पृथ्वी के व्यास का लगभग एक-चौथाई है। इन दोनों के पृष्ठीय क्षेत्रफलों का अनुपात ज्ञात कीजिए।
Show Answer
Missing8. एक अर्धगोलाकार कटोरा $0.25 \mathrm{~cm}$ मोटी स्टील से बना है। इस कटोरे की आंतरिक त्रिज्या $5 \mathrm{~cm}$ है। कटोरे का बाहरी वक्र पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
Show Answer
Missing9. एक लंब वृत्तीय बेलन त्रिज्या $r$ वाले एक गोले को पूर्णतया घेरे हुए है (देखिए आकृति 11.10)। ज्ञात कीजिए:
(i) गोले का पृष्ठीय क्षेत्रफल
(ii) बेलन का वक्र पृष्ठीय क्षेत्रफल
(iii) ऊपर (i) और (ii) में प्राप्त क्षेत्रफलों का अनुपात
आकृति 11.10
Show Answer
Missing11.3 लम्ब वृत्तीय शंकु का आयतन
पिछली कक्षाओं में हमने घन, घनाभ और बेलन के आयतन का अध्ययन किया है
आकृति 11.11 में, आप देखते हैं कि इसमें एक ही आधार त्रिज्या वाले और एक ही ऊँचाई वाले बेलन और शंकु दिए हुए हैं।
आकृति 11.11
क्रियाकलाप : उपरोक्त आकृतियों की ही तरह, एक ही आधार त्रिज्या और एक ही ऊँचाई वाला एक खोखला बेलन और एक खोखला शंकु बनाने का प्रयत्न कीजिए (देखिए आकृति 11.11)। फिर हम एक प्रयोग द्वारा यह ज्ञात करेंगे कि एक शंकु का आयतन क्या है।
आकृति 11.12
आइए इस प्रयोग को प्रारम्भ करें।
शंकु को रेत से एक बार ऊपर तक भरिए और इस रेत को बेलन में डाल दीजिए। हम देखते हैं कि इससे बेलन का कुछ भाग भर गया है [देखिए आकृति 11.12 (a)]।
फिर हम दुबारा शंकु को रेत से भर कर बेलन में रेत को डाल देते हैं। हम देखते हैं कि बेलन अभी भी पूरा नहीं भरा है [देखिए आकृति 11.12(b)]।
अब शंकु को तीसरी बार रेत से भर कर बेलन में डालिए। हम देखते हैं कि बेलन पूरा रेत से भर गया है [देखिए आकृति 11.12(c)]।
इस प्रयोग से, हम निष्कर्ष निकाल सकते हैं कि तीन शंकुओं का आयतन बेलन के आयतन के बराबर है। इसका अर्थ है कि यदि शंकु और बेलन की आधार त्रिज्या एक ही हो और ऊँचाई भी एक ही हो, तो शंकु का आयतन बेलन के आयतन का एक-तिहाई होता है।
अतः, शंकु का आयतन $=\frac{1}{3} \pi r^{2} h$
जहाँ $r$ आधार त्रिज्या है और $h$ शंकु की ऊँचाई है।
उदाहरण 8 : किसी शंकु की ऊँचाई और तिर्यक ऊँचाई क्रमशः $21 \mathrm{~cm}$ और $28 \mathrm{~cm}$ हैं। इसका आयतन ज्ञात कीजिए।
हल : $l^{2}=r^{2}+h^{2}$ से हमें प्राप्त होता है :
$$ r=\sqrt{l^{2}-h^{2}}=\sqrt{28^{2}-21^{2}} \mathrm{~cm}=7 \sqrt{7} \mathrm{~cm} $$
अतः, शंकु का आयतन $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times 7 \sqrt{7} \times 7 \sqrt{7} \times 21 \mathrm{~cm}^{3}$
$ =7546 \mathrm{~cm}^{3} $
उदाहरण 9 : मोनिका के पास केनवास का एक टुकड़ा है जिसका क्षेत्रफल $551 \mathrm{~m}^{2}$ है। वह इससे $7 \mathrm{~m}$ आधार त्रिज्या वाला एक शंकु का आपतन का तंबू बनवाती है। यह मानते हुए कि सिलाई और कटाई में लगभग $1 \mathrm{~m}^{2}$ केनवास नष्ट हुआ होगा, इससे बनाए जाने वाले शंकु का आयतन ज्ञात कीजिए।
हल : केनवास का क्षेत्रफल $=551 \mathrm{~m}^{2}$ है और $1 \mathrm{~m}^{2}$ केनवास सिलाई, इत्यादि में नष्ट हो जाता है। अतः, तंबू के लिए उपलब्ध केनवास $=(551-1) \mathrm{m}^{2}=550 \mathrm{~m}^{2}$
इसलिए, तंबू का पृष्ठीय क्षेत्रफल $=550 \mathrm{~m}^{2}$ अब, तंबू के आधार की त्रिज्या $=7 \mathrm{~m}$
ध्यान दीजिए कि तंबू की केवल वक्र पृष्ठ ही होती है (तंबू के फर्श को ढका नहीं जाता है)।
अतः, तंबू का वक्र पृष्ठीय क्षेत्रफल $=550 \mathrm{~m}^{2}$
अर्थात्, $\pi r l=550$
या, $\frac{22}{7} \times 7 \times l=550$
या, $l=\frac{550}{22} \mathrm{~m}=25 \mathrm{~m}$
अब, $l^{2}=r^{2}+h^{2}$
इसलिए, $$ \begin{aligned} h=\sqrt{l^{2}-r^{2}} & =\sqrt{25^{2}-7^{2}} \mathrm{~m}=\sqrt{625-49} \mathrm{~m}=\sqrt{576} \mathrm{~m} \\ & =24 \mathrm{~m} \end{aligned} $$
अत: तंबू का आयतन $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 24 \mathrm{~m}^{3}=1232 \mathrm{~m}^{3}$
प्रश्नावली 11.3
जब तक अन्यथा न कहा जाए, $\pi=\frac{22}{7}$ लीजिए।
1. उस लंब वृत्तीय शंकु का आयतन ज्ञात कीजिए, जिसकी
(i) त्रिज्या $6 \mathrm{~cm}$ और ऊँचाई $7 \mathrm{~cm}$ है।
(ii) त्रिज्या $3.5 \mathrm{~cm}$ और ऊँचाई $12 \mathrm{~cm}$ है।
Show Answer
Missing2. शंकु के आकार के उस बर्तन की लीटरों में धारिता ज्ञात कीजिए जिसकी
(i) त्रिज्या $7 \mathrm{~cm}$ और तिर्यक ऊँचाई $25 \mathrm{~cm}$ है।
(ii) ऊँचाई $12 \mathrm{~cm}$ और तिर्यक ऊँचाई $13 \mathrm{~cm}$ है।
Show Answer
Missing3. एक शंकु की ऊँचाई $15 \mathrm{~cm}$ है। यदि इसका आयतन $1570 \mathrm{~cm}^{3}$ है, तो इसके आधार की त्रिज्या ज्ञात कीजिए। ( $\pi=3.14$ प्रयोग कीजिए।)
Show Answer
Missing4. यदि $9 \mathrm{~cm}$ ऊँचाई वाले एक लंब वृत्तीय शंकु का आयतन $48 \pi \mathrm{cm}^{3}$ है, तो इसके आधार का व्यास ज्ञात कीजिए।
Show Answer
Missing5. ऊपरी व्यास $3.5 \mathrm{~m}$ वाले शंकु के आकार का एक गढ्ढा $12 \mathrm{~m}$ गहरा है। इसकी धारिता किलोलीटरों में कितनी है?
Show Answer
Missing6. एक लंब वृत्तीय शंकु का आयतन $9856 \mathrm{~cm}^{3}$ है। यदि इसके आधार का व्यास $28 \mathrm{~cm}$ है, तो ज्ञात कीजिए :
(i) शंकु की ऊँचाई
(ii) शंकु की तिर्यक ऊँचाई
(iii) शंकु का वक्र पृष्ठीय क्षेत्रफल
Show Answer
Missing7. भुजाओं $5 \mathrm{~cm}, 12 \mathrm{~cm}$ और $13 \mathrm{~cm}$ वाले एक समकोण त्रिभुज $\mathrm{ABC}$ को भुजा $12 \mathrm{~cm}$ के परित घुमाया जाता है। इस प्रकार प्राप्त ठोस का आयतन ज्ञात कीजिए।
Show Answer
Missing8. यदि प्रश्न 7 के त्रिभुज $\mathrm{ABC}$ को यदि भुजा $5 \mathrm{~cm}$ के परित घुमाया जाए, तो इस प्रकार प्राप्त ठोस का आयतन ज्ञात कीजिए। प्रश्नों 7 और 8 में प्राप्त किए गए दोनों ठोसों के आयतनों का अनुपात भी ज्ञात कीजिए।
Show Answer
Missing9. गेहूँ की एक ढेरी $10.5 \mathrm{~m}$ व्यास और ऊँचाई $3 \mathrm{~m}$ वाले एक शंकु के आकार की है। इसका आयतन ज्ञात कीजिए। इस ढेरी को वर्षा से बचाने के लिए केनवास से ढका जाना है। वाँछित केनवास का क्षेत्रफल ज्ञात कीजिए।
Show Answer
Missing11.4 गोले का आयतन
आइए अब देखें कि एक गोले का आयतन कैसे मापा जाए। पहले विभिन्न त्रिज्याओं वाले दो या तीन गोले लीजिए। फिर एक बर्तन लीजिए, जिसके अंदर इन गोलों को (केवल एक बार में एक) रखा जा सके। साथ ही, एक बड़ी नाँद (trough) लीजिए जिसमें इस बर्तन को रखा जा सके। अब बर्तन को पूरा ऊपर तक पानी से भरिए [देखिए आकृति 11.13(a)]।
अब लिए गए गोलों में से एक को बर्तन में सावधानीपूर्वक डालिए। बर्तन में से कुछ पानी बाहर निकल कर उस नाँद में जाएगा जिसमें वह बर्तन रखा हुआ है [देखिए आकृति 11.13(b)]। अब नाँद में आए इस पानी को सावधानीपूर्वक एक नापने वाले बेलन [अर्थात् अशांकित बेलनाकार गिलास (graduated cylindrical jar)] में डालिए। मान लीजिए पानी में डुबाए गए गोले की त्रिज्या $r$ है (आप गोले का व्यास माप कर उसकी त्रिज्या ज्ञात कर सकते हैं)। अब $\frac{4}{3} \pi r^{3}$ का मान निकालिए। क्या आप यह पाते हैं कि यह मान बर्तन से बाहर निकले पानी के आयतन के लगभग बराबर है?
आकृति 11.13
एक बार फिर इसी प्रक्रिया को एक अन्य माप का गोला लेकर दोहराइए। इस गोले की त्रिज्या $R$ ज्ञात करके $\frac{4}{3} \pi R^{3}$ का मान निकालिए। एक बार फिर यह मान बर्तन से बाहर निकले पानी के आयतन के लगभग बराबर है। यह हमें क्या बताता है? हम जानते हैं कि गोले का आयतन उसके द्वारा हटाए गए पानी के आयतन के बराबर है। इस प्रयोग को बार-बार करने पर, हम प्राप्त करते हैं कि एक गोले का आयतन गोले की त्रिज्या के घन का $\frac{4}{3} \pi$ गुना है। इससे हमें निम्न सुझाव प्राप्त होता है :
$\text { गोले का आयतन }=\frac{4}{3} \pi r^{3}$
जहाँ $r$ गोले की त्रिज्या है।
उच्चतर कक्षाओं में इसे सिद्ध भी किया जा सकता है। परन्तु इस समय तो हम इसे सत्य मान लेते हैं।.
अब अर्धगोले के आयतन के बारे में आप क्या अनुमान लगा सकते हैं? हाँ, यह $\frac{4}{3} \pi r^{3}$ का $\frac{1}{2}=\frac{2}{3} \pi r^{3}$ है।
अतः, अर्धगोले का आयतन $=\frac{2}{3} \pi r^{3}$
जहाँ $r$ अर्धगोले की त्रिज्या है।
आइए इन सूत्रों का प्रयोग दर्शाने के लिए कुछ उदाहरण लें।
उदाहरण 10 : $ 11.2 \mathrm{~cm}$ त्रिज्या वाले गोले का आयतन ज्ञात कीजिए।
हल : $\quad$ वाँछित आयतन $=\frac{4}{3} \pi r^{3}$
$$ =\frac{4}{3} \times \frac{22}{7} \times 11.2 \times 11.2 \times 11.2 \mathrm{~cm}^{3}=5887.32 \mathrm{~cm}^{3} $$
उदाहरण 11 : एक शॉट-पट्ट (shot-putt) $4.9 \mathrm{~cm}$ त्रिज्या वाला एक धातु का गोला है। यदि इस धातु का घनत्व (density) 7.8 ग्राम प्रति $\mathrm{cm}^{3}$ है, तो शॉट-पट्ट का द्रव्यमान ज्ञात कीजिए।
हल : चूँकि शॉट-पट्ट (shot-putt) धातु का एक ठोस गोला है तथा द्रव्यमान आयतन और घनत्व के गुणनफल के बराबर होता है, इसलिए पहले हमें शॉट-पट्ट का आयतन ज्ञात करना चाहिए।
अब, गोले का आयतन $=\frac{4}{3} \pi r^{3}$
$$ \begin{aligned} & =\frac{4}{3} \times \frac{22}{7} \times 4.9 \times 4.9 \times 4.9 \mathrm{~cm}^{3} \\ & =493 \mathrm{~cm}^{3} \text { (लगभग) } \end{aligned} $$
साथ ही, $1 \mathrm{~cm}^{3}$ धातु का द्रव्यमान $=7.8$ ग्राम
अतः, शॉट-पट्ट का द्रव्यमान $=7.8 \times 493$ ग्राम
$$ =3845.44 \text { ग्राम }=3.85 \text { किलोग्राम (लगभग) } $$
उदाहरण 12 : एक अर्धगोलाकार कटोरे की त्रिज्या $3.5 \mathrm{~cm}$ है। इसके अंदर भरे जा सकने वाले पानी का आयतन ज्ञात कीजिए।
हल : कटोरे में भरे जा सकने वाले पानी का आयतन
$$ \begin{aligned} & =\frac{2}{3} \pi r^{3} \\ & =\frac{2}{3} \times \frac{22}{7} \times 3.5 \times 3.5 \times 3.5 \mathrm{~cm}^{3}=89.8 \mathrm{~cm}^{3} \end{aligned} $$
प्रश्नावली 11.4
जब अन्यथा न कहा जाए, $\pi=\frac{22}{7}$ लीजिए।
1. उस गोले का आयतन ज्ञात कीजिए जिसकी त्रिज्या निम्न है :
(i) $7 \mathrm{~cm}$
(ii) $0.63 \mathrm{~m}$
Show Answer
Missing2. उस ठोस गोलाकार गेंद द्वारा हटाए गए (विस्थापित) पानी का आयतन ज्ञात कीजिए, जिसका व्यास निम्न है :
(i) $28 \mathrm{~cm}$
(ii) $0.21 \mathrm{~m}$
Show Answer
Missing3. धातु की एक गेंद का व्यास $4.2 \mathrm{~cm}$ है। यदि इस धातु का घनत्व 8.9 ग्राम प्रति $\mathrm{cm}^{3}$ है, तो इस गेंद का द्रव्यमान ज्ञात कीजिए।
Show Answer
Missing4. चंद्रमा का व्यास पृथ्वी के व्यास का लगभग एक-चौथाई है। चंद्रमा का आयतन पृथ्वी के आयतन की कौन-सी भिन्न है?
Show Answer
Missing5. व्यास $10.5 \mathrm{~cm}$ वाले एक अर्धगोलाकार कटोरे में कितने लीटर दूध आ सकता है?
Show Answer
Missing6. एक अर्धगोलाकार टंकी $1 \mathrm{~cm}$ मोटी एक लोहे की चादर (sheet) से बनी है। यदि इसकी आंतरिक त्रिज्या $1 \mathrm{~m}$ है, तो इस टंकी के बनाने में लगे लोहे का आयतन ज्ञात कीजिए।
Show Answer
Missing7. उस गोले का आयतन ज्ञात कीजिए जिसका पृष्ठीय क्षेत्रफल $154 \mathrm{~cm}^{2}$ है।
Show Answer
Missing8. किसी भवन का गुंबद एक अर्धगोले के आकार का है। अंदर से, इसमें सफेदी कराने में ₹ 498.96 व्यय हुए। यदि सफेदी कराने की दर ₹ 2 प्रति वर्ग मीटर है, तो ज्ञात कीजिए:
(i) गुंबद का आंतरिक वक्र पृष्ठीय क्षेत्रफल
(ii) गुंबद के अंदर की हवा का आयतन
Show Answer
Missing9. लोहे के सत्ताइस ठोस गोलों को पिघलाकर, जिनमें से प्रत्येक की त्रिज्या $r$ है और पृष्ठीय क्षेत्रफल $\mathrm{S}$ है, एक बड़ा गोला बनाया जाता है जिसका पृष्ठीय क्षेत्रफल $\mathrm{S}^{\prime}$ है। ज्ञात कीजिए:
(i) नए गोले की त्रिज्या $r^{\prime}$
(ii) $\mathrm{S}$ और $\mathrm{S}^{\prime}$ का अनुपात
Show Answer
Missing10. दवाई का एक कैपसूल (capsule) $3.5 \mathrm{~mm}$ व्यास का एक गोला (गोली) है। इस कैपसूल को भरने के लिए कितनी दवाई $\left(\mathrm{mm}^{3}\right.$ में) की आवश्यकता होगी?
Show Answer
Missing11.5 सारांश
इस अध्याय में, आपने निम्नलिखित बिंदुओं का अध्ययन किया है:
1. शंकु का वक्र पृष्ठीय क्षेत्रफल $=\pi r l$
2. शंकु का कुल पृष्ठीय क्षेत्रफल $=\pi r l+\pi r^{2}$, अर्थात् $\pi r(l+r)$
3. गोले का पृष्ठीय क्षेत्रफल $=4 \pi r^{2}$
4. अर्धगोले का वक्र पृष्ठीय क्षेत्रफल $=2 \pi r^{2}$
5. अर्धगोले का कुल पृष्ठीय क्षेत्रफल $=3 \pi r^{2}$
6. शंकु का आयतन $=\frac{1}{3} \pi r^{2} h$
7. गोले का आयतन $=\frac{4}{3} \pi r^{3}$
8. अर्धगोले का आयतन $=\frac{2}{3} \pi r^{3}$
[यहाँ अक्षरों $l, b, h, a, r$, इत्यादि का प्रयोग, अपने संदर्भ के अनुसार, सामान्य अर्थों में प्रयोग किया गया है।]