Chapter-10 Heron's Formula

10.1 Area of a Triangle — by Heron’s Formula

We know that the area of triangle when its height is given, is $\frac{1}{2} \times$ base $\times$ height. Now suppose that we know the lengths of the sides of a scalene triangle and not the height. Can you still find its area? For instance, you have a triangular park whose sides are 40 $\mathrm{m}, 32 \mathrm{~m}$, and $24 \mathrm{~m}$. How will you calculate its area? Definitely if you want to apply the formula, you will have to calculate its height. But we do not have a clue to calculate the height. Try doing so. If you are not able to get it, then go to the next section.

Heron was born in about 10AD possibly in Alexandria in Egypt. He worked in applied mathematics. His works on mathematical and physical subjects are so numerous and varied that he is considered to be an encyclopedic writer in these fields. His geometrical works deal largely with problems on mensuration written in three books. Book I deals with the area of squares, rectangles, triangles, trapezoids (trapezia), various other specialised quadrilaterals, the regular polygons, circles, surfaces of cylinders, cones, spheres etc. In this book, Heron has derived the famous formula for the area of a triangle in terms of its three sides.

Fig. 10.1

The formula given by Heron about the area of a triangle, is also known as Hero’s formula. It is stated as:

$$ \text { Area of a triangle }=\sqrt{s(s-a)(s-b)(s-c)} $$

where $a, b$ and $c$ are the sides of the triangle, and $s=$ semi-perimeter, i.e., half the perimeter of the triangle $=\frac{a+b+c}{2}$,

This formula is helpful where it is not possible to find the height of the triangle easily. Let us apply it to calculate the area of the triangular park $\mathrm{ABC}$, mentioned above (see Fig. 10.2).

Fig. 10.2

Let us take $a=40 \mathrm{~m}, b=24 \mathrm{~m}, c=32 \mathrm{~m}$,

so that we have $$s=\frac{40+24+32}{2} \mathrm{~m}=48 \mathrm{~m}$$.

$s-a=(48-40) \mathrm{m}=8 \mathrm{~m}$,

$s-b=(48-24) \mathrm{m}=24 \mathrm{~m}$,

$s-c=(48-32) \mathrm{m}=16 \mathrm{~m}$.

Therefore, area of the park $\mathrm{ABC}$

$=\sqrt{s(s-a)(s-b)(s-c)}$

$=\sqrt{48 \times 8 \times 24 \times 16} \mathrm{~m}^{2}=384 \mathrm{~m}^{2}$

We see that $32^{2}+24^{2}=1024+576=1600=40^{2}$. Therefore, the sides of the park make a right triangle. The largest side, i.e., $\mathrm{BC}$ which is $40 \mathrm{~m}$ will be the hypotenuse and the angle between the sides $\mathrm{AB}$ and $\mathrm{AC}$ will be $90^{\circ}$.

We can check that the area of the park is $\frac{1}{2} \times 32 \times 24 \mathrm{~m}^{2}=384 \mathrm{~m}^{2}$.

We find that the area we have got is the same as we found by using Heron’s formula.

Now using Heron’s formula, you verify this fact by finding the areas of other triangles discussed earlier viz.,

(i) equilateral triangle with side $10 \mathrm{~cm}$.

(ii) isosceles triangle with unequal side as $8 \mathrm{~cm}$ and each equal side as $5 \mathrm{~cm}$.

You will see that

For (i), we have $s=\frac{10+10+10}{2} \mathrm{~cm}=15 \mathrm{~cm}$.

Area of triangle $=\sqrt{15(15-10)(15-10)(15-10)} \mathrm{cm}^{2}$

$$ =\sqrt{15 \times 5 \times 5 \times 5} \mathrm{~cm}^{2}=25 \sqrt{3} \mathrm{~cm}^{2} $$

For (ii), we have $s=\frac{8+5+5}{2} \mathrm{~cm}=9 \mathrm{~cm}$

Area of triangle $=\sqrt{9(9-8)(9-5)(9-5)} \mathrm{cm}^{2}=\sqrt{9 \times 1 \times 4 \times 4} \mathrm{~cm}^{2}=12 \mathrm{~cm}^{2}$.

Let us now solve some more examples:

Example 1 : Find the area of a triangle, two sides of which are $8 \mathrm{~cm}$ and $11 \mathrm{~cm}$ and the perimeter is $32 \mathrm{~cm}$ (see Fig. 10.3).

Fig. 10.3

Solution : Here we have perimeter of the triangle $=32 \mathrm{~cm}, a=8 \mathrm{~cm}$ and $b=11 \mathrm{~cm}$.

Third side $c=32 \mathrm{~cm}-(8+11) \mathrm{cm}=13 \mathrm{~cm}$

So, $\quad 2 s=32$, i.e., $s=16 \mathrm{~cm}$, $$ \begin{aligned} & s-a=(16-8) \mathrm{cm}=8 \mathrm{~cm}, \\ & s-b=(16-11) \mathrm{cm}=5 \mathrm{~cm}, \\ & s-c=(16-13) \mathrm{cm}=3 \mathrm{~cm} \end{aligned} $$

Therefore, area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

$$ =\sqrt{16 \times 8 \times 5 \times 3} \mathrm{~cm}^{2}=8 \sqrt{30} \mathrm{~cm}^{2} $$

Example 2 : A triangular park $A B C$ has sides $120 \mathrm{~m}, 80 \mathrm{~m}$ and $50 \mathrm{~m}$ (see Fig. 10.4). A gardener Dhania has to put a fence all around it and also plant grass inside. How much area does she need to plant? Find the cost of fencing it with barbed wire at the rate of ₹ 20 per metre leaving a space $3 \mathrm{~m}$ wide for a gate on one side.

Fig. 10.4

Solution : For finding area of the park, we have

$$ \begin{aligned} & 2 s=50 \mathrm{~m}+80 \mathrm{~m}+120 \mathrm{~m}=250 \mathrm{~m} . \\ \text { i.e., } \quad & s=125 \mathrm{~m} \end{aligned} $$

Now, $\quad \quad \quad \quad s-a=(125-120) \mathrm{~m}=5 \mathrm{~m}$,

$$ \begin{aligned} & s-b=(125-80) \mathrm{~m}=45 \mathrm{~m}, \\ & s-c=(125-50) \mathrm{~m}=75 \mathrm{~m} . \end{aligned} $$

Therefore, area of the park $=\sqrt{s(s-a)(s-b)(s-c)}$

$$ \begin{aligned} & =\sqrt{125 \times 5 \times 45 \times 75} \mathrm{~m}^{2} \ & =375 \sqrt{15} \mathrm{~m}^{2} \end{aligned} $$

Also, perimeter of the park $=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}=250 \mathrm{~m}$

Therefore, length of the wire needed for fencing $=250 \mathrm{~m}-3 \mathrm{~m}$ (to be left for gate)

$$ =247 \mathrm{~m} $$

And so the cost of fencing $= 20 rupees \times 247= 4940$ rupees

Example 3 : The sides of a triangular plot are in the ratio of $3: 5: 7$ and its perimeter is $300 \mathrm{~m}$. Find its area.

Solution : Suppose that the sides, in metres, are $3 x, 5 x$ and $7 x$ (see Fig. 10.5).

Then, we know that $3 x+5 x+7 x=300$ (perimeter of the triangle)

Therefore, $15 x=300$, which gives $x=20$.

So the sides of the triangle are $3 \times 20 \mathrm{~m}, 5 \times 20 \mathrm{~m}$ and $7 \times 20 \mathrm{~m}$

i.e., $60 \mathrm{~m}, 100 \mathrm{~m}$ and $140 \mathrm{~m}$.

Can you now find the area [Using Heron’s formula]?

We have $s=\frac{60+100+140}{2} \mathrm{~m}=150 \mathrm{~m}$,

Fig. 10.5

and area will be $$ \begin{aligned} & \sqrt{150(150-60)(150-100)(150-140)} \mathrm{m}^{2} \\ & =\sqrt{150 \times 90 \times 50 \times 10} \mathrm{~m}^{2} \\ & =1500 \sqrt{3} \mathrm{~m}^{2} \end{aligned} $$

EXERCISE 10.1

1. A traffic signal board, indicating ‘SCHOOL AHEAD’, is an equilateral triangle with side ’ $a$ ‘. Find the area of the signal board, using Heron’s formula. If its perimeter is $180 \mathrm{~cm}$, what will be the area of the signal board?

Show Answer

Solution

Side of traffic signal board $=a$

Perimeter of traffic signal board $=3 \times a$

$2 s=3 a \Rightarrow s=\frac{3}{2} a$

By Heron’s formula,

Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

Area of given triangle $=\sqrt{\frac{3}{2} a(\frac{3}{2} a-a)(\frac{3}{2} a-a)(\frac{3}{2} a-a)}$

$$ \begin{align} & =\sqrt{(\frac{3}{2} a)(\frac{a}{2})(\frac{a}{2})(\frac{a}{2})} \\ & =\frac{\sqrt{3}}{4} a^{2} \tag{1} \end{align} $$

Perimeter of traffic signal board $=180 cm$

Side of traffic signal board

$ (a)=(\frac{180}{3}) cm=60 cm $

Using equation (1), area of traffic signal board

$ =\frac{\sqrt{3}}{4}(60 cm)^{2} $

$=(\frac{3600}{4} \sqrt{3}) cm^{2}=900 \sqrt{3} cm^{2}$

2. The triangular side walls of a flyover have been used for advertisements. The sides of the walls are $122 \mathrm{~m}, 22 \mathrm{~m}$ and $120 \mathrm{~m}$ (see Fig. 10.6). The advertisements yield an earning of ₹ 5000 per $\mathrm{m}^{2}$ per year. A company hired one of its walls for 3 months. How much rent did it pay?

Fig. 10.6

Show Answer

Solution

The sides of the triangle (i.e., a, b, c) are of $122 m, 22 m$, and $120 m$ respectively.

Perimeter of triangle $=(122+22+120) m$

$2 s=264 m s=$

$132 m$

By Heron’s formula,

Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

Area of given triangle $=[\sqrt{132(132-122)(132-22)(132-120)}] m^{2}$

$ =[\sqrt{132(10)(110)(12)}] m^{2}=1320 m^{2} $

Rent of $1 m^{2}$ area per year $=$ Rs 5000

Rent of $1 m^{2}$ area per month $=Rs \frac{\frac{5000}{12}}{12}$

$Rs(\frac{5000}{12} \times 3 \times 1320)$

Rent of $1320 m^{2}$ area for 3 months $=$

$ Rs(\frac{5000}{12} \times 3 \times 1320) $

$=Rs(5000 \times 330)=Rs 1650000$

Therefore, the company had to pay Rs 1650000 .

3. There is a slide in a park. One of its side walls has been painted in some colour with a message “KEEP THE PARK GREENAND CLEAN” (see Fig. 10.7). If the sides of the wall are $15 \mathrm{~m}, 11 \mathrm{~m}$ and $6 \mathrm{~m}$, find the area painted in colour.

Fig. 10.7

Show Answer

Solution

Here $a=15 \mathrm{~m}, \mathrm{~b}=11 \mathrm{~m}, \mathrm{c}=6 \mathrm{~m}$ $$ \begin{aligned} & s=\frac{a+b+c}{2} \ & s=\frac{15+11+6}{2}=16 \mathrm{~m} \end{aligned} $$

Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$ $$ \begin{aligned} & =\sqrt{16(16-15)(16-11)(16-6)} \\ & =\sqrt{16 \times 1 \times 5 \times 10} \\ & =20 \sqrt{2} \mathrm{~m}^2 \end{aligned} $$

Hence, the area painted in colour $=20 \sqrt{2} m^2$

4. Find the area of a triangle two sides of which are $18 \mathrm{~cm}$ and $10 \mathrm{~cm}$ and the perimeter is $42 \mathrm{~cm}$.

Show Answer

Solution

Let the third side of the triangle be $x$.

Perimeter of the given triangle $=42 cm$

$18 cm+10 cm+x=42 x=$

$14 cm$

$s=\frac{\text{ Perimeter }}{2}=\frac{42 cm}{2}=21 cm$

By Heron’s formula.

$ \begin{aligned} & \text{ Area of a triangle }=\sqrt{s(s-a)(s-b)(s-c)} \\ & \begin{aligned} \text{ Area of the given triangle } & =(\sqrt{21(21-18)(21-10)(21-14)}) cm^{2} \\ & =(\sqrt{21(3)(11)(7)}) cm^{2} \\ & =21 \sqrt{11} cm^{2} \end{aligned} \end{aligned} $

5. Sides of a triangle are in the ratio of $12: 17: 25$ and its perimeter is $540 \mathrm{~cm}$. Find its area.

Show Answer

Solution

Let the common ratio between the sides of the given triangle be $x$.

Therefore, the side of the triangle will be $12 x, 17 x$, and $25 x$.

Perimeter of this triangle $=540 cm$

$12 x+17 x+25 x=540 c m$

$54 x=540 cm x=$

$10 cm$

Sides of the triangle will be $120 cm, 170 cm$, and $250 cm$.

$s=\frac{\text{ Perimeter of triangle }}{2}=\frac{540 cm}{2}=270 cm$

By Heron’s formula,

$ \begin{aligned} \text{ Area of triangle } & =\sqrt{s(s-a)(s-b)(s-c)} \\ & =[\sqrt{270(270-120)(270-170)(270-250)}] cm^{2} \\ & =[\sqrt{270 \times 150 \times 100 \times 20}] cm^{2} \\ & =9000 cm^{2} \end{aligned} $

Therefore, the area of this triangle is $9000 cm^{2}$.

6. An isosceles triangle has perimeter $30 \mathrm{~cm}$ and each of the equal sides is $12 \mathrm{~cm}$. Find the area of the triangle.

Show Answer

Solution

Let the third side of this triangle be $x$.

Perimeter of triangle $=30 cm$

$12 cm+12 cm+x=30 cm$

$ \begin{aligned} & x=6 cm \\ & s=\frac{\text{ Perimeter of triangle }}{2}=\frac{30 cm}{2}=15 cm \end{aligned} $

By Heron’s formula,

$ \begin{aligned} \text{ Area of triangle } & =\sqrt{s(s-a)(s-b)(s-c)} \\ & =[\sqrt{15(15-12)(15-12)(15-6)}] cm^{2} \\ & =[\sqrt{15(3)(3)(9)}] cm^{2} \\ & =9 \sqrt{15} cm^{2} \end{aligned} $

10.2 Summary

In this chapter, you have studied the following points :

1. Area of a triangle with its sides as $a, b$ and $c$ is calculated by using Heron’s formula, stated as

$$ \begin{aligned} \text { Area of triangle } & =\sqrt{s(s-a)(s-b)(s-c)} \\ \text{where} \quad s & =\frac{a+b+c}{2} \end{aligned} $$

10.1 त्रिभुज का क्षेत्रफल - हीरोन के सूत्र द्वारा

हम जानते हैं कि जब त्रिभुज की ऊंचाई दी जाती है तो उसका क्षेत्रफल $\frac{1}{2} \times$ आधार $\times$ ऊंचाई होता है। अब मान लीजिए कि हम एक विषमबाहु त्रिभुज की भुजाओं की लंबाई जानते हैं, ऊँचाई नहीं। क्या आप अब भी इसका क्षेत्रफल ज्ञात कर सकते हैं? उदाहरण के लिए, आपके पास एक त्रिकोणीय पार्क है जिसकी भुजाएँ 40 $\mathrm{m}, 32 \mathrm{~m}$, और $24 \mathrm{~m}$ हैं। आप इसके क्षेत्रफल की गणना कैसे करेंगे? निश्चित रूप से यदि आप सूत्र लागू करना चाहते हैं, तो आपको इसकी ऊंचाई की गणना करनी होगी। लेकिन ऊंचाई की गणना करने के लिए हमारे पास कोई सुराग नहीं है। ऐसा करने का प्रयास करें. यदि आप इसे प्राप्त नहीं कर पा रहे हैं तो अगले भाग पर जाएँ।

हीरोन का जन्म संभवतः मिम्र में अलेक्जेंड्रिया नामक स्थान पर हुआ। उन्होंने अनुप्रायोगिक गणित (applied mathematics) पर कार्य किया। उनका गणितीय और भौतिकीय विषयों पर कार्य इतना अधिक और विभिन्न प्रकार का था कि उन्हें इन क्षेत्रों का एक विश्वकोण संबंधी (encyclopedic) लेखक समझा जाता था। उनका ज्यामितीय कार्य मुख्यतः मेन्सुरेशन ( क्षेत्रमिति) की समस्याओं से संबंधित था। यह कार्य तीन पुस्तकों में लिखा गया है। पुस्तक 1 में, वर्गों, आयतों, त्रिभुजों, समलंबों, अनेक प्रकार के विशिष्ट चतुर्भुजों, सम बहुभुजों, वृत्तों के क्षेत्रफलों, बेलनों, शंकुओं, गोलों, इत्यादि के पृष्ठीय क्षेत्रफलों का वर्णन है।>इसी पुस्तक में, हीरोन ने त्रिभुज की तीनों भुजाओं के पदों में उसके (10 सा०यू०पू०-75 सा०्यू०ू०) क्षेत्रफल का प्रसिद्ध (या सुपरिचित) सूत्र प्रतिपादित किया है।

आकृति 10.1

हीरोन के इस सूत्र को हीरो का सूत्र (Hero’s formula) भी कहा जाता है। इसे नीचे दिया जा रहा है:

$$ \text { त्रिभुज का क्षेत्रफल }=\sqrt{s(s-a)(s-b)(s-c)} $$

जहाँ $a, b$ और $c$ त्रिभुज की भुजाएँ हैं तथा $ s=\text { त्रिभुज का अर्धपरिमाप (semi-perimeter) }=\frac{a+b+c}{2} \text { है। } $

यह सूत्र उस स्थिति में सहायक होता है, जब त्रिभुज की ऊँचाई सरलता से ज्ञात न हो सकती हो। आइए ऊपर बताए गए त्रिभुजाकार पार्क $\mathrm{ABC}$ का क्षेत्रफल ज्ञात करने के लिए, इस सूत्र का प्रयोग करें (देखिए आकृति 10.2)।

आकृति 10.2

आइए $a=40 \mathrm{~m}, b=24 \mathrm{~m}, c=32 \mathrm{~m}$ लें

ताकि हमें $$ s=\frac{40+24+32}{2} \mathrm{~m}=48 \mathrm{~m} $$ प्राप्त होगा।

अब, $\quad s-a=(48-40) \mathrm{m}=8 \mathrm{~m}$,

$s-b=(48-24) \mathrm{m}=24 \mathrm{~m}$,

और $\quad s-c=(48-32) \mathrm{m}=16 \mathrm{~m}$ हैं।

अतः, पार्क $\mathrm{ABC}$ का क्षेत्रफल

$=\sqrt{s(s-a)(s-b)(s-c)}$

$ =\sqrt{48 \times 8 \times 24 \times 16} \mathrm{~m}^{2}=384 \mathrm{~m}^{2} $

हम यह भी देखते हैं कि $32^{2}+24^{2}=1024+576=1600=40^{2}$ है। अतः, इस पार्क की भुजाएँ एक समकोण त्रिभुज बनाती हैं। सबसे बड़ी, अर्थात् $\mathrm{BC}$, जिसकी लम्बाई $40 \mathrm{~m}$ है, इस त्रिभुज का कर्ण है तथा $\mathrm{AB}$ और $\mathrm{AC}$ के बीच का कोण $90^{\circ}$ होगा।

इसलिए, सूत्र I से हम जाँच कर सकते हैं कि पार्क का क्षेत्रफल $\frac{1}{2} \times 32 \times 24 \mathrm{~m}^{2}=384 \mathrm{~m}^{2}$.

हम पाते हैं कि यह क्षेत्रफल वही है जो हमें हीरोन के सूत्र से प्राप्त हुआ था।

अब आप पहले चर्चित किए गए अन्य त्रिभुजों के क्षेत्रफलों को हीरोन के सूत्र से ज्ञात करके जाँच कीजिए कि क्षेत्रफल पहले जैसे ही प्राप्त होते हैं। ये त्रिभुज हैं :

(i) $10 \mathrm{~cm}$ भुजा वाला समबाहु त्रिभुज और

(ii) असमान भुजा $8 \mathrm{~cm}$ और बराबर भुजाएँ $5 \mathrm{~cm}$ वाला समद्विबाहु त्रिभुज।

आप देखेंगे कि

(i) के लिए, $\quad s=\frac{10+10+10}{2} \mathrm{~cm}=15 \mathrm{~cm}$

इसलिए, त्रिभुज का क्षेत्रफल $=\sqrt{15(15-10)(15-10)(15-10)} \mathrm{cm}^{2}$

$$ =\sqrt{15 \times 5 \times 5 \times 5} \mathrm{~cm}^{2}=25 \sqrt{3} \mathrm{~cm}^{2} $$

(ii) के लिए, $s=\frac{8+5+5}{2} \mathrm{~cm}=9 \mathrm{~cm}$

इसलिए, त्रिभुज का क्षेत्रफल $=\sqrt{9(9-8)(9-5)(9-5)} \mathrm{cm}^{2}=\sqrt{9 \times 1 \times 4 \times 4} \mathrm{~cm}^{2}=12 \mathrm{~cm}^{2}$.

आइए अब कुछ उदाहरण लें।

उदाहरण 1 : एक त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसकी दो भुजाएँ $8 \mathrm{~cm}$ और $11 \mathrm{~cm}$ हैं और जिसका परिमाप $32 \mathrm{~cm}$ है (देखिए आकृति 10.3)।

आकृति 10.3

हल : यहाँ, परिमाप $=32 \mathrm{~cm}, a=8 \mathrm{~cm}$ और $b=11 \mathrm{~cm}$ है।

इसलिए, तीसरी भुजा $c=32 \mathrm{~cm}-(8+11) \mathrm{cm}=13 \mathrm{~cm}$

अब, $2 s=32$ है। इसलिए $s=16 \mathrm{~cm}$, $$ \begin{aligned} & s-a=(16-8) \mathrm{cm}=8 \mathrm{~cm}, \\ & s-b=(16-11) \mathrm{cm}=5 \mathrm{~cm}, \\ & s-c=(16-13) \mathrm{cm}=3 \mathrm{~cm} \end{aligned} $$

इसलिए, त्रिभुज का क्षेत्रफल $=\sqrt{s(s-a)(s-b)(s-c)}$

$$ =\sqrt{16 \times 8 \times 5 \times 3} \mathrm{~cm}^{2}=8 \sqrt{30} \mathrm{~cm}^{2} $$

उदाहरण 2: एक त्रिभुजाकार पार्क $\mathrm{ABC}$ की भुजाएँ $120 \mathrm{~m}, 80 \mathrm{~m}$ और $50 \mathrm{~m}$ हैं (देखिए आकृति 10.4)। एक मालिन धनिया को इसके चारों ओर एक बाड़ लगानी है और इसके अंदर घास उगानी है। उसे कितने क्षेत्रफल में घास उगानी है? एक ओर $3 \mathrm{~m}$ चौड़े एक फाटक के लिए स्थान छोड़ते हुए इसके चारों ओर ₹ 20 प्रति मीटर की दर से काँटेदार बाड़ लगाने का व्यय भी ज्ञात कीजिए।

आकृति 10.4

हल : पार्क का क्षेत्रफल ज्ञात करने के लिए, हमें प्राप्त है :

$$ 2 s=50 \mathrm{~m}+80 \mathrm{~m}+120 \mathrm{~m}=250 \mathrm{~m} $$ अर्थात् $\quad s=125 \mathrm{~m}$

इसलिए, $s-a=(125-120) \mathrm{m}=5 \mathrm{~m}$,

$$ \begin{aligned} & s-b=(125-80) \mathrm{m}=45 \mathrm{~m}, \\ & s-c=(125-50) \mathrm{m}=75 \mathrm{~m} \end{aligned} $$

अतः, घास उगाने के लिए क्षेत्रफल $=\sqrt{s(s-a)(s-b)(s-c)}$

$$ \begin{aligned} & =\sqrt{125 \times 5 \times 45 \times 75} \mathrm{~m}^{2} \ & =375 \sqrt{15} \mathrm{~m}^{2} \end{aligned} $$

साथ ही, पार्क का परिमाप $=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}=250 \mathrm{~m}$

अतः, बाड़ लगाने के लिए आवश्यक तार की लम्बाई $=250 \mathrm{~m}-3 \mathrm{~m}$ (फाटक के लिए)

$$ =247 \mathrm{~m} $$

इसलिए, बाड़ लगाने का व्यय $= 20 रुपये \times 247= 4940$ रुपये

उदाहरण 3 : एक त्रिभुजाकार भूखंड (plot) की भुजाओं का अनुपात $3: 5: 7$ है और उसका परिमाप $300 \mathrm{~m}$ है। इस भूखंड का क्षेत्रफल ज्ञात कीजिए।

हल : मान लीजिए भुजाएँ (मीटरों में) $3 x, 5 x$ और $7 x$ हैं (देखिए आकृति 10.5)।

तब, हम जानते हैं कि $3 x+5 x+7 x=300$ (त्रिभुज का परिमाप)

इसलिए, $15 x=300$ है, जिससे $x=20$ प्राप्त होता है।

इसलिए, त्रिभुज की भुजाएँ $3 \times 20 \mathrm{~m}, 5 \times 20 \mathrm{~m}$ और $7 \times 20 \mathrm{~m}$ हैं।

अर्थात् ये भुजाएँ $60 \mathrm{~m}, 100 \mathrm{~m}$ और $140 \mathrm{~m}$ हैं।

क्या आप अब (हीरोन का सूत्र प्रयोग करके) क्षेत्रफल ज्ञात कर सकते हैं?

अब, $\quad s=\frac{60+100+140}{2} \mathrm{~m}=150 \mathrm{~m}$

आकृति 10.5

इसलिए, क्षेत्रफल $=\sqrt{150(150-60)(150-100)(150-140)} \mathrm{m}^{2}$ $$ \begin{aligned} & =\sqrt{150 \times 90 \times 50 \times 10} \mathrm{~m}^{2} \\ & =1500 \sqrt{3} \mathrm{~cm}^{2} \end{aligned} $$

प्रश्नावली 10.1

1. एक यातायात संकेत बोर्ड पर ‘आगे स्कूल है’ लिखा है और यह भुजा ’ $a$ ’ वाले एक समबाहु त्रिभुज के आकार का है। हीरोन के सूत्र का प्रयोग करके इस बोर्ड का क्षेत्रफल ज्ञात कीजिए। यदि संकेत बोर्ड का परिमाप $180 \mathrm{~cm}$ है, तो इसका क्षेत्रफल क्या होगा?

Show Answer Missing

2. किसी फ्लाईओवर (flyover) की त्रिभुजाकार दीवार को विज्ञापनों के लिए प्रयोग किया जाता है। दीवार की भुजाओं की लंबाइयाँ $122 \mathrm{~m}, 22 \mathrm{~m}$ और $120 \mathrm{~m}$ हैं (देखिए आकृति 10.6)। इस विज्ञापन से प्रति वर्ष ₹ 5000 प्रति $\mathrm{m}^{2}$ की प्राप्ति होती है। एक कम्पनी ने एक दीवार को विज्ञापन देने के लिए 3 महीने के लिए किराए पर लिया। उसने कुल कितना किराया दिया?

आकृति 10.6

Show Answer Missing

3. किसी पार्क में एक फिसल पट्टी (slide) बनी हुई है। इसकी पार्श्वीय दीवारों (side walls) में से एक दीवार पर किसी रंग से पेंट किया गया है और उस पर “पार्क को हरा-भरा और साफ रखिए” लिखा हुआ है (देखिए आकृति 10.7)। यदि इस दीवार की विमाएँ $15 \mathrm{~m}$, $11 \mathrm{~m}$ और $6 \mathrm{~m}$ हैं, तो रंग से पेंट हुए भाग का क्षेत्रफल ज्ञात कीजिए।

आकृति 10.7

Show Answer Missing

4. उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसकी दो भुजाएँ $18 \mathrm{~cm}$ और $10 \mathrm{~cm}$ हैं तथा उसका परिमाप $42 \mathrm{~cm}$ है।

Show Answer Missing

5. एक त्रिभुज की भुजाओं का अनुपात $12: 17: 25$ है और उसका परिमाप $540 \mathrm{~cm}$ है। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।

Show Answer Missing

6. एक समद्विबाहु त्रिभुज का परिमाप $30 \mathrm{~cm}$ है और उसकी बराबर भुजाएँ $12 \mathrm{~cm}$ लम्बाई की हैं। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।

Show Answer Missing

10.2 सारांश

इस अध्याय में, आपने निम्नलिखित बिंदु का अध्ययन किया है :

1. एक त्रिभुज का क्षेत्रफल जिसकी भुजाएँ इस प्रकार हैं और हेरोन के सूत्र का उपयोग करके गणना की जाती है, जैसा कि कहा गया है

$$ \begin{aligned} \text { त्रिभुज का क्षेत्रफल } & =\sqrt{s(s-a)(s-b)(s-c)} \\ \text{होता है जहाँ} \quad s & =\frac{a+b+c}{2} \end{aligned} $$



Table of Contents