Chapter-09 Circles
9.1 Angle Subtended by a Chord at a Point
You have already studied about circles and its parts in Class VI. Take a line segment $P Q$ and a point $R$ not on the line containing PQ. Join PR and QR (see Fig. 9.1). Then $\angle \mathrm{PRQ}$ is called the angle subtended by the line segment $\mathrm{PQ}$ at the point $\mathrm{R}$. What are angles POQ, PRQ and PSQ called in Fig. 9.2? $\angle$ POQ is the angle subtended by the chord $\mathrm{PQ}$ at the centre $\mathrm{O}, \angle \mathrm{PRQ}$ and $\angle \mathrm{PSQ}$ are respectively the angles subtended by $\mathrm{PQ}$ at points $\mathrm{R}$ and $\mathrm{S}$ on the major and minor arcs $\mathrm{PQ}$.
Fig. 9.1
Fig. 9.2
Let us examine the relationship between the size of the chord and the angle subtended by it at the centre. You may see by drawing different chords of a circle and angles subtended by them at the centre that the longer is the chord, the bigger will be the angle subtended by it at the centre. What will happen if you take two equal chords of a circle? Will the angles subtended at the centre be the same or not?
Draw two or more equal chords of a circle and measure the angles subtended by them at the centre (see Fig.9.3). You will find that the angles subtended by them at the centre are equal. Let us give a proof of this fact.
Fig. 9.3
Theorem 9.1 : Equal chords of a circle subtend equal angles at the centre.
Proof : You are given two equal chords AB and CD of a circle with centre O (see Fig.9.4). You want to prove that $\angle \mathrm{AOB}=\angle \mathrm{COD}$
Fig. 9.4
In triangles $\mathrm{AOB}$ and $\mathrm{COD}$ में,
$$ \begin{array}{ll} \mathrm{OA}=\mathrm{OC} & (\text { Radii of a circle }) \\ \mathrm{OB}=\mathrm{OD} & (\text { Radii of a circle }) \\ \mathrm{AB}=\mathrm{CD} & (\text { Given}) \end{array} $$
Therefore
$$ \Delta \mathrm{AOB} \cong \Delta \mathrm{COD} \quad(\mathrm{SSS} \text { rule }) $$
This gives $\angle \mathrm{AOB}=\angle \mathrm{COD}$
(Corresponding parts of congruent triangles)
Remark : For convenience, the abbreviation CPCT will be used in place of ‘Corresponding parts of congruent triangles’, because we use this very frequently as you will see.
Now if two chords of a circle subtend equal angles at the centre, what can you say about the chords? Are they equal or not? Let us examine this by the following activity:
Take a tracing paper and trace a circle on it. Cut it along the circle to get a disc. At its centre $\mathrm{O}$, draw an angle $\mathrm{AOB}$ where $\mathrm{A}, \mathrm{B}$ are points on the circle. Make another angle $\mathrm{POQ}$ at the centre equal to $\angle A O B$. Cut the disc along $A B$ and $P Q$ (see Fig. 9.5). You will get two segments ACB and PRQ of the circle. If you put one on the other, what do you observe? They cover each other, i.e., they are congruent. $\mathrm{So} \mathrm{AB}=\mathrm{PQ}$.
Fig. 9.5
Though you have seen it for this particular case, try it out for other equal angles too. The chords will all turn out to be equal because of the following theorem:
Theorem 9.2 : If the angles subtended by the chords of a circle at the centre are equal, then the chords are equal.
The above theorem is the converse of the Theorem 9.1. Note that in Fig. 9.4, if you take $\angle \mathrm{AOB}=\angle \mathrm{COD}$, then
$\triangle \mathrm{AOB} \cong \triangle \mathrm{COD}$ (Why?)
Can you now see that $\mathrm{AB}=\mathrm{CD}$ ?
EXERCISE 9.1
1. Recall that two circles are congruent if they have the same radii. Prove that equal chords of congruent circles subtend equal angles at their centres.
Show Answer
Solution
A circle is a collection of points which are equidistant from a fixed point. This fixed point is called as the centre of the circle and this equal distance is called as radius of the
circle. And thus, the shape of a circle depends on its radius. Therefore, it can be observed that if we try to superimpose two circles of equal radius, then both circles will cover each other. Therefore, two circles are congruent if they have equal radius. Consider two congruent circles having centre $O$ and $O^{\prime}$ and two chords $A B$ and $C D$ of equal lengths.
In $\triangle A O B$ and $\triangle C^{\prime} ’ D$,
$A B=C D$ (Chords of same length)
$OA=O^{\prime} C$ (Radii of congruent circles)
$OB=O$ ‘D (Radii of congruent circles)
$\triangle AOB \quad \triangle CO$ ‘D (SSS congruence rule) $\quad \therefore \cong \Rightarrow^{\circ}$
$AOB=\stackrel{\angle}{C} CO^{\prime} D$(By CPCT)
Hence, equal chords of congruent circles subtend equal angles at their centres.
2. Prove that if chords of congruent circles subtend equal angles at their centres, then the chords are equal.
Show Answer
Solution
Let us consider two congruent circles (circles of same radius) with centres as $O$ and $O^{\prime}$.
In $\triangle AOB$ and $\triangle CO^{\prime} D$,
$\angle A O B=\angle C^{\prime}$ D (Given)
$OA=O^{\prime} C$ (Radii of congruent circles)
$OB=O$ ‘D (Radii of congruent circles)
$\therefore \quad \triangle AOB \cong \triangle CO^{\prime} D$ (SSS congruence rule)
$\Rightarrow \quad AB=CD$ (By CPCT)
Hence, if chords of congruent circles subtend equal angles at their centres, then the chords are equal.
9.2 Perpendicular from the Centre to a Chord
Activity : Draw a circle on a tracing paper. Let $\mathrm{O}$ be its centre. Draw a chord AB. Fold the paper along a line through $\mathrm{O}$ so that a portion of the chord falls on the other. Let the crease cut $\mathrm{AB}$ at the point $\mathrm{M}$. Then, $\angle \mathrm{OMA}=\angle \mathrm{OMB}=90^{\circ}$ or $\mathrm{OM}$ is perpendicular to AB. Does the point B coincide with A (see Fig.9.6)?
Yes it will. So MA=MB.
Fig. 9.6
Give a proof yourself by joining $\mathrm{OA}$ and $\mathrm{OB}$ and proving the right triangles OMA and OMB to be congruent. This example is a particular instance of the following result:
Theorem 9.3 : The perpendicular from the centre of a circle to a chord bisects the chord.
What is the converse of this theorem? To write this, first let us be clear what is assumed in Theorem 9.3 and what is proved. Given that the perpendicular from the centre of a circle to a chord is drawn and to prove that it bisects the chord. Thus in the converse, what the hypothesis is ‘if a line from the centre bisects a chord of a circle’ and what is to be proved is ’the line is perpendicular to the chord’. So the converse is:
Theorem 9.4 : The line drawn through the centre of a circle to bisect a chord is perpendicular to the chord.
Is this true? Try it for few cases and see. You will see that it is true for these cases. See if it is true, in general, by doing the following exercise. We will write the stages and you give the reasons.
Let $\mathrm{AB}$ be a chord of a circle with centre $\mathrm{O}$ and $\mathrm{O}$ is joined to the mid-point $\mathrm{M}$ of $\mathrm{AB}$. You have to prove that $\mathrm{OM} \perp \mathrm{AB}$. Join $\mathrm{OA}$ and $\mathrm{OB}$ (see Fig. 9.7). In triangles OAM and OBM,
$$ \begin{aligned} \mathrm{OA} & =\mathrm{OB}\quad \text{(Why ?)}\\ \mathrm{AM} & =\mathrm{BM}\quad \text{(Why ?)} \\ \mathrm{OM} & =\mathrm{OM}\quad \text{(Common)} \end{aligned} $$
Fig. 9.7
Therefore, $\triangle \mathrm{OAM} \cong \triangle \mathrm{OBM}\quad \text{(How ?)}$
This gives $\angle \mathrm{OMA}=\angle \mathrm{OMB}=90^{\circ} \quad$ (Why?)
9.3 Equal Chords and their Distances from the Centre
Let $\mathrm{AB}$ be a line and $\mathrm{P}$ be a point. Since there are infinite numbers of points on a line, if you join these points to $\mathrm{P}$, you will get infinitely many line segments $\mathrm{PL_1}, \mathrm{PL_2}, \mathrm{PM}, \mathrm{PL_3}, \mathrm{PL_4}$, etc. Which of these is the distance of AB from P? You may think a while and get the answer. Out of these line segments, the perpendicular from $\mathrm{P}$ to $\mathrm{AB}$, namely $\mathrm{PM}$ in Fig. 9.8, will be the least. In Mathematics, we define this least length $P M$ to be the distance of $A B$ from $P$. So you may say that:
Fig. 9.8
The length of the perpendicular from a point to a line is the distance of the line from the point.
Note that if the point lies on the line, the distance of the line from the point is zero.
A circle can have infinitely many chords. You may observe by drawing chords of a circle that longer chord is nearer to the centre than the smaller chord. You may observe it by drawing several chords of a circle of different lengths and measuring their distances from the centre. What is the distance of the diameter, which is the longest chord from the centre? Since the centre lies on it, the distance is zero. Do you think that there is some relationship between the length of chords and their distances from the centre? Let us see if this is so.
Fig. 9.9
Activity : Draw a circle of any radius on a tracing paper. Draw two equal chords $\mathrm{AB}$ and $\mathrm{CD}$ of it and also the perpendiculars $\mathrm{OM}$ and $\mathrm{ON}$ on them from the centre O. Fold the figure so that D falls on B and C falls on A [see Fig. 9.9 (i)]. You may observe that $\mathrm{O}$ lies on the crease and $\mathrm{N}$ falls on $\mathrm{M}$. Therefore, $\mathrm{OM}=\mathrm{ON}$. Repeat the activity by drawing congruent circles with centres $\mathrm{O}$ and $\mathrm{O}^{\prime}$ and taking equal chords $A B$ and $C D$ one on each. Draw perpendiculars $O M$ and $O^{\prime} N$ on them [see Fig. 9.9(ii)]. Cut one circular disc and put it on the other so that $A B$ coincides with $\mathrm{CD}$. Then you will find that $\mathrm{O}$ coincides with $\mathrm{O}^{\prime}$ and $\mathrm{M}$ coincides with $\mathrm{N}$. In this way you verified the following:
Theorem 9.5 : Equal chords of a circle (or of congruent circles) are equidistant from the centre (or centres).
Next, it will be seen whether the converse of this theorem is true or not. For this, draw a circle with centre O. From the centre O, draw two line segments OL and OM of equal length and lying inside the circle [see Fig. 9.10(i)]. Then draw chords PQ and RS of the circle perpendicular to OL and OM respectively [see Fig 9.10(ii)]. Measure the lengths of PQ and RS. Are these different? No, both are equal. Repeat the activity for more equal line segments and drawing the chords perpendicular to them. This verifies the converse of the Theorem 9.5 which is stated as follows:
Fig. 9.10
Theorem 9.6 : Chords equidistant from the centre of a circle are equal in length. We now take an example to illustrate the use of the above results:
Example 1 : If two intersecting chords of a circle make equal angles with the diameter passing through their point of intersection, prove that the chords are equal.
Solution : Given that $\mathrm{AB}$ and $\mathrm{CD}$ are two chords of a circle, with centre $\mathrm{O}$ intersecting at a point $\mathrm{E}$. $\mathrm{PQ}$ is a diameter through $\mathrm{E}$, such that $\angle \mathrm{AEQ}=\angle \mathrm{DEQ}$ (see Fig.9.11). You have to prove that $\mathrm{AB}=\mathrm{CD}$. Draw perpendiculars OL and OM on chords $\mathrm{AB}$ and $\mathrm{CD}$, respectively. Now
Fig. 9.11
$$ \begin{aligned} \angle \mathrm{LOE}= & 180^{\circ}-90^{\circ}-\angle \mathrm{LEO}=90^{\circ}-\angle \mathrm{LEO} \\ & \quad(\text { Angle sum property of a triangle }) \\ = & 90^{\circ}-\angle \mathrm{AEQ}=90^{\circ}-\angle \mathrm{DEQ} \\ = & 90^{\circ}-\angle \mathrm{MEO}=\angle \mathrm{MOE} \end{aligned} $$
In triangles OLE and OME,
$$ \begin{aligned} \angle \mathrm{LEO} & =\angle \mathrm{MEO}\quad \quad \text{(Why ?)} \\ \angle \mathrm{LOE} & =\angle \mathrm{MOE}\quad \quad \text{(Proved above)} \\ \mathrm{EO} & =\mathrm{EO}\quad \quad \text{(Common)} \\ \text{Therefore},\quad\Delta \mathrm{OLE} & \cong \Delta \mathrm{OME}\quad \quad \text{(Why ?)} \\ \text{This gives}\quad\mathrm{OL} & =\mathrm{OM}\quad \quad \text{(CPCT)} \\ \text{ So, }\quad\mathrm{AB} & =\mathrm{CD}\quad \quad \text{(Why?)} \end{aligned} $$
EXERCISE 9.2
1. Two circles of radii $5 \mathrm{~cm}$ and $3 \mathrm{~cm}$ intersect at two points and the distance between their centres is $4 \mathrm{~cm}$. Find the length of the common chord.
Show Answer
Solution
Let the radius of the circle centered at $O$ and $O^{\prime}$ be $5 cm$ and $3 cm$ respectively.
$OA=OB=5 cm$
$O^{\prime} A=O^{\prime} B=3 cm$
$O O$ ’ will be the perpendicular bisector of chord $A B$.
$\therefore A C=C B$
It is given that, $OO^{\prime}=4 cm$
Let $O C$ be $x$. Therefore, $O^{\prime} C$ will be $4-x$.
In $\triangle OAC$,
$OA^{2}=AC^{2}+OC^{2}$
$ \begin{aligned} & \Rightarrow \quad 5^{2}=A C^{2}+x^{2} \\ & \Rightarrow \quad 25-x^{2}=A C^{2} \ldots(1) \text{ In } \end{aligned} $
$\triangle O^{\prime} A C$,
$O^{\prime} A^{2}=A C^{2}+O^{\prime} C^{2}$
$\Rightarrow 3^{2}=A C^{2}+(4-x)^{2}$
$\Rightarrow 9=AC^{2}+16+x^{2}-8 x$
$\Rightarrow \quad AC^{2}=-x^{2}-7+8 x \ldots$
From equations (1) and (2), we obtain
$25-x^{2}=-x^{2}-7+8 x$
$8 x=32 x=4$
Therefore, the common chord will pass through the centre of the smaller circle i.e., O’ and hence, it will be the diameter of the smaller circle.
$A C^{2}=25-x^{2}=25-4^{2}=25-16=9$
$\therefore A C=3 m$
Length of the common chord $A B=2 A C=(2 \times 3) m=6 m$
2. If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.
Show Answer
Solution
Let $PQ$ and $RS$ be two equal chords of a given circle and they are intersecting each other at point $T$.
Draw perpendiculars OV and OU on these chords.
In $\triangle OVT$ and $\triangle OUT$,
$OV=OU$ (Equal chords of a circle are equidistant from the centre)
$\angle OVT=\angle OUT(.$ Each $.90^{\circ})$
OT $=$ OT (Common)
$\therefore \Delta OVT \approx \Delta OUT$ (RHS congruence rule) $\therefore VT=$ UT (By CPCT) … (1)
It is given that,
$ \begin{aligned} & PQ=RS \ldots(2) \\ & \frac{1}{2} PQ=\frac{1}{2} RS \\ & \Rightarrow \\ & \Rightarrow PV=RU \ldots(3) \end{aligned} $
On adding equations (1) and (3), we obtain $PV+VT=RU+UT$
$\Rightarrow PT=RT \ldots(4)$
On subtracting equation (4) from equation (2), we obtain
$P Q-P T=R S-R T$
$\Rightarrow QT=ST$
Equations (4) and (5) indicate that the corresponding segments of chords PQ and RS are congruent to each other.
3. If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.
Show Answer
Solution
Let $PQ$ and $RS$ are two equal chords of a given circle and they are intersecting each other at point $T$.
Draw perpendiculars OV and OU on these chords.
In $\Delta OVT$ and $\Delta OUT$,
$OV=OU$ (Equal chords of a circle are equidistant from the centre)
$\angle OVT=\angle OUT(.$ Each $90^{\circ}$ )
OT $=$ OT (Common) $\therefore \triangle O V T$ AOUT (RHS congruence rule)
$\therefore$ ÓTV $=$ OfU (By CPCT)
Therefore, it is proved that the line joining the point of intersection to the centre makes equal angles with the chords.
4. If a line intersects two concentric circles (circles with the same centre) with centre $\mathrm{O}$ at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{D}$, prove that $\mathrm{AB}=\mathrm{CD}$ (see Fig. 9.12).
Fig. 9.12
Show Answer
Solution
Let us draw a perpendicular OM on line AD.
It can be observed that $BC$ is the chord of the smaller circle and $AD$ is the chord of the bigger circle.
We know that perpendicular drawn from the centre of the circle bisects the chord.
$\angle B M=M C \ldots$ (1) And, $A M=M D \ldots$ (2)
On subtracting equation (2) from (1), we obtain
$A M-B M=M D-M C$
$\angle AB=CD$
5. Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius $5 \mathrm{~m}$ drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is $6 \mathrm{~m}$ each, what is the distance between Reshma and Mandip?
Show Answer
Solution
Draw perpendiculars $OA$ and $OB$ on $RS$ and $SM$ respectively.
$ AR=AS=\frac{6}{2}=3 m $
$OR=OS=OM=5 m$. (Radii of the circle)
In $\triangle OAR$,
$OA^{2}+AR^{2}=OR^{2}$
$OA^{2}+(3 m)^{2}=(5 m)^{2}$
$OA^{2}=(25-9) m^{2}=16 m^{2}$
$OA=4 m$
ORSM will be a kite ( $O R=O M$ and $R S=S M)$. We know that the diagonals of a kite are perpendicular and the diagonal common to both the isosceles triangles is bisected by another diagonal.
$\angle \angle$
RCS will be of $90^{\circ}$ and $RC=CM$
$\frac{1}{2} \times OA \times RS$
Area of $\triangle ORS=$
$\frac{1}{2} \times RC \times OS=\frac{1}{2} \times 4 \times 6$
$RC \times 5=24$
$RC=4.8$
$RM=2 RC=2(4.8)=9.6$
Therefore, the distance between Reshma and Mandip is $9.6 m$.
6. A circular park of radius $20 \mathrm{~m}$ is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.
Show Answer
Solution
It is given that $A S=S D=D A$
Therefore, $\triangle ASD$ is an equilateral triangle. $OA($ radius) $=20 m$
Medians of equilateral triangle pass through the circum centre $(O)$ of the equilateral triangle ASD. We also know that medians intersect each other in the ratio 2: 1 . As
$A B$ is the median of equilateral triangle $A S D$, we can write
$\Rightarrow \frac{OA}{OB}=\frac{2}{1}$
$\Rightarrow \frac{20 m}{OB}=\frac{2}{1}$
$\Rightarrow OB=(\frac{20}{2}) m=10 m$
$\angle AB=OA+OB=(20+10) m=30 m$
In $\triangle ABD$,
$A D^{2}=A B^{2}+B D^{2}$
$A D^{2}=(30)^{2}+(\frac{A D}{2})^{2}$
$AD^{2}=900+\frac{1}{4} AD^{2}$
$\frac{3}{4} AD^{2}=900$
$AD^{2}=1200$
$AD=20 \sqrt{3}$
Therefore, the length of the string of each phone will be $20 \sqrt{3} m$.
9.4 Angle Subtended by an Arc of a Circle
You have seen that the end points of a chord other than diameter of a circle cuts it into two arcs - one major and other minor. If you take two equal chords, what can you say about the size of arcs? Is one arc made by first chord equal to the corresponding arc made by another chord? In fact, they are more than just equal in length. They are congruent in the sense that if one arc is put on the other, without bending or twisting, one superimposes the other completely.
You can verify this fact by cutting the arc, corresponding to the chord $\mathrm{CD}$ from the circle along $\mathrm{CD}$ and put it on the corresponding arc made by equal chord AB. You will find that the arc CD superimpose the arc AB completely (see Fig. 9.13). This shows that equal chords make congruent arcs and conversely congruent arcs make equal chords of a circle. You can state it as follows:
Fig. 9.13
If two chords of a circle are equal, then their corresponding arcs are congruent and conversely, if two arcs are congruent, then their corresponding chords are equal.
Also the angle subtended by an arc at the centre is defined to be angle subtended by the corresponding chord at the centre in the sense that the minor arc subtends the angle and the major arc subtends the reflex angle. Therefore, in Fig 9.14, the angle subtended by the minor arc $\mathrm{PQ}$ at $\mathrm{O}$ is $\angle \mathrm{POQ}$ and the angle subtended by the major arc $\mathrm{PQ}$ at $\mathrm{O}$ is reflex angle POQ.
In view of the property above and Theorem 9.1, the following result is true:
Fig. 9.14
Congruent arcs (or equal arcs) of a circle subtend equal angles at the centre.
Therefore, the angle subtended by a chord of a circle at its centre is equal to the angle subtended by the corresponding (minor) arc at the centre. The following theorem gives the relationship between the angles subtended by an arc at the centre and at a point on the circle.
Theorem 9.7 : The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.
Proof : Given an arc PQ of a circle subtending angles POQ at the centre $\mathrm{O}$ and PAQ at a point $A$ on the remaining part of the circle. We need to prove that $\angle \mathrm{POQ}=2 \angle \mathrm{PAQ}$.
(i)
(ii)
(iii)
Fig. 9.15
Consider the three different cases as given in Fig. 9.15. In (i), arc PQ is minor; in (ii), arc PQ is a semicircle and in (iii), arc PQ is major.
Let us begin by joining $\mathrm{AO}$ and extending it to a point $\mathrm{B}$.
In all the cases,
$$ \angle \mathrm{BOQ}=\angle \mathrm{OAQ}+\angle \mathrm{AQO} $$
because an exterior angle of a triangle is equal to the sum of the two interior opposite angles.
Also in $\triangle \mathrm{OAQ}$,
$\quad \quad \quad \mathrm{OA}=\mathrm{OQ}\quad \text{(Radii of a circle)}$
Therefore, $\quad \angle \mathrm{OAQ}=\angle \mathrm{OQA} \quad \text{(Theorem 7.5)}$
This gives $\quad \angle \mathrm{BOQ}=2 \angle \mathrm{OAQ} \quad (1)$
Similarly, $ \quad \angle \mathrm{BOP}=2 \angle \mathrm{OAP} \quad (2)$
From (1) and (2), $\quad \angle \mathrm{BOP}+\angle \mathrm{BOQ}=2(\angle \mathrm{OAP}+\angle \mathrm{OAQ})$
This is the same as $\quad \angle \mathrm{POQ}=2 \angle \mathrm{PAQ}\quad (3)$
For the case (iii), where $\mathrm{PQ}$ is the major arc, (3) is replaced by
$\text { reflex angle } \mathrm{POQ}=2 \angle \mathrm{PAQ}$
Remark : Suppose we join points $\mathrm{P}$ and $\mathrm{Q}$ and form a chord PQ in the above figures. Then $\angle \mathrm{PAQ}$ is also called the angle formed in the segment PAQP.
In Theorem 9.7, A can be any point on the remaining part of the circle. So if you take any other point $\mathrm{C}$ on the remaining part of the circle (see Fig. 9.16), you have
$\quad \quad \quad \angle \mathrm{POQ}=2 \angle \mathrm{PCQ}=2 \angle \mathrm{PAQ}$
Therefore, $\quad \angle \mathrm{PCQ}=2 \angle \mathrm{PAQ}$.
Fig. 9.16
This proves the following:
Theorem 9.8 : Angles in the same segment of a circle are equal.
Again let us discuss the case (ii) of Theorem 10.8 separately. Here $\angle \mathrm{PAQ}$ is an angle in the segment, which is a semicircle. Also, $\angle \mathrm{PAQ}=\frac{1}{2} \angle \mathrm{POQ}=\frac{1}{2} \times 180^{\circ}=90^{\circ}$. If you take any other point $\mathrm{C}$ on the semicircle, again you get that
$\angle \mathrm{PCQ}=90^{\circ}$
Therefore, you find another property of the circle as:
Angle in a semicircle is a right angle.
The converse of Theorem 9.8 is also true. It can be stated as:
Theorem 9.9 : If a line segment joining two points subtends equal angles at two other points lying on the same side of the line containing the line segment, the four points lie on a circle (i.e. they are concyclic).
You can see the truth of this result as follows:
In Fig. 9.17, $\mathrm{AB}$ is a line segment, which subtends equal angles at two points $\mathrm{C}$ and $\mathrm{D}$. That is
Fig. 9.17
$$ \angle \mathrm{ACB}=\angle \mathrm{ADB} $$
To show that the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{D}$ lie on a circle let us draw a circle through the points A, C and B. Suppose it does not pass through the point $\mathrm{D}$. Then it will intersect $\mathrm{AD}$ (or extended $\mathrm{AD}$ ) at a point, say $\mathrm{E}$ (or $\mathrm{E}^{\prime}$ ).
If points $\mathrm{A}, \mathrm{C}, \mathrm{E}$ and $\mathrm{B}$ lie on a circle,
$$ \angle \mathrm{ACB}=\angle \mathrm{AEB} \quad \text{(Why?)} $$
But it is given that $\quad \angle \mathrm{ACB}=\angle \mathrm{ADB}$.
Therefore, $\quad \quad \angle \mathrm{AEB}=\angle \mathrm{ADB} .$
This is not possible unless $\mathrm{E}$ coincides with $\mathrm{D}$. (Why?)
Similarly, E’ should also coincide with D.
9.5 Cyclic Quadrilaterals
A quadrilateral $\mathrm{ABCD}$ is called cyclic if all the four vertices of it lie on a circle (see Fig 9.18). You will find a peculiar property in such quadrilaterals. Draw several cyclic quadrilaterals of different sides and name each of these as ABCD. (This can be done by drawing several circles of different radii and taking four points on each of them.) Measure the opposite angles and write your observations in the following table.
Fig. 9.18
S.No. of Quadrilateral | $\angle \mathrm{A}$ | $\angle \mathrm{B}$ | $\angle \mathrm{C}$ | $\angle \mathrm{D}$ | $\angle \mathrm{A}+\angle \mathrm{C}$ | $\angle \mathrm{B}+\angle \mathrm{D}$ |
---|---|---|---|---|---|---|
1. | ||||||
2. | ||||||
3. | ||||||
4. | ||||||
5. | ||||||
6. |
What do you infer from the table?
You find that $\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$ and $\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$, neglecting the error in measurements. This verifies the following:
Theorem 9.10 : The sum of either pair of opposite angles of a cyclic quadrilateral is $180^{\circ}$.
In fact, the converse of this theorem, which is stated below is also true.
Theorem 9.11 : If the sum of a pair of opposite angles of a quadrilateral is $180^{\circ}$, the quadrilateral is cyclic.
You can see the truth of this theorem by following a method similar to the method adopted for Theorem 9.9.
Example 2 : In Fig. 9.19, $\mathrm{AB}$ is a diameter of the circle, $\mathrm{CD}$ is a chord equal to the radius of the circle. $\mathrm{AC}$ and $\mathrm{BD}$ when extended intersect at a point $\mathrm{E}$. Prove that $\angle \mathrm{AEB}=60^{\circ}$.
Fig. 9.19
Solution : Join OC, OD and BC.
Triangle ODC is equilateral $\quad$ (Why?)
Therefore, $\angle \mathrm{COD}=60^{\circ}$
Now, $\quad \angle \mathrm{CBD}=\frac{1}{2} \angle \mathrm{COD} \quad$ (Theorem 9.7)
This gives $\quad \angle \mathrm{CBD}=30^{\circ}$
Again, $\quad \angle \mathrm{ACB}=90^{\circ}\quad $(Why ?)
So, $\quad \angle \mathrm{BCE}=180^{\circ}-\angle \mathrm{ACB}=90^{\circ}$
Which gives $\angle \mathrm{CEB}=90^{\circ}-30^{\circ}=60^{\circ}$, i.e., $\angle \mathrm{AEB}=60^{\circ}$
Example 3 : In Fig 9.20, ABCD is a cyclic quadrilateral in which $\mathrm{AC}$ and $\mathrm{BD}$ are its diagonals. If $\angle \mathrm{DBC}=55^{\circ}$ and $\angle \mathrm{BAC}=45^{\circ}$, find $\angle \mathrm{BCD}$.
Fig. 9.20
Solution : $\quad \angle \mathrm{CAD}=\angle \mathrm{DBC}=55^{\circ}$ (Angles in the same segment)
$$ \begin{aligned} \text{Therefore,}\quad \angle \mathrm{DAB} & =\angle \mathrm{CAD}+\angle \mathrm{BAC} \\ & =55^{\circ}+45^{\circ}=100^{\circ} \end{aligned} $$
But $\quad \angle \mathrm{DAB}+\angle \mathrm{BCD}=180^{\circ}$
(Opposite angles of a cyclic quadrilateral)
So,$\quad \angle \mathrm{BCD}=180^{\circ}-100^{\circ}=80^{\circ}$
Example 4 : Two circles intersect at two points A and $\mathrm{B} . \mathrm{AD}$ and $\mathrm{AC}$ are diameters to the two circles (see Fig. 9.21). Prove that B lies on the line segment DC.
Fig. 9.21
Solution : Join AB.
$$ \begin{aligned} & \angle \mathrm{ABD}=90^{\circ} \quad(\text { Angle in a semicircle }) \\ & \angle \mathrm{ABC}=90^{\circ} \quad(\text { Angle in a semicircle }) \end{aligned} $$
So, $\quad \angle \mathrm{ABD}+\angle \mathrm{ABC}=90^{\circ}+90^{\circ}=180^{\circ}$
Therefore, $\mathrm{DBC}$ is a line. That is $\mathrm{B}$ lies on the line segment $\mathrm{DC}$.
Example 5 : Prove that the quadrilateral formed (if possible) by the internal angle bisectors of any quadrilateral is cyclic.
Solution : In Fig. 9.22, ABCD is a quadrilateral in which the angle bisectors $\mathrm{AH}, \mathrm{BF}, \mathrm{CF}$ and $\mathrm{DH}$ of internal angles A, B, C and D respectively form a quadrilateral $\mathrm{EFGH}$.
Fig. 9.22
$$ \begin{aligned} \text{Now,}\quad \angle \mathrm{FEH}=\angle \mathrm{AEB} & =180^{\circ}-\angle \mathrm{EAB}-\angle \mathrm{EBA}(\text { Why } ?) \\ & =180^{\circ}-\frac{1}{2}(\angle \mathrm{A}+\angle \mathrm{B}) \end{aligned} $$
and $\angle \mathrm{FGH}=\angle \mathrm{CGD}=180^{\circ}-\angle \mathrm{GCD}-\angle \mathrm{GDC} \quad$ (Why?) $$ =180^{\circ}-\frac{1}{2}(\angle \mathrm{C}+\angle \mathrm{D}) $$
Therefore, $\angle \mathrm{FEH}+\angle \mathrm{FGH}=180^{\circ}-\frac{1}{2}(\angle \mathrm{A}+\angle \mathrm{B})+180^{\circ}-\frac{1}{2}(\angle \mathrm{C}+\angle \mathrm{D})$
$$ \begin{aligned} & =360^{\circ}-\frac{1}{2}(\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D})=360^{\circ}-\frac{1}{2} \times 360^{\circ} \\ & =360^{\circ}-180^{\circ}=180^{\circ} \end{aligned} $$
Therefore, by Theorem 9.11, the quadrilateral EFGH is cyclic.
EXERCISE 9.3
1. In Fig. 9.23, $\mathrm{A}, \mathrm{B}$ and $\mathrm{C}$ are three points on a circle with centre $\mathrm{O}$ such that $\angle \mathrm{BOC}=30^{\circ}$ and $\angle \mathrm{AOB}=60^{\circ}$. If $\mathrm{D}$ is a point on the circle other than the $\operatorname{arc} \mathrm{ABC}$, find $\angle \mathrm{ADC}$.
Fig. 9.23
Show Answer
Solution
It can be observed that
$\angle A O C=\angle A O B+\angle B O C$
$=60^{\circ}+30^{\circ}$
$=90^{\circ}$
We know that angle subtended by an arc at the centre is double the angle subtended by it any point on the remaining part of the circle.
$ \angle ADC=\frac{1}{2} \angle AOC=\frac{1}{2} \times 90^{\circ}=45^{\circ} $
2. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.
Show Answer
Solution
In $\triangle OAB$,
$A B=O A=O B=$ radius
$\angle \triangle OAB$ is an equilateral triangle.
Therefore, each interior angle of this triangle will be of $60^{\circ}$. $\angle \angle AOB=60^{\circ}$
$\angle ACB=\frac{1}{2} \angle AOB=\frac{1}{2}(60^{\circ})=30^{\circ}$
In cyclic quadrilateral $A C B D$,
$\angle ACB+\angle ADB=180^{\circ}$ (Opposite angle in cyclic quadrilateral)
$\angle \angle ADB=180^{\circ}-30^{\circ}=150^{\circ}$
Therefore, angle subtended by this chord at a point on the major arc and the minor arc are $30^{\circ}$ and $150^{\circ}$ respectively.
3. In Fig. 9.24, $\angle \mathrm{PQR}=100^{\circ}$, where $\mathrm{P}, \mathrm{Q}$ and $\mathrm{R}$ are points on a circle with centre $\mathrm{O}$. Find $\angle \mathrm{OPR}$.
Fig. 9.24
Show Answer
Solution
Consider PR as a chord of the circle.
Take any point $S$ on the major arc of the circle.
PQRS is a cyclic quadrilateral.
$\angle PQR+PSR=180^{\circ}$ (Opposite angles of a cyclic quadrilateral)
$\angle P S SR=180^{\circ}-100^{\circ}=80^{\circ}$
We know that the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle. $\angle \angle POR=2 \angle PSR=$ $2(80^{\circ})=160^{\circ}$
In $\triangle POR$,
$OP=OR$ (Radii of the same circle)
$\angle$ OPPR $=$ ORP (Angles opposite to equal sides of a triangle)
$\mathrm{OPR}+\mathrm{ORP}+\mathrm{POR}=180^{\circ}$ (Angle sum property of a triangle)
$\angle \mathrm{OPR}+160^{\circ}=180^{\circ} 2$
$\angle \mathrm{OPR}=180^{\circ}-160^{\circ}=20^{\circ} 2$
$\angle \mathrm{OPR}=10^{\circ}$
4. In Fig. 9.25, $\angle \mathrm{ABC}=69^{\circ}, \angle \mathrm{ACB}=31^{\circ}$, find $\angle \mathrm{BDC}$.
Fig. 9.25
Show Answer
Solution5. In Fig. 9.26, A, B, C and D are four points on a circle. $\mathrm{AC}$ and $\mathrm{BD}$ intersect at a point $\mathrm{E}$ such that $\angle \mathrm{BEC}=130^{\circ}$ and $\angle \mathrm{ECD}=20^{\circ}$. Find $\angle \mathrm{BAC}$.
Fig. 9.26
Show Answer
Solution
$\angle CDE+DCE=\angle CEB$ (Exterior angle)
$\angle C D E+20^{\circ}=130^{\circ}$
$\angle CDE=110^{\circ}$
For chord CD,
$<\quad<$
$\angle CAD=70^{\circ}$
$ \begin{aligned} & \angle \quad \angle \quad B C D+B A=180^{\circ} \text{ (Opposite angles of a } By \\ & +100^{\circ}=180^{\circ} \quad BCD \\ & \angle BCD=80^{\circ} \\ & \text{ In } \triangle ABC \text{, } \\ & AB=BC \text{ (Given) } \\ & \angle \angle BCA=\angle CAB \text{ (Angles opposite to equal sides of a triangle) } \\ & \angle \angle BCA=30^{\circ} \end{aligned} $
$ \angle \quad \angle \quad BCD+BAD=180^{\circ} \text{ (Opposite angles of a cyclic quadrilateral) } \angle $
However, $\angle BAC=\angle CDE$ (Angles in the same segment of a circle)
$\angle \angle BAC=110^{\circ}$
6. $\mathrm{ABCD}$ is a cyclic quadrilateral whose diagonals intersect at a point $\mathrm{E}$. If $\angle \mathrm{DBC}=70^{\circ}$, $\angle \mathrm{BAC}$ is $30^{\circ}$, find $\angle \mathrm{BCD}$. Further, if $\mathrm{AB}=\mathrm{BC}$, find $\angle \mathrm{ECD}$.
Show Answer
Solution
$BAD=BAC+CAD=30^{\circ}+70^{\circ}=100^{\circ}$
CD + BAD $=180^{\circ}$ (Opposite angles of a cyclic quadrilateral) $\angle$
We have, $B^{\prime} C D=80^{\circ}$
$ \begin{aligned} & \angle B^{\prime} C A+A C D=80^{\circ} \\ & \circ+A C D=80^{\circ} 30 \quad A C D \\ & \angle=\angle 50^{\circ} \\ & \angle \angle \\ & E C D=50^{\circ} \end{aligned} $
7. If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.
Show Answer
Solution
Let $A B C D$ be a cyclic quadrilateral having diagonals $B D$ and $A C$, intersecting each other at point $O$.
$ \angle BAD=\frac{1}{2} \angle BOD=\frac{180^{\circ}}{2}=90^{\circ} $
$ \begin{aligned} & \angle BCD+\angle BAD=180^{\circ} \text{ (Cyclic quadrilateral) (Consider } BD \text{ as a chord) } \\ & \angle BCD=180^{\circ}-90^{\circ}=90^{\circ} \\ & \angle ADC=\frac{1}{2} \angle AOC=\frac{1}{2}(180^{\circ})=90^{\circ} \\ & \angle ADC+\angle ABC=180^{\circ}(\text{ Cyclic quadrilateral })^{\circ} \\ & +\angle ABC=180^{\circ} 90 \end{aligned} $
$\angle A B C=90^{\circ}$
(Considering $AC$ as a chord)
Each interior angle of a cyclic quadrilateral is of $90^{\circ}$. Hence, it is a rectangle.
8. If the non-parallel sides of a trapezium are equal, prove that it is cyclic.
Show Answer
Solution
Consider a trapezium $A B C D$ with $A B|| C D$ and $B C=A D$.
Draw $AM \angle CD$ and $BN \angle CD$.
In $\triangle A M D$ and $\triangle B N C$,
$A D=B C$ (Given)
$\angle AMD=\angle BNC(.$ By construction, each is $.90^{\circ})$
$AM=BM$ (Perpendicular distance between two parallel lines is same)
$\angle \triangle AMD \triangle BNC$ (RHS congruence rule)
$\angle A D C=B C \mathscr{C}(C P C T) \ldots$
${ }^{\angle} B A D$ and $A D C$ are on the same side of transversal AD.
$\angle BAD+\stackrel{\angle ADC}{ }=180^{\circ}$.
$\angle \quad \angle$
$B A D+B C D=180^{\circ}[$ Using equation (1)]
This equation shows that the opposite angles are supplementary.
Therefore, $A B C D$ is a cyclic quadrilateral.
9. Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at $\mathrm{A}, \mathrm{D}$ and $\mathrm{P}$, $Q$ respectively (see Fig. 9.27). Prove that $\angle \mathrm{ACP}=\angle \mathrm{QCD}$.
Fig. 9.27
Show Answer
Solution
Join chords AP and DQ. $\quad \angle \angle$
For chord AP,
$\angle PBA=\angle ACP$ (Angles in the same segment) …
For chord DQ,
$\angle DBQ=\Phi CD$ (Angles in the same segment) … (2) ABD and
PBQ are line segments intersecting at $B$.
$\angle PBA=$ DBQ (Vertically opposite angles) … (
From equations ( 1 ), ( 2 ), and ( 3 ), we obtain $\angle A C P$
$=\angle QCD$
10. If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.
Show Answer
Solution
Consider a $\triangle ABC$.
Two circles are drawn while taking $A B$ and $A C$ as the diameter.
Let they intersect each other at $D$ and let $D$ not lie on $B C$.
Join AD.
$\angle ADB=90^{\circ}$ (Angle subtended by semi-circle)
$\angle ADC=90^{\circ}$ (Angle subtended by semi-circle)
$\angle$
$ BDC=\angle ADB+\angle ADC=90^{\circ}+90^{\circ}=180^{\circ} $
Therefore, BDC is a straight line and hence, our assumption was wrong.
Thus, Point $D$ lies on third side $B C$ of $\triangle A B C$.
11. $\mathrm{ABC}$ and $\mathrm{ADC}$ are two right triangles with common hypotenuse $\mathrm{AC}$. Prove that $\angle \mathrm{CAD}=\angle \mathrm{CBD}$.
Show Answer
Solution
In $\triangle ABC$,
$«<$
$\angle 90^{\circ}+\angle BCA+\angle CAB=180^{\circ}$
$\angle \angle BCA+\angle CAB=90^{\circ} \ldots$ (1) $ABC+BCA+CAB=180^{\circ}$ (Angle sum property of a triangle)
In $\triangle ADC$,
$\angle C D A+A C D+D A C=180^{\circ}$ (Angle sum property of a triangle)
$\angle 90^{\circ}+A^{\prime} C D+D^{\prime} C=180^{\circ}$
${ }^{\angle} A C D+D A C=90^{\circ}$
Adding equations (1) and (2), we obtain
$ BCA+CAB+ACD+DAC=180^{\circ} $
$\angle(BCA+\stackrel{\angle}{\angle} \angle ACD)+(CAB+DAC)=180^{\circ}$
$$ \begin{equation*} BCD+DAB=180^{\circ} \tag{3} \end{equation*} $$
However, it is given that
$\angle B+D=90^{\circ}+90^{\circ}=180^{\circ} \ldots$
From equations (3) and (4), it can be observed that the sum of the measures of opposite angles of quadrilateral $A B C D$ is $180^{\circ}$. Therefore, it is a cyclic quadrilateral.
Consider chord CD.
$\angle CAD=\angle CBD$ (Angles in the same segment)
12. Prove that a cyclic parallelogram is a rectangle.
Show Answer
Solution
Let $A B C D$ be a cyclic parallelogram. $\angle<$ A $+C=180^{\circ}$ (Opposite angles of a cyclic quadrilateral) … (1)
$\angle A=\angle C$ and $\angle B=\angle D$ We know that opposite angles of a parallelogram are equal. $\angle$
From equation (1), $\angle A+\angle C=180^{\circ}$
$\angle \angle A+\angle A=180^{\circ}$
$\angle 2 \angle A=180^{\circ}$
$\angle \angle A=90^{\circ}$
Parallelogram $ABCD$ has one of its interior angles as $90^{\circ}$. Therefore, it is a rectangle.
9.6 Summary
In this chapter, you have studied the following points:
1. A circle is the collection of all points in a plane, which are equidistant from a fixed point in the plane.
2. Equal chords of a circle (or of congruent circles) subtend equal angles at the centre.
3. If the angles subtended by two chords of a circle (or of congruent circles) at the centre (corresponding centres) are equal, the chords are equal.
4. The perpendicular from the centre of a circle to a chord bisects the chord.
5. The line drawn through the centre of a circle to bisect a chord is perpendicular to the chord.
6. Equal chords of a circle (or of congruent circles) are equidistant from the centre (or corresponding centres).
7. Chords equidistant from the centre (or corresponding centres) of a circle (or of congruent circles) are equal.
8. If two arcs of a circle are congruent, then their corresponding chords are equal and conversely if two chords of a circle are equal, then their corresponding arcs (minor, major) are congruent.
9. Congruent arcs of a circle subtend equal angles at the centre.
10. The angle subtended by an arc at the centre is double the angle subtended by it any point on the remaining part of the circle.
11. Angles in the same segment of a circle are equal.
12. Angle in a semicircle is a right angle.
13. If a line segment joining two points subtends equal angles at two other points lying on the same side of the line containing the line segment, the four points lie on a circle.
14. The sum of either pair of opposite angles of a cyclic quadrilateral is $180^{\circ}$.
15. If sum of a pair of opposite angles of a quadrilateral is $180^{\circ}$, the quadrilateral is cyclic.
9.1 जीवा द्वारा एक बिन्दु पर अंतरित कोण
एक रेखाखंड $P Q$ तथा एक बिन्दु $R$, जो रेखा $P Q$ पर स्थित न हो, लीजिए। $P R$ तथा $Q R$ को मिलाइए (देखिए आकृति 9.1)। तब कोण $P R Q$, रेखाखंड $P Q$ द्वारा बिन्दु $R$ पर अंतरित कोण कहलाता है। आकृति 9.2 में कोण POQ, PRQ तथा PSQ क्या कहलाते हैं? $\angle \mathrm{POQ}$ जीवा $\mathrm{PQ}$ द्वारा केन्द्र $\mathrm{O}$ पर अंतरित कोण है, $\angle \mathrm{PRQ}$ तथा $\angle \mathrm{PSQ}$ क्रमशः $\mathrm{PQ}$ द्वारा दीर्घ चाप $\mathrm{PQ}$ तथा लघु चाप $\mathrm{PQ}$ पर स्थित बिन्दुओं $\mathrm{R}$ और $\mathrm{S}$ पर अंतरित कोण हैं।
आकृति 9.1
आकृति 9.2
आइए हम जीवा की माप तथा उसके द्वारा केन्द्र पर अंतरित कोण में संबंध की जाँच करें। आप एक वृत्त में विभिन्न जीवाएँ खींचकर तथा उनके द्वारा केन्द्र पर अंतरित कोणों को बनाकर देख सकते हैं कि जीवा यदि बड़ी होगी, तो उसके द्वारा केन्द्र पर अंतरित कोण भी बड़ा होगा। क्या होगा यदि आप दो बराबर जीवाएँ लेंगे? क्या केन्द्र पर अंतरित कोण समान होंगे या नहीं?
एक वृत्त की दो या अधिक बराबर जीवाएँ खींचिए तथा केन्द्र पर उनके द्वारा अंतरित कोणों को मापिए (देखिए आकृति 9.3)। आप पाएँगे कि उनके द्वारा केन्द्र पर अंतरित कोण बराबर हैं। आइए इस तथ्य की हम उपपत्ति दें।
आकृति 9.3
प्रमेय 9.1 : वृत्त की बराबर जीवाएँ केन्द्र पर बराबर कोण अंतरित करती हैं।
उपपत्ति : आपको एक वृत्त, जिसका केन्द्र $O$ है, की दो बराबर जीवाएँ $\mathrm{AB}$ और $\mathrm{CD}$ दी हुई हैं (देखिए आकृति 9.4) तथा आप सिद्ध करना चाहते हैं कि $\angle \mathrm{AOB}=\angle \mathrm{COD}$ है।
आकृति 9.4
त्रिभुजों $\mathrm{AOB}$ तथा $\mathrm{COD}$ में,
$$ \begin{array}{ll} \mathrm{OA}=\mathrm{OC} & \text { (एक वृत्त की त्रिज्याएँ }) \\ \mathrm{OB}=\mathrm{OD} & \text { (एक वृत्त की त्रिज्याएँ }) \\ \mathrm{AB}=\mathrm{CD} & (\text { दिया है }) \end{array} $$
अतः,
$$ \Delta \mathrm{AOB} \cong \Delta \mathrm{COD} \quad(\mathrm{SSS} \text { नियम }) $$
इस प्रकार, हम पाते हैं कि $\angle \mathrm{AOB}=\angle \mathrm{COD}$
(सर्वांगसम त्रिभुजों के संगत भाग)
टिप्पणी : सुविधा के लिए ‘सर्वांगसम त्रिभुजों के संगत भाग’ के स्थान पर संक्षेप में CPCT का प्रयोग किया जाएगा, क्योंकि जैसा कि आप देखेंगे कि इसका हम बहुधा प्रयोग करते हैं।
अब यदि एक वृत्त की दो जीवाएँ केन्द्र पर बराबर कोण अंतरित करें, तो उन जीवाओं के बारे में आप क्या कह सकते हैं? क्या वे बराबर हैं अथवा नहीं? आइए हम इसकी निम्न क्रियाकलाप द्वारा जाँच करें।
एक अक्स कागज़ (tracing paper) लीजिए और इस पर एक वृत्त खींचिए। इसे वृत्त के अनुदिश काटकर एक चकती (disc) प्राप्त कीजिए। इसके केन्द्र $\mathrm{O}$ पर एक कोण $\mathrm{AOB}$ बनाइए, जहाँ $\mathrm{A}, \mathrm{B}$ वृत्त पर स्थित बिन्दु हैं। केन्द्र पर, एक दूसरा कोण POQ कोण AOB के बराबर बनाइए। चकती को इन कोणों के सिरों को मिलाने वाली जीवाओं के अनुदिश काटें (देखिए आकृति 9.5)। आप दो वृत्तखंड $A C B$ तथा PRQ प्राप्त करेंगे। यदि आप एक को दूसरे के ऊपर रखेंगे, तो आप क्या अनुभव करेंगे? वे एक दूसरे को पूर्णतया ढक लेंगे, अर्थात् वे सर्वांगसम होंगे। इसलिए $\mathrm{AB}=\mathrm{PQ}$ है।
आकृति 9.5
यद्यपि आपने इसे एक विशेष दशा में ही देखा है, इसे आप अन्य समान कोणों के लिए दोहराइए। निम्न प्रमेय के कारण सभी जीवाएँ बराबर होंगी:
प्रमेय 9.2 : यदि एक वृत्त की जीवाओं द्वारा केन्द्र पर अंतरित कोण बराबर हों, तो वे जीवाएँ बराबर होती हैं।
उपर्युक्त प्रमेय, प्रमेय 9.1 का विलोम है। ध्यान दीजिए कि आकृति 9.4 में यदि आप $\angle \mathrm{AOB}=\angle \mathrm{COD}$ लें, तो
$$ \Delta \mathrm{AOB} \cong \Delta \mathrm{COD}(\text { क्यों?) } $$
क्या अब आप देख सकते हैं कि $\mathrm{AB}=\mathrm{CD}$ है?
प्रश्नावली 9.1
1. याद कीजिए कि दो वृत्त सर्वांगसम होते हैं, यदि उनकी त्रिज्याएँ बराबर हों। सिद्ध कीजिए कि सर्वांगसम वृत्तों की बराबर जीवाएँ उनके केन्द्रों पर बराबर कोण अंतरित करती हैं।
Show Answer
Missing2. सिद्ध कीजिए कि यदि सर्वांगसम वृत्तों की जीवाएँ उनके केन्द्रों पर बराबर कोण अंतरित करें, तो जीवाएँ बराबर होती हैं।
Show Answer
Missing9.2 केन्द्र से जीवा पर लम्ब
क्रियाकलाप : एक अक्स कागज पर एक वृत्त खींचिए। माना इसका केन्द्र $O$ है। एक जीवा $A B$ खींचिए। कागज को $O$ से जाने वाली एक रेखा के अनुदिश इस प्रकार मोड़िए कि जीवा का एक भाग दूसरे भाग पर पड़े। मान लीजिए कि मोड़ का निशान $\mathrm{AB}$ को $\mathrm{M}$ पर काटता है। तब $\angle \mathrm{OMA}=\angle \mathrm{OMB}=90^{\circ}$ अथवा $\mathrm{OM}, \mathrm{AB}$ पर लम्ब है (देखिए आकृति 9.6)। क्या बिन्दु $B, A$ के संपाती होता है?
हाँ, यह होगा। इसलिए $\mathrm{MA}=\mathrm{MB}$ है।
आकृति 9.6
$\mathrm{OA}$ और $\mathrm{OB}$ को मिलाकर तथा समकोण त्रिभुजों $\mathrm{OMA}$ और $\mathrm{OMB}$ को सर्वांगसम सिद्ध कर इसकी उपपत्ति स्वयं दीजिए। यह उदाहरण निम्न परिणाम का विशेष दृष्टांत है:
प्रमेय 9.3 : एक वृत्त के केन्द्र से एक जीवा पर डाला गया लम्ब जीवा को समद्विभाजित करता है।
इस प्रमेय का विलोम क्या है? इसको लिखने के लिए, सर्वप्रथम हमें स्पष्ट होना है कि प्रमेय 9.3 में क्या दिया गया है और क्या सिद्ध करना है। दिया है कि केन्द्र से जीवा पर लंब खींचा गया है और सिद्ध करना है कि वह जीवा को समद्विभाजित करता है। अतः विलोम में परिकल्पना है ‘यदि एक केन्द्र से जाने वाली रेखा वृत्त की एक जीवा को समद्विभाजित करे’ और सिद्ध करना है ‘रेखा जीवा पर लम्ब है’। इस प्रकार, विलोम है :
प्रमेय 9.4: एक वृत्त के केन्द्र से एक जीवा को समद्विभाजित करने के लिए खींची गई रेखा जीवा पर लंब होती है।
क्या यह सत्य है? इसको कुछ स्थितियों में प्रयत्न करके देखिए। आप देखेंगे कि यह इन सभी स्थितियों में सत्य है। निम्न अभ्यास करके देखिए कि क्या यह कथन व्यापक रूप में सत्य है। हम इसके कुछ कथन देंगे और आप इनके कारण दीजिए।
मान लीजिए कि एक वृत्त, जिसका केन्द्र $O$ है, की $\mathrm{AB}$ एक जीवा है और $\mathrm{O}$ को $\mathrm{AB}$ के मध्य-बिन्दु $M$ से मिलाया गया है। आपको सिद्ध करना है कि $\mathrm{OM} \perp \mathrm{AB}$ है। $\mathrm{OA}$ और $\mathrm{OB}$ को मिलाइए (देखिए आकृति 9.7)। त्रिभुजों $\mathrm{OAM}$ तथा $\mathrm{OBM}$ में,
$$ \begin{align*} & \mathrm{OA}=\mathrm{OB} \tag{क्यों?} \\ & \mathrm{AM}=\mathrm{BM} \tag{क्यों?} \\ & \mathrm{OM}=\mathrm{OM} \tag{क्यों?} \end{align*} $$
आकृति 9.7
अत:, $\Delta \mathrm{OAM} \cong \Delta \mathrm{OBM} \quad\quad \text{(उभयनिष्ठ)}$
इससे प्राप्त होता है: $\angle \mathrm{OMA}=\angle \mathrm{OMB}=90^{\circ}$ (क्यों?)
9.3 समान जीवाएँ और उनकी केन्द्र से दूरियाँ
मान लीजिए $\mathrm{AB}$ एक रेखा है और $\mathrm{P}$ कोई बिन्दु है। क्योंकि एक रेखा पर असंख्य बिन्दु होते हैं, इसलिए यदि आप इन सभी को $\mathrm{P}$ से मिलाएँ तो आपको असंख्य रेखाखंड $\mathrm{PL} _{1}, \mathrm{PL} _{2}$, $\mathrm{PM}, \mathrm{PL} _{3}, \mathrm{PL} _{4}$, आदि मिलेंगे। इनमें से कौन सी बिन्दु $\mathrm{P}$ से $\mathrm{AB}$ की दूरी है? आप थोड़ा सोचकर इसका उत्तर प्राप्त कर सकते हैं। इन रेखाखंडों, में से $\mathrm{P}$ से $\mathrm{AB}$ पर लम्ब रेखाखंड अर्थात् आकृति 9.8 में $\mathrm{PM}$ सबसे छोटा होगा। गणित में इस सबसे छोटी लम्बाई PM को $\mathbf{P}$ से $\mathbf{A B}$ की दूरी के रूप में परिभाषित करते हैं। अतः, आप कह सकते हैं कि :
आकृति 9.8
एक बिन्दु से एक रेखा पर लम्ब की लम्बाई रेखा की बिन्दु से दूरी होती है।
ध्यान दीजिए कि यदि बिन्दु रेखा पर स्थित है, तो रेखा की इससे दूरी शून्य है।
एक वृत्त में असंख्य जीवाएँ हो सकती हैं। आप एक वृत्त में जीवाएँ खींचकर जाँच कर सकते हैं कि लंबी जीवा, छोटी जीवा की तुलना में केन्द्र के निकट होती है। इसकी आप विभिन्न लम्बाई की कई जीवाएँ की खींचकर तथा उनकी केन्द्र से दूरियाँ मापकर जाँच कर सकते हैं। व्यास, जो वृत्त की सबसे बड़ी जीवा है, की केन्द्र से क्या दूरी है? क्योंकि केन्द्र इस पर स्थित है, अतः इसकी दूरी शून्य है। क्या आप सोचते हैं कि जीवा की लम्बाई और उसकी केन्द्र से दूरी में कोई संबंध है? आइए देखें कि क्या ऐसा है।
आकृति 9.9
क्रियाकलाप : किसी त्रिज्या का अक्स कागज पर एक वृत्त खींचिए। इसकी दो बराबर जीवाएँ $\mathrm{AB}$ तथा $\mathrm{CD}$ खींचिए तथा इन पर केन्द्र $\mathrm{O}$ से लम्ब $\mathrm{OM}$ तथा $\mathrm{ON}$ भी बनाइए। आकृति को इस प्रकार मोड़िए कि D, B पर तथा C, A पर पड़े [देखिए आकृति 9.9 (i)]। आप पाएँगे कि $\mathrm{O}$ मोड़ के निशान पर पड़ता है और $\mathrm{N}, \mathrm{M}$ पर पड़ता है। अतः $\mathrm{OM}=\mathrm{ON}$ है। इस क्रियाकलाप को केन्द्रों $\mathrm{O}$ तथा $\mathrm{O}^{\prime}$ के सर्वांगसम वृत्त खींचकर और अलग-अलग बराबर जीवाएँ $\mathrm{AB}$ तथा $\mathrm{CD}$ लेकर दोहराएँ। उन पर लम्ब $\mathrm{OM}$ तथा $\mathrm{O}^{\prime} \mathrm{N}$ खींचिए [देखिए आकृति 9.9(ii)]। इनमें से एक वृत्ताकार चकती को काटकर दूसरे वृत्त पर इस प्रकार रखें कि $\mathrm{AB}, \mathrm{CD}$ को पूर्ण रूप से ढक ले। तब आप पाएँगे कि $\mathrm{O}, \mathrm{O}^{\prime}$ पर पड़ता है तथा $\mathrm{M}, \mathrm{N}$ पर पड़ता है। इस प्रकार, आपने निम्न को सत्यापित किया है:
प्रमेय 9.5 : एक वृत्त की (या सर्वांगसम वृत्तों की) बराबर जीवाएँ केन्द्र से (या केन्द्रों से) समान दूरी पर होती है।
अब यह देखा जाए कि क्या इसका विलोम सत्य है अथवा नहीं। इसके लिए केन्द्र $\mathrm{O}$ वाला एक वृत्त खींचिए। केन्द्र $O$ से वृत्त के भीतर रहने वाले दो बराबर लम्बाई के रेखाखंड $O L$ तथा $\mathrm{OM}$ खींचिए [देखिए आकृति 9.10 (i)]। अब क्रमशः दो जीवाएँ $\mathrm{PQ}$ और RS खींचिए जो $\mathrm{OL}$ और $\mathrm{OM}$ पर लम्ब हों [देखिए आकृति 9.10(ii)]। $\mathrm{PQ}$ और $\mathrm{RS}$ की लम्बाइयाँ मापिए। क्या ये असमान हैं? नहीं, दोनों बराबर हैं। क्रियाकलाप को और अधिक समान रेखाखंडों तथा उन पर लम्ब जीवाएँ खींचकर दोहराइए। इस प्रकार, प्रमेय 9.5 का विलोम सत्यापित हो जाता है, जिसका कथन नीचे दिया गया है:
आकृति 9.10
प्रमेय 9.6 : एक वृत्त के केन्द्र से समदूरस्थ जीवाएँ लम्बाई में समान होती हैं। अब हम उपर्युक्त परिणामों पर आधारित एक उदाहरण लेते हैं।
उदाहरण 1 : यदि एक वृत्त की दो प्रतिच्छेदी जीवाएँ प्रतिच्छेद बिन्दु से जाने वाले व्यास से समान कोण बनाएँ, तो सिद्ध कीजिए कि वे जीवाएँ बराबर हैं।
हल : दिया है कि एक वृत्त, जिसका केन्द्र $\mathrm{O}$ है, की दो जीवाएँ $\mathrm{AB}$ और $\mathrm{CD}$ बिन्दु $\mathrm{E}$ पर प्रतिच्छेद करती हैं। $\mathrm{E}$ से जाने वाला $\mathrm{PQ}$ एक ऐसा व्यास है कि $\angle \mathrm{AEQ}=\angle \mathrm{DEQ}$ है (देखिए आवृरति 9.11)। आपको सिद्ध करना है कि $\mathrm{AB}=\mathrm{CD}$ है। जीवाओं $\mathrm{AB}$ और $\mathrm{CD}$ पर क्रमशः $\mathrm{OL}$ तथा $\mathrm{OM}$ लम्ब खींचिए। अब,
आकृति 9.11
$$ \begin{aligned} \angle \mathrm{LOE}= & 180^{\circ}-90^{\circ}-\angle \mathrm{LEO}=90^{\circ}-\angle \mathrm{LEO} \\ & \quad(\text { (त्रिभुज के कोणों के योग का गुण) }) \\ = & 90^{\circ}-\angle \mathrm{AEQ}=90^{\circ}-\angle \mathrm{DEQ} \\ = & 90^{\circ}-\angle \mathrm{MEO}=\angle \mathrm{MOE} \end{aligned} $$
त्रिभुजों OLE तथा OME में,
$$ \begin{aligned} \angle \mathrm{LEO} & =\angle \mathrm{MEO}\quad \quad \text{(दिया है)} \\ \angle \mathrm{LOE} & =\angle \mathrm{MOE}\quad \quad \text{(ऊपर सिद्ध किया है )} \\ \mathrm{EO} & =\mathrm{EO}\quad \quad \text{(उभयनिष्ठ)} \\ \text{अत:,}\quad\Delta \mathrm{OLE} & \cong \Delta \mathrm{OME}\quad \quad \text{(क्यों? ?)} \\ \text{इससे प्राप्त होता है:}\quad\mathrm{OL} & =\mathrm{OM}\quad \quad \text{(CPCT)} \\ \text{ इसलिए, }\quad\mathrm{AB} & =\mathrm{CD}\quad \quad \text{(क्यों??)} \end{aligned} $$
प्रश्नावली 9.2
1. $5 \mathrm{~cm}$ तथा $3 \mathrm{~cm}$ त्रिज्या वाले दो वृत्त दो बिन्दुओं पर प्रतिच्छेद करते हैं तथा उनके केन्द्रों के बीच की दूरी $4 \mathrm{~cm}$ है। उभयनिष्ठ जीवा की लम्बाई ज्ञात कीजिए।
Show Answer
Missing2. यदि एक वृत्त की दो समान जीवाएँ वृत्त के अन्दर प्रतिच्छेद करें, तो सिद्ध कीजिए कि एक जीवा के खंड दूसरी जीवा के संगत खंडों के बराबर हैं।
Show Answer
Missing3. यदि एक वृत्त की दो समान जीवाएँ वृत्त के अन्दर प्रतिच्छेद करें, तो सिद्ध कीजिए कि प्रतिच्छेद बिन्दु को केन्द्र से मिलाने वाली रेखा जीवाओं से बराबर कोण बनाती है।
Show Answer
Missing4. यदि एक रेखा दो संकेन्द्री वृत्तों (एक ही केन्द्र वाले वृत्त) को, जिनका केन्द्र $\mathrm{O}$ है, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ और $\mathrm{D}$ पर प्रतिच्छेद करे, तो सिद्ध कीजिए $\mathrm{AB}=\mathrm{CD}$ है (देखिए आकृति 9.12)।
आकृति 9.12
Show Answer
Missing5. एक पार्क में बने $5 \mathrm{~m}$ त्रिज्या वाले वृत्त पर खड़ी तीन लड़कियाँ रेशमा, सलमा एवं मनदीप खेल रही हैं। रेशमा एक गेंद को सलमा के पास, सलमा मनदीप के पास तथा मनदीप रेशमा के पास फेंकती है। यदि रेशमा तथा सलमा के बीच और सलमा तथा मनदीप के बीच की प्रत्येक दूरी $6 \mathrm{~m}$ हो, तो रेशमा और मनदीप के बीच की दूरी क्या है?
Show Answer
Missing6. $20 \mathrm{~m}$ त्रिज्या का एक गोल पार्क (वृत्ताकार) एक कालोनी में स्थित है। तीन लड़के अंकुर, सैय्यद तथा डेविड इसकी परिसीमा पर बराबर दूरी पर बैठे हैं और प्रत्येक के हाथ में एक खिलौना टेलीफोन आपस में बात करने के लिए है। प्रत्येक फोन की डोरी की लम्बाई ज्ञात कीजिए।
Show Answer
Missing9.4 एक वृत्त के चाप द्वारा अंतरित कोण
आपने देखा है कि एक जीवा के अंत बिन्दु (व्यास के अतिरिक्त) वृत्त को दो चापों में एक (दीर्घ तथा दूसरा लघु) विभाजित करते हैं। यदि आप बराबर जीवाएँ लें, तो आप उन चापों की मापों के बारे में क्या कह सकते हैं? क्या एक जीवा द्वारा बना चाप दूसरी जीवा के द्वारा बने चाप के बराबर है? वास्तव में, ये बराबर लम्बाई से भी कुछ अधिक है। यह इस अर्थ में, कि यदि एक चाप को दूसरे चाप के ऊपर रखा जाए, तो बिना ऐंठे या मोड़े वे एक दूसरे को पूर्णतया ढक लेंगे।
इस तथ्य को आप जीवा $\mathrm{CD}$ के संगत चाप को वृत्त से $\mathrm{CD}$ के अनुदिश काटकर तथा उसे बराबर जीवा $\mathrm{AB}$ के संगत चाप पर रखकर सत्यापित कर सकते हैं। आप पाएँगे कि चाप $\mathrm{CD}$, चाप $\mathrm{AB}$ को पूर्णरूप से ढक लेता है (देखिए आकृति 9.13)। यह दर्शाता है कि बराबर जीवाएँ सर्वांगसम चाप बनाती हैं तथा विलोमतः सर्वांगसम चाप वृत्त की बराबर जीवाएँ बनाते हैं। इसका निम्न प्रकार से कथन दे सकते हैं:
आकृति 9.13
यदि किसी वृत्त की दो जीवाएँ बराबर हों, तो उनके संगत चाप सवरंगसम होते हैं तथा विलोमतः यदि दो चाप सर्वांगसम हों, तो उनके संगत जीवाएँ बराबर होती हैं।
चाप द्वारा केन्द्र पर अंतरित कोण भी संगत जीवा द्वारा केन्द्र पर अंतरित कोण से इस अर्थ में परिभाषित किया जाता है कि लघु चाप कोण को अंतरित करता है और दीर्घ चाप संगत प्रतिवर्ती कोण अंतरित करता है। अतः आकृति 9.14 में, लघु चाप $\mathrm{PQ}$ द्वारा $\mathrm{O}$ पर अंतरित कोण $\mathrm{POQ}$ है तथा दीर्घ चाप $\mathrm{PQ}$ द्वारा $\mathrm{O}$ पर अंतरित संगत प्रतिवर्ती कोण POQ है।
उपरोक्त गुण एवं प्रमेय 9.1 के संदर्भ में निम्न परिणाम सत्य है :
आकृति 9.14
किसी वृत्त के सर्वांगसम चाप (या बराबर चाप) केन्द्र पर बराबर कोण अंतरित करते हैं।
अतः, किसी वृत्त की जीवा द्वारा केन्द्र पर अंतरित कोण संगत (लघु) चाप द्वारा केन्द्र पर अंतरित कोण के बराबर होता है। निम्न प्रमेय एक चाप द्वारा केन्द्र पर अंतरित कोण तथा वृत्त के किसी बिन्दु पर अंतरित कोण में संबंध देती है।
प्रमेय 9.7 : एक चाप द्वारा केन्द्र पर अंतरित कोण वृत्त के शेष भाग के किसी बिन्दु पर अंतरित कोण का दुगुना होता है।
उपपत्ति : एक वृत्त का चाप $\mathrm{PQ}$ दिया है, जो केन्द्र $\mathrm{O}$ पर $\angle \mathrm{POQ}$ तथा वृत्त के शेष भाग के एक बिन्दु $\mathrm{A}$ पर $\angle \mathrm{PAQ}$ अंतरित करता है। हमें सिद्ध करना है कि $\angle \mathrm{POQ}=2 \angle \mathrm{PAQ}$ है।
(i)
(ii)
(iii)
आकृति 9.15
आकृति 9.15 में दी गई तीन विभिन्न स्थितियों पर विचार कीजिए। (i) में चाप $\mathrm{PQ}$ लघु है, (ii) में चाप $\mathrm{PQ}$ अर्धवृत्त है तथा (iii) में चाप $\mathrm{PQ}$ दीर्घ है।
आइए हम $\mathrm{AO}$ को मिलाकर एक बिन्दु $\mathrm{B}$ तक बढ़ाएँ।
सभी स्थितियों में,
$$ \angle \mathrm{BOQ}=\angle \mathrm{OAQ}+\angle \mathrm{AQO} $$
( क्योंकि त्रिभुज का बहिष्कोण उसके दो अभिमुख अंतः कोणों के योग के बराबर होता है।)
साथ ही $\triangle \mathrm{OAQ}$ में,
$\mathrm{OA} =\mathrm{OQ} $(एक वृत्त की त्रिज्याएँ)
अतः, $\angle \mathrm{OAQ} =\angle \mathrm{AQO}$ (प्रमेय 7.5 )
इससे प्राप्त होता है: $\angle \mathrm{BOQ}=2 \angle \mathrm{OAQ} \tag{1}$
इसी प्रकार, $\angle \mathrm{BOP}=2 \angle \mathrm{OAP} \tag{2}$
(1) और (2) से, $\angle \mathrm{BOP}+\angle \mathrm{BOQ}=2(\angle \mathrm{OAP}+\angle \mathrm{OAQ})$
अर्थात्, $\angle \mathrm{POQ}=2 \angle \mathrm{PAQ}$
स्थिति (iii) के लिए, जहाँ PQ दीर्घ चाप है, (3) के स्थान पर
प्रतिवर्ती कोण $\mathrm{POQ}=2 \angle \mathrm{PAQ}$ होगा।
टिप्पणी : मान लीजिए कि उपर्युक्त आकृतियों में हम $\mathrm{P}$ और $\mathrm{Q}$ को मिलाकर जीवा $\mathrm{PQ}$ बनाते हैं। तब, $\angle \mathrm{PAQ}$ को वृत्तखंड PAQP में बना कोण भी कहते हैं।
प्रमेय 9.7 में वृत्त के शेष भाग पर कोई भी बिन्दु $A$ हो सकता है। इसलिए यदि आप वृत्त के शेष भाग पर एक और बिन्दु $\mathrm{C}$ लें (देखिए आकृति 9.16), तो आप पाएँगे:
$$ \angle \mathrm{POQ}=2 \angle \mathrm{PCQ}=2 \angle \mathrm{PAQ} $$
अतः, $$ \angle \mathrm{PCQ}=\angle 2\mathrm{PAQ} $$
आकृति 9.16
यह निम्न को सिद्ध करता है :
प्रमेय 9.8 : एक ही वृत्तखंड के कोण बराबर होते हैं।
आइए अब प्रमेय 9.8 की स्थिति (ii) की अलग से विवेचना करें। यहाँ $\angle \mathrm{PAQ}$ उस वृत्तखंड में एक कोण है जो अर्धवृत्त है। साथ ही, $\angle \mathrm{PAQ}=\frac{1}{2} \angle \mathrm{POQ}=\frac{1}{2} \times 180^{\circ}=90^{\circ}$ है। यदि आप कोई और बिन्दु $\mathrm{C}$ अर्धवृत्त पर लें, तो भी आप पाते हैं कि
$$ \angle \mathrm{PCQ}=90^{\circ} $$
इस प्रकार, आप वृत्त का एक और गुण पाते हैं जो निम्न है:
अर्धवृत्त का कोण समकोण होता है।
प्रमेय 9.8 का विलोम भी सत्य है, जिसका इस प्रकार कथन दिया जा सकता है:
प्रमेय 9.9: यदि दो बिन्दुओं को मिलाने वाला रेखाखंड, उसको अंतर्विष्ट करने वाली रेखा के एक ही ओर स्थित दो अन्य बिन्दुओं पर समान कोण अंतरित करे, तो चारों बिन्दु एक वृत्त पर स्थित होते हैं (अर्थात् वे चक्रीय होते हैं)।
आप इस कथन की सत्यता निम्न प्रकार से देख सकते हैं :
आकृति 9.17 में $\mathrm{AB}$ एक रेखाखंड है, जो दो बिन्दुओं $\mathrm{C}$ और $\mathrm{D}$ पर समान कोण अंतरित करता है। अर्थात्
आकृति 9.17
$$ \angle \mathrm{ACB}=\angle \mathrm{ADB} $$
यह दर्शाने के लिए कि बिन्दु $\mathrm{A}, \mathrm{B}, \mathrm{C}$ और $\mathrm{D}$ एक वृत्त पर स्थित हैं, बिन्दुओं $\mathrm{A}, \mathrm{C}$ और $\mathrm{B}$ से जाने वाला एक वृत्त खींचिए। मान लीजिए कि वह $\mathrm{D}$ से होकर नहीं जाता है। तब, वह $\mathrm{AD}$ (अथवा बढ़ी हुई $\mathrm{AD}$ ) को एक बिन्दु $\mathrm{E}$ (अथवा $\mathrm{E}^{\prime}$ ) पर काटेगा।
यदि बिन्दु $\mathrm{A}, \mathrm{C}, \mathrm{E}$ और $\mathrm{B}$ एक वृत्त पर स्थित हैं, तो
$$ \angle \mathrm{ACB}=\angle \mathrm{AEB} \quad \text { (क्यों?) } $$
परन्तु दिया है कि $\angle \mathrm{ACB}=\angle \mathrm{ADB}$
अत:, $\quad \angle \mathrm{AEB}=\angle \mathrm{ADB}$
यह तब तक संभव नहीं है जब तक $\mathrm{E}, \mathrm{D}$ के संपाती न हो। (क्यों?)
इसी प्रकार, $\mathrm{E}^{\prime}$ भी $\mathrm{D}$ के संपाती होना चाहिए।
9.5 चक्रीय चतुर्भुज
एक चतुर्भुज $\mathrm{ABCD}$ चक्रीय कहलाता है, यदि इसके चारों शीर्ष एक वृत्त पर स्थित होते हैं (देखिए आकृति 9.18)। इन चतुर्भुजों में आप एक विशेष गुण पाएँगे। अलग-अलग भुजाओं वाले कई चक्रीय चतुर्भुज खींचिए और प्रत्येक का नाम $\mathrm{ABCD}$ रखिए (इसको विभिन्न त्रिज्याओं के कई वृत्त खींचकर तथा प्रत्येक पर चार बिन्दु लेकर किया जा सकता है)। सम्मुख कोणों को मापिए और आप अपने प्रेक्षण आगे दी गई सारणी में लिखिए :
आकृति 9.18
चतुर्भुज की क्रम संख्या | $\angle \mathrm{A}$ | $\angle \mathrm{B}$ | $\angle \mathrm{C}$ | $\angle \mathrm{D}$ | $\angle \mathrm{A}+\angle \mathrm{C}$ | $\angle \mathrm{B}+\angle \mathrm{D}$ |
---|---|---|---|---|---|---|
1. | ||||||
2. | ||||||
3. | ||||||
4. | ||||||
5. | ||||||
6. |
इस सारणी से आप क्या निष्कर्ष निकालते हैं?
यदि मापने में कोई त्रुटि न हुई हो, तो यह निम्न को सत्यापित करता है:
प्रमेय 9.10 : चक्रीय चतुर्भुज के सम्मुख कोणों के प्रत्येक युग्म का योग $180^{\circ}$ होता है।
वास्तव में इस प्रमेय का विलोम, जिसका कथन निम्न प्रकार से है, भी सत्य है:
प्रमेय 9.11: यदि किसी चतुर्भुज के सम्मुख कोणों के एक युग्म का योग $180^{\circ}$ हो, तो चतुर्भुज चक्रीय होता है।
इस प्रमेय की सत्यता आप प्रमेय 9.9 में दी गई विधि की तरह से जाँच सकते हैं।
उदाहरण 2 : आकृति 9.19 में, $\mathrm{AB}$ वृत्त का एक व्यास है और $\mathrm{CD}$ त्रिज्या के बराबर एक जीवा है। $\mathrm{AC}$ और $\mathrm{BD}$ बढ़ाए जाने पर एक बिन्दु $\mathrm{E}$ पर मिलती हैं। सिद्ध कीजिए कि $\angle \mathrm{AEB}=60^{\circ}$ है।
आकृति 9.19
हल : $\mathrm{OC}, \mathrm{OD}$ और $\mathrm{BC}$ को मिलाइए।
त्रिभुज $\mathrm{ODC}$ एक समबाहु त्रिभुज है।(क्यों ?)
$$ \text{अतः,} \angle \mathrm{COD}=60^{\circ} $$
$$ \text{अब,} \angle \mathrm{CBD}=\frac{1}{2} \angle \mathrm{COD}(\text { प्रमेय 10.8) } $$
इससे प्राप्त होता है: $\angle \mathrm{CBD}=30^{\circ}$
पुन: $\angle \mathrm{ACB}=90^{\circ}$
इसलिए, $\angle \mathrm{BCE}=180^{\circ}-\angle \mathrm{ACB}=90^{\circ}$
जिससे $\angle \mathrm{CEB}=90^{\circ}-30^{\circ}=60^{\circ}$, अर्थात् $\angle \mathrm{AEB}=60^{\circ}$ प्राप्त होता है।
उदाहरण 3 : आकृति 9.20 में, $\mathrm{ABCD}$ एक चक्रीय चतुर्भुज है, जिसमें $\mathrm{AC}$ और $\mathrm{BD}$ विकर्ण हैं। यदि $\angle \mathrm{DBC}=55^{\circ}$ तथा $\angle \mathrm{BAC}=45^{\circ}$ हो, तो $\angle \mathrm{BCD}$ ज्ञात कीजिए।
आकृति 9.20
हल : $\angle \mathrm{CAD}=\angle \mathrm{DBC}=55^{\circ}$ (एक वृत्तखंड के कोण)
अत:,$\angle \mathrm{DAB}=\angle \mathrm{CAD}+\angle \mathrm{BAC}$ $$ =55^{\circ}+45^{\circ}=100^{\circ} $$
परन्तु, $\angle \mathrm{DAB}+\angle \mathrm{BCD}=180^{\circ}$
(चक्रीय चतुर्भुज के सम्मुख कोण)
इसलिए, $\quad \angle \mathrm{BCD}=180^{\circ}-100^{\circ}=80^{\circ}$
उदाहरण 4 : दो वृत्त दो बिन्दुओं $\mathrm{A}$ और $\mathrm{B}$ पर प्रतिच्छेद करते हैं। $\mathrm{AD}$ और $\mathrm{AC}$ दोनों वृत्तों के व्यास हैं (देखिए आकृति 9.21)। सिद्ध कीजिए कि $\mathrm{B}$ रेखाखंड $\mathrm{DC}$ पर स्थित हैं।
आकृति 9.21
हल : $\mathrm{AB}$ को मिलाइए। अब,
$$ \begin{array}{ll} \angle \mathrm{ABD}=90^{\circ} & \text { (अर्धवृत्त का कोण }) \\ \angle \mathrm{ABC}=90^{\circ} & \text { (अर्धवृत्त का कोण }) \end{array} $$
इसलिए, $\angle \mathrm{ABD}+\angle \mathrm{ABC}=90^{\circ}+90^{\circ}=180^{\circ}$
अतः, $\mathrm{DBC}$ एक रेखा है। अर्थात् $\mathrm{B}$ रेखाखंड $\mathrm{DC}$ पर स्थित है।
उदाहरण 5 : सिद्ध कीजिए कि किसी चतुर्भुज के अंतः कोणों के समद्विभाजकों से बना चतुर्भुज (यदि संभव हो) चक्रीय होता है।
हल : आकृति 9.22 में, $\mathrm{ABCD}$ एक चतुर्भुज है जिसके अंतःकोणों $\mathrm{A}, \mathrm{B}, \mathrm{C}$ और $\mathrm{D}$ के क्रमशः कोण समद्विभाजक $\mathrm{AH}, \mathrm{BF}, \mathrm{CF}$ और $\mathrm{DH}$ एक चतुर्भुज EFGH बनाते हैं।
आकृति 9.22
$$ \text { अब, } \begin{aligned} \angle \mathrm{FEH}=\angle \mathrm{AEB} & =180^{\circ}-\angle \mathrm{EAB}-\angle \mathrm{EBA}(\text { क्यों? }) \\ & =180^{\circ}-\frac{1}{2}(\angle \mathrm{A}+\angle \mathrm{B}) \end{aligned} $$
तथा $\angle \mathrm{FGH}=\angle \mathrm{CGD}=180^{\circ}-\angle \mathrm{GCD}-\angle \mathrm{GDC}$ (क्यों?) $$=180^{\circ}-\frac{1}{2}(\angle \mathrm{C}+\angle \mathrm{D})$$
$\text { अतः, } \angle \mathrm{FEH}+\angle \mathrm{FGH} =180^{\circ}-\frac{1}{2}(\angle \mathrm{A}+\angle \mathrm{B})+180^{\circ}-\frac{1}{2}(\angle \mathrm{C}+\angle \mathrm{D}) $
$$ \begin{aligned} & =360^{\circ}-\frac{1}{2}(\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D})=360^{\circ}-\frac{1}{2} \times 360^{\circ} \\ & =360^{\circ}-180^{\circ}=180^{\circ} \end{aligned} $$
इसलिए, प्रमेय 9.11 से चतुर्भुज $\mathrm{EFGH}$ चक्रीय है।
प्रश्नावली 9.3
1. आकृति 9.23 में, केन्द्र $\mathrm{O}$ वाले एक वृत्त पर तीन बिन्दु $\mathrm{A}, \mathrm{B}$ और $\mathrm{C}$ इस प्रकार हैं कि $\angle \mathrm{BOC}=30^{\circ}$ तथा $\angle \mathrm{AOB}=60^{\circ}$ है। यदि चाप $\mathrm{ABC}$ के अतिरिक्त वृत्त पर $\mathrm{D}$ एक बिन्दु है, तो $\angle \mathrm{ADC}$ ज्ञात कीजिए।
आकृति 9.23
Show Answer
Missing2. किसी वृत्त की एक जीवा वृत्त की त्रिज्या के बराबर है। जीवा द्वारा लघु चाप के किसी बिन्दु पर अंतरित कोण ज्ञात कीजिए तथा दीर्घ चाप के किसी बिन्दु पर भी अंतरित कोण ज्ञात कीजिए।
Show Answer
Missing3. आकृति 9.24 में, $\angle \mathrm{PQR}=100^{\circ}$ है, जहाँ $\mathrm{P}, \mathrm{Q}$ तथा $\mathrm{R}$, केन्द्र $\mathrm{O}$ वाले एक वृत्त पर स्थित बिन्दु हैं। $\angle \mathrm{OPR}$ ज्ञात कीजिए।
आकृति 9.24
Show Answer
Missing4. आकृति 9.25 में, $\angle \mathrm{ABC}=69^{\circ}$ और $\angle \mathrm{ACB}=31^{\circ}$ हो, तो $\angle \mathrm{BDC}$ ज्ञात कीजिए।
आकृति 9.25
Show Answer
Missing- आकृति 9.26 में, एक वृत्त पर $\mathrm{A}, \mathrm{B}, \mathrm{C}$ और $\mathrm{D}$ चार बिन्दु हैं। $\mathrm{AC}$ और $\mathrm{BD}$ एक बिन्दु $\mathrm{E}$ पर इस प्रकार प्रतिच्छेद करते हैं कि $\angle \mathrm{BEC}=130^{\circ}$ तथा $\angle \mathrm{ECD}=20^{\circ}$ है। $\angle \mathrm{BAC}$ ज्ञात कीजिए।
आकृति 9.26
Show Answer
Missing6. $\mathrm{ABCD}$ एक चक्रीय चतुर्भुज है जिसके विकर्ण एक बिन्दु $\mathrm{E}$ पर प्रतिच्छेद करते हैं। यदि $\angle \mathrm{DBC}=70^{\circ}$ और $\angle \mathrm{BAC}=30^{\circ}$ हो, तो $\angle \mathrm{BCD}$ ज्ञात कीजिए। पुनः यदि $\mathrm{AB}=\mathrm{BC}$ हो, तो $\angle \mathrm{ECD}$ ज्ञात कीजिए।
Show Answer
Missing7. यदि एक चक्रीय चतुर्भुज के विकर्ण उसके शीर्षों से जाने वाले वृत्त के व्यास हों, तो सिद्ध कीजिए कि वह एक आयत है।
Show Answer
Missing8. यदि एक समलंब की असमांतर भुजाएँ बराबर हों, तो सिद्ध कीजिए कि वह चक्रीय है।
Show Answer
Missing9. दो वृत्त दो बिन्दुओं $\mathrm{B}$ और $\mathrm{C}$ पर प्रतिच्छेद करते हैं। $\mathrm{B}$ से जाने वाले दो रेखाखंड $\mathrm{ABD}$ और $\mathrm{PBQ}$ वृत्तों को $\mathrm{A}, \mathrm{D}$ और $\mathrm{P}, \mathrm{Q}$ पर क्रमशः प्रतिच्छेद करते हुए खींचे गए हैं ( देखिए आकृति 9.27)। सिद्ध कीजिए कि $\angle \mathrm{ACP}=\angle \mathrm{QCD}$ है।
आकृति 9.27
Show Answer
Missing10. यदि किसी त्रिभुज की दो भुजाओं को व्यास मानकर वृत्त खींचे जाएँ, तो सिद्ध कीजिए कि इन वृत्तों का प्रतिच्छेद बिन्दु तीसरी भुजा पर स्थित है।
Show Answer
Missing11. उभयनिष्ठ कर्ण $\mathrm{AC}$ वाले दो समकोण त्रिभुज $\mathrm{ABC}$ और $\mathrm{ADC}$ हैं। सिद्ध कीजिए कि $\angle \mathrm{CAD}=\angle \mathrm{CBD}$ है।
Show Answer
Missing12. सिद्ध कीजिए कि चक्रीय समांतर चतुर्भुज आयत होता है।
Show Answer
Missing9.6 सारांश
इस अध्याय में, आपने निम्न बिन्दुओं का अध्ययन किया है :
1. एक वृत्त किसी तल के उन सभी बिन्दुओं का समूह होता है, जो तल के एक स्थिर बिन्दु से समान दूरी पर हों।
2. एक वृत्त की (या सर्वांगसम वृत्तों की) बराबर जीवाएँ केन्द्र (या संगत केन्द्रों) पर बराबर कोण अंतरित करती हैं।
3. यदि किसी वृत्त की (या सर्वांगसम वृत्तों की) दो जीवाएँ केन्द्र पर (या संगत केन्द्रों पर) बराबर कोण अंतरित करें, तो जीवाएँ बराबर होती हैं।
4. किसी वृत्त के केन्द्र से किसी जीवा पर डाला गया लम्ब उसे समद्विभाजित करता है।
5. केन्द्र से होकर जाने वाली और किसी जीवा को समद्विभाजित करने वाली रेखा जीवा पर लम्ब होती है।
6. एक वृत्त की (या सर्वांगसम वृत्तों की) बराबर जीवाएँ केन्द्र से (या संगत केन्द्रों से) समान दूरी पर होती हैं।
7. एक वृत्त के केन्द्र (या सर्वांगसम वृत्तों के केन्द्रों) से समान दूरी पर स्थित जीवाएं बराबर होती हैं।
8. यदि किसी वृत्त के दो चाप सर्वांगसम हों, तो उनकी संगत जीवाएँ बराबर होती हैं और विलोमतः यदि किसी वृत्त की दो जीवाएँ बराबर हों, तो उनके संगत चाप (लघु, दीर्घ) सर्वांगसम होते हैं।
9. किसी वृत्त की सर्वांगसम चाप केन्द्र पर बराबर कोण अंतरित करते हैं।
10. किसी चाप द्वारा केन्द्र पर अंतरित कोण उसके द्वारा वृत्त के शेष भाग के किसी बिन्दु पर अंतरित कोण का दुगुना होता है।
11. एक वृत्तखंड में बने कोण बराबर होते हैं।
12. अर्धवृत्त का कोण समकोण होता है।
13. यदि दो बिन्दुओं को मिलाने वाला रेखाखंड उसको अंतर्विष्ट करने वाली रेखा के एक ही ओर स्थित दो अन्य बिन्दुओं पर समान कोण अंतरित करे, तो चारों बिन्दु एक वृत्त पर स्थित होते हैं।
14. चक्रीय चतुर्भुज के सम्मुख कोणों के प्रत्येक युग्म का योग $180^{\circ}$ होता है।
15. यदि किसी चतुर्भुज के सम्मुख कोणों के किसी एक युग्म का योग $180^{\circ}$ हो, तो चतुर्भुज चक्रीय होता है।