Chapter-08 Quadrilaterals
8.1 Properties of a Parallelogram
You have already studied quadrilaterals and their types in Class VIII. A quadrilateral has four sides, four angles and four vertices. A parallelogram is a quadrilateral in which both pairs of opposite sides are parallel. Let us perform an activity.
Cut out a parallelogram from a sheet of paper and cut it along a diagonal (see Fig. 8.1). You obtain two triangles. What can you say about these triangles?
Place one triangle over the other. Turn one around, if necessary. What do you observe?
Observe that the two triangles are congruent to each other.
Fig. 8.1
Repeat this activity with some more parallelograms. Each time you will observe that each diagonal divides the parallelogram into two congruent triangles. Let us now prove this result.
Theorem 8.1 : A diagonal of a parallelogram divides it into two congruent triangles.
Proof : Let $A B C D$ be a parallelogram and $A C$ be a diagonal (see Fig. 8.2). Observe that the diagonal $\mathrm{AC}$ divides parallelogram $\mathrm{ABCD}$ into two triangles, namely, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDA}$. We need to prove that these triangles are congruent.
Fig. 8.2
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDA}$, note that $\mathrm{BC} || \mathrm{AD}$ and $\mathrm{AC}$ is a transversal.
So, $\quad \angle \mathrm{BCA}=\angle \mathrm{DAC}$ (Pair of alternate angles)
Also, $\quad\mathrm{AB} | \mathrm{DC}$ and $\mathrm{AC}$ is a transversal.
So, $\quad \angle \mathrm{BAC}=\angle \mathrm{DCA}$ (Pair of alternate angles)
and $\quad \mathrm{AC}=\mathrm{CA}\quad$(Common)
So, $\quad \Delta \mathrm{ABC} \cong \triangle \mathrm{CDA}\quad$(ASA rule)
or, diagonal $\mathrm{AC}$ divides parallelogram $\mathrm{ABCD}$ into two congruent triangles $\mathrm{ABC}$ and $\mathrm{CDA}$.
Now, measure the opposite sides of parallelogram $A B C D$. What do you observe?
You will find that $\mathrm{AB}=\mathrm{DC}$ and $\mathrm{AD}=\mathrm{BC}$.
This is another property of a parallelogram stated below:
Theorem 8.2 : In a parallelogram, opposite sides are equal.
You have already proved that a diagonal divides the parallelogram into two congruent triangles; so what can you say about the corresponding parts say, the corresponding sides? They are equal.
So, $\mathrm{AB}=\mathrm{DC}$ and $\mathrm{AD}=\mathrm{BC}$
Now what is the converse of this result? You already know that whatever is given in a theorem, the same is to be proved in the converse and whatever is proved in the theorem it is given in the converse. Thus, Theorem 8.2 can be stated as given below :
If a quadrilateral is a parallelogram, then each pair of its opposite sides is equal. So its converse is :
Theorem 8.3 : If each pair of opposite sides of a quadrilateral is equal, then it is a parallelogram.
Can you reason out why?
Let sides $\mathrm{AB}$ and $\mathrm{CD}$ of the quadrilateral $\mathrm{ABCD}$ be equal and also $\mathrm{AD}=\mathrm{BC}$ (see Fig. 8.3). Draw diagonal AC.
Fig. 8.3
Clearly, $\quad \triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}\quad$(Why?)
So, $\quad \angle \mathrm{BAC}=\angle \mathrm{DCA}$
and $\quad \angle \mathrm{BCA}=\angle \mathrm{DAC}\quad$(Why?)
Can you now say that ABCD is a parallelogram? Why?
You have just seen that in a parallelogram each pair of opposite sides is equal and conversely if each pair of opposite sides of a quadrilateral is equal, then it is a parallelogram. Can we conclude the same result for the pairs of opposite angles?
Draw a parallelogram and measure its angles. What do you observe?
Each pair of opposite angles is equal.
Repeat this with some more parallelograms. We arrive at yet another result as given below.
Theorem 8.4 : In a parallelogram, opposite angles are equal.
Now, is the converse of this result also true? Yes. Using the angle sum property of a quadrilateral and the results of parallel lines intersected by a transversal, we can see that the converse is also true. So, we have the following theorem :
Theorem 8.5 : If in a quadrilateral, each pair of opposite angles is equal, then it is a parallelogram.
There is yet another property of a parallelogram. Let us study the same. Draw a parallelogram $\mathrm{ABCD}$ and draw both its diagonals intersecting at the point $\mathrm{O}$ (see Fig. 8.4).
Fig. 8.4
Measure the lengths of $\mathrm{OA}, \mathrm{OB}, \mathrm{OC}$ and $\mathrm{OD}$.
What do you observe? You will observe that
$\mathrm{OA}=\mathrm{OC} \text { and } \mathrm{OB}=\mathrm{OD}$
or, $\mathrm{O}$ is the mid-point of both the diagonals.
Repeat this activity with some more parallelograms.
Each time you will find that $\mathrm{O}$ is the mid-point of both the diagonals.
So, we have the following theorem :
Theorem 8.6 : The diagonals of a parallelogram bisect each other.
Now, what would happen, if in a quadrilateral the diagonals bisect each other? Will it be aparallelogram? Indeed this is true.
This result is the converse of the result of Theorem 8.6. It is given below:
Theorem 8.7 : If the diagonals of a quadrilateral bisect each other, then it is a parallelogram.
You can reason out this result as follows:
Note that in Fig. 8.5, it is given that $\mathrm{OA}=\mathrm{OC}$ and $\mathrm{OB}=\mathrm{OD}$.
Fig. 8.5
So,$\quad \triangle \mathrm{AOB} \cong \triangle \mathrm{COD} \quad \text { (Why?) }$
Therefore, $\angle \mathrm{ABO}=\angle \mathrm{CDO}\quad \text {(Why?)}$
From this, we get $\mathrm{AB} || \mathrm{CD}$
Similarly, $\quad \mathrm{BC} || \mathrm{AD}$
Therefore $\mathrm{ABCD}$ is a parallelogram.
Let us now take some examples.
Example 1 : Show that each angle of a rectangle is a right angle.
Solution : Let us recall what a rectangle is.
A rectangle is a parallelogram in which one angle is a right angle.
Let $\mathrm{ABCD}$ be a rectangle in which $\angle \mathrm{A}=90^{\circ}$.
We have to show that $\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$
We have, $A D || B C$ and $A B$ is a transversal (see Fig. 8.6).
Fig. 8.6
So, $\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ} \quad$ (Interior angles on the same side of the transversal)
But, $\quad \angle \mathrm{A}=90^{\circ}$
So, $\quad \angle \mathrm{B}=180^{\circ}-\angle \mathrm{A}=180^{\circ}-90^{\circ}=90^{\circ}$
Now, $\quad \angle \mathrm{C}=\angle \mathrm{A}$ and $\angle \mathrm{D}=\angle \mathrm{B}$
(Opposite angles of the parallellogram)
So,$\quad\angle \mathrm{C}=90^{\circ} \text { and } \angle \mathrm{D}=90^{\circ} \text {. }$
Therefore, each of the angles of a rectangle is a right angle.
Example 2 : Show that the diagonals of a rhombus are perpendicular to each other.
Solution : Consider the rhombus ABCD (see Fig. 8.7).
Fig. 8.7
You know that $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$ (Why?)
Now, in $\triangle \mathrm{AOD}$ and $\triangle \mathrm{COD}$,
$\mathrm{OA}=\mathrm{OC}($ Diagonals of a parallelogram bisect each other)
$\mathrm{OD}=\mathrm{OD}\quad$(Common)
$\mathrm{AD}=\mathrm{CD}$(Given)
Therefore, $\Delta \mathrm{AOD} \cong \Delta \mathrm{COD}\quad$(SSS congruence rule)
This gives, $\angle \mathrm{AOD}=\angle \mathrm{COD}\quad$ (CPCT)
But, $\angle \mathrm{AOD}+\angle \mathrm{COD}=180^{\circ}$ (Linear pair)
So, $\quad 2 \angle \mathrm{AOD}=180^{\circ}$
or, $\quad \angle \mathrm{AOD}=90^{\circ}$
So, the diagonals of a rhombus are perpendicular to each other.
Example 3 : $\mathrm{ABC}$ is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$. $\mathrm{AD}$ bisects exterior angle $\mathrm{PAC}$ and $\mathrm{CD} | \mathrm{AB}$ (see Fig. 8.8). Show that
(i) $\angle \mathrm{DAC}=\angle \mathrm{BCA}$ and
(ii) $\mathrm{ABCD}$ is a parallelogram.
Fig. 8.8
Solution : (i) $\triangle \mathrm{ABC}$ is isosceles in which $\mathrm{AB}=\mathrm{AC}$ (Given)
So, $\quad \angle \mathrm{ABC}=\angle \mathrm{ACB} \quad$ (Angles opposite to equal sides)
Also, $\angle \mathrm{PAC}=\angle \mathrm{ABC}+\angle \mathrm{ACB}\quad$(Exterior angle of a triangle)
or, $\quad \angle \mathrm{PAC}=2 \angle \mathrm{ACB}\quad$(1)
Now, AD bisects $\angle \mathrm{PAC}$.
So, $\quad \angle \mathrm{PAC}=2 \angle \mathrm{DAC}\quad$(2)
Therefore,
$2 \angle \mathrm{DAC} =2 \angle \mathrm{ACB} \quad[\text { From }(1) \text { and }(2)]$ $\text { or, } \quad \angle \mathrm{DAC} =\angle \mathrm{ACB}$
(ii) Now, these equal angles form a pair of alternate angles when line segments $\mathrm{BC}$ and $\mathrm{AD}$ are intersected by a transversal $\mathrm{AC}$.
So, $\quad \mathrm{BC} || \mathrm{AD}$
Also, $\mathrm{BA} || \mathrm{CD} \quad$ (Given)
Now, both pairs of opposite sides of quadrilateral $\mathrm{ABCD}$ are parallel.
So, $A B C D$ is a parallelogram.
Example 4 : Two parallel lines $l$ and $m$ are intersected by a transversal $p$ (see Fig. 8.9). Show that the quadrilateral formed by the bisectors of interior angles is a rectangle.
Fig. 8.9
Solution : It is given that PS $|| \mathrm{QR}$ and transversal $p$ intersects them at points A and C respectively.
The bisectors of $\angle \mathrm{PAC}$ and $\angle \mathrm{ACQ}$ intersect at $\mathrm{B}$ and bisectors of $\angle \mathrm{ACR}$ and $\angle \mathrm{SAC}$ intersect at $\mathrm{D}$.
We are to show that quadrilateral $\mathrm{ABCD}$ is a rectangle.
Now, $\quad \angle \mathrm{PAC}=\angle \mathrm{ACR}$
(Alternate angles as $l || m$ and $p$ is a transversal)
So, $\quad \frac{1}{2} \angle \mathrm{PAC}=\frac{1}{2} \angle \mathrm{ACR}$
i.e., $\quad \angle \mathrm{BAC}=\angle \mathrm{ACD}$
These form a pair of alternate angles for lines $\mathrm{AB}$ and $\mathrm{DC}$ with $\mathrm{AC}$ as transversal and they are equal also.
So,$\quad\mathrm{AB} || \mathrm{DC}$
Similarly,$\quad\mathrm{BC} || \mathrm{AD} \quad$ (Considering $\angle \mathrm{ACB}$ and $\angle \mathrm{CAD}$ )
Therefore, quadrilateral $\mathrm{ABCD}$ is a parallelogram.
Also,$\quad\angle \mathrm{PAC}+\angle \mathrm{CAS}=180^{\circ} \quad \text { (Linear pair) }$
So, $\quad \frac{1}{2} \angle \mathrm{PAC}+\frac{1}{2} \angle \mathrm{CAS}=\frac{1}{2} \times 180^{\circ}=90^{\circ}$
or, $\quad \angle \mathrm{BAC}+\angle \mathrm{CAD}=90^{\circ}$
or,$\quad\angle \mathrm{BAD}=90^{\circ}$
So, $\mathrm{ABCD}$ is a parallelogram in which one angle is $90^{\circ}$. Therefore, $\mathrm{ABCD}$ is a rectangle.
Example 5 : Show that the bisectors of angles of a parallelogram form a rectangle.
Solution : Let $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and $\mathrm{S}$ be the points of intersection of the bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{B}, \angle \mathrm{B}$ and $\angle \mathrm{C}, \angle \mathrm{C}$ and $\angle \mathrm{D}$, and $\angle \mathrm{D}$ and $\angle \mathrm{A}$ respectively of parallelogram $\mathrm{ABCD}$ (see Fig. 8.10).
Fig. 8.10
In $\triangle \mathrm{ASD}$, what do you observe?
Since $\mathrm{DS}$ bisects $\angle \mathrm{D}$ and $\mathrm{AS}$ bisects $\angle \mathrm{A}$, therefore,
$$ \begin{aligned} \angle \mathrm{DAS}+\angle \mathrm{ADS} & =\frac{1}{2} \angle \mathrm{A}+\frac{1}{2} \angle \mathrm{D} \\ & =\frac{1}{2}(\angle \mathrm{A}+\angle \mathrm{D}) \\ & =\frac{1}{2} \times 180^{\circ} \\ (\angle \mathrm{A} \text { and } & \angle \mathrm{D} \text { are interior angles on the same side of the transversal} \\ & \left.=90^{\circ} \quad \right) \end{aligned} $$
Also, $\angle \mathrm{DAS}+\angle \mathrm{ADS}+\angle \mathrm{DSA}=180^{\circ} \quad$ (Angle sum property of a triangle)
or,$\quad 90^{\circ}+\angle \mathrm{DSA}=180^{\circ}$
or,$\quad \angle \mathrm{DSA}=90^{\circ}$
So,$\quad \angle \mathrm{PSR}=90^{\circ} \quad($ Being vertically opposite to $\angle \mathrm{DSA})$
Similarly, it can be shown that $\angle \mathrm{APB}=90^{\circ}$ or $\angle \mathrm{SPQ}=90^{\circ}$ (as it was shown for $\angle \mathrm{DSA})$. Similarly, $\angle \mathrm{PQR}=90^{\circ}$ and $\angle \mathrm{SRQ}=90^{\circ}$.
So, PQRS is a quadrilateral in which all angles are right angles.
Can we conclude that it is a rectangle? Let us examine. We have shown that $\angle \mathrm{PSR}=\angle \mathrm{PQR}=90^{\circ}$ and $\angle \mathrm{SPQ}=\angle \mathrm{SRQ}=90^{\circ}$. So both pairs of opposite angles are equal.
Therefore, $\mathrm{PQRS}$ is a parallelogram in which one angle (in fact all angles) is $90^{\circ}$ and so, $\mathrm{PQRS}$ is a rectangle.
EXERCISE 8.1
1. If the diagonals of a parallelogram are equal, then show that it is a rectangle.
Show Answer
Solution
Let $A B C D$ be a parallelogram. To show that $A B C D$ is a rectangle, we have to prove that one of its interior angles is $90^{\circ}$.
In $\triangle A B C$ and $\triangle D C B$,
$A B=D C$ (Opposite sides of a parallelogram are equal)
$BC=BC($ Common)
$AC=DB$ (Given)
$\therefore \triangle ABC \triangle DCB$ (By SSS Congruence rule)
$\Rightarrow$
$A B C=D C B$
It is known that the sum of the measures of angles on the same side of transversal is $180^{\circ}$.
$ \begin{matrix} \angle \angle & ABC+DCB=180^{\circ}(AB|| CD) \\ \Rightarrow \angle & ABC+\angle ABC=180^{\circ} \\ \Rightarrow 2 \angle & ABC=180^{\circ} \\ \Rightarrow \angle & ABC=90^{\circ} \end{matrix} $
Since $A B C D$ is a parallelogram and one of its interior angles is $90^{\circ}, A B C D$ is a rectangle.
2. Show that the diagonals of a square are equal and bisect each other at right angles.
Show Answer
Solution
Let $A B C D$ be a square. Let the diagonals $A C$ and $B D$ intersect each other at a point $O$. To prove that the diagonals of a square are equal and bisect each other at right angles, we have to prove $A C=B D, O A=O C, O B=O D$, and $\angle A O B=90^{\circ}$.
In $\triangle A B C$ and $\triangle D C B$,
$A B=D C$ (Sides of a square are equal to each other)
$\angle ABC=\angle DCB(.$ All interior angles are of $90^{\circ}$ )
$B C=C B$ (Common side)
$\therefore \quad \triangle ABC \cong \triangle DCB$ (By SAS congruency)
$\therefore \quad AC=DB(By CPCT)$
Hence, the diagonals of a square are equal in length.
In $\triangle AOB$ and $\triangle COD$, $\angle AOB=\angle COD$ (Vertically opposite angles)
$\angle ABO=CDO$ (Alternate interior angles)
$A B=C D$ (Sides of a square are always equal)
$\angle \triangle AOB^{\angle} \triangle COD$ (By AAS congruence rule)
$\angle AO=CO$ and $OB=OD$ (By CPCT)
Hence, the diagonals of a square bisect each other.
In $\triangle AOB$ and $\triangle COB$,
As we had proved that diagonals bisect each other, therefore,
$AO=CO$
$A B=C B$ (Sides of a square are equal)
$BO=BO$ (Common)
$\angle \triangle AOB \triangle COB$ (By SSS congruency)
$\angle AOB=COOB(By CPCT)$
However, $\hat{A O B}+\angle C O B=180^{\circ}$ (Linear pair)
$\angle AOB=180^{\circ} 2$
$\angle AOB=90^{\circ}$
Hence, the diagonals of a square bisect each other at right angles.
3. Diagonal $\mathrm{AC}$ of a parallelogram $\mathrm{ABCD}$ bisects $\angle \mathrm{A}$ (see Fig. 8.11). Show that
(i) it bisects $\angle \mathrm{C}$ also,
(ii) $\mathrm{ABCD}$ is a rhombus.
Fig. 8.11
Show Answer
Solution
(i) $A B C D$ is a parallelogram.
$\angle DAC=BCA$ (Alternate interior angles) ..
And, $B A C=D C A$ (Alternate interior angles) … (2) However, it is given that $A C$ bisects $\angle A$.
$\angle \angle DAC=\angle BAC \ldots$
From equations (1), (2), and (3), we obtain
$\angle D A C=B C A=B A €=\angle D C A$.
$\angle$ DCA $=B C A$
Hence, $A C$ bisects $C^{\circ}$.
(ii)From equation (4), we obtain
$\angle DAC=\angle DCA$
$\angle DA=DC$ (Side opposite to equal angles are equal)
However, $D A=B C$ and $A B=C D$ (Opposite sides of a parallelogram)
$\angle A B=B C=C D=D A$ Hence, $A B C D$
is a rhombus.
4. $\mathrm{ABCD}$ is a rectangle in which diagonal $\mathrm{AC}$ bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{C}$. Show that:
(i) $\mathrm{ABCD}$ is a square
(ii) diagonal $\mathrm{BD}$ bisects $\angle \mathrm{B}$ as well as $\angle \mathrm{D}$.
Show Answer
Solution
(i) It is given that $A B C D$ is a rectangle.
$\angle \angle A=\angle C$
$ \begin{aligned} & \Rightarrow \frac{1}{2} \angle A=\frac{1}{2} \angle C \\ & \Rightarrow \angle DAC=\angle DCA \quad(AC \text{ bisects } \angle A \text{ and } \angle C) \end{aligned} $
$C D=D A$ (Sides opposite to equal angles are also equal)
However, $D A=B C$ and $A B=C D$ (Opposite sides of a rectangle are equal)
$\angle A B=B C=C D=D A$
$A B C D$ is a rectangle and all of its sides are equal.
Hence, $A B C D$ is a square.
(ii) Let us join BD.
In $\triangle B C D$,
$B C=C D$ (Sides of a square are equal to each other)
$\angle C D B=\mathbb{C} B D$ (Angles opposite to equal sides are equal)
However, $́ CDB=\angle ABD$ (Alternate interior angles for $A B | C D$ )
$\angle CBD=ABD$
$\angle BD$ bisects $B$.
Also, $C^{C} B D=A D B$ (Alternate interior angles for $B C | A D$ )
$\angle \angle CDB=A ABD \angle$
BD bisects b.
5. In parallelogram $A B C D$, two points $P$ and $Q$ are taken on diagonal $\mathrm{BD}$ such that $\mathrm{DP}=\mathrm{BQ}$ (see Fig. 8.12). Show that:
(i) $\triangle \mathrm{APD} \cong \triangle \mathrm{CQB}$
(ii) $\mathrm{AP}=\mathrm{CQ}$
(iii) $\triangle \mathrm{AQB} \cong \triangle \mathrm{CPD}$
(iv) $\mathrm{AQ}=\mathrm{CP}$
(v) APCQ is a parallelogram
Fig. 8.12
Show Answer
Solution
(i) In $\triangle APD$ and $\triangle CQB$,
$\angle ADP=\angle CBQ$ (Alternate interior angles for $BC || AD$ )
$A D=C B$ (Opposite sides of parallelogram ABCD)
$DP=BQ$ (Given)
$\angle \triangle APD \angle \triangle CQB$ (Using SAS congruence rule) ii)
As we had observed that $\triangle APD \angle \triangle CQB,($
$\angle AP=CQ(CPCT)$
(iii) In $\triangle AQB$ and $\triangle CPD$,
$\angle ABQ=\angle CDP$ (Alternate interior angles for $AB || CD$ )
$A B=C D$ (Opposite sides of parallelogram ABCD)
$B Q=D P$ (Given)
$\angle \triangle AQB \angle \triangle CPD$ (Using SAS congruence rule) iv)
As we had observed that $\triangle AQB \angle \triangle CPD$, (
$\angle AQ=CP(CPCT)$
(v) From the result obtained in (ii) and (iv),
$AQ=CP$ and $AP=CQ$
Since opposite sides in quadrilateral APCQ are equal to each other, APCQ is a parallelogram.
6. $\mathrm{ABCD}$ is a parallelogram and $\mathrm{AP}$ and $\mathrm{CQ}$ are perpendiculars from vertices $\mathrm{A}$ and $\mathrm{C}$ on diagonal $\mathrm{BD}$ (see Fig. 8.13). Show that
(i) $\triangle \mathrm{APB} \cong \triangle \mathrm{CQD}$
(ii) $\mathrm{AP}=\mathrm{CQ}$
Fig. 8.13
Show Answer
Solution
(i) In $\triangle APB$ and $\triangle CQD$,
$\angle APB=\angle CQD(.$ Each $.90^{\circ})$
$A B=C D$ (Opposite sides of parallelogram $A B C D) \quad \angle A B P$
$=$ CDQ (Alternate interior angles for $A B || C D$ )
${ }^{\angle} \triangle APB \angle \triangle CQD$ (By AAS congruency)
(ii) By using the above result
$\triangle APB \angle \triangle CQD$, we obtain $A P=C Q(B y C P C T)$
7. $\mathrm{ABCD}$ is a trapezium in which $\mathrm{AB} || \mathrm{CD}$ and $\mathrm{AD}=\mathrm{BC}$ (see Fig. 8.14). Show that
(i) $\angle \mathrm{A}=\angle \mathrm{B}$
(ii) $\angle \mathrm{C}=\angle \mathrm{D}$
(iii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$
(iv) diagonal $\mathrm{AC}=$ diagonal $\mathrm{BD}$
[Hint: Extend $\mathrm{AB}$ and draw a line through $\mathrm{C}$ parallel to $\mathrm{DA}$ intersecting $\mathrm{AB}$ produced at $\mathrm{E}$.]
Fig. 8.14
Show Answer
Solution
Let us extend $A B$. Then, draw a line through $C$, which is parallel to $A D$, intersecting $A E$ at point $E$. It is clear that AECD is a parallelogram.
(i) $\quad AD=CE$ (Opposite sides of parallelogram AECD)
However, $A D=B C$ (Given)
Therefore, $BC=CE$
$\angle CEB=/ CBE$ (Angle opposite to equal sides are also equal)
Consider parallel lines AD and CE. AE is the transversal line for them.
$\angle A+C E B=180^{\circ}$ (Angles on the same side of transversal)
${ }^{\angle} A+C B E=180^{\circ}$ (Using the relation $\angle C E B=\angle C B E$ ) $\ldots(1)$
However, $\hat{B}+C B E=180^{\circ}$ (Linear pair angles) $\ldots$ (2)
From equations (1) and (2), we obtain $\angle A$
$=\angle B$
(ii) $\quad A B || C D$
$\angle A+D=180^{\circ}$ (Angles on the same side of the transversal)
Also, $C^{c}+B=180^{\circ}$ (Angles on the same side of the transversal)
$\angle A+D \leqq C+B$
However, $\grave{A}=B$ [Using the result obtained in (i) $] \angle C=$ D
(iii) In $\triangle A B C$ and $\triangle B A D$,
$A B=B A($ Common side)
$B C=A D$ (Given)
$\angle B=A$ (Proved before)
$\angle \triangle ABC \triangle BAD$ (SAS congruence rule) (iv) We had observed that, $\triangle ABC \angle \triangle BAD$
$\angle AC=BD(By CPCT)$
8.2 The Mid-point Theorem
You have studied many properties of a triangle as well as a quadrilateral. Now let us study yet another result which is related to the mid-point of sides of a triangle. Perform the following activity.
Draw a triangle and mark the mid-points $\mathrm{E}$ and $\mathrm{F}$ of two sides of the triangle. Join the points $\mathrm{E}$ and $\mathrm{F}$ (see Fig. 8.15).
Fig. 8.15
Measure $\mathrm{EF}$ and $\mathrm{BC}$. Measure $\angle \mathrm{AEF}$ and $\angle \mathrm{ABC}$.
What do you observe? You will find that :
$\mathrm{EF}=\frac{1}{2} \mathrm{BC} \text { and } \angle \mathrm{AEF}=\angle \mathrm{ABC}$
so, $\mathrm{EF} || \mathrm{BC}$
Repeat this activity with some more triangles.
So, you arrive at the following theorem:
Theorem 8.8 : The line segment joining the mid-points of two sides of a triangle is parallel to the third side.
You can prove this theorem using the following clue:
Observe Fig 8.16 in which $E$ and $F$ are mid-points of $\mathrm{AB}$ and $\mathrm{AC}$ respectively and $\mathrm{CD} || \mathrm{BA}$.
Fig. 8.16
$ \begin{equation*} \Delta \mathrm{AEF} \cong \triangle \mathrm{CDF} \tag{ASAनियम} \end{equation*} $
So, $\quad \mathrm{EF}=\mathrm{DF}$ and $\mathrm{BE}=\mathrm{AE}=\mathrm{DC} \quad($ Why? $)$
Therefore, BCDE is a parallelogram. (Why?)
This gives $\mathrm{EF} || \mathrm{BC}$.
In this case, also note that $\mathrm{EF}=\frac{1}{2} \mathrm{ED}=\frac{1}{2} \mathrm{BC}$.
Can you state the converse of Theorem 8.8? Is the converse true?
You will see that converse of the above theorem is also true which is stated as below:
Theorem 8.9 : The line drawn through the mid-point of one side of a triangle, parallel to another side bisects the third side.
In Fig 8.17, observe that $\mathrm{E}$ is the mid-point of $\mathrm{AB}$, line $l$ is passsing through $\mathrm{E}$ and is parallel to $\mathrm{BC}$ and $\mathrm{CM} || \mathrm{BA}$.
Prove that $\mathrm{AF}=\mathrm{CF}$ by using the congruence of $\triangle \mathrm{AEF}$ and $\triangle \mathrm{CDF}$.
Fig. 8.17
Example 6 : In $\triangle \mathrm{ABC}, \mathrm{D}, \mathrm{E}$ and $\mathrm{F}$ are respectively the mid-points of sides $\mathrm{AB}, \mathrm{BC}$ and $\mathrm{CA}$ (see Fig. 8.18). Show that $\triangle \mathrm{ABC}$ is divided into four congruent triangles by joining $\mathrm{D}, \mathrm{E}$ and $\mathrm{F}$.
Fig. 8.18
Solution : As D and E are mid-points of sides AB and $\mathrm{BC}$ of the triangle $\mathrm{ABC}$, by Theorem 8.8 ,
Similarly, $\quad \quad \mathrm{DF} || \mathrm{BC}$ and $\mathrm{EF} || \mathrm{AB}$
Therefore ADEF, BDFE and DFCE are all parallelograms.
Now $\mathrm{DE}$ is a diagonal of the parallelogram $\mathrm{BDFE}$,
therefore, $\quad \Delta \mathrm{BDE} \cong \Delta \mathrm{FED}$
Similarly $\quad \Delta \mathrm{DAF} \cong \triangle \mathrm{FED}$
and $\quad \Delta \mathrm{EFC} \cong \triangle \mathrm{FED}$
So, all the four triangles are congruent.
Example 7 : $ l, m$ and $n$ are three parallel lines intersected by transversals $p$ and $q$ such that $l, m$ and $n$ cut off equal intercepts $\mathrm{AB}$ and $\mathrm{BC}$ on $p$ (see Fig. 8.19). Show that $l, m$ and $n$ cut off equal intercepts $\mathrm{DE}$ and $\mathrm{EF}$ on $q$ also.
Fig. 8.19
Solution : We are given that $\mathrm{AB}=\mathrm{BC}$ and have to prove that $\mathrm{DE}=\mathrm{EF}$.
Let us join $\mathrm{A}$ to $\mathrm{F}$ intersecting $m$ at $\mathrm{G}$.
The trapezium ACFD is divided into two triangles;
namely $\triangle \mathrm{ACF}$ and $\triangle \mathrm{AFD}$.
In $\triangle \mathrm{ACF}$, it is given that $\mathrm{B}$ is the mid-point of $\mathrm{AC}(\mathrm{AB}=\mathrm{BC})$
and $\quad \mathrm{BG} || \mathrm{CF} \quad($ since $m || n)$.
So, $\mathrm{G}$ is the mid-point of AF (by using Theorem 8.9)
Now, in $\triangle$ AFD, we can apply the same argument as $G$ is the mid-point of AF, $\mathrm{GE} || \mathrm{AD}$ and so by Theorem $8.9, \mathrm{E}$ is the mid-point of $\mathrm{DF}$,
i.e.,$\quad\mathrm{DE}=\mathrm{EF}$.
In other words, $l, m$ and $n$ cut off equal intercepts on $q$ also.
EXERCISE 8.2
1. $A B C D$ is a quadrilateral in which $P, Q, R$ and $S$ are mid-points of the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and $\mathrm{DA}$ (see Fig 8.20). AC is a diagonal. Show that :
(i) $\mathrm{SR} || \mathrm{AC}$ and $\mathrm{SR}=\frac{1}{2} \mathrm{AC}$
(ii) $\mathrm{PQ}=\mathrm{SR}$
(iii) $\mathrm{PQRS}$ is a parallelogram.
Fig. 8.20
Show Answer
Solution
(i) In $\triangle A D C, S$ and $R$ are the mid-points of sides $A D$ and $C D$ respectively. In a triangle, the line segment joining the mid-points of any two sides of the triangle is parallel to the third side and is half of it.
$\angle SR || AC$ and $SR=\frac{1}{2} AC$.
(ii) In $\triangle A B C, P$ and $Q$ are mid-points of sides $A B$ and $B C$ respectively. Therefore, by using mid-point theorem,
$P Q || A C$ and $P Q=\frac{1}{2} A C \ldots$
Using equations (1) and (2), we obtain
$PQ || SR$ and $PQ=SR \ldots$ (3) $\angle$
$P Q=S R$ (iii) From equation (3), we obtained
Clearly, one pair of opposite sides of quadrilateral PQRS is parallel and equal.
2. $A B C D$ is a rhombus and $P, Q, R$ and $S$ are the mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral $P Q R S$ is a rectangle.
Show Answer
Solution
b $\quad$ e
$\angle PQ || AC$ and $PQ=\stackrel{\frac{1}{2}<}{2}$
In $\triangle A D C$, In $\triangle A B C, P$ and $Q$ are the mid-points of sides $A B$ and $BC$ respectively.
AC (Using mid-point theorem) … (1)
$R$ and $S$ are the mid-points of $C D$ and $A D$ respectively. $RS || AC$ and $RS=\sqrt{\frac{1}{2}} AC$ (Using mid-point theorem)
From equations (1) and (2), we obtain
$P Q || R S$ and $P Q=R S$
Since in quadrilateral PQRS, one pair of opposite sides is equal and parallel to each other, it is a parallelogram.
Let the diagonals of rhombus $A B C D$ intersect each other at point $O$.
In quadrilateral OMQN,
$\because$
$M Q || ON \because(PQ || AC) \quad QN$
I| OM ( QR || BD)
Therefore, OMQN is a parallelogram.
$\angle \angle \quad \angle M Q N=N O M$
$\angle L \quad \angle PQR=NOM$
However, $\angle NOM=90^{\circ}$ (Diagonals of a rhombus are perpendicular to each other) $\angle$ $\angle PQR=90^{\circ}$
Clearly, PQRS is a parallelogram having one of its interior angles as $90^{\circ}$.
Hence, $P Q R S$ is a rectangle.
3. $A B C D$ is a rectangle and $P, Q, R$ and $S$ are mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral $P Q R S$ is a rhombus.
Show Answer
Solution
Let us join $A C$ and $B D$.
In $\triangle ABC$,
$P$ and $Q$ are the mid-points of $A B$ and $B C$ respectively. $\angle PQ || AC$ and $\frac{1}{2} PQ=\quad AC($ Mid-point theorem $) \ldots$ Similarly in
$\triangle ADC$,
$\frac{1}{2}$
$SR || AC$ and $SR=AC$ (Mid-point theorem) … (2)
Clearly, $PQ|| SR$ and $PQ=SR$
Since in quadrilateral PQRS, one pair of opposite sides is equal and parallel to each other, it is a parallelogram.
$\angle PS || QR$ and $PS=QR$ (Opposite sides of parallelogram) $\ldots(3)$
In $\triangle B C D, Q$ and $R$ are the mid-points of side $B C$ and $C D$ respectively.
$\angle QR || BD$ and $QR=\frac{1}{2} BD$ (Mid-point theorem) …
However, the diagonals of a rectangle are equal. /
$A C=B D \ldots(5)$
By using equation (1), (2), (3), (4), and (5), we obtain PQ
$=QR=SR=PS$ Therefore, $PQRS$ is a rhombus.
4. $\mathrm{ABCD}$ is a trapezium in which $\mathrm{AB} || \mathrm{DC}, \mathrm{BD}$ is a diagonal and $\mathrm{E}$ is the mid-point of $\mathrm{AD}$. A line is drawn through $E$ parallel to $A B$ intersecting $B C$ at $F$ (see Fig. 8.21). Show that $\mathrm{F}$ is the mid-point of $\mathrm{BC}$.
Fig. 8.21
Show Answer
Solution
Let $EF$ intersect $DB$ at $G$.
By converse of mid-point theorem, we know that a line drawn through the mid-point of any side of a triangle and parallel to another side, bisects the third side.
In $\triangle ABD$,
$E F || A B$ and $E$ is the mid-point of $A D$.
Therefore, $G$ will be the mid-point of $DB$.
As $E F|| A B$ and $A B|| C D$,
$\angle EF || CD$ (Two lines parallel to the same line are parallel to each other)
In $\triangle BCD, GF || CD$ and $G$ is the mid-point of line $BD$. Therefore, by using converse of mid-point theorem, $F$ is the mid-point of $BC$.
5. In a parallelogram $A B C D, E$ and $F$ are the mid-points of sides $\mathrm{AB}$ and $\mathrm{CD}$ respectively (see Fig. 8.22). Show that the line segments AF and $\mathrm{EC}$ trisect the diagonal $\mathrm{BD}$.
Fig. 8.22
Show Answer
Solution
$A B C D$ is a parallelogram.
$\angle A B | C D$
And hence, AE I| FC
Again, $A B=C D$ (Opposite sides of parallelogram ABCD)
$ _{A B} \frac{1}{2} CD $
$A E=F C(E$ and $F$ are mid-points of side $A B$ and $C D)$
In quadrilateral $A E C F$, one pair of opposite sides (AE and $C F$ ) is parallel and equal to each other. Therefore, AECF is a parallelogram. $\angle A F ||$ EC (Opposite sides of a parallelogram)
In $\triangle DQC, F$ is the mid-point of side $DC$ and $FP || CQ$ (as $AF || EC$ ). Therefore, by using the converse of mid-point theorem, it can be said that $P$ is the mid-point of
DQ.
$\angle DP=PQ \ldots(1)$
Similarly, in $\triangle A P B, E$ is the mid-point of side $A B$ and $E Q || A P$ (as $A F || E C$ ).
Therefore, by using the converse of mid-point theorem, it can be said that $Q$ is the mid-point of $P B$.
$\angle PQ=QB \ldots(2)$
From equations (1) and (2), DP
$=PQ=BQ$
Hence, the line segments $A F$ and $E C$ trisect the diagonal $B D$.
6. $\mathrm{ABC}$ is a triangle right angled at $\mathrm{C}$. A line through the mid-point $\mathrm{M}$ of hypotenuse $\mathrm{AB}$ and parallel to $\mathrm{BC}$ intersects $\mathrm{AC}$ at $\mathrm{D}$. Show that
(i) D is the mid-point of AC
(ii) $\mathrm{MD} \perp \mathrm{AC}$
(iii) $\mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB}$
Show Answer
Solution
(i) In $\triangle A B C$,
It is given that $M$ is the mid-point of $A B$ and $M D || B C$.
Therefore, $D$ is the mid-point of $A C$. (Converse of mid-point theorem)
(ii) As DM || $CB$ and $AC$ is a transversal line for them, therefore,
$\angle MDC+\angle DCB=180^{\circ}$ (Co-interior angles)
$\angle MDC+90^{\circ}=180^{\circ}$
$\angle MDC=90^{\circ}$
$\angle M D A C$
(iii) Join MC.
In $\triangle AMD$ and $\triangle CMD$, $A D=C D$ ( $D$ is the mid-point of side $A C$ ) $\quad A D M=\angle C D M$ (Each 90)
$DM=DM$ (Common)
$\angle \triangle AMD \angle \triangle CMD$ (By SAS
Therefore, $A M=C M$ (By CPCT)
congruence rule)
However, $A M=\stackrel{\frac{1}{2}}{A B}$ (M is the mid-point of $.A B)^{\angle}$
Therefore, it fan be said that
$C M=A M={ }^{\frac{1}{2}} A B$
8.3 Summary
In this chapter, you have studied the following points :
1. A diagonal of a parallelogram divides it into two congruent triangles.
2. In a parallelogram,
(i) opposite sides are equal
(ii) opposite angles are equal
(iii) diagonals bisect each other
3. Diagonals of a rectangle bisect each other and are equal and vice-versa.
4. Diagonals of a rhombus bisect each other at right angles and vice-versa.
5. Diagonals of a square bisect each other at right angles and are equal, and vice-versa.
6. The line-segment joining the mid-points of any two sides of a triangle is parallel to the third side and is half of it.
7. A line through the mid-point of a side of a triangle parallel to another side bisects the third side.
8.1 समांतर चतुर्भुज के गुण
आप कक्षा आठ में चतुर्भुजों और उनके प्रकारों का अध्ययन कर चुके हैं। एक चतुर्भुज चार भुजाएँ, चार कोण और चार शीर्ष हैं। एक समांतर चतुर्भुज एक चतुर्भुज है जिसमें सम्मुख भुजाओं के दोनों युग्म समांतर हैं आइए एक क्रियाकलाप करें।
कागज पर एक समांतर चतुर्भुज खींच कर उसे काट लीजिए। अब इसे विकर्ण के अनुदिश काट लीजिए (देखिए आकृति 8.1)। आप दो त्रिभुज प्राप्त करते हैं। इन त्रिभुजों के बारे में आप क्या कह सकते हैं?
एक त्रिभुज को दूसरे त्रिभुज पर रखिए। यदि आवश्यक हो, तो त्रिभुज को घुमाइए भी। आप क्या देखते हैं?
देखिए कि दोनों त्रिभुज परस्पर सर्वांगसम हैं।
आकृति 8.1
कुछ और समांतर चतुर्भुज खींच कर इस क्रियाकलाप को दोहराइए। प्रत्येक बार आप पाएँगे कि समांतर चतुर्भुज का एक विकर्ण उसे दो सर्वांगसम त्रिभुजों में विभाजित करता है। अब आइए इस परिणाम को सिद्ध करें।
प्रमेय 8.1 : किसी समांतर चतुर्भुज का एक विकर्ण उसे दो सर्वांगसम त्रिभुजों में विभाजित करता है।
उपपत्ति : मान लीजिए $\mathrm{ABCD}$ एक समांतर चतुर्भुज है और $\mathrm{AC}$ उसका एक विकर्ण है (देखिए आकृति 8.2)। देखिए कि विकर्ण $\mathrm{AC}$ समांतर चतुर्भुज $\mathrm{ABCD}$ को दो त्रिभुजों $\mathrm{ABC}$ और $\mathrm{CDA}$ में विभाजित करता है। हमें सिद्ध करना है कि ये दोनों त्रिभुज सर्वांगसम हैं।
आकृति 8.2
$\triangle \mathrm{ABC}$ और $\triangle \mathrm{CDA}$ के लिए ध्यान दीजिए कि $\mathrm{BC} || \mathrm{AD}$ है और $\mathrm{AC}$ एक तिर्यक रेखा है।
इसलिए, $\angle \mathrm{BCA}=\angle \mathrm{DAC}$ (एकांतर कोणों का युग्म)
साथ ही, $\mathrm{AB} || \mathrm{DC}$ और $\mathrm{AC}$ एक तिर्यक रेखा है।
इसलिए, $\angle \mathrm{BAC}=\angle \mathrm{DCA}$ (एकांतर कोणों का युग्म)
और $\mathrm{AC}=\mathrm{CA}$(उभयनिष्ठ)
अतः, $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$(ASA नियम)
अर्थात् विकर्ण $\mathrm{AC}$ समांतर चतुर्भुज $\mathrm{ABCD}$ को दो सर्वांगसम त्रिभुजों $\mathrm{ABC}$ और $\mathrm{CDA}$ में विभाजित करता है।
अब समांतर चतुर्भुज $\mathrm{ABCD}$ की सम्मुख भुजाओं को मापिए। आप क्या देखते हैं?
आप पाएँगे कि $\mathrm{AB}=\mathrm{DC}$ और $\mathrm{AD}=\mathrm{BC}$ है।
यह समांतर चतुर्भुज का एक अन्य गुण है, जिसे नीचे दिया जा रहा है :
प्रमेय 8.2 : एक समांतर चतुर्भुज में सम्मुख भुजाएँ बराबर होती हैं।
आप पहले ही सिद्ध कर चुके हैं कि समांतर चतुर्भुज का विकर्ण उसे दो सर्वांगसम त्रिभुजों में विभाजित करता है। अतः, आप इनके संगत भागों, मान लीजिए भुजाओं, के बारे में क्या कह सकते हैं? ये बराबर हैं।
इसलिए, $\mathrm{AB}=\mathrm{DC}$ और $\mathrm{AD}=\mathrm{BC}$ है।
अब इस परिणाम का विलोम क्या है? आप जानते हैं कि जो प्रमेय (किसी कथन) में दिया हो, तो उसके विलोम में उसे सिद्ध करना होता है और जो प्रमेय में दिया गया है उसे विलोम में दिया हुआ माना जाता है। ध्यान दीजिए कि प्रमेय 8.2 को निम्न रूप में भी लिखा जा सकता है :
यदि एक चतुर्भुज एक समांतर चतुर्भुज है, तो उसकी सम्मुख भुजाओं का प्रत्येक युग्म बराबर होता है। इसलिए, इसका विलोम निम्न होगा :
प्रमेय 8.3 : यदि एक चतुर्भुज की सम्मुख भुजाओं का प्रत्येक युग्म बराबर हो, तो वह एक समांतर चतुर्भुज होता है।
क्या आप इसके कारण दे सकते हैं?
मान लीजिए चतुर्भुज $\mathrm{ABCD}$ की भुजाएँ $\mathrm{AB}$ और $\mathrm{CD}$ बराबर हैं और साथ ही $\mathrm{AD}=\mathrm{BC}$ है (देखिए आकृति 8.3)। विकर्ण $\mathrm{AC}$ खींचिए।
आकृति 8.3
स्पष्टतः, $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$
( क्यों?) अतः, $\quad \angle \mathrm{BAC}=\angle \mathrm{DCA}$
और $\quad \angle \mathrm{BCA}=\angle \mathrm{DAC}$
क्या अब आप कह सकते हैं कि $\mathrm{ABCD}$ एक समांतर चतुर्भुज है? (क्यों?)
आपने अभी देखा है कि एक समांतर चतुर्भुज में सम्मुख भुजाओं का प्रत्येक युग्म बराबर होता है और विलोमतः यदि किसी चतुर्भुज में सम्मुख भुजाओं का प्रत्येक युग्म बराबर हो, तो वह एक समांतर चतुर्भुज होता है। क्या हम यही परिणाम सम्मुख कोणों के युग्मों के बारे में भी निकाल सकते हैं?
एक समांतर चतुर्भुज खींचिए और उसके कोणों को मापिए। आप क्या देखते हैं?
सम्मुख कोणों का प्रत्येक युग्म बराबर है।
इसे कुछ और समांतर चतुर्भुज लेकर दोहराइए। इससे हम एक अन्य परिणाम पर पहुँचते हैं, जो निम्न है :
प्रमेय 8.4 : एक समांतर चतुर्भुज में सम्मुख कोण बराबर होते हैं।
अब, क्या इस परिणाम का विलोम भी सत्य है? हाँ, ऐसा ही है। चतुर्भुज के कोण योग गुण और तिर्यक रेखा द्वारा प्रतिच्छेदित समांतर रेखाओं के गुणों का प्रयोग करके, हम देख सकते हैं कि उपरोक्त का विलोम भी सत्य है। इस प्रकार, हमें निम्न प्रमेय प्राप्त होती है:
प्रमेय 8.5 : यदि एक चतुर्भुज में सम्मुख कोणों का प्रत्येक युग्म बराबर हो, तो वह एक समांतर चतुर्भुज होता है।
समांतर चतुर्भुज का एक गुण और भी है। आइए इसका अध्ययन करें। एक समांतर चतुर्भुज $\mathrm{ABCD}$ खींचिए और उसके दोनों विकर्ण $\mathrm{AC}$ और $\mathrm{BD}$ खींचिए, जो परस्पर $\mathrm{O}$ पर प्रतिच्छेद करते हैं (देखिए आकृति 8.4)।
आकृति 8.4
$\mathrm{OA}, \mathrm{OB}, \mathrm{OC}$ और $\mathrm{OD}$ की लम्बाइयाँ मापिए।
आप क्या देखते हैं? आप देखेंगे कि
$$ \mathrm{OA}=\mathrm{OC} \text { और } \mathrm{OB}=\mathrm{OD} $$
है। अर्थात् $\mathrm{O}$ दोनों विकर्णों का मध्य-बिंदु है।
कुछ और समांतर चतुर्भुज लेकर इस क्रियाकलाप को दोहराइए।
प्रत्येक बार, आप प्राप्त करेंगे कि $\mathrm{O}$ दोनों विकर्णों का मध्य-बिंदु है।
इस प्रकार, हम निम्न प्रमेय प्राप्त करते हैं :
प्रमेय 8.6 : समांतर चतुर्भुज के विकर्ण एक दूसरे को (परस्पर) समद्विभाजित करते हैं।
अब, यदि एक चतुर्भुज के विकर्ण एक दूसरे को समद्विभाजित करें, तो क्या होगा? क्या यह एक समांतर चतुर्भुज होगा? वास्तव में, यह सत्य है।
यह प्रमेय 8.6 के परिणाम का विलोम है। इसे नीचे दिया जा रहा है :
प्रमेय 8.7 : यदि एक चतुर्भुज के विकर्ण एक दूसरे को समद्विभाजित करें, तो वह एक समांतर चतुर्भुज होता है।
आप इस परिणाम के लिए तर्क निम्न प्रकार दे सकते हैं :
ध्यान दीजिए कि आकृति 8.5 में, यह दिया है कि $\mathrm{OA}=\mathrm{OC}$ और $\mathrm{OB}=\mathrm{OD}$ है।
आकृति 8.5
अत:, $\Delta \mathrm{AOB} \cong \triangle \mathrm{COD} \quad$ (क्यों?)
इसलिए, $\angle \mathrm{ABO}=\angle \mathrm{CDO}$ (क्यों?)
इससे हमें $\mathrm{AB} || \mathrm{CD}$ प्राप्त होता है।
इसी प्रकार, $\mathrm{BC} || \mathrm{AD}$ है।
अतः, $\mathrm{ABCD}$ एक समांतर चतुर्भुज है।
आइए अब कुछ उदाहरण लें।
उदाहरण 1 : दर्शाइए कि एक आयत का प्रत्येक कोण एक समकोण होता है।
हल : याद कीजिए कि एक आयत क्या होता है।
एक आयत वह समांतर चतुर्भुज होता है जिसका एक कोण समकोण हो।
मान लीजिए $\mathrm{ABCD}$ एक आयत है, जिसमें $\angle \mathrm{A}=90^{\circ}$ है।
हमें दर्शाना है कि $\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$ है।
$\mathrm{AD} ||| \mathrm{BC}$ और $\mathrm{AB}$ एक तिर्यक रेखा है (देखिए आकृति 8.6)।
आकृति 8.6
इसलिए, $\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$ (तिर्यक रेखा के एक ही ओर के अंतः कोण)
परन्तु, $\angle \mathrm{A}=90^{\circ}$ है।
इसलिए, $\angle \mathrm{B}=180^{\circ}-\angle \mathrm{A}=180^{\circ}-90^{\circ}=90^{\circ}$
अब $\angle \mathrm{C}=\angle \mathrm{A}$ और $\angle \mathrm{D}=\angle \mathrm{B}$
(समांतर चतुर्भुज के सम्मुख कोण)
इसलिए, $\angle \mathrm{C}=90^{\circ}$ और $\angle \mathrm{D}=90^{\circ}$
अतः, आयत का प्रत्येक कोण $90^{\circ}$ है।
उदाहरण 2 : दर्शाइए कि एक समचतुर्भुज के विकर्ण परस्पर लम्ब होते हैं।
हल : समचतुर्भुज $\mathrm{ABCD}$ पर विचार कीजिए (देखिए आकृति 8.7)।
आकृति 8.7
आप जानते हैं कि $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$ (क्यों?)
अब, $\triangle \mathrm{AOD}$ और $\triangle \mathrm{COD}$ में,
$\mathrm{OA}=\mathrm{OC}$ (समांतर चतुर्भुज के विकर्ण परस्पर समद्विभाजित करते हैं)
$\mathrm{OD}=\mathrm{OD} \quad$ (उभयनिष्ठ)
$\mathrm{AD}=\mathrm{CD}$ (दिया है)
अतः, $\triangle \mathrm{AOD} \cong \triangle \mathrm{COD}$ (SSS सर्वांगसमता नियम)
इसलिए, $\angle \mathrm{AOD}=\angle \mathrm{COD}$ (CPCT)
परन्तु, $\angle \mathrm{AOD}+\angle \mathrm{COD}=180^{\circ}$ (रैखिक युग्म)
इसलिए, $2 \angle \mathrm{AOD}=180^{\circ}$
या, $\angle \mathrm{AOD}=90^{\circ}$
अतः, समचर्तुभुज के विकर्ण परस्पर लम्ब हैं।
उदाहरण 3 : $ \mathrm{ABC}$ एक समद्विबाहु त्रिभुज है, जिसमें $\mathrm{AB}=\mathrm{AC}$ है। $\mathrm{AD}$ बहिष्कोण $\mathrm{PAC}$ को समद्विभाजित करता है और $\mathrm{CD} || \mathrm{BA}$ है (देखिए आकृति 8.8)। दर्शाइए कि
(i) $\angle \mathrm{DAC}=\angle \mathrm{BCA}$ और
(ii) $\mathrm{ABCD}$ एक समांतर चतुर्भुज है।
आकृति 8.8
हल : (i) $\mathrm{ABC}$ एक समद्विबाहु त्रिभुज है, जिसमें $\mathrm{AB}=\mathrm{AC}$ है। (दिया है)
इसलिए, $\angle \mathrm{ABC}=\angle \mathrm{ACB}$ (बराबर भुजाओं के सम्मुख कोण)
साथ ही, $\angle \mathrm{PAC}=\angle \mathrm{ABC}+\angle \mathrm{ACB}$ (त्रिभुज का बहिष्कोण)
या, $\angle \mathrm{PAC}=2 \angle \mathrm{ACB}\quad$(1)
अब, $\mathrm{AD}$ कोण $\mathrm{PAC}$ को समद्विभाजित करती है।
इसलिए, $\angle \mathrm{PAC}=2 \angle \mathrm{DAC}\quad$(2)
अतः,
$2 \angle \mathrm{DAC} =2 \angle \mathrm{ACB} \quad[\text {और }(1) \text { से }(2)]$ $\text { या, } \quad \angle \mathrm{DAC} =\angle \mathrm{ACB}$
(ii) अब ये दोनों बराबर कोण वे एकांतर कोण हैं जो रेखाखंडों $\mathrm{BC}$ और $\mathrm{AD}$ को तिर्यक रेखा $\mathrm{AC}$ द्वारा प्रतिच्छेद करने से बनते हैं।
इसलिए, $\quad \mathrm{BC} || \mathrm{AD}$
साथ ही, $\mathrm{BA} || \mathrm{CD}$ है।
इस प्रकार, चतुर्भुज $\mathrm{ABCD}$ की सम्मुख भुजाओं के दोनों युग्म समांतर हैं।
अतः, $\mathrm{ABCD}$ एक समांतर चतुर्भुज है।
उदाहरण 4 : दो समांतर रेखाओं $l$ और $m$ को एक तिर्यक रेखा $p$ प्रतिच्छेद करती है (देखिए आकृति 8.9)। दर्शाइए कि अंतः कोणों के समद्विभाजकों से बना चतुर्भुज एक आयत है।
आकृति 8.9
हल : यह दिया है कि $l || m$ है और तिर्यक रेखा $p$ इन्हें क्रमशः बिंदुओं $\mathrm{A}$ और $\mathrm{C}$ पर प्रतिच्छेद करती है।
$\angle \mathrm{PAC}$ और $\angle \mathrm{ACQ}$ के समद्विभाजक $\mathrm{B}$ पर प्रतिच्छेद करते हैं और $\angle \mathrm{ACR}$ और $\angle \mathrm{SAC}$ के समद्विभाजक $\mathrm{D}$ पर प्रतिच्छेद करते हैं।
हमें दर्शाना है कि चतुर्भुज $\mathrm{ABCD}$ एक आयत है।
अब, $\angle \mathrm{PAC}=\angle \mathrm{ACR}$
( $l || m$ और तिर्यक रेखा $p$ से बने एकांतर कोण)
इसलिए, $\frac{1}{2} \angle \mathrm{PAC}=\frac{1}{2} \angle \mathrm{ACR}$
अर्थात्, $\quad \angle \mathrm{BAC}=\angle \mathrm{ACD}$
ये बराबर कोण रेखाओं $\mathrm{AB}$ और $\mathrm{DC}$ के तिर्यक रेखा $\mathrm{AC}$ द्वारा प्रतिच्छेदित करने से बनते हैं और ये एकांतर कोण हैं।
इसलिए, $\mathrm{AB} || \mathrm{DC}$
इसी प्रकार, $\mathrm{BC} || \mathrm{AD}$ ( $\angle \mathrm{ACB}$ और $\angle \mathrm{CAD}$ लेने पर)
अतः, $\mathrm{ABCD}$ एक समांतर चतुर्भुज है।
साथ ही, $\angle \mathrm{PAC}+\angle \mathrm{CAS}=180^{\circ} \text { (रैखिक युग्म) }$
इसलिए, $\quad \frac{1}{2} \angle \mathrm{PAC}+\frac{1}{2} \angle \mathrm{CAS}=\frac{1}{2} \times 180^{\circ}=90^{\circ}$
या, $\angle \mathrm{BAC}+\angle \mathrm{CAD}=90^{\circ}$
या, $\angle \mathrm{BAD}=90^{\circ}$
इसलिए, $\mathrm{ABCD}$ एक समांतर चतुर्भुज है जिसका एक कोण समकोण है। अतः $\mathrm{ABCD}$ एक आयत है।
उदाहरण 5 : दर्शाइए कि एक समांतर चतुर्भुज के कोणों के समद्विभाजक एक आयत बनाते हैं।
हल : मान लीजिए $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ और $\mathrm{S}$ क्रमशः समांतर चतुर्भुज $\mathrm{ABCD}$ के $\angle \mathrm{A}$ और $\angle \mathrm{B}, \angle \mathrm{B}$ और $\angle \mathrm{C}$, $\angle \mathrm{C}$ और $\angle \mathrm{D}$ तथा $\angle \mathrm{D}$ और $\angle \mathrm{A}$ के समद्विभाजकों के प्रतिच्छेद बिंदु हैं (देखिए आकृति 8.10)।
आकृति 8.10
$\triangle \mathrm{ASD}$ में आप क्या देख सकते हैं?
चूँकि DS कोण D को और AS कोण A को समद्विभाजित करते हैं, इसलिए
$$ \begin{aligned} \angle \mathrm{DAS}+\angle \mathrm{ADS} & =\frac{1}{2} \angle \mathrm{A}+\frac{1}{2} \angle \mathrm{D} \\ & =\frac{1}{2}(\angle \mathrm{A}+\angle \mathrm{D}) \\ & =\frac{1}{2} \times 180^{\circ} \\ (\angle \mathrm{A} \text { और } & \angle \mathrm{D} \text { तिर्यक रेखा के एक ही ओर के अंतः कोण हैं }) \\ & =90^{\circ} \end{aligned} $$
साथ ही, $\angle \mathrm{DAS}+\angle \mathrm{ADS}+\angle \mathrm{DSA}=180^{\circ}$ (त्रिभुज का कोण योग गुण)
या, $\angle \mathrm{DSA}=90^{\circ}$
या, $90^{\circ}+\angle \mathrm{DSA}=180^{\circ}$
अतः, $\angle \mathrm{PSR}=90^{\circ}$ ( $\angle \mathrm{DSA}$ का शीर्षाभिमुख कोण)
इसी प्रकार, यह दर्शाया जा सकता है कि $\angle \mathrm{APB}=90^{\circ}$ या $\angle \mathrm{SPQ}=90^{\circ}$ (जैसा कि $\angle \mathrm{DSA}$ के लिए किया था)। इसी प्रकार, $\angle \mathrm{PQR}=90^{\circ}$ और $\angle \mathrm{SRQ}=90^{\circ}$ है।
इसलिए, $\mathrm{PQRS}$ एक ऐसा चतुर्भुज है जिसके सभी कोण समकोण हैं।
क्या हम निष्कर्ष निकाल सकते हैं कि यह एक आयत है? आइए इसकी जाँच करें। हम दर्शा चुके हैं कि $\angle \mathrm{PSR}=\angle \mathrm{PQR}=90^{\circ}$ और $\angle \mathrm{SPQ}=\angle \mathrm{SRQ}=90^{\circ}$ है, अर्थात् सम्मुख कोणों के दोनों युग्म बराबर हैं।
अतः $\mathrm{PQRS}$ एक समांतर चतुर्भुज है, जिसमें एक कोण (वास्तव में सभी कोण) समकोण हैं। इसलिए, $\mathrm{PQRS}$ एक आयत है।
प्रश्नावली 8.1
1. यदि एक समांतर चतुर्भुज के विकर्ण बराबर हों, तो दर्शाइए कि वह एक आयत है।
Show Answer
Missing2. दर्शाइए कि एक वर्ग के विकर्ण बराबर होते हैं और परस्पर समकोण पर समद्विभाजित करते हैं।
Show Answer
Missing3. समांतर चतुर्भुज $\mathrm{ABCD}$ का विकर्ण $\mathrm{AC}$ कोण $\mathrm{A}$ को समद्विभाजित करता है (देखिए आकृति 8.11)। दर्शाइए कि
(i) यह $\angle \mathrm{C}$ को भी समद्विभाजित करता है।
(ii) $\mathrm{ABCD}$ एक समचतुर्भुज है।
आकृति 8.11
Show Answer
Missing4. $\mathrm{ABCD}$ एक आयत है जिसमें विकर्ण $\mathrm{AC}$ दोनों कोणों $\mathrm{A}$ और $\mathrm{C}$ को समद्विभाजित करता है। दर्शाइए कि
(i) $\mathrm{ABCD}$ एक वर्ग है
(ii) विकर्ण $\mathrm{BD}$ दोनों कोणों $\mathrm{B}$ और $\mathrm{D}$ को समद्विभाजित करता है
Show Answer
Missing5. समांतर चतुर्भुज $\mathrm{ABCD}$ के विकर्ण $\mathrm{BD}$ पर दो बिंदु $\mathrm{P}$ और $\mathrm{Q}$ इस प्रकार स्थित हैं कि $\mathrm{DP}=\mathrm{BQ}$ है (देखिए आकृति 8.12)। दर्शाइए कि
(i) $\triangle \mathrm{APD} \cong \triangle \mathrm{CQB}$
(ii) $\mathrm{AP}=\mathrm{CQ}$
(iii) $\triangle \mathrm{AQB} \cong \triangle \mathrm{CPD}$
(iv) $\mathrm{AQ}=\mathrm{CP}$
(v) APCQ एक समांतर चतुर्भुज है।
आकृति 8.12
Show Answer
Missing6. $\mathrm{ABCD}$ एक समांतर चतुर्भज है तथा $\mathrm{AP}$ और $\mathrm{CQ}$ शीर्षों $\mathrm{A}$ और $\mathrm{C}$ से विकर्ण $\mathrm{BD}$ पर क्रमशः लम्ब हैं (देखिए आकृति 8.13)। दर्शाइए कि
(i) $\triangle \mathrm{APB} \cong \triangle \mathrm{CQD}$
(ii) $\mathrm{AP}=\mathrm{CQ}$
आकृति 8.13
Show Answer
Missing7. $\mathrm{ABCD}$ एक समलंब है, जिसमें $\mathrm{AB} || \mathrm{DC}$ और $\mathrm{AD}=\mathrm{BC}$ है (देखिए आकृति 8.14)। दर्शाइए कि
(i) $\angle \mathrm{A}=\angle \mathrm{B}$
(ii) $\angle \mathrm{C}=\angle \mathrm{D}$
(iii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$
(iv) विकर्ण $\mathrm{AC}=$ विकर्ण $\mathrm{BD}$ है।
[संकेत : $\mathrm{AB}$ को बढ़ाइए और $\mathrm{C}$ से होकर $\mathrm{DA}$ के समांतर एक रेखा खींचिए जो बढ़ी हुई भुजा $A B$ को $E$ पर प्रतिच्छेद करे।]
आकृति 8.14
Show Answer
Missing8.2 मध्य-बिंदु प्रमेय
आप एक त्रिभुज और एक चतुर्भुज के अनेक गुणों का अध्ययन कर चुके हैं। आइए त्रिभुज के एक अन्य गुण का अध्ययन करें, जो एक त्रिभुज की भुजाओं के मध्य-बिंदुओं से संबंधित है। इसके लिए, निम्नलिखित क्रियाकलाप कीजिए :
एक त्रिभुज $\mathrm{ABC}$ खींचिए और उसकी दो भुजाओं $\mathrm{AB}$ और $\mathrm{AC}$ के मध्य-बिंदु $\mathrm{E}$ और $\mathrm{F}$ अंकित कीजिए। $\mathrm{E}$ और $\mathrm{F}$ को मिलाइए (देखिए आकृति 8.15)।
आकृति 8.15
$\mathrm{EF}$ और $\mathrm{BC}$ को मापिए। साथ ही, $\angle \mathrm{AEF}$ और $\angle \mathrm{ABC}$ को भी मापिए।
आप क्या देखते हैं? आप पाएँगे कि
$$ \mathrm{EF}=\frac{1}{2} \mathrm{BC} \text { और } \angle \mathrm{AEF}=\angle \mathrm{ABC} $$
है। अतः, $\mathrm{EF} || \mathrm{BC}$ है।
कुछ अन्य त्रिभुज लेकर, इस क्रियाकलाप को दोहराइए।
इस प्रकार, आप सरलता से निम्न प्रमेय पर पहुँच सकते हैं:
प्रमेय 8.8 : किसी त्रिभुज की किन्ही दो भुजाओं के मध्य-बिंदुओं को मिलाने वाला रेखाखंड तीसरी भुजा के समांतर होता है।
आप इस प्रमेय को निम्नलिखित संकेत की सहायता से सिद्ध कर सकते हैं।
आकृति 8.16 को देखिए, जिसमें $\mathrm{E}$ और $\mathrm{F}$ क्रमशः $\triangle \mathrm{ABC}$ की भुजाओं $\mathrm{AB}$ और $\mathrm{AC}$ के मध्य-बिंदु हैं तथा $\mathrm{CD} || \mathrm{BA}$ है।
आकृति 8.16
$ \begin{equation*} \Delta \mathrm{AEF} \cong \triangle \mathrm{CDF} \tag{ASAनियम} \end{equation*} $
इसलिए, $\mathrm{EF}=\mathrm{DF}$ और $\mathrm{BE}=\mathrm{AE}=\mathrm{DC}$ (क्यों?)
अतः, BCDE एक समांतर चतुर्भुज है। (क्यों?) इससे
$\mathrm{EF} || \mathrm{BC}$ प्राप्त होता है।
ध्यान दीजिए कि $\mathrm{EF}=\frac{1}{2} \mathrm{ED}=\frac{1}{2} \mathrm{BC}$ है।
क्या आप प्रमेय 8.8 का विलोम लिख सकते हैं? क्या यह विलोम सत्य है?
आप देखेंगे कि ऊपर दिए गए प्रमेय का विलोम भी सत्य है। इसे नीचे दिया जा रहा है :
प्रमेय 8.9 : किसी त्रिभुज की एक भुजा के मध्य-बिंदु से दूसरी भुजा के समांतर खींची गई रेखा तीसरी भुजा को समद्विभाजित करती है।
आकृति 8.17 में देखिए कि भुजा $\mathrm{AB}$ का मध्य-बिंदु $\mathrm{E}$ है और $\mathrm{E}$ से होकर जाने वाली रेखा $l$ भुजा $\mathrm{BC}$ के समांतर है। साथ ही, $\mathrm{CM} || \mathrm{BA}$ है।
$\triangle \mathrm{AEF}$ और $\triangle \mathrm{CDF}$ की सर्वांगसमता का प्रयोग करके, $\mathrm{AF}=\mathrm{CF}$ सिद्ध कीजिए।
आकृति 8.17
उदाहरण 6 : $ \triangle \mathrm{ABC}$ में, $\mathrm{D}, \mathrm{E}$ और $\mathrm{F}$ क्रमशः भुजाओं $\mathrm{AB}, \mathrm{BC}$ और $\mathrm{CA}$ के मध्य-बिंदु हैं (देखिए आकृति 8.18)। दर्शाइए कि बिन्दुओं $\mathrm{D}, \mathrm{E}$ और $\mathrm{F}$ को मिलाने पर $\triangle \mathrm{ABC}$ चार सर्वांगसम त्रिभुजों में विभाजित हो जाता है।
आकृति 8.18
हल : चूँकि $\mathrm{D}$ और $\mathrm{E}$ क्रमशः भुजाओं $\mathrm{AB}$ और $\mathrm{BC}$ के मध्य-बिंदु हैं, इसलिए प्रमेय 8.9 द्वारा
इसी प्रकार, $\mathrm{DF} || \mathrm{BC}$ और $\mathrm{EF} || \mathrm{AB}$ है।
इसलिए, $\mathrm{ADEF}, \mathrm{BDFE}$ और $\mathrm{DFCE}$ में से प्रत्येक एक समांतर चतुर्भुज है।
अब, $\mathrm{DE}$ समांतर चतुर्भुज $\mathrm{BDFE}$ का एक विकर्ण है।
इसलिए, $\Delta \mathrm{BDE} \cong \Delta \mathrm{FED}$
इसी प्रकार, $\Delta \mathrm{DAF} \cong \triangle \mathrm{FED}$
और $\Delta \mathrm{EFC} \cong \Delta \mathrm{FED}$
अतः, चारों त्रिभुज सर्वांगसम हैं।
उदाहरण 7 : $ l, m$ और $n$ तीन समांतर रेखाएँ हैं, जो तिर्यक रेखाओं $p$ और $q$ द्वारा इस प्रकार प्रतिच्छेदित हैं कि $l, m$ और $n$ रेखा $p$ पर समान अंतः खंड $\mathrm{AB}$ और $\mathrm{BC}$ काटती हैं (देखिए आकृति 8.19)। दर्शाइए कि $l, m$ और $n$ रेखा $q$ पर भी समान अंतः खंड $\mathrm{DE}$ और $\mathrm{EF}$ काटती हैं।
आकृति 8.19
हल : हमें $\mathrm{AB}=\mathrm{BC}$ दिया है और हमें $\mathrm{DE}=\mathrm{EF}$ सिद्ध करना है।
आइए $\mathrm{A}$ को $\mathrm{F}$ से मिलाएँ और इससे $\mathrm{AF}$ रेखा $m$ को $\mathrm{G}$ पर प्रतिच्छेद करती है।
समलंब ACFD दो त्रिभुजों
$\mathrm{ACF}$ और $\mathrm{AFD}$ में विभाजित हो जाता है।
$\triangle \mathrm{ACF}$ में यह दिया है कि $\mathrm{B}$, भुजा $\mathrm{AC}$ का मध्य-बिंदु है। $(\mathrm{AB}=\mathrm{BC})$
साथ ही, $\mathrm{BG} || \mathrm{CF}$ (चूँकि $m || n$ है)
अत:, $\mathrm{G}$ भुजा $\mathrm{AF}$ का मध्य-बिंदु है। (प्रमेय 8.9 द्वारा)
अब, $\triangle \mathrm{AFD}$ में भी हम इसी तर्क का प्रयोग कर सकते हैं। क्योंकि $\mathrm{G}$ भुजा $\mathrm{AF}$ का मध्य-बिंदु है और $\mathrm{GE} || \mathrm{AD}$ है, इसलिए प्रमेय 8.9 से $\mathrm{E}$ भुजा $\mathrm{DF}$ का मध्य-बिंदु है।
अर्थात् $\mathrm{DE}=\mathrm{EF}$ है।
दूसरे शब्दों में, $l, m$ और $n$ तिर्यक रेखा $q$ पर भी बराबर अंतः खंड काटती हैं।
प्रश्नावली 8.2
1. $\mathrm{ABCD}$ एक चतुर्भुज है जिसमें $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ और $\mathrm{S}$ क्रमशः भुजाओं $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ और $\mathrm{DA}$ के मध्य-बिंदु हैं (देखिए आकृति 8.20)। AC उसका एक विकर्ण है। दर्शाइए कि
(i) $\mathrm{SR} || \mathrm{AC}$ और $\mathrm{SR}=\frac{1}{2} \mathrm{AC}$ है।
(ii) $\mathrm{PQ}=\mathrm{SR}$ है।
(iii) $\mathrm{PQRS}$ एक समांतर चतुर्भुज है।
आकृति 8.20
Show Answer
Missing2. $\mathrm{ABCD}$ एक समचतुर्भुज है और $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ और $\mathrm{S}$ क्रमशः भुजाओं $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ और $\mathrm{DA}$ के मध्य-बिंदु है। दर्शाइए कि चतुर्भुज $\mathrm{PQRS}$ एक आयत है।
Show Answer
Missing3. $\mathrm{ABCD}$ एक आयत है, जिसमें $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ और $\mathrm{S}$ क्रमश: भुजाओं $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ और $\mathrm{DA}$ के मध्य-बिंदु हैं। दर्शाइए कि चतुर्भुज $\mathrm{PQRS}$ एक समचतुर्भुज है।
Show Answer
Missing4. $\mathrm{ABCD}$ एक समलंब है, जिसमें $\mathrm{AB} || \mathrm{DC}$ है। साथ ही, $\mathrm{BD}$ एक विकर्ण है और $\mathrm{E}$ भुजा $\mathrm{AD}$ का मध्य-बिंदु है। $\mathrm{E}$ से होकर एक रेखा $\mathrm{AB}$ के समांतर खींची गई है, जो $\mathrm{BC}$ को $\mathrm{F}$ पर प्रतिच्छेद करती है (देखिए आकृति 8.21)। दर्शाइए कि $\mathrm{F}$ भुजा $\mathrm{BC}$ का मध्य-बिंदु है।
आकृति 8.21
Show Answer
Missing5. एक समांतर चतुर्भुज $\mathrm{ABCD}$ में $\mathrm{E}$ और $\mathrm{F}$ क्रमशः भुजाओं $\mathrm{AB}$ और $\mathrm{CD}$ के मध्य-बिंदु हैं (देखिए आकृति 8.22)। दर्शाइए कि रेखाखंड $\mathrm{AF}$ और $\mathrm{EC}$ विकर्ण $\mathrm{BD}$ को समत्रिभाजित करते हैं।
आकृति 8.22
Show Answer
Missing6. $\mathrm{ABC}$ एक त्रिभुज है जिसका कोण $\mathrm{C}$ समकोण है। कर्ण $\mathrm{AB}$ के मध्य-बिंदु $\mathrm{M}$ से होकर $\mathrm{BC}$ के समांतर खींची गई रेखा $\mathrm{AC}$ को $\mathrm{D}$ पर प्रतिच्छेद करती है। दर्शाइए कि
(i) $\mathrm{D}$ भुजा $\mathrm{AC}$ का मध्य-बिंदु है।
(ii) $\mathrm{MD} \perp \mathrm{AC}$ है।
(iii) $\mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB}$ है।
Show Answer
Missing8.3 सारांश
इस अध्याय में, आपने निम्नलिखित बिंदुओं का अध्ययन किया है :
1. समांतर चतुर्भुज का एक विकर्ण उसे दो सर्वांगसम त्रिभुजों में विभाजित करता है।
2. एक समांतर चतुर्भुज में,
(i) सम्मुख भुजाएँ बराबर होती हैं।
(ii) सम्मुख कोण बराबर होते हैं।
(iii) विकर्ण परस्पर समद्विभाजित करते हैं।
3. आयत के विकर्ण परस्पर समद्विभाजित करते हैं और बराबर होते हैं। इसका विलोम भी सत्य है।
4. समचतुर्भुज के विकर्ण परस्पर समकोण पर समद्विभाजित करते हैं। इसका विलोम भी सत्य है।
5. वर्ग के विकर्ण परस्पर समकोण पर समद्विभाजित करते हैं और बराबर होते हैं। इसका विलोम भी सत्य है।
6. किसी त्रिभुज की किन्हीं दो भुजाओं के मध्य-बिंदुओं को मिलाने वाला रेखाखंड तीसरी भुजा के समांतर होता है और उसका आधा होता है।
7. किसी त्रिभुज की एक भुजा के मध्य-बिंदु से दूसरी भुजा के समांतर खींची गई रेखा तीसरी भुजा को समद्विभाजित करती है।