Chapter-07 Triangles

7.1 Introduction

You have studied about triangles and their various properties in your earlier classes. You know that a closed figure formed by three intersecting lines is called a triangle. (‘Tri’ means ’three’). A triangle has three sides, three angles and three vertices. For example, in triangle $\mathrm{ABC}$, denoted as $\triangle \mathrm{ABC}$ (see Fig. 7.1); $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ are the three sides, $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}$ are the three angles and $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are three vertices. In Chapter 6, you have also studied some properties of triangles. In this chapter, you will study in details about the congruence of triangles, rules of congruence, some more properties of triangles and inequalities in a triangle. You have already verified most of these properties in earlier classes. We will now prove some of them.

7.2 Congruence of Triangles

Fig. 7.1

You must have observed that two copies of your photographs of the same size are identical. Similarly, two bangles of the same size, two ATM cards issued by the same bank are identical. You may recall that on placing a one rupee coin on another minted in the same year, they cover each other completely.

Do you remember what such figures are called? Indeed they are called congruent figures (‘congruent’ means equal in all respects or figures whose shapes and sizes are both the same).

Now, draw two circles of the same radius and place one on the other. What do you observe? They cover each other completely and we call them as congruent circles.

Repeat this activity by placing one square on the other with sides of the same measure (see Fig. 7.2) or by placing two equilateral triangles of equal sides on each other. You will observe that the squares are congruent to each other and so are the equilateral triangles.

Fig. 7.2

You may wonder why we are studying congruence. You all must have seen the ice tray in your refrigerator. Observe that the moulds for making ice are all congruent. The cast used for moulding in the tray also has congruent depressions (may be all are rectangular or all circular or all triangular). So, whenever identical objects have to be produced, the concept of congruence is used in making the cast.

Sometimes, you may find it difficult to replace the refill in your pen by a new one and this is so when the new refill is not of the same size as the one you want to remove. Obviously, if the two refills are identical or congruent, the new refill fits.

So, you can find numerous examples where congruence of objects is applied in daily life situations.

Can you think of some more examples of congruent figures?

Now, which of the following figures are not congruent to the square in Fig 7.3 (i) :

Fig. 7.3

The large squares in Fig. 7.3 (ii) and (iii) are obviously not congruent to the one in Fig 7.3 (i), but the square in Fig 7.3 (iv) is congruent to the one given in Fig 7.3 (i).

Let us now discuss the congruence of two triangles.

You already know that two triangles are congruent if the sides and angles of one triangle are equal to the corresponding sides and angles of the other triangle.

Now, which of the triangles given below are congruent to triangle $\mathrm{ABC}$ in Fig. 7.4 (i)?

Fig. 7.4

Cut out each of these triangles from Fig. 7.4 (ii) to (v) and turn them around and try to cover $\triangle \mathrm{ABC}$. Observe that triangles in Fig. 7.4 (ii), (iii) and (iv) are congruent to $\triangle \mathrm{ABC}$ while $\triangle \mathrm{TSU}$ of Fig 7.4 (v) is not congruent to $\triangle \mathrm{ABC}$.

If $\triangle \mathrm{PQR}$ is congruent to $\triangle \mathrm{ABC}$, we write $\Delta \mathrm{PQR} \cong \triangle \mathrm{ABC}$.

Notice that when $\Delta \mathrm{PQR} \cong \triangle \mathrm{ABC}$, then sides of $\Delta \mathrm{PQR}$ fall on corresponding equal sides of $\triangle \mathrm{ABC}$ and so is the case for the angles.

That is, $\mathrm{PQ}$ covers $\mathrm{AB}, \mathrm{QR}$ covers $\mathrm{BC}$ and $\mathrm{RP}$ covers $\mathrm{CA} ; \angle \mathrm{P}$ covers $\angle \mathrm{A}$, $\angle \mathrm{Q}$ covers $\angle \mathrm{B}$ and $\angle \mathrm{R}$ covers $\angle \mathrm{C}$. Also, there is a one-one correspondence between the vertices. That is, $\mathrm{P}$ corresponds to $\mathrm{A}, \mathrm{Q}$ to $\mathrm{B}, \mathrm{R}$ to $\mathrm{C}$ and so on which is written as

$$\mathrm{P} \leftrightarrow \mathrm{A}, \mathrm{Q} \leftrightarrow \mathrm{B},\mathrm{R} \leftrightarrow \mathrm{C}$$

Note that under this correspondence, $\triangle \mathrm{PQR} \cong \triangle \mathrm{ABC}$; but it will not be correct to write $\Delta \mathrm{QRP} \cong \triangle \mathrm{ABC}$.

Similarly, for Fig. 7.4 (iii),

$$\mathrm{FD} \leftrightarrow \mathrm{AB}, \mathrm{DE} \leftrightarrow \mathrm{BC} \text { and } \mathrm{EF} \leftrightarrow \mathrm{CA} $$

$ \text { and } \mathrm{F} \leftrightarrow \mathrm{A}, \mathrm{D} \leftrightarrow \mathrm{B} \text { and } \mathrm{E} \leftrightarrow \mathrm{C}$ So, $\Delta \mathrm{FDE} \cong \triangle \mathrm{ABC}$ but writing $\Delta \mathrm{DEF} \cong \Delta \mathrm{ABC}$ is not correct.

Give the correspondence between the triangle in Fig. 7.4 (iv) and $\triangle \mathrm{ABC}$.

So, it is necessary to write the correspondence of vertices correctly for writing of congruence of triangles in symbolic form.

Note that in congruent triangles corresponding parts are equal and we write in short ’ $\mathrm{CPCT}$ ’ for corresponding parts of congruent triangles.

7.3 Criteria for Congruence of Triangles

In earlier classes, you have learnt four criteria for congruence of triangles. Let us recall them.

Draw two triangles with one side $3 \mathrm{~cm}$. Are these triangles congruent? Observe that they are not congruent (see Fig. 7.5).

Fig. 7.5

Now, draw two triangles with one side $4 \mathrm{~cm}$ and one angle $50^{\circ}$ (see Fig. 7.6). Are they congruent?

Fig. 7.6

See that these two triangles are not congruent.

Repeat this activity with some more pairs of triangles.

So, equality of one pair of sides or one pair of sides and one pair of angles is not sufficient to give us congruent triangles.

What would happen if the other pair of arms (sides) of the equal angles are also equal?

In Fig 7.7, $\mathrm{BC}=\mathrm{QR}, \angle \mathrm{B}=\angle \mathrm{Q}$ and also, $\mathrm{AB}=\mathrm{PQ}$. Now, what can you say about congruence of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ ?

Recall from your earlier classes that, in this case, the two triangles are congruent. Verify this for $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ in Fig. 7.7. Repeat this activity with other pairs of triangles. Do you observe that the equality of two sides and the included angle is enough for the congruence of triangles? Yes, it is enough.

Fig. 7.7

This is the first criterion for congruence of triangles.

Axiom 7.1 (SAS congruence rule) : Two triangles are congruent if two sides and the included angle of one triangle are equal to the two sides and the included angle of the other triangle.

This result cannot be proved with the help of previously known results and so it is accepted true as an axiom (see Appendix 1).

Let us now take some examples.

Example 1 : In Fig. 7.8, $\mathrm{OA}=\mathrm{OB}$ and $\mathrm{OD}=\mathrm{OC}$. Show that

(i) $\triangle \mathrm{AOD} \cong \triangle \mathrm{BOC}$ and

(ii) $\mathrm{AD} || \mathrm{BC}$.

Solution : (i) You may observe that in $\triangle \mathrm{AOD}$ and $\triangle \mathrm{BOC}$,

$OA=OB\quad \text {(Given)}$

$OD=OC\quad \text {(Given)}$

Fig. 7.8

Also, since $\angle \mathrm{AOD}$ and $\angle \mathrm{BOC}$ form a pair of vertically opposite angles, we have

$\quad \quad$ $\angle \mathrm{AOD}=\angle \mathrm{BOC}$.

So, $\quad$ $\triangle \mathrm{AOD} \cong \triangle \mathrm{BOC} \quad$ (by the SAS congruence rule)

(ii) In congruent triangles $\mathrm{AOD}$ and $\mathrm{BOC}$, the other corresponding parts are also equal.

So, $\quad$ $\angle \mathrm{OAD}=\angle \mathrm{OBC}$ and these form a pair of alternate angles for line segments $\mathrm{AD}$ and $\mathrm{BC}$.

Therefore,$\quad$$\mathrm{AD} || \mathrm{BC}$.

Example 2 : AB is a line segment and line $l$ is its perpendicular bisector. If a point $\mathrm{P}$ lies on $l$, show that $\mathrm{P}$ is equidistant from $\mathrm{A}$ and $\mathrm{B}$.

Solution : Line $l \perp \mathrm{AB}$ and passes through $\mathrm{C}$ which is the mid-point of $A B$ (see Fig. 7.9). You have to show that $\mathrm{PA}=\mathrm{PB}$. Consider $\triangle \mathrm{PCA}$ and $\triangle \mathrm{PCB}$.

We have $\quad \mathrm{AC}=\mathrm{BC} \quad(\mathrm{C}$ is the mid-point of $\mathrm{AB})$

$ \angle \mathrm{PCA}=\angle \mathrm{PCB}=90^{\circ} \text { (Given) } $

$\mathrm{PC} =\mathrm{PC} \quad \text {(Common)}$

So, $\quad \triangle \mathrm{PCA} \cong \triangle \mathrm{PCB}$ (SAS rule)

and so, $\mathrm{PA}=\mathrm{PB}$, as they are corresponding sides of congruent triangles.$^{\circ}$

Fig. 7.9

Now, let us construct two triangles, whose sides are $4 \mathrm{~cm}$ and $5 \mathrm{~cm}$ and one of the angles is $50^{\circ}$ and this angle is not included in between the equal sides (see Fig. 7.10). Are the two triangles congruent?

Fig. 7.10

Notice that the two triangles are not congruent.

Repeat this activity with more pairs of triangles. You will observe that for triangles to be congruent, it is very important that the equal angles are included between the pairs of equal sides.

So, SAS congruence rule holds but not ASS or SSA rule.

Next, try to construct the two triangles in which two angles are $60^{\circ}$ and $45^{\circ}$ and the side included between these angles is $4 \mathrm{~cm}$ (see Fig. 7.11).

Fig. 7.11

Cut out these triangles and place one triangle on the other. What do you observe? See that one triangle covers the other completely; that is, the two triangles are congruent. Repeat this activity with more pairs of triangles. You will observe that equality of two angles and the included side is sufficient for congruence of triangles.

This result is the Angle-Side-Angle criterion for congruence and is written as ASA criterion. You have verified this criterion in earlier classes, but let us state and prove this result.

Since this result can be proved, it is called a theorem and to prove it, we use the SAS axiom for congruence.

Theorem 7.1 (ASA congruence rule) : Two triangles are congruent if two angles and the included side of one triangle are equal to two angles and the included side of other triangle.

Proof : We are given two triangles $\mathrm{ABC}$ and $\mathrm{DEF}$ in which:

$\angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{C}=\angle \mathrm{F}$

and $\quad \mathrm{BC}=\mathrm{EF}$

We need to prove that $\quad \triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$

For proving the congruence of the two triangles see that three cases arise.

Case (i) : Let $\mathrm{AB}=\mathrm{DE}$ (see Fig. 7.12).

Now what do you observe? You may observe that

$$ \begin{aligned} \mathrm{AB} & =\mathrm{DE} \quad \text {(Assumed)}\\ \angle \mathrm{B} & =\angle \mathrm{E} \quad \text {(Given)}\\ \mathrm{BC} & =\mathrm{EF} \quad \text {(Given)} \\ \Delta \mathrm{ABC} & \cong \Delta \mathrm{DEF} \quad \text {(By SAS rule)} \end{aligned} $$

So,

Fig. 7.12

Case (ii) : Let if possible $A B>D E$. So, we can take a point $P$ on $A B$ such that $\mathrm{PB}=\mathrm{DE}$. Now consider $\triangle \mathrm{PBC}$ and $\triangle \mathrm{DEF}$ (see Fig. 7.13).

Fig. 7.13

Observe that in $\triangle \mathrm{PBC}$ and $\triangle \mathrm{DEF}$,

$$ \begin{aligned} & \mathrm{PB}=\mathrm{DE} \quad \text {(By construction)} \\ & \angle \mathrm{B}=\angle \mathrm{E} \quad \text {(Given)} \\ & \mathrm{BC}=\mathrm{EF} \quad \text {(Given)} \end{aligned} $$

So, we can conclude that:

$\Delta \mathrm{PBC} \cong \triangle \mathrm{DEF}$, by the SAS axiom for congruence.

Since the triangles are congruent, their corresponding parts will be equal.

So, $\quad \angle \mathrm{PCB}=\angle \mathrm{DFE}$

But, we are given that

$\quad\ \quad \angle \mathrm{ACB}=\angle \mathrm{DFE}$

Is this possible?

This is possible only if $\mathrm{P}$ coincides with $\mathrm{A}$.

or,$\quad\mathrm{BA}=\mathrm{ED}$

So,$\quad \Delta \mathrm{ABC} \cong \Delta \mathrm{DEF} \quad \text {(by SAS axiom)}$

Case (iii) : If $\mathrm{AB}<\mathrm{DE}$, we can choose a point $\mathrm{M}$ on $\mathrm{DE}$ such that $\mathrm{ME}=\mathrm{AB}$ and repeating the arguments as given in Case (ii), we can conclude that $\mathrm{AB}=\mathrm{DE}$ and so, $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$.

Suppose, now in two triangles two pairs of angles and one pair of corresponding sides are equal but the side is not included between the corresponding equal pairs of angles. Are the triangles still congruent? You will observe that they are congruent. Can you reason out why?

You know that the sum of the three angles of a triangle is $180^{\circ}$. So if two pairs of angles are equal, the third pair is also equal $\left(180^{\circ}-\right.$ sum of equal angles $)$.

So, two triangles are congruent if any two pairs of angles and one pair of corresponding sides are equal. We may call it as the AAS Congruence Rule.

Now let us perform the following activity :

Draw triangles with angles $40^{\circ}, 50^{\circ}$ and $90^{\circ}$. How many such triangles can you draw?

In fact, you can draw as many triangles as you want with different lengths of sides (see Fig. 7.14).

Fig. 7.14

Observe that the triangles may or may not be congruent to each other.

So, equality of three angles is not sufficient for congruence of triangles. Therefore, for congruence of triangles out of three equal parts, one has to be a side.

Let us now take some more examples.

Example 3 : Line-segment $\mathrm{AB}$ is parallel to another line-segment $\mathrm{CD}$. $\mathrm{O}$ is the mid-point of $A D$ (see Fig. 7.15). Show that (i) $\triangle A O B \cong \triangle D O C$ (ii) $O$ is also the mid-point of $\mathrm{BC}$.

Solution : (i) Consider $\triangle \mathrm{AOB}$ and $\triangle \mathrm{DOC}$.

$\quad \angle \mathrm{ABO}=\angle \mathrm{DCO}\quad$(Alternate angles as $\mathrm{AB} || \mathrm{CD}$ and $\mathrm{BC}$ is the transversal)

$\quad \angle \mathrm{AOB}=\angle \mathrm{DOC}\quad$(Vertically opposite angles)

$\quad \mathrm{OA}=\mathrm{OD}\quad$ (Given)

Fig. 7.15

Therefore, $\quad \triangle \mathrm{AOB} \cong \triangle \mathrm{DOC} \quad$ (AAS rule)

(ii) $\quad \mathrm{OB}=\mathrm{OC}\quad$(CPCT)

So, $\mathrm{O}$ is the mid-point of $\mathrm{BC}$.

EXERCISE 7.1

1. In quadrilateral $\mathrm{ACBD}$, $\mathrm{AC}=\mathrm{AD}$ and $\mathrm{AB}$ bisects $\angle \mathrm{A}$ (see Fig. 7.16). Show that $\triangle \mathrm{ABC} \cong \triangle \mathrm{ABD}$. What can you say about $\mathrm{BC}$ and $\mathrm{BD}$ ?

Fig. 7.16

Show Answer

Solution

$\triangle A B C \quad \triangle A B D$. What can you say about $B C$ and $B D$ ?

In $\triangle A B C$ and $\triangle A B D$,

$A C=A D$ (Given)

$\angle CAB=\angle DAB(AB$ bisects $\angle A)$

$A B=A B$ (Common)

$\therefore \quad \triangle ABC \cong \triangle ABD$ (By SAS congruence rule)

$\therefore \quad BC=BD(By CPCT)$

Therefore, BC and BD are of equal lengths.

2. $A B C D$ is a quadrilateral in which $A D=B C$ and $\angle \mathrm{DAB}=\angle \mathrm{CBA}$ (see Fig. 7.17). Prove that

(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{BAC}$

(ii) $\mathrm{BD}=\mathrm{AC}$

(iii) $\angle \mathrm{ABD}=\angle \mathrm{BAC}$.

Show Answer

Solution

In $\triangle A B D$ and $\triangle B A C$,

$A D=B C($ Given)

$\angle \angle$

$DAB=CBA($ Given)

$AB=BA$ (Common)

$\therefore \triangle ABD \cong \triangle BAC$ (By SAS congruence rule)

$\therefore BD=AC$ (By CPCT) And, $\angle ABD$

$=\widehat{B A C}(B y C P C T)$

3. $\mathrm{AD}$ and $\mathrm{BC}$ are equal perpendiculars to a line segment $A B$ (see Fig. 7.18). Show that CD bisects $\mathrm{AB}$.

Show Answer

Solution

In $\triangle B O C$ and $\triangle A O D$,

$ \begin{aligned} & \angle \quad \angle BOC=AOD \text{ (Vertically opposite angles) } \\ & \angle \quad CBO=DAO(\text{ Each } 90^{\circ}) \\ & BC=AD \text{ (Given) } \\ & \therefore \quad \triangle BOC \cong \triangle AOD \text{ (AAS congruence rule) } \\ & \therefore \quad BO=AO(By C P C T) \\ & \Rightarrow \quad CD \text{ bisects } AB . \end{aligned} $

4. $\quad l$ and $m$ are two parallel lines intersected by another pair of parallel lines $p$ and $q$ (see Fig. 7.19). Show that $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$.

Fig. 7.19

Show Answer

Solution

In $\triangle ABC$ and $\triangle CDA$,

$ \begin{aligned} & \angle BAC=\angle DCA \text{ (Alternate interior angles, as } p | q) \\ & AC=CA \text{ (Common) } \\ & \angle \quad \angle BCA=DAC \text{ (Alternate interior angles, as } \mid | m \text{ ) } \\ & \therefore \quad \therefore \quad \triangle ABC \triangle CDA(By \text{ ASA congruence rule) } \\ & \text{ Question 5: } \end{aligned} $

5. Line $l$ is the bisector of an angle $\angle \mathrm{A}$ and $\mathrm{B}$ is any point on $l$. $\mathrm{BP}$ and $\mathrm{BQ}$ are perpendiculars from $\mathrm{B}$ to the arms of $\angle A$ (see Fig. 7.20). Show that:

(i) $\triangle \mathrm{APB} \cong \triangle \mathrm{AQB}$

(ii) $\mathrm{BP}=\mathrm{BQ}$ or $\mathrm{B}$ is equidistant from the arms of $\angle \mathrm{A}$.

Fig. 7.20

Show Answer

Solution

In $\triangle A P B$ and $\triangle A Q B$,

$ \begin{aligned} & \therefore \quad \therefore \quad APB=AQB(\text{ Each 90) } \\ & \therefore \quad \therefore \quad PAB=QAB(I \text{ is the angle bisector of } \therefore A) \end{aligned} $

$A B=A B$ (Common)

$\therefore \triangle APB \therefore \triangle AQB$ (By AAS congruence rule) $\therefore BP=$

BQ (By CPCT)

rms of $\therefore A$. Or, it can be said that $B$ is equidistant from the a

6. In Fig. 7.21, $\mathrm{AC}=\mathrm{AE}, \mathrm{AB}=\mathrm{AD}$ and $\angle \mathrm{BAD}=\angle \mathrm{EAC}$. Show that $\mathrm{BC}=\mathrm{DE}$.

Fig. 7.21

Show Answer

Solution

It is given that $\therefore B A D=\therefore E A C$

$\therefore BAD+\therefore DAC=\therefore EAC+\therefore DAC$

$\therefore B A C=\therefore DAE$

In $\triangle B A C$ and $\triangle D A E, A B=A D$

(Given) $\therefore BAC=$

$\therefore$ DAE (Proved above)

$A C=A E($ Given)

$\therefore \quad \triangle BAC \therefore \triangle DAE$ (By SAS congruence rule)

$\therefore \quad BC=DE(By CPCT)$

7. $\mathrm{AB}$ is a line segment and $\mathrm{P}$ is its mid-point. $\mathrm{D}$ and $\mathrm{E}$ are points on the same side of $\mathrm{AB}$ such that $\angle \mathrm{BAD}=\angle \mathrm{ABE}$ and $\angle \mathrm{EPA}=\angle \mathrm{DPB}$ (see Fig. 7.22). Show that

(i) $\triangle \mathrm{DAP} \cong \triangle \mathrm{EBP}$

(ii) $\mathrm{AD}=\mathrm{BE}$

Fig. 7.22

Show Answer

Solution

It is given that EPA $=$ DPB

$\therefore \quad \therefore E P A+D ’ P E=D P B+D P E$

$\therefore \therefore$ DPA $=$ ÉPB

In $\sqrt{\Delta} \sqrt{\Delta}$ EBP,

$\therefore$ DAP $=$ 岸 (Given)

$A P=B P(P$ is mid-point of $A B)$

$\therefore \quad \therefore \quad$ DPA $=$ EPB (From above)

$\therefore \quad \therefore \quad \triangle$ DAP $\triangle$ EBP (ASA congruence rule)

$\therefore \quad AD=BE(By CPCT)$

8. In right triangle $A B C$, right angled at $C, M$ is the mid-point of hypotenuse AB. C is joined to $\mathrm{M}$ and produced to a point $\mathrm{D}$ such that $\mathrm{DM}=\mathrm{CM}$. Point $\mathrm{D}$ is joined to point $\mathrm{B}$ (see Fig. 7.23). Show that:

(i) $\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$

(ii) $\angle \mathrm{DBC}$ is a right angle.

(iii) $\Delta \mathrm{DBC} \cong \triangle \mathrm{ACB}$

(iv) $\mathrm{CM}=\frac{1}{2} \mathrm{AB}$

Fig. 7.23

Show Answer

Solution

(i) In $\triangle A M C$ and $\triangle B M D$,

$A M=B M$ ( $M$ is the mid-point of $A B$ )

$\therefore$ AMC $=\therefore$ BMD (Vertically opposite angles)

$CM=DM$ (Given)

$\therefore \quad \triangle AMC \therefore \triangle BMD$ (By SAS congruence rule)

$\therefore \quad AC=BD(By C P C T)$ And,

$\therefore$ ACM $=: BDM(By$ CPCT) ii)

$\therefore \quad ACM=` BDM($

However, AेंCM and ¿BDM are alternate interior angles.

Since alternate angles are equal,

It can be said that $D B | A C$

$ \begin{aligned} & \therefore \quad DBC+\therefore ACB=180^{\circ} \text{ (Co-interior angles) } \\ & \therefore \quad \therefore \quad DBC+90^{\circ}=180^{\circ} \\ & \therefore \quad \therefore \quad DBC=90^{\circ} \end{aligned} $

(iii) In $\triangle DBC$ and $\triangle ACB$,

$DB=AC$ (Already proved)

$\therefore DBC=\therefore ACB(.$ Each 90 $.{ }^{\circ})$

$BC=CB$ (Common)

$\therefore \triangle DBC \quad \triangle ACB$ (SAS congruence rule) iv)

$\triangle DBC \triangle ACB($

$\therefore \quad AB=DC(By CPCT)$

$\therefore \quad AB=2 CM$

$\therefore CM=\frac{1}{2} AB$

7.4 Some Properties of a Triangle

In the above section you have studied two criteria for congruence of triangles. Let us now apply these results to study some properties related to a triangle whose two sides are equal.

Perform the activity given below:

Construct a triangle in which two sides are equal, say each equal to $3.5 \mathrm{~cm}$ and the third side equal to $5 \mathrm{~cm}$ (see Fig. 7.24). You have done such constructions in earlier classes.

Fig. 7.24

Do you remember what is such a triangle called?

A triangle in which two sides are equal is called an isosceles triangle. So, $\triangle \mathrm{ABC}$ of Fig. 7.24 is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$.

Now, measure $\angle \mathrm{B}$ and $\angle \mathrm{C}$. What do you observe?

Repeat this activity with other isosceles triangles with different sides. You may observe that in each such triangle, the angles opposite to the equal sides are equal.

This is a very important result and is indeed true for any isosceles triangle. It can be proved as shown below.

Theorem 7.2 : Angles opposite to equal sides of an isosceles triangle are equal. This result can be proved in many ways. One of the proofs is given here.

Proof : We are given an isosceles triangle $\mathrm{ABC}$ in which $\mathrm{AB}=\mathrm{AC}$. We need to prove that $\angle \mathrm{B}=\angle \mathrm{C}$. Let us draw the bisector of $\angle \mathrm{A}$ and let $\mathrm{D}$ be the point of intersection of this bisector of $\angle \mathrm{A}$ and $\mathrm{BC}$ (see Fig. 7.25).In $\Delta \mathrm{BAD}$ and $\Delta \mathrm{CAD}$,

Fig. 7.25

$$ \begin{aligned} \mathrm{AB} & =\mathrm{AC} \quad \text {(Given)}\\ \angle \mathrm{BAD} & =\angle \mathrm{CAD} \quad \text {(By construction)} \\ \mathrm{AD} & =\mathrm{AD} \quad \text {(Common)} \end{aligned} $$ $$ \text { So, } \quad \Delta \mathrm{BAD} \cong \Delta \mathrm{CAD} \quad \text {(By SAS rule)} $$

So, $\angle \mathrm{ABD}=\angle \mathrm{ACD}$, since they are corresponding angles of congruent triangles.

So,$\quad \angle \mathrm{B}=\angle \mathrm{C}$

Is the converse also true? That is:

If two angles of any triangle are equal, can we conclude that the sides opposite to them are also equal?

Perform the following activity.

Construct a triangle $\mathrm{ABC}$ with $\mathrm{BC}$ of any length and $\angle \mathrm{B}=\angle \mathrm{C}=50^{\circ}$. Draw the bisector of $\angle \mathrm{A}$ and let it intersect $\mathrm{BC}$ at $\mathrm{D}$ (see Fig. 7.26).

Fig. 7.26

Cut out the triangle from the sheet of paper and fold it along $\mathrm{AD}$ so that vertex $\mathrm{C}$ falls on vertex B.

What can you say about sides $\mathrm{AC}$ and $\mathrm{AB}$ ?

Observe that $\mathrm{AC}$ covers $\mathrm{AB}$ completely

So,$\quad\mathrm{AC}=\mathrm{AB}$

Repeat this activity with some more triangles. Each time you will observe that the sides opposite to equal angles are equal. So we have the following:

Theorem 7.3 : The sides opposite to equal angles of a triangle are equal.

This is the converse of Theorem 7.2.

You can prove this theorem by ASA congruence rule. Let us take some examples to apply these results.

Example 4 : In $\triangle \mathrm{ABC}$, the bisector $\mathrm{AD}$ of $\angle \mathrm{A}$ is perpendicular to side $\mathrm{BC}$ (see Fig. 7.27). Show that $A B=A C$ and $\triangle A B C$ is isosceles.

Fig. 7.27

Solution : In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$,

$$ \begin{aligned} \angle \mathrm{BAD} & =\angle \mathrm{CAD}\quad \text {(Given)} \\ \mathrm{AD} & =\mathrm{AD}\quad \text {(Common)} \\ \angle \mathrm{ADB} & =\angle \mathrm{ADC}=90^{\circ}\quad \text {(Given)} \end{aligned} $$

So, $\quad \quad \triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}\quad \text { (ASA rule)}$ So, $\quad \quad \mathrm{AB}=\mathrm{AC}\quad \text {(CPCT)}$ or,

$\triangle \mathrm{ABC}$ is an isosceles triangle.

Example 5: $\mathrm{E}$ and $\mathrm{F}$ are respectively the mid-points of equal sides $\mathrm{AB}$ and $\mathrm{AC}$ of $\triangle \mathrm{ABC}$ (see Fig. 7.28). Show that $\mathrm{BF}=\mathrm{CE}$.

Fig. 7.28

Solution : In $\triangle \mathrm{ABF}$ and $\triangle \mathrm{ACE}$,

$$ \begin{aligned} & \mathrm{AB}=\mathrm{AC}\quad \text {Given} \\ & \angle \mathrm{A}=\angle \mathrm{A}\quad \text {Common} \\ & \mathrm{AF}=\mathrm{AE} \quad \text { (Halves of equal sides) } \end{aligned} $$ So,$\quad \quad \Delta \mathrm{ABF} \cong \Delta \mathrm{ACE} \quad(\mathrm{SAS} \text { rule })$ Therefore, $\quad \mathrm{BF}=\mathrm{CE}\quad \text {(CPCT)}$

Example 6 : In an isosceles triangle $\mathrm{ABC}$ with $\mathrm{AB}=\mathrm{AC}, \mathrm{D}$ and $\mathrm{E}$ are points on $\mathrm{BC}$ such that $B E=C D$ (see Fig. 7.29). Show that $A D=A E$.

Fig. 7.29

Solution : In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACE}$,

$$ \begin{aligned} \mathrm{AB} & =\mathrm{AC}\quad \text {(Given)} \quad (1)\\ \angle \mathrm{B} & =\angle \mathrm{C} \end{aligned} \text {(Angles opposite to equal sides)}\quad (2) $$

Also, $\quad \mathrm{BE}=\mathrm{CD}$

So, $\quad \mathrm{BE}-\mathrm{DE}=\mathrm{CD}-\mathrm{DE}$

That is, $\quad \mathrm{BD}=\mathrm{CE}\quad(3)$

So, $\quad \Delta \mathrm{ABD} \cong \triangle \mathrm{ACE}$ (Using (1), (2), (3) and SAS rule).

This gives $\quad \mathrm{AD}=\mathrm{AE}$ $\quad(\mathrm{CPCT})$

EXERCISE 7.2

1. In an isosceles triangle $\mathrm{ABC}$, with $\mathrm{AB}=\mathrm{AC}$, the bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ intersect each other at $\mathrm{O}$. Join $\mathrm{A}$ to $\mathrm{O}$. Show that :

(i) $\mathrm{OB}=\mathrm{OC}$

(ii) $\mathrm{AO}$ bisects $\angle \mathrm{A}$

Show Answer

Solution

(i) It is given that in triangle $A B C, A B=A C$

$\Rightarrow \angle A C B=\angle A B C$ (Angles opposite to equal sides of a triangle are equal)

$ \begin{aligned} & \Rightarrow \frac{1}{2} \angle A C B=\frac{1}{2} \angle A B C \ & \Rightarrow \angle O C B=\angle O B C \end{aligned} $

$\Rightarrow \mathrm{OB}=\mathrm{OC}$ (Sides opposite to equal angles of a triangle are also equal)

(ii) In $\triangle O A B$ and $\triangle O A C$,

$\mathrm{AO}=\mathrm{AO}$ (Common)

$A B=A C($ Given $)$

$O B=O C$ (Proved above)

Therefore, $\triangle O A B \cong \triangle O A C$ (By SSS congruence rule)

$\Rightarrow \angle B A O=\angle C A O$ (CPCT)

$\Rightarrow \mathrm{AO}$ bisects $\angle \mathrm{A}$.

2. In $\triangle \mathrm{ABC}, \mathrm{AD}$ is the perpendicular bisector of $\mathrm{BC}$ (see Fig. 7.30). Show that $\triangle A B C$ is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$.

Fig. 7.30

Show Answer

Solution

In $\triangle A D C$ and $\triangle A D B$,

$A D=A D$ (Common)

$\therefore A D C=\therefore A D B($ Each 90) $C D=B D(A D$ is the perpendicular bisector of $B C)$

$\therefore \quad \triangle ADC \therefore \triangle ADB$ (By SAS congruence rule)

$\therefore \quad AB=AC(By CPCT)$

Therefore, $A B C$ is an isosceles triangle in which $A B=A C$.

3. $\mathrm{ABC}$ is an isosceles triangle in which altitudes $\mathrm{BE}$ and $\mathrm{CF}$ are drawn to equal sides $\mathrm{AC}$ and $\mathrm{AB}$ respectively (see Fig. 7.31). Show that these altitudes are equal.

Fig. 7.32

Show Answer

Solution

In $\triangle A E B$ and $\triangle A F C$,

$\therefore A E B$ and $A F C(.$ Each $.90^{\circ}) \quad A=$

$\therefore A$ (Common angle) $A B=A C$ (Given)

$\therefore \triangle AEB \therefore \triangle AFC$ (By AAS congruence rule) $\therefore BE=$ $CF$ (By CPCT)

4. $\mathrm{ABC}$ is a triangle in which altitudes $\mathrm{BE}$ and $\mathrm{CF}$ to sides $A C$ and $A B$ are equal (see Fig. 7.32). Show that

(i) $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$

(ii) $\mathrm{AB}=\mathrm{AC}$, i.e., $\mathrm{ABC}$ is an isosceles triangle.

Fig. 7.32

Show Answer

Solution

(i) In $\triangle A B E$ and $\triangle A C F$,

$\therefore ABE$ and $ACF(.$ Each $90^{\circ}$ )

$\therefore A=A^{\prime}$ (Common angle)

$B E=C F$ (Given)

$\therefore \triangle ABE \therefore \triangle ACF$ (By AAS congruence rule)

(ii) It has already been proved that

$\triangle ABE \bullet \triangle ACF$

$\therefore A B=A C(B y C P C T)$

5. $\mathrm{ABC}$ and $\mathrm{DBC}$ are two isosceles triangles on the same base BC (see Fig. 7.33). Show that $\angle \mathrm{ABD}=\angle \mathrm{ACD}$.

Fig. 7.33

Show Answer

Solution

Let us join $A D$.

In $\triangle A B D$ and $\triangle A C D$,

$A B=A C$ (Given)

$B D=C D$ (Given)

$A D=A D$ (Common side)

$\therefore \triangle ABD \cong \quad \triangle ACD$ (By SSS congruence rule)

$\therefore \quad \therefore ABD=A ACD(By CPCT)$

6. $\triangle \mathrm{ABC}$ is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$. Side $\mathrm{BA}$ is produced to $\mathrm{D}$ such that $\mathrm{AD}=\mathrm{AB}$ (see Fig. 7.34). Show that $\angle B C D$ is a right angle.

Fig. 7.34

Show Answer

Solution

In $\triangle ABC$,

$A B=A C$ (Given)

$\therefore \therefore ACB=\therefore ABC$ (Angles opposite to equal sides of a triangle are also equal)

In $\triangle ACD$,

$A C=A D$

$\therefore \therefore$ ADC $=: A C D$ (Angles opposite to equal sides of a triangle are also equal)

In $\triangle B C D$,

$\therefore A B C+B C D+A D C=180^{\circ}$ (Angle sum property of a triangle)

$\therefore A \dot{C B}+ACB+ACD+\therefore ACD=180^{\circ}$

$\therefore \quad \therefore 2(ACB+ACD)=180^{\circ}$

$\therefore \quad \therefore \quad 2(BCD)=180^{\circ}$

$\therefore B C D=90^{\circ}$

7. $\mathrm{ABC}$ is a right angled triangle in which $\angle \mathrm{A}=90^{\circ}$ and $\mathrm{AB}=\mathrm{AC}$. Find $\angle \mathrm{B}$ and $\angle \mathrm{C}$.

Show Answer

Solution

It is given that

$A B=A C$

$\therefore \dot{C}=B$ (Angles opposite to equal sides are also equal)

In $\triangle ABC$

$\therefore A+\dot{B}+C=180^{\circ}$ (Angle sum property of a triangle)

$\therefore 90^{\circ}+\stackrel{\therefore}{B}+C \stackrel{\therefore}{=} 180^{\circ}$

$\therefore 90^{\circ}+\stackrel{\therefore}{B}+B \stackrel{\therefore}{=} 180^{\circ}$

$\therefore \quad \therefore \quad 90^{\circ}$

$\therefore$ :

$B=450$

$B=C=45^{\circ}$

8. Show that the angles of an equilateral triangle are $60^{\circ}$ each.

Show Answer

Solution

Let us consider that $A B C$ is an equilateral triangle.

Therefore, $A B=B C=A C$

$A B=A C$

$\therefore C=B$ (Angles opposite to equal sides of a triangle are equal)

Also,

$AC=BC$

$\therefore B=A$ (Angles opposite to equal sides of a triangle are equal)

Therefore, we obtain $\therefore$ A

$=B \cdot C \therefore$

In $\triangle ABC$,

$\therefore A+B+C=180^{\circ}$

$\therefore A^{\circ}+A+A+180^{\circ}$

$\therefore 3 \dot{A}=180^{\circ}$

$\therefore \dot{A}=60^{\circ}$

$\therefore \dot{A}=B \stackrel{\Delta}{=} C=\ddot{6} 0^{\circ}$ Hence, in an equilateral triangle, all interior angles are of measure $60^{\circ}$.

7.5 Some More Criteria for Congruence of Triangles

You have seen earlier in this chapter that equality of three angles of one triangle to three angles of the other is not sufficient for the congruence of the two triangles. You may wonder whether equality of three sides of one triangle to three sides of another triangle is enough for congruence of the two triangles. You have already verified in earlier classes that this is indeed true.

To be sure, construct two triangles with sides $4 \mathrm{~cm}, 3.5 \mathrm{~cm}$ and $4.5 \mathrm{~cm}$ (see Fig. 7.35). Cut them out and place them on each other. What do you observe? They cover each other completely, if the equal sides are placed on each other. So, the triangles are congruent.

Fig. 7.35

Repeat this activity with some more triangles. We arrive at another rule for congruence.

Theorem 7.4 (SSS congruence rule) : If three sides of one triangle are equal to the three sides of another triangle, then the two triangles are congruent.

This theorem can be proved using a suitable construction.

You have already seen that in the SAS congruence rule, the pair of equal angles has to be the included angle between the pairs of corresponding pair of equal sides and if this is not so, the two triangles may not be congruent.

Perform this activity:

Construct two right angled triangles with hypotenuse equal to $5 \mathrm{~cm}$ and one side equal to $4 \mathrm{~cm}$ each (see Fig. 7.36).

Fig. 7.36

Cut them out and place one triangle over the other with equal side placed on each other. Turn the triangles, if necessary. What do you observe?

The two triangles cover each other completely and so they are congruent. Repeat this activity with other pairs of right triangles. What do you observe?

You will find that two right triangles are congruent if one pair of sides and the hypotenuse are equal. You have verified this in earlier classes. Note that, the right angle is not the included angle in this case.

So, you arrive at the following congruence rule:

Theorem 7.5 (RHS congruence rule) : If in two right triangles the hypotenuse and one side of one triangle are equal to the hypotenuse and one side of the other triangle, then the two triangles are congruent.

Note that RHS stands for Right angle - Hypotenuse - Side.

Let us now take some examples.

Example 7 : $\mathrm{AB}$ is a line-segment. $\mathrm{P}$ and $\mathrm{Q}$ are points on opposite sides of $A B$ such that each of them is equidistant from the points A and B (see Fig. 7.37). Show that the line PQ is the perpendicular bisector of $\mathrm{AB}$.

Solution : You are given that $\mathrm{PA}=\mathrm{PB}$ and $\mathrm{QA}=\mathrm{QB}$ and you are to show that $\mathrm{PQ} \perp \mathrm{AB}$ and $\mathrm{PQ}$ bisects $\mathrm{AB}$. Let $\mathrm{PQ}$ intersect $\mathrm{AB}$ at $\mathrm{C}$. Can you think of two congruent triangles in this figure? Let us take $\Delta$ PAQ and $\Delta$ PBQ.

Fig. 7.37

In these triangles,

$\mathrm{AP}=\mathrm{BP}$ { (Given) }

$ \mathrm{AQ}=\mathrm{BQ}$ {(Given)}

$ \mathrm{PQ}=\mathrm{PQ}$ { (Common) }

So, $ \triangle \mathrm{PAQ} \cong \triangle \mathrm{PBQ}$ { (SSS rule) }

Therefore, $ \angle \mathrm{APQ}=\angle \mathrm{BPQ}$ { (CPCT). }

Now let us consider $\triangle \mathrm{PAC}$ and $\triangle \mathrm{PBC}$.

$ You have : \mathrm{AP} =\mathrm{BP} (Given)$

$ \angle \mathrm{APC} =\angle \mathrm{BPC}(\angle \mathrm{APQ}=\angle \mathrm{BPQ} $ { (proved above) }

$ \mathrm{PC} =\mathrm{PC} { (Common) } $

So, $ \Delta \mathrm{PAC} \cong \Delta \mathrm{PBC}$ (SAS rule)

Therefore,$ \mathrm{AC} =\mathrm{BC} (\mathrm{CPCT})(1) $

and $ \angle \mathrm{ACP} =\angle \mathrm{BCP} (\mathrm{CPCT})$

$ \begin{array}{lrll} \text{ Also, } & \angle \mathrm{ACP}+\angle \mathrm{BCP} & =180^{\circ} & \text { (Linear pair) } \\ \text { So, } & 2 \angle \mathrm{ACP} & =180^{\circ} & \\ \text { 0r } & \angle \mathrm{ACP}& =90^{\circ} & (2)\\ \end{array} $

From (1) and (2), you can easily conclude that PQ is the perpendicular bisector of AB.

[Note that, without showing the congruence of $\triangle \mathrm{PAQ}$ and $\triangle \mathrm{PBQ}$, you cannot show that $\Delta \mathrm{PAC} \cong \Delta \mathrm{PBC}$ even though $\mathrm{AP}=\mathrm{BP}\quad \text {(Given)}$]

$\mathrm{PC}=\mathrm{PC} \quad \text {(Given)}$

and $\quad \angle \mathrm{PAC}=\angle \mathrm{PBC}$ (Angles opposite to equal sides in $\triangle \mathrm{APB})$

It is because these results give us SSA rule which is not always valid or true for congruence of triangles. Also the angle is not included between the equal pairs of sides.]

Let us take some more examples.

Example 8 : $\mathrm{P}$ is a point equidistant from two lines $l$ and $m$ intersecting at point A (see Fig. 7.38). Show that the line AP bisects the angle between them.

Solution : You are given that lines $l$ and $m$ intersect each other at A. Let PB $\perp l$, $\mathrm{PC} \perp m$. It is given that $\mathrm{PB}=\mathrm{PC}$.

You are to show that $\angle \mathrm{PAB}=\angle \mathrm{PAC}$.

Let us consider $\Delta \mathrm{PAB}$ and $\triangle \mathrm{PAC}$. In these two triangles,

$$ \begin{aligned} \mathrm{PB} & =\mathrm{PC}\quad \text {(Given)} \\ \angle \mathrm{PBA} & =\angle \mathrm{PCA}=90^{\circ}\quad \text {(Given)} \\ \mathrm{PA} & =\mathrm{PA}\quad \text {(Common)} \end{aligned} $$

Fig. 7.38

So, $\quad \triangle \mathrm{PAB} \cong \triangle \mathrm{PAC}\quad \text {(RHS rule)}$

So, $\quad \angle \mathrm{PAB}=\angle \mathrm{PAC}\quad \text {(CPCT)}$

Note that this result is the converse of the result proved in Q. 5 of Exercise 7.1.

EXERCISE 7.3

1. $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ are two isosceles triangles on the same base $\mathrm{BC}$ and vertices $\mathrm{A}$ and $\mathrm{D}$ are on the same side of $\mathrm{BC}$ (see Fig. 7.39). If $\mathrm{AD}$ is extended to intersect $\mathrm{BC}$ at $\mathrm{P}$, show that

(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$

(ii) $\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}$

(iii) AP bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{D}$.

(iv) $\mathrm{AP}$ is the perpendicular bisector of $\mathrm{BC}$.

Fig. 7.39

Show Answer

Solution

(i) In $\triangle A B D$ and $\triangle A C D$,

$ \begin{aligned} & A B=A C \ldots \text {…(since } \triangle A B C \text { is isosceles) } \\ & A D=A D \ldots \text {…(common side) } \\ & B D=D C \text {…(since } \triangle \mathrm{BDC} \text { is isosceles) } \\ & \triangle \mathrm{ABD} \cong \triangle \mathrm{ACD} \text {…..SSS test of congruence, } \\ & \therefore \angle \mathrm{BAD}=\angle \mathrm{CAD} \text { i.e. } \angle \mathrm{BAP}=\angle \mathrm{PAC} \text {…..[c.a.c.t]…..(i) } \end{aligned} $

(ii) In $\triangle A B P$ and $\triangle A C P$,

$ \begin{aligned} & A B=A C \ldots \text {…(since } \triangle A B C \text { is isosceles) } \\ & A P=A P \ldots \text {…ommon side) } \\ & \angle B A P=\angle P A C \text {….from (i) } \\ & \triangle A B P \cong \triangle A C P \text {…. SAS test of congruence } \\ & \therefore B P=P C \text {…[C.s.c.t]…..(ii) } \\ & \angle A P B=\angle A P C \text {….c.a.c.t. } \end{aligned} $

(iii) Since $\triangle A B D \cong \triangle A C D$

$ \angle \mathrm{BAD}=\angle \mathrm{CAD} \text {….from (i) } $

So, $A$ bisects $\angle A$

i.e. AP bisects $\angle A$…..(iii)

In $\triangle \mathrm{BDP}$ and $\triangle \mathrm{CDP}$,

DP $=$ DP …common side

$B P=P C$…from (ii)

$\mathrm{BD}=\mathrm{CD}$…(since $\triangle \mathrm{BDC}$ is isosceles)

$\triangle \mathrm{BDP} \cong \triangle \mathrm{CDP}$….SSS test of congruence

$\therefore \angle \mathrm{BDP}=\angle \mathrm{CDP}$….c.a.c.t.

$\therefore \mathrm{DP}$ bisects $\angle \mathrm{D}$

So, AP bisects $\angle \mathrm{D}$

From (iii) and (iv),

AP bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{D}$.

(iv) We know that

$\angle A P B+\angle A P C=180^{\circ} \ldots$ (angles in linear pair)

Also, $\angle \mathrm{APB}=\angle \mathrm{APC}$… from (ii)

$\therefore \angle \mathrm{APB}=\angle \mathrm{APC}=\frac{180^{\circ}}{2}=90^{\circ}$

$\mathrm{BP}=\mathrm{PC}$ and $\angle \mathrm{APB}=\angle \mathrm{APC}=90^{\circ}$

Hence, $\mathrm{AP}$ is perpendicular bisector of $\mathrm{BC}$.

2. $A D$ is an altitude of an isosceles triangle $A B C$ in which $A B=A C$. Show that

(i) $\mathrm{AD}$ bisects $\mathrm{BC}$

(ii) $\mathrm{AD}$ bisects $\angle \mathrm{A}$.

Show Answer

Solution

(i) In $\triangle B A D$ and $\triangle C A D$,

$\therefore A D B=\therefore A D C$ (Each $90^{\circ}$ as AD is an altitude)

$A B=A C$ (Given)

$A D=A D$ (Common)

$\therefore \quad \triangle BAD \therefore \triangle CAD$ (By RHS Congruence rule)

$\therefore \quad BD=CD(By CPCT)$

Hence, $A D$ bisects $B C$.

(ii) Also, by CPCT,

$\therefore B A D=C A D$ Hence, $A D$

bisects A. :

3. Two sides $\mathrm{AB}$ and $\mathrm{BC}$ and median $\mathrm{AM}$ of one triangle $\mathrm{ABC}$ are respectively equal to sides $\mathrm{PQ}$ and $\mathrm{QR}$ and median $P N$ of $\triangle P Q R$ (see Fig. 7.40). Show that:

(i) $\triangle \mathrm{ABM} \cong \triangle \mathrm{PQN}$

(ii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$

Fig. 7.40

Show Answer

Solution

(i) In $\triangle A B C, A M$ is the median to $B C$.

$ \begin{aligned} & \therefore \quad BM={ }^{\frac{1}{2}} BC \\ & \therefore \quad Q N={ }^{\frac{1}{2}} QR \end{aligned} $

However, $BC=QR$

$\therefore{ }^{\frac{1}{2}} _{BC}{ }^{\frac{1}{2}} QR$

$\therefore \quad BM=QN \ldots$ (1)

In $\triangle A B M$ and $\triangle P Q N$, In $\triangle P Q R, P N$ is the median to $Q R$.

$ \begin{aligned} & A B=P Q \text{ (Given) } \\ & BM=QN[\text{ From equation (1)] } \\ & A M=P N(\text{ Given) } \\ & \therefore \quad \therefore \quad \triangle ABM \quad \triangle PQN \text{ (SSS congruence rule) } \\ & \therefore \quad \therefore \quad A B M=P Q N(B y C P C T) \\ & \therefore \quad \therefore \quad A B C=P Q R \ldots(2) \end{aligned} $

(ii) In $\triangle A B C$ and $\triangle P Q R$,

$A B=P Q$ (Given)

$\therefore A B C=\therefore P Q R$ [From equation (2)]

$BC=QR$ (Given)

$\therefore \triangle ABC \therefore \triangle PQR$ (By SAS congruence rule)

4. $\mathrm{BE}$ and $\mathrm{CF}$ are two equal altitudes of a triangle $\mathrm{ABC}$. Using RHS congruence rule, prove that the triangle $\mathrm{ABC}$ is isosceles.

Show Answer

Solution

In $\triangle B E C$ and $\triangle C F B$,

$\therefore BEC=\therefore CFB(.$ Each $.90^{\circ})$

$BC=CB$ (Common)

$B E=C F$ (Given)

$\therefore \triangle BEC \quad \triangle CFB$ (By RHS congruency)

$\therefore B B^{\prime} C=C B ‘(B y C P C T)$

$\therefore A B=A C$ (Sides opposite to equal angles of a triangle are equal)

Hence, $\triangle ABC$ is isosceles.

5. $\mathrm{ABC}$ is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$. Draw $\mathrm{AP} \perp \mathrm{BC}$ to show that $\angle \mathrm{B}=\angle \mathrm{C}$.

Show Answer

Solution

In $\triangle A P B$ and $\triangle A P C$,

$\therefore APB=\therefore APC(.$ Each $.90^{\circ})$

$A B=A C($ Given $)$

$A P=A P($ Common $)$

$\therefore \triangle APB \quad \triangle APC$ (Using RHS congruence rule)

$\therefore B^{\prime \prime}=C$ (By using CPCT)

7.6 Summary

In this chapter, you have studied the following points :

1. Two figures are congruent, if they are of the same shape and of the same size.

2. Two circles of the same radii are congruent.

3. Two squares of the same sides are congruent.

4. If two triangles $\mathrm{ABC}$ and $\mathrm{PQR}$ are congruent under the correspondence $\mathrm{A} \leftrightarrow \mathrm{P}$, $\mathrm{B} \leftrightarrow \mathrm{Q}$ and $\mathrm{C} \leftrightarrow \mathrm{R}$, then symbolically, it is expressed as $\Delta \mathrm{ABC} \cong \Delta \mathrm{PQR}$.

5. If two sides and the included angle of one triangle are equal to two sides and the included angle of the other triangle, then the two triangles are congruent (SAS Congruence Rule).

6. If two angles and the included side of one triangle are equal to two angles and the included side of the other triangle, then the two triangles are congruent (ASA Congruence Rule).

7. If two angles and one side of one triangle are equal to two angles and the corresponding side of the other triangle, then the two triangles are congruent (AAS Congruence Rule).

8. Angles opposite to equal sides of a triangle are equal.

9. Sides opposite to equal angles of a triangle are equal.

10. Each angle of an equilateral triangle is of $60^{\circ}$.

11. If three sides of one triangle are equal to three sides of the other triangle, then the two triangles are congruent (SSS Congruence Rule).

12. If in two right triangles, hypotenuse and one side of a triangle are equal to the hypotenuse and one side of other triangle, then the two triangles are congruent (RHS Congruence Rule).

7.1 भूमिका

आप पिछली कक्षाओं में, त्रिभुजों और उनके विभिन्न गुणों के बारे में अध्ययन कर चुके हैं। आप जानते हैं कि तीन प्रतिच्छेदी रेखाओं द्वारा बनाई गई एक बंद आकृति (closed figure) एक त्रिभुज (triangle) कहलाती है (‘त्रि’ का अर्थ है ‘तीन’)। एक त्रिभुज की तीन भुजाएँ, तीन कोण और तीन शीर्ष होते हैं। उदाहरणार्थ, आकृति 7.1 में दिए त्रिभुज $\mathrm{ABC}$, जिसे $\Delta$ $\mathrm{ABC}$ से व्यक्त करते हैं, की तीन भुजाएँ $\mathrm{AB}, \mathrm{BC}$ और $\mathrm{CA}$ हैं, $\angle \mathrm{A}, \angle \mathrm{B}$ और $\angle \mathrm{C}$ इसके तीन कोण हैं तथा $\mathrm{A}, \mathrm{B}$ और $\mathrm{C}$ इसके तीन शीर्ष हैं। अध्याय 6 में, आप त्रिभुजों के कुछ गुणों का भी अध्ययन कर चुके हैं। इस अध्याय में, आप त्रिभुजों की सर्वांगसमता (congruence), सर्वांगसमता के नियमों, त्रिभुजों के कुछ अन्य गुणों और त्रिभुजों में असमिकाओं (inequalities) के बारे में विस्तृत रूप से अध्ययन करेंगे। आप पिछली कक्षाओं के इन गुणों में से अधिकतर गुणों की सत्यता की जाँच क्रियाकलापों द्वारा कर चुके हैं। यहाँ हम इनमें से कुछ गुणों को सिद्ध भी करेंगे।

7.2 त्रिभुजों की सर्वांगसमता

आकृति 7.1

आपने यह अवश्य ही देखा होगा कि आपकी फोटो की एक ही साइज की दो प्रतियाँ सर्वसम (identical) होती हैं। इसी प्रकार, एक ही माप की दो चूड़ियाँ और एक ही बैंक द्वारा जारी किए गए दो एटीएम (ATM) कार्ड सर्वसम होते हैं। आपने देखा होगा कि यदि एक ही वर्ष में ढले (बने) दो एक रुपए के सिक्कों में से एक को दूसरे पर रखें, तो वे एक दूसरे को पूर्णतया ढक लेते हैं।

क्या आपको याद है कि ऐसी आकृतियों को कैसी आकृतियाँ कहते हैं? निःसंदेह ये सर्वांगसम आकृतियाँ (congruent figures) कहलाती हैं (‘सर्वांगसम’ का अर्थ है ‘सभी प्रकार से बराबर’, अर्थात् वे आकृतियाँ जिनके समान आकार और समान माप हैं)।

अब एक ही त्रिज्या के दो वृत्त खींचिए और एक को दूसरे पर रखिए। आप क्या देखते हैं? ये एक दूसरे को पूर्णतया ढक लेते हैं और हम इन्हें सर्वांगसम वृत्त कहते हैं।

इसी क्रियाकलाप की एक ही माप की भुजाओं वाले दो वर्गों को खींच कर और फिर एक वर्ग को दूसरे वर्ग पर रखकर (देखिए आकृति 7.2) अथवा बराबर भुजाओं वाले दो समबाहु त्रिभुजों को एक दूसरे पर रखकर, पुनरावृत्ति कीजिए। आप देखेंगे कि वर्ग सर्वांगसम हैं और समबाहु त्रिभुज भी सर्वांगसम हैं।

आकृति 7.2

आप सोच सकते हैं कि हम सर्वांगसमता का अध्ययन क्यों कर रहे हैं। आपने अपने रेफ्रीजरेटर में बर्फ की ट्रे (ice tray) अवश्य ही देखी होगी। ध्यान दीजिए कि बर्फ जमाने के लिए बने सभी खाँचे सर्वांगसम हैं। ट्रे में (खाँचों के लिए प्रयोग किए गए साँचों की गहराइयाँ भी सर्वांगसम होती हैं (ये सभी आयताकार या सभी वृत्ताकार या सभी त्रिभुजाकार हो सकते हैं)। अतः, जब भी सर्वसम (एक जैसी) वस्तुएँ बनानी होती हैं, तो साँचे बनाने के लिए सर्वांगसमता की संकल्पना का प्रयोग किया जाता है।

कभी-कभी आपको अपने पेन के रिफिल (refill) बदलने में भी कठिनाई हो सकती है, यदि नया रिफिल आपके पेन के साइज का न हो। स्पष्टतः रिफिल तभी पेन में लग पाएगा, जबकि पुरानी रिफिल और नया रिफिल सर्वांगसम होंगे।

इस प्रकार, आप दैनिक जीवन की स्थितियों में ऐसे अनेक उदाहरण ज्ञात कर सकते हैं, जहाँ वस्तुओं की सर्वांगसमता का उपयोग होता है।

क्या आप सर्वांगसम आकृतियों के कुछ और उदाहरण सोच सकते हैं?

अब, निम्न में से कौन-कौन सी आकृतियाँ आकृति 7.3 (i) में दिए वर्ग के सर्वांगसम नहीं हैं?

आकृति 7.3

(ii) और आकृति 7.3 (iii) में दिए बड़े वर्ग स्पष्टतः आकृति 7.3 (i) के वर्ग के सर्वांगसम नहीं हैं। परन्तु आकृति 7.3 (iv) में दिया हुआ वर्ग आकृति 7.3 (i) में दिए वर्ग के सर्वांगसम है।

आइए अब दो त्रिभुजों की सर्वांगसमता की चर्चा करें।

आप पहले से यह जानते हैं कि दो त्रिभुज सर्वांगसम होते हैं, यदि एक त्रिभुज की भुजाएँ और कोण दूसरे त्रिभुज की संगत भुजाओं और कोणों के बराबर हों।

अब, निम्न में से कौन-कौन से त्रिभुज आकृति 7.4 (i) में दिए त्रिभुज $\mathrm{ABC}$ के सर्वांगसम हैं?

आकृति 7.4

आकृति 7.4 (ii) से आकृति 7.4 (v) तक के प्रत्येक त्रिभुज को काट कर उसे पलट कर $\triangle \mathrm{ABC}$ पर रखने का प्रयत्न कीजिए। देखिए कि आकृतियों 7.4 (ii), (iii) और (iv) में दिए त्रिभुज $\triangle \mathrm{ABC}$ के सर्वांगसम हैं, जबकि $7.4(\mathrm{v})$ का $\triangle \mathrm{TSU}, \triangle \mathrm{ABC}$ के सर्वांगसम नहीं है।

यदि $\triangle \mathrm{PQR}, \triangle \mathrm{ABC}$ के सर्वांगसम है, तो हम $\triangle \mathrm{PQR} \cong \triangle \mathrm{ABC}$ लिखते हैं।

ध्यान दीजिए कि जब $\triangle \mathrm{PQR} \cong \triangle \mathrm{ABC}$ हो, तो $\triangle \mathrm{PQR}$ की भुजाएँ $\triangle \mathrm{ABC}$ की संगत बराबर भुजाओं पर पड़ेंगी और ऐसा ही कोणों के लिए भी होगा।

अर्थात् भुजा $\mathrm{PQ}$ भुजा $\mathrm{AB}$ को ढकती है, भुजा $\mathrm{QR}$ भुजा $\mathrm{BC}$ को ढकती है और भुजा $\mathrm{RP}$ भुजा $\mathrm{CA}$ को ढकती है; कोण $\mathrm{P}$ कोण $\mathrm{A}$ को ढकता है, कोण $\mathrm{Q}$ कोण $\mathrm{B}$ को ढकता है और कोण $\mathrm{R}$ कोण $\mathrm{C}$ को ढकता है। साथ ही, दोनों त्रिभुजों के शीर्षों में एक-एक संगतता (oneone correspondence) है। अर्थात् शीर्ष $P$ शीर्ष $A$ के संगत है, शीर्ष $Q$ शीर्ष $B$ के संगत है और शीर्ष $\mathrm{R}$ शीर्ष $\mathrm{C}$ के संगत है। इसे निम्न रूप में लिखा जाता है :

$$ \mathrm{P} \leftrightarrow \mathrm{A}, \mathrm{Q} \leftrightarrow \mathrm{B}, \mathrm{R} \leftrightarrow \mathrm{C} $$

ध्यान दीजिए कि इस संगतता के अंतर्गत, $\triangle \mathrm{PQR} \cong \triangle \mathrm{ABC}$ है। परन्तु इसे $\triangle \mathrm{QRP} \cong$ $\triangle \mathrm{ABC}$ लिखना गलत होगा।

इसी प्रकार, आकृति 7.4 (iii) के लिए,

$$ \mathrm{FD} \leftrightarrow \mathrm{AB}, \mathrm{DE} \leftrightarrow \mathrm{BC} \text { और } \mathrm{EF} \leftrightarrow \mathrm{CA} $$

तथा $\mathrm{F} \leftrightarrow \mathrm{A}, \mathrm{D} \leftrightarrow \mathrm{B} \text { और } \mathrm{E} \leftrightarrow \mathrm{C} \text { है। }$ इसलिए, $\triangle \mathrm{FDE} \cong \triangle \mathrm{ABC}$ लिखना सही है, परन्तु $\triangle \mathrm{DEF} \cong \triangle \mathrm{ABC}$ लिखना गलत होगा।

आकृति 7.4 (iv) के त्रिभुज और $\triangle \mathrm{ABC}$ के बीच संगतता लिखिए।

अतः, त्रिभुजों की सर्वांगसमता को सांकेतिक रूप में लिखने के लिए, उनके शीर्षों की संगतता को सही प्रकार से लिखना आवश्यक है।

ध्यान दीजिए कि सर्वांगसम त्रिभुजों में संगत भाग बराबर होते हैं और ‘सर्वांगसम त्रिभुजों के संगत भागों के लिए’ हम संक्षेप में ’ $\mathrm{CPCT}$ ’ लिखते हैं।

7.3 त्रिभुजों की सर्वांगसमता के लिए कसौटियाँ

पिछली कक्षाओं में, आप त्रिभुजों की सर्वांगसमता के लिए चार कसौटियाँ (criteria) या नियम (rules) पढ़ चुके हैं। आइए इनका पुनर्विलोकन करें।

एक भुजा $3 \mathrm{~cm}$ लेकर दो त्रिभुज खींचिए (देखिए आकृति 7.5)। क्या ये त्रिभुज सर्वांगसम हैं? ध्यान दीजिए कि ये त्रिभुज सर्वांगसम नहीं हैं।

आकृति 7.5

अब दो त्रिभुज खींचिए जिनमें एक भुजा $4 \mathrm{~cm}$ है और एक कोण $50^{\circ}$ है (देखिए आकृति 7.6)। क्या ये त्रिभुज सर्वांगसम हैं?

आकृति 7.6

देखिए कि ये दोनों त्रिभुज सर्वांगसम नहीं हैं।

इस क्रियाकलाप को त्रिभुजों के कुछ और युग्म खींच कर दोहराइए।

अतः, भुजाओं के एक युग्म की समता अथवा भुजाओं के एक युग्म और कोणों के एक युग्म की समता हमें सर्वांगसम त्रिभुज देने के लिए पर्याप्त नहीं है।

उस स्थिति में क्या होगा जब बराबर कोणों की भुजाओं का अन्य युग्म भी बराबर हो जाए?

आकृति 7.7 में $\mathrm{BC}=\mathrm{QR}, \angle \mathrm{B}=\angle \mathrm{Q}$ और साथ ही $\mathrm{AB}=\mathrm{PQ}$ है। अब आप $\triangle \mathrm{ABC}$ और $\triangle \mathrm{PQR}$ की सर्वांगसमता के बारे में क्या कह सकते हैं?

पिछली कक्षाओं से याद कीजिए कि इस स्थिति में, दोनों त्रिभुज सर्वांगसम होते हैं। आप इसका सत्यापन, $\triangle \mathrm{ABC}$ को काट कर और उसे $\triangle \mathrm{PQR}$ पर रख कर कर सकते हैं। इस क्रियाकलाप को त्रिभुजों के अन्य युग्म लेकर दोहराइए। क्या आप देखते हैं कि दो भुजाओं और अंतर्गत कोण की समता त्रिभुजों की सर्वांगसमता के लिए पर्याप्त है? हाँ, यह पर्याप्त है।

आकृति 7.7

यह त्रिभुजों की सर्वांगसमता की पहली कसौटी (criterion) है।

अभिगृहीत 7.1 (SAS सर्वांगसमता नियम): दो त्रिभुज सर्वांगसम होते हैं, यदि एक त्रिभुज की दो भुजाएँ और उनका अंतर्गत कोण दूसरे त्रिभुज की दो भुजाओं और उनके अंतर्गत कोण के बराबर हों।

इस परिणाम को इससे पहले ज्ञात परिणामों की सहायता से सिद्ध नहीं किया जा सकता है और इसीलिए इसे एक अभिगृहीत के रूप में सत्य मान लिया गया है (देखिए परिशिष्ट 1)।

आइए अब कुछ उदाहरण लें।

उदाहरण 1 : आकृति 7.8 में $\mathrm{OA}=\mathrm{OB}$ और $\mathrm{OD}=\mathrm{OC}$ है। दर्शाइए कि

(i) $\triangle \mathrm{AOD} \cong \triangle \mathrm{BOC}$ और

(ii) $\mathrm{AD} || \mathrm{BC}$ है।

हल : (i) $\triangle \mathrm{AOD}$ और $\triangle \mathrm{BOC}$ में,

$\mathrm{OA}=\mathrm{OB} \tag{दियाहै}$

$ \mathrm{OD}=\mathrm{OC}$

आकृति 7.8

साथ ही, क्योंकि $\angle \mathrm{AOD}$ और $\angle \mathrm{BOC}$ शीर्षाभिमुख कोणों का एक युग्म है, अतः

$\angle \mathrm{AOD}=\angle \mathrm{BOC}$

इसलिए, $\triangle \mathrm{AOD} \cong \triangle \mathrm{BOC}$ (SAS सर्वांगसमता नियम द्वारा)

(ii) सर्वांगसम त्रिभुजों $\mathrm{AOD}$ और $\mathrm{BOC}$ में, अन्य संगत भाग भी बराबर होंगे।

अतः, $\angle \mathrm{OAD}=\angle \mathrm{OBC}$ है। परन्तु ये रेखाखंडों $\mathrm{AD}$ और $\mathrm{BC}$ के लिए एकांतर कोणों का एक युग्म बनाते हैं।

$$ \text { अत: } \quad \mathrm{AD} || \mathrm{BC} \text { है। } $$

उदाहरण 2 : $ \mathrm{AB}$ एक रेखाखंड है और रेखा $l$ इसका लम्ब समद्विभाजक है। यदि $l$ पर स्थित $\mathrm{P}$ कोई बिंदु है, तो दर्शाइए कि $\mathrm{P}$ बिंदुओं $\mathrm{A}$ और $\mathrm{B}$ से समदूरस्थ (equidistant) है।

हल : $l \perp \mathrm{AB}$ है और $\mathrm{AB}$ के मध्य-बिंदु $\mathrm{C}$ से होकर जाती है (देखिए आकृति 7.9)। आपको दर्शाना है कि $\mathrm{PA}=\mathrm{PB}$ है। इसके लिए $\triangle \mathrm{PCA}$ और $\triangle \mathrm{PCB}$ पर विचार कीजिए। हमें प्राप्त है :

$\mathrm{AC}=\mathrm{BC} \quad(\mathrm{C}, \mathrm{AB} \text { का मध्य-बिंदु है }) $

$ \angle \mathrm{PCA}=\angle \mathrm{PCB}=90^{\circ} \text { (दिया है) } $

$ \mathrm{PC}=\mathrm{PC} \quad(\text { उभयनिष्ठ })$

अतः, $\triangle \mathrm{PCA} \cong $$\triangle \mathrm{PCB}$ (SAS नियम)

इसलिए, $\mathrm{PA}=\mathrm{PB}$ (सर्वांगसम त्रिभुजों की संगत भुजाएँ)

आकृति 7.9

आइए अब दो त्रिभुजों की रचना करें जिनकी दो भुजाएँ $4 \mathrm{~cm}$ और $5 \mathrm{~cm}$ हैं और एक कोण $50^{\circ}$ है तथा साथ ही यह कोण बराबर भुजाओं के बीच अंतर्गत कोण नहीं है (देखिए आकृति 7.10)। क्या ये त्रिभुज सर्वांगसम हैं?

आकृति 7.10

ध्यान दीजिए कि ये दोनों त्रिभुज सर्वांगसम नहीं हैं।

त्रिभुजों के कुछ अन्य युग्म लेकर इस क्रियाकलाप को दोहराइए। आप देखेंगे कि दोनों त्रिभुजों की सर्वांगसमता के लिए यह आवश्यक है कि बराबर कोण बराबर भुजाओं के अंतर्गत कोण हो।

अतः, SAS नियम तो सत्य है, परन्तु ASS या SSA नियम सत्य नहीं है।

अब, ऐसे दो त्रिभुजों की रचना करने का प्रयत्न करिए, जिनमें दो कोण $60^{\circ}$ और $45^{\circ}$ हों तथा इन कोणों की अंतर्गत भुजा $4 \mathrm{~cm}$ हो (देखिए आकृति 7.11)।

आकृति 7.11

इन दोनों त्रिभुजों को काटिए और एक त्रिभुज को दूसरे के ऊपर रखिए। आप क्या देखते हैं? देखिए कि एक त्रिभुज दूसरे त्रिभुज को पूर्णतया ढक लेता है, अर्थात् दोनों त्रिभुज सर्वांगसम हैं। कुछ और त्रिभुजों को लेकर इस क्रियाकलाप को दोहराइए। आप देखेंगे कि त्रिभुजों की सर्वांगसमता के लिए, दो कोणों और उनकी अंतर्गत भुजा की समता पर्याप्त है।

यह परिणाम कोण-भुजा-कोण (Angle-Side-Angle) कसौटी है और इसे ASA सर्वांगसमता कसौटी लिखा जाता है। आप पिछली कक्षाओं में, इसकी सत्यता की जाँच कर चुके हैं। आइए इस परिणाम को सिद्ध करें।

चूँकि इस परिणाम को सिद्ध किया जा सकता है, इसलिए इसे एक प्रमेय (theorem) कहा जाता है। इसे सिद्ध करने के लिए, हम SAS सर्वांगसमता नियम का प्रयोग करेंगे।

प्रमेय 7.1 (ASA सर्वांगसमता नियम) : दो त्रिभुज सर्वांगसम होते हैं, यदि एक त्रिभुज के दो कोण और उनकी अंतर्गत भुजा दूसरे त्रिभुज के दो कोणों और उनकी अंतर्गत भुजा के बराबर हों।

उपपत्ति : हमें दो त्रिभुज $\mathrm{ABC}$ और $\mathrm{DEF}$ दिए हैं,

जिनमें $\angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{C}=\angle \mathrm{F}$

और $\mathrm{BC}=\mathrm{EF}$ है।

हमें $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ सिद्ध करना है।

दोनों त्रिभुजों की सर्वांगसमता के लिए देखिए कि यहाँ तीन स्थितियाँ संभव हैं।

स्थिति (i) : मान लीजिए $\mathrm{AB}=\mathrm{DE}$ है(देखिए आकृति 7.12)।

अब आप क्या देखते हैं? आप देख सकते हैं कि

$$ \begin{aligned} \mathrm{AB} & =\mathrm{DE} & \text { (कल्पना की है) } \\ \angle \mathrm{B} & =\angle \mathrm{E} & \text { (दिया है) } \\ \mathrm{BC} & =\mathrm{EF} & \text { (दिया है) } \\ \Delta \mathrm{ABC} & \cong \triangle \mathrm{DEF} & \text{(SAS नियम द्वारा)} \end{aligned} $$

अतः,

आकृति 7.12

स्थिति (ii) : मान लीजिए, यदि संभव है तो, $\mathrm{AB}>\mathrm{DE}$ है। इसलिए, हम $\mathrm{AB}$ पर एक बिंदु $\mathrm{P}$ ऐसा ले सकते हैं कि $\mathrm{PB}=\mathrm{DE}$ हो (देखिए आकृति 7.13)।

आकृति 7.13

अब $\triangle \mathrm{PBC}$ और $\triangle \mathrm{DEF}$ में,

$$ \begin{aligned} & \mathrm{PB}=\mathrm{DE} &\text{(रचना से) }\\ & \angle \mathrm{B}=\angle \mathrm{E} &\text{(दिया है) }\\ & \mathrm{BC}=\mathrm{EF}& \text{(दिया है) } \end{aligned} $$

अतः, हम निष्कर्ष निकाल सकते हैं कि

$$ \Delta \mathrm{PBC} \cong \Delta \mathrm{DEF} \quad \text { (SAS सर्वांगसमता अभिगृहीत द्वारा) } $$

चूँकि दोनों त्रिभुज सर्वांगसम हैं, इसलिए इनके संगत भाग बराबर होने चाहिए।

अतः, $\angle \mathrm{PCB}=\angle \mathrm{DFE}$

परन्तु हमें दिया है कि

अतः, $\angle \mathrm{ACB}=\angle \mathrm{DFE}$

परन्तु क्या यह संभव है?

यह तभी संभव है, जब $\mathrm{P}$ बिंदु $\mathrm{A}$ के साथ संपाती हो।

या $\mathrm{BA}=\mathrm{ED}$

अतः, $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ (SAS अभिगृहीत द्वारा)

स्थिति (iii) : यदि $\mathrm{AB}<\mathrm{DE}$ हो, तो हम $\mathrm{DE}$ पर एक बिंदु $\mathrm{M}$ इस प्रकार ले सकते हैं कि $\mathrm{ME}=\mathrm{AB}$ हो। अब स्थिति (ii) वाले तर्कण को दोहराते हुए, हम निष्कर्ष निकाल सकते हैं कि $\mathrm{AB}=\mathrm{DE}$ है और इसीलिए $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ है।

अब मान लीजिए कि दो त्रिभुजों में दो कोणों के युग्म और संगत भुजाओं का एक युग्म बराबर हैं, परन्तु ये भुजाएँ बराबर कोणों के युग्मों की अंतर्गत भुजाएँ नहीं हैं। क्या ये त्रिभुज अभी भी सर्वांगसम हैं? आप देखेंगे कि ये त्रिभुज सर्वांगसम हैं। क्या आप इसका कारण बता सकते हैं?

आप जानते हैं कि त्रिभुज के तीनों कोणों का योग $180^{\circ}$ होता है। अतः त्रिभुजों के कोणों के दो युग्म बराबर होने पर उनके तीसरे कोण भी बराबर होंगे $\left(180^{\circ}\right.$ - दोनों बराबर कोणों का योग)।

अतः, दो त्रिभुज सर्वांगसम होते हैं, यदि इन त्रिभुजों के दो कोणों के युग्म बराबर हों और संगत भुजाओं का एक युग्म बराबर हो। हम इसे AAS सर्वांगसमता नियम कह सकते हैं।

आइए अब निम्नलिखित क्रियाकलाप करें :

$40^{\circ}, 50^{\circ}$ और $90^{\circ}$ वाले कुछ त्रिभुज खींचिए।

आप ऐसे कितने त्रिभुज खींच सकते हें? वास्तव में, भुजाओं की विभिन्न लंबाइयाँ लेकर हम ऐसे जितने चाहे उतने त्रिभुज खींच सकते हैं (देखिए आकृति 7.14)।

आकृति 7.14

देखिए कि ये त्रिभुज सर्वांगसम हो भी सकते हैं और नहीं भी हो सकते हैं।

अतः, तीन कोणों की समता त्रिभुजों की सर्वांगसमता के लिए पर्याप्त नहीं है। इसलिए, त्रिभुजों की सर्वांगसमता के लिए, तीन बराबर भागों में से एक बराबर भाग भुजा अवश्य होना चाहिए।

आइए अब कुछ और उदाहरण लें।

उदाहरण 3 : रेखाखंड $\mathrm{AB}$ एक अन्य रेखाखंड $\mathrm{CD}$ के समांतर है और $\mathrm{O}$ रेखाखंड $\mathrm{AD}$ का मध्य-बिंदु है (देखिए आकृति 7.15)। दर्शाइए कि (i) $\triangle \mathrm{AOB} \cong \triangle \mathrm{DOC}$ (ii) $\mathrm{O}$ रेखाखंड $\mathrm{BC}$ का भी मध्य-बिंदु है।

हल : (i) $\triangle \mathrm{AOB}$ और $\triangle \mathrm{DOC}$ पर विचार कीजिए।

$\angle \mathrm{ABO}=\angle \mathrm{DCO}$ (एकांतर कोण और तिर्यक रेखा $\mathrm{BC}$ के साथ $\mathrm{AB} || \mathrm{CD}$ )

$\angle \mathrm{AOB}=\angle \mathrm{DOC}$ (शीर्षाभिमुख कोण)

$ \mathrm{OA}=\mathrm{OD} \quad\quad $(दिया है)

आकृति 7.15

अत:,$\Delta \mathrm{AOB} \cong \triangle \mathrm{DOC} \quad \quad$ (AAS नियम)

(ii) $\mathrm{OB}=\mathrm{OC} \quad\quad$ (CPCT)

अर्थात् $\mathrm{O}$, रेखाखंड $\mathrm{BC}$ का भी मध्य-बिंदु है।

प्रश्नावली 7.1

1. चतुर्भुज $\mathrm{ACBD}$ में, $\mathrm{AC}=\mathrm{AD}$ है और $\mathrm{AB}$ कोण $\mathrm{A}$ को समद्विभाजित करता है (देखिए आकृति 7.16)। दर्शाइए कि $\triangle \mathrm{ABC} \cong \triangle \mathrm{ABD}$ है। $\mathrm{BC}$ और $\mathrm{BD}$ के बारे में आप क्या कह सकते हैं?

आकृति 7.16

Show Answer Missing

2. $\mathrm{ABCD}$ एक चतुर्भुज है, जिसमें $\mathrm{AD}=\mathrm{BC}$ और $\angle \mathrm{DAB}=\angle \mathrm{CBA}$ है (देखिए आकृति 7.17)। सिद्ध कीजिए कि

(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{BAC}$

(ii) $\mathrm{BD}=\mathrm{AC}$

(iii) $\angle \mathrm{ABD}=\angle \mathrm{BAC}$

Show Answer Missing

3. एक रेखाखंड $\mathrm{AB}$ पर $\mathrm{AD}$ और $\mathrm{BC}$ दो बराबर लंब रेखाखंड हैं (देखिए आकृति 7.18)। दर्शाइए कि CD, रेखाखंड $\mathrm{AB}$ को समद्विभाजित करता है।

Show Answer Missing

4. $l$ और $m$ दो समांतर रेखाएँ हैं जिन्हें समांतर रेखाओं $p$ और $q$ का एक अन्य युग्म प्रतिच्छेदित करता है (देखिए आकृति 7.19)। दर्शाइए कि $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$ है।

आकृति 7.19

Show Answer Missing

5. रेखा $l$ कोण $\mathrm{A}$ को समद्विभाजित करती है और $\mathrm{B}$ रेखा $l$ पर स्थित कोई बिंदु है। $\mathrm{BP}$ और $\mathrm{BQ}$ कोण $\mathrm{A}$ की भुजाओं पर $\mathrm{B}$ से डाले गए लम्ब हैं (देखिए आकृति 7.20)। दर्शाइए कि

(i) $\triangle \mathrm{APB} \cong \triangle \mathrm{AQB}$

(ii) $\mathrm{BP}=\mathrm{BQ}$ है, अर्थात् बिंदु $\mathrm{B}$ कोण की भुजाओं से समदूरस्थ है

आकृति 7.20

Show Answer Missing

6. आकृति 7.21 में, $\mathrm{AC}=\mathrm{AE}, \mathrm{AB}=\mathrm{AD}$ और $\angle \mathrm{BAD}=\angle \mathrm{EAC}$ है। दर्शाइए कि $\mathrm{BC}=\mathrm{DE}$ है।

आकृति 7.21

Show Answer Missing

7. $\mathrm{AB}$ एक रेखाखंड है और $\mathrm{P}$ इसका मध्य-बिंदु है। $\mathrm{D}$ और $\mathrm{E}$ रेखाखंड $\mathrm{AB}$ के एक ही ओर स्थित दो बिंदु इस प्रकार हैं कि $\angle \mathrm{BAD}=\angle \mathrm{ABE}$ और $\angle \mathrm{EPA}=\angle \mathrm{DPB}$ है। (देखिए आकृति 7.22)। दर्शाइए कि

(i) $\triangle \mathrm{DAP} \cong \triangle \mathrm{EBP}$

(ii) $\mathrm{AD}=\mathrm{BE}$

आकृति 7.22

Show Answer Missing

8. एक समकोण त्रिभुज $\mathrm{ABC}$ में, जिसमें कोण $\mathrm{C}$ समकोण है, $M$ कर्ण $A B$ का मध्य-बिंदु है। $C$ को $\mathrm{M}$ से मिलाकर $\mathrm{D}$ तक इस प्रकार बढ़ाया गया है कि $\mathrm{DM}=\mathrm{CM}$ है। बिंदु $\mathrm{D}$ को बिंदु $\mathrm{B}$ से मिला दिया जाता है (देखिए आकृति 7.23)। दर्शाइए कि

(i) $\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$

(ii) $\angle \mathrm{DBC}$ एक समकोण है

(iii) $\triangle \mathrm{DBC} \cong \triangle \mathrm{ACB}$

(iv) $\mathrm{CM}=\frac{1}{2} \mathrm{AB}$

आकृति 7.23

Show Answer Missing

7.4 एक त्रिभुज के कुछ गुण

पिछले अनुच्छेद में, आपने त्रिभुजों की सर्वांगसमता की दो कसौटियों का अध्ययन किया है। आइए इन परिणामों का एक ऐसे त्रिभुज के कुछ गुणों का अध्ययन करने में प्रयोग करें जिसकी दो भुजाएँ बराबर होती हैं।

नीचे दिया गया क्रियाकलाप कीजिए:

एक त्रिभुज की रचना कीजिए जिसकी दो भुजाएँ बराबर हों। मान लीजिए दो भुजाएँ $3.5 \mathrm{~cm}$ लंबाई की हैं और एक भुजा $5 \mathrm{~cm}$ लंबाई की है (देखिए आकृति 7.24)। आप पिछली कक्षाओं में, ऐसी रचनाएँ कर चुके हैं।

आकृति 7.24

क्या आपको याद है कि इस त्रिभुज को क्या कहते हैं?

एक त्रिभुज जिसकी दो भुजाएँ बराबर हों समद्विबाहु त्रिभुज (isosceles triangle) कहलाता है। अतः, आकृति 7.24 का $\triangle \mathrm{ABC}$ एक समद्विबाहु त्रिभुज है, जिसमें $\mathrm{AB}=\mathrm{AC}$ है।

अब $\angle \mathrm{B}$ और $\angle \mathrm{C}$ को मापिए। आप क्या देखते हैं?

विभिन्न भुजाओं वाले अन्य समद्विबाहु त्रिभुज लेकर इस क्रियाकलाप को दोहराइए। आप देख सकते हैं कि ऐसे प्रत्येक त्रिभुज में बराबर भुजाओं के सम्मुख (सामने के) कोण बराबर हैं।

यह एक अति महत्वपूर्ण परिणाम है और प्रत्येक समद्विबाहु त्रिभुज के लिए सत्य है। इसे नीचे दशाई विधि के अनुसार सिद्ध किया जा सकता है:

प्रमेय 7.2 : एक समद्विबाहु त्रिभुज की बराबर भुजाओं के सम्मुख कोण बराबर होते हैं। इस परिणाम को कई विधियों से सिद्ध किया जा सकता है। इनमें से एक उपपत्ति नीचे दी जा रही है।

उपपत्ति : हमें एक समद्विबाहु $\triangle \mathrm{ABC}$ दिया है, जिसमें $\mathrm{AB}=\mathrm{AC}$ है। हमें $\angle \mathrm{B}=\angle \mathrm{C}$ सिद्ध करना है। आइए $\angle \mathrm{A}$ का समद्विभाजक खींचे। मान लीजिए यह $\mathrm{BC}$ से $\mathrm{D}$ पर मिलता है (देखिए आकृति 7.25)। अब, $\triangle \mathrm{BAD}$ और $\triangle \mathrm{CAD}$ में,

आकृति 7.25

$$ \begin{aligned} \mathrm{AB} & =\mathrm{AC} & \text{(दिया है)}\\ \angle \mathrm{BAD} & =\angle \mathrm{CAD} & \text{(रचना से)}\\ \mathrm{AD} & =\mathrm{AD}& \text{(उभयनिष्ठ)} \\ \triangle \mathrm{BAD} & \cong \triangle \mathrm{CAD} & \text{(SAS नियम द्वारा)}\\ \end{aligned} $$

$$ \begin{aligned} \angle \mathrm{ABD} & =\angle \mathrm{ACD} & \text{(CPCT)} \end{aligned} $$

$$ \begin{aligned} \angle \mathrm{B} & =\angle \mathrm{C} \end{aligned} $$

क्या इसका विलोम भी सत्य है? अर्थात्

यदि किसी त्रिभुज के दो कोण बराबर हों, तो क्या हम निष्कर्ष निकाल सकते हैं कि उनकी सम्मुख भुजाएँ भी बराबर होंगी?

नीचे दिया क्रियाकलाप कीजिए :

एक $\triangle \mathrm{ABC}$ की रचना कीजिए जिसमें $\mathrm{BC}$ किसी भी लंबाई वाली एक भुजा है और $\angle \mathrm{B}=\angle \mathrm{C}=50^{\circ}$ है। $\angle \mathrm{A}$ का समद्विभाजक खींचिए और मान लीजिए कि यह $\mathrm{BC}$ को $\mathrm{D}$ पर प्रतिच्छेद करता है (देखिए आकृति 7.26)।

आकृति 7.26

त्रिभुज $\mathrm{ABC}$ को कागज में से काट लीजिए और इसे $\mathrm{AD}$ के अनुदिश मोड़िए ताकि शीर्ष $\mathrm{C}$ शीर्ष $\mathrm{B}$ पर गिरे ( पड़े)।

$\mathrm{AC}$ और $\mathrm{AB}$ के बारे में आप क्या कह सकते हैं?

देखिए कि $\mathrm{AC}, \mathrm{AB}$ को पूर्णतया ढक लेती है।

अतः, $\mathrm{AC}=\mathrm{AB}$

इसी क्रियाकलाप को ऐसे ही कुछ अन्य त्रिभुज लेकर दोहराइए। प्रत्येक बार आप देखेंगे कि एक त्रिभुज के बराबर कोणों की सम्मुख भुजाएँ बराबर हैं। अतः, हम निम्न प्रमेय प्राप्त करते हैं :

प्रमेय 7.3 : किसी त्रिभुज के बराबर कोणों की सम्मुख भुजाएँ बराबर होती हैं।

यह प्रमेय 7.2 का विलोम है।

आप इस प्रमेय को ASA सर्वांगसमता नियम का प्रयोग करके सिद्ध कर सकते हैं। आइए इन परिणामों को स्पष्ट करने के लिए कुछ उदाहरण लें।

उदाहरण 4 : $ \triangle \mathrm{ABC}$ में, $\angle \mathrm{A}$ का समद्विभाजक $\mathrm{AD}$ भुजा $\mathrm{BC}$ पर लम्ब है (देखिए आकृति 7.27)। दर्शाइए कि $\mathrm{AB}=\mathrm{AC}$ है और $\triangle \mathrm{ABC}$ समद्विबाहु है।

आकृति 7.27

हल : $\triangle \mathrm{ABD}$ और $\triangle \mathrm{ACD}$ में,

$$ \begin{aligned} & \angle \mathrm{BAD}=\angle \mathrm{CAD}& \text { (दिया है) } \\ & \mathrm{AD}=\mathrm{AD} & \text{(उभयनिष्ठ)} \\ & \angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}& \text{(दिया है)}
\end{aligned} $$

$$ \begin{aligned} & \triangle \mathrm{ABD} \cong \triangle \mathrm{ACD} & \text{(ASA नियम)} \\ \text { ए, } & A B=A C & \text{(CPCT)} \\ & \end{aligned} $$

इसी कारण $\triangle \mathrm{ABC}$ समद्विबाहु है।

उदाहरण 5 : $ \mathrm{E}$ और $\mathrm{F}$ क्रमशः त्रिभुज $\mathrm{ABC}$ की बराबर भुजाओं $\mathrm{AB}$ और $\mathrm{AC}$ के मध्य-बिंदु हैं (देखिए आकृति 7.28)। दर्शाइए कि $\mathrm{BF}=\mathrm{CE}$ है।

आकृति 7.28

हल : $\triangle \mathrm{ABF}$ और $\triangle \mathrm{ACE}$ में,

$$ \begin{aligned} & \mathrm{AB}=\mathrm{AC} & \text { (दिया है) } \\ & \angle \mathrm{A}=\angle \mathrm{A} & \text { (उभयनिष्ठ) } \\ & \mathrm{AF}=\mathrm{AE} & \text { (बराबर भुजाओं के आधे) } \\ & \Delta \mathrm{ABF} \cong \triangle \mathrm{ACE}& \text { (SAS नियम) } \\ & \mathrm{BF}=\mathrm{CE} & \text { (CPCT) } \\ & \end{aligned} $$

उदाहरण 6 : एक समद्विबाहु त्रिभुज $\mathrm{ABC}$ जिसमें $\mathrm{AB}=\mathrm{AC}$ है, की भुजा $\mathrm{BC}$ पर दो बिंदु $\mathrm{D}$ और $\mathrm{E}$ इस प्रकार हैं कि $\mathrm{BE}=\mathrm{CD}$ है (देखिए आकृति 7.29)। दर्शाइए कि $\mathrm{AD}=\mathrm{AE}$ है।

आकृति 7.29

हल : $\triangle \mathrm{ABD}$ और $\triangle \mathrm{ACE}$ में,

$$ \begin{aligned} \mathrm{AB} & =\mathrm{AC}\quad \text {(दिया है)} \quad (1)\\ \angle \mathrm{B} & =\angle \mathrm{C} \end{aligned} \text {(बराबर भुजाओं के सम्मुख कोण)}\quad (2) $$

साथ ही, $\mathrm{BE}=\mathrm{CD}$ (दिया है)

इसलिए, $\mathrm{BE}-\mathrm{DE}=\mathrm{CD}-\mathrm{DE}$

अर्थात्, $\quad \mathrm{BD}=\mathrm{CE}$

अतः, $\quad \triangle \mathrm{ABD} \cong \triangle \mathrm{ACE}$

इससे प्राप्त होता है: $\mathrm{AD}=\mathrm{AE}$ $[(1),(2),(3)$ और SAS नियम द्वारा]

प्रश्नावली 7.2

1. एक समद्विबाहु त्रिभुज $\mathrm{ABC}$ में जिसमें $\mathrm{AB}=\mathrm{AC}$ है, $\angle \mathrm{B}$ और $\angle \mathrm{C}$ के समद्विभाजक परस्पर बिंदु $\mathrm{O}$ पर प्रतिच्छेद करते हैं। $\mathrm{A}$ और $\mathrm{O}$ को जोड़िए। दर्शाइए कि

(i) $\mathrm{OB}=\mathrm{OC}$

(ii) $\mathrm{AO}$ कोण $\mathrm{A}$ को समद्विभाजित करता है

Show Answer Missing

2. $\triangle \mathrm{ABC}$ में $\mathrm{AD}$ भुजा $\mathrm{BC}$ का लम्ब समद्विभाजक है (देखिए आकृति 7.30)। दर्शाइए कि $\triangle \mathrm{ABC}$ एक समद्विबाहु त्रिभुज है, जिसमें $\mathrm{AB}=\mathrm{AC}$ है।

आकृति 7.30

Show Answer Missing

3. $\mathrm{ABC}$ एक समद्विबाहु त्रिभुज है, जिसमें बराबर भुजाओं $\mathrm{AC}$ और $\mathrm{AB}$ पर क्रमशः शीर्षलम्ब $\mathrm{BE}$ और $\mathrm{CF}$ खींचे गए हैं (देखिए आकृति 7.31)। दर्शाइए कि ये शीर्षलम्ब बराबर हैं।

आकृति 7.31

Show Answer Missing

4. $\mathrm{ABC}$ एक त्रिभुज है जिसमें $\mathrm{AC}$ और $\mathrm{AB}$ पर खींचे गए शीर्षलम्ब $\mathrm{BE}$ और $\mathrm{CF}$ बराबर हैं (देखिए आकृति 7.32)। दर्शाइए कि

(i) $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$

(ii) $\mathrm{AB}=\mathrm{AC}$, अर्थात् $\triangle \mathrm{ABC}$ एक समद्विबाहु त्रिभुज है।

आकृति 7.32

Show Answer Missing

5. $\mathrm{ABC}$ और $\mathrm{DBC}$ समान आधार $\mathrm{BC}$ पर स्थित दो समद्विबाहु त्रिभुज हैं (देखिए आकृति 7.33)। दर्शाइए कि $\angle \mathrm{ABD}=\angle \mathrm{ACD}$ है।

आकृति 7.33

Show Answer Missing

6. $\mathrm{ABC}$ एक समद्विबाहु त्रिभुज है, जिसमें $\mathrm{AB}=\mathrm{AC}$ है। भुजा $\mathrm{BA}$ बिंदु $\mathrm{D}$ तक इस प्रकार बढ़ाई गई है कि $\mathrm{AD}=\mathrm{AB}$ है (देखिए आकृति 7.34)। दर्शाइए कि $\angle \mathrm{BCD}$ एक समकोण है।

आकृति 7.34

Show Answer Missing

7. $\mathrm{ABC}$ एक समकोण त्रिभुज है, जिसमें $\angle \mathrm{A}=90^{\circ}$ और $\mathrm{AB}=\mathrm{AC}$ है। $\angle \mathrm{B}$ और $\angle \mathrm{C}$ ज्ञात कीजिए।

Show Answer Missing

8. दर्शाइए कि किसी समबाहु त्रिभुज का प्रत्येक कोण $60^{\circ}$ होता है।

Show Answer Missing

7.5 त्रिभुजों की सर्वांगसमता के लिए कुछ और कसौटियाँ

आप इस अध्याय में, पहले यह देख चुके हैं कि एक त्रिभुज के तीनों कोणों के दूसरे त्रिभुज के तीनों कोणों के बराबर होने पर दोनों त्रिभुजों का सर्वांगसम होना आवश्यक नहीं है। आप सोच सकते हैं कि संभवतः एक त्रिभुज की तीनों भुजाओं के दूसरे त्रिभुज की तीनों भुजाओं के बराबर होने पर त्रिभुज सर्वांगसम हो जाएँ। आप यह पिछली कक्षाओं में पढ़ चुके हैं कि ऐसी स्थिति में त्रिभुज नि:संदेह सर्वांगसम होते हैं।

इस धारणा को निश्चित करने के लिए, $4 \mathrm{~cm}, 3.5 \mathrm{~cm}$ और $4.5 \mathrm{~cm}$ के दो त्रिभुज खींचिए (देखिए आकृति 7.35)। इन्हें काटकर, एक दूसरे पर रखिए। आप क्या देखते हैं? यदि बराबर भुजाओं को एक दूसरे पर रखा जाए। ये एक दूसरे को पूर्णतया ढक लेते हैं अतः, दोनों त्रिभुज सर्वांगसम हैं।

आकृति 7.35

इस क्रियाकलाप को कुछ अन्य त्रिभुज खींचकर दोहराइए। इस प्रकार, हम सर्वांगसमता के एक और नियम पर पहुँच जाते हैं:

प्रमेय 7.4 (SSS सर्वांगसमता नियम) : यदि एक त्रिभुज की तीनों भुजाएँ एक अन्य त्रिभुज की तीनों भुजाओं के बराबर हों, तो दोनों त्रिभुज सर्वांगसम होते हैं।

एक उपयुक्त रचना करके, इस प्रमेय को सिद्ध किया जा सकता है।

आप SAS सर्वांगसमता नियम में पहले ही देख चुके हैं कि बराबर कोणों के युग्म संगत बराबर भुजाओं के युग्मों के बीच में (अंतर्गत) होने चाहिए और यदि ऐसा नहीं हो, तो दोनों त्रिभुज सर्वांगसम नहीं भी हो सकते हैं।

इस क्रियाकलाप को कीजिए :

दो समकोण त्रिभुज ऐसे खींचिए जिनमें प्रत्येक का कर्ण 5 सेमी और एक भुजा $4 \mathrm{~cm}$ की हो (देखिए आकृति 7.36)।

आकृति 7.36

इन्हें काटिए और एक दूसरे पर इस प्रकार रखिए कि इनकी बराबर भुजाएँ एक दूसरे पर आएँ। यदि आवश्यक हो, तो त्रिभुजों को घुमाइए। आप क्या देखते हैं?

आप देखते हैं कि दोनों त्रिभुज एक दूसरे को पूर्णतया ढक लेते हैं और इसीलिए ये सर्वांगसम हैं। यही क्रियाकलाप समकोण त्रिभुजों के अन्य युग्म लेकर दोहराइए। आप क्या देखते हैं?

आप पाएँगे कि दोनों समकोण त्रिभुज सर्वांगसम होंगे, यदि उनके कर्ण बराबर हों और भुजाओं का एक युग्म बराबर हो। आप इस तथ्य की जाँच पिछली कक्षाओं में कर चुके हैं। ध्यान दीजिए कि इस स्थिति में समकोण अंतर्गत कोण नहीं है।

इस प्रकार, आप निम्नलिखित सर्वांगसमता नियम पर पहुँच गए हैं:

प्रमेय 7.5 (RHS सर्वांगसमता नियम ) : यदि दो समकोण त्रिभुजों में, एक त्रिभुज का कर्ण और एक भुजा क्रमशः दूसरे त्रिभुज के कर्ण और एक भुजा के बराबर हों, तो दोनों त्रिभुज सर्वांगसम होते हैं।

ध्यान दीजिए कि यहाँ RHS समकोण (Right angle) - कर्ण (Hypotenuse) - भुजा (Side) को दर्शाता है।

आइए अब कुछ उदाहरण लें।

उदाहरण 7 : $ \mathrm{AB}$ एक रेखाखंड है तथा बिंदु $\mathrm{P}$ और $\mathrm{Q}$ इस रेखाखंड $\mathrm{AB}$ के विपरीत ओर इस प्रकार स्थित हैं कि इनमें से प्रत्येक $\mathrm{A}$ और $\mathrm{B}$ से समदूरस्थ है (देखिए आकृति 7.37)। दर्शाइए कि रेखा $\mathrm{PQ}$ रेखाखंड $\mathrm{AB}$ का लम्ब समद्विभाजक है।

हल : आपको $\mathrm{PA}=\mathrm{PB}$ और $\mathrm{QA}=\mathrm{QB}$ दिया हुआ है। आपको दर्शाना है कि $\mathrm{PQ} \perp \mathrm{AB}$ है और $\mathrm{PQ}$ रेखाखंड $\mathrm{AB}$ को समद्विभाजित करती है। मान लीजिए रेखा $\mathrm{PQ}$ रेखाखंड $\mathrm{AB}$ को $\mathrm{C}$ पर प्रतिच्छेद करती है। क्या आप इस आकृति में दो सर्वांगसम त्रिभुजों को देख सकते हैं?

आकृति 7.37

इन त्रिभुजों में,

$\mathrm{AP}=\mathrm{BP}$ (दिया है)

$A Q=B Q$ (दिया है)

$\mathrm{PQ}=\mathrm{PQ}$ (उभयनिष्ठ)

अत:, $\triangle \mathrm{PAQ} \cong \triangle \mathrm{PBQ}$ (SSS नियम)

इसलिए, $\angle \mathrm{APQ}=\angle \mathrm{BPQ}$ (CPCT)

अब $\triangle \mathrm{PAC}$ और $\triangle \mathrm{PBC}$ को लीजिए। आपको प्राप्त है :

$\mathrm{AP}=\mathrm{BP}$ (दिया है)

$\angle \mathrm{APC}=\angle \mathrm{BPC}(\angle \mathrm{APQ}=\angle \mathrm{BPQ}$ (ऊपर सिद्ध किया है)

$\mathrm{PC}=\mathrm{PC}$ (उभयनिष्ठ)

अत:, $\triangle \mathrm{PAC} \cong \triangle \mathrm{PBC}$ (SAS नियम)

इसलिए, $\mathrm{AC}=\mathrm{BC}$

और $\angle \mathrm{ACP}=\angle \mathrm{BCP}$ (CPCT)

$ \begin{array}{lrll} \text{साथ ही, } & \angle \mathrm{ACP}+\angle \mathrm{BCP} & =180^{\circ} & \text { (रैखिक युग्म) } \\ \text {इसलिए, } & 2 \angle \mathrm{ACP} & =180^{\circ} & \\ \text {या,} & \angle \mathrm{ACP}& =90^{\circ} & (2)\\ \end{array} $

(1) और (2) से, आप निष्कर्ष निकाल सकते हैं कि रेखा $\mathrm{PQ}$ रेखाखंड $\mathrm{AB}$ का लम्ब समद्विभाजक है।

[ध्यान दीजिए कि $\triangle \mathrm{PAQ}$ और $\triangle \mathrm{PBQ}$ की सर्वांगसमता दर्शाए बिना, आप यह नहीं दिखा सकते कि $\triangle \mathrm{PAC} \cong \triangle \mathrm{PBC}$ है, यद्याप $\mathrm{AP}=\mathrm{BP}$ (दिया है),

$\mathrm{PC}=\mathrm{PC}$ (उभयनिष्ठ) और]

$\angle \mathrm{PAC}=\angle \mathrm{PBC}(\triangle \mathrm{APB}$ में बराबर भुजाओं के सम्मुख कोण) है।

यह इस कारण है कि इनसे हमें SSA नियम प्राप्त होता है, जो त्रिभुजों की सर्वांगसमता के लिए सदैव मान्य नहीं है। साथ ही, कोण बराबर भुजाओं के अंतर्गत नहीं है।]

आइए कुछ और उदाहरण लें।

उदाहरण 8 : बिंदु $\mathrm{A}$ पर प्रतिच्छेद करने वाली दो रेखाओं $l$ और $m$ से समदूरस्थ एक बिंदु $\mathrm{P}$ है (देखिए आकृति 7.38)। दर्शाइए कि रेखा AP दोनों रेखाओं के बीच के कोण को समद्विभाजित करती है।

हल : आपको दिया है कि रेखाएँ $l$ और $m$ परस्पर $\mathrm{A}$ पर प्रतिच्छेद करती हैं। मान लीजिए $\mathrm{PB} \perp l$ और $\mathrm{PC} \perp m$ है। यह दिया है कि $\mathrm{PB}=\mathrm{PC}$ है।

आपको दर्शाना है कि $\angle \mathrm{PAB}=\angle \mathrm{PAC}$ है।

अब, $\triangle \mathrm{PAB}$ और $\triangle \mathrm{PAC}$ में,

$$ \begin{aligned} & \mathrm{PB}=\mathrm{PC} & \text { (दिया है) } \\ & \angle \mathrm{PBA}=\angle \mathrm{PCA}=90^{\circ}& \text { (दिया है) } \\ & \mathrm{PA}=\mathrm{PA} & \text { ( उभयनिष्ठ) } \end{aligned} $$

आकृति 7.38

अत: $\quad \triangle \mathrm{PAB} \cong \triangle \mathrm{PAC}$ (RHS नियम)

इसलिए, $\quad \angle \mathrm{PAB}=\angle \mathrm{PAC}$

ध्यान दीजिए कि यह परिणाम प्रश्नावली 7.1 के प्रश्न 5 में सिद्ध किए गए परिणाम का विलोम है।

प्रश्नावली 7.3

1. $\triangle \mathrm{ABC}$ और $\triangle \mathrm{DBC}$ एक ही आधार $\mathrm{BC}$ पर बने दो समद्विबाहु त्रिभुज इस प्रकार हैं कि $\mathrm{A}$ और $\mathrm{D}$ भुजा $\mathrm{BC}$ के एक ही ओर स्थित हैं (देखिए आकृति 7.39)। यदि $\mathrm{AD}$ बढ़ाने पर $\mathrm{BC}$ को $\mathrm{P}$ पर प्रतिच्छेद करे, तो दर्शाइए कि

(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$

(ii) $\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}$

(iii) $\mathrm{AP}$ कोण $\mathrm{A}$ और कोण $\mathrm{D}$ दोनों को समद्विभाजित करता है।

(iv) $\mathrm{AP}$ रेखाखंड $\mathrm{BC}$ का लम्ब समद्विभाजक है।

आकृति 7.39

Show Answer Missing

2. $\mathrm{AD}$ एक समद्विबाहु त्रिभुज $\mathrm{ABC}$ का एक शीर्षलम्ब है, जिसमें $\mathrm{AB}=\mathrm{AC}$ है। दर्शाइए कि

(i) $\mathrm{AD}$ रेखाखंड $\mathrm{BC}$ को समद्विभाजित करता है।\

(ii) $\mathrm{AD}$ कोण $\mathrm{A}$ को समद्विभाजित करता है।

Show Answer Missing

3. एक त्रिभुज $\mathrm{ABC}$ की दो भुजाएँ $\mathrm{AB}$ और $\mathrm{BC}$ तथा माध्यिका $\mathrm{AM}$ क्रमशः एक दूसरे त्रिभुज की भुजाओं $\mathrm{PQ}$ और $\mathrm{QR}$ तथा माध्यिका $\mathrm{PN}$ के बराबर हैं (देखिए आकृति 7.40)। दर्शाइए कि

(i) $\triangle \mathrm{ABM} \cong \triangle \mathrm{PQN}$

(ii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$

आकृति 7.40

Show Answer Missing

4. $\mathrm{BE}$ और $\mathrm{CF}$ एक त्रिभुज $\mathrm{ABC}$ के दो बराबर शीर्षलम्ब हैं। RHS सर्वांगसमता नियम का प्रयोग करके सिद्ध कीजिए कि $\triangle \mathrm{ABC}$ एक समद्विबाहु त्रिभुज है।

Show Answer Missing

5. $\mathrm{ABC}$ एक समद्विबाहु त्रिभुज है जिसमे $\mathrm{AB}=\mathrm{AC}$ है। $\mathrm{AP} \perp \mathrm{BC}$ खींच कर दर्शाइए कि $\angle \mathrm{B}=\angle \mathrm{C}$ है।

Show Answer Missing

7.6 सारांश

इस अध्याय में, आपने निम्न बिंदुओं का अध्ययन किया है:

1. दो आकृतियाँ सर्वांगसम होती हैं, यदि उनका एक ही आकार हो और एक ही माप हो।

2. समान त्रिज्याओं वाले दो वृत्त सर्वांगसम होते हैं।

3. समान भुजाओं वाले दो वर्ग सर्वांगसम होते हैं।

4. यदि त्रिभुज $\mathrm{ABC}$ और $\mathrm{PQR}$ संगतता $\mathrm{A} \leftrightarrow \mathrm{P}, \mathrm{B} \leftrightarrow \mathrm{Q}$ और $\mathrm{C} \leftrightarrow \mathrm{R}$, के अंतर्गत सर्वांगसम हों, तो उन्हें सांकेतिक रूप में $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$ लिखते हैं।

5. यदि एक त्रिभुज की दो भुजाएँ और अंतर्गत कोण दूसरे त्रिभुज की दो भुजाओं और अंतर्गत कोण के बराबर हों, तो दोनों त्रिभुज सर्वांगसम होते हैं (SAS सर्वांगसमता नियम)।

6. यदि एक त्रिभुज के दो कोण और अंतर्गत भुजा दूसरे त्रिभुज के दो कोणों और अंतर्गत भुजा के बराबर हों, तो दोनों त्रिभुज सर्वांगसम होते हैं (ASA सर्वांगसमता नियम)।

7. यदि एक त्रिभुज के दो कोण और एक भुजा दूसरे त्रिभुज के दो कोणों और संगत भुजा के बराबर हों, तो दोनों त्रिभुज सर्वांगसम होते हैं (AAS सर्वांगसमता नियम)।

8. त्रिभुज की बराबर भुजाओं के सम्मुख कोण बराबर होते हैं।

9. त्रिभुज के बराबर कोणों की सम्मुख भुजाएँ बराबर होती हैं।

10. किसी समबाहु त्रिभुज का प्रत्येक कोण $60^{\circ}$ का होता है।

11. यदि एक त्रिभुज की तीनों भुजाएँ दूसरे त्रिभुज की तीनों भुजाओं के बराबर हों, तो दोनों त्रिभुज सर्वांगसम होते हैं (SSS सर्वांगसमता नियम)।

12. यदि दो समकोण त्रिभुजों में, एक त्रिभुज का कर्ण और एक भुजा क्रमशः दूसरे त्रिभुज के कर्ण और एक भुजा के बराबर हों, तो दोनों त्रिभुज सर्वांगसम होते हैं (RHS सर्वांगसमता नियम)।



Table of Contents