Chapter-05 Introduction to Euclid's Geometry
5.1 Introduction
The word ‘geometry’ comes form the Greek words ‘geo’, meaning the ’earth’, and ‘metrein’, meaning ’to measure’. Geometry appears to have originated from the need for measuring land. This branch of mathematics was studied in various forms in every ancient civilisation, be it in Egypt, Babylonia, China, India, Greece, the Incas, etc. The people of these civilisations faced several practical problems which required the development of geometry in various ways.
For example, whenever the river Nile overflowed, it wiped out the boundaries between the adjoining fields of different land owners. After such flooding, these boundaries had to be redrawn. For this purpose, the Egyptians developed a number of geometric techniques and rules for calculating simple areas and also for doing simple constructions. The knowledge of geometry was also used by them for computing volumes of granaries, and for constructing canals and pyramids. They also knew the correct formula to find the volume of a truncated pyramid (see Fig. 5.1). You know that a pyramid is a solid figure, the base of which is a triangle, or square, or some other polygon, and its side faces are triangles converging to a point at the top.
Fig. 5.1 : A Truncated Pyramid
In the Indian subcontinent, the excavations at Harappa and Mohenjo-Daro, etc. show that the Indus Valley Civilisation (about 3000 BCE) made extensive use of geometry. It was a highly organised society. The cities were highly developed and very well planned. For example, the roads were parallel to each other and there was an underground drainage system. The houses had many rooms of different types. This shows that the town dwellers were skilled in mensuration and practical arithmetic. The bricks used for constructions were kiln fired and the ratio length : breadth : thickness, of the bricks was found to be $4: 2: 1$.
In ancient India, the Sulbasutras ( $800 \mathrm{BCE}$ to $500 \mathrm{BCE}$ ) were the manuals of geometrical constructions. The geometry of the Vedic period originated with the construction of altars (or vedis) and fireplaces for performing Vedic rites. The location of the sacred fires had to be in accordance to the clearly laid down instructions about their shapes and areas, if they were to be effective instruments. Square and circular altars were used for household rituals, while altars whose shapes were combinations of rectangles, triangles and trapeziums were required for public worship. The sriyantra (given in the Atharvaveda) consists of nine interwoven isosceles triangles. These triangles are arranged in such a way that they produce 43 subsidiary triangles. Though accurate geometric methods were used for the constructions of altars, the principles behind them were not discussed.
These examples show that geometry was being developed and applied everywhere in the world. But this was happening in an unsystematic manner. What is interesting about these developments of geometry in the ancient world is that they were passed on from one generation to the next, either orally or through palm leaf messages, or by other ways. Also, we find that in some civilisations like Babylonia, geometry remained a very practical oriented discipline, as was the case in India and Rome. The geometry developed by Egyptians mainly consisted of the statements of results. There were no general rules of the procedure. In fact, Babylonians and Egyptians used geometry mostly for practical purposes and did very little to develop it as a systematic science. But in civilisations like Greece, the emphasis was on the reasoning behind why certain constructions work. The Greeks were interested in establishing the truth of the statements they discovered using deductive reasoning (see Appendix 1). A Greek mathematician, Thales is credited with giving the first known proof. This proof was of the statement that a circle is bisected (i.e., cut into two equal parts) by its diameter. One of Thales’ most famous pupils was Pythagoras ( 572 BCE), whom you have heard about. Pythagoras and his group discovered many geometric properties and developed the theory of geometry to a great extent. This process continued till $300 \mathrm{BCE}$. At that time Euclid, a teacher of mathematics at Alexandria in Egypt, collected all the known work and arranged it in his famous treatise,
Thales (640 BCE - 546 BCE)
In this chapter, we shall discuss Euclid’s approach to geometry and shall try to link it with the present day geometry.
Euclid (325 BCE - 265 BCE)
Fig. 5.3
5.2 Euclid’s Definitions, Axioms and Postulates
The Greek mathematicians of Euclid’s time thought of geometry as an abstract model of the world in which they lived. The notions of point, line, plane (or surface) and so on were derived from what was seen around them. From studies of the space and solids in the space around them, an abstract geometrical notion of a solid object was developed. A solid has shape, size, position, and can be moved from one place to another. Its boundaries are called surfaces. They separate one part of the space from another, and are said to have no thickness. The boundaries of the surfaces are curves or straight lines. These lines end in points.
Consider the three steps from solids to points (solids-surfaces-lines-points). In each step we lose one extension, also called a dimension. So, a solid has three dimensions, a surface has two, a line has one and a point has none. Euclid summarised these statements as definitions. He began his exposition by listing 23 definitions in Book 1 of the ‘Elements’. A few of them are given below :
- A point is that which has no part.
- A line is breadthless length.
- The ends of a line are points.
- A straight line is a line which lies evenly with the points on itself.
- A surface is that which has length and breadth only.
- The edges of a surface are lines.
- A plane surface is a surface which lies evenly with the straight lines on itself.
If you carefully study these definitions, you find that some of the terms like part, breadth, length, evenly, etc. need to be further explained clearly. For example, consider his definition of a point. In this definition, ‘a part’ needs to be defined. Suppose if you define ‘a part’ to be that which occupies ‘area’, again ‘an area’ needs to be defined. So, to define one thing, you need to define many other things, and you may get a long chain of definitions without an end. For such reasons, mathematicians agree to leave some geometric terms undefined. However, we do have a intuitive feeling for the geometric concept of a point than what the ‘definition’ above gives us. So, we represent a point as a dot, even though a dot has some dimension.
A similar problem arises in Definition 2 above, since it refers to breadth and length, neither of which has been defined. Because of this, a few terms are kept undefined while developing any course of study. So, in geometry, we take a point, a line and a plane (in Euclid’s words a plane surface) as undefined terms. The only thing is that we can represent them intuitively, or explain them with the help of ‘physical models’.
Starting with his definitions, Euclid assumed certain properties, which were not to be proved. These assumptions are actually ‘obvious universal truths’. He divided them into two types: axioms and postulates. He used the term ‘postulate’ for the assumptions that were specific to geometry. Common notions (often called axioms), on the other hand, were assumptions used throughout mathematics and not specifically linked to geometry. For details about axioms and postulates, refer to Appendix 1. Some of Euclid’s axioms, not in his order, are given below :
(1) Things which are equal to the same thing are equal to one another.
(2) If equals are added to equals, the wholes are equal.
(3) If equals are subtracted from equals, the remainders are equal.
(4) Things which coincide with one another are equal to one another.
(5) The whole is greater than the part.
(6) Things which are double of the same things are equal to one another.
(7) Things which are halves of the same things are equal to one another.
These ‘common notions’ refer to magnitudes of some kind. The first common notion could be applied to plane figures. For example, if an area of a triangle equals the area of a rectangle and the area of the rectangle equals that of a square, then the area of the triangle also equals the area of the square.
Magnitudes of the same kind can be compared and added, but magnitudes of different kinds cannot be compared. For example, a line cannot be compared to a rectangle, nor can an angle be compared to a pentagon.
The 4th axiom given above seems to say that if two things are identical (that is, they are the same), then they are equal. In other words, everything equals itself. It is the justification of the principle of superposition. Axiom (5) gives us the definition of ‘greater than’. For example, if a quantity B is a part of another quantity A, then A can be written as the sum of B and some third quantity C. Symbolically, A > B means that there is some $\mathrm{C}$ such that $\mathrm{A}=\mathrm{B}+\mathrm{C}$.
Now let us discuss Euclid’s five postulates. They are :
Postulate 1 : A straight line may be drawn from any one point to any other point.
Note that this postulate tells us that at least one straight line passes through two distinct points, but it does not say that there cannot be more than one such line. However, in his work, Euclid has frequently assumed, without mentioning, that there is a unique line joining two distinct points. We state this result in the form of an axiom as follows:
Axiom 5.1 : Given two distinct points, there is a unique line that passes through them.
How many lines passing through $P$ also pass through $Q$ (see Fig. 5.4)? Only one, that is, the line $P Q$. How many lines passing through $Q$ also pass through $P$ ? Only one, that is, the line PQ. Thus, the statement above is self-evident, and so is taken as an axiom.
Fig. 5.4
Postulate 2 : A terminated line can be produced indefinitely.
Note that what we call a line segment now-a-days is what Euclid called a terminated line. So, according to the present day terms, the second postulate says that a line segment can be extended on either side to form a line (see Fig. 5.5).
Fig. 5.5
Postulate 3 : A circle can be drawn with any centre and any radius.
Postulate 4 : All right angles are equal to one another.
Postulate 5 : If a straight line falling on two straight lines makes the interior angles on the same side of it taken together less than two right angles, then the two straight lines, if produced indefinitely, meet on that side on which the sum of angles is less than two right angles.
For example, the line PQ in Fig. 5.6 falls on lines $\mathrm{AB}$ and $\mathrm{CD}$ such that the sum of the interior angles 1 and 2 is less than $180^{\circ}$ on the left side of PQ. Therefore, the lines $\mathrm{AB}$ and $\mathrm{CD}$ will eventually intersect on the left side of PQ.
Fig. 5.6
A brief look at the five postulates brings to your notice that Postulate 5 is far more complex than any other postulate. On the other hand, Postulates 1 through 4 are so simple and obvious that these are taken as ‘self-evident truths’. However, it is not possible to prove them. So, these statements are accepted without any proof (see Appendix 1). Because of its complexity, the fifth postulate will be given more attention in the next section.
Now-a-days, ‘postulates’ and ‘axioms’ are terms that are used interchangeably and in the same sense. ‘Postulate’ is actually a verb. When we say “let us postulate”, we mean, “let us make some statement based on the observed phenomenon in the Universe”. Its truth/validity is checked afterwards. If it is true, then it is accepted as a ‘Postulate’.
A system of axioms is called consistent (see Appendix 1), if it is impossible to deduce from these axioms a statement that contradicts any axiom or previously proved statement. So, when any system of axioms is given, it needs to be ensured that the system is consistent.
After Euclid stated his postulates and axioms, he used them to prove other results. Then using these results, he proved some more results by applying deductive reasoning. The statements that were proved are called propositions or theorems. Euclid deduced 465 propositions in a logical chain using his axioms, postulates, definitions and theorems proved earlier in the chain. In the next few chapters on geometry, you will be using these axioms to prove some theorems.
Now, let us see in the following examples how Euclid used his axioms and postulates for proving some of the results:
Example 1 : If $\mathrm{A}, \mathrm{B}$ and $\mathrm{C}$ are three points on a line, and $\mathrm{B}$ lies between $\mathrm{A}$ and $\mathrm{C}$ (see Fig. 5.7), then prove that $\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$.
Fig. 5.7
Solution : In the figure given above, $\mathrm{AC}$ coincides with $\mathrm{AB}+\mathrm{BC}$.
Also, Euclid’s Axiom (4) says that things which coincide with one another are equal to one another. So, it can be deduced that
$\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$
Note that in this solution, it has been assumed that there is a unique line passing through two points.
Example 2 : Prove that an equilateral triangle can be constructed on any given line segment.
Solution : In the statement above, a line segment of any length is given, say AB [see Fig. 5.8(i)].
Fig. 5.8
Here, you need to do some construction. Using Euclid’s Postulate 3, you can draw a circle with point $A$ as the centre and $A B$ as the radius [see Fig. 5.8(ii)]. Similarly, draw another circle with point $\mathrm{B}$ as the centre and $\mathrm{BA}$ as the radius. The two circles meet at a point, say $\mathrm{C}$. Now, draw the line segments $\mathrm{AC}$ and $\mathrm{BC}$ to form $\triangle \mathrm{ABC}$ [see Fig. 5.8 (iii)].
So, you have to prove that this triangle is equilateral, i.e., $\mathrm{AB}=\mathrm{AC}=\mathrm{BC}$.
Now, $\quad \mathrm{AB}=\mathrm{AC}$, since they are the radii of the same circle
Similarly, $A B=B C \quad$ (Radii of the same circle)
From these two facts, and Euclid’s axiom that things which are equal to the same thing are equal to one another, you can conclude that $\mathrm{AB}=\mathrm{BC}=\mathrm{AC}$.
So, $\triangle \mathrm{ABC}$ is an equilateral triangle.
Note that here Euclid has assumed, without mentioning anywhere, that the two circles drawn with centres A and B will meet each other at a point.
Now we prove a theorem, which is frequently used in different results:
Theorem 5.1 : Two distinct lines cannot have more than one point in common.
Proof: Here we are given two lines $l$ and $m$. We need to prove that they have only one point in common.
For the time being, let us suppose that the two lines intersect in two distinct points, say $\mathrm{P}$ and $\mathrm{Q}$. So, you have two lines passing through two distinct points $\mathrm{P}$ and $\mathrm{Q}$. But this assumption clashes with the axiom that only one line can pass through two distinct points. So, the assumption that we started with, that two lines can pass through two distinct points is wrong.
From this, what can we conclude? We are forced to conclude that two distinct lines cannot have more than one point in common.
EXERCISE 5.1
1. Which of the following statements are true and which are false? Give reasons for your answers.
(i) Only one line can pass through a single point.
(ii) There are an infinite number of lines which pass through two distinct points.
(iii) A terminated line can be produced indefinitely on both the sides.
(iv) If two circles are equal, then their radii are equal.
(v) In Fig. 5.9, if $A B=P Q$ and $P Q=X Y$, then $A B=X Y$.
Fig. 5.9
Show Answer
Solution
(i) False. Since through a single point, infinite number of lines can pass. In the following figure, it can be seen that there are infinite numbers of lines passing through a single point $P$.
(ii) False. Since through two distinct points, only one line can pass. In the following figure, it can be seen that there is only one single line that can pass through two
distinct points $P$ and $Q$.
(iii) True. A terminated line can be produced indefinitely on both the sides.
Let $A B$ be a terminated line. It can be seen that it can be produced indefinitely on both the sides.
(iv)True. If two circles are equal, then their centre and circumference will coincide and hence, the radii will also be equal.
(v) True. It is given that $A B$ and $X Y$ are two terminated lines and both are equal to a third line PQ. Euclid’s first axiom states that things which are equal to the same thing are equal to one another. Therefore, the lines $A B$ and $X Y$ will be equal to each other.
2. Give a definition for each of the following terms. Are there other terms that need to be defined first? What are they, and how might you define them?
(i) parallel lines
(ii) perpendicular lines
(iii) line segment
(iv) radius of a circle
(v) square
Show Answer
Solution
(i) False. Since through a single point, infinite number of lines can pass. In the following figure, it can be seen that there are infinite numbers of lines passing through a single point $P$.
(ii) False. Since through two distinct points, only one line can pass. In the following figure, it can be seen that there is only one single line that can pass through two
distinct points $P$ and $Q$.
(iii) True. A terminated line can be produced indefinitely on both the sides.
Let $A B$ be a terminated line. It can be seen that it can be produced indefinitely on both the sides.
(iv)True. If two circles are equal, then their centre and circumference will coincide and hence, the radii will also be equal.
(v) True. It is given that $A B$ and $X Y$ are two terminated lines and both are equal to a third line PQ. Euclid’s first axiom states that things which are equal to the same thing are equal to one another. Therefore, the lines $A B$ and $X Y$ will be equal to each other.
(iv) Radius of a circle
It is the distance between the centres of a circle to any point lying on the circle. To define the radius of a circle, we must know about point and circle.
(v) Square
A square is a quadrilateral having all sides of equal length and all angles of same measure, i.e., $90^{\circ}$. To define square, we must know about quadrilateral, side, and
angle.
3. Consider two ‘postulates’ given below:
(i) Given any two distinct points $\mathrm{A}$ and $\mathrm{B}$, there exists a third point $\mathrm{C}$ which is in between $\mathrm{A}$ and $\mathrm{B}$.
(ii) There exist at least three points that are not on the same line. Do these postulates contain any undefined terms? Are these postulates consistent? Do they follow from Euclid’s postulates? Explain.
Show Answer
Solution
There are various undefined terms in the given postulates.
The given postulates are consistent because they refer to two different situations. Also, it is impossible to deduce any statement that contradicts any well known axiom and postulate.
These postulates do not follow from Euclid’s postulates. They follow from the axiom, “Given two distinct points, there is a unique line that passes through them”.
4. If a point $\mathrm{C}$ lies between two points $\mathrm{A}$ and $\mathrm{B}$ such that $\mathrm{AC}=\mathrm{BC}$, then prove that $\mathrm{AC}=\frac{1}{2} \mathrm{AB}$. Explain by drawing the figure.
Show Answer
Solution
It is given that,
$A C=B C$
$AC+AC=BC+AC$
(Equals are added on both sides) … (1) Here, (BC
$+A C$ ) coincides with $A B$. It is known that things which coincide with one another are equal to one another.
$\therefore BC+AC=AB \ldots$
It is also known that things which are equal to the same thing are equal to one another. Therefore, from equations (1) and (2), we obtain
$A C+A C=A B$
$2 AC=AB$
$\therefore AC=\frac{1}{2} AB$
5. In Question 4, point $\mathrm{C}$ is called a mid-point of line segment $\mathrm{AB}$. Prove that every line segment has one and only one mid-point.
Show Answer
Solution
Let there be two mid-points, C and D.
$C$ is the mid-point of $A B$.$AC=CB$
$AC+AC=BC+AC$ (Equals are added on both sides)
Here, $(B C+A C)$ coincides with $A B$. It is known that things which coincide with one another are equal to one another.
$\therefore BC+AC=AB \ldots$
It is also known that things which are equal to the same thing are equal to one another.
Therefore, from equations (1) and (2), we obtain
$A C+A C=A B$
$\Rightarrow 2 A C=A B$
Similarly, by taking $D$ as the mid-point of $A B$, it can be proved that
$2 A D=A B$
From equation (3) and (4), we obtain
$2 A C=2 A D$ (Things which are equal to the same thing are equal to one another.) $\Rightarrow$ $A C=A D$ (Things which are double of the same things are equal to one another.) This is possible only when point $C$ and $D$ are representing a single point.
Hence, our assumption is wrong and there can be only one mid-point of a given line segment.
6. In Fig. 5.10, if $\mathrm{AC}=\mathrm{BD}$, then prove that $\mathrm{AB}=\mathrm{CD}$.
Fig. 5.10
Show Answer
Solution
From the figure, it can be observed that $A C$
$=A B+B C$
$B D=B C+C D$
It is given that $A C=B D \quad A B$
$+B C=B C+C D(1)$
According to Euclid’s axiom, when equals are subtracted from equals, the remainders are also equal.
Subtracting BC from equation (1), we obtain
$A B+B C-B C=B C+C D-B C$
$A B=C D$
7. Why is Axiom 5, in the list of Euclid’s axioms, considered a ‘universal truth’? (Note that the question is not about the fifth postulate.)
Show Answer
Solution
Axiom 5 states that the whole is greater than the part. This axiom is known as a universal truth because it holds true in any field, and not just in the field of mathematics. Let us take two cases - one in the field of mathematics, and one other than that.
Case I
Let $t$ represent a whole quantity and only $a, b, c$ are parts of it.
$t=a+b+c$
Clearly, $t$ will be greater than all its parts $a, b$, and $c$.
Therefore, it is rightly said that the whole is greater than the part.
Case II
Let us consider the continent Asia. Then, let us consider a country India which belongs to Asia. India is a part of Asia and it can also be observed that Asia is greater than India. That is why we can say that the whole is greater than the part.
This is true for anything in any part of the world and is thus a universal truth.
5.3 Summary
In this chapter, you have studied the following points:
1. Though Euclid defined a point, a line, and a plane, the definitions are not accepted by mathematicians. Therefore, these terms are now taken as undefined.
2. Axioms or postulates are the assumptions which are obvious universal truths. They are not proved.
3. Theorems are statements which are proved, using definitions, axioms, previously proved statements and deductive reasoning.
4. Some of Euclid’s axioms were :
(1) Things which are equal to the same thing are equal to one another.
(2) If equals are added to equals, the wholes are equal.
(3) If equals are subtracted from equals, the remainders are equal.
(4) Things which coincide with one another are equal to one another.
(5) The whole is greater than the part.
(6) Things which are double of the same things are equal to one another.
(7) Things which are halves of the same things are equal to one another.
5. Euclid’s postulates were :
Postulate 1 : A straight line may be drawn from any one point to any other point.
Postulate 2 : A terminated line can be produced indefinitely.
Postulate 3 : A circle can be drawn with any centre and any radius.
Postulate 4 : All right angles are equal to one another.
5.1 भूमिका
शब्द ‘ज्यामिति’ (geometry) यूनानी भाषा के शब्दों ‘जियो’ (geo) और ‘मीट्रीन’ (metrein) से मिल कर बना है। जियो का अर्थ है ‘पृथ्वी’ या ‘भूमि’ और मीट्रीन का अर्थ है ‘मापना’। इससे ऐसा प्रतीत होता है कि ज्यामिति का उद्गम भूमि मापने की आवश्यकता के कारण हुआ है। गणित की इस शाखा का अध्ययन विभिन्न रूपों में प्रत्येक प्राचीन सभ्यताओं द्वारा किया गया, चाहे वह मिस्र हो, बेबीलोन हो, चीन हो, भारत हो, यूनान हो या इनकास (incas), इत्यादि। इन सभ्यताओं के लोगों को अनेक व्यावहारिक समस्याओं का सामना करना पड़ा जिनमें ज्यामिति के विकास की विभिन्न प्रकार से आवश्यकता पड़ी।
उदाहरण के तौर पर, जब भी नील नदी में बाढ़ आती थी, तो विभिन्न भूमि स्वामियों के संलग्न खेतों के बीच की परिसीमाओं (boundaries) को अपने साथ बहा ले जाती थी। इन बाढ़ों के बाद, इन परिसीमाओं को पुन: बनाया जाता था। इस कार्य के लिए, मिस्रवासियों ने सरल क्षेत्रफल परिकलित करने के साथ ही सरल रचनाएँ करने के लिए, अनेक ज्यामितीय तकनीकें और नियम विकसित किए। उन्होंने ज्यामिति के ज्ञान का उपयोग अन्नभण्डारों के आयतन निकालने तथा नहरों और पिरामिडों (pyramids) के निर्माण करने में किया। वे एक कटे हुए पिरामिड (truncated pyramid) (देखिए आकृति 5.1) का आयतन ज्ञात करने का सही सूत्र भी जानते थे। आप जानते हैं कि पिरामिड एक ऐसी ठोस आकृति होती है, जिसका आधार एक त्रिभुज या वर्ग या कोई अन्य बहुभुज होता है और जिसके पार्श्व फलक (side faces या lateral faces), ऊपर एक ही बिंदु पर मिलने वाले त्रिभुज होते हैं।
आकृति 5.1 : कटा हुआ पिरामिड
भारतीय उप-महाद्वीप में, हड़प्पा और मोहनजोदड़ो, इत्यादि की खुदाइयों से यह पता लगता है कि सिन्धु घाटी की सभ्यता (लगभग 3000 ई॰पू॰) ने ज्यामिति का प्रचुर मात्रा में उपयोग किया। वह एक उच्च कोटि का संगठित समाज था। शहर अत्याधिक रूप से विकसित थे और बड़े योजनाबद्ध ढंग से निर्मित किए गए थे। उदाहरणार्थ, सड़कें परस्पर समांतर होती थीं और भूमितत नालियों की व्यवस्था थी। घरों में विभिन्न प्रकार के अनेक कमरे हुआ करते थे। ये बातें दर्शाती हैं कि नगरवासी क्षेत्रमिति (mensuration) और व्यावहारिक अंकगणित में पूर्ण रूप से निपुण थे। निर्माण कार्य में प्रयोग की जाने वाली ईंटें भट्टों पर पकाई (बनाई) जाती थीं और इन ईंटों के लिए अनुपात लम्बाई : चौड़ाई : मोटाई, $4: 2: 1$ होता था।
प्राचीन भारत में, सुल्बासूत्र ( 800 ई॰पू०-500 ई॰पू०) ज्यामितीय रचनाओं के लिए महत्वपूर्ण ग्रंथ थे। वैदिक काल की ज्यामिति का उद्गम वैदिक पूजा के लिए आवश्यक भिन्न-भिन्न प्रकार की वेदियों और अग्नि-कुण्डों के निर्माण कार्य से हुआ। पवित्र अग्नियों को अधिक प्रभावशाली साधक होने के लिए, उनके स्थान, उनके आकारों और क्षेत्रफलों के बारे में स्पष्ट रूप से निर्धारित अनुदेशों के अनुसार, होते थे। घरेलू धार्मिक क्रियाओं के लिए, वर्गाकार और वृत्ताकार वेदियों का प्रयोग किया जाता था, जबकि सार्वजनिक पूजा स्थलों के लिए आयतों, त्रिभुजों और समलंबों के संयोजनों (मिले जुले) से बने आकारों का प्रयोग आवश्यक होता था। (अथर्ववेद में दिए) ‘श्रीयंत्र’ में एक दूसरे के साथ जुड़े नौ समद्विबाहु त्रिभुज अंतर्निहित हैं। ये त्रिभुज इस प्रकार व्यवस्थित किए गए हैं कि इनसे 43 छोटे (या गौण) त्रिभुजों का निर्माण होता है। यद्यपि वेदियों की रचना करने में परिशुद्ध ज्यामितीय विधियों का उपयोग किया गया था, फिर भी इनसे संबंधित सिद्धांतों की कोई चर्चा नहीं की गई।
उपरोक्त उदाहरण यह दर्शाते हैं कि ज्यामिति का विकास और अनुप्रयोग विश्व के सभी स्थानों पर होता रहा। परन्तु यह बड़े अव्यवस्थित प्रकार से हो रहा था। प्राचीन विश्व में, ज्यामिति के विकास की इन गतिविधियों की एक रोचक बात यह है कि इनका ज्ञान एक पीढ़ी से दूसरी पीढ़ी को या तो मौखिक रूप से या ताड़ के वृक्ष की पत्तियों पर लिखे संदेशों या कुछ अन्य विधियों द्वारा दिया जाता रहा। साथ ही, हम यह भी पाते हैं कि कुछ सभ्यताओं, जैसे कि बेबीलोनिया में, ज्यामिति एक अत्याधिक व्यावहारिक दृष्टिकोण वाले विषय तक सीमित रही तथा ऐसा ही भारत और रोम में रहा। मिस्रवासियों द्वारा विकसित की गई ज्यामिति में मुख्यतः परिणामों के कथन ही निहित थे। इनमें प्रक्रियाओं (अथवा विधियों) के कोई व्यापक नियम नहीं दिए गए। वस्तुतः बेबीलोन और मिस्रवासियों दोनों ही ने ज्यामिति का उपयोग अधिकांशतः व्यावहारिक कार्यों के लिए ही किया तथा उसको एक क्रमबद्ध विज्ञान के रूप में विकसित करने के लिए बहुत कम काम किया। परन्तु यूनान जैसी सभ्यताओं में इस तर्क पर बल दिया जाता था कि कुछ रचनाएँ किस प्रकार हो जाती हैं। यूनानियों की अभिरुचि उन कथनों, जिनको उन्होंने स्थापित किया था, की सत्यता निगमनिक तर्कण (deductive reasoning) का उपयोग करके जाँचने में थी (देखिए परिशिष्ट 1)। एक यूनानी गणितज्ञ थेल्स (Thales) को श्रेय जाता है कि उन्होंने सबसे पहली ज्ञात उपपत्ति (proof) प्रदान की। यह उपपत्ति इस कथन की थी कि वृत्त का व्यास वृत्त को समद्विभाजित (अर्थात् दो बराबर भागों में विभाजित) करता है। थेल्स का एक सबसे प्रसिद्ध शिष्य पाइथागोरस ( 572 ई॰पू॰) था, जिसका नाम आपने अवश्य सुना होगा। पाइथागोरस और उसके साथियों ने अनेक ज्यामितीय गुणों की खोज की और ज्यामिति के सिद्धांतों का अत्याधिक विकास किया। यह प्रक्रिया 300 ई॰पू॰ तक जारी रही। इसी समय मिस्र में अलेक्जेंड्रिया के एक गणित के शिक्षक यूक्लिड (Euclid) ने उस समय तक ज्ञात गणित के सभी ज्ञान को एकत्रित किया और एलीमेंट्स (Elements) नामक अपने प्रसिद्ध ग्रंथ के रूप में उसे व्यवस्थित किया। उन्होंने एलीमेंट्स को 13 अध्यायों में विभाजित किया, जिनमें से प्रत्येक को ‘पुस्तिका’ माना जाता है। इन पुस्तिकाओं ने समस्त विश्व की ज्यामिति संबंधी समझ को आने वाली पीढ़ियों तक प्रभावित किया।
थेल्स (640 सा०यु०पू०-546 सा०यु०पू०)
इस अध्याय में, हम ज्यामिति के प्रति यूक्लिड के दृष्टिकोण की चर्चा करेंगे और ज्यामिति के वर्तमान स्वरूप से इसे जोड़ने का प्रयत्न करेंगे।
यूक्लिड (325 सा॰यु॰पू०-265 सा०यु॰पू०)
आकृति 5.3
5.2 यूक्लिड की परिभाषाएँ, अभिगृहीत और अभिधारणाएँ
यूक्लिड के समय के यूनानी गणितज्ञों ने ज्यामिति को उस विश्व का एक सिद्धांतीय प्रतिमान (model) सोचा जिसमें वे रहते थे। बिंदु (point), रेखा (line), तल (plane) [या पृष्ठ (surface)], इत्यादि की अवधारणाएँ उन वस्तुओं से स्थापित की गईं जो उनके आस-पास थीं। आकाश (space) और उनके आस-पास के ठोसों के अध्ययनों के आधार पर, एक ठोस वस्तु की सिद्धांतीय ज्यामितीय अवधारणा विकसित की गई। एक ठोस (solid) का आकार होता है, माप और स्थिति होती है तथा उसे एक स्थान से दूसरे स्थान तक ले जाया जा सकता है। इसकी परिसीमाएँ पृष्ठ (surface) कहलाती हैं। ये आकाश के एक भाग को दूसरे भाग से पृथक करती हैं और इनकी कोई मोटाई नहीं होती। पृष्ठों की परिसीमाएँ वक्र (curves) या सीधी रेखाएँ (lines) होती हैं। इन रेखाओं के सिरे बिंदु (points) होते हैं।
ठोसों से बिंदुओं (ठोस-पृष्ठ-रेखाएँ-बिंदु) तक के तीन चरणों पर विचार कीजिए। प्रत्येक चरण में, हम एक विस्तार, जिसे हम विमा (dimension) भी कहते हैं, से वंचित होते हैं। इसलिए, यह कहा जाता है कि एक ठोस की तीन विमाएँ होती हैं, एक पृष्ठ की दो विमाएँ, एक रेखा की एक विमा होती है और एक बिंदु की कोई विमा नहीं होती। यूक्लिड ने इन कथनों को संक्षिप्त रूप से परिभाषाओं के रूप में प्रस्तुत किया। उन्होंने अपने इन रहस्योदघाटनों का प्रारम्भ ‘एलीमेंट्स’ की पुस्तक 1 में 23 परिभाषाएँ (definitions) देकर किया। इनमें से कुछ परिभाषाएँ नीचे दी जा रही हैं:
- एक बिंदु (point) वह है जिसका कोई भाग नहीं होता।
- एक रेखा (line) चौड़ाई रहित लम्बाई होती है।
- एक रेखा के सिरे बिंदु होते हैं।
- एक सीधी रेखा ऐसी रेखा है जो स्वयं पर बिंदुओं के साथ सपाट रूप से स्थित होती है।
- एक पृष्ठ (surface) वह है जिसकी केवल लम्बाई और चौड़ाई होती है।
- पृष्ठ के किनारे (edges) रेखाएँ होती हैं।
- एक समतल पृष्ठ (plane surface) ऐसा पृष्ठ है जो स्वयं पर सीधी रेखाओं के साथ सपाट रूप से स्थित होता है।
यदि आप ध्यानपूर्वक इन परिभाषाओं को देखें, तो आप पाएँगे कि कुछ पदों जैसे भाग, चौड़ाई, लम्बाई, सपाट रूप से, इत्यादि को स्पष्ट रूप से आगे और अधिक समझाने की आवश्यकता है। उदाहरणार्थ, बिंदु की परिभाषा पर विचार कीजिए जो यूक्लिड ने दी है। इस परिभाषा में, ‘एक भाग’ को परिभाषित करने की आवश्यकता है। मान लीजिए कि हम यह परिभाषित करें कि एक भाग वह है जो ‘क्षेत्र’ घेरता है, तो हमें पुन: ‘क्षेत्र’ को परिभाषित करने की आवश्यकता होगी। अतः एक वस्तु को परिभाषित करने के लिए, आपको अनेक वस्तुओं को परिभाषित करने की आवश्यकता होती है और बिना किसी अंत के परिभाषाओं की एक लम्बी भृंखला प्राप्त हो सकती है। इन्हीं कारणवश, गणितज्ञों द्वारा यह सुविधाजनक पाया गया कि कुछ ज्यामितीय पदों को अपरिभाषित (undefined) मान लिया जाए। इस विधि से, हम एक बिंदु की ज्यामितीय संकल्पना का ऊपर दी हुई ‘परिभाषा’ की तुलना में एक बेहतर अंतर्जानात्मक आभास प्राप्त करेंगे। इसलिए, हम बिंदु को एक सूक्ष्म बिंदी (dot) से निरूपित करते हैं, परन्तु इस सूक्ष्म बिंदी की कुछ न कुछ विमा अवश्य होती है।
इसी प्रकार की समस्या उपरोक्त परिभाषा 2 में भी आती है। इसमें चौड़ाई और लम्बाई का संदर्भ आता है और इनमें से किसी को भी पहले परिभाषित नहीं किया गया है। इसी कारण, किसी भी विषय के अध्ययन के लिए कुछ पदों को अपरिभाषित रखा गया है। इसलिए, ज्यामिति में हम बिंदु, रेखा और तल (यूक्लिड के शब्दों में समतल पृष्ठ) को अपरिभाषित शब्दों के रूप में मान कर चलते हैं। केवल यह बात अवश्य है कि हम इन्हें अंतर्जानात्मक रूप से निरूपित कर सकते हैं अथवा ‘भौतिक प्रतिमानों’ (वस्तुओं) की सहायता से स्पष्ट कर सकते हैं।
अपनी इन परिभाषाओं से प्रारम्भ करते हुए, यूक्लिड ने कुछ गुणों को बिना सिद्ध किए सत्य कथन मानने की कल्पना की। ये कल्पनाएँ वास्तव में ‘स्पष्टतः सर्वव्यापी सत्य’ थे। उन्होंने इनको दो वर्गों में विभाजित किया। ये वर्ग थे : अभिगृहीत (axioms) और अभिधारणाएँ (postulates)। उन्होंने अभिधारणा शब्द का प्रयोग उन कल्पनाओं के लिए किया जो विशिष्ट रूप से ज्यामिति से संबंधित थीं। दूसरी ओर, सामान्य अवधारणाएँ [जिन्हें प्रायः अभिगृहीत (axioms) कहा गया] वे कल्पनाएँ थीं जिन्हें निरंतर गणित में प्रयोग किया गया और जिनका केवल ज्यामिति से ही विशेष संबंध नहीं था। अभिगृहीत और अभिधारणाओं की और अधिक जानकारी के लिए परिशिष्ट 1 को देखिए। यूक्लिड के कुछ अभिगृहीतों को, बिना उनके द्वारा दिए क्रम के, नीचे दिया जा रहा है:
(1) वे वस्तुएँ जो एक ही वस्तु के बराबर हों एक दूसरे के बराबर होती हैं।
(2) यदि बराबरों को बराबरों में जोड़ा जाए, तो पूर्ण भी बराबर होते हैं।
(3) यदि बराबरों को बराबरों में से घटाया जाए, तो शेषफल भी बराबर होते हैं।
(4) वे वस्तुएँ जो परस्पर संपाती हों, एक दूसरे के बराबर होती हैं।
(5) पूर्ण अपने भाग से बड़ा होता है।
(6) एक ही वस्तुओं के दुगुने परस्पर बराबर होते हैं।
(7) एक ही वस्तुओं के आधे परस्पर बराबर होते हैं।
ये सामान्य अवधारणाएँ किसी प्रकार के परिमाणों (magnitudes) के संदर्भ में कही गई हैं। पहली सामान्य अवधारणा को समतलीय आकृतियों के लिए प्रयोग किया जा सकता है। उदाहरणार्थ, यदि एक त्रिभुज का क्षेत्रफल एक आयत के क्षेत्रफल के बराबर हो और इस आयत का क्षेत्रफल एक वर्ग के क्षेत्रफल के बराबर हो, तो त्रिभुज का क्षेत्रफल भी वर्ग के क्षेत्रफल के बराबर होगा।
एक ही प्रकार के परिमाणों की तुलना की जा सकती है और उन्हें जोड़ा भी जा सकता है, परंतु भिन्न-भिन्न प्रकार के परिमाणों की तुलना नहीं की जा सकती है। उदाहरणार्थ, एक रेखा को एक आयत में जोड़ा नहीं जा सकता और न ही एक कोण की एक पंचभुज (pentagon) से तुलना की जा सकती है।
ऊपर दिया हुआ चौथा अभिगृहीत यह बताता हुआ प्रतीत होता है कि यदि दो वस्तुएँ सर्वसम (identical) हों (अर्थात् वे एक ही हों), तो वे बराबर होती हैं। दूसरे शब्दों में, कोई भी वस्तु स्वयं के बराबर होती है। यह अध्यारोपण (superposition) के सिद्धांत की तर्कसंगतता प्रकट करता है। अभिगृहीत (5) ‘से बड़ा है (greater than)’ की परिभाषा देता है। उदाहरणार्थ, यदि कोई राशि $B$, किसी अन्य राशि $A$ का एक भाग हो, तो $A$ को राशि $B$ और एक अन्य राशि $\mathrm{C}$ के योग के रूप में लिखा जा सकता है। सांकेतिक रूप से, $\mathrm{A}>\mathrm{B}$ का अर्थ है कि कोई $\mathrm{C}$ ऐसा है कि $\mathrm{A}=\mathrm{B}+\mathrm{C}$ है।
आइए अब यूक्लिड की पाँच अभिधारणाओं (postulates) की चर्चा करें। ये इस प्रकार हैं:
अभिधारणा 1 : एक बिंदु से एक अन्य बिंदु तक एक सीधी रेखा खींची जा सकती है।
ध्यान दीजिए कि यह अभिधारणा हमें बताती है कि दो भिन्न (distinct) बिंदुओं से होकर कम से कम एक रेखा अवश्य खींची जा सकती है, परन्तु इससे यह नहीं ज्ञात होता कि ऐसी एक से अधिक सीधी रेखाएँ नहीं हो सकतीं। परन्तु अपने समस्त कार्यों में यूक्लिड ने, बिना कुछ बताए, यह बार-बार कल्पना की है कि दो भिन्न बिंदुओं से एक अद्वितीय (unique) रेखा ही खींची जा सकती है। हम इस परिणाम को एक अभिगृहीत के रूप में नीचे दे रहे हैं:
अभिगृहीत 5.1 : दिए हुए दो भिन्न बिंदुओं से होकर एक अद्वितीय रेखा खींची जा सकती है।
बिंदु $\mathrm{P}$ से होकर कितनी रेखाएँ खींची जा सकती हैं जो बिंदु $\mathrm{Q}$ से होकर भी जाती हों (देखिए आकृति 5.4)? केवल एक। यह रेखा $\mathrm{PQ}$ है। बिंदु $\mathrm{Q}$ से होकर जाने वाली ऐसी
आकृति 5.4
अभिधारणा 2 : एक सांत रेखा (terminated line) को अनिश्चित रूप से बढ़ाया जा सकता है।
ध्यान दीजिए जिसको हम आजकल रेखाखंड (line segment) कहते हैं, उसे यूक्लिड ने सांत रेखा कहा था। अतः, वर्तमान की भाषा में, दूसरी अभिधारणा यह कहती है कि एक रेखाखंड को दोनों ओर विस्तृत करके एक रेखा बनाई जा सकती है (देखिए आकृति 5.5)।
आकृति 5.5
अभिधारणा 3 : किसी को केन्द्र मान कर और किसी त्रिज्या से एक वृत्त खींचा जा सकता है।
अभिधारणा 4 : सभी समकोण एक दूसरे के बराबर होते हैं।
अभिधारणा 5 : यदि एक सीधी रेखा दो सीधी रेखाओं पर गिर कर अपने एक ही ओर दो अंतः कोण (interior angles) इस प्रकार बनाए कि इन दोनों कोणों का योग मिल कर दो समकोणों से कम हो, तो वे दोनों सीधी रेखाएँ अनिश्चित रूप से बढ़ाए जाने पर उसी ओर मिलती हैं जिस ओर यह योग दो समकोणों से कम होता है।
उदाहरणार्थ, आकृति 5.6 में, रेखा $\mathrm{PQ}$ रेखाओं $\mathrm{AB}$ और $\mathrm{CD}$ पर इस प्रकार गिरती है कि अंतः कोणों 1 और 2 का योग, जो $\mathrm{PQ}$ के बाईं ओर स्थित हैं, $180^{\circ}$ से कम है। अतः, रेखाएँ $\mathrm{AB}$ और $\mathrm{CD}$ अंततः $\mathrm{PQ}$ के बाईं ओर प्रतिच्छेद करेंगी।
आकृति 5.6
उपरोक्त पाँचों अभिधारणाओं को केवल देखने मात्र से, हमें यह स्पष्टतः पता चल जाएगा कि अन्य अभिधारणाओं की तुलना में अभिधारणा 5 कुछ अधिक जटिल है। दूसरी ओर, अभिधारणाएँ 1 से 4 इतनी सरल और स्पष्ट हैं कि उन्हें स्वयं सिद्ध सत्य के रूप में मान लिया जाता है। परन्तु, इन्हें सिद्ध करना संभव नहीं है। इसलिए, इन कथनों को बिना उपपत्ति (proof) के स्वीकृत कर लिया गया है (देखिए परिशिष्ट 1)। इस जटिलता के कारण, पाँचवीं अभिधारणा पर अगले अनुच्छेद में अधिक ध्यान दिया जाएगा।
आजकल, ‘अभिधारणा’ और ‘अभिगृहीत’ दोनों पदों को एक दूसरे के लिए एक ही अर्थ में प्रयोग किया जाता है। वास्तव में, अभिधारणा एक क्रिया (verb) है। जब हम कहते हैं कि ‘आइए अभिधारणा करें’, तो इसका अर्थ है कि ‘आइए विश्व में प्रेक्षित परिघटनाओं (phenomena) के आधार पर कुछ कथन कहें।’ इसकी सत्यता/मान्यता की जाँच बाद में की जाती है। यदि वह सत्य है, तो उसे ‘अभिधारणा’ के रूप में स्वीकृत कर लिया जाता है।
कुछ अभिगृहीतों का एक निकाय (system) अविरोधी (consistent) कहलाता है (देखिए परिशिष्ट 1), यदि इन अभिगृहीतों से ऐसा कथन निर्मित करना असंभव हो, जो किसी अन्य अभिगृहीत या पहले सिद्ध किए गए किसी कथन के विरोधी (contradictory) हो। अतः, यदि अभिगृहीतों का कोई निकाय दिया हो, तो यह सुनिश्चित करना आवश्यक है कि यह निकाय अविरोधी हो।
यूक्लिड ने अपनी अभिधारणाएँ और अभिगृहीतों को देने के बाद, इनका प्रयोग अन्य परिणामों को सिद्ध करने में किया। फिर इन परिणामों का प्रयोग करके, उन्होंने निगमनिक तर्कण (deductive reasoning) द्वारा कुछ और परिणामों को सिद्ध किया। जिन कथनों को सिद्ध किया वे साध्य (propositions) या प्रमेय (theorems) कहलाती थीं। यूक्लिड ने अपनी अभिगृहीतों, अभिधारणाओं, परिभाषाओं और पहले सिद्ध की गई प्रमेयों का प्रयोग करके, एक तार्किक शृंखला में 465 साध्य निगमित (deduce) किए। ज्यामिति के कुछ अगले अध्यायों में आप इन अभिगृहीतों का प्रयोग करके कुछ प्रमेयों को सिद्ध करेंगे।
आइए आगे आने वाले उदाहरणों में देखें कि यूक्लिड ने कुछ परिणामों को सिद्ध करने के लिए अपनी अभिगृहीतों और अभिधारणाओं का किस प्रकार प्रयोग किया।
उदाहरण 1 : यदि $\mathrm{A}, \mathrm{B}$ और $\mathrm{C}$ एक रेखा पर स्थित तीन बिंदु हैं और $\mathrm{B}$ बिंदुओं $\mathrm{A}$ और $\mathrm{C}$ के बीच में स्थित है (देखिए आकृति 5.7), तो सिद्ध कीजिए कि $\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$ है।
आकृति 5.7
हल : उपरोक्त आकृति में, $\mathrm{AB}+\mathrm{BC}$ के साथ $\mathrm{AC}$ संपाती है।
साथ ही, यूक्लिड का अभिगृहीत (4) कहता है कि वे वस्तुएँ जो परस्पर संपाती हों एक दूसरे के बराबर होती हैं। अतः, यह सिद्ध किया जा सकता है कि
$\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$
है। ध्यान दीजिए कि इस हल में यह मान लिया गया है कि दो बिंदुओं से होकर एक अद्वितीय रेखा खींची जा सकती है।
उदाहरण 2 : सिद्ध कीजिए कि एक दिए हुए रेखाखंड पर एक समबाहु त्रिभुज की रचना की जा सकती है।
हल : उपरोक्त कथन में, एक दी हुई लम्बाई का एक रेखाखंड, मान लीजिए, $A B$ दिया है [देखिए आकृति 5.8 (i)]।
आकृति 5.8
यहाँ आपको कुछ रचना करने की आवश्यकता है। यूक्लिड की अभिधारणा (3) का प्रयोग करके, आप बिंदु $\mathrm{A}$ को केन्द्र और $\mathrm{AB}$ त्रिज्या लेकर एक वृत्त खींच सकते हैं [देखिए आकृति 5.8 (ii)]। इसी प्रकार, $\mathrm{B}$ को केन्द्र मानकर और $\mathrm{BA}$ त्रिज्या लेकर एक अन्य वृत्त खींचा जा सकता है। ये दोनों वृत्त मान लीजिए बिंदु $\mathrm{C}$ पर मिलते हैं। अब रेखाखंडों $\mathrm{AC}$ और $\mathrm{BC}$ खींच कर $\triangle \mathrm{ABC}$ बनाइए [देखिए आकृति 5.8 (iii)]।
इसलिए, आपको सिद्ध करना है कि यह त्रिभुज एक समबाहु त्रिभुज है; अर्थात् $\mathrm{AB}=\mathrm{AC}$ $=\mathrm{BC}$ है।
अब, $\mathrm{AB}=\mathrm{AC}$ है, क्योंकि ये एक वृत्त की त्रिज्याएँ हैं।
इसी प्रकार, $\mathrm{AB}=\mathrm{BC}$ (एक ही वृत्त की त्रिज्याएँ)
उपरोक्त दोनों तथ्यों और यूक्लिड के पहले अभिगृहीत (वे वस्तुएँ जो एक ही वस्तु के बराबर होती हैं एक दूसरे के बराबर होती हैं) से आप निष्कर्ष निकाल सकते हैं कि $\mathrm{AB}=\mathrm{BC}=\mathrm{AC}$ है।
अतः, $\triangle \mathrm{ABC}$ एक समबाहु त्रिभुज है।
ध्यान दीजिए कि यहाँ यूक्लिड ने, बिना कहीं बताए, यह मान लिया है कि केन्द्रों $\mathrm{A}$ और $B$ को लेकर खींचे गए वृत्त परस्पर एक बिंदु पर मिलेंगे।
अब हम एक प्रमेय सिद्ध करेंगे जो विभिन्न परिणामों में अनेक बार अधिकांशतः प्रयोग की जाती है:
प्रमेय 5.1 : दो भिन्न रेखाओं में एक से अधिक बिंदु उभयनिष्ठ नहीं हो सकता।
उपपत्ति : यहाँ, हमें दो रेखाएँ $l$ और $m$ दी हुई हैं। हमें यह सिद्ध करना है कि $l$ और $m$ में केवल एक बिंदु उभयनिष्ठ है।
थोड़े समय के लिए, यह मान लीजिए कि ये दो रेखाएँ दो भिन्न बिंदुओं $\mathrm{P}$ और $\mathrm{Q}$ पर प्रतिच्छेद करती हैं। इस प्रकार, दो भिन्न बिंदुओं $\mathrm{P}$ और $\mathrm{Q}$ से होकर जाने वाली आपके पास दो रेखाएँ $l$ और $m$ हो जाती हैं। परन्तु यह कथन अभिगृहीत 5.1 के विरुद्ध है, जिसके अनुसार दो भिन्न बिंदुओं से होकर एक अद्वितीय रेखा खींची जा सकती है। अतः, हम जिस कल्पना से चले थे कि दो रेखाएँ दो भिन्न बिंदुओं से होकर जाती हैं गलत है।
इससे हम क्या निष्कर्ष निकाल सकते हैं? हम निष्कर्ष निकालने पर बाध्य हो जाते हैं कि दो भिन्न रेखाओं में एक से अधिक बिंदु उभयनिष्ठ नहीं होगा।
प्रश्नावली 5.1
1. निम्नलिखित कथनों में से कौन-से कथन सत्य हैं और कौन-से कथन असत्य हैं? अपने उत्तरों के लिए कारण दीजिए।
(i) एक बिंदु से होकर केवल एक ही रेखा खींची जा सकती है।
(ii) दो भिन्न बिंदुओं से होकर जाने वाली असंख्य रेखाएँ हैं।
(iii) एक सांत रेखा दोनों ओर अनिश्चित रूप से बढ़ाई जा सकती है।
(iv) यदि दो वृत्त बराबर हैं, तो उनकी त्रिज्याएँ बराबर होती हैं।
(v) आकृति 5.9 में, यदि $\mathrm{AB}=\mathrm{PQ}$ और $\mathrm{PQ}=\mathrm{XY}$ है, तो $\mathrm{AB}=\mathrm{XY}$ होगा।
आकृति 5.9
Show Answer
Missing2. निम्नलिखित पदों में से प्रत्येक की परिभाषा दीजिए। क्या इनके लिए कुछ ऐसे पद हैं, जिन्हें परिभाषित करने की आवश्यकता है? वे क्या हैं और आप इन्हें कैसे परिभाषित कर पाएँगे?
(i) समांतर रेखाएँ
(ii) लम्ब रेखाएँ
(iii) रेखाखंड
(iv) वृत्त की त्रिज्या
(v) वर्ग
Show Answer
Missing3. नीचे दी हुई दो अभिधारणाओं पर विचार कीजिए :
(i) दो भिन्न बिंदु $\mathrm{A}$ और $\mathrm{B}$ दिए रहने पर, एक तीसरा बिंदु $\mathrm{C}$ ऐसा विद्यमान है जो $\mathrm{A}$ और $\mathrm{B}$ के बीच स्थित होता है।
(ii) यहाँ कम से कम ऐसे तीन बिंदु विद्यमान हैं कि वे एक रेखा पर स्थित नहीं हैं। क्या इन अभिधारणाओं में कोई अपरिभाषित शब्द हैं? क्या ये अभिधारणाएँ अविरोधी हैं? क्या ये यूक्लिड की अभिधारणाओं से प्राप्त होती हैं? स्पष्ट कीजिए।
Show Answer
Missing4. यदि दो बिंदुओं $\mathrm{A}$ और $\mathrm{B}$ के बीच एक बिंदु $\mathrm{C}$ ऐसा स्थित है कि $\mathrm{AC}=\mathrm{BC}$ है, तो सिद्ध कीजिए कि $\mathrm{AC}=\frac{1}{2} \mathrm{AB}$ है। एक आकृति खींच कर इसे स्पष्ट कीजिए।
Show Answer
Missing5. प्रश्न 4 में, $\mathrm{C}$ रेखाखंड $\mathrm{AB}$ का एक मध्य-बिंदु कहलाता है। सिद्ध कीजिए कि एक रेखाखंड का एक और केवल एक ही मध्य-बिंदु होता है।
Show Answer
Missing6. आकृति 5.10 में, यदि $\mathrm{AC}=\mathrm{BD}$ है, तो सिद्ध कीजिए कि $\mathrm{AB}=\mathrm{CD}$ है।
आकृति 5.10
Show Answer
Missing7. यूक्लिड की अभिगृहीतों की सूची में दिया हुआ अभिगृहीत 5 एक सर्वव्यापी सत्य क्यों माना जाता है? (ध्यान दीजिए कि यह प्रश्न पाँचवीं अभिधारणा से संबंधित नहीं है।)
Show Answer
Missing5.3 सारांश
इस अध्याय में, आपने निम्नलिखित बिंदुओं का अध्ययन किया है:
1. यद्यपि यूक्लिड ने बिंदु, रेखा और तल को परिभाषित किया है, परन्तु गणितज्ञों ने इन परिभाषाओं को स्वीकार नहीं किया है। इसलिए ज्यामिति में इन्हें अब अपरिभाषित पदों के रूप में लिया जाता है।
2. अभिगृहीत और अभिधारणाएँ ऐसी कल्पनाएँ हैं जो स्पष्टतः सर्वव्यापी सत्य होती हैं। इन्हें सिद्ध नहीं किया जाता है।
3. प्रमेय वे कथन हैं जिन्हें परिभाषाओं, अभिगृहीतों, पहले सिद्ध किए गए कथनों और निगमनिक तर्कण द्वारा सिद्ध किया जाता है।
4. यूक्लिड के कुछ अभिगृहीत थे :
(1) वे वस्तुएँ जो एक ही वस्तु के बराबर हों, एक दूसरे के बराबर होती हैं।
(2) यदि बराबरों को बराबरों में जोड़ा जाए, तो पूर्ण भी बराबर होते हैं।
(3) यदि बराबरों को बराबरों में से घटाया जाए, तो शेषफल भी बराबर होते हैं।
(4) वे वस्तुएँ जो परस्पर संपाती हों एक दूसरे के बराबर होती हैं।
(5) पूर्ण अपने भाग से बड़ा होता है।
(6) एक ही वस्तुओं के दुगुने परस्पर बराबर होते हैं।
(7) एक ही वस्तुओं के आधे परस्पर बराबर होते हैं।
5. यूक्लिड की अभिधारणाएँ निम्न थीं :
अभिधारणा 1 : एक बिंदु से एक अन्य बिंदु तक एक सीधी रेखा खींची जा सकती है।
अभिधारणा 2 : एक सांत रेखा को अनिश्चित रूप से बढ़ाया जा सकता है।
अभिधारणा 3 : किसी को केन्द्र मान कर और किसी त्रिज्या से एक वृत्त खींचा जा सकता है।
अभिधारणा 4 : सभी समकोण एक दूसरे के बराबर होते हैं।