Chapter-04 Linear Equations in Two Variables
4.1 Introduction
In earlier classes, you have studied linear equations in one variable. Can you write down a linear equation in one variable? You may say that $x+1=0, x+\sqrt{2}=0$ and $\sqrt{2} y+\sqrt{3}=0$ are examples of linear equations in one variable. You also know that such equations have a unique (i.e., one and only one) solution. You may also remember how to represent the solution on a number line. In this chapter, the knowledge of linear equations in one variable shall be recalled and extended to that of two variables. You will be considering questions like: Does a linear equation in two variables have a solution? If yes, is it unique? What does the solution look like on the Cartesian plane? You shall also use the concepts you studied in Chapter 3 to answer these questions.
4.2 Linear Equations
Let us first recall what you have studied so far. Consider the following equation:
2 x+5=0
Its solution, i.e., the root of the equation, is $-\frac{5}{2}$. This can be represented on the number line as shown below:
Fig. 4.1
While solving an equation, you must always keep the following points in mind:
The solution of a linear equation is not affected when:
(i) the same number is added to (or subtracted from) both the sides of the equation.
(ii) you multiply or divide both the sides of the equation by the same non-zero number.
Let us now consider the following situation: In a One-day International Cricket match between India and Sri Lanka played in Nagpur, two Indian batsmen together scored 176 runs. Express this information in the form of an equation.
Here, you can see that the score of neither of them is known, i.e., there are two unknown quantities. Let us use $x$ and $y$ to denote them. So, the number of runs scored by one of the batsmen is $x$, and the number of runs scored by the other is $y$. We know that
x+y=176
which is the required equation.
This is an example of a linear equation in two variables. It is customary to denote the variables in such equations by $x$ and $y$, but other letters may also be used. Some examples of linear equations in two variables are:
$1.2 s+3 t=5, p+4 q=7, \pi u+5 v=9 \text { और } 3=\sqrt{2} x-7 y$
Note that you can put these equations in the form
$$1.2 s+3 t-5=0$, $p+4 q-7=0, \pi u+5 v-9=0$$
and
$$\sqrt{2} x-7 y-3=0$$, respectively.
So, any equation which can be put in the form $a x+b y+c=0$, where $a, b$ and $c$ are real numbers, and $a$ and $b$ are not both zero, is called a linear equation in two variables. This means that you can think of many many such equations.
Example 1 : Write each of the following equations in the form $a x+b y+c=0$ and indicate the values of $a, b$ and $c$ in each case:
(i) $2 x+3 y=4.37$
(ii) $x-4=\sqrt{3} y$
(iii) $4=5 x-3 y$
(iv) $2 x=y$
Solution : (i) $2 x+3 y=4.37$ can be written as $2 x+3 y-4.37=0$. Here $a=2, b=3$ and $c=-4.37$.
(ii) The equation $x-4=\sqrt{3} y$ can be written as $x-\sqrt{3} y-4=0$. Here $a=1$, $b=-\sqrt{3}$ and $c=-4$.
(iii) The equation $4=5 x-3 y$ can be written as $5 x-3 y-4=0$. Here $a=5, b=-3$ and $c=-4$. Do you agree that it can also be written as $-5 x+3 y+4=0$ ? In this case $a=-5, b=3$ and $c=4$.
(iv) The equation $2 x=y$ can be written as $2 x-y+0=0$. Here $a=2, b=-1$ and $c=0$.
Equations of the type $a x+b=0$ are also examples of linear equations in two variables because they can be expressed as a x+0 . y+b=0
For example, $4-3 x=0$ can be written as $-3 x+0 . y+4=0$.
Example 2 : Write each of the following as an equation in two variables:
(i) $x=-5$
(ii) $y=2$
(iii) $2 x=3$
(iv) $5 y=2$
Solution :
(i) $x=-5$ can be written as $1 . x+0 . y=-5$, or $1 . x+0 . y+5=0$.
(ii) $y=2$ can be written as $0 . x+1 . y=2$, or $0 . x+1 . y-2=0$.
(iii) $2 x=3$ can be written as $2 x+0 . y-3=0$.
(iv) $5 y=2$ can be written as $0 . x+5 y-2=0$.
EXERCISE 4.1
1. The cost of a notebook is twice the cost of a pen. Write a linear equation in two variables to represent this statement.
(Take the cost of a notebook to be ₹ $x$ and that of a pen to be ₹ $y$ ).
Show Answer
Solution
Let the cost of a notebook and a pen be $x$ and $y$ respectively.
Cost of notebook $=2 \times$ Cost of pen $x=2 y x-2 y=0$
2. Express the following linear equations in the form $a x+b y+c=0$ and indicate the values of $a, b$ and $c$ in each case:
(i) $2 x+3 y=9.3 \overline{5}$
(ii) $x-\frac{y}{5}-10=0$
(iii) $-2 x+3 y=6$
(iv) $x=3 y$
(v) $2 x=-5 y$
(vi) $3 x+2=0$
(vii) $y-2=0$
(viii) $5=2 x$
Show Answer
Solution
$ \begin{aligned} & \text { (i) } 2 x+3 y=9.3 \overline{5} \\ & \Rightarrow 2 x+3 y-9.3 \overline{5} \end{aligned} $
Comparing the equation with $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
$ a=2, b=3, c=-9.3 \overline{5} $
(ii) $x-\frac{y}{5}-10=0$
Comparing the equation with $a x+b y+c=0$
$ \mathrm{a}=1, \mathrm{~b}=-\frac{1}{5}, \mathrm{c}=-10 $
$ \begin{aligned} & \text { (iii) }-2 \mathrm{x}+3 \mathrm{y}=6 \\ & \Rightarrow-2 \mathrm{x}+3 \mathrm{y}-6=0 \end{aligned} $
Comparing the equation with $a x+b y+c=0$
$ \mathrm{a}=-2, \mathrm{~b}=3, \mathrm{c}=-6 $
(iv) $x=3 y$
$ \Rightarrow \mathrm{x}-3 \mathrm{y}=0 $
Comparing the equation with $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
$ \mathrm{a}=1, \mathrm{~b}=-3, \mathrm{c}=0 $
(v) $2 \mathrm{x}=-5 \mathrm{y}$
$ \Rightarrow 2 \mathrm{x}+5 \mathrm{y}=0 $
Comparing the equation with $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
$ \mathrm{a}=2, \mathrm{~b}=5, \mathrm{c}=0 $
$ \begin{aligned} & \text { (vi) } 3 x+2=0 \\ & \Rightarrow 3 x+0 y+2=0 \end{aligned} $
Comparing the equation with $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
$ \mathrm{a}=3, \mathrm{~b}=0, \mathrm{c}=2 $
(vii) $y-2=0$
$ \Rightarrow 0 \mathrm{x}+\mathrm{y}-2=0 $
Comparing the equation with $a x+b y+c=0$
$ \mathrm{a}=0, \mathrm{~b}=1, \mathrm{c}=-2 $
(viii) $5=2 \mathrm{X}$
$ \Rightarrow-2 \mathrm{x}+0 \mathrm{y}+5 $
Comparing the equation with $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
$ \mathrm{a}=-2, \mathrm{~b}=0, \mathrm{c}=5 $
4.3 Solution of a Linear Equation
You have seen that every linear equation in one variable has a unique solution. What can you say about the solution of a linear equation involving two variables? As there are two variables in the equation, a solution means a pair of values, one for $x$ and one for $y$ which satisfy the given equation. Let us consider the equation $2 x+3 y=12$. Here, $x=3$ and $y=2$ is a solution because when you substitute $x=3$ and $y=2$ in the equation above, you find that
$2 x+3 y=(2 \times 3)+(3 \times 2)=12$
This solution is written as an ordered pair $(3,2)$, first writing the value for $x$ and then the value for $y$. Similarly, $(0,4)$ is also a solution for the equation above.
On the other hand, $(1,4)$ is not a solution of $2 x+3 y=12$, because on putting $x=1$ and $y=4$ we get $2 x+3 y=14$, which is not 12 . Note that $(0,4)$ is a solution but $\operatorname{not}(4,0)$.
You have seen at least two solutions for $2 x+3 y=12$, i.e., $(3,2)$ and $(0,4)$. Can you find any other solution? Do you agree that $(6,0)$ is another solution? Verify the same. In fact, we can get many many solutions in the following way. Pick a value of your choice for $x(\operatorname{say} x=2)$ in $2 x+3 y=12$. Then the equation reduces to $4+3 y=12$, which is a linear equation in one variable. On solving this, you get $y=\frac{8}{3}$. So $\left(2, \frac{8}{3}\right)$ is another solution of $2 x+3 y=12$. Similarly, choosing $x=-5$, you find that the equation becomes $-10+3 y=12$. This gives $y=\frac{22}{3}$. So, $\left(-5, \frac{22}{3}\right)$ is another solution of $2 x+3 y=12$. So there is no end to different solutions of a linear equation in two variables. That is, a linear equation in two variables has infinitely many solutions.
Example 3 : Find four different solutions of the equation $x+2 y=6$.
Solution : By inspection, $x=2, y=2$ is a solution because for $x=2, y=2$
$$ x+2 y=2+4=6 $$
Now, let us choose $x=0$. With this value of $x$, the given equation reduces to $2 y=6$ which has the unique solution $y=3$. So $x=0, y=3$ is also a solution of $x+2 y=6$. Similarly, taking $y=0$, the given equation reduces to $x=6$. So, $x=6, y=0$ is a solution of $x+2 y=6$ as well. Finally, let us take $y=1$. The given equation now reduces to $x+2=6$, whose solution is given by $x=4$. Therefore, $(4,1)$ is also a solution of the given equation. So four of the infinitely many solutions of the given equation are:
$(2,2),(0,3),(6,0) \text { and }(4,1) \text {. }$
Remark : Note that an easy way of getting a solution is to take $x=0$ and get the corresponding value of $y$. Similarly, we can put $y=0$ and obtain the corresponding value of $x$.
Example 4 : Find two solutions for each of the following equations:
(i) $4 x+3 y=12$
(ii) $2 x+5 y=0$
(iii) $3 y+4=0$
Solution : (i) Taking $x=0$, we get $3 y=12$, i.e., $y=4$. So, $(0,4)$ is a solution of the given equation. Similarly, by taking $y=0$, we get $x=3$. Thus, $(3,0)$ is also a solution.
(ii) Taking $x=0$, we get $5 y=0$, i.e., $y=0$. So $(0,0)$ is a solution of the given equation. Now, if you take $y=0$, you again get $(0,0)$ as a solution, which is the same as the earlier one. To get another solution, take $x=1$, say. Then you can check that the corresponding value of $y$ is $-\frac{2}{5} \cdot$ So $\left(1,-\frac{2}{5}\right)$ is another solution of $2 x+5 y=0$.
(iii) Writing the equation $3 y+4=0$ as $0 \cdot x+3 y+4=0$, you will find that $y=-\frac{4}{3}$ for any value of $x$. Thus, two solutions can be given as $\left(0,-\frac{4}{3}\right)$ and $\left(1,-\frac{4}{3}\right)$.
EXERCISE 4.2
1. Which one of the following options is true, and why? $y=3 x+5$ has
(i) a unique solution,
(ii) only two solutions,
(iii) infinitely many solutions
Show Answer
Solution
$y=3 x+5$ is a linear equation in two variables and it has infinite possible solutions. As for every value of $x$, there will be a value of $y$ satisfying the above equation and vice-versa.
Hence, the correct answer is (iii).
2. Write four solutions for each of the following equations:
(i) $2 x+y=7$
(ii) $\pi x+y=9$
(iii) $x=4 y$
Show Answer
Solution
For $x=0$,
$2(0)+y=7 \Rightarrow$
$y=7$
Therefore, $(0,7)$ is a solution of this equation. For $x=1,2(1)$
$+y=7 \Rightarrow y=$
5
Therefore, $(1,5)$ is a solution of this equation.
For $x=-1$,
$2(-1)+y=7 \Rightarrow$
$y=9$
Therefore, $(-1,9)$ is a solution of this equation.
For $x=2$,
$2(2)+y=7$
$\Rightarrow y=3$
Therefore, $(2,3)$ is a solution of this equation.
(ii) $n x+y=9$
For $x=0, n(0)$
$+y=9$
$\Rightarrow y=9$
Therefore, $(0,9)$ is a solution of this equation.
For $x=1, \pi(1)+y=9 \Rightarrow y=9-n$
Therefore, $(1,9-\pi)$ is a solution of this equation.
For $x=2, n(2)+y=9 \Rightarrow y=9-2 n$
Therefore, $(2,9-2 \pi)$ is a solution of this equation.
For $x=-1, \Pi(-1)+y=9 \Rightarrow y=9+n$
$\Rightarrow(-1,9+\pi)$ is a solution of this equation.
(iii) $x=4 y$
For $x=0$,
$0=4 y$
$\Rightarrow y=0$
Therefore, $(0,0)$ is a solution of this equation.
For $y=1, x=4(1)=4$
Therefore, $(4,1)$ is a solution of this equation.
For $y=-1, x=4(-1) \Rightarrow x=-4$
$ \begin{aligned} & \text{ For } x=2, \\ & 2=4 y \\ & \Rightarrow y=\frac{2}{4}=\frac{1}{2} \\ & \text{ Therefore, }(2, \frac{1}{2}) \end{aligned} $
Therefore, $(-4,-1)$ is a solution of this equation.
3. Check which of the following are solutions of the equation $x-2 y=4$ and which are not:
(i) $(0,2)$
(ii) $(2,0)$
(iii) $(4,0)$
(iv) $(\sqrt{2}, 4 \sqrt{2})$
(v) $(1,1)$
Show Answer
Solution
(i) $(0,2)$
Putting $x=0$ and $y=2$ in the L.H.S of the given equation, $x$
$-2 y=0-2 x-4 \neq 42=$
L.H.S $\neq$ R.H.S
Therefore, $(0,2)$ is not a solution of this equation.
(ii) $(2,0)$
Putting $x=2$ and $y=0$ in the L.H.S of the given equation, $x$
$-2 y 2-2 \times 0=2 \neq 4=$
$\neq$
L.H.S R.H.S
Therefore, $(2,0)$ is not a solution of this equation.
(iii) $(4,0)$
Putting $x=4$ and $y=0$ in the L.H.S of the given equation, $x$
$-2 y=4-2(0)$
$=4=$ R.H.S
Therefore, $(4,0)$ is a solution of this equation.
$ \begin{aligned} & \begin{matrix} x=\sqrt{2} \quad y=4 \sqrt{2} & (\sqrt{2}, 4 \sqrt{2}) \\ \text{ Puttina } \begin{matrix} \text{ and } \end{matrix} \\ x-2 y=\sqrt{2}-2(4 \sqrt{2}) & \text{ in the L.H.S of the given equation, } \end{matrix} \\ & =\sqrt{2}-8 \sqrt{2}=-7 \sqrt{2} \neq 4 \end{aligned} $
L.H.S $\neq$ R.H.S
Therefore,
$ (\sqrt{2}, 4 \sqrt{2}) $
(v) $(1,1)$
is not a solution of this equation.
Putting $x=1$ and $y=1$ in the L.H.S of the given equation, $x$
$-2 y 1-2(1)=1-2=-1 \neq 4=$
L.H.S $\neq$ R.H.S
Therefore, $(1,1)$ is not a solution of this equation.
4. Find the value of $k$, if $x=2, y=1$ is a solution of the equation $2 x+3 y=k$.
Show Answer
Solution
Putting $x=2$ and $y=1$ in the given equation,
$ \begin{aligned} & 2 x+3 y=k \\ & \Rightarrow \quad 2(2)+3(1)=k \\ & \Rightarrow \quad 4+3=k \Rightarrow k \\ & =7 \end{aligned} $
Therefore, the value of $k$ is 7 .
4.4 Summary
In this chapter, you have studied the following points:
1. An equation of the form $a x+b y+c=0$, where $a, b$ and $c$ are real numbers, such that $a$ and $b$ are not both zero, is called a linear equation in two variables.
2. A linear equation in two variables has infinitely many solutions.
3. Every point on the graph of a linear equation in two variables is a solution of the linear equation. Moreover, every solution of the linear equation is a point on the graph of the linear equation.
4.1 भूमिका
पिछली कक्षाओं में, आप एक चर वाले रैखिक समीकरणों का अध्ययन कर चुके हैं। क्या आप एक चर वाला कोई रैखिक समीकरण लिख सकते हैं? आप कह सकते हैं कि $x+1=0, x+\sqrt{2}=0$ और $\sqrt{2} y+\sqrt{3}=0$ एक चर वाले रैखिक समीकरणों के उदाहरण हैं। आप यह भी जानते हैं कि ऐसे समीकरणों का एक अद्वितीय (अर्थात् एक और केवल एक) हल होता है। आपको संभवतः यह भी याद होगा कि एक संख्या रेखा पर हल को किस प्रकार निरूपित किया जाता है। इस अध्याय में, हम एक चर वाले रैखिक समीकरणों पर पुनः विचार करेंगे और उनसे संबंधित ज्ञान को दो चरों वाले रैखिक समीकरणों पर लागू करेंगे। यहाँ हम इस प्रकार के प्रश्नों पर विचार करेंगे: क्या दो चरों वाले रैखिक समीकरण का एक हल होता है? यदि हाँ, तो क्या यह अद्वितीय होता है? कार्तीय तल पर हल किस प्रकार दिखाई पड़ता है? इस प्रकार के प्रश्नों का अध्ययन करने के लिए, हम अध्याय 3 में बताई गई संकल्पनाओं का भी प्रयोग करेंगे।
4.2 रैखिक समीकरण
आइए पहले हम यह देखें कि अभी तक आपने क्या-क्या अध्ययन किया है। आइए हम निम्नलिखित समीकरण लें :
2x+5=0
इसका हल, अर्थात् समीकरण का मूल $-\frac{5}{2}$ है। इसे संख्या रेखा पर इस प्रकार निरूपित किया जा सकता है, जैसा कि नीचे की आकृति में दिखाया गया है :
आकृति 4.1
एक समीकरण को हल करते समय निम्नलिखित बातों को ध्यान में रखना होता है।
एक रैखिक समीकरण पर तब कोई प्रभाव नहीं पड़ता जबकि:
(i) समीकरण के दोनों पक्षों में समान संख्या जोड़ी या घटाई जाती है।
(ii) समीकरण के दोनों पक्षों को समान शून्येतर संख्या से गुणा या भाग दिया जाता है। आइए अब हम निम्नलिखित स्थिति पर विचार करें:
नागपुर में भारत और श्रीलंका के बीच खेले गए एक एकदिवसीय अंतर्राष्ट्रीय क्रिकेट मैच में दो भारतीय बल्लेबाजों ने एक साथ मिलकर 176 रन बनाए। इस जानकारी को एक समीकरण के रूप में व्यक्त कीजिए।
यहाँ आप यह देख सकते हैं कि दोनों बल्लेबाजों में से किसी भी बल्लेबाज द्वारा बनाए गए रन ज्ञात नहीं हैं, अर्थात् यहाँ दो अज्ञात राशियाँ हैं। आइए हम इन अज्ञात राशियों को $x$ और $y$ से प्रकट करें। इस तरह एक बल्लेबाज द्वारा बनाए गए रनों की संख्या $x$ है और दूसरे बल्लेबाज द्वारा बनाए गए रनों की संख्या $y$ है। हम जानते हैं कि
x+y=176
है, जो कि अभीष्ट समीकरण है।
यह दो चरों वाले एक रैखिक समीकरण का एक उदाहरण है। यह परंपरा रही है कि इस प्रकार के समीकरणों के चरों को $x$ और $y$ से प्रकट किया जाता है, परंतु अन्य अक्षरों का भी प्रयोग किया जा सकता है। दो चरों वाले रैखिक समीकरणों के कुछ उदाहरण ये हैं:
$1.2 s+3 t=5, p+4 q=7, \pi u+5 v=9 \text { और } 3=\sqrt{2} x-7 y$
क्या आप कुछ और उदाहरण दे सकते हैं? ध्यान दीजिए कि आप इन समीकरणों को क्रमश:
$$1.2 s+3 t-5=0, p+4 q-7=0, \pi u+5 v-9=0$$
और
$$\sqrt{2} x-7 y-3=0$$ के रूप में व्यक्त कर सकते हैं।
अतः उस समीकरण को, जिसे $a x+b y+c=0$ के रूप में व्यक्त किया जा सकता हो, जहाँ $a, b$ और $c$ वास्तविक संख्याएँ हैं और $a$ और $b$ दोनों शून्य नहीं हैं, दो चरों वाला रैखिक समीकरण (linear equation in two variables) कहा जाता है।
उदाहरण 1 : नीचे दिए गए समीकरणों को $a x+b y+c=0$ के रूप में लिखिए और प्रत्येक स्थिति में $a, b$ और $c$ के मान बताइए :
(i) $2 x+3 y=4.37$
(ii) $x-4=\sqrt{3} y$
(iii) $4=5 x-3 y$
(iv) $2 x=y$
हल : (i) $2 x+3 y=4.37$ को $2 x+3 y-4.37=0$ के रूप में लिखा जा सकता है। यहाँ $a=2, b=3$ और $c=-4.37$ है।
(ii) समीकरण $x-4=\sqrt{3} y$ को $x-\sqrt{3} y-4=0$ के रूप में लिखा जा सकता है। यहाँ $a=1, b=-\sqrt{3}$ और $c=-4$ है।
(iii) समीकरण $4=5 x-3 y$ को $5 x-3 y-4=0$ के रूप में लिखा जा सकता है। यहाँ $a=5, b=-3$ और $c=-4$ है। क्या आप इस बात से सहमत हैं कि इसे $-5 x+3 y+4=0$ के रूप में भी लिखा जा सकता है? इस स्थिति में, $a=-5, b=3$ और $c=4$ है।
(iv) समीकरण $2 x=y$ को $2 x-y+0=0$ के रूप में लिखा जा सकता है। यहाँ $a=2$, $b=-1$ और $c=0$ है।
समीकरण $a x+b=0$ भी दो चरों वाले रैखिक समीकरणों का ही एक उदाहरण है, क्योंकि इसे $a x+0 . y+b=0$ के रूप में लिखा जा सकता है।
उदाहरण के लिए, $4-3 x=0$ को $-3 x+0 y+4=0$ के रूप में लिखा जा सकता है।
उदाहरण 2 : निम्नलिखित में से प्रत्येक को दो चरों वाले समीकरणों के रूप में व्यक्त कीजिए:
(i) $x=-5$ $\quad$
(ii) $y=2$ $\quad$
(iii) $2 x=3$ $\quad$
(iv) $5 y=2$
हल :
(i) $x=-5$ को $1 . x+0 . y=-5$, या $1 . x+0 . y+5=0$ के रूप में लिखा जा सकता है।
(ii) $y=2$ को $0 \cdot x+1 . y=2$, या $0 \cdot x+1 \cdot y-2=0$ के रूप में लिखा जा सकता है।
(iii) $2 x=3$ को $2 \cdot x+0 \cdot y-3=0$ के रूप में लिखा जा सकता है।
(iv) $5 y=2$ को $0 . x+5 \cdot y-2=0$ के रूप में लिखा जा सकता है।
प्रश्नावली 4.1
1. एक नोटबुक की कीमत एक कलम की कीमत से दो गुनी है। इस कथन को निरूपित करने के लिए दो चरों वाला एक रैखिक समीकरण लिखिए।
(संकेत : मान लीजिए, नोटबुक की कीमत $x$ रु है और कलम की कीमत $y$ रु है)।
Show Answer
Missing2. निम्नलिखित रैखिक समीकरणों को $a x+b y+c=0$ के रूप में व्यक्त कीजिए और प्रत्येक स्थिति में $a, b$ और $c$ के मान बताइए:
(i) $2 x+3 y=9.3 \overline{5}$ $\quad$
(ii) $x-\frac{y}{5}-10=0$ $\quad$
(iii) $-2 x+3 y=6$
(iv) $x=3 y$ $\quad$
(v) $2 x=-5 y$ $\quad$
(vi) $3 x+2=0$
(vii) $y-2=0$ $\quad$
(viii) $5=2 x$
Show Answer
Missing4.3 रैखिक समीकरण का हल
आपने देखा है कि एक चर वाले प्रत्येक रैखिक समीकरण का एक अद्वितीय हल होता है। दो चरों वाले रैखिक समीकरण के हल के बारे में आप क्या कह सकते हैं? क्योंकि समीकरण में दो चर हैं, इसलिए हल का अर्थ होता है $x$ तथा $y$ के उन मानों का युग्म जो दिए हुए समीकरण को संतुष्ट करते हैं। आइए, हम समीकरण $2 x+3 y=12$ लें। यहाँ $x=3$ और $y=2$ एक हल है, क्योंकि जब हम ऊपर के समीकरण में $x=3$ और $y=2$ प्रतिस्थापित करते हैं तब हमें यह प्राप्त होता है:
$2 x+3 y=(2 \times 3)+(3 \times 2)=12$
इस हल को एक क्रमित युग्म $(3,2)$ के रूप में लिखा जाता है, जिसमें पहले $x$ का और उसके बाद $y$ का मान लिखा जाता है। इसी प्रकार, $(0,4)$ भी ऊपर दिए गए समीकरण का एक हल है।
इसके विपरीत, $(1,4)$ ऊपर दिए गए समीकरण का एक हल नहीं है, क्योंकि $x=1$ और $y=4$ प्रतिस्थापित करने पर हमें $2 x+3 y=14$ प्राप्त होता है जो 12 नहीं है। ध्यान दीजिए कि $(0,4)$ तो एक हल है परंतु $(4,0)$ एक हल नहीं है। इस तरह आपने $2 x+3 y=12$ के कम से कम दो हल $(3,2)$ और $(0,4)$ प्राप्त कर लिए हैं।
क्या आप कोई अन्य हल प्राप्त कर सकते हैं? क्या आप इस बात से सहमत हैं कि $(6,0)$ एक अन्य हल है? यदि हाँ, तो आप इसे सत्यापित कीजिए। वस्तुतः निम्न विधि से हम कई हल प्राप्त कर सकते हैं: आप $2 x+3 y=12$ में अपनी इच्छानुसार $x$ का एक मान (मान लीजिए $x=2$ ) ले सकते हैं। तब समीकरण $4+3 y=12$ हो जाता है, जो कि एक चर वाला रैखिक समीकरण है। इसे हल करने पर हमें $y=\frac{8}{3}$ प्राप्त होता है। अतः $\left(2, \frac{8}{3}\right), 2 x+3 y=12$ का एक अन्य हल है। इसी प्रकार, $x=-5$ लेने पर हम पाते हैं कि समीकरण $-10+3 y=12$ हो जाता है। इससे $y=\frac{22}{3}$ प्राप्त होता है। अतः $\left(-5, \frac{22}{3}\right), 2 x+3 y=12$ का एक अन्य हल है। इसलिए दो चरों वाले रैखिक समीकरण के विभिन्न हलों का कोई अंत नहीं है। कहने का अर्थ है कि दो चरों वाले रैखिक समीकरण के अपरिमित रूप से अनेक हल होते हैं।
उदाहरण 3 : समीकरण $x+2 y=6$ के चार अलग-अलग हल ज्ञात कीजिए।
हल : देखने पर $x=2, y=2$ एक हल है, क्योंकि $x=2, y=2$ पर
$$ x+2 y=2+4=6 $$
है। आइए, अब हम $x=0$ लें। $x$ के इस मान पर दिया हुआ समीकरण $2 y=6$ हो जाता है, जिसका कि एक अद्वितीय हल $y=3$ होता है। अत: $x=0, y=3$ भी $x+2 y=6$ का एक हल है। इसी प्रकार, $y=0$ लेने पर दिया हुआ समीकरण $x=6$ हो जाता है। अत: $x=6, y=0$ भी $x+2 y=6$ का एक हल है। अंत में, आइए हम $y=1$ लें। अब दिया हुआ समीकरण $x+2=6$ हो जाता है, जिसका हल $x=4$ है। इसलिए, $(4,1)$ भी दिए हुए समीकरण का एक हल है। अतः, दिए हुए समीकरण के अपरिमित रूप से अनेक हलों में चार हल ये हैं:
$(2,2),(0,3),(6,0) \text { और }(4,1)$
टिप्पणी: ध्यान दीजिए कि एक हल प्राप्त करने की सरल विधि $x=0$ लेना है और $y$ का संगत मान प्राप्त करना है। इसी प्रकार, हम $y=0$ ले सकते हैं और तब $x$ का संगत मान प्राप्त कर लेते हैं।
उदाहरण 4 : निम्नलिखित समीकरणों में से प्रत्येक समीकरण के दो हल ज्ञात कीजिए:
(i) $4 x+3 y=12$
(ii) $2 x+5 y=0$
(iii) $3 y+4=0$
हल : (i) $x=0$ लेने पर, हमें $3 y=12$, अर्थात् $y=4$ प्राप्त होता है। अतः $(0,4)$ भी दिए हुए समीकरण का एक हल है। इसी प्रकार, $y=0$ लेने पर हमें $x=3$ प्राप्त होता है। इस तरह, $(3,0)$ भी एक हल है।
(ii) $x=0$ लेने पर, हमें $5 y=0$, अर्थात् $y=0$ प्राप्त होता है। इसलिए $(0,0)$ दिए हुए समीकरण का एक हल है। अब, यदि हम $y=0$ लें, तो हमें एक हल के रूप में पुनः $(0,0)$ प्राप्त होता है; जो कि वही है जिसे हमने पहले प्राप्त किया था। एक अन्य हल प्राप्त करने के लिए $x=1$ लीजिए। तब आप देख सकते हैं कि $y$ का संगत मान $-\frac{2}{5}$ है। अतः $\left(1,-\frac{2}{5}\right), 2 x+5 y=0$ का एक अन्य हल है।
(iii) समीकरण $3 y+4=0$ को $0 x+3 y+4=0$ के रूप में लिखने पर, $x$ के किसी भी मान पर हमें $y=-\frac{4}{3}$ प्राप्त होगा। अतः हमें दो हल $0,-\frac{4}{3}$ और $1,-\frac{4}{3}$ प्राप्त हो सकते हैं।
प्रश्नावली 4.2
1. निम्नलिखित विकल्पों में कौन-सा विकल्प सत्य है, और क्यों? $y=3 x+5$ का
(i) एक अद्वितीय हल है
(ii) केवल दो हल हैं
(iii) अपरिमित रूप से अनेक हल हैं
Show Answer
Missing2. निम्नलिखित समीकरणों में से प्रत्येक समीकरण के चार हल लिखिए:
(i) $2 x+y=7$
(ii) $\pi x+y=9$
(iii) $x=4 y$
Show Answer
Missing3. बताइए कि निम्नलिखित हलों में कौन-कौन समीकरण $x-2 y=4$ के हल हैं और कौन-कौन हल नहीं हैं :
(i) $(0,2)$
(ii) $(2,0)$
(iii) $(4,0)$
(iv) $(\sqrt{2}, 4 \sqrt{2})$
(v) $(1,1)$
Show Answer
Missing4. $k$ का मान ज्ञात कीजिए जबकि $x=2, y=1$ समीकरण $2 x+3 y=k$ का एक हल हो।
Show Answer
Missing4.4 सारांश
इस अध्याय में, आपने निम्नलिखित बिंदुओं का अध्ययन किया है:
1. $a x+b y+c=0$ के रूप के समीकरण को जहाँ, $a, b$ और $c$ वास्तविक संख्याएँ हैं और $a$ और $b$ दोनों शून्य नहीं हैं, दो चरों वाला रैखिक समीकरण कहा जाता है।
2. दो चरों वाले रैखिक समीकरण के अपरिमित रूप से अनेक हल होते हैं।
3. दो चरों वाले रैखिक समीकरण के आलेख पर स्थित प्रत्येक बिंदु रैखिक समीकरण का एक हल होता है। साथ ही, रैखिक समीकरण का प्रत्येक हल रैखिक समीकरण के आलेख पर स्थित एक बिंदु होता है।