Chapter-03 Coordinate Geometry

3.1 Introduction

You have already studied how to locate a point on a number line. You also know how to describe the position of a point on the line. There are many other situations, in which to find a point we are required to describe its position with reference to more than one line. For example, consider the following situations:

I. In Fig. 3.1, there is a main road running in the East-West direction and streets with numbering from West to East. Also, on each street, house numbers are marked. To look for a friend’s house here, is it enough to know only one reference point? For instance, if we only know that she lives on Street 2, will we be able to find her house easily? Not as easily as when we know two pieces of information about it, namely, the number of the street on which it is situated, and the house number. If we want to reach the house which is situated in the $2^{\text {nd }}$ street and has the number 5 , first of all we would identify the $2^{\text {nd }}$ street and then the house numbered 5 on it. In Fig. 3.1, H shows the location of the house. Similarly, P shows the location of the house corresponding to Street

Fig. 3.1 number 7 and House number 4.

II. Suppose you put a dot on a sheet of paper [Fig.3.2 (a)]. If we ask you to tell us the position of the dot on the paper, how will you do this? Perhaps you will try in some such manner: “The dot is in the upper half of the paper”, or “It is near the left edge of the paper”, or “It is very near the left hand upper corner of the sheet”. Do any of these statements fix the position of the dot precisely? No! But, if you say " The dot is nearly $5 \mathrm{~cm}$ away from the left edge of the paper", it helps to give some idea but still does not fix the position of the dot. A little thought might enable you to say that the dot is also at a distance of $9 \mathrm{~cm}$ above the bottom line. We now know exactly where the dot is!

Fig. 3.2

For this purpose, we fixed the position of the dot by specifying its distances from two fixed lines, the left edge of the paper and the bottom line of the paper [Fig.3.2 (b)]. In other words, we need two independent informations for finding the position of the dot.

Now, perform the following classroom activity known as ‘Seating Plan’.

Activity 1 (Seating Plan) : Draw a plan of the seating in your classroom, pushing all the desks together. Represent each desk by a square. In each square, write the name of the student occupying the desk, which the square represents. Position of each student in the classroom is described precisely by using two independent informations:

(i) the column in which she or he sits,

(ii) the row in which she or he sits.

If you are sitting on the desk lying in the $5^{\text {th }}$ column and $3^{\text {rd }}$ row (represented by the shaded square in Fig. 3.3), your position could be written as (5,3), first writing the column number, and then the row number. Is this the same as $(3,5)$ ? Write down the names and positions of other students in your class. For example, if Sonia is sitting in the $4^{\text {th }}$ column and $1^{\text {st }}$ row, write $S(4,1)$. The teacher’s desk is not part of your seating plan. We are treating the teacher just as an observer.

T shows teacher’s desk S shows Sonia’s desk

Fig. 3.3

In the discussion above, you observe that position of any object lying in a plane can be represented with the help of two perpendicular lines. In case of ‘dot’, we require distance of the dot from bottom line as well as from left edge of the paper. In case of seating plan, we require the number of the column and that of the row. This simple idea has far reaching consequences, and has given rise to a very important branch of Mathematics known as Coordinate Geometry. In this chapter, we aim to introduce some basic concepts of coordinate geometry. You will study more about these in your higher classes. This study was initially developed by the French philosopher and mathematician René Déscartes.

René Déscartes, the great French mathematician of the seventeenth century, liked to lie in bed and think! One day, when resting in bed, he solved the problem of describing the position of a point in a plane. His method was a development of the older idea of latitude and longitude. In honour of Déscartes, the system used for describing the position of a point in a plane is also known as the Cartesian system.

René Déscartes (1596 -1650)

Fig. 3.4

EXERCISE 3.1

1. How will you describe the position of a table lamp on your study table to another person?

Show Answer

Solution

Consider that the lamp is placed on the table. Choose two adjacent edges, DC and AD. Then, draw perpendiculars on the edges $D C$ and $A D$ from the position of lamp and measure the lengths of these perpendiculars. Let the length of these perpendiculars be $30 cm$ and $20 cm$ respectively. Now, the position of the lamp from the left edge (AD) is $20 cm$ and from the lower edge (DC) is $30 cm$. This can also be written as (20, $30)$, where 20 represents the perpendicular distance of the lamp from edge AD and 30 represents the perpendicular distance of the lamp from edge DC.

2. (Street Plan) : A city has two main roads which cross each other at the centre of the city. These two roads are along the North-South direction and East-West direction.

All the other streets of the city run parallel to these roads and are $200 \mathrm{~m}$ apart. There are 5 streets in each direction. Using $1 \mathrm{~cm}=200 \mathrm{~m}$, draw a model of the city on your notebook. Represent the roads/streets by single lines.

There are many cross- streets in your model. A particular cross-street is made by two streets, one running in the North - South direction and another in the East - West direction. Each cross street is referred to in the following manner : If the $2^{\text {nd }}$ street running in the North - South direction and $5^{\text {th }}$ in the East - West direction meet at some crossing, then we will call this cross-street $(2,5)$. Using this convention, find:

(i) how many cross - streets can be referred to as $(4,3)$.

(ii) how many cross - streets can be referred to as $(3,4)$.

Show Answer

Solution

Both the cross-streets are marked in the above figure. It can be observed that there is only one cross-street which can be referred as $(4,3)$, and again, only one which can be referred as $(3,4)$.

3.2 Cartesian System

You have studied the number line in the chapter on ‘Number System’. On the number line, distances from a fixed point are marked in equal units positively in one direction and negatively in the other. The point from which the distances are marked is called the origin. We use the number line to represent the numbers by marking points on a line at equal distances. If one unit distance represents the number ’ 1 ‘, then 3 units distance represents the number ’ 3 ‘, ’ 0 ’ being at the origin. The point in the positive direction at a distance $r$ from the origin represents the number $r$. The point in the negative direction at a distance $r$ from the origin represents the number $-r$. Locations of different numbers on the number line are shown in Fig. 3.5.

Fig. 3.5

Descartes invented the idea of placing two such lines perpendicular to each other on a plane, and locating points on the plane by referring them to these lines. The perpendicular lines may be in any direction such as in Fig.3.6. But, when we choose

Fig. 3.6

these two lines to locate a point in a plane in this chapter, one line will be horizontal and the other will be vertical, as in Fig. 3.6(c). These lines are actually obtained as follows: Take two number lines, calling them $ \mathrm{X}^{\prime} \mathrm{X}$ and $\mathrm{Y}^{\prime} \mathrm{Y}$. Place $\mathrm{X}^{\prime} \mathrm{X}$ horizontal [as in Fig. 3.7(a)] and write the numbers on it just as written on the number line. We do the same thing with $Y^{\prime} Y$ except that $Y^{\prime} Y$ is vertical, not horizontal [Fig. 3.7(b)].

(a)

(b) Fig. 3.7

Combine both the lines in such a way that the two lines cross each other at their zeroes, or origins (Fig. 3.8). The horizontal line $\mathrm{X}^{\prime} \mathrm{X}$ is called the $x$ - axis and the vertical line $Y^{\prime}$ is called the $y$-axis. The point where $X^{\prime} X$ and $Y^{\prime} Y$ cross is called the origin, and is denoted by $\mathrm{O}$. Since the positive numbers lie on the directions $\mathrm{OX}$ and $\mathrm{OY}$, $\mathrm{OX}$ and $\mathrm{OY}$ are called the positive directions of the $x$ - axis and the $y$-axis, respectively. Similarly, $\mathrm{OX}^{\prime}$ and $\mathrm{OY}^{\prime}$ are called the negative directions of the $x$ - axis and the $y$-axis, respectively.

Fig. 3.8

You observe that the axes (plural of the word ‘axis’) divide the plane into four parts. These four parts are called the quadrants (one fourth part), numbered I, II, III and IV anticlockwise from OX (see Fig.3.9). So, the plane consists of the axes and these quadrants. We call the plane, the Cartesian plane, or the coordinate plane, or the xy-plane. The axes are called the coordinate axes.

Fig. 3.9

Now, let us see why this system is so basic to mathematics, and how it is useful. Consider the following diagram where the axes are drawn on graph paper. Let us see the distances of the points $\mathrm{P}$ and $\mathrm{Q}$ from the axes. For this, we draw perpendiculars PM on the $x$ - axis and PN on the $y$ - axis. Similarly, we draw perpendiculars QR and QS as shown in Fig. 3.10.

Fig.3.10

You find that

(i) The perpendicular distance of the point $\mathrm{P}$ from the $y$-axis measured along the positive direction of the $x$ - axis is $\mathrm{PN}=\mathrm{OM}=4$ units.

(ii) The perpendicular distance of the point $\mathrm{P}$ from the $x$ - axis measured along the positive direction of the $y$-axis is $\mathrm{PM}=\mathrm{ON}=3$ units.

(iii) The perpendicular distance of the point $\mathrm{Q}$ from the $y$ - axis measured along the negative direction of the $x$ - axis is $\mathrm{OR}=\mathrm{SQ}=6$ units.

(iv) The perpendicular distance of the point $\mathrm{Q}$ from the $x$ - axis measured along the negative direction of the $y$ - axis is $\mathrm{OS}=\mathrm{RQ}=2$ units.

Now, using these distances, how can we describe the points so that there is no confusion?

We write the coordinates of a point, using the following conventions:

(i) The $x$ - coordinate of a point is its perpendicular distance from the $y$ - axis measured along the $x$-axis (positive along the positive direction of the $x$-axis and negative along the negative direction of the $x$-axis). For the point $\mathrm{P}$, it is +4 and for $\mathrm{Q}$, it is -6 . The $x$ - coordinate is also called the abscissa.

(ii) The $y$ - coordinate of a point is its perpendicular distance from the $x$ - axis measured along the $y$ - axis (positive along the positive direction of the $y$ - axis and negative along the negative direction of the $y$-axis). For the point $\mathrm{P}$, it is +3 and for $\mathrm{Q}$, it is -2 . The $y$ - coordinate is also called the ordinate.

(iii) In stating the coordinates of a point in the coordinate plane, the $x$ - coordinate comes first, and then the $y$-coordinate. We place the coordinates in brackets.

Hence, the coordinates of $\mathrm{P}$ are $(4,3)$ and the coordinates of $\mathrm{Q}$ are $(-6,-2)$.

Note that the coordinates describe a point in the plane uniquely. $(3,4)$ is not the same as $(4,3)$.

Example 1 : See Fig. 3.11 and complete the following statements:

(i) The abscissa and the ordinate of the point $\mathrm{B}$ are $\ldots \ldots$ and $\ldots \ldots$, respectively. Hence, the coordinates of $\mathrm{B}$ are (__,__).

(ii) The $x$-coordinate and the $y$-coordinate of the point $\mathrm{M}$ are $\ldots$ and $\ldots$, respectively. Hence, the coordinates of $\mathrm{M}$ are (__,__).

(iii) The $x$-coordinate and the $y$-coordinate of the point $\mathrm{L}$ are $\ldots$ and $\ldots$,respectively. Hence, the coordinates of $\mathrm{L}$ are (__,__).

(iv) The $x$-coordinate and the $y$-coordinate of the point $\mathrm{S}$ are $\ldots \ldots$ and $\ldots$,respectively. Hence, the coordinates of $\mathrm{S}$ are (__,__).

Fig. 3.11

Solution: (i) Since the distance of the point B from the $y$ - axis is 4 units, the $x$ - coordinate or abscissa of the point B is 4 . The distance of the point B from the $x$ - axis is 3 units; therefore, the $y$ - coordinate, i.e., the ordinate, of the point B is 3 . Hence, the coordinates of the point B are $(4,3)$.

As in (i) above :

(ii) The $x$ - coordinate and the $y$ - coordinate of the point $\mathrm{M}$ are -3 and 4, respectively. Hence, the coordinates of the point $\mathrm{M}$ are $(-3,4)$.

(iii) The $x$ - coordinate and the $y$ - coordinate of the point $\mathrm{L}$ are -5 and -4 , respectively. Hence, the coordinates of the point $\mathrm{L}$ are $(-5,-4)$.

(iv) The $x$ - coordinate and the $y$-coordinate of the point $\mathrm{S}$ are 3 and -4 , respectively. Hence, the coordinates of the point $\mathrm{S}$ are $(3,-4)$.

Example 2 : Write the coordinates of the points marked on the axes in Fig. 3.12.

Solution : You can see that :

(i) The point $\mathrm{A}$ is at a distance of +4 units from the $y$ - axis and at a distance zero from the $x$ - axis. Therefore, the $x$ - coordinate of $\mathrm{A}$ is 4 and the $y$ - coordinate is 0 . Hence, the coordinates of A are $(4,0)$.

(ii) The coordinates of $\mathrm{B}$ are $(0,3)$. Why?

(iii) The coordinates of $\mathrm{C}$ are $(-5,0)$. Why?

(iv) The coordinates of $\mathrm{D}$ are $(0,-4)$. Why?

(v) The coordinates of $\mathrm{E}$ are $\left(\frac{2}{3}, 0\right)$. Why?

Since every point on the $x$ - axis has no distance (zero distance) from the $x$ - axis, therefore, the $y$-coordinate of every point lying on the $x$ - axis is always zero. Thus, the coordinates of any point on the $x$ - axis are of the form $(x, 0)$, where $x$ is the distance of the point from the $y$-axis. Similarly, the coordinates of any point on the $y$-axis are of the form $(0, y)$, where $y$ is the distance of the point from the $x$ - axis. Why?

What are the coordinates of the origin $\mathbf{O}$ ? It has zero distance from both the axes so that its abscissa and ordinate are both zero. Therefore, the coordinates of the origin are $(\mathbf{0}, \mathbf{0})$.

In the examples above, you may have observed the following relationship between the signs of the coordinates of a point and the quadrant of a point in which it lies.

(i) If a point is in the 1st quadrant, then the point will be in the form $(+,+)$, since the 1st quadrant is enclosed by the positive $x$ - axis and the positive $y$ - axis.

(ii) If a point is in the 2 nd quadrant, then the point will be in the form $(-,+)$, since the 2nd quadrant is enclosed by the negative $x$ - axis and the positive $y$-axis.

(iii) If a point is in the 3 rd quadrant, then the point will be in the form $(-,-)$, since the 3 rd quadrant is enclosed by the negative $x$ - axis and the negative $y$-axis.

(iv) If a point is in the 4th quadrant, then the point will be in the form $(+,-)$, since the 4th quadrant is enclosed by the positive $x$ - axis and the negative $y$ - axis (see Fig. 3.13).

Fig. 3.13

Remark : The system we have discussed above for describing a point in a plane is only a convention, which is accepted all over the world. The system could also have been, for example, the ordinate first, and the abscissa second. However, the whole world sticks to the system we have described to avoid any confusion.

EXERCISE 3.2

1. Write the answer of each of the following questions:

(i) What is the name of horizontal and the vertical lines drawn to determine the position of any point in the Cartesian plane?

(ii) What is the name of each part of the plane formed by these two lines?

(iii) Write the name of the point where these two lines intersect.

Show Answer

Solution

(i) The name of horizontal lines and vertical lines drawn to determine the position of any point in the Cartesian plane is $x$-axis and $y$-axis respectively.

(ii) The name of each part of the plane formed by these two lines, $x$-axis and $y$-axis, is quadrant (one-fourth part).

(iii) The name of the point where these two lines intersect is the origin.

2. See Fig.3.14, and write the following:

(i) The coordinates of $\mathrm{B}$.

(ii) The coordinates of $\mathrm{C}$.

(iii) The point identified by the coordinates $(-3,-5)$.

(iv) The point identified by the coordinates $(2,-4)$.

(v) The abscissa of the point $\mathrm{D}$.

(vi) The ordinate of the point $\mathrm{H}$.

(vii) The coordinates of the point $\mathrm{L}$.

(viii) The coordinates of the point $\mathrm{M}$.

Fig. 3.14

Show Answer

Solution

(i) The $x$-coordinate and the $y$-coordinate of point $B$ are -5 and 2 respectively. Therefore, the coordinates of point $B$ are $(-5,2)$.

(ii) The $x$-coordinate and the $y$-coordinate of point $C$ are 5 and -5 respectively. Therefore, the coordinates of point $C$ are $(5,-5)$.

(iii) The point whose $x$-coordinate and $y$-coordinate are -3 and -5 respectively is point $E$.

(iv) The point whose $x$-coordinate and $y$-coordinate are 2 and -4 respectively is point $G$.

(v) The $x$-coordinate of point $D$ is 6 . Therefore, the abscissa of point $D$ is 6 . (vi) The $y$-coordinate of point $H$ is -3 . Therefore, the ordinate of point $H$ is -3 . (vii) The $x$-coordinate and the $y$-coordinate of point $L$ are 0 and 5 respectively. Therefore, the coordinates of point $L$ are $(0,5)$.

(viii) The $x$-coordinate and the $y$-coordinate of point $M$ are -3 and 0 respectively. Therefore, the coordinates of point $M$ is $(-3,0)$.

3.3 Summary

In this chapter, you have studied the following points :

1. To locate the position of an object or a point in a plane, we require two perpendicular lines. One of them is horizontal, and the other is vertical.

2. The plane is called the Cartesian, or coordinate plane and the lines are called the coordinate axes.

3. The horizontal line is called the $x$-axis, and the vertical line is called the $y$-axis.

4. The coordinate axes divide the plane into four parts called quadrants.

5. The point of intersection of the axes is called the origin.

6. The distance of a point from the $y$-axis is called its $x$-coordinate, or abscissa, and the distance of the point from the $x$-axis is called its $y$-coordinate, or ordinate.

7. If the abscissa of a point is $x$ and the ordinate is $y$, then $(x, y)$ are called the coordinates of the point.

8. The coordinates of a point on the $x$-axis are of the form $(x, 0)$ and that of the point on the $y$-axis are $(0, y)$.

9. The coordinates of the origin are $(0,0)$.

10. The coordinates of a point are of the form $(+,+)$ in the first quadrant, $(-,+)$ in the second quadrant, $(-,-)$ in the third quadrant and $(+,-)$ in the fourth quadrant, where + denotes a positive real number and - denotes a negative real number.

11. If $x \neq y$, then $(x, y) \neq(y, x)$, and $(x, y)=(y, x)$, if $x=y$.

3.1 भूमिका

आप यह पढ़ चुके हैं कि एक संख्या रेखा पर एक बिन्दु का स्थान निर्धारण किस प्रकार किया जाता है। आप यह भी पढ़ चुके हैं कि एक रेखा पर एक बिन्दु की स्थिति की व्याख्या किस प्रकार की जाती है। ऐसी अनेक स्थितियाँ हैं जिनमें एक बिन्दु ज्ञात करने के लिए हमें एक से अधिक रेखाओं के संदर्भ में उसकी स्थिति की व्याख्या करनी होती है। उदाहरण के लिए, निम्नलिखित स्थितियों पर विचार कीजिए:

I. आकृति 3.1 में एक मुख्य मार्ग है जो पूर्व से पश्चिम की ओर जाता है और इस पर कुछ सड़कें बनी हैं, इनकी सड़क (मार्ग) संख्याएँ प्रत्येक सड़क (मार्ग) पर बने मकानों पर संख्याएँ अंकित कर दी गई हैं। आपको यहाँ अपनी सहेली के मकान का पता लगाना है। क्या इसके लिए केवल एक निर्देश-बिन्दु का ज्ञात होना पर्याप्त होगा? उदाहरण के लिए, यदि हमें केवल यह ज्ञात हो कि वह सड़क 2 पर रहती है तो क्या हम उसके घर का पता सरलता से लगा सकते हैं? उतनी सरलता से नहीं जितनी सरलता से तब जबकि हमें दो जानकारियाँ अर्थात् सड़क की वह संख्या जिस पर उसका मकान है और मकान की संख्या ज्ञात होने पर होती है। यदि आप उस मकान पर जाना चाहते हैं जो सड़क 2 पर स्थित है और जिसकी संख्या 5 है, तो सबसे पहले आपको यह पता लगाना होगा कि सड़क 2 कौन-सी है और तब उस मकान का पता लगाना होता है जिसकी संख्या 5 है। आकृति 3.1 में $\mathrm{H}$ इसी मकान का स्थान दर्शाता है। इसी प्रकार, $\mathrm{P}$ उस मकान को दर्शाता है जो सड़क संख्या 7 पर है और जिसकी संख्या 4 है।

आकृति 3.1 पश्चिम से पूर्व की ओर दी गई हैं।

II. मान लीजिए आप एक कागज की शीट पर एक बिन्दु लगा देते हैं [आकृति 3.2 (a)]। यदि हम आपसे कागज़ पर लगे बिन्दु की स्थिति के बारे में पूछें, तो आप इसे कैसे बताएँगे? संभवतः आप इस प्रश्न का उत्तर इस प्रकार दें : “बिन्दु कागज़ के आधे के ऊपरी भाग में स्थित है” या “यह भी कह सकते हैं कि यह बिन्दु कागज़ की बायों कोर के निकट स्थित है” या “यह बिन्दु कागज़ की बायीं ओर के ऊपरी कोने के काफी निकट स्थित है।” क्या ऊपर दिए गए कथनों में से किसी भी कथन के आधार पर आप बिन्दु की ठीक-ठीक स्थिति बता सकते हैं? स्पष्ट है कि उत्तर “नहीं” है। परन्तु, यदि आप यह कहें कि “बिन्दु कागज़ की बायीं कोर से लगभग $5 \mathrm{~cm}$ दूर है, तो इससे आपको बिन्दु की स्थिति का आभास तो हो जाता है फिर भी ठीक-ठाक स्थिति का पता नहीं चलता। थोड़ा बहुत सोच-विचार के बाद आप यह कह सकते हैं कि सबसे नीचे वाली रेखा से बिन्दु $9 \mathrm{~cm}$ की दूरी पर है। अब हम बिन्दु की स्थिति ठीक-ठाक बता सकते हैं।

आकृति 3.2

इसके लिए हम दो नियत रेखाओं अर्थात् कागज की बायीं कोर और कागज़ की सबसे नीचे वाली रेखा से बिन्दु की स्थिति नियत करते हैं [आकृति 3.2 (b)]। दूसरे शब्दों में, हम यह कह सकते हैं कि बिन्दु की स्थिति ज्ञात करने के लिए दो स्वतंत्र सूचनाओं का होना आवश्यक होता है।

अब आप कक्षा में “बैठने की योजना” नामक निम्नलिखित क्रियाकलाप कीजिए:

क्रियाकलाप 1 (बैठने की योजना) : सभी मेज़ों को एक साथ खींचकर अपनी कक्षा में बैठने की एक योजना बनाइए। प्रत्येक मेज़ को एक वर्ग से निरूपित कीजिए। प्रत्येक वर्ग में उस विद्यार्थी का नाम लिखिए जिस पर वह बैठता है और जिसे वह वर्ग निरूपित करता है। कक्षा में प्रत्येक विद्यार्थी की स्थिति का ठीक-ठीक निर्धारण निम्नलिखित दो सूचनाओं की सहायता से किया जाता है।

(i) वह स्तंभ जिसमें वह बैठता / बैठती है।

(ii) वह पंक्ति जिसमें वह बैठता/ बैठती है।

यदि आप उस मेज़ पर बैठते हैं जो 5 वें स्तंभ और तीसरी पंक्ति में है, जिसे आकृति 3.3 में छायित वर्ग से दिखाया गया है, तो आपकी स्थिति को $(5,3)$ के रूप में व्यक्त किया जा सकता है, जहाँ पहली संख्या स्तंभ संख्या को प्रकट करती है और दूसरी संख्या पंक्ति संख्या को प्रकट करती है। क्या यह वही है जो कि $(3,5)$ है? आप अपनी कक्षा के अन्य विद्यार्थियों के नाम और उनके बैठने की स्थितियाँ लिखें। उदाहरण के लिए, यदि सोनिया चौथे स्तंभ और पहली पंक्ति में बैठती है, तो उसके लिए $\mathrm{S}(4,1)$ लिखिए। शिक्षक की मेज़ आपके बैठने की योजना के अंतर्गत नहीं आती है। यहाँ हम शिक्षक को केवल एक प्रेक्षक ही मानते हैं।

$\mathrm{T}$ शिक्षक की मेज प्रदर्शित करता है $\mathrm{S}$ सोनिया की डेस्क प्रदर्शित करता है

आकृति 3.3

ऊपर की चर्चा में आपने यह देखा है कि एक तल पर रखी हुई किसी वस्तु की स्थिति दो लंब रेखाओं की सहायता से निरूपित की जा सकती है। यदि वस्तु एक बिन्दु है, तो हमें सबसे नीचे वाली रेखा से और कागज की बायों कोर से बिन्दु की दूरी ज्ञात होना आवश्यक होता है। “बैठने की योजना” के संबंध में हमें स्तंभ की संख्या और पंक्ति की संख्या का जानना आवश्यक होता है। इस सरल विचारधारा के दूरगामी परिणाम होते हैं और इससे गणित की निर्देशांक ज्यामिति (Coordinate Geometry) नामक एक अति महत्वपूर्ण शाखा की व्युत्पत्ति हुई। इस अध्याय में, हमारा लक्ष्य निर्देशांक ज्यामिति की कुछ आधारभूत संकल्पनाओं से आपको परिचित कराना है। इसके बारे में आप विस्तार से अध्ययन उच्च कक्षाओं में करेंगे। प्रारंभ में फ्रांसीसी दार्शनिक और गणितज्ञ रेने दकार्ते ने इस अध्ययन को विकसित किया था।

कुछ लोग प्रातःकाल में बिस्तर पर लेटे रहना पसंद करते हैं। यही आदत सत्रहवीं शताब्दी के महान फ्रांसीसी गणितज्ञ रेने दकार्ते की थी। परन्तु वह आलसी व्यक्ति नहीं था, वह यह समझता था कि बिस्तर पर पड़े-पड़े ही अधिक चितन किया जा सकता है। एक दिन जबकि वह अपने बिस्तर पर लेटे-लेटे आराम कर रहा था, उसने एक तल में एक बिन्दु की स्थिति का निर्धारण करने से संबंधित समस्या का हल ढूँढ़ निकाला। जैसाकि आप देखेंगे उसकी विधि अक्षांश और देशांतर की पुरानी विचारधारा की ही एक विकसित रूप थी। एक तल की एक बिन्दु की स्थिति का निर्धारण करने में प्रयुक्त पद्धति को दकार्ते

रेने दकार्ते (1596 -1650)

आकृति 3.4

प्रश्नावली 3.1

1. एक अन्य व्यक्ति को आप अपने अध्ययन मेज पर रखे टेबल लैंप की स्थिति किस तरह बताएँगे?

Show Answer Missing

2. (सड़क योजना ) : एक नगर में दो मुख्य सड़कें हैं, जो नगर के केन्द्र पर मिलती हैं। ये दो सड़कें उत्तर-दक्षिण की दिशा और पूर्व-पश्चिम की दिशा में हैं।

नगर की अन्य सभी सड़कें इन मुख्य सड़कों के समांतर परस्पर 200 मीटर की दूरी पर हैं। प्रत्येक दिशा में लगभग पाँच सड़कें हैं। 1 सेंटीमीटर $=200$ मीटर का पैमाना लेकर अपनी नोट बुक में नगर का एक मॉडल बनाइए। सड़कों को एकल रेखाओं से निरूपित कीजिए।

आपके मॉडल में एक-दूसरे को काटती हुई अनेक क्रॉस-स्ट्रीट (चौराहे) हो सकती हैं। एक विशेष क्रॉस-स्ट्रीट दो सड़कों से बनी है, जिनमें से एक उत्तर-दक्षिण दिशा में जाती है और दूसरी पूर्व-पश्चिम की दिशा में। प्रत्येक क्रॉस-स्ट्रीट का निर्देशन इस प्रकार किया जाता है: यदि दूसरी सड़क उत्तर-दक्षिण दिशा में जाती है और पाँचवीं सड़क पूर्व-पश्चिम दिशा में जाती है और ये एक क्रॉसिंग पर मिलती हैं, तब इसे हम क्रॉस-स्ट्रीट $(2,5)$ कहेंगे। इसी परंपरा से यह ज्ञात कीजिए कि

(i) कितनी क्रॉस-स्ट्रीटों को $(4,3)$ माना जा सकता है।

(ii) कितनी क्रॉस-स्ट्रीटों को $(3,4)$ माना जा सकता है।

Show Answer Missing

3.2 कार्तीय पद्धति

‘संख्या पद्धति’ के अध्याय में आप संख्या रेखा के बारे में पढ़ चुके हैं। संख्या रेखा पर एक नियत बिन्दु से दूरियों को बराबर एककों में एक दिशा में धनात्मक और दूसरी दिशा में ॠणात्मक अंकित किया जाता है। उस बिन्दु को, जहाँ से दूरियाँ अंकित की जाती हैं, मूलबिन्दु (origin) कहा जाता है। एक रेखा पर समान दूरियों पर बिन्दुओं को अंकित करके, हम संख्या रेखा का प्रयोग संख्याओं को निरूपित करने के लिए करते हैं। यदि एक एकक दूरी संख्या ’ 1 ’ को निरूपित करती हो, तो 3 एकक दूरी संख्या ’ 3 ’ को निरूपित करेगी, जहाँ ’ $\mathrm{O}$ ’ मूलबिन्दु है। मूलबिन्दु से धनात्मक दिशा में दूरी $r$ पर स्थित बिन्दु संख्या $r$ को निरूपित करती है। मूलबिन्दु से ऋणात्मक दिशा में दूरी $r$ पर स्थित बिन्दु संख्या $r$ को निरूपित करती है। संख्या रेखा पर विभिन्न संख्याओं के स्थान आकृति 3.5 में दिखाए गए हैं।

आकृति 3.5

दकार्ते ने एक तल पर एक दूसरे पर लंब दो रेखाओं को खींचने और इन रेखाओं के सापेक्ष तल पर बिन्दुओं का स्थान निर्धारण करने का विचार प्रस्तुत किया। लंब रेखाएँ किसी भी दिशा में हो सकती हैं, जैसा कि आकृति 3.6 में दिखाया गया है। लेकिन जब हम इस अध्याय में एक तल में स्थित एक बिन्दु का स्थान निर्धारण करने के लिए दो रेखाएँ लेंगे, तो एक रेखा क्षैतिज होगी और दूसरी रेखा ऊध्ध्वाधर, जैसा कि आकृति 3.6 (c) में दिखाया गया है।

आकृति 3.6

वास्तव में ये रेखाएँ इस प्रकार प्राप्त की जाती हैं : दो संख्या रेखाएँ लीजिए और उन्हें $X^{\prime} X$ और $Y^{\prime} Y$ का नाम दे दीजिए। $X^{\prime} X$ को क्षैतिज रखिए [जैसा कि आकृति 3.7(a) में दिखाया गया है] और इस पर ठीक उसी प्रकार संख्याएँ लिखिए जैसा कि संख्या रेखा पर लिखी जाती हैं। ये ही सभी क्रियाएँ आप $Y^{\prime} Y$ के साथ कीजिए। अंतर केवल यही है कि $Y^{\prime} Y$ क्षैतिज नहीं है, अपितु ऊर्ध्वाधर है [देखिए आकृति 3.7 (b)]।

(a)

(b) आकृति 3.7

दोनों रेखाओं का संयोजन इस प्रकार कीजिए कि ये दो रेखाएँ एक-दूसरे को मूलबिन्दु पर काटती हों (आकृति 3.8)। क्षैतिज रेखा $\mathrm{X}^{\prime} \mathrm{X}$ को $x$-अक्ष कहा जाता है और ऊर्ध्वाधर रेखा $\mathrm{Y}^{\prime} \mathrm{Y}$ को $y$-अक्ष कहा जाता है। वह बिन्दु, जहाँ $\mathrm{X}^{\prime} \mathrm{X}$ और $\mathrm{Y}^{\prime} \mathrm{Y}$ एक-दूसरे को काटती हैं, उसे मूलबिन्दु (origin) कहा जाता है और इसे $\mathrm{O}$ से प्रकट किया जाता है। क्योंकि धनात्मक संख्याएँ $\mathrm{OX}$ और $\mathrm{OY}$ की दिशाओं में स्थित हैं, इसलिए $\mathrm{OX}$ और $\mathrm{OY}$ को क्रमशः $x$-अक्ष और $y$-अक्ष की धनात्मक दिशाएँ कहा जाता है। इसी प्रकार, $\mathrm{OX}^{\prime}$ और $\mathrm{OY}^{\prime}$ को $x$-अक्ष और $y$-अक्ष की क्रमशः ॠणात्मक दिशाएँ कहा जाता है।

आकृति 3.8

यहाँ आप यह देखते हैं कि ये दोनों अक्ष तल को चार भागों में विभाजित करती हैं। इन चार भागों को चतुर्थांश (quadrants) (एक-चौथाई) कहा जाता है। OX से वामावर्त दिशा में इन्हें I, II, III और IV चतुर्थांश कहा जाता है (देखिए आकृति 3.9)। इस प्रकार, इस तल में दोनों अक्ष और चारों चतुर्थांश सम्मिलित हैं। हम इस तल को कार्तीय तल (Cartesian plane) या निर्देशांक तल (Coordinate plane) या $x y$-तल ( $x y$-plane) कहते हैं। अक्षों को निर्देशांक अक्ष (coordinate axes) कहा जाता है।

आकृति 3.9

आइए अब हम यह देखें कि गणित में इस पद्धति का इतना महत्व क्यों है और यह किस प्रकार उपयोगी होती है। आगे दिया गया आरेख लीजिए, जहाँ अक्षों को आलेख कागज (graph paper) पर खींचा गया है। आइए हम अक्षों से बिन्दुओं $\mathrm{P}$ और $\mathrm{Q}$ की दूरियाँ ज्ञात करें। इसके लिए $x$-अक्ष पर लंब PM और $y$-अक्ष पर लंब PN डालिए। इसी प्रकार, हम लंब $\mathrm{QR}$ और $\mathrm{QS}$ डालते हैं, जैसा कि आकृति 3.10 में दिखाया गया है।

आकृति 3.10

आप पाते हैं कि

(i) $y$-अक्ष से बिन्दु $\mathrm{P}$ की लांबिक दूरी, जिसे $x$-अक्ष की धनात्मक दिशा में मापा गया है, $\mathrm{PN}=\mathrm{OM}=4$ एकक है।

(ii) $x$-अक्ष से बिन्दु $\mathrm{P}$ की लांबिक दूरी, जिसे $y$-अक्ष की धनात्मक दिशा में मापा गया है, $\mathrm{PM}=\mathrm{ON}=3$ एकक है।

(iii) $y$-अक्ष से बिन्दु $\mathrm{Q}$ की लांबिक दूरी, जिसे $x$-अक्ष की ॠणात्मक दिशा में मापा गया है, $\mathrm{OR}=\mathrm{SQ}=6$ एकक है।

(iv) $x$-अक्ष से बिन्दु $\mathrm{Q}$ की लांबिक दूरी, जिसे $y$-अक्ष की ॠणात्मक दिशा में मापा गया है, $\mathrm{OS}=\mathrm{RQ}=2$ एकक है।

इन दूरियों की सहायता से हम बिन्दुओं का निर्धारण किस प्रकार करें कि कोई भ्रम न रह जाए?

हम निम्नलिखित परंपराओं को ध्यान में रखकर एक बिन्दु के निर्देशांक लिखते हैं:

(i) एक बिन्दु का $x$-निर्देशांक ( $x$-coordinate), $y$-अक्ष से इस बिन्दु की लांबिक दूरी है, जिसे $x$-अक्ष पर मापा जाता है (जो कि $x$-अक्ष की धनात्मक दिशा में धनात्मक और $x$-अक्ष की ॠणात्मक दिशा में ऋणात्मक होती है)। बिन्दु $\mathrm{P}$ के लिए यह +4 है और $\mathrm{Q}$ के लिए यह -6 है। $x$ - निर्देशांक को भुज (abscissa) भी कहा जाता है।

(ii) एक बिन्दु का $y$-निर्देशांक, $x$-अक्ष से उसकी लांबिक दूरी होती है जिसे $y$-अक्ष पर मापा जाता है (जो $y$-अक्ष की धनात्मक दिशा में धनात्मक और $y$-अक्ष की ॠणात्मक दिशा में ऋणात्मक होती है)। बिन्दु $\mathrm{P}$ के लिए यह +3 है और $\mathrm{Q}$ के लिए -2 है। $y$-निर्देशांक को कोटि (ordinate) भी कहा जाता है।

(iii) निर्देशांक तल में एक बिन्दु के निर्देशांक लिखते समय पहले $x$-निर्देशांक लिखते हैं और उसके बाद $y$-निर्देशांक लिखते हैं। हम निर्देशांकों को कोष्ठक के अंदर लिखते हैं।

अतः $\mathrm{P}$ के निर्देशांक $(4,3)$ हैं और $\mathrm{Q}$ के निर्देशांक $(-6,-2)$ हैं।

ध्यान दीजिए कि तल में एक बिन्दु के निर्देशांक अद्वितीय होते हैं। इसके अनुसार निर्देशांक $(3,4)$ और निर्देशांक $(4,3)$ समान नहीं हैं।

उदाहरण 1 : आकृति 3.11 को देखकर निम्नलिखित कथनों को पूरा कीजिए:

(i) बिन्दु $\mathrm{B}$ का भुज और कोटि क्रमशः _… और _.. हैं। अतः $\mathrm{B}$ के निर्देशांक $\left({ } _{-}{ } _{-}, \ldots \ldots\right)$ हैं।

(ii) बिन्दु $\mathrm{M}$ के $x$-निर्देशांक और $y$-निर्देशांक क्रमशः $\ldots$ और _ . हैं। अतः $\mathrm{M}$ के निर्देशांक ( _ , _ ) हैं।

(iii) बिन्दु $\mathrm{L}$ के $x$-निर्देशांक और $y$-निर्देशांक क्रमशः _ _ और $\ldots$ हैं। अतः $\mathrm{L}$ के निर्देशांक ( _ , _ ) हैं।

(iv) बिन्दु $\mathrm{S}$ के $x$-निर्देशांक और $y$-निर्देशांक क्रमशः _ _ और _ _ हैं। अतः $\mathrm{S}$ के निर्देशांक (_, __) हैं।

आकृति 3.11

हल : (i) क्योंकि $y$-अक्ष से बिन्दु $\mathrm{B}$ की दूरी 4 एकक है, इसलिए बिन्दु $\mathrm{B}$ का $x$-निर्देशांक या भुज 4 होगा। $x$-अक्ष से बिन्दु $\mathrm{B}$ की दूरी 3 एकक है, इसलिए बिन्दु $\mathrm{B}$ का $y$-निर्देशांक अर्थात् कोटि 3 होगी। अतः बिन्दु $\mathrm{B}$ के निर्देशांक $(4,3)$ हैं।

ऊपर (i) की भांति:

(ii) बिन्दु $M$ के $x$-निर्देशांक और $y$-निर्देशांक क्रमशः -3 और 4 हैं। अतः बिन्दु $M$ के निर्देशांक $(-3,4)$ हैं।

(iii) बिन्दु $\mathrm{L}$ के $x$-निर्देशांक और $y$-निर्देशांक क्रमशः -5 और -4 हैं। अतः बिन्दु $\mathrm{L}$ के निर्देशांक $(-5,-4)$ हैं।

(iv) बिन्दु $\mathrm{S}$ के $x$-निर्देशांक और $y$-निर्देशांक क्रमशः 3 और -4 है। अतः बिन्दु $\mathrm{S}$ के निर्देशांक $(3,-4)$ हैं।

उदाहरण 2 : आकृति 3.12 में अक्षों पर अंकित बिन्दुओं के निर्देशांक लिखिए:

हल : आप यहाँ देख सकते हैं कि :

(i) बिन्दु $\mathrm{A}, y$-अक्ष से +4 एकक की दूरी पर है और $x$-अक्ष से दूरी 0 पर है। अतः बिन्दु $\mathrm{A}$ का $x$-निर्देशांक 4 है और $y$-निर्देशांक 0 है। इसलिए $\mathrm{A}$ के निर्देशांक $(4,0)$ हैं।

(ii) $\mathrm{B}$ के निर्देशांक $(0,3)$ हैं। क्यों?

(iii) $\mathrm{C}$ के निर्देशांक $(-5,0)$ हैं। क्यों?

(iv) $\mathrm{D}$ के निर्देशांक $(0,-4)$ हैं। क्यों?

(v) $\mathrm{E}$ के निर्देशांक $\left(\frac{2}{3}, 0\right)$ हैं। क्यों?

क्योंकि $x$-अक्ष का प्रत्येक बिन्दु $x$-अक्ष से शून्य दूरी पर है, इसलिए $x$-अक्ष पर स्थित प्रत्येक बिन्दु का $y$-निर्देशांक सदा ही शून्य होगा। इस तरह, $x$-अक्ष पर स्थित किसी भी बिन्दु के निर्देशांक $(x, 0)$ के रूप के होंगे, जहाँ $y$-अक्ष से बिन्दु की दूरी $x$ है। इसी प्रकार, $y$-अक्ष पर स्थित किसी भी बिन्दु के निर्देशांक $(0, y)$ के रूप के होंगे, जहाँ $x$-अक्ष से बिन्दु की दूरी $y$ है। क्यों?

मूलबिन्दु $\mathrm{O}$ के निर्देशांक क्या हैं? क्योंक दोनों अक्षों से इसकी दूरी शून्य है, इसलिए इसके भुज और कोटि दोनों ही शून्य होंगे। अतः मूलबिन्दु के निर्देशांक $(0,0)$ होते हैं।

ऊपर के उदाहरणों में, आपने एक बिन्दु के निर्देशांकों में लगे चिह्नों और उस बिन्दु के चतुर्थांश, जिसमें वह स्थित है, के बीच के निम्नलिखित संबंधों की ओर अवश्य ध्यान दिया होगा:

(i) यदि बिन्दु पहले चतुर्थांश में है, तो बिन्दु $(+,+)$ के रूप का होगा, क्योंकि पहला चतुर्थांश धनात्मक $x$-अक्ष और धनात्मक $y$-अक्ष से परिबद्ध है।

(ii) यदि बिन्दु दूसरे चतुर्थांश में है, तो बिन्दु $(-,+)$ के रूप का होगा, क्योंकि दूसरा चतुर्थांश ॠणात्मक $x$-अक्ष और धनात्मक $y$-अक्ष से परिबद्ध है।

(iii) यदि बिन्दु तीसरे चतुर्थांश में है, तो बिन्दु $(-,-)$ के रूप में होगा, क्योंकि तीसरा चतुर्थांश ॠणात्मक $x$-अक्ष और ऋणात्मक $y$-अक्ष से परिबद्ध है।

(iv) यदि बिन्दु चौथे चतुर्थांश में है, तो बिन्दु $(+,-)$ के रूप में होगा, क्योंकि चौथा चतुर्थांश धनात्मक $x$-अक्ष और ऋणात्मक $y$-अक्ष से परिबद्ध है (देखिए आकृति 3.13)।

आकृति 3.13

टिप्पणी: एक तल में स्थित एक बिन्दु की व्याख्या करने के संबंध में ऊपर हमने जिस पद्धति के बारे में चर्चा की है, वह केवल एक परंपरा है जिसको पूरे विश्व में स्वीकार किया जाता है। उदाहरण के लिए, पद्धति में ऐसा भी हो सकता है कि पहले कोटि लिखी जाए और उसके बाद भुज लिखा जाए। फिर भी, जिस पद्धति का उल्लेख हमने किया है उसे पूरा विश्व बिना किसी भ्रम के स्वीकार करता है।

प्रश्नावली 3.2

1. निम्नलिखित प्रश्नों में से प्रत्येक प्रश्न का उत्तर दीजिए:

(i) कार्तीय तल में किसी बिन्दु की स्थिति निर्धारित करने वाली क्षैतिज और ऊर्ध्वाधर रेखाओं के क्या नाम हैं?

(ii) इन दो रेखाओं से बने तल के प्रत्येक भाग के नाम बताइए।

(iii) उस बिन्दु का नाम बताइए जहाँ ये दो रेखाएँ प्रतिच्छेदित होती हैं।

Show Answer Missing

2. आकृति 3.14 देखकर निम्नलिखित को लिखिए:

(i) $\mathrm{B}$ के निर्देशांक

(ii) $\mathrm{C}$ के निर्देशांक

(iii) निर्देशांक $(-3,-5)$ द्वारा पहचाना गया बिन्दु

(iv) निर्देशांक $(2,-4)$ द्वारा पहचाना गया बिन्दु

(v) $\mathrm{D}$ का भुज

(vi) बिन्दु $\mathrm{H}$ की कोटि

(vii) बिन्दु $\mathrm{L}$ के निर्देशांक

(viii) बिन्दु $M$ के निर्देशांक

आकृति 3.14

Show Answer Missing

3.3 सारांश

इस अध्याय में, आपने निम्नलिखित बिन्दुओं का अध्ययन किया है:

1. एक तल में एक वस्तु या एक बिन्दु का स्थान निर्धारण करने के लिए दो लांबिक रेखाओं की आवश्यकता होती है जिसमें एक क्षैतिज होती है और दूसरी ऊर्ध्वाधर होती है।

2. तल को कार्तीय या निर्देशांक तल कहा जाता है और रेखाओं को निर्देशांक अक्ष कहा जाता है।

3. क्षैतिज रेखा को $x$-अक्ष और ऊर्ध्वाधर रेखा को $y$-अक्ष कहा जाता है।

4. निर्देशांक अक्ष तल को चार भागों में बाँट देते हैं, जिन्हें चतुर्थांश कहा जाता है।

5. अक्षों के प्रतिच्छेद बिन्दु को मूलबिन्दु कहा जाता है।

6. $y$-अक्ष से किसी बिन्दु की दूरी को उसका $x$-निर्देशांक या भुज कहा जाता है। साथ ही, $x$-अक्ष से बिन्दु की दूरी को $y$-निर्देशांक या कोटि कहा जाता है।

7. यदि एक बिन्दु का भुज $x$ हो और कोटि $y$ हो, तो $(x, y)$ को बिन्दु के निर्देशांक कहा जाता है।

8. $x$-अक्ष पर एक बिन्दु के निर्देशांक $(x, 0)$ के रूप के होते हैं और $y$-अक्ष पर बिन्दु के निर्देशांक $(0, y)$ के रूप के होते हैं।

9. मूलबिन्दु के निर्देशांक $(0,0)$ होते हैं।

10. एक बिन्दु के निर्देशांक पहले चतुर्थांश में $(+,+)$ के रूप के दूसरे चतुर्थांश में $(-,+)$ के रूप के, तीसरे चतुर्थांश में $(-,-)$ के रूप के और चौथे चतुर्थांश में $(+,-)$ के रूप के होते हैं, जहाँ + एक धनात्मक वास्तविक संख्या को और - एक ऋणात्मक वास्तविक संख्या को प्रकट करते हैं।

11. यदि $x \neq y$ हो, तो $(x, y) \neq(y, x)$ होगा और यदि $x=y$ हो, तो $(x, y)=(y, x)$ होगा।



Table of Contents