Chapter-02 Polynomials
2.1 Introduction
You have studied algebraic expressions, their addition, subtraction, multiplication and division in earlier classes. You also have studied how to factorise some algebraic expressions. You may recall the algebraic identities :
and
$$ \begin{aligned} & (x+y)^{2}=x^{2}+2 x y+y^{2} \\ & (x-y)^{2}=x^{2}-2 x y+y^{2} \\ & x^{2}-y^{2}=(x+y)(x-y) \end{aligned} $$
and their use in factorisation. In this chapter, we shall start our study with a particular type of algebraic expression, called polynomial, and the terminology related to it. We shall also study the Remainder Theorem and Factor Theorem and their use in the factorisation of polynomials. In addition to the above, we shall study some more algebraic identities and their use in factorisation and in evaluating some given expressions.
2.2 Polynomials in One Variable
Let us begin by recalling that a variable is denoted by a symbol that can take any real value. We use the letters $x, y, z$, etc. to denote variables. Notice that $2 x, 3 x,-x,-\frac{1}{2} x$ are algebraic expressions. All these expressions are of the form (a constant) $\times x$. Now suppose we want to write an expression which is (a constant) $\times($ a variable $)$ and we do not know what the constant is. In such cases, we write the constant as $a, b, c$, etc. So the expression will be $a x$, say.
However, there is a difference between a letter denoting a constant and a letter denoting a variable. The values of the constants remain the same throughout a particular situation, that is, the values of the constants do not change in a given problem, but the value of a variable can keep changing.
Now, consider a square of side 3 units (see Fig. 2.1). What is its perimeter? You know that the perimeter of a square is the sum of the lengths of its four sides. Here, each side is 3 units. So, its perimeter is $4 \times 3$, i.e., 12 units. What will be the perimeter if each side of the square is 10 units? The perimeter is $4 \times 10$, i.e., 40 units. In case the length of each side is $x$ units (see Fig. 2.2), the perimeter is given by $4 x$ units. So, as the length of the side varies, the perimeter varies.
Fig. 2.1
Fig. 2.2 polynomial in $x$. Similarly, $3 y^{2}+5 y$ is a polynomial in the variable $y$ and $t^{2}+4$ is a polynomial in the variable $t$.
In the polynomial $x^{2}+2 x$, the expressions $x^{2}$ and $2 x$ are called the terms of the polynomial. Similarly, the polynomial $3 y^{2}+5 y+7$ has three terms, namely, $3 y^{2}, 5 y$ and 7. Can you write the terms of the polynomial $-x^{3}+4 x^{2}+7 x-2$ ? This polynomial has 4 terms, namely, $-x^{3}, 4 x^{2}, 7 x$ and -2 .
Each term of a polynomial has a coefficient. So, in $-x^{3}+4 x^{2}+7 x-2$, the coefficient of $x^{3}$ is -1 , the coefficient of $x^{2}$ is 4 , the coefficient of $x$ is 7 and -2 is the coefficient of $x^{0}$ (Remember, $x^{0}=1$ ). Do you know the coefficient of $x$ in $x^{2}-x+7$ ? It is -1 .
2 is also a polynomial. In fact, $2,-5,7$, etc. are examples of constant polynomials. The constant polynomial 0 is called the zero polynomial. This plays a very important role in the collection of all polynomials, as you will see in the higher classes.
Now, consider algebraic expressions such as $x+\frac{1}{x}, \sqrt{x}+3$ and $\sqrt[3]{y}+y^{2}$. Do you know that you can write $x+\frac{1}{x}=x+x^{-1}$ ? Here, the exponent of the second term, i.e., $x^{-1}$ is -1 , which is not a whole number. So, this algebraic expression is not a polynomial.
Again, $\sqrt{x}+3$ can be written as $x^{\frac{1}{2}}+3$. Here the exponent of $x$ is $\frac{1}{2}$, which is not a whole number. So, is $\sqrt{x}+3$ a polynomial? No, it is not. What about $\sqrt[3]{y}+y^{2}$ ? It is also not a polynomial (Why?).
If the variable in a polynomial is $x$, we may denote the polynomial by $p(x)$, or $q(x)$, or $r(x)$, etc. So, for example, we may write :
$$ \begin{aligned} & p(x)=2 x^{2}+5 x-3 \\ & q(x)=x^{3}-1 \\ & r(y)=y^{3}+y+1 \\ & s(u)=2-u-u^{2}+6 u^{5} \end{aligned} $$
A polynomial can have any (finite) number of terms. For instance, $x^{150}+x^{149}+\ldots$ $+x^{2}+x+1$ is a polynomial with 151 terms.
Consider the polynomials $2 x, 2,5 x^{3},-5 x^{2}, y$ and $u^{4}$. Do you see that each of these polynomials has only one term? Polynomials having only one term are called monomials (‘mono’ means ‘one’).
Now observe each of the following polynomials:
$p(x)=x+1, \quad q(x)=x^{2}-x,$ $r(y)=y^{30}+1, \quad t(u)=u^{43}-u^{2}$
How many terms are there in each of these? Each of these polynomials has only two terms. Polynomials having only two terms are called binomials (‘bi’ means ’two’).
Similarly, polynomials having only three terms are called trinomials (’tri’ means ’three’). Some examples of trinomials are
$$ \begin{array}{ll} p(x)=x+x^{2}+\pi, & q(x)=\sqrt{2}+x-x^{2}, \\ r(u)=u+u^{2}-2, & t(y)=y^{4}+y+5 \end{array} $$
Now, look at the polynomial $p(x)=3 x^{7}-4 x^{6}+x+9$. What is the term with the highest power of $x$ ? It is $3 x^{7}$. The exponent of $x$ in this term is 7. Similarly, in the polynomial $q(y)=5 y^{6}-4 y^{2}-6$, the term with the highest power of $y$ is $5 y^{6}$ and the exponent of $y$ in this term is 6 . We call the highest power of the variable in a polynomial as the degree of the polynomial. So, the degree of the polynomial $3 x^{7}-4 x^{6}+x+9$ is 7 and the degree of the polynomial $5 y^{6}-4 y^{2}-6$ is 6 . The degree of a non-zero constant polynomial is zero.
Example 1 : Find the degree of each of the polynomials given below:
(i) $x^{5}-x^{4}+3$
(ii) $2-y^{2}-y^{3}+2 y^{8}$
(iii) 2
Solution : (i) The highest power of the variable is 5 . So, the degree of the polynomial is 5 .
(ii) The highest power of the variable is 8 . So, the degree of the polynomial is 8 .
(iii) The only term here is 2 which can be written as $2 x^{0}$. So the exponent of $x$ is 0 . Therefore, the degree of the polynomial is 0 .
Now observe the polynomials $p(x)=4 x+5, q(y)=2 y, r(t)=t+\sqrt{2}$ and $s(u)=3-u$. Do you see anything common among all of them? The degree of each of these polynomials is one. A polynomial of degree one is called a linear polynomial. Some more linear polynomials in one variable are $2 x-1, \sqrt{2} y+1,2-u$. Now, try and find a linear polynomial in $x$ with 3 terms? You would not be able to find it because a linear polynomial in $x$ can have at most two terms. So, any linear polynomial in $x$ will be of the form $a x+b$, where $a$ and $b$ are constants and $a \neq 0$ (why?). Similarly, $a y+b$ is a linear polynomial in $y$.
Now consider the polynomials :
$$2 x^{2}+5,5 x^{2}+3 x+\pi, x^{2} \text { and } x^{2}+\frac{2}{5} x$$
Do you agree that they are all of degree two? A polynomial of degree two is called a quadratic polynomial. Some examples of a quadratic polynomial are $5-y^{2}$, $4 y+5 y^{2}$ and $6-y-y^{2}$. Can you write a quadratic polynomial in one variable with four different terms? You will find that a quadratic polynomial in one variable will have at most 3 terms. If you list a few more quadratic polynomials, you will find that any quadratic polynomial in $x$ is of the form $a x^{2}+b x+c$, where $a \neq 0$ and $a, b, c$ are constants. Similarly, quadratic polynomial in $y$ will be of the form $a y^{2}+b y+c$, provided $a \neq 0$ and $a, b, c$ are constants.
We call a polynomial of degree three a cubic polynomial. Some examples of a cubic polynomial in $x$ are $4 x^{3}, 2 x^{3}+1,5 x^{3}+x^{2}, 6 x^{3}-x, 6-x^{3}, 2 x^{3}+4 x^{2}+6 x+7$. How many terms do you think a cubic polynomial in one variable can have? It can have at most 4 terms. These may be written in the form $a x^{3}+b x^{2}+c x+d$, where $a \neq 0$ and $a, b, c$ and $d$ are constants.
Now, that you have seen what a polynomial of degree 1 , degree 2 , or degree 3 looks like, can you write down a polynomial in one variable of degree $n$ for any natural number $n$ ? A polynomial in one variable $x$ of degree $n$ is an expression of the form
$$a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$$
where $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are constants and $a_{n} \neq 0$.
In particular, if $a_{0}=a_{1}=a_{2}=a_{3}=\ldots=a_{n}=0$ (all the constants are zero), we get the zero polynomial, which is denoted by 0 . What is the degree of the zero polynomial? The degree of the zero polynomial is not defined.
So far we have dealt with polynomials in one variable only. We can also have polynomials in more than one variable. For example, $x^{2}+y^{2}+x y z$ (where variables are $x, y$ and $z$ ) is a polynomial in three variables. Similarly $p^{2}+q^{10}+r$ (where the variables are $p, q$ and $r$ ), $u^{3}+v^{2}$ (where the variables are $u$ and $v$ ) are polynomials in three and two variables, respectively. You will be studying such polynomials in detail later.
2.3 Zeroes of a Polynomial
Consider the polynomial $p(x)=5 x^{3}-2 x^{2}+3 x-2$.
If we replace $x$ by 1 everywhere in $p(x)$, we get
$$ \begin{aligned} p(1) & =5 \times(1)^{3}-2 \times(1)^{2}+3 \times(1)-2 \\ & =5-2+3-2 \\ & =4 \end{aligned} $$
So, we say that the value of $p(x)$ at $x=1$ is 4 .
Similarly,
$p(0) =5(0)^{3}-2(0)^{2}+3(0)-2$
$$ =-2 $$
Can you find $p(-1)$ ?
Example 2 : Find the value of each of the following polynomials at the indicated value of variables:
(i) $p(x)=5 x^{2}-3 x+7$ at $x=1$.
(ii) $q(y)=3 y^{3}-4 y+\sqrt{11}$ at $y=2$.
(iii) $p(t)=4 t^{4}+5 t^{3}-t^{2}+6$ at $t=a$.
Solution : (i) $p(x)=5 x^{2}-3 x+7$
The value of the polynomial $p(x)$ at $x=1$ is given by
$$ \begin{aligned} p(1) & =5(1)^{2}-3(1)+7 \\ & =5-3+7=9 \end{aligned} $$
(ii) $q(y)=3 y^{3}-4 y+\sqrt{11}$
The value of the polynomial $q(y)$ at $y=2$ is given by
$$q(2)=3(2)^{3}-4(2)+\sqrt{11}=24-8+\sqrt{11}=16+\sqrt{11}$$
(iii) $p(t)=4 t^{4}+5 t^{3}-t^{2}+6$
The value of the polynomial $p(t)$ at $t=a$ is given by
$$ p(a)=4 a^{4}+5 a^{3}-a^{2}+6 $$
Now, consider the polynomial $p(x)=x-1$.
What is $p(1)$ ? Note that : $p(1)=1-1=0$.
As $p(1)=0$, we say that 1 is a zero of the polynomial $p(x)$.
Similarly, you can check that 2 is a zero of $q(x)$, where $q(x)=x-2$.
In general, we say that a zero of a polynomial $p(x)$ is a number $c$ such that $p(c)=0$.
You must have observed that the zero of the polynomial $x-1$ is obtained by equating it to 0 , i.e., $x-1=0$, which gives $x=1$. We say $p(x)=0$ is a polynomial equation and 1 is the root of the polynomial equation $p(x)=0$. So we say 1 is the zero of the polynomial $x-1$, or a root of the polynomial equation $x-1=0$.
Now, consider the constant polynomial 5 . Can you tell what its zero is? It has no zero because replacing $x$ by any number in $5 x^{0}$ still gives us 5 . In fact, a non-zero constant polynomial has no zero. What about the zeroes of the zero polynomial? By convention, every real number is a zero of the zero polynomial.
Example 3 : Check whether -2 and 2 are zeroes of the polynomial $x+2$.
Solution : Let $p(x)=x+2$.
Then $p(2)=2+2=4, p(-2)=-2+2=0$
Therefore, -2 is a zero of the polynomial $x+2$, but 2 is not.
Example 4 : Find a zero of the polynomial $p(x)=2 x+1$.
Solution : Finding a zero of $p(x)$, is the same as solving the equation
$$ p(x)=0 $$
Now,
$$ 2 x+1=0 \text { gives us } x=-\frac{1}{2} $$
So, $-\frac{1}{2}$ is a zero of the polynomial $2 x+1$.
Now, if $p(x)=a x+b, a \neq 0$, is a linear polynomial, how can we find a zero of $p(x)$ ? Example 4 may have given you some idea. Finding a zero of the polynomial $p(x)$, amounts to solving the polynomial equation $p(x)=0$.
Now, $p(x)=0$ means
$$ \begin{aligned} a x+b & =0, a \neq 0 \\ a x & =-b \\ x & =-\frac{b}{a} . \end{aligned} $$
So,
So, $x=-\frac{b}{a}$ is the only zero of $p(x)$, i.e., a linear polynomial has one and only one zero.
Now we can say that 1 is the zero of $x-1$, and -2 is the zero of $x+2$.
Example 5 : Verify whether 2 and 0 are zeroes of the polynomial $x^{2}-2 x$.
Solution : Let
$p(x)=x^{2}-2 x$
Then $p(2)=2^{2}-4=4-4=0$
and $p(0)=0-0=0$
Hence, 2 and 0 are both zeroes of the polynomial $x^{2}-2 x$.
Let us now list our observations:
(i) A zero of a polynomial need not be 0 .
(ii) 0 may be a zero of a polynomial.
(iii) Every linear polynomial has one and only one zero.
(iv) A polynomial can have more than one zero.
2.4 Factorisation of Polynomials
Let us now look at the situation of Example 10 above more closely. It tells us that since the remainder, $q\left(-\frac{1}{2}\right)=0,(2 t+1)$ is a factor of $q(t)$, i.e., $q(t)=(2 t+1) g(t)$ for some polynomial $g(t)$. This is a particular case of the following theorem.
Factor Theorem : If $p(x)$ is a polynomial of degree $n \geq 1$ and $a$ is any real number, then (i) $x-a$ is a factor of $p(x)$, if $p(a)=0$, and (ii) $p(a)=0$, if $x-a$ is a factor of $p(x)$.
Proof: By the Remainder Theorem, $p(x)=(x-a) q(x)+p(a)$.
(i) If $p(a)=0$, then $p(x)=(x-a) q(x)$, which shows that $x-a$ is a factor of $p(x)$.
(ii) Since $x-a$ is a factor of $p(x), p(x)=(x-a) g(x)$ for same polynomial $g(x)$. In this case, $p(a)=(a-a) g(a)=0$.
Example 6 : Examine whether $x+2$ is a factor of $x^{3}+3 x^{2}+5 x+6$ and of $2 x+4$.
Solution : The zero of $x+2$ is -2 . Let $p(x)=x^{3}+3 x^{2}+5 x+6$ and $s(x)=2 x+4$ Then,
$$ \begin{aligned} p(-2) & =(-2)^{3}+3(-2)^{2}+5(-2)+6 \\ & =-8+12-10+6 \\ & =0 \end{aligned} $$
So, by the Factor Theorem, $x+2$ is a factor of $x^{3}+3 x^{2}+5 x+6$.
Again,
$$ s(-2)=2(-2)+4=0 $$
So, $x+2$ is a factor of $2 x+4$. In fact, you can check this without applying the Factor Theorem, since $2 x+4=2(x+2)$.
Example 7 : Find the value of $k$, if $x-1$ is a factor of $4 x^{3}+3 x^{2}-4 x+k$.
Solution : As $x-1$ is a factor of $p(x)=4 x^{3}+3 x^{2}-4 x+k, p(1)=0$
Now,
$$ \begin{aligned} & p(1)=0 \text { होगा। } \\ & p(1)=4(1)^{3}+3(1)^{2}-4(1)+k \end{aligned} $$
So,
$$ \begin{aligned} 4+3-4+k & =0 \\ k & =-3 \end{aligned} $$
We will now use the Factor Theorem to factorise some polynomials of degree 2 and 3. You are already familiar with the factorisation of a quadratic polynomial like $x^{2}+l x+m$. You had factorised it by splitting the middle term $l x$ as $a x+b x$ so that $a b=m$. Then $x^{2}+l x+m=(x+a)(x+b)$. We shall now try to factorise quadratic polynomials of the type $a x^{2}+b x+c$, where $a \neq 0$ and $a, b, c$ are constants.
Factorisation of the polynomial $a x^{2}+b x+c$ by splitting the middle term is as follows:
Let its factors be $(p x+q)$ and $(r x+s)$. Then $\frac{3 x^{2}}{x}=3 x=$ first term of quotient
$a x^{2}+b x+c=(p x+q)(r x+s)=p r x^{2}+(p s+q r) x+q s$
Comparing the coefficients of $x^{2}$, we get $a=p r$.
Similarly, comparing the coefficients of $x$, we get $b=p s+q r$.
And, on comparing the constant terms, we get $c=q s$.
This shows us that $b$ is the sum of two numbers $p s$ and $q r$, whose product is $(p s)(q r)=(p r)(q s)=a c$.
Therefore, to factorise $a x^{2}+b x+c$, we have to write $b$ as the sum of two numbers whose product is $a c$. This will be clear from Example 13.
Example 8 : Factorise $6 x^{2}+17 x+5$ by splitting the middle term, and by using the Factor Theorem.
Solution 1 : (By splitting method) : If we can find two numbers $p$ and $q$ such that $p+q=17$ and $p q=6 \times 5=30$, then we can get the factors.
So, let us look for the pairs of factors of 30 . Some are 1 and 30,2 and 15, 3 and 10,5 and 6 . Of these pairs, 2 and 15 will give us $p+q=17$.
So,
$$ \begin{aligned} 6 x^{2}+17 x+5 & =6 x^{2}+(2+15) x+5 \\ & =6 x^{2}+2 x+15 x+5 \\ & =2 x(3 x+1)+5(3 x+1) \\ & =(3 x+1)(2 x+5) \end{aligned} $$
Solution 2 : (Using the Factor Theorem)
$6 x^{2}+17 x+5=6\left(x^{2}+\frac{17}{6} x+\frac{5}{6}\right)=6 p(x)$, say. If $a$ and $b$ are the zeroes of $p(x)$, then $6 x^{2}+17 x+5=6(x-a)(x-b)$. So, $a b=\frac{5}{6} \cdot$
Let us look at some possibilities for $a$ and b.
They could be $\pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{5}{3}, \pm \frac{5}{2}, \pm 1$.
Now, $p\left(\frac{1}{2}\right)=\frac{1}{4}+\frac{17}{6}\left(\frac{1}{2}\right)+\frac{5}{6} \neq 0$.
But $p\left(\frac{-1}{3}\right)=0$.
So, $\left(x+\frac{1}{3}\right)$ is a factor of $p(x)$.
Similarly, by trial, you can find that $\left(x+\frac{5}{2}\right)$ is a factor of $p(x)$.
Therefore,
$$ \begin{aligned} 6 x^{2}+17 x+5 & =6\left(x+\frac{1}{3}\right)\left(x+\frac{5}{2}\right) \\ & =6\left(\frac{3 x+1}{3}\right)\left(\frac{2 x+5}{2}\right) \\ & =(3 x+1)(2 x+5) \end{aligned} $$
For the example above, the use of the splitting method appears more efficient. However, let us consider another example.
Example 9 : Factorise $y^{2}-5 y+6$ by using the Factor Theorem.
Solution : Let $p(y)=y^{2}-5 y+6$. Now, if $p(y)=(y-a)(y-b)$, you know that the constant term will be $a b$. So, $a b=6$. So, to look for the factors of $p(y)$, we look at the factors of 6 .
The factors of 6 are 1,2 and 3.
Now, $p(2)=2^{2}-(5 \times 2)+6=0$
So, $y-2$ is a factor of $p(y)$.
Also, $p(3)=3^{2}-(5 \times 3)+6=0$
So, $y-3$ is also a factor of $y^{2}-5 y+6$.
Therefore,$y^{2}-5 y+6=(y-2)(y-3)$
Note that $y^{2}-5 y+6$ can also be factorised by splitting the middle term $-5 y$.
Now, let us consider factorising cubic polynomials. Here, the splitting method will not be appropriate to start with. We need to find at least one factor first, as you will see in the following example.
Example 10 : Factorise $x^{3}-23 x^{2}+142 x-120$.
Solution : Let $p(x)=x^{3}-23 x^{2}+142 x-120$
We shall now look for all the factors of -120 . Some of these are
$\pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 8, \pm 10, \pm 12, \pm 15, \pm 20, \pm 24, \pm 30, \pm 60$.
By trial, we find that $p(1)=0$. So $x-1$ is a factor of $p(x)$.
Now we see that $x^{3}-23 x^{2}+142 x-120=x^{3}-x^{2}-22 x^{2}+22 x+120 x-120$
$$ \begin{aligned} & =x^{2}(x-1)-22 x(x-1)+120(x-1) \quad(\text { Why? }) \\ & =(x-1)\left(x^{2}-22 x+120\right) \quad[\text { Taking }(x-1) \text { common }] \end{aligned} $$
We could have also got this by dividing $p(x)$ by $x-1$.
Now $x^{2}-22 x+120$ can be factorised either by splitting the middle term or by using the Factor theorem. By splitting the middle term, we have:
$$ \begin{aligned} x^{2}-22 x+120 & =x^{2}-12 x-10 x+120 \\ & =x(x-12)-10(x-12) \\ & =(x-12)(x-10) \end{aligned} $$
So, $\quad x^{3}-23 x^{2}-142 x-120=(x-1)(x-10)(x-12)$
2.5 Algebraic Identities
From your earlier classes, you may recall that an algebraic identity is an algebraic equation that is true for all values of the variables occurring in it. You have studied the following algebraic identities in earlier classes:
Identity I : $(x+y)^{2}=x^{2}+2 x y+y^{2}$
Identity III : $(x-y)^{2}=x^{2}-2 x y+y^{2}$
Identity III : $x^{2}-y^{2}=(x+y)(x-y)$
Identity IV : $(x+a)(x+b)=x^{2}+(a+b) x+a b$
You must have also used some of these algebraic identities to factorise the algebraic expressions. You can also see their utility in computations.
Example 11 : Find the following products using appropriate identities:
(i) $(x+3)(x+3)$ $\quad$ (ii) $(x-3)(x+5)$
Solution : (i) Here we can use Identity I : $(x+y)^{2}=x^{2}+2 x y+y^{2}$. Putting $y=3$ in it, we get
$$ \begin{aligned} (x+3)(x+3) & =(x+3)^{2}=x^{2}+2(x)(3)+(3)^{2} \\ & =x^{2}+6 x+9 \end{aligned} $$
(ii) Using Identity IV above, i.e., $(x+a)(x+b)=x^{2}+(a+b) x+a b$, we have
$$ \begin{aligned} (x-3)(x+5) & =x^{2}+(-3+5) x+(-3)(5) \\ & =x^{2}+2 x-15 \end{aligned} $$
Example 12 : Evaluate $105 \times 106$ without multiplying directly.
Solution :
$$ \begin{aligned} 105 \times 106 & =(100+5) \times(100+6) \\ & =(100)^{2}+(5+6)(100)+(5 \times 6), \text { using Identity IV } \\ & =10000+1100+30 \\ & =11130 \end{aligned} $$
You have seen some uses of the identities listed above in finding the product of some given expressions. These identities are useful in factorisation of algebraic expressions also, as you can see in the following examples.
Example 13 : Factorise:
(i) $49 a^{2}+70 a b+25 b^{2}$
(ii) $\frac{25}{4} x^{2}-\frac{y^{2}}{9}$
Solution : (i) Here you can see that
$$49 a^{2}=(7 a)^{2}, 25 b^{2}=(5 b)^{2}, 70 a b=2(7 a)(5 b)$$
Comparing the given expression with $x^{2}+2 x y+y^{2}$, we observe that $x=7 a$ and $y=5 b$.
Using Identity I, we get $$ 49 a^{2}+70 a b+25 b^{2}=(7 a+5 b)^{2}=(7 a+5 b)(7 a+5 b) $$ (ii) We have $\frac{25}{4} x^{2}-\frac{y^{2}}{9}=\left(\frac{5}{2} x\right)^{2}-\left(\frac{y}{3}\right)^{2}$
Now comparing it with Identity III, we get
$$ \begin{aligned} \frac{25}{4} x^{2}-\frac{y^{2}}{9} & =\left(\frac{5}{2} x\right)^{2}-\left(\frac{y}{3}\right)^{2} \\ & =\left(\frac{5}{2} x+\frac{y}{3}\right)\left(\frac{5}{2} x-\frac{y}{3}\right) \end{aligned} $$
So far, all our identities involved products of binomials. Let us now extend the Identity I to a trinomial $x+y+z$. We shall compute $(x+y+z)^{2}$ by using Identity I.
Let $x+y=t$. Then,
$$ \begin{aligned} (x+y+z)^{2} & =(t+z)^{2} \\ & =t^{2}+2 t z+t^{2} \quad \text { (Using Identity I) } \\ & =(x+y)^{2}+2(x+y) z+z^{2} \quad(t \text { (Substituting the value of t) } \\ & =x^{2}+2 x y+y^{2}+2 x z+2 y z+z^{2} \quad \text { (Using Identity I) } \\ & =x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x \text { (Rearranging the terms) } \end{aligned} $$
So, we get the following identity:
Identity V : $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
Remark : We call the right hand side expression the expanded form of the left hand side expression. Note that the expansion of $(x+y+z)^{2}$ consists of three square terms and three product terms.
$$ \begin{aligned} & =x^{2}+2 x y+y^{2}+2 x z+2 y z+z^{2} \\ & =x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x \end{aligned} $$
Example 14 : Write $(3 a+4 b+5 c)^{2}$ in expanded form.
Solution : Comparing the given expression with $(x+y+z)^{2}$, we find that
$$ x=3 a, y=4 b \text { and } z=5 c \text {. } $$
Therefore, using Identity $\mathrm{V}$, we have
$$ \begin{aligned} (3 a+4 b+5 c)^{2} & =(3 a)^{2}+(4 b)^{2}+(5 c)^{2}+2(3 a)(4 b)+2(4 b)(5 c)+2(5 c)(3 a) \\ & =9 a^{2}+16 b^{2}+25 c^{2}+24 a b+40 b c+30 a c \end{aligned} $$
Example 15 : Expand $(4 a-2 b-3 c)^{2}$.
Solution : Using Identity V, we have
$$ \begin{aligned} (4 a-2 b-3 c)^{2} & =[4 a+(-2 b)+(-3 c)]^{2} \\ & =(4 a)^{2}+(-2 b)^{2}+(-3 c)^{2}+2(4 a)(-2 b)+2(-2 b)(-3 c)+2(-3 c)(4 a) \\ & =16 a^{2}+4 b^{2}+9 c^{2}-16 a b+12 b c-24 a c \end{aligned} $$
Example 16 : Factorise $4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z$.
Solution : We have $4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z=(2 x)^{2}+(-y)^{2}+(z)^{2}+2(2 x)(-y)$
$$ +2(-y)(z)+2(2 x)(z) $$
$$ \begin{aligned} & =[2 x+(-y)+z]^{2} \quad \text { (Using Identity V) } \\ & =(2 x-y+z)^{2}=(2 x-y+z)(2 x-y+z) \end{aligned} $$
So far, we have dealt with identities involving second degree terms. Now let us extend Identity I to compute $(x+y)^{3}$. We have:
$$ \begin{aligned} (x+y)^{3} & =(x+y)(x+y)^{2} \\ & =(x+y)\left(x^{2}+2 x y+y^{2}\right) \\ & =x\left(x^{2}+2 x y+y^{2}\right)+y\left(x^{2}+2 x y+y^{2}\right) \\ & =x^{3}+2 x^{2} y+x y^{2}+x^{2} y+2 x y^{2}+y^{3} \\ & =x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\ & =x^{3}+y^{3}+3 x y(x+y) \end{aligned} $$
So, we get the following identity:
Identity VI : $\quad(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$
Also, by replacing $y$ by $-y$ in the Identity VI, we get
Identity VII : $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$ $=x^{3}-3 x^{2} y+3 x y^{2}-y^{3}$
Example 17 : Write the following cubes in the expanded form:
(i) $(3 a+4 b)^{3}$ $\quad$ (ii) $(5 p-3 q)^{3}$
Solution : (i) Comparing the given expression with $(x+y)^{3}$, we find that
$x=3 a \text { and } y=4 b \text {. }$
So, using Identity VI, we have:
$$ \begin{aligned} (3 a+4 b)^{3} & =(3 a)^{3}+(4 b)^{3}+3(3 a)(4 b)(3 a+4 b) \\ & =27 a^{3}+64 b^{3}+108 a^{2} b+144 a b^{2} \end{aligned} $$
(ii) Comparing the given expression with $(x-y)^{3}$, we find that
$$x=5 p, y=3 q .$$
So, using Identity VII, we have:
$$ \begin{aligned} (5 p-3 q)^{3} & =(5 p)^{3}-(3 q)^{3}-3(5 p)(3 q)(5 p-3 q) \\ & =125 p^{3}-27 q^{3}-225 p^{2} q+135 p q^{2} \end{aligned} $$
Example 18 : Evaluate each of the following using suitable identities:
(i) $(104)^{3}$ (ii) $(999)^{3}$
Solution: (i) We have
$$ \begin{aligned} (104)^{3} & =(100+4)^{3} \\ & =(100)^{3}+(4)^{3}+3(100)(4)(100+4) \\ & \quad(\text { Using Identity VI) } \\ & =1000000+64+124800 \\ & =1124864 \end{aligned} $$
(ii) We have
$$ \begin{aligned} (999)^{3} & =(1000-1)^{3} \\ & =(1000)^{3}-(1)^{3}-3(1000)(1)(1000-1) \\ & \quad\text { (Using Identity VII) } \\ & =1000000000-1-2997000 \\ & =997002999 \end{aligned} $$
Example 19 : Factorise $8 x^{3}+27 y^{3}+36 x^{2} y+54 x y^{2}$
Solution : The given expression can be written as
$$ \begin{aligned} (2 x)^{3}+(3 y)^{3} & +3\left(4 x^{2}\right)(3 y)+3(2 x)\left(9 y^{2}\right) \\ = & (2 x)^{3}+(3 y)^{3}+3(2 x)^{2}(3 y)+3(2 x)(3 y)^{2} \\ = & (2 x+3 y)^{3} \quad(\text { Using Identity VI) } \\ = & (2 x+3 y)(2 x+3 y)(2 x+3 y) \\ \end{aligned} $$
Now consider $(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$ On expanding, we get the product as
$$ \begin{aligned} & x\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)+y\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right) \\ & +z\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)=x^{3}+x y^{2}+x z^{2}-x^{2} y-x y z-z x^{2}+x^{2} y \\ & +y^{3}+y z^{2}-x y^{2}-y^{2} z-x y z+x^{2} z+y^{2} z+z^{3}-x y z-y z^{2}-x z^{2} \\ & =x^{3}+y^{3}+z^{3}-3 x y z \quad \text { (On simplification) } \end{aligned} $$
So, we obtain the following identity:
Identity VIII : $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
Example 20 : Factorise : $8 x^{3}+y^{3}+27 z^{3}-18 x y z$
Solution : Here, we have
$$ \begin{aligned} 8 x^{3}+y^{3}+27 z^{3} & -18 x y z \\ & =(2 x)^{3}+y^{3}+(3 z)^{3}-3(2 x)(y)(3 z) \\ & =(2 x+y+3 z)\left[(2 x)^{2}+y^{2}+(3 z)^{2}-(2 x)(y)-(y)(3 z)-(2 x)(3 z)\right] \\ & =(2 x+y+3 z)\left(4 x^{2}+y^{2}+9 z^{2}-2 x y-3 y z-6 x z\right)\\ \end{aligned} $$
2.6 Summary
In this chapter, you have studied the following points:
1. A polynomial $p(x)$ in one variable $x$ is an algebraic expression in $x$ of the form $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}$, where $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are constants and $a_{n} \neq 0$.
$a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are respectively the coefficients of $x^{0}, x, x^{2}, \ldots, x^{n}$, and $n$ is called the degree of the polynomial. Each of $a_{n} x^{n}, a_{n-1} x^{n-1}, \ldots, a_{0}$, with $a_{n} \neq 0$, is called a term of the polynomial $p(x)$.
2. A polynomial of one term is called a monomial.
3. A polynomial of two terms is called a binomial.
4. A polynomial of three terms is called a trinomial.
5. A polynomial of degree one is called a linear polynomial.
6. A polynomial of degree two is called a quadratic polynomial.
7. A polynomial of degree three is called a cubic polynomial.
8. A real number ’ $a$ ’ is a zero of a polynomial $p(x)$ if $p(a)=0$. In this case, $a$ is also called a root of the equation $p(x)=0$.
9. Every linear polynomial in one variable has a unique zero, a non-zero constant polynomial has no zero, and every real number is a zero of the zero polynomial.
10. Factor Theorem : $x-a$ is a factor of the polynomial $p(x)$, if $p(a)=0$. Also, if $x-a$ is a factor of $p(x)$, then $p(a)=0$.
11. $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
12. $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$
13. $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
14. $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)(x^{2}+y^{2}+z^{2}-x y-y z-z x)$
2.1 भूमिका
पिछली कक्षाओं में, आप बीजीय व्यंजकों और उनके जोड़, घटाना, गुणा और भाग का अध्ययन कर चुके हैं। वहाँ आप यह भी अध्ययन कर चुके हैं कि किस प्रकार कुछ बीजीय व्यंजकों का गुणनखंडन किया जाता है। आप निम्न बीजीय सर्वसमिकाओं और उनका गुणनखंडन में उपयोग का पुनःस्मरण कर सकते हैं:
और,
$$ \begin{aligned} & (x+y)^{2}=x^{2}+2 x y+y^{2} \\ & (x-y)^{2}=x^{2}-2 x y+y^{2} \\ & x^{2}-y^{2}=(x+y)(x-y) \end{aligned} $$
इस अध्याय में, सबसे पहले एक विशेष प्रकार के बीजीय व्यंजक का, जिसे बहुपद (polynomial) कहा जाता है, और उससे संबद्ध शब्दावली (terminology) का अध्ययन करेंगे। यहाँ हम शेषफल प्रमेय (Remainder Theorem), गुणनखंड प्रमेय (Factor Theorem) और बहुपदों के गुणनखंडन में इनके उपयोग का भी अध्ययन करेंगे। इनके अतिरिक्त, हम कुछ और बीजीय सर्वसमिकाओं का और कुछ दिए हुए व्यंजकों का गुणनखंडन करने तथा मान निकालने के बारे में भी अध्ययन करेंगे।
2.2 एक चर वाले बहुपद
सबसे पहले हम याद करेंगे कि चर को एक प्रतीक से प्रकट किया जाता है जो कोई भी वास्तविक मान धारण कर सकता है। हम चरों को अक्षरों $x, y, z$, आदि से प्रकट करते हैं। ध्यान रहे कि $2 x, 3 x,-x,-\frac{1}{2} x$ बीजीय व्यंजक हैं। ये सभी व्यंजक, (एक अचर) $\times x$ के रूप के हैं। अब मान लीजिए कि हम एक ऐसा व्यंजक लिखना चाहते हैं जो कि (एक अचर) $\times$ (एक चर) है और हम यह नहीं जानते कि अचर क्या है। ऐसी स्थितियों में, हम अचर को $a, b, c$ आदि से प्रकट करते हैं। अतः व्यंजक, मान लीजिए, $a x$ होगा।
फिर भी, अचर को प्रकट करने वाले अक्षर और चर को प्रकट करने वाले अक्षर में अंतर होता है। एक विशेष स्थिति में अचरों के मान सदा समान बने रहते हैं। अर्थात् एक दी हुई समस्या में अचर के मान में कोई परिवर्तन नहीं होता। परन्तु चर के मान में परिवर्तन होता रहता है।
अब 3 एकक की भुजा वाला एक वर्ग लीजिए (देखिए आकृति 2.1)। इसका परिमाप (perimeter) क्या है? आप जानते हैं कि वर्ग का परिमाप चारों भुजाओं की लंबाइयों का जोड़ होता है। यहाँ प्रत्येक भुजा की लंबाई 3 एकक है। अतः इसका परिमाप $4 \times 3$ अर्थात् 12 एकक है। यदि वर्ग की प्रत्येक भुजा 10 एकक हो, तो परिमाप क्या होगा? परिमाप $4 \times 10$ अर्थात् 40 एकक होगा। यदि प्रत्येक भुजा की लंबाई $x$ एकक हो (देखिए आकृति
आकृति 2.1
आकृति 2.2 , इसी प्रकार $3 y^{2}+5 y$, चर $y$ में एक बहुपद है और $t^{2}+4$, चर $t$ में एक बहुपद है।
बहुपद $x^{2}+2 x$ में व्यंजक $x^{2}$ और $2 x$ बहुपद के पद (terms) कहे जाते हैं। इसी प्रकार, बहुपद $3 y^{2}+5 y+7$ में तीन पद अर्थात् $3 y^{2}, 5 y$ और 7 हैं। क्या आप बहुपद $-x^{3}+4 x^{2}+7 x-2$ के पद लिख सकते हैं? इस बहुपद के चार पद अर्थात् $-x^{3}, 4 x^{2}, 7 x$ और -2 हैं।
बहुपद के प्रत्येक पद का एक गुणांक (coefficient) होता है। अतः, $-x^{3}+4 x^{2}+7 x-2$ में $x^{3}$ का गुणांक -1 है, $x^{2}$ का गुणांक 4 है, $x$ का गुणांक 7 है और $x^{0}$ का गुणांक -2 है (स्मरण रहे कि $x^{0}=1$ है)। क्या आप जानते हैं कि $x^{2}-x+7$ में $x$ का गुणांक क्या है? $x$ का गुणांक -1 है।
ध्यान रहे कि 2 भी एक बहुपद है। वस्तुतः $2,-5,7$ आदि अचर बहुपदों (constant polynomials) के उदाहरण हैं। अचर बहुपद 0 को शून्य बहुपद कहा जाता है। साथ ही, जैसा कि उच्च कक्षाओं में आप देखेंगे, सभी बहुपदों के संग्रह में शून्य बहुपद एक अति महत्वपूर्ण भूमिका निभाता है।
अब आप $x+\frac{1}{x}, \sqrt{x}+3$ और $\sqrt[3]{y}+y^{2}$ जैसे बीजीय व्यंजक लीजिए। क्या आप जानते हैं कि आप $x+\frac{1}{x}=x+x^{-1}$ लिख सकते हैं? यहाँ दूसरे पद अर्थात् $x^{-1}$ का घातांक -1 है जो एक पूर्ण संख्या नहीं है। अतः यह बीजीय व्यंजक एक बहुपद नहीं है।
साथ ही, $\sqrt{x}+3$ को $x^{\frac{1}{2}}+3$ के रूप में लिखा जा सकता है। यहाँ $x$ का घातांक $\frac{1}{2}$ है, जो कि एक पूर्ण संख्या नहीं है। तो क्या आप यह समझते हैं कि $\sqrt{x}+3$ एक बहुपद है? नहीं, यह एक बहुपद नहीं है। क्या $\sqrt[3]{y}+y^{2}$ एक बहुपद है? यह भी एक बहुपद नहीं है। (क्यों?)
यदि एक बहुपद में चर $x$ हो, तो हम बहुपद को $p(x)$ या $q(x)$ या $r(x)$, आदि से प्रकट कर सकते हैं, उदाहरण के लिए, हम यह लिख सकते हैं:
$$ \begin{aligned} & p(x)=2 x^{2}+5 x-3 \\ & q(x)=x^{3}-1 \\ & r(y)=y^{3}+y+1 \\ & s(u)=2-u-u^{2}+6 u^{5} \end{aligned} $$
बहुपद में परिमित संख्या में कितने भी पद हो सकते हैं। उदाहरण के लिए, $x^{150}+x^{149}+\ldots+x^{2}+x+1$ एक बहुपद है, जिसमें 151 पद हैं।
अब बहुपद $2 x, 2,5 x^{3},-5 x^{2}, y$ और $u^{4}$ लीजिए। क्या आप देखते हैं कि इन बहुपदों में से प्रत्येक बहुपद का केवल एक पद है। केवल एक पद वाले बहुपद को एकपदी (monomial) कहा जाता है। (अंग्रेजी शब्द ‘mono’ का अर्थ है “एक")।
अब नीचे दिए गए बहुपदों में से प्रत्येक पर ध्यान दीजिए:
$p(x)=x+1, \quad q(x)=x^{2}-x,$ $r(y)=y^{30}+1, \quad t(u)=u^{43}-u^{2}$
यहाँ प्रत्येक बहुपद में कितने पद हैं? इनमें से प्रत्येक बहुपद में केवल दो पद हैं। केवल दो पदों वाले बहुपदों को द्विपद (binomials) कहा जाता है। (अंग्रेजी शब्द ‘bi’ का अर्थ है “दो")।
इसी प्रकार, केवल तीन पदों वाले बहुपदों को त्रिपद (trinomials) कहा जाता है। (अंग्रेजी शब्द ’tri’ का अर्थ है “तीन")। त्रिपद के कुछ उदाहरण ये हैं:
$$ \begin{array}{ll} p(x)=x+x^{2}+\pi, & q(x)=\sqrt{2}+x-x^{2}, \\ r(u)=u+u^{2}-2, & t(y)=y^{4}+y+5 \end{array} $$
अब बहुपद $p(x)=3 x^{7}-4 x^{6}+x+9$ को देखिए। इसमें $x$ की अधिकतम घात वाला पद कौन-सा है? यह पद $3 x^{7}$ है। इस पद में $x$ का घातांक 7 है। इसी प्रकार, बहुपद $q(y)=5 y^{6}-4 y^{2}-6$ में $y$ की अधिकतम घात वाला पद $5 y^{6}$ है और इस पद में $y$ का घातांक 6 है। एक बहुपद में चर की अधिकतम घात वाले पद के घातांक को बहुपद की घात (degree of the polynomial) कहा जाता है। अत: बहुपद $3 x^{7}-4 x^{6}+x+9$ की घात 7 है और बहुपद $5 y^{6}-4 y^{2}-6$ की घात 6 है। एक शून्येतर अचर बहुपद की घात शून्य होती है।
उदाहरण 1 : नीचे दिए गए प्रत्येक बहुपद की घात ज्ञात कीजिए:
(i) $x^{5}-x^{4}+3$
(ii) $2-y^{2}-y^{3}+2 y^{8}$
(iii) 2
हल : (i) चर का अधिकतम घातांक 5 है। अतः बहुपद की घात 5 है।
(ii) चर का अधिकतम घातांक 8 है। अतः बहुपद की घात 8 है।
(iii) यहाँ केवल एक पद 2 है जिसे $2 x^{0}$ के रूप में लिखा जा सकता है। अतः $x$ का घातांक 0 है। इसलिए, बहुपद की घात 0 है।
अब बहुपदों $p(x)=4 x+5, q(y)=2 y, r(t)=t+\sqrt{2}$ और $s(u)=3-u$ को लीजिए। क्या इनमें कोई सर्वनिष्ठ तथ्य देखने को मिलता है? इनमें प्रत्येक बहुपद की घात एक है। एक घात वाले बहुपद को रैखिक बहुपद (linear polynomial) कहा जाता है। एक चर में कुछ और रैखिक बहुपद $2 x-1, \sqrt{2} y+1$ और $2-u$ हैं। अब क्या $x$ में तीन पदों वाला एक रैखिक बहुपद हम ज्ञात कर सकते हैं? हम एक ऐसा रैखिक बहुपद ज्ञात नहीं कर सकते, क्योंकि $x$ में एक रैखिक बहुपद में अधिक से अधिक दो पद हो सकते हैं। अतः $x$ में कोई भी रैखिक बहुपद $a x+b$ के रूप का होगा, जहाँ $a$ और $b$ अचर हैं और $a \neq 0$ है। (क्यों?) इसी प्रकार $a y+b, y$ में एक रैखिक बहुपद है।
अब आप निम्नलिखित बहुपदों को लीजिए:
$$ 2 x^{2}+5,5 x^{2}+3 x+\pi, x^{2} \text { और } x^{2}+\frac{2}{5} x $$
क्या आप इस बात से सहमत हैं कि ऊपर दिए गए सभी बहुपद घात 2 वाले हैं? घात 2 वाले बहुपद को द्विघाती या द्विघात बहुपद (quadratic polynomial) कहा जाता है। द्विघाती बहुपद के कुछ उदाहरण $5-y^{2}, 4 y+5 y^{2}$ और $6-y-y^{2}$ हैं। क्या आप एक चर में चार अलग-अलग पदों वाले एक द्विघाती बहुपद को लिख सकते हैं? आप देखेंगे कि एक चर में एक द्विघाती बहुपद के अधिक से अधिक 3 पद होंगे। यदि आप कुछ और द्विघाती पद बना सकें तो आप पाएँगे कि $x$ में कोई भी द्विघाती बहुपद $a x^{2}+b x+c$ के रूप का होगा, जहाँ $a \neq 0$ और $a, b, c$ अचर हैं। इसी प्रकार, $y$ में द्विघाती बहुपद $a y^{2}+b y+c$ के रूप का होगा, जबकि $a \neq 0$ और $a, b, c$ अचर हों।
तीन घात वाले बहुपद को त्रिघाती बहुपद (cubic polynomial) कहा जाता है। $x$ में एक त्रिघाती बहुपद के वुछ उदाहरण $4 x^{3}, 2 x^{3}+1,5 x^{3}+x^{2}, 6 x^{3}-x, 6-x^{3}$ और $2 x^{3}+4 x^{2}+6 x+7$ हैं। आपके विचार से एक चर में त्रिघाती बहुपद में कितने पद हो सकते हैं? अधिक से अधिक 4 पद हो सकते हैं। इन्हें $a x^{3}+b x^{2}+c x+d$ के रूप में लिखा जा सकता है, जहाँ $a \neq 0$ और $a, b, c$ और $d$ अचर हैं।
अभी आपने देखा है कि घात 1 , घात 2 या घात 3 वाले बहुपद देखने में लगभग समान ही लगते हैं, तो क्या आप एक चर में, घात $n$ वाला एक बहुपद लिख सकते हैं, जहाँ $n$ कोई प्राकृत संख्या है? एक चर $x$ में, घात $n$ वाला बहुपद निम्न रूप का एक व्यंजक होता है:
$$ a _{n} x^{n}+a _{n-1} x^{n-1}+\ldots+a _{1} x+a _{0} $$
जहाँ $a _{0}, a _{1}, a _{2}, \ldots, a _{n}$ अचर हैं और $a _{n} \neq 0$ है।
विशेष रूप में, यदि $a _{0}=a _{1}=a _{2}=a _{3}=\ldots=a _{n}=0$ हो (सभी अचर शून्य हों), तो हमें शून्य बहुपद (zero polynomial) प्राप्त होता है, जिसे 0 से प्रकट किया जाता है। शून्य बहुपद की घात क्या होती है? शून्य बहुपद की घात परिभाषित नहीं है।
अभी तक हमने केवल एक चर वाले बहुपदों के बारे में अध्ययन किया है। हम एक से अधिक चरों वाले बहुपद भी प्राप्त कर सकते हैं। उदाहरण के लिए, $x^{2}+y^{2}+x y z$ (जहाँ चर $x, y$ और $z$ हैं) तीन चरों में एक बहुपद है। इसी प्रकार, $p^{2}+q^{10}+r$ (जहाँ चर $p$, $q$ और $r$ हैं), $u^{3}+v^{2}$ (जहाँ चर $u$ और $v$ हैं) क्रमशः तीन चरों और दो चरों में (वाले) बहुपद हैं। इस प्रकार के बहुपदों का विस्तार से अध्ययन हम बाद में करेंगे।
प्रश्नावली 2.1
1. निम्नलिखित व्यंजकों में कौन-कौन एक चर में बहुपद हैं और कौन-कौन नहीं हैं? कारण के साथ अपने उत्तर दीजिए :
(i) $4 x^{2}-3 x+7$
(ii) $y^{2}+\sqrt{2}$
(iii) $3 \sqrt{t}+t \sqrt{2}$
(iv) $y+\frac{2}{y}$
(v) $x^{10}+y^{3}+t^{50}$
Show Answer
Missing2. निम्नलिखित में से प्रत्येक में $x^{2}$ का गुणांक लिखिए:
(i) $2+x^{2}+x$
(ii) $2-x^{2}+x^{3}$
(iii) $\frac{\pi}{2} x^{2}+x$
(iv) $\sqrt{2} x-1$
Show Answer
Missing3. 35 घात के द्विपद का और 100 घात के एकपदी का एक-एक उदाहरण दीजिए।
Show Answer
Missing4. निम्नलिखित बहुपदों में से प्रत्येक बहुपद की घात लिखिए :
(i) $5 x^{3}+4 x^{2}+7 x$
(ii) $4-y^{2}$
(iii) $5 t-\sqrt{7}$
(iv) 3
Show Answer
Missing5. बताइए कि निम्नलिखित बहुपदों में कौन-कौन बहुपद रैखिक हैं, कौन-कौन द्विघाती हैं और कौन-कौन त्रिघाती हैं:
(i) $x^{2}+x$ $\quad$
(ii) $x-x^{3}$ $\quad$
(iii) $y+y^{2}+4$ $\quad$
(iv) $1+x$ $\quad$
(v) $3 t$ $\quad$
(vi) $r^{2}$ $\quad$
(vii) $7 x^{3}$
Show Answer
Missing2.3 बहुपद के शून्यक
निम्नलिखित बहुपद लीजिए: $p(x)=5 x^{3}-2 x^{2}+3 x-2$
यदि $p(x)$ में सर्वत्र $x$ के स्थान पर 1 प्रतिस्थापित करें, तो हमें यह प्राप्त होता है:
$$ \begin{aligned} p(1) & =5 \times(1)^{3}-2 \times(1)^{2}+3 \times(1)-2 \\ & =5-2+3-2 \\ & =4 \end{aligned} $$
अतः, हम यह कह सकते हैं कि $x=1$ पर $p(x)$ का मान 4 है।
इसी प्रकार,
$\quad p(0)=5(0)^{3}-2(0)^{2}+3(0)-2$
$$ =-2 $$
क्या आप $p(-1)$ ज्ञात कर सकते हैं?
उदाहरण 2 : चरों के दिए गए मान पर नीचे दिए गए प्रत्येक बहुपद का मान ज्ञात कीजिए:
(i) $x=1$ पर $p(x)=5 x^{2}-3 x+7$ का मान
(ii) $y=2$ पर $q(y)=3 y^{3}-4 y+\sqrt{11}$ का मान
(iii) $t=a$ पर $p(t)=4 t^{4}+5 t^{3}-t^{2}+6$ का मान
हल : (i) $p(x)=5 x^{2}-3 x+7$
$x=1$ पर बहुपद $p(x)$ का मान यह होता है:
$$ \begin{aligned} p(1) & =5(1)^{2}-3(1)+7 \\ & =5-3+7=9 \end{aligned} $$
(ii) $q(y)=3 y^{3}-4 y+\sqrt{11}$
$y=2$ पर बहुपद $q(y)$ का मान यह होता है:
$$ q(2)=3(2)^{3}-4(2)+\sqrt{11}=24-8+\sqrt{11}=16+\sqrt{11} $$
(iii) $p(t)=4 t^{4}+5 t^{3}-t^{2}+6$
$t=a$ पर बहुपद $p(t)$ का मान यह होता है:
$$ p(a)=4 a^{4}+5 a^{3}-a^{2}+6 $$
अब बहुपद $p(x)=x-1$ लीजिए।
$p(1)$ क्या है? ध्यान दीजिए कि $p(1)=1-1=0$ है।
क्योंकि $p(1)=0$ है, इसलिए हम यह कहते हैं कि 1 , बहुपद $p(x)$ का एक शून्यक (zero) है।
इसी प्रकार, आप यह देख सकते हैं कि $2, q(x)$ का एक शून्यक है, जहाँ $q(x)=x-2$ है।
व्यापक रूप में, हम यह कहते हैं कि बहुपद $p(x)$ का शून्यक एक ऐसी संख्या $c$ है कि $p(c)=0$ हो।
इस बात की ओर आपने अवश्य ध्यान दिया होगा कि बहुपद $(x-1)$ का शून्यक इस बहुपद को 0 के समीकृत करके प्राप्त किया जाता है। अर्थात् $x-1=0$, जिससे $x=1$ प्राप्त होता है। तब हम कहते हैं कि $p(x)=0$ एक बहुपद समीकरण है और 1 इस बहुपद समीकरण $p(x)=0$ का एक मूल है। अतः हम यह कहते हैं कि 1 , बहुपद $x-1$ का शून्यक है या यह बहुपद समीकरण $x-1=0$ का एक मूल (root) है।
अब अचर बहुपद 5 लीजिए। क्या आप बता सकते हैं कि इसका शून्यक क्या है? इस बहुपद का कोई शून्यक नहीं है, क्योंकि $5 x^{0}$ में $x$ के स्थान पर किसी भी संख्या को प्रतिस्थापित करने पर हमें 5 ही प्राप्त होता है। वस्तुतः, एक शून्येतर अचर बहुपद का कोई शून्यक नहीं होता। अब प्रश्न उठता है कि शून्य बहुपद के शून्यकों के बारे में क्या कहा जाए। परंपरा के अनुसार प्रत्येक वास्तविक संख्या शून्य बहुपद का एक शून्यक होती है।
उदाहरण 3 : जाँच कीजिए कि -2 और 2 बहुपद $x+2$ के शून्यक हैं या नहीं।
हल : मान लीजिए $p(x)=x+2$
तब $p(2)=2+2=4, p(-2)=-2+2=0$
अतः -2 बहुपद $x+2$ का एक शून्यक है, परन्तु 2 बहुपद $x+2$ का शून्यक नहीं है।
उदाहरण 4 : बहुपद $p(x)=2 x+1$ का एक शून्यक ज्ञात कीजिए।
हल : $p(x)$ का शून्यक ज्ञात करना वैसा ही है जैसा कि समीकरण को हल करना।
$$ p(x)=0 $$
अब
$$ 2 x+1=0 \text { से हमें } x=-\frac{1}{2} \text { प्राप्त होता है। } $$
अत: $-\frac{1}{2}$ बहुपद $2 x+1$ का एक शून्यक है।
अब, यदि $p(x)=a x+b, a \neq 0$ एक रैखिक बहुपद हो, तो हम इस $p(x)$ का शून्यक किस प्रकार ज्ञात कर सकते हैं? उदाहरण 4 से आपको इसका कुछ संकेत मिल सकता है। बहुपद $p(x)$ का शून्यक ज्ञात करने का अर्थ है बहुपद समीकरण $p(x)=0$ को हल करना।
अब $p(x)=0$ का अर्थ है
$$ \begin{aligned} a x+b & =0, a \neq 0 \\ a x & =-b \\ x & =-\frac{b}{a} . \end{aligned} $$
अत:
$x=-\frac{b}{a}$ ही केवल $p(x)$ का शून्यक है, अर्थात् रैखिक बहुपद का एक और केवल एक शून्यक होता है।
अब हम यह कह सकते हैं कि $1, x-1$ का केवल एक शून्यक है और $-2, x+2$ का केवल एक शून्यक है।
उदाहरण 5 : सत्यापित कीजिए कि 2 और 0 बहुपद $x^{2}-2 x$ के शून्यक हैं।
हल : मान लीजिए
$p(x)=x^{2}-2 x$
तब $p(2)=2^{2}-4=4-4=0$
और $p(0)=0-0=0$
अतः, 2 और 0 दोनों ही बहुपद $x^{2}-2 x$ के शून्यक हैं।
आइए अब हम अपने प्रेक्षणों की सूची बनाएँ:
1. आवश्यक नहीं है कि बहुपद का शून्यक शून्य ही हो।
2. 0 , बहुपद का एक शून्यक हो सकता है।
3. प्रत्येक रैखिक बहुपद का एक और केवल एक शून्यक होता है।
4. एक बहुपद के एक से अधिक शून्यक हो सकते हैं।
प्रश्नावली 2.2
1. निम्नलिखित पर बहुपद $5 x-4 x^{2}+3$ के मान ज्ञात कीजिए:
(i) $x=0$ $\quad$
(ii) $x=-1$ $\quad$
(iii) $x=2$
Show Answer
Missing2. निम्नलिखित बहुपदों में से प्रत्येक बहुपद के लिए $p(0), p(1)$ और $p(2)$ ज्ञात कीजिए:
(i) $p(y)=y^{2}-y+1$
(ii) $p(t)=2+t+2 t^{2}-t^{3}$
(iii) $p(x)=x^{3}$
(iv) $p(x)=(x-1)(x+1)$
Show Answer
Missing3. सत्यापित कीजिए कि दिखाए गए मान निम्नलिखित स्थितियों में संगत बहुपद के शून्यक हैं:
(i) $p(x)=3 x+1 ; x=-\frac{1}{3}$
(ii) $p(x)=5 x-\pi ; x=\frac{4}{5}$
(iii) $p(x)=x^{2}-1 ; x=1,-1$
(iv) $p(x)=(x+1)(x-2) ; x=-1,2$
(v) $p(x)=x^{2} ; x=0$
(vi) $p(x)=l x+m ; x=-\frac{m}{l}$
(vii) $p(x)=3 x^{2}-1 ; x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$
(viii) $p(x)=2 x+1 ; x=\frac{1}{2}$
Show Answer
Missing4. निम्नलिखित स्थितियों में से प्रत्येक स्थिति में बहुपद का शून्यक ज्ञात कीजिए :
(i) $p(x)=x+5$
(ii) $p(x)=x-5$
(iii) $p(x)=2 x+5$
(iv) $p(x)=3 x-2$
(v) $p(x)=3 x$
(vi) $p(x)=a x ; a \neq 0$
(vii) $p(x)=c x+d ; c \neq 0, c, d$ वास्तविक संख्याएँ हैं।
Show Answer
Missing2.4 बहुपदों का गुणनखंडन
आइए अब हम ऊपर के उदाहरण 10 की स्थिति पर ध्यानपूर्वक विचार करें। इसके अनुसार, क्योंकि शेषफल $q\left(-\frac{1}{2}\right)=0$ है, इसलिए $2 t+1, q(t)$ का एक गुणनखंड है। अर्थात् किसी बहुपद $g(t)$ के लिए, $q(t)=(2 t+1) g(t) \text { होता है। }$ यह नीचे दिए हुए प्रमेय की एक विशेष स्थिति है:
गुणनखंड प्रमेयः यदि $p(x)$ घात $n \geq 1$ वाला एक बहुपद हो और $a$ कोई वास्तविक संख्या हो, तो (i) $x-a, p(x)$ का एक गुणनखंड होता है, यदि $p(a)=0$ हो, और (ii) $p(a)=0$ होता है, यदि $x-a, p(x)$ का एक गुणनखंड हो।
उपपत्ति : शेषफल प्रमेय द्वारा, $p(x)=(x-a) q(x)+p(a)$.
(i) यदि $p(a)=0$, तब $p(x)=(x-a) q(x)$, जो दर्शाता है कि $x-a, p(x)$ का एक गुणनखंड है।
(ii) चूंकि $x-a, p(x)$ का एक गुण $x-a, p(x)$ का एक गुणनखंड है, तो किसी बहुपद $g(x)$ के लिए $p(x)=(x-a) g(x)$ होगा। इस स्थिति में, $p(a)=(a-a) g(a)=0$.
उदाहरण 6 : जाँच कीजिए कि $x+2$ बहुपदों $x^{3}+3 x^{2}+5 x+6$ और $2 x+4$ का एक गुणनखंड है या नहीं।
हल : $x+2$ का शून्यक -2 है। मान लीजिए $p(x)=x^{3}+3 x^{2}+5 x+6 \text { और } s(x)=2 x+4$ तब,
$$ \begin{aligned} p(-2) & =(-2)^{3}+3(-2)^{2}+5(-2)+6 \\ & =-8+12-10+6 \\ & =0 \end{aligned} $$
अतः गुणनखंड प्रमेय (Factor Theorem) के अनुसार $x+2, x^{3}+3 x^{2}+5 x+6$ का एक गुणनखंड है।
पुन:,
$$ s(-2)=2(-2)+4=0 $$
अत: $x+2,2 x+4$ का एक गुणनखंड है। वास्तव में, गुणनखंड प्रमेय लागू किए बिना ही आप इसकी जाँच कर सकते हैं, क्योंकि $2 x+4=2(x+2)$ है।
उदाहरण 7 : यदि $x-1,4 x^{3}+3 x^{2}-4 x+k$ का एक गुणनखंड है, तो $k$ का मान ज्ञात कीजिए।
हल : क्योंकि $x-1, p(x)=4 x^{3}+3 x^{2}-4 x+k$ का एक गुणनखंड है, इसलिए
अब,
$$ \begin{aligned} & p(1)=0 \text { होगा। } \\ & p(1)=4(1)^{3}+3(1)^{2}-4(1)+k \end{aligned} $$
इसलिए
$$ \begin{aligned} 4+3-4+k & =0 \\ k & =-3 \end{aligned} $$
अब हम घात 2 और घात 3 के कुछ बहुपदों के गुणनखंड ज्ञात करने के लिए गुणनखंड प्रमेय का प्रयोग करेंगे। आप $x^{2}+l x+m$ जैसे द्विघाती बहुपद के गुणनखंडन से परिचित हैं। आपने मध्य पद $l x$ को $a x+b x$ में इस प्रकार विभक्त करके कि $a b=m$ हो, गुणनखंडन किया था। तब $x^{2}+l x+m=(x+a)(x+b)$ प्राप्त हुआ था। अब हम $a x^{2}+b x+c$, जहाँ $a \neq 0$ और $a$, $b, c$ अचर हैं, के प्रकार के द्विघाती बहुपदों का गुणनखंडन करने का प्रयास करेंगे।
मध्य पद को विभक्त करके बहुपद $a x^{2}+b x+c$ का गुणनखंडन निम्न प्रकार से होता है:
मान लीजिए इसके गुणनखंड $(p x+q)$ और $(r x+s)$ हैं। तब,
$$ a x^{2}+b x+c=(p x+q)(r x+s)=p r x^{2}+(p s+q r) x+q s $$
$x^{2}$ के गुणांकों की तुलना करने पर, हमें $a=p r$ प्राप्त होता है।
इसी प्रकार, $x$ के गुणांकों की तुलना करने पर, हमें $b=p s+q r$ प्राप्त होता है।
साथ ही, अचर पदों की तुलना करने पर, हमें $c=q s$ प्राप्त होता है।
इससे यह पता चलता है कि $b$ दो संख्याओं $p s$ और $q r$ का योगफल है, जिनका गुणनफल $(p s)(q r)=(p r)(q s)=a c$ है।
अत: $a x^{2}+b x+c$ का गुणनखंडन करने के लिए, हम $b$ को ऐसी दो संख्याओं के योगफल के रूप में लिखते हैं जिनका गुणनफल $a c$ हो। यह तथ्य नीचे दिए गए उदाहरण 13 से स्पष्ट हो जाएगा।
उदाहरण 8 : मध्य पद को विभक्त करके तथा गुणनखंड प्रमेय का प्रयोग करके $6 x^{2}+17 x+5$ का गुणनखंडन कीजिए।
हल 1 : (मध्य पद को विभक्त करके) : यदि हम ऐसी दो संख्याएँ $p$ और $q$ ज्ञात कर सकते हों जिससे कि $p+q=17$ और $p q=6 \times 5=30$ हो, तो हम गुणनखंड प्राप्त कर सकते हैं।
अतः आइए हम 30 के गुणनखंड-युग्मों को ढूढ़ें। कुछ युग्म 1 और 30,2 और 15,3 और 10,5 और 6 हैं। इन युग्मों में, हमें 2 और 15 के युग्म से $p+q=17$ प्राप्त होगा।
अतः
$$ \begin{aligned} 6 x^{2}+17 x+5 & =6 x^{2}+(2+15) x+5 \\ & =6 x^{2}+2 x+15 x+5 \\ & =2 x(3 x+1)+5(3 x+1) \\ & =(3 x+1)(2 x+5) \end{aligned} $$
हल 2 : (गुणनखंड प्रमेय की सहायता से):
$6 x^{2}+17 x+5=6\left(x^{2}+\frac{17}{6} x+\frac{5}{6}\right)=6 p(x)$, मान लीजिए। यदि $a$ और $b, p(x)$ के शून्यक हों, तो $6 x^{2}+17 x+5=6(x-a)(x-b)$ है। अतः $a b=\frac{5}{6}$ होगा।
आइए हम $a$ और $b$ के लिए कुछ संभावनाएँ देखें।
ये $\pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{5}{3}, \pm \frac{5}{2}, \pm 1$ हो सकते हैं।
अब, $p\left(\frac{1}{2}\right)=\frac{1}{4}+\frac{17}{6}\left(\frac{1}{2}\right)+\frac{5}{6} \neq 0$ है।
परन्तु $p\left(\frac{-1}{3}\right)=0$ है।
अतः $\left(x+\frac{1}{3}\right), p(x)$ का एक गुणनखंड है।
इसी प्रकार, जाँच करके आप यह ज्ञात कर सकते हैं कि $\left(x+\frac{5}{2}\right), p(x)$ का एक गुणनखंड है।
अत:,
$$ \begin{aligned} 6 x^{2}+17 x+5 & =6\left(x+\frac{1}{3}\right)\left(x+\frac{5}{2}\right) \\ & =6\left(\frac{3 x+1}{3}\right)\left(\frac{2 x+5}{2}\right) \\ & =(3 x+1)(2 x+5) \end{aligned} $$
इस उदाहरण के लिए, विभक्त करने की विधि का प्रयोग अधिक प्रभावशाली है। फिर भी, आइए हम एक और उदाहरण लें।
उदाहरण 9 : गुणनखंड प्रमेय की सहायता से $y^{2}-5 y+6$ का गुणनखंडन कीजिए।
हल : मान लीजिए $p(y)=y^{2}-5 y+6$ है। अब, यदि $p(y)=(y-a)(y-b)$ हो, तो हम जानते हैं कि इसका अचर पद $a b$ होगा। अतः $a b=6$ है। इसलिए, $p(y)$ के गुणनखंड प्राप्त करने के लिए हम 6 के गुणनखंड ज्ञात करते हैं।
6 के गुणनखंड 1,2 और 3 हैं।
अब, $p(2)=2^{2}-(5 \times 2)+6=0$
इसलिए $y-2, p(y)$ का एक गुणनखंड है।
साथ ही, $p(3)=3^{2}-(5 \times 3)+6=0$
इसलिए, $y-3$ भी $y^{2}-5 y+6$ का एक गुणनखंड है।
अत:,$\quad y^{2}-5 y+6=(y-2)(y-3)$
ध्यान दीजिए कि मध्य पद $-5 y$ को विभक्त करके भी $y^{2}-5 y+6$ का गुणनखंडन किया जा सकता है।
आइए अब हम त्रिघाती बहुपदों का गुणनखंडन करें। यहाँ प्रारंभ में विभक्त-विधि अधिक उपयोगी सिद्ध नहीं होगी। हमें पहले कम से कम एक गुणनखंड ज्ञात करना आवश्यक होता है, जैसा कि आप नीचे के उदाहरण में देखेंगे।
उदाहरण 10 : $ x^{3}-23 x^{2}+142 x-120$ का गुणनखंडन कीजिए।
हल : मान लीजिए $p(x)=x^{3}-23 x^{2}+142 x-120$ है।
अब हम -120 के सभी गुणनखंडों का पता लगाएँगे। इनमें कुछ गुणनखंड हैं:
$\pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 8, \pm 10, \pm 12, \pm 15, \pm 20, \pm 24, \pm 30, \pm 60$
जाँच करने पर, हम यह पाते हैं कि $p(1)=0$ है। अतः $(x-1), p(x)$ का एक गुणनखंड है।
अब हम देखते हैं कि $x^{3}-23 x^{2}+142 x-120=x^{3}-x^{2}-22 x^{2}+22 x+120 x-120$
$$ \begin{aligned} & =x^{2}(x-1)-22 x(x-1)+120(x-1) \quad(\text { क्यों?) } \\ & =(x-1)\left(x^{2}-22 x+120\right) \quad[(x-1) \text { को सर्वनिष्ठ लेकर }] \end{aligned} $$
इसे $p(x)$ को $(x-1)$ से भाग देकर भी प्राप्त किया जा सकता था।
अब $x^{2}-22 x+120$ का गुणनखंडन या तो मध्य पद को विभक्त करके या गुणनखंड प्रमेय की सहायता से किया जा सकता है। मध्य पद को विभक्त करने पर, हमें यह प्राप्त होता है:
$$ \begin{aligned} x^{2}-22 x+120 & =x^{2}-12 x-10 x+120 \\ & =x(x-12)-10(x-12) \\ & =(x-12)(x-10) \end{aligned} $$
अत : $\quad x^{3}-23 x^{2}-142 x-120=(x-1)(x-10)(x-12)$
प्रश्नावली 2.3
1. बताइए कि निम्नलिखित बहुपदों में से किस बहुपद का एक गुणनखंड $x+1$ है।
(i) $x^{3}+x^{2}+x+1$
(ii) $x^{4}+x^{3}+x^{2}+x+1$
(iii) $x^{4}+3 x^{3}+3 x^{2}+x+1$
(iv) $x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}$
Show Answer
Missing2. गुणनखंड प्रमेय लागू करके बताइए कि निम्नलिखित स्थितियों में से प्रत्येक स्थिति में $g(x)$, $p(x)$ का एक गुणनखंड है या नहीं:
(i) $p(x)=2 x^{3}+x^{2}-2 x-1, g(x)=x+1$
(ii) $p(x)=x^{3}+3 x^{2}+3 x+1, g(x)=x+2$
(iii) $p(x)=x^{3}-4 x^{2}+x+6, g(x)=x-3$
Show Answer
Missing3. $k$ का मान ज्ञात कीजिए जबकि निम्नलिखित स्थितियों में से प्रत्येक स्थिति में $(x-1), p(x)$ का एक गुणनखंड हो :
(i) $p(x)=x^{2}+x+k$
(ii) $p(x)=2 x^{2}+k x+\sqrt{2}$
(iii) $p(x)=k x^{2}-\sqrt{2} x+1$
(iv) $p(x)=k x^{2}-3 x+k$
Show Answer
Missing4. गुणनखंड ज्ञात कीजिए:
(i) $12 x^{2}-7 x+1$
(ii) $2 x^{2}+7 x+3$
(iii) $6 x^{2}+5 x-6$
(iv) $3 x^{2}-x-4$
Show Answer
Missing5. गुणनखंड ज्ञात कीजिए:
(i) $x^{3}-2 x^{2}-x+2$
(ii) $x^{3}-3 x^{2}-9 x-5$
(iii) $x^{3}+13 x^{2}+32 x+20$
(iv) $2 y^{3}+y^{2}-2 y-1$
Show Answer
Missing2.5 बीजीय सर्वसमिकाएँ
पिछली कक्षाओं में, आप यह पढ़ चुके हैं कि बीजीय सर्वसमिका (algebraic identity) एक बीजीय समीकरण होती है जो कि चरों के सभी मानों के लिए सत्य होती है। पिछली कक्षाओं में, आप निम्नलिखित बीजीय सर्वसमिकाओं का अध्ययन कर चुके हैं:
सर्वसमिका I : $(x+y)^{2}=x^{2}+2 x y+y^{2}$
सर्वसमिका II : $(x-y)^{2}=x^{2}-2 x y+y^{2}$
सर्वसमिका III : $x^{2}-y^{2}=(x+y)(x-y)$
सर्वसमिका IV : $(x+a)(x+b)=x^{2}+(a+b) x+a b$
इन बीजीय सर्वसमिकाओं में से कुछ का प्रयोग आपने बीजीय व्यंजकों के गुणनखंड ज्ञात करने में अवश्य किया होगा। आप इनकी उपयोगिता अभिकलनों (computations) में भी देख सकते हैं।
उदाहरण 11 : उपयुक्त सर्वसमिकाओं का उपयोग करके निम्नलिखित गुणनफल ज्ञात कीजिए:
(i) $(x+3)(x+3)$ $\quad$ (ii) $(x-3)(x+5)$
हल : (i) यहाँ हम सर्वसमिका I $(x+y)^{2}=x^{2}+2 x y+y^{2}$ का प्रयोग कर सकते हैं। इस सर्वसमिका में $y=3$ रखने पर, हमें यह प्राप्त होता है:
$$ \begin{aligned} (x+3)(x+3) & =(x+3)^{2}=x^{2}+2(x)(3)+(3)^{2} \\ & =x^{2}+6 x+9 \end{aligned} $$
(ii) सर्वसमिका IV अर्थात् $(x+a)(x+b)=x^{2}+(a+b) x+a b$ को लागू करने पर, हमें यह प्राप्त होता है:
$$ \begin{aligned} (x-3)(x+5) & =x^{2}+(-3+5) x+(-3)(5) \\ & =x^{2}+2 x-15 \end{aligned} $$
उदाहरण 12 : सीधे गुणा न करके $105 \times 106$ का मान ज्ञात कीजिए।
हल :
$$ \begin{aligned} 105 \times 106 & =(100+5) \times(100+6) \\ & =(100)^{2}+(5+6)(100)+(5 \times 6), \text { सर्वसमिका IV लागू करके } \\ & =10000+1100+30 \\ & =11130 \end{aligned} $$
कुछ दिए हुए व्यंजकों का गुणनफल ज्ञात करने के लिए, हमने ऊपर बतायी गई कुछ सर्वसमिकाओं का प्रयोग किया है। ये सर्वसमिकाएँ बीजीय व्यंजकों का गुणनखंडन करने में भी उपयोगी होती हैं, जैसा कि आप नीचे दिए गए उदाहरण में देख सकते हैं।
उदाहरण 13 : गुणनखंड ज्ञात कीजिए:
(i) $49 a^{2}+70 a b+25 b^{2}$
(ii) $\frac{25}{4} x^{2}-\frac{y^{2}}{9}$
हल : (i) यहाँ आप यह देख सकते हैं कि
$$ 49 a^{2}=(7 a)^{2}, 25 b^{2}=(5 b)^{2}, 70 a b=2(7 a)(5 b) $$
$x^{2}+2 x y+y^{2}$ के साथ दिए हुए व्यंजक की तुलना करने पर, हम यह पाते हैं कि $x=7 a$ और $y=5 b$ है।
सर्वसमिका I लागू करने पर, हमें यह प्राप्त होता है: $$49 a^{2}+70 a b+25 b^{2}=(7 a+5 b)^{2}=(7 a+5 b)(7 a+5 b)$$ (ii) यहाँ $\frac{25}{4} x^{2}-\frac{y^{2}}{9}=\left(\frac{5}{2} x\right)^{2}-\left(\frac{y}{3}\right)^{2}$
सर्वसमिका III के साथ इसकी तुलना करने पर, हमें यह प्राप्त होता है:
$$ \begin{aligned} \frac{25}{4} x^{2}-\frac{y^{2}}{9} & =\left(\frac{5}{2} x\right)^{2}-\left(\frac{y}{3}\right)^{2} \\ & =\left(\frac{5}{2} x+\frac{y}{3}\right)\left(\frac{5}{2} x-\frac{y}{3}\right) \end{aligned} $$
अभी तक हमारी सभी सर्वसमिकाएँ द्विपदों के गुणनफलों से संबंधित रही हैं। आइए अब हम सर्वसमिका I को त्रिपद $x+y+z$ पर लागू करें। हम सर्वसमिका I लागू करके, $(x+y+z)^{2}$ का अभिकलन करेंगे।
मान लीजिए $x+y=t$ है। तब,
$$ \begin{aligned} (x+y+z)^{2} & =(t+z)^{2} \\ & =t^{2}+2 t z+t^{2} \quad \text { (सर्वसमिका I लागू करने पर) } \\ & =(x+y)^{2}+2(x+y) z+z^{2} \quad(t \text { का मान प्रतिस्थापित करने पर) } \\ & =x^{2}+2 x y+y^{2}+2 x z+2 y z+z^{2} \quad \text { (सर्वसमिका I लागू करने पर) } \\ & =x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x \text { (पदों को विन्यासित करने पर) } \end{aligned} $$
अतः हमें निम्नलिखित सर्वसमिका प्राप्त होती है:
सर्वसमिका $\mathrm{V}$:$(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
टिप्पणी: हम दाएँ पक्ष के व्यंजक को बाएँ पक्ष के व्यंजक का प्रसारित रूप मानते हैं। ध्यान दीजिए कि $(x+y+z)^{2}$ के प्रसार में तीन वर्ग पद और तीन गुणनफल पद हैं।
$$ \begin{aligned} & =x^{2}+2 x y+y^{2}+2 x z+2 y z+z^{2} \\ & =x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x \end{aligned} $$
उदाहरण 14 : $(3 a+4 b+5 c)^{2}$ को प्रसारित रूप में लिखिए।
हल : दिए हुए व्यंजक की $(x+y+z)^{2}$ के साथ तुलना करने पर, हम यह पाते हैं कि
$$ x=3 a, y=4 b \text { और } z=5 c $$
अतः सर्वसमिका $\mathrm{V}$ लागू करने पर, हमें यह प्राप्त होता है:
$$ \begin{aligned} (3 a+4 b+5 c)^{2} & =(3 a)^{2}+(4 b)^{2}+(5 c)^{2}+2(3 a)(4 b)+2(4 b)(5 c)+2(5 c)(3 a) \\ & =9 a^{2}+16 b^{2}+25 c^{2}+24 a b+40 b c+30 a c \end{aligned} $$
उदाहरण 15 : $(4 a-2 b-3 c)^{2}$ का प्रसार कीजिए।
हल : सर्वसमिका $\mathrm{V}$ लागू करने पर, हमें यह प्राप्त होता है:
$$ \begin{aligned} (4 a-2 b-3 c)^{2} & =[4 a+(-2 b)+(-3 c)]^{2} \\ & =(4 a)^{2}+(-2 b)^{2}+(-3 c)^{2}+2(4 a)(-2 b)+2(-2 b)(-3 c)+2(-3 c)(4 a) \\ & =16 a^{2}+4 b^{2}+9 c^{2}-16 a b+12 b c-24 a c \end{aligned} $$
उदाहरण 16 : $ 4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z$ का गुणनखंडन कीजिए।
हल : यहाँ $4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z=(2 x)^{2}+(-y)^{2}+(z)^{2}+2(2 x)(-y)$
$$ +2(-y)(z)+2(2 x)(z) $$
$$ \begin{aligned} & =[2 x+(-y)+z]^{2} \quad \text { (सर्वसमिका) } \mathrm{V} \text { (लागू करने पर) } \\ & =(2 x-y+z)^{2}=(2 x-y+z)(2 x-y+z) \end{aligned} $$
अभी तक हमने द्विघात पदों से संबंधित सर्वसमिकाओं का ही अध्ययन किया है। आइए अब हम सर्वसमिका I को $(x+y)^{3}$ अभिकलित करने में लागू करें। यहाँ,
$$ \begin{aligned} (x+y)^{3} & =(x+y)(x+y)^{2} \\ & =(x+y)\left(x^{2}+2 x y+y^{2}\right) \\ & =x\left(x^{2}+2 x y+y^{2}\right)+y\left(x^{2}+2 x y+y^{2}\right) \\ & =x^{3}+2 x^{2} y+x y^{2}+x^{2} y+2 x y^{2}+y^{3} \\ & =x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\ & =x^{3}+y^{3}+3 x y(x+y) \end{aligned} $$
अतः, हमें निम्नलिखित सर्वसमिका प्राप्त होती है:
सर्वसमिका VI : $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$
सर्वसमिका VI : में $y$ के स्थान पर $-y$ रखने पर, हमें प्राप्त होता है:
सर्वसमिका VII : $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$ $=x^{3}-3 x^{2} y+3 x y^{2}-y^{3}$
उदाहरण 17 : निम्नलिखित घनों को प्रसारित रूप में लिखिए:
(i) $(3 a+4 b)^{3}$ $\quad$ (ii) $(5 p-3 q)^{3}$
हल : (i) $(x+y)^{3}$ के साथ दिए गए व्यंजक की तुलना करने पर हम, यह पाते हैं कि
$x=3 a \text { and } y=4 b \text {. }$
अतः सर्वसमिका VI का प्रयोग करने पर, हमें यह प्राप्त होता है:
$$ \begin{aligned} (3 a+4 b)^{3} & =(3 a)^{3}+(4 b)^{3}+3(3 a)(4 b)(3 a+4 b) \\ & =27 a^{3}+64 b^{3}+108 a^{2} b+144 a b^{2} \end{aligned} $$
(ii) $(x-y)^{3}$ के साथ दिए हुए व्यंजक की तुलना करने पर, हम यह पाते हैं कि
$$ x=5 p \text { और } y=3 q $$
सर्वसमिका VII लागू करने पर, हमें यह प्राप्त होता है:
$$ \begin{aligned} (5 p-3 q)^{3} & =(5 p)^{3}-(3 q)^{3}-3(5 p)(3 q)(5 p-3 q) \\ & =125 p^{3}-27 q^{3}-225 p^{2} q+135 p q^{2} \end{aligned} $$
उदाहरण 18 : उपयुक्त सर्वसमिकाएँ प्रयोग करके, निम्नलिखित में से प्रत्येक का मान ज्ञात कीजिए:
(i) $(104)^{3}$ $\quad$ (ii) $(999)^{3}$
हल : (i) यहाँ
$$ \begin{aligned} (104)^{3} & =(100+4)^{3} \\ & =(100)^{3}+(4)^{3}+3(100)(4)(100+4) \\ & \quad\text { (सर्वसमिका VI का प्रयोग करने पर) } \\ & =1000000+64+124800 \\ & =1124864 \end{aligned} $$
(ii) यहाँ
$$ \begin{aligned} (999)^{3} & =(1000-1)^{3} \\ & =(1000)^{3}-(1)^{3}-3(1000)(1)(1000-1) \\ & \quad \text { (सर्वसमिका VII का प्रयोग करने पर) } \\ & =1000000000-1-2997000 \\ & =997002999 \end{aligned} $$
उदाहरण 19 : $8 x^{3}+27 y^{3}+36 x^{2} y+54 x y^{2}$ का गुणनखंडन कीजिए।
हल : दिए हुए व्यंजक को इस प्रकार लिखा जा सकता है:
$$ \begin{aligned} (2 x)^{3}+(3 y)^{3} & +3\left(4 x^{2}\right)(3 y)+3(2 x)\left(9 y^{2}\right) \\ = & (2 x)^{3}+(3 y)^{3}+3(2 x)^{2}(3 y)+3(2 x)(3 y)^{2} \\ = & (2 x+3 y)^{3} \quad \text { (सर्वसमिका VI का प्रयोग करने पर) } \\ = & (2 x+3 y)(2 x+3 y)(2 x+3 y) \end{aligned} $$
अब $(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$ का प्रसार करने पर, हमें गुणनफल इस रूप में प्राप्त होता है:
$$ \begin{aligned} x\left(x^{2}+y^{2}\right. & \left.+z^{2}-x y-y z-z x\right)+y\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right) \\ & +z\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right) \\ = & x^{3}+x y^{2}+x z^{2}-x^{2} y-x y z-z x^{2}+x^{2} y+y^{3}+y z^{2}-x y^{2}-y^{2} z-x y z \\ & +x^{2} z+y^{2} z+z^{3}-x y z-y z^{2}-x z^{2} \\ = & x^{3}+y^{3}+z^{3}-3 x y z \quad \text { (सरल करने पर) } \end{aligned} $$
अतः, हमें निम्नलिखित सर्वसमिका प्राप्त होती है:
सर्वसमिका VIII : $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
उदाहरण 20 : $ 8 x^{3}+y^{3}+27 z^{3}-18 x y z$ का गुणनखंडन कीजिए।
हल : यहाँ,
$$ \begin{aligned} 8 x^{3}+y^{3}+27 & z^{3}-18 x y z \\ = & (2 x)^{3}+y^{3}+(3 z)^{3}-3(2 x)(y)(3 z) \\ = & (2 x+y+3 z)\left[(2 x)^{2}+y^{2}+(3 z)^{2}-(2 x)(y)-(y)(3 z)-(2 x)(3 z)\right] \\ = & (2 x+y+3 z)\left(4 x^{2}+y^{2}+9 z^{2}-2 x y-3 y z-6 x z\right) \end{aligned} $$
प्रश्नावली 2.4
1. उपयुक्त सर्वसमिकाओं को प्रयोग करके निम्नलिखित गुणनफल ज्ञात कीजिए:
(i) $(x+4)(x+10)$ $\quad$
(ii) $(x+8)(x-10)$ $\quad$
(iii) $(3 x+4)(3 x-5)$
(iv) $\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)$ $\quad$
(v) $(3-2 x)(3+2 x)$
Show Answer
Missing2. सीधे गुणा किए बिना निम्नलिखित गुणनफलों के मान ज्ञात कीजिए:
(i) $103 \times 107$ $\quad$
(ii) $95 \times 96$ $\quad$
(iii) $104 \times 96$
Show Answer
Missing3. उपयुक्त सर्वसमिकाएँ प्रयोग करके निम्नलिखित का गुणनखंडन कीजिए:
(i) $9 x^{2}+6 x y+y^{2}$ $\quad$
(ii) $4 y^{2}-4 y+1$ $\quad$
(iii) $x^{2}-\frac{y^{2}}{100}$
Show Answer
Missing4. उपयुक्त सर्वसमिकाओं का प्रयोग करके निम्नलिखित में से प्रत्येक का प्रसार कीजिए:
(i) $(x+2 y+4 z)^{2}$ $\quad$
(ii) $(2 x-y+z)^{2}$ $\quad$
(iii) $(-2 x+3 y+2 z)^{2}$
(iv) $(3 a-7 b-c)^{2}$ $\quad$
(v) $(-2 x+5 y-3 z)^{2}$ $\quad$
(vi) $\left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2}$
Show Answer
Missing5. गुणनखंडन कीजिए:
(i) $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$
(ii) $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z$
Show Answer
Missing6. निम्नलिखित घनों को प्रसारित रूप में लिखिए:
(i) $(2 x+1)^{3}$ $\quad$
(ii) $(2 a-3 b)^{3}$ $\quad$
(iii) $\left[\frac{3}{2} x+1\right]^{3}$ $\quad$
(iv) $\left[x-\frac{2}{3} y\right]^{3}$
Show Answer
Missing7. उपयुक्त सर्वसमिकाएँ प्रयोग करके निम्नलिखित के मान ज्ञात कीजिए:
(i) $(99)^{3}$ $\quad$
(ii) $(102)^{3}$ $\quad$
(iii) $(998)^{3}$
Show Answer
Missing8. निम्नलिखित में से प्रत्येक का गुणनखंडन कीजिए:
(i) $8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$
(ii) $8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}$
(iii) $27-125 a^{3}-135 a+225 a^{2}$
(iv) $64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}$
(v) $27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p$
Show Answer
Missing9. सत्यापित कीजिए: (i) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
(ii) $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
Show Answer
Missing10. निम्नलिखित में से प्रत्येक का गुणनखंडन कीजिए:
(i) $27 y^{3}+125 z^{3}$
(ii) $64 m^{3}-343 n^{3}$
[संकेत: देखिए प्रश्न 9]
Show Answer
Missing11. गुणनखंडन कीजिए: $27 x^{3}+y^{3}+z^{3}-9 x y z$
Show Answer
Missing12. सत्यापित कीजिए: $x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$
Show Answer
Missing13. यदि $x+y+z=0$ हो, तो दिखाइए कि $x^{3}+y^{3}+z^{3}=3 x y z$ है।
Show Answer
Missing14. वास्तव में घनों का परिकलन किए बिना निम्नलिखित में से प्रत्येक का मान ज्ञात कीजिए:
(i) $(-12)^{3}+(7)^{3}+(5)^{3}$
(ii) $(28)^{3}+(-15)^{3}+(-13)^{3}$
Show Answer
Missing15. नीचे दिए गए आयतों, जिनमें उनके क्षेत्रफल दिए गए हैं, में से प्रत्येक की लंबाई और चौड़ाई के लिए संभव व्यंजक दीजिए:
$$ \text { क्षेत्रफल : } 25 a^{2}-35 a+12 $$
$$ \text { क्षेत्रफल: } 35 y^{2}+13 y-12 $$
Show Answer
Missing16. घनाभों (cuboids), जिनके आयतन नीचे दिए गए हैं कि, विमाओं के लिए संभव व्यंजक क्या हैं?
(i) $\boxed{\text { आयतन : } 3 x^2-12 x}$
(ii) $ \boxed{\text{ आयतन : } 12 k y^{2}+6 k y-20 k} $
Show Answer
Missing2.6 सारांश
इस अध्याय में, आपने निम्नलिखित बिंदुओं का अध्ययन किया है:
1. एक चर वाला बहुपद $p(x)$ निम्न रूप का $x$ में एक बीजीय व्यंजक है: $p(x)=a _{n} x^{n}+a _{n-1} x^{n-1}+\ldots+a _{2} x^{2}+a _{1} x+a _{0}$,
जहाँ $a _{0}, a _{1}, a _{2}, \ldots, a _{n}$ अचर हैं और $a _{n} \neq 0$ है। $a _{0}, a _{1}, a _{2}, \ldots, a _{n}$ क्रमश: $x^{0}, x, x^{2}, \ldots, x^{n}$ के गुणांक हैं और $n$ को बहुपद की घात कहा जाता है। प्रत्येक $a _{n} x^{n}, a _{n-1} x^{n-1}, \ldots, a _{0}$, जहाँ $a _{n} \neq 0$, को बहुपद $p(x)$ का पद कहा जाता है।
2. एक पद वाले बहुपद को एकपदी कहा जाता है।
3. दो पदों वाले बहुपद को द्विपद कहा जाता है।
4. तीन पदों वाले बहुपद को त्रिपद कहा जाता है।
5. एक घात वाले बहुपद को रैखिक बहुपद कहा जाता है।
6. दो घात वाले बहुपद को द्विघाती बहुपद कहा जाता है।
7. तीन घात वाले बहुपद को त्रिघाती बहुपद कहा जाता है।
8. वास्तविक संख्या ’ $a$ ‘, बहुपद $p(x)$ का एक शून्यक होती है, यदि $p(a)=0$ हो।
9. एक चर में प्रत्येक रैखिक बहुपद का एक अद्वितीय शून्यक होता है। एक शून्येतर अचर बहुपद का कोई शून्यक नहीं है और प्रत्येक वास्तविक संख्या शून्य बहुपद का एक शून्यक होती है।
10. यदि $p(a)=0$ हो, तो $x-a$ बहुपद $p(x)$ का एक गुणनखंड होता है और यदि $x-a, p(x)$ का एक गुणनखंड हो, तो $p(a)=0$ होता है।
11. $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
12. $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$
13. $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
14. $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$