Chapter-01 Number Systems

1.1 Introduction

In your earlier classes, you have learnt about the number line and how to represent various types of numbers on it (see Fig. 1.1).

Fig. 1.1 : The number line

Just imagine you start from zero and go on walking along this number line in the positive direction. As far as your eyes can see, there are numbers, numbers and numbers!

Fig. 1.2

Now suppose you start walking along the number line, and collecting some of the numbers. Get a bag ready to store them!

You might begin with picking up only natural numbers like 1,2,3, and so on. You know that this list goes on for ever. (Why is this true?) So, now your bag contains infinitely many natural numbers! Recall that we denote this collection by the symbol $\mathbf{N}$.

Now turn and walk all the way back, pick up zero and put it into the bag. You now have the collection of whole numbers which is denoted by the symbol $\mathbf{W}$.

Now, stretching in front of you are many, many negative integers. Put all the negative integers into your bag. What is your new collection? Recall that it is the collection of all integers, and it is denoted by the symbol $\mathbf{Z}$.

Are there some numbers still left on the line? Of course! There are numbers like $\frac{1}{2}, \frac{3}{4}$, or even $\frac{-2005}{2006}$. If you put all such numbers also into the bag, it will now be the collection of rational numbers.

The collection of rational numbers is denoted by $\mathbf{Q}$. ‘Rational’ comes from the word ‘ratio’, and Q comes from the word ‘quotient’.

You may recall the definition of rational numbers:

A number ’ $r$ ’ is called a rational number, if it can be written in the form $\frac{p}{q}$, where $p$ and $q$ are integers and $q \neq 0$. (Why do we insist that $q \neq 0$ ?)

Notice that all the numbers now in the bag can be written in the form $\frac{p}{q}$, where $p$ and $q$ are integers and $q \neq 0$. For example, -25 can be written as $\frac{-25}{1}$; here $p=-25$ and $q=1$. Therefore, the rational numbers also include the natural numbers, whole numbers and integers. You also know that the rational numbers do not have a unique representation in the form $\frac{p}{q}$, where $p$ and $q$ are integers and $q \neq 0$. For example, $\frac{1}{2}=\frac{2}{4}=\frac{10}{20}=\frac{25}{50}$ $=\frac{47}{94}$, and so on. These are equivalent rational numbers (or fractions). However, when we say that $\frac{p}{q}$ is a rational number, or when we represent $\frac{p}{q}$ on the number line, we assume that $q \neq 0$ and that $p$ and $q$ have no common factors other than 1 (that is, $p$ and $q$ are co-prime). So, on the number line, among the infinitely many fractions equivalent to $\frac{1}{2}$, we will choose $\frac{1}{2}$ to represent all of them.

Now, let us solve some examples about the different types of numbers, which you have studied in earlier classes.

Example 1 : Are the following statements true or false? Give reasons for your answers.

(i) Every whole number is a natural number.

(ii) Every integer is a rational number.

(iii) Every rational number is an integer.

Solution :(i) False, because zero is a whole number but not a natural number.

(ii) True, because every integer $m$ can be expressed in the form $\frac{m}{1}$, and so it is a rational number.(iii) False, because $\frac{3}{5}$ is not an integer.

Example 2 : Find five rational numbers between 1 and 2.

We can approach this problem in at least two ways.

Solution 1 : Recall that to find a rational number between $r$ and $s$, you can add $r$ and $s$ and divide the sum by 2 , that is $\frac{r+s}{2}$ lies between $r$ and $s$. So, $\frac{3}{2}$ is a number between 1 and 2. You can proceed in this manner to find four more rational numbers between 1 and 2 . These four numbers are $\frac{5}{4}, \frac{11}{8}, \frac{13}{8}$ and $\frac{7}{4}$.

Solution 2 : The other option is to find all the five rational numbers in one step. Since we want five numbers, we write 1 and 2 as rational numbers with denominator $5+1$, i.e., $1=\frac{6}{6}$ and $2=\frac{12}{6}$. Then you can check that $\frac{7}{6}, \frac{8}{6}, \frac{9}{6}, \frac{10}{6}$ and $\frac{11}{6}$ are all rational numbers between 1 and 2. So, the five numbers are $\frac{7}{6}, \frac{4}{3}, \frac{3}{2}, \frac{5}{3}$ and $\frac{11}{6}$.

Remark: Notice that in Example 2, you were asked to find five rational numbers between 1 and 2. But, you must have realised that in fact there are infinitely many rational numbers between 1 and 2 . In general, there are infinitely many rational numbers between any two given rational numbers. Let us take a look at the number line again. Have you picked up all the numbers? Not, yet. The fact is that there are infinitely many more numbers left on the number line! There are gaps in between the places of the numbers you picked up, and not just one or two but infinitely many. The amazing thing is that there are infinitely many numbers lying between any two of these gaps too!

So we are left with the following questions:

  1. What are the numbers, that are left on the number line, called?

  2. How do we recognise them? That is, how do we distinguish them from the rationals (rational numbers)?

These questions will be answered in the next section.

1.2 Irrational Numbers

We saw, in the previous section, that there may be numbers on the number line that are not rationals. In this section, we are going to investigate these numbers. So far, all the numbers you have come across, are of the form $\frac{p}{q}$, where $p$ and $q$ are integers and $q \neq 0$. So, you may ask: are there numbers which are not of this form? There are indeed such numbers.

The Pythagoreans in Greece, followers of the famous mathematician and philosopher Pythagoras, were the first to discover the numbers which were not rationals, around $400 \mathrm{BC}$. These numbers are called irrational numbers (irrationals), because they cannot be written in the form of a ratio of integers. There are many myths surrounding the discovery of irrational numbers by the Pythagorean, Hippacus of Croton. In all the myths, Hippacus has an unfortunate end, either for discovering that $\sqrt{2}$ is irrational or for disclosing the secret about $\sqrt{2}$ to people outside the secret Pythagorean sect!

Pythagoras

(569 BCE - 479 BCE)

Fig. 1.3

Let us formally define these numbers.

A number ’ $\mathrm{s}$ ’ is called irrational, if it cannot be written in the form $\frac{p}{q}$, where $p$ and $q$ are integers and $q \neq 0$.

You already know that there are infinitely many rationals. It turns out that there are infinitely many irrational numbers too. Some examples are:

$$ \sqrt{2}, \sqrt{3}, \sqrt{15}, \pi, 0.10110111011110 \ldots $$

Remark : Recall that when we use the symbol $\sqrt{ }$, we assume that it is the positive square root of the number. So $\sqrt{4}=2$, though both 2 and -2 are square roots of 4.

Some of the irrational numbers listed above are familiar to you. For example, you have already come across many of the square roots listed above and the number $\pi$.

The Pythagoreans proved that $\sqrt{2}$ is irrational. Later in approximately $425 \mathrm{BC}$, Theodorus of Cyrene showed that $\sqrt{3}, \sqrt{5}, \sqrt{6}, \sqrt{7}, \sqrt{10}, \sqrt{11}, \sqrt{12}, \sqrt{13}, \sqrt{14}, \sqrt{15}$ and $\sqrt{17}$ are also irrationals. Proofs of irrationality of $\sqrt{2}, \sqrt{3}, \sqrt{5}$, etc., shall be discussed in Class X. As to $\pi$, it was known to various cultures for thousands of years, it was proved to be irrational by Lambert and Legendre only in the late $1700 \mathrm{~s}$. In the next section, we will discuss why $0.10110111011110 \ldots$ and $\pi$ are irrational.

Let us return to the questions raised at the end of the previous section. Remember the bag of rational numbers. If we now put all irrational numbers into the bag, will there be any number left on the number line? The answer is no! It turns out that the collection of all rational numbers and irrational numbers together make up what we call the collection of real numbers,

which is denoted by $\mathbf{R}$. Therefore, a real number is either rational or irrational. So, we can say that every real number is represented by a unique point on the number line. Also, every point on the number line represents a unique real number. This is why we call the number line, the real number line.

R. Dedekind (1831-1916)

Fig. 1.4

In the 1870 s two German mathematicians, Cantor and Dedekind, showed that : Corresponding to every real number, there is a point on the real number line, and corresponding to every point on the number line, there exists a unique real number.

G. Cantor (1845-1918) Fig. 1.5

Let us see how we can locate some of the irrational numbers on the number line.

Example 3 : Locate $\sqrt{2}$ on the number line.

Solution : It is easy to see how the Greeks might have discovered $\sqrt{2}$. Consider a square $\mathrm{OABC}$, with each side 1 unit in length (see Fig. 1.6). Then you can see by the Pythagoras theorem that $\mathrm{OB}=\sqrt{1^{2}+1^{2}}=\sqrt{2}$. How do we represent $\sqrt{2}$ on the number line?

Fig. 1.6 This is easy. Transfer Fig. 1.6 onto the number line making sure that the vertex $\mathrm{O}$ coincides with zero (see Fig. 1.7).

Fig. 1.7

We have just seen that $\mathrm{OB}=\sqrt{2}$. Using a compass with centre $\mathrm{O}$ and radius $\mathrm{OB}$, draw an arc intersecting the number line at the point $P$. Then $P$ corresponds to $\sqrt{2}$ on the number line.

Example 4 : Locate $\sqrt{3}$ on the number line.

Solution : Let us return to Fig. 1.7.

Fig. 1.8

Construct $\mathrm{BD}$ of unit length perpendicular to $\mathrm{OB}$ (as in Fig. 1.8). Then using the Pythagoras theorem, we see that $\mathrm{OD}=\sqrt{(\sqrt{2})^{2}+1^{2}}=\sqrt{3}$. Using a compass, with centre $\mathrm{O}$ and radius $\mathrm{OD}$, draw an arc which intersects the number line at the point $\mathrm{Q}$. Then $\mathrm{Q}$ corresponds to $\sqrt{3}$.

In the same way, you can locate $\sqrt{n}$ for any positive integer $n$, after $\sqrt{n-1}$ has been located.

EXERCISE 1.2

1. State whether the following statements are true or false. Justify your answers.

(i) Every irrational number is a real number.

(ii) Every point on the number line is of the form $\sqrt{m}$, where $m$ is a natural number.

(iii) Every real number is an irrational number.

Show Answer

Solution

(i) True; since the collection of real numbers is made up of rational and irrational numbers.

(ii) False; as negative numbers cannot be expressed as the square root of any other number.

(iii) False; as real numbers include both rational and irrational numbers. Therefore, every real number cannot be an irrational number.

2. Are the square roots of all positive integers irrational? If not, give an example of the square root of a number that is a rational number.

Show Answer

Solution

If numbers such as $\sqrt{4}=2, \sqrt{9}=3$ are considered,

3. Show how $\sqrt{5}$ can be represented on the number line.

Show Answer

Solution

We know that,

$ \sqrt{4}=2 $

$ \sqrt{5}=\sqrt{(2)^{2}+(1)^{2}} $

Show howAnd,

Mark a point ’ $A$ ’ representing 2 on number line. Now, construct $A B$ of unit length perpendicular to $OA$. Then, taking $O$ as centre and $OB$ as radius, draw an arc intersecting number line at $C$.

C is representing $\sqrt{5}$.

4. Classroom activity (Constructing the ‘square root spiral’) : Take a large sheet of paper and construct the ‘square root spiral’ in the following fashion. Start with a point $\mathrm{O}$ and draw a line segment $\mathrm{OP_1}$ of unit length. Draw a line segment $\mathrm{P_1} \mathrm{P_2}$ perpendicular to $\mathrm{OP_1}$ of unit length (see Fig. 1.9). Now draw a line segment $\mathrm{P_2} \mathrm{P_3}$ perpendicular to $\mathrm{OP_2}$. Then draw a line segment $\mathrm{P_3} \mathrm{P_4}$ perpendicular to $\mathrm{OP_3}$. Continuing in this manner, you can get the line segment $P_{n-1} P_{n}$ by

Fig. 1.9 : Constructing square root spiral drawing a line segment of unit length perpendicular to $\mathrm{OP_\mathrm{n}-1}$. In this manner, you will have created the points $\mathrm{P_2}, \mathrm{P_3}, \ldots ., \mathrm{P}_{\mathrm{n}}, \ldots$, and joined them to create a beautiful spiral depicting $\sqrt{2}, \sqrt{3}, \sqrt{4}, \ldots$

Show Answer

Solution

Construct the “square root spiral”.

Step 1. On a large sheet of paper, mark a point $\mathrm{O}$ and draw a line segment $\mathrm{OP}_1$ of unit length.

Step 2. Draw a line segment $P_1P_2$ perpendicular to $OP_1$ of unit length and join $OP_2$.

Here, $\mathrm{OP}_2$ is of length $\sqrt{2}$ units. As from Pythagoras theorem: $\left(O P_2\right)^2=\left(P_1 P_2\right)^2+\left(O P_1\right)^2$

Step 3. Draw a line segment $\mathrm{P}_2 \mathrm{P}_3$ perpendicular to $\mathrm{OP}_2$ of unit length and join $\mathrm{OP}_3$.

Here, $\mathrm{OP}_3$ is of length $\sqrt{3}$ units. As from Pythagoras theorem: $\left(\mathrm{OP}_3\right)^2=\left(\mathrm{P}_2 \mathrm{P}_3\right)^2+\left(O P_2\right)^2$ Step 4. Repeat the steps to get the points $\mathrm{P}_4, \mathrm{P}_5, \mathrm{P}_6, \ldots$ and join them with $\mathrm{O}$ to obtain $\sqrt{4}, \sqrt{5}, \sqrt{6}, \ldots$

Hence, the ‘square root spiral’ is constructed.

1.3 Real Numbers and their Decimal Expansions

In this section, we are going to study rational and irrational numbers from a different point of view. We will look at the decimal expansions of real numbers and see if we can use the expansions to distinguish between rationals and irrationals. We will also explain how to visualise the representation of real numbers on the number line using their decimal expansions. Since rationals are more familiar to us, let us start with them. Let us take three examples : $\frac{10}{3}, \frac{7}{8}, \frac{1}{7}$. Pay special attention to the remainders and see if you can find any pattern.

Example 5 : Find the decimal expansions of $\frac{10}{3}, \frac{7}{8}$ and $\frac{1}{7}$.

Solution :

Remainders : $1,1,1,1,1 \ldots$ Divisor : 3

Remainders : $6,4,0$ Divisor : 8 Remainders: $3,2,6,4,5,1$, $3,2,6,4,5,1, \ldots$

Divisor : 7

What have you noticed? You should have noticed at least three things:

(i) The remainders either become 0 after a certain stage, or start repeating themselves.

(ii) The number of entries in the repeating string of remainders is less than the divisor (in $\frac{10}{3}$ one number repeats itself and the divisor is 3 , in $\frac{1}{7}$ there are six entries 326451 in the repeating string of remainders and 7 is the divisor).

(iii) If the remainders repeat, then we get a repeating block of digits in the quotient (for $\frac{10}{3}, 3$ repeats in the quotient and for $\frac{1}{7}$, we get the repeating block 142857 in the quotient).

Although we have noticed this pattern using only the examples above, it is true for all rationals of the form $\frac{p}{q}(q \neq 0)$. On division of $p$ by $q$, two main things happen - either the remainder becomes zero or never becomes zero and we get a repeating string of remainders. Let us look at each case separately.

Case (i) : The remainder becomes zero

In the example of $\frac{7}{8}$, we found that the remainder becomes zero after some steps and the decimal expansion of $\frac{7}{8}=0.875$. Other examples are $\frac{1}{2}=0.5, \frac{639}{250}=2.556$. In all these cases, the decimal expansion terminates or ends after a finite number of steps. We call the decimal expansion of such numbers terminating.

Case (ii) : The remainder never becomes zero

In the examples of $\frac{10}{3}$ and $\frac{1}{7}$, we notice that the remainders repeat after a certain stage forcing the decimal expansion to go on for ever. In other words, we have a repeating block of digits in the quotient. We say that this expansion is non-terminating recurring. For example, $\frac{10}{3}=3.3333 \ldots$ and $\frac{1}{7}=0.142857142857142857 \ldots$

The usual way of showing that 3 repeats in the quotient of $\frac{10}{3}$ is to write it as $3 . \overline{3}$. Similarly, since the block of digits 142857 repeats in the quotient of $\frac{1}{7}$, we write $\frac{1}{7}$ as $0 . \overline{142857}$, where the bar above the digits indicates the block of digits that repeats. Also 3.57272… can be written as $3.5 \overline{72}$. So, all these examples give us non-terminating recurring (repeating) decimal expansions.

Thus, we see that the decimal expansion of rational numbers have only two choices: either they are terminating or non-terminating recurring.

Now suppose, on the other hand, on your walk on the number line, you come across a number like 3.142678 whose decimal expansion is terminating or a number like $1.272727 \ldots$ that is, $1 . \overline{27}$, whose decimal expansion is non-terminating recurring, can you conclude that it is a rational number? The answer is yes!

We will not prove it but illustrate this fact with a few examples. The terminating cases are easy.

Example 6 : Show that 3.142678 is a rational number. In other words, express 3.142678 in the form $\frac{p}{q}$, where $p$ and $q$ are integers and $q \neq 0$.

Solution : We have $3.142678=\frac{3142678}{1000000}$, and hence is a rational number.

Now, let us consider the case when the decimal expansion is non-terminating recurring.

Example 7 : Show that $0.3333 \ldots=0 . \overline{3}$ can be expressed in the form $\frac{p}{q}$, where $p$ and $q$ are integers and $q \neq 0$.

Solution : Since we do not know what $0 . \overline{3}$ is, let us call it ’ $x$ ’ and so

$$ x=0.3333 \ldots $$

Now here is where the trick comes in. Look at Now,

$$ 10 x=10 \times(0.333 \ldots)=3.333 \ldots $$

$$ 3.3333 \ldots=3+x \text {, since } x=0.3333 \ldots $$

Therefore,

$$ 10 x=3+x $$

Solving for $x$, we get

$$ 9 x=3 \text {, i.e., } x=\frac{1}{3} $$

Example 8 : Show that $1.272727 \ldots=1 . \overline{27}$ can be expressed in the form $\frac{p}{q}$, where $p$ and $q$ are integers and $q \neq 0$.

Solution : Let $x=1.272727 \ldots$ Since two digits are repeating, we multiply $x$ by 100 to get

So, $$ 100 x=127.2727 \ldots $$

Therefore,

$$ 100 x=126+1.272727 \ldots=126+x $$

$$100 x-x=126$, i.e., $99 x=126$$

i.e., $$ x=\frac{126}{99}=\frac{14}{11} $$

You can check the reverse that $\frac{14}{11}=1 . \overline{27}$.

Example 9 : Show that $0.2353535 \ldots=0.2 \overline{35}$ can be expressed in the form $\frac{p}{q}$, where $p$ and $q$ are integers and $q \neq 0$.

Solution : Let $x=0.2 \overline{35}$. Over here, note that 2 does not repeat, but the block 35 repeats. Since two digits are repeating, we multiply $x$ by 100 to get

$$ \begin{aligned} 100 x & =23.53535 \ldots \\ 100 x & =23.3+0.23535 \ldots=23.3+x \\ 99 x & =23.3 \end{aligned} $$

So, Therefore, i.e., $$ 99 x=\frac{233}{10}, \text { which gives } x=\frac{233}{990} $$

You can also check the reverse that $\frac{233}{990}=0.2 \overline{35}$

So, every number with a non-terminating recurring decimal expansion can be expressed in the form $\frac{p}{q}(q \neq 0)$, where $p$ and $q$ are integers. Let us summarise our results in the following form :

The decimal expansion of a rational number is either terminating or nonterminating recurring. Moreover, a number whose decimal expansion is terminating or non-terminating recurring is rational.

So, now we know what the decimal expansion of a rational number can be. What about the decimal expansion of irrational numbers? Because of the property above, we can conclude that their decimal expansions are non-terminating non-recurring. So, the property for irrational numbers, similar to the property stated above for rational numbers, is

The decimal expansion of an irrational number is non-terminating non-recurring. Moreover, a number whose decimal expansion is non-terminating non-recurring is irrational.

Recall $s=0.10110111011110 \ldots$ from the previous section. Notice that it is nonterminating and non-recurring. Therefore, from the property above, it is irrational. Moreover, notice that you can generate infinitely many irrationals similar to $s$.

What about the famous irrationals $\sqrt{2}$ and $\pi$ ? Here are their decimal expansions up to a certain stage.

$$ \begin{aligned} \sqrt{2} & =1.4142135623730950488016887242096 \ldots \\ \pi & =3.14159265358979323846264338327950 \ldots \end{aligned} $$

(Note that, we often take $\frac{22}{7}$ as an approximate value for $\pi$, but $\pi \neq \frac{22}{7}$.)

Over the years, mathematicians have developed various techniques to produce more and more digits in the decimal expansions of irrational numbers. For example, you might have learnt to find digits in the decimal expansion of $\sqrt{2}$ by the division method. Interestingly, in the Sulbasutras (rules of chord), a mathematical treatise of the Vedic period ( $800 \mathrm{BC}$ - $500 \mathrm{BC}$ ), you find an approximation of $\sqrt{2}$ as follows:

$$ \sqrt{2}=1+\frac{1}{3}+\left(\frac{1}{4} \times \frac{1}{3}\right)-\left(\frac{1}{34} \times \frac{1}{4} \times \frac{1}{3}\right)=1.4142156 $$

Notice that it is the same as the one given above for the first five decimal places. The history of the hunt for digits in the decimal expansion of $\pi$ is very interesting.

The Greek genius Archimedes was the first to compute digits in the decimal expansion of $\pi$. He showed 3.140845 $<\pi<3.142857$. Aryabhatta ( $476-550$ C.E. $)$, the great Indian mathematician and astronomer, found the value of $\pi$ correct to four decimal places (3.1416). Using high speed computers and advanced algorithms, $\pi$ has been computed to over 1.24 trillion decimal places!

Archimedes (287 BCE-212 BCE)

Fig. 1.10

Now, let us see how to obtain irrational numbers.

Example 10 : Find an irrational number between $\frac{1}{7}$ and $\frac{2}{7}$.

Solution : We saw that $\frac{1}{7}=0 . \overline{142857}$. So, you can easily calculate $\frac{2}{7}=0 . \overline{285714}$.

To find an irrational number between $\frac{1}{7}$ and $\frac{2}{7}$, we find a number which is non-terminating non-recurring lying between them. Of course, you can find infinitely many such numbers.

An example of such a number is $0.150150015000150000 \ldots$

EXERCISE 1.3

1. Write the following in decimal form and say what kind of decimal expansion each has :

(i) $\frac{36}{100}$ (ii) $\frac{1}{11}$ (iii) $4 \frac{1}{8}$

(iv) $\frac{3}{13}$ (v) $\frac{2}{11}$ (vi) $\frac{329}{400}$

Show Answer

Solution

(i) $\frac{36}{100}=0.36$

Terminating

(ii) $\frac{1}{11}=0.090909 \ldots \ldots=0 . \overline{09}$

Non-terminating repeating

(iii) $4 \frac{1}{8}=\frac{33}{8}=4.125$

Terminating

(iv) $\frac{3}{13}=0.230769230769 \ldots=0 . \overline{230769}$

Non-terminating repeating

(v) $\frac{2}{11}=0.18181818$ $=0 . \overline{18}$

Non-terminating repeating

(vi) $\frac{329}{400}=0.8225$

Terminating

2. You know that $\frac{1}{7}=0 . \overline{142857}$. Can you predict what the decimal expansions of $\frac{2}{7}, \frac{3}{7}$, $\frac{4}{7}, \frac{5}{7}, \frac{6}{7}$ are, without actually doing the long division? If so, how?

[Hint : Study the remainders while finding the value of $\frac{1}{7}$ carefully.]

Show Answer

Solution

Yes. It can be done as follows.

$ \begin{aligned} & \frac{2}{7}=2 \times \frac{1}{7}=2 \times 0 . \overline{142857}=0 . \overline{285714} \\ & \frac{3}{7}=3 \times \frac{1}{7}=3 \times 0 . \overline{142857}=0 . \overline{428571} \quad 10 x=6+x \\ & \frac{4}{7}=4 \times \frac{1}{7}=4 \times 0 . \overline{142857}=0 . \overline{571428} \\ & \frac{5}{7}=5 \times \frac{1}{7}=5 \times 0 . \overline{142857}=0 . \overline{714285} \\ & \frac{6}{7}=6 \times \frac{1}{7}=6 \times 0 . \overline{142857}=0 . \overline{857142} \end{aligned} $

, where $p$ and $q$ are integers and $q$

$\neq 0$.

3. Express the following in the form $\frac{p}{q}$, where $p$ and $q$ are integers and $q \neq 0$.

(i) $0 . \overline{6}$ (ii) $0.4 \overline{7}$ (iii) $0 . \overline{001}$

Show Answer

Solution

(i)

$0 . \overline{6}=0.666 \ldots$

Let $x=0.666 \ldots$

$10 x=6.666 \ldots$

$999 x=1$

$x=\frac{1}{999}$

4. Express $0.99999 \ldots$ in the form $\frac{p}{q}$. Are you surprised by your answer? With your teacher and classmates discuss why the answer makes sense.

Show Answer

Solution

Let $x=0.9999 \ldots$

$10 x=9.9999 \ldots$

$10 x=9+x$

$9 x=9 x$

=1

5. What can the maximum number of digits be in the repeating block of digits in the decimal expansion of $\frac{1}{17}$ ? Perform the division to check your answer.

Show Answer

Solution

It can be observed that,

$\frac{1}{17}=0 . \overline{0588235294117647}$

There are 16 digits in the repeating block of the decimal expansion of $\frac{1}{17}$.

6. Look at several examples of rational numbers in the form $\frac{p}{q}(q \neq 0)$, where $p$ and $q$ are integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property $q$ must satisfy?

Show Answer

Solution

Terminating decimal expansion will occur when denominator $q$ of rational number $\frac{p}{q}$ is either of $2,4,5,8,10$, and so on…

$\frac{9}{4}=2.25$

$\frac{11}{8}=1.375$

$\frac{27}{5}=5.4$

It can be observed that terminating decimal may be obtained in the situation where prime factorisation of the denominator of the given fractions has the power of 2 only or 5 only or both.

7. Write three numbers whose decimal expansions are non-terminating non-recurring.

Show Answer

Solution

3 numbers whose decimal expansions are non-terminating non-recurring are as follows.

$0.505005000500005000005 \ldots$

$0.7207200720007200007200000 \ldots 0.080080008000080000080000008 \ldots$

8. Find three different irrational numbers between the rational numbers $\frac{5}{7}$ and $\frac{9}{11}$.

Show Answer

Solution

$ \frac{5}{7}=0 . \overline{714285} $

$\frac{9}{11}=0 . \overline{81}$

3 irrational numbers are as follows.

$0.73073007300073000073 \ldots$

$0.75075007500075000075 \ldots \quad 0.79079007900079000079 \ldots$

9. Classify the following numbers as rational or irrational :

(i) $\sqrt{23}$ (ii) $\sqrt{225}$ (iii) 0.3796 (iv) $7.478478 \ldots$ (v) $1.101001000100001 \ldots$

Show Answer

Solution

As the decimal expansion of this number is non-terminating non-recurring, therefore, it

is an irrational number.

(ii)

$ \sqrt{225}=15=\frac{15}{1} $

It is a rational number as it can be represented in $\frac{p}{q}$ form.

(iii) 0.3796

As the decimal expansion of this number is terminating, therefore, it is a rational number.

(iv) $7.478478 \ldots=7 . \overline{478}$

As the decimal expansion of this number is non-terminating recurring, therefore, it is a rational number.

(v) $1.10100100010000 \ldots$

As the decimal expansion of this number is non-terminating non-repeating, therefore, it is an irrational number.

1.4 Operations on Real Numbers

You have learnt, in earlier classes, that rational numbers satisfy the commutative, associative and distributive laws for addition and multiplication. Moreover, if we add, subtract, multiply or divide (except by zero) two rational numbers, we still get a rational number (that is, rational numbers are ‘closed’ with respect to addition, subtraction, multiplication and division). It turns out that irrational numbers also satisfy the commutative, associative and distributive laws for addition and multiplication. However, the sum, difference, quotients and products of irrational numbers are not always irrational. For example, $(\sqrt{6})+(-\sqrt{6}),(\sqrt{2})-(\sqrt{2}),(\sqrt{3}) \cdot(\sqrt{3})$ and $\frac{\sqrt{17}}{\sqrt{17}}$ are rationals.

Let us look at what happens when we add and multiply a rational number with an irrational number. For example, $\sqrt{3}$ is irrational. What about $2+\sqrt{3}$ and $2 \sqrt{3}$ ? Since $\sqrt{3}$ has a non-terminating non-recurring decimal expansion, the same is true for $2+\sqrt{3}$ and $2 \sqrt{3}$. Therefore, both $2+\sqrt{3}$ and $2 \sqrt{3}$ are also irrational numbers.

Example 11 : Check whether $7 \sqrt{5}, \frac{7}{\sqrt{5}}, \sqrt{2}+21, \pi-2$ are irrational numbers or not.

Solution : $\sqrt{5}=2.236 \ldots, \sqrt{2}=1.4142 \ldots, \pi=3.1415 \ldots$

Then $7 \sqrt{5}=15.652 \ldots, \frac{7}{\sqrt{5}}=\frac{7 \sqrt{5}}{\sqrt{5} \sqrt{5}}=\frac{7 \sqrt{5}}{5}=3.1304 \ldots$

$\sqrt{2}+21=22.4142 \ldots, \pi-2=1.1415 \ldots$

All these are non-terminating non-recurring decimals. So, all these are irrational numbers.

Example 12 : Add $2 \sqrt{2}+5 \sqrt{3}$ and $\sqrt{2}-3 \sqrt{3}$.

Solution : $(2 \sqrt{2}+5 \sqrt{3})+(\sqrt{2}-3 \sqrt{3})=(2 \sqrt{2}+\sqrt{2})+(5 \sqrt{3}-3 \sqrt{3})$

$=(2+1) \sqrt{2}+(5-3) \sqrt{3}=3 \sqrt{2}+2 \sqrt{3}$

Example 13 : Multiply $6 \sqrt{5}$ by $2 \sqrt{5}$.

Solution : $6 \sqrt{5} \times 2 \sqrt{5}=6 \times 2 \times \sqrt{5} \times \sqrt{5}=12 \times 5=60$

Example 14 : Divide $8 \sqrt{15}$ by $2 \sqrt{3}$.

Solution : $8 \sqrt{15} \div 2 \sqrt{3}=\frac{8 \sqrt{3} \times \sqrt{5}}{2 \sqrt{3}}=4 \sqrt{5}$

These examples may lead you to expect the following facts, which are true:

(i) The sum or difference of a rational number and an irrational number is irrational.

(ii) The product or quotient of a non-zero rational number with an irrational number is irrational.

(iii) If we add, subtract, multiply or divide two irrationals, the result may be rational or irrational.

We now turn our attention to the operation of taking square roots of real numbers. Recall that, if $a$ is a natural number, then $\sqrt{a}=b$ means $b^{2}=a$ and $b>0$. The same definition can be extended for positive real numbers.

Let $a>0$ be a real number. Then $\sqrt{a}=b$ means $b^{2}=a$ and $b>0$.

In Section 1.2, we saw how to represent $\sqrt{n}$ for any positive integer $n$ on the number line. We now show how to find $\sqrt{x}$ for any given positive real number $x$ geometrically. For example, let us find it for $x=3.5$, i.e., we find $\sqrt{3.5}$ geometrically.

Fig. 1.11

Mark the distance 3.5 units from a fixed point $\mathrm{A}$ on a given line to obtain a point $\mathrm{B}$ such that $A B=3.5$ units (see Fig. 1.11). From B, mark a distance of 1 unit and mark the new point as $\mathrm{C}$. Find the mid-point of $\mathrm{AC}$ and mark that point as $\mathrm{O}$. Draw a semicircle with centre $\mathrm{O}$ and radius $\mathrm{OC}$. Draw a line perpendicular to $\mathrm{AC}$ passing through $\mathrm{B}$ and intersecting the semicircle at $\mathrm{D}$. Then, $\mathrm{BD}=\sqrt{3.5}$.

More generally, to find $\sqrt{x}$, for any positive real number $x$, we mark $\mathrm{B}$ so that $\mathrm{AB}=x$ units, and, as in Fig. 1.12, mark $\mathrm{C}$ so that $\mathrm{BC}=1$ unit. Then, as we have done for the case $x=3.5$, we find $\mathrm{BD}=\sqrt{x}$ (see Fig. 1.12). We can prove this result using the Pythagoras Theorem.

Fig. 1.12

Notice that, in Fig. 1.12, $\Delta \mathrm{OBD}$ is a right-angled triangle. Also, the radius of the circle is $\frac{x+1}{2}$ units.

Therefore, $\mathrm{OC}=\mathrm{OD}=\mathrm{OA}=\frac{x+1}{2}$ units.

Now, $\mathrm{OB}=x-\left(\frac{x+1}{2}\right)=\frac{x-1}{2}$.

So, by the Pythagoras Theorem, we have

$$ \mathrm{BD}^{2}=\mathrm{OD}^{2}-\mathrm{OB}^{2}=\left(\frac{x+1}{2}\right)^{2}-\left(\frac{x-1}{2}\right)^{2}=\frac{4 x}{4}=x $$

This shows that $\mathrm{BD}=\sqrt{x}$.

This construction gives us a visual, and geometric way of showing that $\sqrt{x}$ exists for all real numbers $x>0$. If you want to know the position of $\sqrt{x}$ on the number line, then let us treat the line $\mathrm{BC}$ as the number line, with $\mathrm{B}$ as zero, $\mathrm{C}$ as 1 , and so on. Draw an arc with centre $\mathrm{B}$ and radius $\mathrm{BD}$, which intersects the number line in $\mathrm{E}$ (see Fig. 1.13). Then, E represents $\sqrt{x}$.

Fig. 1.13

We would like to now extend the idea of square roots to cube roots, fourth roots, and in general $n$th roots, where $n$ is a positive integer. Recall your understanding of square roots and cube roots from earlier classes.

What is $\sqrt[3]{8}$ ? Well, we know it has to be some positive number whose cube is 8 , and you must have guessed $\sqrt[3]{8}=2$. Let us try $\sqrt[5]{243}$. Do you know some number $b$ such that $b^{5}=243$ ? The answer is 3 . Therefore, $\sqrt[5]{243}=3$.

From these examples, can you define $\sqrt[n]{a}$ for a real number $a>0$ and a positive integer $n$ ?

Let $a>0$ be a real number and $n$ be a positive integer. Then $\sqrt[n]{a}=b$, if $b^{n}=a$ and $b>0$. Note that the symbol ’ $\sqrt{ }$ ’ used in $\sqrt{2}, \sqrt[3]{8}, \sqrt[n]{a}$, etc. is called the radical sign.

We now list some identities relating to square roots, which are useful in various ways. You are already familiar with some of these from your earlier classes. The remaining ones follow from the distributive law of multiplication over addition of real numbers, and from the identity $(x+y)(x-y)=x^{2}-y^{2}$, for any real numbers $x$ and $y$.

Let $a$ and $b$ be positive real numbers. Then

(i) $\sqrt{a b}=\sqrt{a} \sqrt{b}$

(ii) $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$

(iii) $(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=a-b$

(iv) $(a+\sqrt{b})(a-\sqrt{b})=a^{2}-b$

(v) $(\sqrt{a}+\sqrt{b})(\sqrt{c}+\sqrt{d})=\sqrt{a c}+\sqrt{a d}+\sqrt{b c}+\sqrt{b d}$

(vi) $(\sqrt{a}+\sqrt{b})^{2}=a+2 \sqrt{a b}+b$

Let us look at some particular cases of these identities.

Example 15 : Simplify the following expressions:

(i) $(5+\sqrt{7})(2+\sqrt{5})$

(ii) $(5+\sqrt{5})(5-\sqrt{5})$

(iii) $(\sqrt{3}+\sqrt{7})^{2}$

(iv) $(\sqrt{11}-\sqrt{7})(\sqrt{11}+\sqrt{7})$

Solution : (i) $(5+\sqrt{7})(2+\sqrt{5})=10+5 \sqrt{5}+2 \sqrt{7}+\sqrt{35}$

(ii) $(5+\sqrt{5})(5-\sqrt{5})=5^{2}-(\sqrt{5})^{2}=25-5=20$

(iii) $(\sqrt{3}+\sqrt{7})^{2}=(\sqrt{3})^{2}+2 \sqrt{3} \sqrt{7}+(\sqrt{7})^{2}=3+2 \sqrt{21}+7=10+2 \sqrt{21}$

(iv) $(\sqrt{11}-\sqrt{7})(\sqrt{11}+\sqrt{7})=(\sqrt{11})^{2}-(\sqrt{7})^{2}=11-7=4$

Remark : Note that ‘simplify’ in the example above has been used to mean that the expression should be written as the sum of a rational and an irrational number.

We end this section by considering the following problem. Look at $\frac{1}{\sqrt{2}}$. Can you tell where it shows up on the number line? You know that it is irrational. May be it is easier to handle if the denominator is a rational number. Let us see, if we can ‘rationalise’ the denominator, that is, to make the denominator into a rational number. To do so, we need the identities involving square roots. Let us see how.

Example 16 : Rationalise the denominator of $\frac{1}{\sqrt{2}}$.

Solution : We want to write $\frac{1}{\sqrt{2}}$ as an equivalent expression in which the denominator is a rational number. We know that $\sqrt{2} \cdot \sqrt{2}$ is rational. We also know that multiplying $\frac{1}{\sqrt{2}}$ by $\frac{\sqrt{2}}{\sqrt{2}}$ will give us an equivalent expression, since $\frac{\sqrt{2}}{\sqrt{2}}=1$. So, we put these two facts together to get

$$ \frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2} $$

In this form, it is easy to locate $\frac{1}{\sqrt{2}}$ on the number line. It is half way between 0 and $\sqrt{2}$.

Example 17 : Rationalise the denominator of $\frac{1}{2+\sqrt{3}}$.

Solution : We use the Identity (iv) given earlier. Multiply and divide$\frac{1}{2+\sqrt{3}}$ by $2-\sqrt{3}$ to get

$$\frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}=\frac{2-\sqrt{3}}{4-3}=2-\sqrt{3}$$.

Example 18 : Rationalise the denominator of $\frac{5}{\sqrt{3}-\sqrt{5}}$.

Solution : Here we use the Identity (iii) given earlier.

So, $\frac{5}{\sqrt{3}-\sqrt{5}}=\frac{5}{\sqrt{3}-\sqrt{5}} \times \frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}+\sqrt{5}}=\frac{5(\sqrt{3}+\sqrt{5})}{3-5}=\left(\frac{-5}{2}\right)(\sqrt{3}+\sqrt{5})$

Example 19 : Rationalise the denominator of $\frac{1}{7+3 \sqrt{2}}$.

Solution : $\frac{1}{7+3 \sqrt{2}}=\frac{1}{7+3 \sqrt{2}} \times\left(\frac{7-3 \sqrt{2}}{7-3 \sqrt{2}}\right)=\frac{7-3 \sqrt{2}}{49-18}=\frac{7-3 \sqrt{2}}{31}$

So, when the denominator of an expression contains a term with a square root (or a number under a radical sign), the process of converting it to an equivalent expression whose denominator is a rational number is called rationalising the denominator.

EXERCISE 1.4

1. Classify the following numbers as rational or irrational:

(i) $2-\sqrt{5}$

(ii) $(3+\sqrt{23})-\sqrt{23}$

(iii) $\frac{2 \sqrt{7}}{7 \sqrt{7}}$

(iv) $\frac{1}{\sqrt{2}}$

(v) $2 \pi$

Show Answer

Solution

(i) ${ }^{2-\sqrt{5}}=2-2.2360679 \ldots$

$=-0.2360679 \ldots$

As the decimal expansion of this expression is non-terminating non-recurring, therefore, it is an irrational number.

(ii)

$ (3+\sqrt{23})-\sqrt{23}=3=\frac{3}{1} \quad \text{ number. form, therefore, it is a } $

As it can be represented in $\frac{p}{q}$

(iii) $\frac{2 \sqrt{7}}{7 \sqrt{7}}=\frac{2}{7}$ : $\frac{2 \sqrt{7}}{7 \sqrt{7}}=\frac{2}{7}$, which is a rational number.

(iv) $\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}=0.7071067811 \ldots$

As the decimal expansion of this expression is non-terminating non-recurring, therefore, it is an irrational number. ( $v)$

$2 п=2(3.1415 \ldots)$

$=6.2830 \ldots$

As the decimal expansion of this expression is non-terminating non-recurring, therefore, it is an irrational number.

2. Simplify each of the following expressions:

(i) $(3+\sqrt{3})(2+\sqrt{2})$

(ii) $(3+\sqrt{3})(3-\sqrt{3})$

(iii) $(\sqrt{5}+\sqrt{2})^{2}$

(iv) $(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})$

Show Answer

Solution

$ \begin{aligned} & (3+\sqrt{3})(2+\sqrt{2})=3(2+\sqrt{2})+\sqrt{3}(2+\sqrt{2}) \\ & =6+3 \sqrt{2}+2 \sqrt{3}+\sqrt{6} \\ & \quad(3+\sqrt{3})(3-\sqrt{3})=(3)^{2}-(\sqrt{3})^{2} \\ & \text{ (ii) } \\ & =9-3=6 \\ & \text{ (iii) }(\sqrt{5}+\sqrt{2})^{2}=(\sqrt{5})^{2}+(\sqrt{2})^{2}+2(\sqrt{5})(\sqrt{2}) \\ & =5+2+2 \sqrt{10}=7+2 \sqrt{10} \\ & \text{ (iv) }(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})=(\sqrt{5})^{2}-(\sqrt{2})^{2} \\ & =5-2=3 \end{aligned} $

3. Recall, $\pi$ is defined as the ratio of the circumference (say $c$ ) of a circle to its diameter (say $d$ ). That is, $\pi=\frac{c}{d}$. This seems to contradict the fact that $\pi$ is irrational. How will you resolve this contradiction?

Show Answer

Solution

There is no contradiction. When we measure a length with scale or any other instrument, we only obtain an approximate rational value. We never obtain an exact value. For this reason, we may not realise that either $c$ or $d$ is irrational. Therefore,

the $\quad \frac{c}{d}$ fraction is irrational. Hence, $\pi$ is irrational.

4. Represent $\sqrt{9.3}$ on the number line.

Show Answer

Solution

Mark a line segment $O B=9.3$ on number line. Further, take $B C$ of 1 unit. Find the midpoint D of OC and draw a semi-circle on OC while taking D as its centre. Draw a

(i)

$\frac{1}{\sqrt{7}}=\frac{1 \times \sqrt{7}}{1 \times \sqrt{7}}=\frac{\sqrt{7}}{7}$

perpendicular to line $O C$ passing through point $B$. Let it intersect the semi-circle at $E$.

Taking B as centre and BE as radius, draw an arc in tersecting number line at $F$. BF is $\sqrt{9.3}$.

5. Rationalise the denominators of the following:

(i) $\frac{1}{\sqrt{7}}$

(ii) $\frac{1}{\sqrt{7}-\sqrt{6}}$

(iii) $\frac{1}{\sqrt{5}+\sqrt{2}}$

(iv) $\frac{1}{\sqrt{7}-2}$

Show Answer

Solution

(i)

$ \begin{aligned} 64^{\frac{1}{2}} & =(2^{6})^{\frac{1}{2}} & =2^{2}=4 \\ & =2^{6 \times \frac{1}{2}} & {[(a^{m})^{n}=a^{m m !}] _{(16)^{\frac{3}{4}}=(2^{4})^{\frac{3}{4}}}^{(iii)} } \\ & =2^{3}=8 & \end{aligned} $

$ =2^{5 \times \frac{2}{3}} \quad[(a^{m})^{n \prime}=a^{m m n}] $

(ii)

$ \begin{aligned} 32^{\frac{1}{5}} & =(2^{5})^{\frac{1}{5}} \\ & =(2)^{5 \times \frac{1}{5}} \\ & =2^{1}=2 \end{aligned} $

$ \begin{aligned} & =2^{4 \times \frac{3}{4}} \\ & {[(a^{m})^{n}=a^{m m}]} \\ & {[(a^{m})^{n}=a^{m m}] _{(125)^{\frac{-1}{3}}}^{(iv)}=\frac{1}{(125)^{\frac{1}{3}}}} \\ & =2^{3}=8 \end{aligned} $

$(125)^{\frac{1}{3}}=(5^{3})^{\frac{1}{3}}$

$ \begin{matrix} =5^{3 \times \frac{1}{3}} & {[(a^{m})^{n}=a^{m m}]} & =\frac{1}{5^{3 \times \frac{1}{3}}} \\ =5^{1}=5 & =\frac{1}{5} \end{matrix} $

$ [a^{-m}=\frac{1}{a^{m}}] $

1.5 Laws of Exponents for Real Numbers

Do you remember how to simplify the following?

(i) $17^{2} \cdot 17^{5}=$

(ii) $\left(5^{2}\right)^{7}=$

(iii) $\frac{23^{10}}{23^{7}}=$

(iv) $7^{3} \cdot 9^{3}=$

Did you get these answers? They are as follows:

(i) $17^{2} \cdot 17^{5}=17^{7}$

(ii) $\left(5^{2}\right)^{7}=5^{14}$

(iii) $\frac{23^{10}}{23^{7}}=23^{3}$

(iv) $7^{3} \cdot 9^{3}=63^{3}$

To get these answers, you would have used the following laws of exponents, which you have learnt in your earlier classes. (Here $a, n$ and $m$ are natural numbers. Remember, $a$ is called the base and $m$ and $n$ are the exponents.)

(i) $a^{m} \cdot a^{n}=a^{m+n}$

(ii) $\left(a^{m}\right)^{n}=a^{m n}$

(iii) $\frac{a^{m}}{a^{n}}=a^{m-n}, m>n$

(iv) $a^{m} b^{m}=(a b)^{m}$

What is $(a)^{0}$ ? Yes, it is 1 ! So you have learnt that $(a)^{0}=1$. So, using (iii), we can get $\frac{1}{a^{n}}=a^{-n}$. We can now extend the laws to negative exponents too.

So, for example :

(i) $17^{2} \cdot 17^{-5}=17^{-3}=\frac{1}{17^{3}}$

(ii) $\left(5^{2}\right)^{-7}=5^{-14}$

(iii) $\frac{23^{-10}}{23^{7}}=23^{-17}$

(iv) $(7)^{-3} \cdot(9)^{-3}=(63)^{-3}$

Suppose we want to do the following computations:

(i) $2^{\frac{2}{3}} \cdot 2^{\frac{1}{3}}$

(ii) $\left(3^{\frac{1}{5}}\right)^{4}$

(iii) $\frac{7^{\frac{1}{5}}}{7^{\frac{1}{3}}}$

(iv) $13^{\frac{1}{5}} \cdot 17^{\frac{1}{5}}$

How would we go about it? It turns out that we can extend the laws of exponents that we have studied earlier, even when the base is a positive real number and the exponents are rational numbers. (Later you will study that it can further to be extended when the exponents are real numbers.) But before we state these laws, and to even make sense of these laws, we need to first understand what, for example $4^{\frac{3}{2}}$ is. So, we have some work to do!

We define $\sqrt[n]{a}$ for a real number $a>0$ as follows:

Let $a>0$ be a real number and $n$ a positive integer. Then $\sqrt[n]{a}=b$, if $b^{n}=a$ and $b>0$.

In the language of exponents, we define $\sqrt[n]{a}=a^{\frac{1}{n}}$. So, in particular, $\sqrt[3]{2}=2^{\frac{1}{3}}$. There are now two ways to look at $4^{\frac{3}{2}}$.

$$ \begin{aligned} & 4^{\frac{3}{2}}=\left(4^{\frac{1}{2}}\right)^{3}=2^{3}=8 \\ & 4^{\frac{3}{2}}=\left(4^{3}\right)^{\frac{1}{2}}=(64)^{\frac{1}{2}}=8 \end{aligned} $$

Therefore, we have the following definition:

Let $a>0$ be a real number. Let $m$ and $n$ be integers such that $m$ and $n$ have no common factors other than 1 , and $n>0$. Then,

$a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}=\sqrt[n]{a^{m}}$

We now have the following extended laws of exponents:

Let $a>0$ be a real number and $p$ and $q$ be rational numbers. Then, we have

(i) $a^{p} \cdot a^{q}=a^{p+q}$

(ii) $\left(a^{p}\right)^{q}=a^{p q}$

(iii) $\frac{a^{p}}{a^{q}}=a^{p-q}$

(iv) $a^{p} b^{p}=(a b)^{p}$

You can now use these laws to answer the questions asked earlier.

Example 20 : Simplify (i) $2^{\frac{2}{3}} \cdot 2^{\frac{1}{3}}$

(ii) $\left(3^{\frac{1}{5}}\right)^{4}$

(iii) $\frac{7^{\frac{1}{5}}}{7^{\frac{1}{3}}}$

(iv) $13^{\frac{1}{5}} \cdot 17^{\frac{1}{5}}$

Solution : (i) $2^{\frac{2}{3}} \cdot 2^{\frac{1}{3}}=2^{\left(\frac{2}{3}+\frac{1}{3}\right)}=2^{\frac{3}{3}}=2^{1}=2$

(ii) $\left(3^{\frac{1}{5}}\right)^{4}=3^{\frac{4}{5}}$

(iii) $\frac{7^{\frac{1}{5}}}{7^{\frac{1}{3}}}=7^{\left(\frac{1}{5}-\frac{1}{3}\right)}=7^{\frac{3-5}{15}}=7^{\frac{-2}{15}}$

(iv) $13^{\frac{1}{5}} \cdot 17^{\frac{1}{5}}=(13 \times 17)^{\frac{1}{5}}=221^{\frac{1}{5}}$

EXERCISE 1.5

1. Find :

(i) $64^{\frac{1}{2}}$

(ii) $32^{\frac{1}{5}}$

(iii) $125^{\frac{1}{3}}$

Show Answer

Solution

(i)

$ \begin{aligned} 64^{\frac{1}{2}} & =(2^{6})^{\frac{1}{2}} & =2^{2}=4 \\ & =2^{6 \times \frac{1}{2}} & {[(a^{m})^{n}=a^{m m !}] _{(16)^{\frac{3}{4}}=(2^{4})^{\frac{3}{4}}}^{(iii)} } \\ & =2^{3}=8 & \end{aligned} $

$ =2^{5 \times \frac{2}{3}} \quad[(a^{m})^{n \prime}=a^{m m n}] $

2. Find:

(i) $9^{\frac{3}{2}}$

(ii) $32^{\frac{2}{5}}$

(iii) $16^{\frac{3}{4}}$

(iv) $125^{\frac{-1}{3}}$

Show Answer

Solution

(ii)

$ \begin{aligned} 32^{\frac{1}{5}} & =(2^{5})^{\frac{1}{5}} \\ & =(2)^{5 \times \frac{1}{5}} \\ & =2^{1}=2 \end{aligned} $

$ \begin{aligned} & =2^{4 \times \frac{3}{4}} \\ & {[(a^{m})^{n}=a^{m m}]} \\ & {[(a^{m})^{n}=a^{m m}] _{(125)^{\frac{-1}{3}}}^{(iv)}=\frac{1}{(125)^{\frac{1}{3}}}} \\ & =2^{3}=8 \end{aligned} $

$(125)^{\frac{1}{3}}=(5^{3})^{\frac{1}{3}}$

$ \begin{matrix} =5^{3 \times \frac{1}{3}} & {[(a^{m})^{n}=a^{m m}]} & =\frac{1}{5^{3 \times \frac{1}{3}}} \\ =5^{1}=5 & =\frac{1}{5} \end{matrix} $

$ [a^{-m}=\frac{1}{a^{m}}] $

3. Simplify:

(i) $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$

(ii) $\left(\frac{1}{3^{3}}\right)^{7}$

(iii) $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$

(iv) $7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}$

Show Answer

Solution

(i)

$ \begin{matrix} 2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}} & =2^{\frac{2}{3}+\frac{1}{5}} & {[a^{m} \cdot a^{n}=a^{m+n}]} \\ & =2^{\frac{10+3}{15}}=2^{\frac{13}{15}} \end{matrix} $

(ii)

$ \begin{aligned} (\frac{1}{3^{3}})^{7} & =\frac{1}{3^{3 \times 7}} & & {[(a^{m})^{n}=a^{m m}] } \\ & =\frac{1}{3^{21}} & & {[\frac{1}{a^{m}}=a^{-m}] } \end{aligned} $

(iii)

$ \begin{matrix} \frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}} & =11^{\frac{1}{2}-\frac{1}{4}} & {[\frac{a^{m}}{a^{n}}=a^{m-n}]} \\ & =11^{\frac{2-1}{4}}=11^{\frac{1}{4}} & \end{matrix} $

(iv)

$ \begin{aligned} 7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}} & =(7 \times 8)^{\frac{1}{2}} \quad[a^{m} \cdot b^{m}=(a b)^{m}] \\ & =(56)^{\frac{1}{2}} \end{aligned} $

1.6 Summary

In this chapter, you have studied the following points:

1. A number $r$ is called a rational number, if it can be written in the form $\frac{p}{q}$, where $p$ and $q$ are integers and $q \neq 0$.

2. A number $s$ is called a irrational number, if it cannot be written in the form $\frac{p}{q}$, where $p$ and $q$ are integers and $q \neq 0$.

3. The decimal expansion of a rational number is either terminating or non-terminating recurring. Moreover, a number whose decimal expansion is terminating or non-terminating recurring is rational.

4. The decimal expansion of an irrational number is non-terminating non-recurring. Moreover, a number whose decimal expansion is non-terminating non-recurring is irrational.

5. All the rational and irrational numbers make up the collection of real numbers.

6. If $r$ is rational and $s$ is irrational, then $r+s$ and $r-s$ are irrational numbers, and $r s$ and $\frac{r}{s}$ are irrational numbers, $r \neq 0$.

7. For positive real numbers $a$ and $b$, the following identities hold:

(i) $\sqrt{a b}=\sqrt{a} \sqrt{b}$

(ii) $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$

(iii) $(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=a-b$

(iv) $(a+\sqrt{b})(a-\sqrt{b})=a^{2}-b$

(v) $(\sqrt{a}+\sqrt{b})^{2}=a+2 \sqrt{a b}+b$

8. To rationalise the denominator of $\frac{1}{\sqrt{a}+b}$, we multiply this by $\frac{\sqrt{a}-b}{\sqrt{a}-b}$, where $a$ and $b$ are integers.

9. Let $a>0$ be a real number and $p$ and $q$ be rational numbers. Then

(i) $a^{p} \cdot a^{q}=a^{p+q}$

(ii) $\left(a^{p}\right)^{q}=a^{p q}$

(iii) $\frac{a^{p}}{a^{q}}=a^{p-q}$

(iv) $a^{p} b^{p}=(a b)^{p}$

1.1 भूमिका

पिछली कक्षाओं में, आप संख्या रेखा के बारे में पढ़ चुके हैं और वहाँ आप यह भी पढ़ चुके हैं कि विभिन्न प्रकार की संख्याओं को संख्या रेखा पर किस प्रकार निरूपित किया जाता है ( देखिए आकृति 1.1)।

आकृति 1.1 : संख्या रेखा

कल्पना कीजिए कि आप शून्य से चलना प्रारंभ करते हैं और इस रेखा पर धनात्मक दिशा में चलते जा रहे हैं। जहाँ तक आप देख सकते हैं; वहाँ तक आपको संख्याएँ, संख्याएँ और संख्याएँ ही दिखाई पड़ती हैं।

आकृति 1.2

अब मान लीजिए आप संख्या रेखा पर चलना प्रारंभ करते हैं और कुछ संख्याओं को एकत्रित करते जा रहे हैं। इस संख्याओं को रखने के लिए एक थैला तैयार रखिए!

संभव है कि आप $1,2,3$ आदि जैसी केवल प्राकृत संख्याओं को उठाना प्रारंभ कर रहे हों। आप जानते हैं कि यह सूची सदैव बढ़ती ही जाती है। (क्या आप बता सकते हैं कि ऐसा क्यों है?) अतः अब आप के थैले में अपरिमित रूप से अनेक प्राकृत संख्याएँ भर जाती हैं! आपको याद होगा कि हम इस संग्रह को प्रतीक $\mathbf{N}$ से प्रकट करते हैं।

अब आप घूम जाइए और विपरीत दिशा में चलते हुए शून्य को उठाइए और उसे भी थैले में रख दीजिए। अब आपको पूर्ण संख्याओं (whole numbers) का एक संग्रह प्राप्त हो जाता है। जिसे प्रतीक $\mathbf{W}$ से प्रकट किया जाता है।

अब, आपको अनेक-अनेक ॠणात्मक पूर्णांक दिखाई देते हैं। आप इन सभी ऋणात्मक पूर्णांकों को अपने थैले में डाल दीजिए। क्या आप बता सकते हैं कि आपका यह नया संग्रह क्या है? आपको याद होगा कि यह सभी पूर्णांकों (integers) का संग्रह है और इसे प्रतीक $\mathrm{Z}$ से प्रकट किया जाता है।

क्या अभी भी रेखा पर संख्याएँ बची रहती हैं? निश्चित रूप से ही, रेखा पर संख्याएँ बची रहती हैं। ये संख्याएँ $\frac{1}{2}, \frac{3}{4}$, या $\frac{-2005}{2006}$ जैसी संख्याएँ भी हैं। यदि आप इस प्रकार की सभी संख्याओं को भी थैले में डाल दें, तब यह परिमेय संख्याओं (rational numbers)का संग्रह हो जाएगा।

परिमेय संख्याओं के संग्रह को $\mathbf{Q}$ से प्रकट किया जाता है। अंग्रेजी शब्द “rational” की व्युत्पत्ति अंग्रेजी शब्द “ratio” से हुई है और अक्षर $\mathbf{Q}$ अंग्रेजी शब्द ‘quotient’ से लिया गया है।

अब आपको याद होगा कि परिमेय संख्याओं की परिभाषा इस प्रकार दी जाती है :

संख्या ’ $r$ ’ को परिमेय संख्या कहा जाता है, यदि इसे $\frac{p}{q}$ के रूप में लिखा जा सकता हो, जहाँ $p$ और $q$ पूर्णांक हैं और $q \neq 0$ है (यहाँ हम इस बात पर बल क्यों देते हैं कि $\mathrm{q} \neq 0$ होना चाहिए)।

अब आप इस बात की ओर ध्यान दीजिए कि थैले में रखी सभी संख्याओं को $\frac{p}{q}$ के रूप में लिखा जा सकता है, जहाँ $p$ और $q$ पूर्णांक हैं और $q \neq 0$ है। उदाहरण के लिए, -25 को $\frac{-25}{1}$ के रूप में लिखा जा सकता है; यहाँ $p=-25$ और $q=1$ है। इस तरह हम यह पाते हैं कि परिमेय संख्याओं के अंतर्गत प्राकृत संख्याएँ, पूर्ण संख्याएँ और पूर्णांक भी आते हैं। आप यह भी जानते हैं कि परिमेय संख्याओं का $\frac{p}{q}$ के रूप में अद्वितीय (unique) निरूपण नहीं होता है, जहाँ $p$ और $q$ पूर्णांक हैं और $q \neq 0$ है। उदाहरण के लिए, $\frac{1}{2}=\frac{2}{4}=$ $\frac{10}{20}=\frac{25}{50}=\frac{47}{94}$, आदि। ये परिमेय संख्याएँ तुल्य परिमेय संख्याएँ ( या भिन्न ) हैं। फिर भी, जब हम यह कहते हैं कि $\frac{p}{q}$ एक परिमेय संख्या है या जब हम $\frac{p}{q}$ को एक संख्या रेखा पर निरूपित करते हैं, तब हम यह मान लेते हैं कि $q \neq 0$ और $p$ और $q$ का 1 के अतिरिक्त अन्य कोई उभयनिष्ठ गुणनखंड नहीं है [अर्थात् $p$ और $q$ असहभाज्य संख्याएँ (coprime numbers) हैं]। अतः संख्या रेखा पर $\frac{1}{2}$ के तुल्य अपरिमित रूप से अनेक भिन्नों में से हम $\frac{1}{2}$ लेते हैं जो सभी को निरूपित करती है।

आइए अब हम विभिन्न प्रकार की संख्याओं, जिनका अध्ययन आप पिछली कक्षाओं मे कर चुके हैं, से संबंधित कुछ उदाहरण हल करें।

उदाहरण 1 : नीचे दिए गए कथन सत्य हैं या असत्य? कारण के साथ अपने उत्तर दीजिए।

(i) प्रत्येक पूर्ण संख्या एक प्राकृत संख्या होती है।

(ii) प्रत्येक पूर्णांक एक परिमेय संख्या होता है।

(iii) प्रत्येक परिमेय संख्या एक पूर्णांक होती है।

हल : (i) असत्य है, क्योंकि शून्य एक पूर्ण संख्या है परन्तु प्राकृत संख्या नहीं है।

(ii) सत्य है, क्योंकि प्रत्येक पूर्णांक $m$ को $\frac{m}{1}$ के रूप में लिखा जा सकता है और इसलिए यह एक परिमेय संख्या है। (iii) असत्य है, क्योंकि $\frac{3}{5}$ एक पूर्णांक नहीं है।

उदाहरण 2 : $ 1$ और 2 के बीच की पाँच परिमेय संख्याएँ ज्ञात कीजिए।

इस प्रश्न को हम कम से कम दो विधियों से हल कर सकते हैं।

हल 1 : आपको याद होगा कि $r$ और $s$ के बीच की एक परिमेय संख्या ज्ञात करने के लिए आप $r$ और $s$ को जोड़ते हैं और उसे दो से भाग दे देते हैं, अर्थात् $\frac{r+s}{2}, r$ और $s$ के बीच स्थित होती है। अतः $\frac{3}{2}, 1$ और 2 के बीच की एक संख्या है। इसी प्रक्रिया में आप 1 और 2 के बीच चार और परिमेय संख्याएँ ज्ञात कर सकते हैं। ये चार संख्याएँ हैं : $\frac{5}{4}, \frac{11}{8}, \frac{13}{8}$ और $\frac{7}{4}$ ।

हल 2 : एक अन्य विकल्प है कि एक ही चरण में सभी पाँच परिमेय संख्याओं को ज्ञात कर लें। क्योंकि हम पाँच संख्याएँ ज्ञात करना चाहते हैं, इसलिए हम $5+1$ अर्थात्, 6 को हर लेकर 1 और 2 को परिमेय संख्याओं के रूप में लिखते हैं। अर्थात् $1=\frac{6}{6}$ और $2=\frac{12}{6}$ हैं। तब आप यह देख सकते हैं कि $\frac{7}{6}, \frac{8}{6}, \frac{9}{6}, \frac{10}{6}$ और $\frac{11}{6}$ सभी 1 और 2 के बीच स्थित परिमेय संख्याएँ हैं। अतः 1 और 2 के बीच स्थित संख्याएँ हैं : $\frac{7}{6}, \frac{4}{3}, \frac{3}{2}, \frac{5}{3}$ और $\frac{11}{6}$ ।

टिप्पणी : ध्यान दीजिए कि उदाहरण 2 में 1 और 2 के बीच स्थित केवल पाँच परिमेय संख्याएँ ही ज्ञात करने के लिए कहा गया था। परन्तु आपने यह अवश्य अनुभव किया होगा कि वस्तुतः 1 और 2 के बीच अपरिमित रूप से अनेक परिमेय संख्याएँ होती हैं। व्यापक रूप में, किन्हीं दो दी हुई परिमेय संख्याओं के बीच अपरिमित रूप से अनेक परिमेय संख्याएँ होती हैं। आइए हम संख्या रेखा को पुनः देखें। क्या आपने इस रेखा पर स्थित सभी संख्याओं को ले लिया है? अभी तक तो नहीं। ऐसा होने का कारण यह है कि संख्या रेखा पर अपरिमित रूप से अनेक और संख्याएँ बची रहती हैं। आप द्वारा उठायी गई संख्याओं के स्थानों के बीच रिक्त स्थान हैं और रिक्त स्थान न केवल एक या दो हैं, बल्कि अपरिमित रूप से अनेक हैं। आश्चर्यजनक बात तो यह है कि किन्ही दो रिक्त स्थानों के बीच अपरिमित रूप से अनेक संख्याएँ स्थित होती हैं।

अतः, हमारे सामने निम्नलिखित प्रश्न बचे रह जाते हैं:

  1. संख्या रेखा पर बची हुई संख्याओं को क्या कहा जाता है?

  2. इन्हें हम किस प्रकार पहचानते हैं? अर्थात् इन संख्याओं और परिमेय संख्याओं के बीच हम किस प्रकार भेद करते हैं?

इन प्रश्नों के उत्तर अगले अनुच्छेद में दिए जाएँगे।

प्रश्नावली 1.1

1. क्या शून्य एक परिमेय संख्या है? क्या इसे आप $\frac{p}{q}$ के रूप में लिख सकते हैं, जहाँ $p$ और $q$ पूर्णांक हैं और $q \neq 0$ है?

Show Answer Missing

2. 3 और 4 के बीच में छः परिमेय संख्याएँ ज्ञात कीजिए।

Show Answer Missing

3. $\frac{3}{5}$ और $\frac{4}{5}$ के बीच पाँच परिमेय संख्याएँ ज्ञात कीजिए।

Show Answer Missing

4. नीचे दिए गए कथन सत्य हैं या असत्य? कारण के साथ अपने उत्तर दीजिए।

(i) प्रत्येक प्राकृत संख्या एक पूर्ण संख्या होती है।

(ii) प्रत्येक पूर्णांक एक पूर्ण संख्या होती है।

(iii) प्रत्येक परिमेय संख्या एक पूर्ण संख्या होती है।

Show Answer Missing

1.2 अपरिमेय संख्याएँ

पिछले अनुच्छेद में, हमने यह देखा है कि संख्या रेखा पर ऐसी संख्याएँ भी हो सकती हैं जो परिमेय संख्याएँ नहीं हैं। इस अनुच्छेद में, अब हम इन संख्याओं पर चर्चा करेंगे। अभी तक हमने जिन संख्याओं पर चर्चा की है, वे $\frac{p}{q}$ के रूप की रही हैं, जहाँ $p$ और $q$ पूर्णांक हैं और $q \neq 0$ है। अतः आप यह प्रश्न कर सकते हैं कि क्या ऐसी भी संख्याएँ हैं जो इस रूप की नहीं होती हैं? वस्तुतः ऐसी संख्याएँ होती हैं।

लगभग 400 सा॰यु॰पू०, ग्रीस के प्रसिद्ध गणितज्ञ और दार्शनिक पाइथागोरस के अनुयायियों ने इन संख्याओं का सबसे पहले पता लगाया था। इन संख्याओं को अपरिमेय संख्याएँ (irrational numbers) कहा जाता है, क्योंकि इन्हें पूर्णांकों के अनुपात के रूप में नहीं लिखा जा सकता है। पाइथागोरस के एक अनुयायी, क्रोटोन के हिपाक्स द्वारा पता लगायी गई अपरिमेय संख्याओं के संबंध में अनेक किंवदंतियाँ हैं। हिपाक्स का एक दुर्भाग्यपूर्ण अंत रहा, चाहे इसका कारण इस बात की खोज हो कि $\sqrt{2}$ एक अपरिमेय संख्या है या इस खोज के बारे में बाहरी दुनिया को उजागर करना हो।

पाइथागोरस

(569 सा० यु॰ पू०- 479 सा० यु॰ पू०)

आकृति 1.3

आइए अब हम इन संख्याओं की औपचारिक परिभाषा दें।

संख्या ’ $\mathrm{s}$ ’ को अपरिमेय संख्या (irrational number) कहा जाता है, यदि इसे $\frac{p}{q}$ के रूप में न लिखा जा सकता हो, जहाँ $p$ और $q$ पूर्णांक हैं और $q \neq 0$ है।

आप यह जानते हैं कि अपरिमित रूप से अनेक परिमेय संख्याएँ होती हैं। इसी प्रकार, अपरिमेय संख्याएँ भी अपरिमित रूप से अनेक होती हैं। इनके कुछ उदाहरण हैं:

$$ \sqrt{2}, \sqrt{3}, \sqrt{15}, \pi, 0.10110111011110 \ldots $$

**टिप्पणी :**आपको याद होगा कि जब कभी हम प्रतीक " $\sqrt{ }$ " का प्रयोग करते हैं, तब हम यह मानकर चलते हैं कि यह संख्या का धनात्मक वर्गमूल है। अतः $\sqrt{4}=2$ है, यद्यपि 2 और -2 दोनों ही संख्या 4 के वर्गमूल हैं।

ऊपर दी गई कुछ अपरिमेय संख्याओं के बारे में आप जानते हैं। उदाहरण के लिए, ऊपर दिए गए अनेक वर्गमूलों और संख्या $\pi$ से आप परिचित हो चुके हैं।

पाइथागोरस के अनुयायियों ने यह सिद्ध किया है कि $\sqrt{2}$ एक अपरिमेय संख्या है। बाद में 425 ई.पू. के आस-पास साइरीन के थियोडोरस ने यह दर्शाया था कि $\sqrt{3}, \sqrt{5}, \sqrt{6}, \sqrt{7}, \sqrt{10}, \sqrt{11}, \sqrt{12}, \sqrt{13}, \sqrt{14}, \sqrt{15}$ और $\sqrt{17}$ भी अपरिमेय संख्याएँ हैं। $\sqrt{2}, \sqrt{3}, \sqrt{5}$, आदि की अपरिमेयता (irrationality) की उपपत्तियों पर चर्चा कक्षा 10 में की जाएगी। जहाँ तक $\pi$ का संबंध है, हजारों वर्षों से विभिन्न संस्कृतियाँ इससे परिचित रही हैं, परन्तु 1700 ई. के अंत में ही लैम्बर्ट और लेजान्ड्रे ने सिद्ध किया था कि यह एक अपरिमेय संख्या है। अगले अनुच्छेद में हम इस बात पर चर्चा करेंगे कि $0.10110111011110 \ldots$ और $\pi$ अपरिमेय क्यों हैं।

आइए हम पिछले अनुच्छेद के अंत में उठाए गए प्रश्नों पर पुनः विचार करें। इसके लिए परिमेय संख्याओं वाला थैला लीजिए। अब यदि हम थैले में सभी अपरिमेय संख्याएँ भी डाल दें, तो क्या अब भी संख्या रेखा पर कोई संख्या बची रहेगी? इसका उत्तर है “नहीं”। अतः, एक साथ ली गई सभी परिमेय संख्याओं और अपरिमेय संख्याओं के संग्रह से जो प्राप्त होता है, उसे वास्तविक संख्याओं (real numbers) का नाम दिया जाता

है, जिसे $\mathbf{R}$ से प्रकट किया जाता है। अतः वास्तविक संख्या या तो परिमेय या अपरिमेय संख्या हो सकती है। अतः हम यह कह सकते हैं कि प्रत्येक वास्तविक संख्या को संख्या रेखा के एक अद्वितीय बिन्दु से निरूपित किया जाता है। साथ ही, संख्या रेखा का प्रत्येक बिन्दु एक अद्वितीय वास्तविक संख्या को निरूपित करता है। यही कारण है कि संख्या रेखा को वास्तविक संख्या रेखा (real number line) कहा जाता है।

R. Dedekind (1831-1916)

Fig. 1.4

1870 के दशक में दो जर्मन गणितज्ञों, कैंटर और डेडेकाइंड ने दिखाया कि: प्रत्येक वास्तविक संख्या के अनुरूप, वास्तविक संख्या रेखा पर एक बिंदु होता है, और संख्या रेखा पर प्रत्येक बिंदु के अनुरूप, एक अद्वितीय वास्तविक संख्या मौजूद होती है।

G. Cantor (1845-1918) Fig. 1.5

आइए देखें कि संख्या रेखा पर हम कुछ अपरिमेय संख्याओं का स्थान निर्धारण किस प्रकार कर सकते हैं।

उदाहरण 3 : संख्या रेखा पर $\sqrt{2}$ का स्थान निर्धारण (को निरूपित) कीजिए।

हल : यह सरलता से देखा जा सकता है कि किस प्रकार यूनानियों ने $\sqrt{2}$ का पता लगाया होगा। एक एकक (मात्रक) की लंबाई की भुजा वाला वर्ग OABC लीजिए ( देखिए आकृति 1.6)। तब आप पाइथागोरस प्रमेय लागू करके यह देख सकते हैं कि $\mathrm{OB}=\sqrt{1^{2}+1^{2}}=\sqrt{2}$ है। संख्या रेखा पर

आकृति 1.6 हम $\sqrt{2}$ को किस प्रकार निरूपित करते हैं? ऐसा सरलता से किया जा सकता है। इस बात का ध्यान रखते हुए कि शीर्ष $O$ शून्य के साथ संपाती बना रहे, आकृति 1.6 को संख्या रेखा पर स्थानांतरित कीजिए (देखिए आकृति 1.7)।

आकृति 1.7

अभी आपने देखा है कि $\mathrm{OB}=\sqrt{2}$ है। एक परकार की सहायता से $\mathrm{O}$ को केन्द्र और $\mathrm{OB}$ को त्रिज्या मानकर एक चाप (arc) खींचिए जो संख्या रेखा को बिन्दु $\mathrm{P}$ पर काटता है। तब बिन्दु $\mathrm{P}$ संख्या रेखा पर $\sqrt{2}$ के संगत होता है।

उदाहरण 4 : वास्तविक संख्या रेखा पर $\sqrt{3}$ का स्थान निर्धारण कीजिए।

हल : आइए हम आकृति 1.7 को पुन: लें।

आकृति 1.8

$\mathrm{OB}$ पर एकक लंबाई वाले लंब $\mathrm{BD}$ की रचना कीजिए (जैसा कि आकृति 1.8 में दिखाया गया है)। तब पाइथागोरस प्रमेय लागू करने पर, हमें $\mathrm{OD}=\sqrt{(\sqrt{2})^{2}+1^{2}}=\sqrt{3}$ प्राप्त होता है। एक परकार की सहायता से $\mathrm{O}$ को केन्द्र और $\mathrm{OD}$ को त्रिज्या मानकर एक चाप खींचिए जो संख्या रेखा को बिन्दु $\mathrm{Q}$ पर काटता है। तब $\mathrm{Q}, \sqrt{3}$ के संगत है।

इसी प्रकार $\sqrt{n-1}$ का स्थान निर्धारण हो जाने के बाद आप $\sqrt{n}$ का स्थान निर्धारण कर सकते हैं, जहाँ $n$ एक धनात्मक पूर्णांक है।

प्रश्नावली 1.2

1. नीचे दिए गए कथन सत्य हैं या असत्य हैं। कारण के साथ अपने उत्तर दीजिए।

(i) प्रत्येक अपरिमेय संख्या एक वास्तविक संख्या होती है।

(ii) संख्या रेखा का प्रत्येक बिन्दु $\sqrt{m}$ के रूप का होता है, जहाँ $m$ एक प्राकृत संख्या है।

(iii) प्रत्येक वास्तविक संख्या एक अपरिमेय संख्या होती है।

Show Answer Missing

2. क्या सभी धनात्मक पूर्णांकों के वर्गमूल अपरिमेय होते हैं? यदि नहीं, तो एक ऐसी संख्या के वर्गमूल का उदाहरण दीजिए जो एक परिमेय संख्या है।

Show Answer Missing

3. दिखाइए कि संख्या रेखा पर $\sqrt{5}$ को किस प्रकार निरूपित किया जा सकता है।

Show Answer Missing

4. कक्षा के लिए क्रियाकलाप (वर्गमूल सर्पिल की रचना ) : कागज की एक बड़ी शीट लीजिए और नीचे दी गई विधि से “वर्गमूल सर्पिल” (square root spiral) की रचना कीजिए। सबसे पहले एक बिन्दु $O$ लीजिए और एकक लंबाई का रेखाखंड (line segment) OP खींचिए। एकक लंबाई वाले $\mathrm{OP} _{1}$ पर लंब रेखाखंड $\mathrm{P} _{1} \mathrm{P} _{2}$ खींचिए (देखिए आकृति 1.9)। अब $\mathrm{OP} _{2}$ पर लंब रेखाखंड $\mathrm{P} _{2} \mathrm{P} _{3}$ खींचिए। तब $\mathrm{OP} _{3}$ पर लंब रेखाखंड $\mathrm{P} _{3} \mathrm{P} _{4}$ खींचिए।

आकृति 1.9 : वर्गमूल सर्पिल की रचना इस प्रक्रिया को जारी रखते हुए $\mathrm{OP} _{\mathrm{n}-1}$ पर एकक लंबाई वाला लंब रेखाखंड खींचकर आप रेखाखंड $\mathrm{P} _{\mathrm{n}-1} \mathrm{P} _{\mathrm{n}}$ प्राप्त कर सकते हैं। इस प्रकार आप बिन्दु $\mathrm{O}, \mathrm{P} _{1}, \mathrm{P} _{2}, \mathrm{P} _{3}, \ldots, \mathrm{P} _{\mathrm{n}}, \ldots$ प्राप्त कर लेंगे और उन्हें मिलाकर $\sqrt{2}, \sqrt{3}, \sqrt{4}, \ldots$ को दर्शाने वाला एक सुंदर सर्पिल प्राप्त कर लेंगे।

Show Answer Missing

1.3 वास्तविक संख्याएँ और उनके दशमलव प्रसार

इस अनुच्छेद में, हम एक अलग दृष्टिकोण से परिमेय और अपरिमेय संख्याओं का अध्ययन करेंगे। इसके लिए हम वास्तविक संख्याओं के दशमलव प्रसार (expansions) पर विचार करेंगे और देखेंगे कि क्या हम परिमेय संख्याओं और अपरिमेय संख्याओं में भेद करने के लिए इन प्रसारों का प्रयोग कर सकते हैं या नहीं। यहाँ हम इस बात की भी व्याख्या करेंगे कि वास्तविक संख्याओं के दशमलव प्रसार का प्रयोग करके किस प्रकार संख्या रेखा पर वास्तविक संख्याओं को प्रदर्शित किया जाता है। क्योंकि हम अपरिमेय संख्याओं की तुलना में परिमेय संख्याओं से अधिक परिचित हैं, इसलिए हम अपनी चर्चा इन्हीं संख्याओं से प्रारंभ करेंगे। यहाँ इनके तीन उदाहरण दिए गए हैं : $\frac{10}{3}, \frac{7}{8}, \frac{1}{7}$ । शेषफलों पर विशेष ध्यान दीजिए और देखिए कि क्या आप कोई प्रतिरूप (pattern) प्राप्त कर सकते हैं।

उदाहरण 5 : $ \frac{10}{3}, \frac{7}{8}$ और $\frac{1}{7}$ के दशमलव प्रसार ज्ञात कीजिए।

हल :

शेष : $1,1,1,1,1 \ldots$ भाजक : 3

शेष : $3,2,6,4,5,1$, $3,2,6,4,5,1, \ldots$

भाजक : 7

यहाँ आपने किन-किन बातों पर ध्यान दिया है? आपको कम से कम तीन बातों पर ध्यान देना चाहिए।

(i) कुछ चरण के बाद शेष या तो 0 हो जाते हैं या स्वयं की पुनरावृत्ति करना प्रारंभ कर देते हैं।

(ii) शेषों की पुनरावृत्ति शृंखला में प्रविष्टियों (entries) की संख्या भाजक से कम होती है ( $\frac{1}{3}$ में एक संख्या की पुनरावृत्ति होती है और भाजक 3 है, $\frac{1}{7}$ में शेषों की पुनरावृत्ति शृंखला में छः प्रविष्टियाँ 326451 हैं और भाजक 7 है)।

(iii) यदि शेषों की पुनरावृत्ति होती हो, तो भागफल (quotient) में अंकों का एक पुनरावृत्ति खंड प्राप्त होता है ( $\frac{1}{3}$ के लिए भागफल में 3 की पुनरावृत्ति होती है और $\frac{1}{7}$ के लिए भागफल में पुनरावृत्ति खंड 142857 प्राप्त होता है)।

यद्यपि केवल ऊपर दिए गए उदाहरणों से हमने यह प्रतिरूप प्राप्त किया है, परन्तु यह $\frac{p}{q}$ $(q \neq 0)$ के रूप की सभी परिमेय संख्याओं पर लागू होता है। $q$ से $p$ को भाग देने पर दो मुख्य बातें घटती हैं - या तो शेष शून्य हो जाता है या कभी भी शून्य नहीं होता है और तब हमें शेषफलों की एक पुनरावृत्ति शृंखला प्राप्त होती है। आइए हम प्रत्येक स्थिति पर अलग-अलग विचार करें।

स्थिति (i) : शेष शून्य हो जाता है।

$\frac{7}{8}$ वाले उदाहरण में हमने यह देखा है कि कुछ चरणों के बाद शेष शून्य हो जाता है और$\frac{7}{8}$ का दशमलव प्रसार 0.875 है। अन्य उदाहरण हैं : $\frac{1}{2}=0.5, \frac{639}{250}=2.556$ है। इन सभी स्थितियों में कुछ परिमित चरणों के बाद दशमलव प्रसार का अंत हो जाता है। हम ऐसी संख्याओं के दशमलव प्रसार को सांत (terminating) दशमलव कहते हैं।

स्थिति (ii) : शेष कभी भी शून्य नहीं होता है।

$\frac{1}{3}$ और $\frac{1}{7}$ वाले उदाहरणों में, हम यह पाते हैं कि कुछ चरणों के बाद शेष की पुनरावृत्ति होने लगती है, जिससे दशमलव प्रसार निरंतर जारी रहता है। दूसरे शब्दों में, हमें भागफल में अंकों का एक पुनरावृत्ति खंड प्राप्त होता है। तब हम यह कहते हैं कि यह प्रसार अनवसानी आवर्ती (non-terminating recurring) है। उदाहरण के लिए, $\frac{1}{3}=0.3333 \ldots$ और $\frac{1}{7}=0.142857142857142857 \ldots$ है।

यह दिखाने के लिए कि $\frac{1}{3}$ के भागफल में 3 की पुनरावृत्ति होती है, हम इसे $0 . \overline{3}$ के रूप में लिखते हैं। इसी प्रकार, क्योंकि $\frac{1}{7}$ के भागफल में अंकों के खंड 142857 की पुनरावृत्ति होती है, इसलिए हम $\frac{1}{7}$ को $0 . \overline{142857}$ के रूप में लिखते हैं, जहाँ अंकों के ऊपर लगाया गया दंड, अंकों के उस खंड को प्रकट करता है जिसकी पुनरावृत्ति होती है। साथ ही, $3.57272 \ldots$ को $3.5 \overline{72}$ के रूप में लिखा जा सकता है। अतः इन सभी उदाहरणों से अनवसानी आवर्त (पुनरावृत्ति) दशमलव प्रसार प्राप्त होते हैं।

इस तरह हम यह देखते हैं कि परिमेय संख्याओं के दशमलव प्रसार के केवल दो विकल्प होते हैं या तो वे सांत होते हैं या अनवसानी (असांत) आवर्ती होते हैं।

इसके विपरीत अब आप यह मान लीजिए कि संख्या रेखा पर चलने पर आपको 3.142678 जैसी संख्याएँ प्राप्त होती हैं जिसका दशमलव प्रसार सांत होता है या $1.272727 \ldots$, अर्थात् $1 . \overline{27}$ जैसी संख्या प्राप्त होती है, जिसका दशमलव प्रसार अनवसानी आवर्ती है। इससे क्या आप यह निष्कर्ष निकाल सकते हैं कि यह एक परिमेय संख्या है? इसका उत्तर है, हाँ!

इसे हम सिद्ध नहीं करेंगे, परन्तु कुछ उदाहरण लेकर इस तथ्य को प्रदर्शित करेंगे। सांत स्थितियाँ तो सरल हैं।

उदाहरण 6: दिखाइए कि 3.142678 एक परिमेय संख्या है। दूसरे शब्दों, में 3.142678 को $\frac{p}{q}$ के रूप में व्यक्त कीजिए, जहाँ $p$ और $q$ पूर्णांक हैं और $q \neq 0$ है।

हल : यहाँ $3.142678=\frac{3142678}{1000000}$ है। अत: यह एक परिमेय संख्या है।

आइए अब हम उस स्थिति पर विचार करें, जबकि दशमलव प्रसार अनवसानी आवर्ती हो।

उदाहरण : 7 दिखाइए कि $0.3333 \ldots=0 . \overline{3}$ को $\frac{p}{q}$ के रूप में व्यक्त किया जा सकता है, जहाँ $p$ और $q$ पूर्णांक हैं और $q \neq 0$ है।

हल : क्योंकि हम यह नहीं जानते हैं कि $0 . \overline{3}$ क्या है, अतः आइए इसे हम ’ $x$ ’ मान लें।

$$ x=0.3333 \ldots $$

अब, यही वह स्थिति है जहाँ हमें कुछ युक्ति लगानी पड़ेगी। यहाँ,अब,

$$ 10 x=10 \times(0.333 \ldots)=3.333 \ldots $$

$$ 3.3333 \ldots=3+x \text {, चूँकि } x=0.3333 \ldots \text { है। } $$

इसलिए,

$$ 10 x=3+x $$

$x$ के लिए हल करने पर, हमें यह प्राप्त होता है:

$$ 9 x=3 \text {, i.e., } x=\frac{1}{3} $$

उदाहरण 8 : दिखाइए कि $1.272727 \ldots=1 . \overline{27}$ को $\frac{p}{q}$ के रूप में व्यक्त किया जा सकता है, जहाँ $p$ और $q$ पूर्णांक हैं और $q \neq 0$ है।

हल : मान लीजिए $x=1.272727 \ldots$ है। क्योंकि यहाँ दो अंकों की पुनरावृत्ति है, इसलिए हम $x$ को 100 से गुणा करते हैं। ऐसा करने पर, हमें यह प्राप्त होता है :

अतः, $$ 100 x=127.2727 \ldots $$

इसलिए,

$$ 100 x=126+1.272727 \ldots=126+x $$

$$ 100 x-x=126, \text { अर्थात् } 99 x=126 $$

$$ x=\frac{126}{99}=\frac{14}{11} $$

आप इसके इस विलोम की जाँच कर सकते हैं कि $\frac{14}{11}=1 . \overline{27}$ है।

उदाहरण 9 : दिखाइए कि $0.2353535 \ldots=0.2 \overline{35}$ को $\frac{p}{q}$ के रूप में व्यक्त कर सकते हैं, जहाँ $p$ और $q$ पूर्णांक हैं और $q \neq 0$ है।

हल : मान लीजिए $x=0.2 \overline{35}$ है। यहाँ यह देखिए कि 2 की पुनरावृत्ति नहीं होती है, परन्तु खंड 35 की पुनरावृत्ति होती है। क्योंकि दो अंकों की पुनरावृत्ति हो रही है, इसलिए हम $x$ को 100 से गुणा करते हैं। ऐसा करने पर, हमें यह प्राप्त होता है :

$$ \begin{aligned} 100 x & =23.53535 \ldots \\ 100 x & =23.3+0.23535 \ldots=23.3+x \\ 99 x & =23.3 \end{aligned} $$ अतः, $99 x=23.3$

अर्थात्, $$ 99 x=\frac{233}{10} \text {,जिससे} x=\frac{233}{990} \text {हुआ।} $$

आप इसके विलोम, अर्थात् $\frac{233}{990}=0.2 \overline{35}$ की भी जाँच कर सकते हैं।

अतः अनवसानी आवर्ती दशमलव प्रसार वाली प्रत्येक संख्या को $\frac{p}{q}(q \neq 0)$ के रूप में व्यक्त किया जा सकता है, जहाँ $p$ और $q$ पूर्णांक हैं। आइए हम अपने परिणामों को संक्षेप में इस प्रकार व्यक्त करें:

एक परिमेय संख्या का दशमलव प्रसार या तो सांत होता है या अनवसानी आवर्ती होता है। साथ ही, वह संख्या, जिसका दशमलव प्रसार सांत या अनवसानी आवर्ती है, एक परिमेय संख्या होती है।

अब हम यह जानते हैं कि परिमेय संख्या का दशमलव प्रसार क्या हो सकता है। अब प्रश्न उठता हैं कि अपरिमेय संख्याओं का दशमलव प्रसार क्या होता है? ऊपर बताए गए गुण के अनुसार हम यह निष्कर्ष निकाल सकते हैं कि इन संख्याओं के दशमलव प्रसार अनवसानी अनावर्ती (non-terminating non-recurring) हैं। अतः ऊपर परिमेय संख्याओं के लिए बताए गए गुण के समान अपरिमेय संख्याओं का गुण यह होता है:

एक अपरिमेय संख्या का दशमलव प्रसार अनवसानी अनावर्ती होता है। विलोमतः वह संख्या जिसका दशमलव प्रसार अनवसानी अनावर्ती होता है, अपरिमेय होती है।

पिछले अनुच्छेद में हमने एक अपरिमेय संख्या $0.10110111011110 \ldots$ की चर्चा की थी। मान लीजिए कि $s=0.10110111011110 \ldots$ है। ध्यान दीजिए कि यह अनवसानी अनावर्ती है। अतः ऊपर बताए गए गुण के अनुसार यह अपरिमेय है। साथ ही, यह भी ध्यान दीजिए कि आप $\mathrm{s}$ के समरूप अपरिमित रूप से अनेक अपरिमेय संख्याएँ जनित कर सकते हैं।

सुप्रसिद्ध अपरिमेय संख्याओं $\sqrt{2}$ और $\pi$ के संबंध में आप क्या जानते हैं? यहाँ कुछ चरण तक उनके दशमलव प्रसार दिए गए हैं:

$$ \begin{aligned} \sqrt{2} & =1.4142135623730950488016887242096 \ldots \\ \pi & =3.14159265358979323846264338327950 \ldots \end{aligned} $$

( ध्यान दीजिए कि हम प्राय: $\frac{22}{7}$ को $\pi$ का एक सन्निकट मान मानते हैं, जबकि $\pi \neq \frac{22}{7}$ है।)

वर्षों से गणितज्ञों ने अपरिमेय संख्याओं के दशमलव प्रसार में अधिक से अधिक अंकों को उत्पन्न करने की विभिन्न तकनीक विकसित की हैं। उदाहरण के लिए, संभवतः आपने विभाजन विधि (division method) से $\sqrt{2}$ के दशमलव प्रसार में अंकों को ज्ञात करना अवश्य ही सीखा होगा। यह एक रोचक बात है कि सुल्बसूत्रों (जीवा-नियमों) में, जो वैदिक युग ( 800 ई.पू. -500 ई.पू.) के गणितीय ग्रंथ हैं, हमें $\sqrt{2}$ का एक सन्निकट मान प्राप्त होता है, जो यह है:

$$ \sqrt{2}=1+\frac{1}{3}+\left(\frac{1}{4} \times \frac{1}{3}\right)-\left(\frac{1}{34} \times \frac{1}{4} \times \frac{1}{3}\right)=1.4142156 $$

ध्यान दीजिए कि यह वही है जो कि ऊपर प्रथम पाँच दशमलव स्थानों तक के लिए दिया गया है। $\pi$ के दशमलव प्रसार में अधिक से अधिक अंक प्राप्त करने का इतिहास काफी रोचक रहा है।

यूनान का प्रबुद्ध व्यक्ति आर्कमिडीज ही वह पहला व्यक्ति था जिसने $\pi$ के दशमलव प्रसार में अंकों को अभिकलित किया था। उसने यह दिखाया कि $3.140845<\pi<3.142857$ होता है। आर्यभट्ट ( $476-550$ ई०) ने जो एक महान भारतीय गणितज्ञ और खगोलविद थे, चार दशमलव स्थानों तक शुद्ध $\pi$ का मान (3.1416) ज्ञात किया था। उच्च चाल कंप्यूटरों और उन्नत कलन विधियों (algorithms) का प्रयोग करके 1.24 ट्रिलियन से भी अधिक दशमलव स्थानों तक $\pi$ का मान अभिकलित किया जा चुका है।

आर्कमिडीज ( 287 सा० यु० पू० -212 सा० यु० पू० )

आकृति 1.10

आइए अब हम देखें कि किस प्रकार अपरिमेय संख्याएँ प्राप्त की जाती हैं।

उदाहरण 10: $ \frac{1}{7}$ और $\frac{2}{7}$ के बीच की एक अपरिमेय संख्या ज्ञात कीजिए।.

हल : हमने देखा है कि $\frac{1}{7}=0 . \overline{142857}$ है। अतः हम सरलता से यह परिकलित कर सकते हैं कि $\frac{2}{7}=0 . \overline{285714}$ है।

$\frac{1}{7}$ और $\frac{2}{7}$ के बीच की एक अपरिमेय संख्या ज्ञात करने के लिए, हम एक ऐसी संख्या ज्ञात करते हैं जो इन दोनों के बीच स्थित अनवसानी अनावर्ती होती है। इस प्रकार की आप अपरिमित रूप से अनेक संख्याएँ ज्ञात कर सकते हैं।

इस प्रकार की संख्या का एक उदाहरण $0.150150015000150000 \ldots$ है।

प्रश्नावली 1.3

1. निम्नलिखित भिन्नों को दशमलव रूप में लिखिए और बताइए कि प्रत्येक का दशमलव प्रसार किस प्रकार का है :

(i) $\frac{36}{100}$ $\quad$ (ii) $\frac{1}{11}$ $\quad$ (iii) $4 \frac{1}{8}$

(iv) $\frac{3}{13}$ $\quad$ (v) $\frac{2}{11}$ $\quad$ (vi) $\frac{329}{400}$

Show Answer Missing

2. आप जानते हैं कि $\frac{1}{7}=0 . \overline{142857}$ है। वास्तव में, लंबा भाग दिए बिना क्या आप यह बता सकते हैं कि $\frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}$ के दशमलव प्रसार क्या हैं? यदि हाँ, तो कैसे?

[संकेत : $\frac{1}{7}$ का मान ज्ञात करते समय शेषफलों का अध्ययन सावधानी से कीजिए।]

Show Answer Missing

3. निम्नलिखित को $\frac{p}{q}$ के रूप में व्यक्त कीजिए, जहाँ $p$ और $q$ पूर्णांक हैं तथा $q \neq 0$ है:

(i) $0 . \overline{6}$ $\quad$ (ii) $0.4 \overline{7}$ $\quad$ (iii) $0 . \overline{001}$

Show Answer Missing

4. $0.99999 \ldots$ को $\frac{p}{q}$ के रूप में व्यक्त कीजिए। क्या आप अपने उत्तर से आश्चर्यचकित है? अपने अध्यापक और कक्षा के सहयोगियों के साथ उत्तर की सार्थकता पर चर्चा कीजिए।

Show Answer Missing

5. $\frac{1}{17}$ के दशमलव प्रसार में अंकों के पुनरावृत्ति खंड में अंकों की अधिकतम संख्या क्या हो सकती है? अपने उत्तर की जाँच करने के लिए विभाजन-क्रिया कीजिए।

Show Answer Missing

6. $\frac{p}{q}(q \neq 0)$ के रूप की परिमेय संख्याओं के अनेक उदाहरण लीजिए, जहाँ $p$ और $q$ पूर्णांक हैं, जिनका 1 के अतिरिक्त अन्य कोई उभयनिष्ठ गुणनखंड नहीं है और जिसका सांत दशमलव निरूपण (प्रसार) है। क्या आप यह अनुमान लगा सकते हैं कि $q$ को कौन-सा गुण अवश्य संतुष्ट करना चाहिए?

Show Answer Missing

7. ऐसी तीन संख्याएँ लिखिए जिनके दशमलव प्रसार अनवसानी अनावर्ती हों।

Show Answer Missing

8. परिमेय संख्याओं $\frac{5}{7}$ और $\frac{9}{11}$ के बीच की तीन अलग-अलग अपरिमेय संख्याएँ ज्ञात कीजिए।

Show Answer Missing

9. बताइए कि निम्नलिखित संख्याओं में कौन-कौन संख्याएँ परिमेय और कौन-कौन संख्याएँ अपरिमेय हैं:

(i) $\sqrt{23}$ $\quad$ (ii) $\sqrt{225}$ $\quad$ (iii) 0.3796 $\quad$ (iv) $7.478478 \ldots$ $\quad$ (v) $1.101001000100001 \ldots$

Show Answer Missing

1.4 वास्तविक संख्याओं पर संक्रियाएँ

पिछली कक्षाओं में, आप यह पढ़ चुके हैं कि परिमेय संख्याएँ योग और गुणन के क्रमविनिमेय (commutative), साहचर्य (associative) और बंटन (distributive) नियमों को संतुष्ट करती हैं और हम यह भी पढ़ चुके हैं कि यदि हम दो परिमेय संख्याओं को जोड़ें, घटाएँ, गुणा करें या (शून्य छोड़कर) भाग दें, तब भी हमें एक परिमेय संख्या प्राप्त होती है [अर्थात् जोड़, घटाना, गुणा और भाग के सापेक्ष परिमेय संख्याएँ संवृत (closed) होती हैं]। यहाँ हम यह भी देखते हैं कि अपरिमेय संख्याएँ भी योग और गुणन के क्रमविनिमेय, साहचर्य और बंटन-नियमों को संतुष्ट करती हैं। परन्तु, अपरिमेय संख्याओं के योग, अंतर, भागफल और गुणनफल सदा अपरिमेय नहीं होते हैं। उदाहरण के लिए, $(\sqrt{2})-(\sqrt{2}),(\sqrt{3}) \cdot(\sqrt{3})$ और $\frac{\sqrt{17}}{\sqrt{17}}$ परिमेय संख्याएँ हैं।

आइए अब यह देखें कि जब एक परिमेय संख्या में अपरिमेय संख्या जोड़ते हैं और एक परिमेय संख्या को एक अपरिमेय संख्या से गुणा करते हैं, तो क्या होता है। उदाहरण के लिए, $\sqrt{3}$ एक अपरिमेय संख्या है। तब $2+\sqrt{3}$ और $2 \sqrt{3}$ क्या हैं? क्योंकि $\sqrt{3}$ एक अनवसानी अनावर्ती दशमलव प्रसार है, इसलिए यही बात $2+\sqrt{3}$ और $2 \sqrt{3}$ के लिए भी सत्य है। अतः $2+\sqrt{3}$ और $2 \sqrt{3}$ भी अपरिमेय संख्याएँ हैं।

उदाहरण 11 : जाँच कीजिए कि $7 \sqrt{5}, \frac{7}{\sqrt{5}}, \sqrt{2}+21, \pi-2$ अपरिमेय संख्याएँ हैं या नहीं।

हल : $\sqrt{5}=2.236 \ldots, \sqrt{2}=1.4142 \ldots, \pi=3.1415 \ldots$ हैं।

तब $7 \sqrt{5}=15.652 \ldots, \frac{7}{\sqrt{5}}=\frac{7 \sqrt{5}}{\sqrt{5} \sqrt{5}}=\frac{7 \sqrt{5}}{5}=3.1304 \ldots$ हैं।

$\sqrt{2}+21=22.4142 \ldots, \pi-2=1.1415 \ldots$

ये सभी अनवसानी अनावर्ती दशमलव हैं। अतः ये सभी अपरिमेय संख्याएँ हैं।

उदाहरण 12 : $ 2 \sqrt{2}+5 \sqrt{3}$ और $\sqrt{2}-3 \sqrt{3}$ को जोड़िए।

हल : $(2 \sqrt{2}+5 \sqrt{3})+(\sqrt{2}-3 \sqrt{3})=(2 \sqrt{2}+\sqrt{2})+(5 \sqrt{3}-3 \sqrt{3})$

$$ =(2+1) \sqrt{2}+(5-3) \sqrt{3}=3 \sqrt{2}+2 \sqrt{3} $$

उदाहरण 13 : $ 6 \sqrt{5}$ को $2 \sqrt{5}$ से गुणा कीजिए।

हल : $6 \sqrt{5} \times 2 \sqrt{5}=6 \times 2 \times \sqrt{5} \times \sqrt{5}=12 \times 5=60$

उदाहरण 14: $ 8 \sqrt{15}$ को $2 \sqrt{3}$ से भाग दीजिए।

हल : $8 \sqrt{15} \div 2 \sqrt{3}=\frac{8 \sqrt{3 \times 5}}{2 \sqrt{3}}=\frac{8 \sqrt{3} \times \sqrt{5}}{2 \sqrt{3}}=4 \sqrt{5}$

इन उदाहरणों से आप निम्नलिखित तथ्यों के होने की आशा कर सकते हैं जो सत्य हैं:

(i) एक परिमेय संख्या और एक अपरिमेय संख्या का जोड़ या घटाना अपरिमेय होता है।

(ii) एक अपरिमेय संख्या के साथ एक शून्येतर (non-zero) परिमेय संख्या का गुणनफल या भागफल अपरिमेय होता है।

(iii) यदि हम दो अपरिमेय संख्याओं को जोड़ें, घटायें, गुणा करें या एक अपरिमेय संख्या को दूसरी अपरिमेय संख्या से भाग दें, तो परिणाम परिमेय या अपरिमेय कुछ भी हो सकता है।

अब हम अपनी चर्चा वास्तविक संख्याओं के वर्गमूल निकालने की संक्रिया (operation) पर करेंगे। आपको याद होगा कि यदि $a$ एक प्राकृत संख्या है, तब $\sqrt{a}=b$ का अर्थ है $b^{2}=a$ और $b>0$ । यही परिभाषा धनात्मक वास्तविक संख्याओं पर भी लागू की जा सकती है।

मान लीजिए $a>0$ एक वास्तविक संख्या है। तब $\sqrt{a}=b$ का अर्थ है $b^{2}=a$ और $b>0$ है।

अनुच्छेद 1.2 में, हमने यह देखा है कि किस प्रकार संख्या रेखा पर $\sqrt{n}$ को, जहाँ $n$ एक धनात्मक पूर्णांक है, निरूपित किया जाता है। अब हम यह दिखाएँगे कि किस प्रकार $\sqrt{x}$ को, जहाँ $x$ एक दी हुई धनात्मक वास्तविक संख्या है, ज्यामितीय (geometrically) रूप से ज्ञात किया जाता है। उदाहरण के लिए, आइए हम इसे $x=3.5$ के लिए प्राप्त करें। अर्थात् हम $\sqrt{3.5}$ को

आकृति 1.11 ज्यामीतीय रूप से प्राप्त करेंगे।

एक दी हुई रेखा पर एक स्थिर बिन्दु $A$ से 3.5 एकक की दूरी पर चिह्न लगाने पर एक ऐसा बिन्दु $\mathrm{B}$ प्राप्त होता है, जिससे कि $\mathrm{AB}=3.5$ एकक (देखिए आकृति 1.11)। $\mathrm{B}$ से 1 एकक की दूरी पर चिह्न लगाइए और इस नए बिन्दु को $\mathrm{C}$ मान लीजिए। $\mathrm{AC}$ का मध्य-बिन्दु ज्ञात कीजिए और उस बिंदु को $\mathrm{O}$ मान लीजिए। $\mathrm{O}$ को केन्द्र और $\mathrm{OC}$ को त्रिज्या मानकर एक अर्धवृत्त बनाइए। $\mathrm{AC}$ पर लंब एक ऐसी रेखा खींचिए जो $\mathrm{B}$ से होकर जाती हो और अर्धवृत्त को $\mathrm{D}$ पर काटती हो। तब $\mathrm{BD}=\sqrt{3.5}$ है।

अधिक व्यापक रूप में, $\sqrt{x}$ का मान ज्ञात करने के लिए, जहाँ $x$ एक धनात्मक वास्तविक संख्या है, एक ऐसा बिंदु $\mathrm{B}$ लेते हैं, जिससे कि $\mathrm{AB}=x$ एकक हो और जैसा कि आकृति 1.16 में दिखाया गया है, एक ऐसा बिंदु $\mathrm{C}$ लीजिए जिससे कि $\mathrm{BC}=1$ एकक हो। तब, जैसा कि हमने स्थिति $x=3.5$ के लिए किया है, हमें $\mathrm{BD}=\sqrt{x}$ प्राप्त होगा (आकृति 1.12)।

आकृति 1.12

हम इस परिणाम को पाइथागोरस प्रमेय की सहायता से सिद्ध कर सकते हैं। ध्यान दीजिए कि आकृति 1.12 में, $\triangle \mathrm{OBD}$ एक समकोण त्रिभुज है। वृत्त की त्रिज्या $\frac{x+1}{2}$ एकक है।

अत:, $\mathrm{OC}=\mathrm{OD}=\mathrm{OA}=\frac{x+1}{2}$ एकक

अब, $\mathrm{OB}=x-\left(\frac{x+1}{2}\right)=\frac{x-1}{2}$.

अतः, पाइथागोरस प्रमेय लागू करने पर, हमें यह प्राप्त होता है:

$$ \mathrm{BD}^{2}=\mathrm{OD}^{2}-\mathrm{OB}^{2}=\left(\frac{x+1}{2}\right)^{2}-\left(\frac{x-1}{2}\right)^{2}=\frac{4 x}{4}=x $$

इससे यह पता चलता है कि $\mathrm{BD}=\sqrt{x}$ है।

इस रचना से यह दर्शाने की एक चित्रीय और ज्यामितीय विधि प्राप्त हो जाती है कि सभी वास्तविक संख्याओं $x>0$ के लिए, $\sqrt{x}$ का अस्तित्व है। यदि हम संख्या रेखा पर $\sqrt{x}$ की स्थिति जानना चाहते हैं, तो आइए हम रेखा $\mathrm{BC}$ को संख्या रेखा मान लें, $\mathrm{B}$ को शून्य मान लें और $\mathrm{C}$ को 1 मान लें, आदि-आदि। $\mathrm{B}$ को केन्द्र और $\mathrm{BD}$ को त्रिज्या मानकर एक चाप खींचिए जो संख्या रेखा को $\mathrm{E}$ पर काटता है (देखिए आकृति 1.13)। तब $\mathrm{E}, \sqrt{x}$ निरूपित करता है।

आकृति 1.13

अब हम वर्गमूल की अवधारणा को घनमूलों, चतुर्थमूलों और व्यापक रूप से $n$ वें मूलों, जहाँ $n$ एक धनात्मक पूर्णांक है, पर लागू करना चाहेंगे। आपको याद होगा कि पिछली कक्षाओं में आप वर्गमूलों और घनमूलों का अध्ययन कर चुके हैं।

$\sqrt[3]{8}$ क्या है? हम जानते हैं कि यह एक धनात्मक संख्या है जिसका घन 8 है, और आपने यह अवश्य अनुमान लगा लिया होगा कि $\sqrt[3]{8}=2$ है। आइए हम $\sqrt[5]{243}$ का मान ज्ञात करें। क्या आप एक ऐसी संख्या $b$ जानते हैं जिससे कि $b^{5}=243$ हो? उत्तर है 3 , अतः, $\sqrt[5]{243}=3$ हुआ।

इन उदाहरणों से क्या आप $\sqrt[n]{a}$ परिभाषित कर सकते हैं, जहाँ $a>0$ एक वास्तविक संख्या है और $n$ एक धनात्मक पूर्णांक है?

मान लीजिए $a>0$ एक वास्तविक संख्या है और $n$ एक धनात्मक पूर्णांक है। तब $\sqrt[n]{a}=b$, जबकि $b^{n}=a$ और $b>0$ । ध्यान दीजिए कि $\sqrt{2}, \sqrt[3]{8}, \sqrt[n]{a}$ आदि में प्रयुक्त प्रतीक " $\sqrt{ }$ " को करणी चिह्न (radical sign) कहा जाता है।

अब हम यहाँ वर्गमूलों से संबंधित कुछ सर्वसमिकाएँ (identities) दे रहे हैं जो विभिन्न विधियों से उपयोगी होती हैं। पिछली कक्षाओं में आप इनमें से कुछ सर्वसमिकाओं से परिचित हो चुके हैं। शेष सर्वसमिकाएँ वास्तविक संख्याओं के योग पर गुणन के बंटन नियम से और सर्वसमिका $(x+y)(x-y)=x^{2}-y^{2}$ से, जहाँ $x$ और $y$ वास्तविक संख्याएँ हैं, प्राप्त होती हैं।

मान लीजिए $a$ और $b$ धनात्मक वास्तविक संख्याएँ हैं। तब,

(i) $\sqrt{a b}=\sqrt{a} \sqrt{b}$

(ii) $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$

(iii) $(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=a-b$

(iv) $(a+\sqrt{b})(a-\sqrt{b})=a^{2}-b$

(v) $(\sqrt{a}+\sqrt{b})(\sqrt{c}+\sqrt{d})=\sqrt{a c}+\sqrt{a d}+\sqrt{b c}+\sqrt{b d}$

(vi) $(\sqrt{a}+\sqrt{b})^{2}=a+2 \sqrt{a b}+b$

आइए हम इन सर्वसमिकाओं की कुछ विशेष स्थितियों पर विचार करें।

उदाहरण 15 : निम्नलिखित व्यंजकों को सरल कीजिए:

(i) $(5+\sqrt{7})(2+\sqrt{5})$

(ii) $(5+\sqrt{5})(5-\sqrt{5})$

(iii) $(\sqrt{3}+\sqrt{7})^{2}$

(iv) $(\sqrt{11}-\sqrt{7})(\sqrt{11}+\sqrt{7})$

हल : (i) $(5+\sqrt{7})(2+\sqrt{5})=10+5 \sqrt{5}+2 \sqrt{7}+\sqrt{35}$

(ii) $(5+\sqrt{5})(5-\sqrt{5})=5^{2}-(\sqrt{5})^{2}=25-5=20$

(iii) $(\sqrt{3}+\sqrt{7})^{2}=(\sqrt{3})^{2}+2 \sqrt{3} \sqrt{7}+(\sqrt{7})^{2}=3+2 \sqrt{21}+7=10+2 \sqrt{21}$

(iv) $(\sqrt{11}-\sqrt{7})(\sqrt{11}+\sqrt{7})=(\sqrt{11})^{2}-(\sqrt{7})^{2}=11-7=4$

टिप्पणी: ध्यान दीजिए कि ऊपर के उदाहरण में दिए गए शब्द “सरल करना” का अर्थ यह है कि व्यंजक को परिमेय संख्याओं और अपरिमेय संख्याओं के योग के रूप में लिखना चाहिए।

हम इस समस्या पर विचार करते हुए कि $\frac{1}{\sqrt{2}}$ संख्या रेखा पर कहाँ स्थित है, इस अनुच्छेद को यहीं समाप्त करते हैं। हम जानते हैं कि यह एक अपरिमेय है। यदि हर एक परिमेय संख्या हो, तो इसे सरलता से हल किया जा सकता है। आइए हम देखें कि क्या हम इसके हर का परिमेयकरण (rationalise) कर सकते हैं, अर्थात् क्या हर को एक परिमेय संख्या में परिवर्तित कर सकते हैं। इसके लिए हमें वर्गमूलों से संबंधित सर्वसमिकाओं की आवश्यकता होती है। आइए हम देखें कि इसे कैसे किया जा सकता है।

उदाहरण 16 : $\frac{1}{\sqrt{2}}$ के हर का परिमेयकरण कीजिए।

हल : हम $\frac{1}{\sqrt{2}}$ को एक ऐसे तुल्य व्यंजक के रूप में लिखना चाहते हैं, जिसमें हर एक परिमेय संख्या हो। हम जानते हैं कि $\sqrt{2} \cdot \sqrt{2}$ परिमेय है। हम यह भी जानते हैं कि $\frac{1}{\sqrt{2}}$ को $\frac{\sqrt{2}}{\sqrt{2}}$ से गुणा करने पर हमें एक तुल्य व्यंजक प्राप्त होता है, क्योंकि $\frac{\sqrt{2}}{\sqrt{2}}=1$ है। अतः इन दो तथ्यों को एक साथ लेने पर, हमें यह प्राप्त होता है:

$$ \frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2} $$

इस रूप में $\frac{1}{\sqrt{2}}$ को संख्या रेखा पर स्थान निर्धारण सरल हो जाता है। यह 0 और $\sqrt{2}$ के मध्य स्थित है।

उदाहरण 17 : $ \frac{1}{2+\sqrt{3}}$ के हर का परिमेयकरण कीजिए।

हल : इसके लिए हम ऊपर दी गई सर्वसमिका (iv) का प्रयोग करते हैं। $\frac{1}{2+\sqrt{3}}$ को $2-\sqrt{3}$ से गुणा करने और भाग देने पर, हमें यह प्राप्त होता है:

$$ \frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}=\frac{2-\sqrt{3}}{4-3}=2-\sqrt{3} $$

उदाहरण 18: $\frac{5}{\sqrt{3}-\sqrt{5}}$ के हर का परिमेयकरण कीजिए।

हल : यहाँ हम ऊपर दी गई सर्वसमिका (iii) का प्रयोग करते हैं।

अतः, $\quad \frac{5}{\sqrt{3}-\sqrt{5}}=\frac{5}{\sqrt{3}-\sqrt{5}} \times \frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}+\sqrt{5}}=\frac{5(\sqrt{3}+\sqrt{5})}{3-5}=\left(\frac{-5}{2}\right)(\sqrt{3}+\sqrt{5})$

उदाहरण 19: $ \frac{1}{7+3 \sqrt{2}}$ के हर का परिमेयकरण कीजिए।

हल : $\frac{1}{7+3 \sqrt{2}}=\frac{1}{7+3 \sqrt{2}} \times\left(\frac{7-3 \sqrt{2}}{7-3 \sqrt{2}}\right)=\frac{7-3 \sqrt{2}}{49-18}=\frac{7-3 \sqrt{2}}{31}$

अतः जब एक व्यंजक के हर में वर्गमूल वाला एक पद होता है (या कोई संख्या करणी चिह्न के अंदर हो), तब इसे एक ऐसे तुल्य व्यंजक में, जिसका हर एक परिमेय संख्या है, रूपांतरित करने की क्रियाविधि को हर का परिमेयकरण (rationalising the denominator) कहा जाता है।

प्रश्नावली 1.4

1. बताइए नीचे दी गई संख्याओं में कौन-कौन परिमेय हैं और कौन-कौन अपरिमेय हैं:

(i) $2-\sqrt{5}$

(ii) $(3+\sqrt{23})-\sqrt{23}$

(iii) $\frac{2 \sqrt{7}}{7 \sqrt{7}}$

(iv) $\frac{1}{\sqrt{2}}$

(v) $2 \pi$

Show Answer Missing

2. निम्नलिखित व्यंजकों में से प्रत्येक व्यंजक को सरल कीजिए:

(i) $(3+\sqrt{3})(2+\sqrt{2})$

(ii) $(3+\sqrt{3})(3-\sqrt{3})$

(iii) $(\sqrt{5}+\sqrt{2})^{2}$

(iv) $(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})$

Show Answer Missing

3. आपको याद होगा कि $\pi$ को एक वृत्त की परिधि (मान लीजिए $c$ ) और उसके व्यास (मान लीजिए $d$ ) के अनुपात से परिभाषित किया जाता है, अर्थात् $\pi=\frac{c}{d}$ है। यह इस तथ्य का अंतर्विरोध करता हुआ प्रतीत होता है कि $\pi$ अपरिमेय है। इस अंतर्विरोध का निराकरण आप किस प्रकार करेंगे?

Show Answer Missing

4. संख्या रेखा पर $\sqrt{9.3}$ को निरूपित कीजिए।

Show Answer Missing

5. निम्नलिखित के हरों का परिमेयकरण कीजिए:

(i) $\frac{1}{\sqrt{7}}$

(ii) $\frac{1}{\sqrt{7}-\sqrt{6}}$

(iii) $\frac{1}{\sqrt{5}+\sqrt{2}}$

(iv) $\frac{1}{\sqrt{7}-2}$

Show Answer Missing

1.5 वास्तविक संख्याओं के लिए घातांक-नियम

क्या आपको याद है कि निम्नलिखित का सरलीकरण किस प्रकार करते हैं?

(i) $17^{2} \cdot 17^{5}=$

(ii) $\left(5^{2}\right)^{7}=$

(iii) $\frac{23^{10}}{23^{7}}=$

(iv) $7^{3} \cdot 9^{3}=$

क्या आपने निम्नलिखित उत्तर प्राप्त किए थे?

(i) $17^{2} \cdot 17^{5}=17^{7}$

(ii) $\left(5^{2}\right)^{7}=5^{14}$

(iii) $\frac{23^{10}}{23^{7}}=23^{3}$

(iv) $7^{3} \cdot 9^{3}=63^{3}$

इन उत्तरों को प्राप्त करने के लिए, आपने निम्नलिखित घातांक-नियमों (laws of exponents) का प्रयोग अवश्य किया होगा, [यहाँ $a, n$ और $m$ प्राकृत संख्याएँ हैं। आपको याद होगा कि $a$ को आधार (base) और $m$ और $n$ को घातांक (exponents) कहा जाता है।] जिनका अध्ययन आप पिछली कक्षाओं में कर चुके हैं:

(i) $a^{m} \cdot a^{n}=a^{m+n}$

(ii) $\left(a^{m}\right)^{n}=a^{m n}$

(iii) $\frac{a^{m}}{a^{n}}=a^{m-n}, m>n$

(iv) $a^{m} b^{m}=(a b)^{m}$

$(a)^{0}$ क्या है? इसका मान 1 है। आप यह अध्ययन पहले ही कर चुके हैं कि $(a)^{0}=1$ होता है। अतः, (iii) को लागू करके, आप $\frac{1}{a^{n}}=a^{-n}$ प्राप्त कर सकते हैं। अब हम इन नियमों को ऋणात्मक घातांकों पर भी लागू कर सकते हैं।

अतः, उदाहरण के लिए :

$\text { (i) } 17^{2} \cdot 17^{-5}=17^{-3}=\frac{1}{17^{3}} $

$\text { (ii) }\left(5^{2}\right)^{-7}=5^{-14}$

(iii) $\frac{23^{-10}}{23^{7}}=23^{-17} \quad$

(iv) $(7)^{-3} \cdot(9)^{-3}=(63)^{-3}$

मान लीजिए हम निम्नलिखित अभिकलन करना चाहते हैं :

(i) $2^{\frac{2}{3}} \cdot 2^{\frac{1}{3}}$

(ii) $\left(\frac{1}{3^{5}}\right)^{4}$

(iii) $\frac{7^{\frac{1}{5}}}{7^{\frac{1}{3}}}$

(iv) $13^{\frac{1}{5}} \cdot 17^{\frac{1}{5}}$

हम ये अभिकलन किस प्रकार करेंगे? यह देखा गया है कि वे घातांक-नियम, जिनका अध्ययन हम पहले कर चुके हैं, उस स्थिति में भी लागू हो सकते हैं, जबकि आधार धनात्मक वास्तविक संख्या हो और घातांक परिमेय संख्या हो (आगे अध्ययन करने पर हम यह देखेंगे कि ये नियम वहाँ भी लागू हो सकते हैं, जहाँ घातांक वास्तविक संख्या हो।)। परन्तु, इन नियमों का कथन देने से पहले और इन नियमों को लागू करने से पहले, यह समझ लेना आवश्यक है कि, उदाहरण के लिए, $4^{\frac{3}{2}}$ क्या है। अतः, इस संबंध में हमें कुछ करना होगा।

$\sqrt[n]{a}$ को इस प्रकार परिभाषित किया जाता है, जहाँ $a>0$ एक वास्तविक संख्या है:

मान लीजिए $a>0$ एक वास्तविक संख्या है और $n$ एक धनात्मक पूर्णांक है। तब $\sqrt[n]{a}=b$ होता है, जबकि $b^{n}=a$ और $b>0$ हो।

घातांकों की भाषा में, हम $\sqrt[n]{a}=a^{\frac{1}{n}}$ के रूप में परिभाषित करते हैं। उदाहरण के लिए, $\sqrt[3]{2}=2^{\frac{1}{3}}$ है। अब हम $4^{\frac{3}{2}}$ को दो विधियों से देख सकते हैं।

$$ \begin{aligned} & 4^{\frac{3}{2}}=\left(4^{\frac{1}{2}}\right)^{3}=2^{3}=8 \\ & 4^{\frac{3}{2}}=\left(4^{3}\right)^{\frac{1}{2}}=(64)^{\frac{1}{2}}=8 \end{aligned} $$

अतः, हमें यह परिभाषा प्राप्त होती है:

मान लीजिए $a>0$ एक वास्तविक संख्या है तथा $m$ और $n$ ऐसे पूर्णांक हैं कि 1 के अतिरिक्त इनका कोई अन्य उभयनिष्ठ गुणनखंड नहीं है और $n>0$ है। तब,

$$ a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}=\sqrt[n]{a^{m}} $$

अतः वांछित विस्तृत घातांक नियम ये हैं:

मान लीजिए $a>0$ एक वास्तविक संख्या है और $p$ और $q$ परिमेय संख्याएँ हैं। तब,

(i) $a^{p} \cdot a^{q}=a^{p+q}$

(ii) $\left(a^{p}\right)^{q}=a^{p q}$

(iii) $\frac{a^{p}}{a^{q}}=a^{p-q}$

(iv) $a^{p} b^{p}=(a b)^{p}$

अब आप पहले पूछे गए प्रश्नों का उत्तर ज्ञात करने के लिए इन नियमों का प्रयोग कर सकते हैं।

उदाहरण 20 : सरल कीजिए: (i) $2^{\frac{2}{3}} \cdot 2^{\frac{1}{3}} \quad$

(ii) $\left(\frac{1}{3^{5}}\right)^{4}$

(iii) $\frac{7^{\frac{1}{5}}}{7^{\frac{1}{3}}}$

(iv) $13^{\frac{1}{5}} \cdot 17^{\frac{1}{5}}$

हल : (i) $2^{\frac{2}{3}} \cdot 2^{\frac{1}{3}}=2^{\left(\frac{2}{3}+\frac{1}{3}\right)}=2^{\frac{3}{3}}=2^{1}=2$

(ii) $\left(3^{\frac{1}{5}}\right)^{4}=3^{\frac{4}{5}}$

(iii) $\frac{7^{\frac{1}{5}}}{7^{\frac{1}{3}}}=7^{\left(\frac{1}{5}-\frac{1}{3}\right)}=7^{\frac{3-5}{15}}=7^{\frac{-2}{15}}$

(iv) $13^{\frac{1}{5}} \cdot 17^{\frac{1}{5}}=(13 \times 17)^{\frac{1}{5}}=221^{\frac{1}{5}}$

प्रश्नावली 1.5

1. ज्ञात कीजिए:

(i) $64^{\frac{1}{2}}$ $\quad$

(ii) $32^{\frac{1}{5}}$ $\quad$

(iii) $125^{\frac{1}{3}}$

Show Answer Missing

2. ज्ञात कीजिए:

(i) $9^{\frac{3}{2}}$ $\quad$

(ii) $32^{\frac{2}{5}}$ $\quad$

(iii) $16^{\frac{3}{4}}$ $\quad$

(iv) $125^{\frac{-1}{3}}$

Show Answer Missing

3. सरल कीजिए:

(i) $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$ $\quad$

(ii) $\left(\frac{1}{3^{3}}\right)^{7}$ $\quad$

(iii) $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$ $\quad$

(iv) $7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}$

Show Answer Missing

1.6 सारांश

इस अध्याय में, आपने निम्नलिखित बिन्दुओं का अध्ययन किया है:

1. संख्या $r$ को परिमेय संख्या कहा जाता है, यदि इसे $\frac{p}{q}$ के रूप में लिखा जा सकता हो, जहाँ $p$ और $q$ पूर्णांक हैं और $q \neq 0$ है।

2. संख्या $s$ को अपरिमेय संख्या कहा जाता है, यदि इसे $\frac{p}{q}$ के रूप में न लिखा जा सकता हो, जहाँ $p$ और $q$ पूर्णांक हैं और $q \neq 0$ है।

3. एक परिमेय संख्या का दशमलव प्रसार या तो सांत होता है या अनवसानी आवर्ती होता है। साथ ही, वह संख्या, जिसका दशमलव प्रसार सांत या अनवसानी आवर्ती है, परिमेय होती है।

4. एक अपरिमेय संख्या का दशमलव प्रसार अनवसानी अनावर्ती होता है। साथ ही, वह संख्या जिसका दशमलव प्रसार अनवसानी अनावर्ती है, अपरिमेय होती है।

5. सभी परिमेय और अपरिमेय संख्याओं को एक साथ लेने पर वास्तविक संख्याओं का संग्रह प्राप्त होता है।

6. यदि $r$ परिमेय है और $s$ अपरिमेय है, तब $r+s$ और $r-s$ अपरिमेय संख्याएँ होती हैं तथा $r s$ और $\frac{r}{s}$ अपरिमेय संख्याएँ होती हैं यदि $r \neq 0$ है।

7. धनात्मक वास्तविक संख्याओं $a$ और $b$ के संबंध में निम्नलिखित सर्वसमिकाएँ लागू होती हैं:

(i) $\sqrt{a b}=\sqrt{a} \sqrt{b}$

(ii) $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$

(iii) $(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=a-b$

(iv) $(a+\sqrt{b})(a-\sqrt{b})=a^{2}-b$

(v) $(\sqrt{a}+\sqrt{b})^{2}=a+2 \sqrt{a b}+b$

8. $\frac{1}{\sqrt{a}+b}$ के हर का परिमेयकरण करने के लिए, इसे हम $\frac{\sqrt{a}-b}{\sqrt{a}-b}$ से गुणा करते हैं, जहाँ $a$ और $b$ पूर्णांक हैं।

9. मान लीजिए $a>0$ एक वास्तविक संख्या है और $p$ और $q$ परिमेय संख्याएँ हैं। तब,

(i) $a^{p} \cdot a^{q}=a^{p+q}$

(ii) $\left(a^{p}\right)^{q}=a^{p q}$

(iii) $\frac{a^{p}}{a^{q}}=a^{p-q}$

(iv) $a^{p} b^{p}=(a b)^{p}$



Table of Contents