wave-optics Question 14

Question: Q. 2. Find the intensity at a point on a screen in Young’s double slit experiment where the interfering waves have a path difference of (i) $\lambda / 6$, and (ii) $\lambda / 2$.

A [Foreign 2017]

Show Answer

Solution:

Ans. Phase difference $=\frac{2 \pi}{\lambda} \times$ Path difference

Path difference $=\frac{\lambda}{6} \Rightarrow$ Phase difference $=\frac{\pi}{3} 1 / 2$

Path difference $\frac{\lambda}{2} \Rightarrow$ Phase difference $=\pi \quad 1 / 2$

$$ I=4 I_{0} \cos ^{2}\left(\frac{\phi}{2}\right) $$

(i)

$$ \begin{equation*} I_{1}=4 I_{0} \times \frac{3}{4}=3 I_{0} \tag{ii} \end{equation*} $$

Detailed Answer :

Phase difference between interfering waves

$$ \phi=\frac{2 \pi}{\lambda} \times \text { path difference } $$

(i) Path difference $=\frac{\lambda}{6}$

$\therefore$ Phase difference $=\frac{2 \pi}{\lambda} \times \frac{\lambda}{6}=\frac{\pi}{3}$

$$ \begin{aligned} I & =4 I_{0} \cos ^{2}\left(\frac{\phi}{2}\right) \ & =4 I_{0} \cos ^{2} \frac{\pi}{6} \ & =4 I_{0} \times \frac{3}{4}=3 I_{0} \end{aligned} $$

(ii) Path difference $=\frac{\lambda}{2}$

$\therefore$ Phase difference, $\phi=\frac{2 \pi}{\lambda} \times \frac{\lambda}{2}=\pi$

$$ \begin{aligned} I & =4 I_{0} \cos ^{2} \frac{\phi}{2} \ & =4 I_{0} \cos ^{2} \frac{\pi}{2}=0 \end{aligned} $$



Table of Contents

NCERT Chapter Video Solution

Dual Pane