ray-optics-and-optical-instruments Question 46
Question: Q. 6. (i) Define magnifying power of a telescope.
(ii) Write its expression. A small telescope has an objective lens of focal length $150 \mathrm{~cm}$ and an eyepiece of focal length $5 \mathrm{~cm}$. If this telescope is used to view a $100 \mathrm{~m}$ high tower $3 \times 10^{5} \mathrm{~cm}$ away, find the height of the final image when it is formed $25 \mathrm{~cm}$ away from the eye piece.
A [Delhi I, II, III 2012]
Show Answer
Solution:
Ans. (i) Magnifying power is the ratio of the angle subtended at the eye by the image to the angle subtended at the unaided eye by the object.
$$ m=\frac{\beta}{\alpha}=\frac{f_{0}}{f_{e}} $$
(ii) Expression :
$$ \begin{equation*} m=\frac{f_{o}}{f_{e}}\left(1+\frac{f_{e}}{D}\right) \tag{1} \end{equation*} $$
[Award 1 mark if student writes expression with -ve sign]
Using the lens equation for an objective lens, $\mathbf{1}$
$$ \begin{aligned} \frac{1}{f_{0}} & =\frac{1}{v_{o}}-\frac{1}{u_{o}} \ \Rightarrow \quad \frac{1}{150} & =\frac{1}{v_{0}}-\frac{1}{3 \times 10^{5}} \end{aligned} $$
$$ \begin{aligned} \Rightarrow \quad \frac{1}{v_{0}} & =\frac{1}{150}-\frac{1}{3 \times 10^{5}}=\frac{2000-1}{3 \times 10^{5}} \mathrm{1} / 2 \ \Rightarrow \quad v_{\mathrm{o}} & =\frac{3 \times 10^{5}}{1999} \mathrm{~cm} \ & \approx 150 \mathrm{~cm} \end{aligned} $$
Hence, magnification due to the objective lens
$$ \begin{aligned} & m_{o}=\frac{v_{0}}{u_{0}}=\frac{150 \times 10^{-2} \mathrm{~m}}{3000 \mathrm{~m}} \ & m_{o} \approx \frac{10^{-2}}{20}=0.05 \times 10^{-2} \end{aligned} $$
Using lens formula for eyepiece,
$$ \begin{array}{rlrl} & & \frac{1}{f_{e}} & =\frac{1}{v_{e}}-\frac{1}{u_{e}} \ \Rightarrow & \frac{1}{5} & =\frac{1}{-25}-\frac{1}{u_{e}} \ \Rightarrow & \frac{1}{u_{e}} & =\frac{1}{-25}-\frac{1}{5}=\frac{-1-5}{25} \ \Rightarrow & u_{e} & =\frac{-25}{6} \mathrm{~cm} \end{array} $$
$\therefore$ Magnification due to eyepiece,
$$ m_{e}=\frac{-25}{-\frac{25}{6}}=6 $$
Hence, total magnification, $m=m_{e} \times m_{0}$
$$ m=6 \times 5 \times 10^{-4}=30 \times 10^{-4} $$
Hence, size of the final image
$$ \begin{aligned} & =30 \times 10^{-4} \times 100 \mathrm{~m} \ & =30 \mathrm{~cm} \end{aligned} $$
[CBSE Marking Scheme 2012]