ray-optics-and-optical-instruments Question 14
Question: Q. 5. Show that the spherical mirror formula holds equally to a plane mirror.
Show Answer
Solution:
Ans. Using mirror formula
$$ \frac{1}{v}+\frac{1}{u}=\frac{1}{f} $$
For plane mirror $f=\infty$
Hence
$$ \begin{equation*} \frac{1}{v}+\frac{1}{u}=0 \tag{1} \end{equation*} $$
So, $\quad v=-u$
It means the image sat equal distance and in opposite side of object. This is the true condition in image formation through plane mirror. Hence spherical mirror formula holds equally to a plane mirror. $\mathbf{1}$
Long Answer Type Questions
AI Q. 1.(i) Draw a ray diagram to show image formation when the concave mirror produces a real, inverted and magnified image of the object.
(ii) Obtain the mirror formula and write the expression for the linear magnification.
(iii) Explain two advantages of a reflecting telescope over a refracting telescope.
A [Delhi& O.D. 2018]
Ans. (i) Ray diagram to show the required image formation
(ii) Derivation of mirror formula Expression for linear magnification
iii) Two advantages of a reflecting telescope over a refracting telescope
$1 / 2+1 / 2$
(i)
(ii) In the above figure $\triangle B A P$ and $\triangle B^{\prime} A^{\prime} P$ are similar
$$ \begin{equation*} \Rightarrow \quad \frac{B A}{B^{\prime} A^{\prime}}=\frac{P A}{P A^{\prime}} \tag{i} \end{equation*} $$
Similarly, $\triangle M N F$ and $\triangle B^{\prime} A^{\prime} F$ are similar
$$ \begin{equation*} \Rightarrow \quad \frac{M N}{B^{\prime} A^{\prime}}=\frac{N F}{F A^{\prime}} \tag{ii} \end{equation*} $$
$$ \begin{aligned} M N & =B A \ N F & \approx P F \ F A^{\prime} & =P A^{\prime}-P F \end{aligned} $$
$\therefore$ Equation (ii) takes the following form
$$ \begin{equation*} \frac{B A}{B^{\prime} A^{\prime}}=\frac{P F}{P A^{\prime}-P F} \tag{iii} \end{equation*} $$
Using equation (i) and (iii)
$$ \frac{P A}{P A^{\prime}}=\frac{P F}{P A^{\prime}-P F} $$
For the given figure, as per the sign convention,
$$ \begin{aligned} P A & =-u \ P A^{\prime} & =-v \ P F & =-f \ \Rightarrow \quad \frac{-u}{-v} & =\frac{-f}{-v-(-f)} \ \frac{u}{v} & =\frac{f}{v-f} \ u v-u f & =v f \end{aligned} $$
Dividing each term by $u v f$, we get
$$ \begin{aligned} \frac{1}{f}-\frac{1}{v} & =\frac{1}{u} \ \Rightarrow \quad \frac{1}{f} & =\frac{1}{v}+\frac{1}{u} \end{aligned} $$
Linear magnification $=-\frac{-v}{u}$,
$$ \text { (alternatively, } m=\frac{h_{i}}{h_{0}} \text { ) } 1 / 2 $$
(iii) Advantages of reflecting telescope over refracting telescope
(i) Mechanical support is easier
$1 / 2+1 / 2$
(ii) Magnifying power is large
(iii) Resolving power is large
(iv) Spherical aberration is reduced
(v) Free from chromatic aberration
(any two)
[CBSE Marking Scheme 2018]