dual-nature-of-radiation-and-matter Question 18

Question: Q. 12. A monochromatic light source of power $5 \mathrm{~mW}$ emits $8 \times 10^{15}$ photons per second. This light ejects photoelectrons from a metal surface. The stopping potential for this set up is $2 \mathrm{~V}$. Calculate the work function of the metal.

A [Delhi I, II, III 2016]

Show Answer

Solution:

Ans.

$$ \begin{aligned} P & =5 \times 10^{-3} \mathrm{~W} \ n & =\frac{P}{E} \end{aligned} $$

$$ E=\frac{P}{n}=6.25 \times 10^{-19} \mathrm{~J} \quad 1 / 2 $$

$$ \begin{array}{rlrl} E & =3.9 \mathrm{eV} & 1 / 2 \ W_{0} & =E-\mathrm{eV}_{0} & 1 / 2 \end{array} $$

$$ =(3.9-2) \mathrm{eV} $$

$W_{0}=1.9 \mathrm{eV}$

Detailed Answer :

[CBSE Marking Scheme 2016]

Power of monochromatic light source

= total energy released per second

$=$ number of photons emits per second

$\times$ energy of one photon

Number of photons emits per second $=8 \times 10^{15}$

Power of monochromatic light source $=5 \mathrm{~mW}$

Hence, energy of one photon,

$$ \begin{aligned} h v & =\frac{5 \times 10^{-3}}{8 \times 10^{15}} \ & =0.625 \times 10^{-18} \mathrm{~J} \ & =\frac{0.625 \times 10^{-18}}{1.6 \times 10^{-19}}=3.9 \mathrm{eV} \end{aligned} $$

$K . E_{\text {max }}=e V_{0}$; where $V_{0}$ is stopping potential.

$$ \begin{aligned} & =V_{0} e V=2 e V\left(V_{0}=2 \text { Volts }\right) \ K . E . & =h v-\phi_{0} \ 2 & =3.9-\phi_{2} \ \phi_{0} & =(3.9-2) \mathrm{eV} \ \phi_{0} & =1.9 \mathrm{eV} \end{aligned} $$

Answering Tips

  • First calculate the energy of one photon and convert it to $\mathrm{eV}$.

Short Answer Type Questions-II



Table of Contents

NCERT Chapter Video Solution

Dual Pane