atoms Question 29
Question: Q. 7. In a Geiger-Marsden experiment, calculate the distance of the closest approach to the nucleus of
How will the distance of the closest approach be affected when the kinetic energy of the
A [OD I, II, III 2012]
If K.E. becomes twice then
i.e. the distance of closest approach becomes half.
[CBSE Marking Scheme 2012]
Detailed Answer :
At closest approach, all K.E. of
K.E.
It is converted into Potential energy.
if K.E. becomes twice, closest approach would be half of original closest approach.
Hence,
Q. 8. (i) Consider two different hydrogen atoms. The electron in each atom is in an excited state. Is it possible for the electrons to have different energies but same orbital angular momentum according to the Bohr model? Justify your answer.
(ii) If a proton had a radius
A&E C [SQP 2016]
Show Answer
Solution:
Ans. (i) In absence of magnetic field, the energy is determined by the principle quantum number
where,
Since
1
(ii) For a point nucleus in
Ground state :
If
$$ \begin{aligned} & \text { Charge inside } r_{B}^{\prime}{ }^{4}=e\left(\frac{r_{B}^{\prime}{ }^{3}}{R^{3}}\right) \ & \therefore \quad r_{B}^{\prime}=\frac{h^{2}}{m}\left(\frac{4 \pi \varepsilon_{0}}{e^{3}}\right) \frac{R^{3}}{r_{B}^{\prime}{ }^{3}} \ & r_{B}^{\prime A}=(0.51 \AA) \cdot R^{3} . \quad \mathrm{R}=10 \AA \ & =510(\AA)^{4} \ & \therefore \quad r_{B}^{\prime}=(510)^{1 / 4} \AA<\mathrm{R} . \ & \text { K.E. }=\frac{1}{2} m v^{2}=\frac{m}{2} \cdot \frac{h}{m^{2} r_{B}^{\prime}{ }^{2}}=\frac{h^{2}}{2 m} \cdot \frac{1}{{r^{\prime}}{B}{ }^{2}} \ & =\left(\frac{h^{2}}{2 m r{B}^{2}}\right) \cdot\left(\frac{r_{B}^{2}}{r_{B}^{\prime 2}}\right) \ & =(13.6 \mathrm{eV}) \frac{(0.51)^{2}}{(510)^{1 / 2}} \ & \frac{3.54}{22.6}=0.16 \mathrm{eV} \ & \mathrm{E} .=+\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right) \cdot\left(\frac{r_{\mathrm{B}}^{\prime}{ }^{2}-3 R^{2}}{2 R^{3}}\right) \ & =+\left(\frac{e^{2}}{4 \pi \varepsilon_{0}} \cdot \frac{1}{r_{B}}\right) \cdot\left(\frac{r_{B}^{1 / 2}-3 R^{2}}{R^{3}}\right) \ & =(27.2 \mathrm{eV})\left[\frac{0.51(\sqrt{510}-300)}{1000}\right] \ & =+(27.2 \mathrm{eV}) \cdot \frac{-141}{1000} \ & =-3.83 \mathrm{eV} \end{aligned} $$
[CBSE Marking Scheme, 2016]