atoms Question 29

Question: Q. 7. In a Geiger-Marsden experiment, calculate the distance of the closest approach to the nucleus of Z=80, when an α-particle of 8MeV energy impinges on it before it comes momentarily to rest and reverses its direction.

How will the distance of the closest approach be affected when the kinetic energy of the α-particle is doubled?

A [OD I, II, III 2012]

(Ze)(2e)4πε0(r0)=E r0=2Ze24πε0(E)=2Ze24πε0×E r0=9×109×2×80×(1.6×1019)28×106×(1.6×1019)m1/2 r0=18×1.6×1010×808×1061/2 r0=2.88×1014 m r01 K.E.

If K.E. becomes twice then r0=r02,

i.e. the distance of closest approach becomes half. 1/2

[CBSE Marking Scheme 2012]

Detailed Answer :

At closest approach, all K.E. of α-particle is totally converted into P.E. and it is the total energy of α - particle.

K.E. =8MeV=8×106×1.6×1019 J.

It is converted into Potential energy.

14πε0Ze2er0=12.8×1013 9×109×80×2×1.6×1019r0=12.8×1013 r0=9×109×160×(1.6×1019)212.8×1013( m)1/2

r0=9×1.6×1.6×1.6×101412.8 =2.88×1014 m  As we see that K.E. =14πε0Ze2er0  It shows  K.E. 1r0

if K.E. becomes twice, closest approach would be half of original closest approach.

Hence, r0=r02

Q. 8. (i) Consider two different hydrogen atoms. The electron in each atom is in an excited state. Is it possible for the electrons to have different energies but same orbital angular momentum according to the Bohr model? Justify your answer.

(ii) If a proton had a radius R and the charge was uniformly distributed, calculate using Bohr theory, the ground state energy of a H-atom when R =10\AA.

A&E C [SQP 2016]

Show Answer

Solution:

Ans. (i) In absence of magnetic field, the energy is determined by the principle quantum number n, while l is the orbital quantum number. If an electron is in nth  state then the magnitude of the angular momentum is

h2πl(l+1)

where, l=0,1,2,..,(n1)

Since l=0,1,2,..,(n1), different values of l are compatible with the same value of n. For example, when n=3, the possible values of tare0,1,2, and when n=4, the possible value of h are 0,1,2,3. Thus, the electron in one of the atoms could have n=3,l=2, while the electron in the other atom could have n=4,l=4. Therefore, according to quantum mechanics, it is possible for the electrons to have different energies but have the same orbital angular momentum.

1

(ii) For a point nucleus in H-atom :

Ground state : mvr=h,mv2rB=e2rB214πε0

mh2m2rB21rB=+(e24πε0)1rB2

(h2m4πε0e2)=rB=0.51\AA

If R»rB : the electron moves inside the sphere with radius rB(rB= new Bohr radius).

$$ \begin{aligned} & \text { Charge inside } r_{B}^{\prime}{ }^{4}=e\left(\frac{r_{B}^{\prime}{ }^{3}}{R^{3}}\right) \ & \therefore \quad r_{B}^{\prime}=\frac{h^{2}}{m}\left(\frac{4 \pi \varepsilon_{0}}{e^{3}}\right) \frac{R^{3}}{r_{B}^{\prime}{ }^{3}} \ & r_{B}^{\prime A}=(0.51 \AA) \cdot R^{3} . \quad \mathrm{R}=10 \AA \ & =510(\AA)^{4} \ & \therefore \quad r_{B}^{\prime}=(510)^{1 / 4} \AA<\mathrm{R} . \ & \text { K.E. }=\frac{1}{2} m v^{2}=\frac{m}{2} \cdot \frac{h}{m^{2} r_{B}^{\prime}{ }^{2}}=\frac{h^{2}}{2 m} \cdot \frac{1}{{r^{\prime}}{B}{ }^{2}} \ & =\left(\frac{h^{2}}{2 m r{B}^{2}}\right) \cdot\left(\frac{r_{B}^{2}}{r_{B}^{\prime 2}}\right) \ & =(13.6 \mathrm{eV}) \frac{(0.51)^{2}}{(510)^{1 / 2}} \ & \frac{3.54}{22.6}=0.16 \mathrm{eV} \ & \mathrm{E} .=+\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right) \cdot\left(\frac{r_{\mathrm{B}}^{\prime}{ }^{2}-3 R^{2}}{2 R^{3}}\right) \ & =+\left(\frac{e^{2}}{4 \pi \varepsilon_{0}} \cdot \frac{1}{r_{B}}\right) \cdot\left(\frac{r_{B}^{1 / 2}-3 R^{2}}{R^{3}}\right) \ & =(27.2 \mathrm{eV})\left[\frac{0.51(\sqrt{510}-300)}{1000}\right] \ & =+(27.2 \mathrm{eV}) \cdot \frac{-141}{1000} \ & =-3.83 \mathrm{eV} \end{aligned} $$

[CBSE Marking Scheme, 2016]



Table of Contents

NCERT Chapter Video Solution

Dual Pane