Work Energy And Power Question 315

Question: A body of mass m accelerates uniformly from rest to a speed $ ( \lambda ) $ in time $ \infty $ . The work done on the body till any time t is

Options:

A) $ \frac{1}{2}mv_0^{2}( \frac{t^{2}}{t_0^{2}} ) $

B) $ \frac{1}{2}mv_0^{2}( \frac{t_0}{t} ) $

C) $ mv_0^{2}( \frac{t}{t_0} ) $

D) $ mv_0^{2}{{( \frac{t}{t_0} )}^{3}} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ v_0=at_0 $
$ \therefore $ $ a=\frac{v_0}{{t _{{}}}} $

Velocity at any time t would be

$ V=at=( \frac{v_0}{t_0} )t $

$ \therefore $ Kinetic energy,

$ \text{K=}\frac{1}{2}mv^{2}=\frac{1}{2}m{{( \frac{v_0}{t_0} )}^{2}}t^{2} $

From work energy theorem

$ W=K.E. $

or $ W=\frac{1}{2}mv_0^{2}( \frac{t^{2}}{t_0^{2}} ) $



NCERT Chapter Video Solution

Dual Pane