Thermodynamics Question 318
Question: An imaginary ideal gas with adiabatic exponent $ \gamma =2 $ goes through a cycle . Find efficiency of cycle:
Options:
A) $ \frac{1}{9} $
B) $ \frac{1}{8} $
C) $ \frac{1}{6} $
D) $ \frac{1}{5} $
Show Answer
Answer:
Correct Answer: A
Solution:
[a]$ \eta =\frac{w}{Q _{given}}=\frac{\frac{p _{0}v _{0}}{2}}{\frac{1}{2}(p _{0}+2p _{0})v _{0}+\frac{nR\Delta T}{2-1}} $ $ =\frac{\frac{p _{0}v _{0}}{2}}{\frac{3p _{0}v _{0}}{2}+4p _{0}v _{0}-p _{0}v _{0}}=\frac{1}{9} $