Thermodynamics Question 309

Question: A diesel engine takes in 5 moles of air at $ 20{}^\circ C $ and 1 atm, and compresses it adiabatically to $ \frac{1}{10}\text{th} $ of the original volume. If air is diatomic then work done and change in internal energy is

Options:

A) - 46 kJ, 46 kJ

B) 36 kJ, - 36 kJ

C) 46 kJ, - 46 kJ

D) - 36 kJ, 36 kJ

Show Answer

Answer:

Correct Answer: A

Solution:

[a]Let $ p _{1}=1 $ atm, $ n=5mol,293K $

$ V _{2}=\frac{V _{1}}{10} $

Using $ T _{1}V _{1}^{\gamma -1}=T _{2}V _{2}^{\gamma -1} $

$ \Rightarrow $ $ T _{2}=T _{1}{{( \frac{V _{1}}{V _{2}} )}^{\gamma -1}} $

$ =293{{(10)}^{0.4}}=736K $

Now, work done $ =\frac{nR(T _{1}-T _{2})}{\gamma -1} $

$ =\frac{5\times 8.3\times (293-736)}{0.4}=-46kJ $

and $ \Delta U=\Delta Q-W=0-W=46kJ $



NCERT Chapter Video Solution

Dual Pane