Thermodynamics Question 303

Question: A monoatomic ideal gas goes through a process $ p=p _{0}-\alpha V $ where $ p _{0} $ and $ \alpha $ are positive constants and V is its volume. At what volume will the entropy of gas be maximum?

Options:

A) $ \frac{5p _{0}}{6\alpha } $

B) $ \frac{p _{0}}{2\alpha } $

C) $ \frac{p _{0}}{4\alpha } $

D) $ \frac{5p _{0}}{8\alpha } $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] $ ds=nC _{v}dT+PdV=0 $

$ nR\frac{dT}{dV}+( p _{0}-\alpha V )=0 $

$ pV=nRT $

$ p _{0}V-\alpha V^{2}=nRT $

$ p _{0}-2\alpha V=nR\frac{dT}{dV} $

$ -( p _{0}-\alpha V )( \gamma -1 )=p _{0}-2\alpha V $

$ -p _{0}(\gamma -1)+\alpha (\gamma -1)V=p _{0}-2\alpha V $

$ p _{0}V=\alpha V(\gamma +1) $

$ V=\frac{p _{0}\gamma }{\alpha ( \gamma +1 )} $

$ V=\frac{p _{0}\times \frac{5}{3}}{\alpha ( \frac{5}{3}+1 )}=\frac{5p _{0}}{8\alpha } $



NCERT Chapter Video Solution

Dual Pane