Rotational Motion Question 81

Question: The ratio of the accelerations for a solid sphere (mass m and radius R) rolling down an incline of angle $ \theta $ without slipping and slipping down the incline without rolling is

Options:

A) 5 : 7

B) 2 : 3

C) 2 : 5

D) 7 : 5

Show Answer

Answer:

Correct Answer: A

Solution:

  • A solid sphere rolling without slipping down an inclined plane In this case, $ a _1=\frac{g\sin \theta }{1+\frac{k^{2}}{R^{2}}}=\frac{gsin\theta }{1+\frac{(2/5)R^{2}}{R^{2}}} $

    $ [ \therefore forsolidsphere,K^{2}=\frac{2}{5}R^{2} ] $

    $ =\frac{g\sin \theta }{7/5} $

    $ \Rightarrow $ $ a _1=\frac{5}{7}g\sin \theta $

    For a sphere slipping down an inclined plane

    $ \Rightarrow $ $ a _2=g\sin \theta $

    $ \Rightarrow $ $ \frac{a _1}{a _2}=\frac{5/7g\sin \theta }{g\sin \theta } $

    $ \Rightarrow $ $ \frac{a _1}{a _2}=\frac{5}{7} $



NCERT Chapter Video Solution

Dual Pane