Rotational Motion Question 57

Question: Three particles, each of mass m grams situated at the vertices of an equilateral triangle ABC of side 1 cm . The moment of inertia of the system about a line AX perpendicular to AB and in the plane of ABC, in gram $ -cm^{2} $ units will be:

[AIPMT (S) 2004]

Options:

A) $ (3/4)ml^{2} $

B) $ 2ml^{2} $

C) $ (5/4)ml^{2} $

D) $ (3/2)ml^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • Moment of inertia of the system about AX is given by

$ MI=m _{A}r_A^{2}+m _{B}r_B^{2}+m _{C}r_C^{2} $

$ MI=m{{(0)}^{2}}+m{{(l)}^{2}}+m{{(l\sin 30^{0})}^{2}} $

$ =ml^{2}+\frac{ml^{2}}{4}=\frac{5}{4}ml^{2} $

Alternative: Moment of inertia of a system about a line OC perpendicular to AB, in the plane of ABC is

$ I _{CO}=m\times 0+m\times {{( \frac{1}{2} )}^{2}}+m\times {{( \frac{1}{2} )}^{2}} $

$ \therefore $ $ I _{CO}=\frac{ml^{2}}{4}+\frac{ml^{2}}{4}=\frac{ml^{2}}{2} $

According to parallel-axis theorem

$ I _{AX}=I _{CO}+Mx^{2} $

where $ x= $ distance of $ AX $ from CO, $ M= $ total mass of system

$ I _{AX}=\frac{ml^{2}}{2}+3m\times {{( \frac{l}{2} )}^{2}} $

$ I _{AX}=\frac{ml^{2}}{2}+\frac{3ml^{2}}{4}=\frac{5}{4}ml^{2} $



NCERT Chapter Video Solution

Dual Pane