Rotational Motion Question 54

Question: A round disc of moment of inertia $ I _2 $ about its axis perpendicular to its plane and passing through its centre is placed over another disc of moment of inertia $ I _1 $ rotating with an angular velocity $ \omega $ about the same axis. The final angular velocity of the combination of discs is:

[AIPMT (S) 2004]

Options:

A) $ \frac{I _2\omega }{I _1+I _2} $

B) $ \omega $

C) $ \frac{I _1\omega }{I _1+I _2} $

D) $ \frac{(I _1+I _2)\omega }{I _1} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Key Idea: When no external torque acts on a system of particles, then the total angular momentum of the system remains always a constant.

The angular momentum of a disc of moment of inertia $ I _1 $ and rotating about its axis with angular velocity $ \omega $ is

$ L _1=I _1\omega $

When a round disc of moment of inertia $ I _2 $ is placed on first disc, then angular momentum of the combination is

$ L _2=(I _1+I _2)\omega $

In the absence of any external torque, angular momentum remains conserved i.e.,

$ L _1=L _2 $

$ I _1\omega =(I _1+I _2)\omega $

$ \Rightarrow $ $ \omega ‘=\frac{I _2\omega }{I+I _2} $



NCERT Chapter Video Solution

Dual Pane