Rotational Motion Question 52

Question: A solid cylinder of mass M and radius R rolls without slipping down an inclined plane of length L and height h. What is the speed of its centre of mass when the cylinder reaches its bottom?

[AIPMT 2003]

Options:

A) $ \sqrt{\frac{4}{3}gh} $

B) $ \sqrt{4gh} $

C) $ \sqrt{2gh} $

D) $ \sqrt{\frac{3}{4}gh} $

Show Answer

Answer:

Correct Answer: A

Solution:

Potential energy of cylinder at the top will be converted into rotational kinetic energy and translational kinetic energy.

So, energy conservation gives.

$ Mgh=\frac{1}{2}Mv^{2}+\frac{1}{2}I{{\omega }^{2}} $

$ =\frac{1}{2}Mv^{2}+\frac{1}{2}\frac{MR^{2}}{2}\frac{v^{2}}{R^{2}}$

$( \because I _{cylinder}=\frac{MR^{2}}{2} ) $

So, $ Mgh=\frac{1}{2}Mv^{2}+\frac{1}{4}Mv^{2} $

or $ Mgh=\frac{3}{4}Mv^{2} $

or $ v^{2}=\frac{4}{3}gh $

or $ v=\sqrt{\frac{4}{3}gh} $

Note: In a collision of two bodies whether it is perfectly elastic or inelastic, linear momentum is always conserved but kinetic energy need not to be conserved.



NCERT Chapter Video Solution

Dual Pane