Rotational Motion Question 50

Question: A thin circular ring of mass M and radius r is rotating about its axis with a constant angular velocity $ \omega $ . Four objects each of mass m, are kept gently to the opposite ends of two perpendicular diameters of the ring. The angular velocity of the ring will be:

[AIPMT 2003]

Options:

A) $ \frac{(M+4m)\omega }{M} $

B) $ \frac{(M-4m)\omega }{M+4m} $

C) $ \frac{M\omega }{4m} $

D) $ \frac{M\omega }{M+4m} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • Key Idea: If external torque acting on the system is zero, hence angular momentum remains conserved.

    $ {\tau _{ext}}=0 $

    or $ \frac{dL}{dt}=0 $

    or $ L= $ constant

    or $ I\omega = $ constant

    $ \therefore $ $ I _1{\omega_1}=I _2{\omega_2} $ …(i)

    Here, $ I _1=Mr^{2},{\omega_1}=\omega ,I _2=Mr^{2}+4mr^{2} $

    Hence, Eq.(i) can be written as $ Mr^{2}\omega =(Mr^{2}+4mr^{2}){\omega_2} $

    $ \therefore $ $ {\omega_2}=\frac{M\omega }{M+4m} $



NCERT Chapter Video Solution

Dual Pane