Rotational Motion Question 39

Question: A thin circular ring of mass M and radius r is rotating about its axis with a constant angular velocity $ \omega $ . Two objects each of mass m are attached gently to the opposite ends of diameter of the ring. The ring will now rotate with an angular velocity:

[AIPMT 1998]

Options:

A) $ \frac{\omega (M-2m)}{(M+2m)} $

B) $ \frac{\omega M}{(M+2m)} $

C) $ \frac{\omega M}{(M+m)} $

D) $ \frac{\omega (M+2m)}{M} $

Show Answer

Answer:

Correct Answer: B

Solution:

Angular momentum remains conserved in the universe.

According to conservation of angular momentum

$ L= $ constant

or $ l\omega =constant $

$ \therefore $ $ l _1{\omega_1}=l _2{\omega_2} $

Initial moment of inertia

$ l _1=MR^{2} $

and angular velocity

$ {\omega_1}=\omega $

Hence, $ l _1{\omega_1}=MR^{2}\omega $

When two objects of mass m are attached to opposite ends of a diameter, the final readings are

$ l _2=MR^{2}+mR^{2}+mR^{2} $

$ =(M+2m)R^{2} $

So, $ l _2{\omega_2}=(M+2m)R^{2}{\omega_2} $ ….(iii)

$ \therefore $ From Eqs.(i), (ii) and (iii)

$ MR^{2}\omega =(M+2m)R^{2}{\omega_2} $

$ \Rightarrow $ $ {\omega_2}=\frac{\omega M}{M+2m} $



NCERT Chapter Video Solution

Dual Pane