Rotational Motion Question 206

Question: The moment of inertia of a hollow thick spherical shell of mass M and its inner radius $R _{1}$ and outer radius $R _{2}$ about its diameter is

Options:

A) $\frac{2M}{5}\frac{(R _{2}^{5}-R _{1}^{5})}{(R _{2}^{5}-R _{1}^{3})}$

B) $\frac{2M}{5}\frac{(R _{2}^{5}-R _{1}^{5})}{(R _{2}^{3}-R _{1}^{3})}$

C) $\frac{4M}{5}\frac{(R _{2}^{5}-R _{1}^{5})}{(R _{2}^{3}-R _{1}^{3})}$

D) $\frac{4M}{3}\frac{(R _{2}^{5}-R _{1}^{5})}{(R _{2}^{3}-R _{1}^{3})}$

Show Answer

Answer:

Correct Answer: A

Solution:

[a]

$\rho =\frac{M}{\frac{4}{3}\pi (R _{2}^{3}-R _{1}^{3})}$ $I _{shell}=\frac{2}{5}M _{2}R _{2}^{2}-\frac{2}{5}M _{1}R _{1}^{2}$ $ –(1)

$M _{2}=\rho \times \frac{4}{3}\pi R _{2}^{3}$ $=\frac{MR _{2}^{3}}{(R _{2}^{3}-R _{1}^{3})};M _{1}=\frac{MR _{1}^{3}}{R _{2}^{3}-R _{1}^{3}}$

Putting values of $M _{1}$and $M _{2}$in eq.(1),

$I _{shell}=\frac{2M}{5}\frac{(R _{2}^{5}-R _{1}^{5})}{(R _{2}^{3}-R _{1}^{3})}$



NCERT Chapter Video Solution

Dual Pane