Rotational Motion Question 203

Question: From a solid sphere of mass M and radius R a cube of maximum possible volume is cut. Moment of inertia of cube about an axis passing through its center and perpendicular to one of its faces is

Options:

A) $\frac{4MR^{2}}{9\sqrt{3\pi }}$

B) $\frac{4MR^{2}}{3\sqrt{3\pi }}$

C) $\frac{MR^{2}}{32\sqrt{2\pi }}$

D) $\frac{MR^{2}}{16\sqrt{2\pi }}$

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Here

$a=\frac{2}{\sqrt{3}}R$

Now, $\frac{M}{M’}=\frac{\frac{4}{3}\pi R^{3}}{a^{3}}$ $=\frac{\frac{4}{3}\pi R^{3}}{{{\left( \frac{2}{\sqrt{3}}R \right)}^{3}}}=\frac{\sqrt{3}}{2}\pi .$

$M’=\frac{2M}{\sqrt{3}\pi }$

Moment of inertia of the cube about the given axis,

$I=\frac{M’a^{2}}{6}$

$=\frac{\frac{2M}{\sqrt{3}\pi }\times {{\left( \frac{2}{\sqrt{3}}R \right)}^{2}}}{6}=\frac{4MR^{2}}{9\sqrt{3}\pi }$



NCERT Chapter Video Solution

Dual Pane